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Kurzfassung

Objekte in Zeit und Raum zu erkennen und zu verfolgen stellt eine zentrale, wissenschaft-
liche Frage für viele Szenarien bildbasierter Wahrnehmung dar. Jüngste Entwicklungen in
Deep Learning ermöglichen verbesserte Repräsentationen von Objekten in Bezug auf ihre
Position, Form, Erscheinung und Bewegung. Durch lernbasierte Methoden können klassen-
oder objektspezifische Merkmale erfasst und sogar spezifische Korrelationen innerhalb
von Bildern einer 3D Szene entdeckt werden, da ein perspektivisches Bild viele Hinweise
über die 3D Position, Orientierung, Größe und Identität eines Objektes enthält. Fehlende
Erkennungen, Verdeckungen und die Gegenwart mehrerer interagierender Objekte machen
diese Aufgabe jedoch komplex und weiterhin ungelöst. In dieser Arbeit wird die Integra-
tion mehrerer lernbasierter Erweiterungen der Objektrepräsentationen vorgeschlagen, um
diese Probleme zu verringern und die 3D Multi-Target Objekterkennung und -verfolgung
präziser zu machen. Eine aufmerksamkeitsbasierte Erweiterung der Repräsentationen
wird formuliert, um die Nutzung von Merkmalen, die den räumlichen Kontext beachten,
im Rückgrat einer Neuronalen Netzwerk Architektur und dem Wiedererkennungsmodul
zu fördern. Als zweiter Beitrag wird eine Repräsentation eingeführt, die ein Objekterken-
nungsmodul erweitert, um inkrementell neue Klassen von wenigen (1-10) Bildern zu lernen,
ohne vorherige Klassen zu vergessen. Die vorgeschlagenen wissenschaftlichen Konzepte
berücksichtigen existierende Datensätze und Forschungs- und Evaluierungsmethoden.
Zusätzlich wurde im Rahmen der Evaluierungsaufgabe ein Schema zur synthetischen
Generierung mehrerer Ziele und ihrer Trajektorien entwickelt, um Szenen mit einer
variablen Anzahl an interagierenden Objekten mit Annotationen erstellen zu können. Die
vorgeschlagene Methode wird auf dem KITTI Multi-Target Tracking Benchmark Daten-
satz evaluiert. Sie weist vergleichbare Resultate gegenüber einem Referenzansatz auf, der
nur auf einer kinematischen Assoziation mithilfe eines Kalman Filters beruht. Außerdem
wurden die ausgearbeiteten Konzepte in einem angewandten Szenario (Bike2CAV Projekt)
validiert, bei dem die zeitlich variierende Konfiguration von Verkehrsteilnehmern aus Sicht
eines bewegten Fahrzeuges geschätzt wird. Die Forschungsergebnisse deuten darauf hin,
dass, trotz der Mehrdeutigkeit der monokularen Sicht, die eingeführten Erweiterungen
der Repräsentation zu einer präziseren räumlichen Lokalisierung führen. Des Weiteren
demonstrieren die Resultate, dass eine Wiedererkennung mittels Merkmalen Vorteile
gegenüber einer einfachen, kinematischen Modellierung hat, da es zu zeitlich stabileren
Tracking Ergebnissen führt. Dieser Vorteil könnte bei größeren Datensätzen mit 3D Posen
und Tracking Annotationen ausgeprägter sein, was Raum für weitere Forschung lässt.
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Abstract

Detecting and pursuing various targets in space and time represents a key scientific
question for many vision-based perception scenarios. Recent developments in Deep
Learning offer enhanced ways to represent targets in terms of their location, shape,
appearance and motion. Learning can capture the significant variations seen in the
training data while retaining class- or target-specific cues. Learning even allows for
discovering specific correlations within an image of a 3D scene, as a perspective image
contains many hints about an object’s 3D location, orientation, size and identity. This
single-image based spatial reasoning task is the subject of ongoing research. However,
detection failures, occlusion, and the presence of multiple interacting targets render this
task complex and still unsolved. In this thesis, the integration of multiple learning-based
representational enhancements is proposed to mitigate these problems and perform
the 3D multi-target detection and tracking task more accurately. In these tasks, an
attention mechanism can facilitate discovering the correlation between image features
and spatial attributes. An attention-based representational enhancement is formulated
to guide learning towards using spatially-aware features in the backbone network within
a neural-network architecture and the reidentification branch. As a second contribution,
a representation for extending multi-task learning to incrementally learn new classes
from a few (1-10) image samples without forgetting is introduced. As monocular 3D
estimation is an evolving field, the proposed scientific concepts take existing datasets,
research methodologies and evaluation concepts into account. Additionally, a synthetic
multi-target trajectory generation scheme was developed to complement the evaluation
task, offering a variable number of moving and interacting targets with computed ground
truth. The proposed method is evaluated on the KITTI multi-target tracking benchmark
dataset. It demonstrates competitive results against a baseline relying solely on a
Kalman Filter based kinematic association step. The elaborated research concept has
also been validated in an applied scenario (Bike2CAV project), where the time-varying
spatial configuration of traffic participants is estimated from the viewpoint of a moving
vehicle. The main findings of this research indicate that despite the monocular view
ambiguity, the introduced representational enhancements lead to a more accurate spatial
localisation. Results also demonstrate that target reidentification is advantageous beyond
simple kinematic modelling, leading to a temporally more stable multi-target tracking
performance. This advantage might be more pronounced by using larger datasets with
extensive 3D poses and tracking annotations, indicating future research opportunities.
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CHAPTER 1
Introduction and Motivation

Spatial awareness and reasoning are fundamental traits of modern vision-based robotic
systems [LSML14].However, monocular (single view) vision-based perception is associated
with ambiguities such as depth-scale ambiguity or viewpoint invariance that causes
ambiguities [AAJD+19, MAR+19]. The former ambiguities arise from projecting the
3D world onto a 2D imaging plane, where multiple 3D scene configurations can result
in the same projected image [MBU+19]. This thesis addresses specific vision tasks,
namely detection, association and tracking. Object detection is the task of extracting
an object’s 2D or 3D location from sensor data, the focus in this thesis being RGB
camera images. Target association and tracking is the task of associating detections
within a given sequence with a consistent identifier, thus generating trajectories of these
objects. In these tasks, ambiguities in estimating depth, orientation and association are
strongly present, and prior knowledge via learned representations can be introduced to
mitigate them. This ambiguity reduction can be achieved by combining prior knowledge
from data with the representational power of Deep Learning [GBC16, KSH12] to infer
entities such as objects, segmentations, similarities and trajectories. When sufficient
data is available, even complex correlations between 2D (image) and 3D (world) spaces
can be estimated and learned [CKZ+16]. This work demonstrates several methodology
enhancements to learn such complex functions, which estimate the 3D pose directly
from a single view and generate additional representations to support object association
between time-consecutive image frames.

Deep Learning has progressed not only in terms of representational power but also in
its capacity to accommodate multiple classification and regression tasks. Although the
first step toward neural networks was already taken in 1943 with the introduction of
the artificial neuron [MP43], it took until 2012 and the inception of AlexNet [KSH12] to
spark the Deep Learning revolution we have today. Instead of manually designing feature
extractors for images like in traditional computer vision, one could now utilise the power
of a convolutional neural network (CNN) to learn features from data [Sze22]. Historically,
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1. Introduction and Motivation

Figure 1.1: Targeted research focus: learned representations achieving spatial and
temporal context awareness.

this trend has evolved from simple image classification [KSH12], through segmentation
[NHH15] and 2D object detection [GDDM14], towards spatially more characterising tasks,
such as instance [HGDG17] and panoptic [KHG+19] segmentation, monocular 3D object
detection [CKZ+16] and even explicit 3D object geometry estimation [ZWT+21]. Only
recently, the additional benefits of combining multiple vision tasks into one end-to-end
formulation have been proposed, leading to simplified training, harmonised representations
and accuracy improvements [ZWK19]. End-to-end multi-task learning performs multiple
tasks simultaneously while sharing parameters between them. Such an approach also
improves the generalisation performance of related tasks by utilising shared training
information [Rud17].

Image-based 3D object detection and pose parameter regression are typical multi-task
learning problems as they require classifying image content into possible classes while
also regressing their 3D bounding boxes. Association of detected objects to consistent
motion trajectories can be facilitated by including a reidentification task (reID), which
distils each object’s appearance into a compact and discriminative feature set [WZL+20].
Extending learned representations via few-shot learning of new object categories from
previously unseen instances can also encompass a key learning task. These learning
tasks, as they capture the spatial and temporal relationship of multiple object classes
with respect to an observer (camera), can place the observer into an external context.
Figure 1.1 illustrates the three different spatial contexts in robotics applications. At
the top, the external context, consisting of static and dynamic context, and the tasks
involved are depicted, while the bottom shows the internal context and the corresponding
attributes. The presented research focuses on these spatial and temporal estimation
tasks. Its motivation is twofold: (i) coping with ambiguities via learning still represents
an open research question, and (ii) estimating spatiotemporal context is an essential asset

2



Figure 1.2: Targeted spatial and temporal representational enhancements lifting and
associating 2D image-based observations into a metric 3D space around a moving observer.

in enabling autonomous vehicles (AV) and robots.

In particular, interpreting the surrounding environment is crucial since recognising other
traffic participants and possible obstacles is essential. However, lifting image-based 2D
observations into a 3D metric space involves depth information so that an AV can avoid
collisions. Figure 1.2 illustrates the transformation from the 2D image space to the
Birds-Eye-View (BEV) space, a possible representation of 3D space in object detection.
Intuitively, one would think this requires additional sensors or stereo vision [AAJD+19].
However, recent developments have shown that under certain conditions and with enough
data, neural networks can infer 3D depth information from training data, even from a
single RGB image [CKZ+16], while also reasoning about the identity of the detected
object [WZL+20]. Although many representational concepts have been proposed to tackle
these core tasks, the inherent ambiguity of classifying objects into the same class while
also distinguishing between objects of the same class calls for advanced representations
exhibiting robustness during occlusions, clutter and object size variation [CZBO21].
Therefore, this work investigates and proposes using improved spatial attention that
supports monocular view geometry and multi-target tracking reasoning.

The elaborated research methodology has been validated within an actual use case of
the Bike2CAV1 Project, funded by the Austrian Research Promotion Agency (FFG).
This project used monocular vision-based 3D pose estimation to ensure safe interaction
between cyclists and other vehicles.

1https://www.bike2cav.at/
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1. Introduction and Motivation

1.1 Problem Statement & Challenges
The problem of monocular multi-target object detection and tracking can be defined as
follows [FZH+21]:

Given a sequence of single, monocular RGB images depicting a dynamic scene with a
variable number of objects, extract each object’s 3D location, pose, and motion path with
a consistent identity.

This thesis focuses on dynamic street scenes in autonomous driving, observed in time-
consecutive street-level views. Therefore, cars, cyclists and pedestrians are the primary
classes to detect and track.

The first challenge of this problem is to robustly estimate an object’s relative 3D position
and pose directly from its 2D appearance. Assuming that the observed object’s movement
is constrained to a ground plane, this task shall estimate its distance, 3D dimensions,
and orientation in terms of an azimuthal angle with respect to an observer. This
scenario is depicted in Figure 1.3. The pitch and roll orientations can be assumed to
be zero, as these angles typically vary only within a limited range. The lack of depth
information in monocular RGB images renders this task ambiguous, where learned
priors on object attributes (dimension, orientation) and view-specific constraints must be
exploited [KH21].

The second challenge concerns the association of target identities. Occlusions, clutter and
detection failures make an association of detection responses between consecutive frames
a challenging problem [ZWW+21]. Finally, there is an inherent ambiguity between
object classification and reID. Conversely, the model tries to learn a wide range of
possible appearances for the same class to classify them correctly, corresponding to
the maximisation of inter-class separability. On the other hand, objects should be
distinguishable even within a class for the reID task, which corresponds to maximising

Figure 1.3: Illustration depicting the key pose parameters to be regressed within the
monocular 3D pose estimation task.
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1.2. Contributions

intra-class compactness and separability. Thus, these learning objectives need to strike a
balance, and their incorporation into the learning process requires thorough consideration
[YLHW69].

The third challenge is that, besides the temporal and spatial variability of objects,
our scenarios depict dynamic scenes where new categories can emerge. Current object
detection concepts rely on a closed-world assumption, implying that only a fixed set of
categories is learned. This limitation calls for learning frameworks that can introduce
novel categories while retaining previously learned models.

In the next section, a monocular 3D object detection and tracking framework is proposed
to tackle the first two challenges and a simple few-shot detection framework to tackle the
third challenge.

1.2 Contributions
This work proposes a representation-enhanced end-to-end Deep Learning approach
for 3D pose-aware multiple-object detection and tracking, using only monocular RGB
images as input. Its representational concept is based on an encoder-decoder type
multi-task learning scheme while also integrating recent representational breakthroughs
devised explicitly for coping with spatial ambiguities and association uncertainties. The
tracking integrates a reID approach that utilises a Transformer Encoder [VSP+17] with
deformable attention [ZSL+20] to obtain target-specific appearance features using a
spatially-delocalised exploration and correlation scheme.

The four key contributions of this thesis are:

• Enhancing the backbone feature computation network by allowing for
long-range correlated feature discovery via an additional attention layer. This
is a key capability to associate local 2D/3D percepts (object centre and keypoints)
to 3D-object-level estimates, resulting in a spatial stabilisation along the viewing
ray between the camera and object.

• Tackling the increasing gradient problem of uncertainty guided depth
estimation by utilising the Robust Kullback-Leibler loss term [CHT+21]. This
step allows for better convergence during training.

• Improved reidentification by spatial attention from the Transformer
Encoder for appearance-specific target representation. This addition con-
tributes to an improved 3D multi-target tracking in the presence of apparent abrupt
motion.

• Exploring and integrating a few-shot learning framework without forget-
ting, enabling easy extension of learnt base classes by new classes using only a few
(typically 3 - 10) manually annotated samples. The feasibility of this scheme has

5



1. Introduction and Motivation

been validated in a different framework, including image acquisition and annotation,
providing an interactive learning process with a graphical user interface.

1.3 Thesis Overview
Chapter 2 introduces concepts and state-of-the-art approaches used in object detection
and tracking. First, the developments and approaches used in 2D object detection are
presented. Then, the main concepts used for monocular 3D object detection and the
representations used in state-of-the-art object detection frameworks are described. After
that, general concepts used for multi-target tracking are discussed. Joint multi-target
object detection and tracking frameworks are illustrated in the following section. The
chapter concludes with an introduction to datasets and metrics used for evaluating object
detection and multi-target tracking performance.

Chapter 3 focuses on the proposed monocular multi-target object detection and tracking
methodology. After describing a synthetic data generation pipeline, the object detection
and tracking framework is explained. The network architecture and representation for
object detection are first illustrated, followed by the reID feature extraction method
and target association strategy. Finally, the few-shot object detection methodology is
presented.

Chapter 4 contains quantitative and qualitative evaluation results of the proposed
framework on a dataset presented in Chapter 2, the synthetic dataset created using the
methodology introduced in Chapter 3 and a private dataset from the Bike2CAV project.
Furthermore, an ablation study is conducted to demonstrate the effects of the proposed
contributions.

Finally, Chapter 5 comprises the conclusions drawn from this thesis, the limitations of
the proposed methodology and possible future works.

6



CHAPTER 2
Concepts and State-of-the-Art

This chapter introduces the main concepts used in object detection, focusing on monocular
3D object detection and the geometry used. Additionally, the prominent representations
used in state-of-the-art monocular object detectors are presented.

Afterwards, the different approaches used in multi-target tracking are discussed. Finally,
the combination of the two into one end-to-end multi-task learning concept is described.

2.1 2D Object Detection
Object detection is the task of localising objects in a given image and classifying them
into a category. Traditional methods for solving this task usually involve selecting
hand-crafted features. However, selecting robust features that cover a large variety of
appearances, lighting conditions, and backgrounds is a challenging task [XTY+20]. With
the advent of CNNs, neural networks started to outperform these traditional methods
[Sze22]. The development of neural networks for object detection started with two-stage
approaches, and later on, single-stage approaches were developed [QLL21]. Recently,
multi-task frameworks have become popular, combining object detection with tasks such
as segmentation [LKSC19] or tracking [ZWW+21].

2.1.1 Two-Stage Detectors
The first neural networks for object detection mainly used a two-stage approach. The
task was split into generating regions of interest and then classifying and refining them
into appropriate bounding boxes. One of the first models to use this approach was
the Region-based convolutional neural network [GDDM14], which showed that deep
CNNs perform better in object detection than conventional methods. It uses a selective
search method to generate region proposals in various sizes and aspect ratios. These are
then run through a CNN to extract features and finally classified by a linear support

7



2. Concepts and State-of-the-Art

vector machine model. This method wastes computation power on classifying each region
proposal. Fast-R-CNN [Gir15] improved upon this by creating a feature map from the
whole image, dividing the regions of interest into cells, and applying max pooling. The
number of cells is fixed so that each region proposal generates a feature vector of the same
size. This vector is then used as input for several fully connected layers whose output is
split into two branches, one for the class scores and one for the bounding box regression.
Faster R-CNN [RHGS17] and Mask R-CNN [HGDG17] brought further improvements,
but the idea remained the same.

2.1.2 Single-Stage Detectors
The first significant novelty was the introduction of the one-stage detector YOLO (You
Only Look Once) [RDGF16]. Instead of first generating region proposals and then
classifying them, it views object detection as a regression problem. The image is divided
into an S × S grid for which the network predicts B bounding boxes and the respective
confidence and class probabilities for that cell. This approach led to significantly lower
runtimes while providing a competitive accuracy. Another noteworthy development was
the introduction of focal loss as a classification loss function with RetinaNet [LGG+17].
It tackles the issue that there are more background detections than actual foreground
object detections.

2.1.3 Anchorless Detectors
All previously mentioned detectors have in common that they use anchor boxes for
detections, meaning they have a set of preconfigured bounding boxes, which they adapt
depending on the detection input. These have the drawbacks of introducing a significant
computational burden due to the necessity of anchor boxes of various shapes and sizes.
They also introduce additional hyperparameters regarding the design of these boxes.
Therefore, anchorless object detectors have become more popular recently, the first
noteworthy ones being CornerNet [LD18] and CenterNet [ZWK19]. The idea is to detect
objects as keypoints instead of boxes: In CornerNet, the corners of the 2D bounding box,
in CenterNet, the object centres. In CornerNet, the detected corners are then matched
via an embedding. CenterNet regresses the bounding boxes in an additional regression
branch that shares the same backbone as the classification branch. Especially CenterNet
established state-of-the-art results while reducing runtime significantly and thus enabling
accurate real-time object detection.

2.1.4 Transformer-Based Detectors
Transformers have already revolutionised the natural language processing domain [VSP+17].
However, their potential for computer vision due to their ability to discover long-range
relationships has been uncovered in recent years. With DETR [CMS+20], a simple
transformer-based approach for object detection was proposed. It uses a CNN as the
feature extractor and then has a transformer encoder-decoder on top. It creates a fixed
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number of predictions of bounding boxes and their respective class for the given image
and can achieve state-of-the-art performance. Vision [DBK+20] and Swin Transformers
[LLC+21] are new backbones, replacing the CNN feature extractors, yielding state-of-the-
art results in many computer vision tasks, including object detection. The top 7 object
detectors on the COCO test dev benchmark dataset [LMB+14] published in a paper use
these Transformer backbones [ZLL+22].

2.2 Monocular 3D Object Detection
While 2D object detection tries to estimate the bounding box of an object within the
image plane, in monocular 3D object detection, the task is to estimate an object’s location,
size and pose in 3D space from a single RGB image. This section focuses on geometry,
how 3D and image space correlate, and possible representations for the learning task.

2.2.1 Concepts
When taking a picture, points from 3D space are projected and transformed into the 2D
image plane (see Figure 2.1). This operation can be written as:

p = K[R t]pw (2.1)

where p is the image pixel coordinate, pw is the 3D world coordinate. K[R t] represents
the camera matrix, which can be split into two parts. K is the calibration or intrinsic
camera matrix, and [R t] is the extrinsic camera matrix. The latter transforms the 3D
world coordinates into camera-centred 3D world coordinates, while the former projects the
3D camera centred points into 2D image coordinates. In 3D object detection, the datasets
are usually annotated with the object centre in 3D camera-centred coordinates and thus,
only the camera intrinsic camera matrix is required during training. To obtain the pixel
coordinates as a final step, one must divide the resulting vector p by its third element,

Figure 2.1: Projection of a 3D camera-centred point pc onto the sensor plane at p. Oc is
the optical centre and cs is the 3D origin of the sensor coordinate system. Taken from
[Sze22]
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the depth. This operation illustrates the key problem in monocular object detection. To
invert this transformation and get the location of an object in the image in 3D space, one
has to know the depth. This information, however, is not contained in the image and
therefore has to be extracted by other means[Sze22]. Other 3D object detection methods
use sensor modalities like LiDAR [LVC+19] or stereo camera setups [LCS19] to measure
depth, but these sensors add costs. Therefore, in monocular 3D object detection, the
detector estimates the depth based on geometric cues or other assumptions. Various
representations can be used to obtain the final prediction, introduced in the following
section.

2.2.2 Representations

Keypoint Estimation and Template Matching

The first neural networks used for monocular 3D object detection mainly used template
matching methods, where the actual 3D size was chosen from pre-determined templates.
These templates were either learned during training or used CAD models. The former
method was used in Mono3D [CKZ+16], which was the pioneering work in the field. It
first generates dense proposals on a range of proposed ground planes, applies a scoring
function and finally classifies and regresses the most promising candidates using Fast
R-CNN. Bounding boxes are represented as (x, y, z, θ, c, t). Here, (x, y, z) is the 3D
location of the bounding box centre. θ represents the azimuth angle on the ground plane,
which is not regressed but classified as either 0◦ or 90◦. c is the object class, and t
is a representative size template learnt during training. DeepMANTA [CCR+17] used
the latter method, utilising CAD models to recover 3D position and orientation during
inference. It also introduces the concept of keypoint estimation, where certain vehicle
parts’ position is also predicted. This information is then used in a second step to match
the detection to one of the template CAD models. This keypoint estimation, which can
also be seen as a shape estimation, was picked up by others like Mono3D++ [HS19]
and MonoGRNet [QWL63]. The template matching approach has the disadvantages of
either a minimal number of templates, leading to a worse representation of the variety
of objects or exponentially increasing computational requirements for finding the best
match among a large number of templates. Additionally, keypoint and shape estimation
has the downside that dense annotations for object shapes such as cars are complex and
time-consuming. Hence, only limited data is available as ground truth. [KH21].

Representation Transformation and Dense Depth Prediction

Kim and Kum [KK19] have a different approach to overcoming the ambiguity between
size and location in monocular object detection. Instead of estimating bounding boxes on
the front view image, they first transform it into a BEV version. In the BEV, the scale of
the objects is the same, so this ambiguity is eliminated. The transformation is achieved
by first correcting the pitch and roll motion of the camera using the inertial measurement
unit of the vehicle used for creating the data and then using inverse perspective mapping
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to obtain the BEV image. Afterwards, the problem is reduced to detecting an oriented
2D bounding box on the BEV image. [RKC18] follow the idea of the BEV transformation
but use deep learning instead of the classical approach to achieve the transformation.
Similarly, BirdGAN [SJS19] uses a generative adversarial network (GAN) to create a
BEV image by image-to-image translation.

Considerable advancements in monocular depth estimation in recent years, which predicts
the depth of each input image pixel, have enabled another transformation approach.
[XC18] propose the multi-level fusion network, which uses the monocular depth estimation
network MonoDepth [GMB17] to create a point cloud that, combined with the image
features, is used to estimate 3D bounding boxes. [WK19] picked up this idea and proposed
Pseudo-LiDAR, which directly uses state-of-the-art LiDAR detectors on the generated
point cloud.

Direct Regression

With the introduction of anchorless object detectors, especially CenterNet, another,
more straightforward representation gained popularity. Because CenterNet predicts
object properties at a predicted object centre, it is easy to extend the 2D bounding
box prediction to 3D bounding boxes by extending the predicted properties. [JZK19]
follow that approach with their SS3D and regress the 2D bounding box, object distance,
observation angle, dimensions and projected 3D bounding box corners for each object in
their central region. This approach simplifies the network architecture while showing the
best state-of-the-art results.

One of the currently best performing monocular 3D object detectors that does not
require additional training data, MonoFLEX [ZLZ21], is based on the same approach but
introduces additional parameters. In addition to the direct depth estimation in SS3D,
the depth is estimated from the predicted corners of the projected 3D bounding box via
geometric constraints [BABM19]. A weighted sum of the values, utilising learnt weights,
achieves the final depth estimate.

2.3 Multi-Target Tracking
Tracking an object means associating detections of the same object over multiple frames
with the same track, for example, via a unique identifier. When doing this for multiple
objects in the same images, this is called multi-target tracking in contrast to single-target
tracking, where only one object is tracked. There is also a differentiation between online
and offline tracking. The former only has access to information from the past and the
current sequence frame, while the latter has access to the whole sequence at once. Because
autonomous vehicles require online tracking, this is the focus of this thesis. The main
challenge in multi-target tracking is being able to reidentify objects even if they are
occluded or wholly hidden for some frames and in the presence of an abundance of clutter.
There are two main approaches to tackle this problem.
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2.3.1 Location and Motion-Based Methods
The goal of location and motion-based methods is to associate detections by predicting
the motion of an object based on previous detections. The simplest way of doing this
is using a Kalman Filter [K+60] for the motion prediction and then the Hungarian
algorithm [Kuh55] for the association. SORT [BGO+16] uses this approach for the 2D
case and AB3DMOT [WWHK20] for the 3D case. More complex approaches often include
considering camera motion [HHW+22] or using LSTMs for motion prediction [CZBO21].

All these approaches have in common that they are challenged by crowded scenes and fast
motion, especially in combination with occlusions or wholly hidden passages. Especially
the simpler ones, however, have the advantage that they are fast, with inference speeds
of 100ks frames per second.

2.3.2 Appearance-Based Methods
The other idea is to identify objects based on their appearance, mainly achieved by
extracting features from the images representing the object’s appearance. This can be
achieved in a separate detection and embedding approach, where an object detector
is used to extract bounding boxes first, which are then used to crop out the detected
objects. The cropped images are then fed into an embedding model to generate a
target-specific embedding. This approach is illustrated in Figure 2.2 (a). A step towards
jointly learning object detection and tracking was the idea of using a two-stage Faster
R-CNN approach and introducing an additional embedding branch in the second stage
that operates on the extracted regions of interest [VKO+19]. This is the approach shown
in Figure 2.2 (b). Based on the extracted features, a matching is achieved by calculating
the feature similarities and then using the Hungarian matching algorithm. The main
advantage of this approach is its robustness to occlusions and even whole detection gaps,
as appearances tend to be stable within sequences [ZWW+21]. However, they require
training compared to the simple location- and motion-based methods.

2.3.3 Hybrid Methods
An evident approach to combat the issues of the individual methods is to combine
them. This combination can be done hierarchically, e.g. by first trying association via
one type and if the confidence there is too low, associate via the other one [CAZS18].
All cues can also be combined directly into one similarity metric for the association
[SAS17, XCZH19, SWD+20].

2.4 Joint Monocular Multi-Target Object Detection and
Tracking

Because a tracker needs detections to track the object, these tasks are closely tied. With
the idea of multi-task learning recently becoming more popular, combining both tasks
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Figure 2.2: Illustration of different tracking approaches: (a) Seperate Detection and
Embedding (SDE), (b) two-stage model and (c) Joint Detection and Embedding (JDE).
Taken from [WZL+20]

in a multi-task framework is reasonable. The most common approach to do so is by
using a shared backbone as a feature extractor and then having one object detection
branch and one tracking branch, all of which are trained together. This approach is
illustrated and compared to its separate detection and tracking approaches in Figure 2.2.
Each task has its loss function, and the complete network is updated with a weighted
linear combination. This joint learning has two main advantages, the first one being
the reduced model size and therefore reduced computational requirements. The second
one is the more subtle idea that training multiple similar tasks at once can improve the
performance in the individual tasks [KGC18, LJD19]. Concerning multi-target object
detection and tracking, there are again two different tracking cues that can be used, reID
and motion prediction. CenterTrack [ZKK20] is an example of the latter. It predicts
the displacements of the object centres from pairwise inputs and then associates the
predicted displaced centres with the newly detected ones. Trackers that jointly train
reID features with the object detector include JDE [WZL+20] and FairMOT [ZWW+21].
The former uses YOLOv3 [RF18] as the detector, adds an embedding head and uses an
uncertainty guided, fused loss function for training. FairMOT has a similar approach

13



2. Concepts and State-of-the-Art

but uses CenterNet instead of YOLO. The authors argue that an anchor-based object
detector introduces an unfairness between the reID and the detection task due to its
cascaded architecture, favouring the detection. RelationTrack [YLHW69] addresses the
issue that classification and reID have somewhat opposite goals. Classification wants to
recognise all class variations as the same class, while reID tries to emphasise differences
even within a class. Therefore, they introduce a disentanglement layer that reweights
the individual tasks’ features to decouple the classification and the reID task further.
Additionally, they leverage the powerful spatial context of a Transformer Encoder to
achieve an improved object embedding.

2.5 Datasets and Metrics

To train and evaluate object detection and tracking methods, especially data-driven
ones, one needs suitable datasets with annotations and generally recognised metrics
that quantify performance. Fortunately, large annotated datasets have been made freely
available for everyone to use, which helped grow a large research community.

2.5.1 Datasets

Among the first ones regarding 2D object detection were the Microsoft Common Objects in
Context (COCO) [LMB+14] dataset and the PASCAL Visuals Object Classes [EZW+05]
dataset. Popular datasets for 3D object detection and tracking are the KITTI Vision
Benchmark Suite [GLU12] and the nuScenes [HVA+19] dataset.

COCO

The COCO dataset released in 2014 contains 2.5 million labelled instances across 91
common object categories in 328,000 images. It depicts these objects in everyday scenes to
put them into their natural context, hence the name. It includes 2D bounding boxes, class
labels, and instance segmentation, whereby the latter is not available for all otherwise
labelled instances.

KITTI

The KITTI Benchmark Suite was published in 2012 as a challenging benchmark for visual
recognition systems. The 3D object detection dataset consists of 80,256 labelled objects
from 8 classes, including cars, pedestrians and cyclists, in 7481 training and 7518 test
images depicting dynamic street scenes captured from atop a moving car in the Karlsruhe
region in Germany. On top of the RGB images, it also contains corresponding image
pairs for stereo vision, LiDAR point clouds, and GPS telemetry. In addition to the 3D
object detection task, datasets for odometry, multi-object tracking, and segmentation
were also released.
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nuScenes

In 2020, Motional released the nuScenes dataset, containing 1.4 million 3D object bounding
boxes in 40k keyframes, depicting dynamic street scenes in Boston and Singapore. It
includes images from 6 different cameras and data from 5 RADARs and one LiDAR sensor,
allowing a full 360-degree view of every scene. It also has a more granular classification
scheme and more classes in general, with a total of 23. Compared to KITTI, it also
contains data with challenging visibility conditions, including scenes at nighttime or
during rain. Each object is also assigned a unique identifier allowing tracking evaluation
in addition to the object detection task.

2.5.2 Metrics
Quantifying the performance of object detection and tracking methods requires metrics
that enable a comparison of the different methods.The metrics used for the official
evaluation of the datasets mentioned above are introduced in this section.

Average Precision and Intersection over Union

A metric for evaluating the quality of an object detector is the average precision (AP). It
is the interpolation of the area under the precision-recall curve. Precision is given as:

P = True Positives
True Positives + False Positives (2.2)

To determine whether a detection is counted as a true positive, the intersection over
union (IoU) is used. The 2D case is defined as the area of the intersection divided by the
area of overlap between the estimated box and the ground truth, hence the name. For
the 3D case, the intersection between the polygons given by the oriented bounding boxes
multiplied by their y-axis overlap is used as the intersection volume. This intersection
volume is then divided by the sum of the two volumes of the bounding boxes minus the
intersection volume to give the 3D IoU. The IoU of a detection and a ground truth label
have to pass a set threshold to classify a detection as a true positive. This threshold
varies between different datasets and classes. In KITTI, the threshold for the car class is
set to 0.7, while the threshold for cyclists and pedestrians is 0.5. However, one cannot
draw any conclusions about the performance from precision alone. A detector that only
outputs boxes with a high confidence value and thus avoids false positives may have a
decent accuracy but still not be considered functional. That is why one usually combines
precision with recall. Recall is defined as:

R = True Positives
True Positives + False Negatives (2.3)

It, therefore, is an indicator of how many of the ground truth objects were detected.
Again, one can not draw any conclusions from recall alone because a detector could
predict boxes everywhere to achieve a recall of 1. Average precision now combines the
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two metrics to create a number more indicative of the actual performance. An object
detector has to put out a confidence in a detection with a value between 0 and 1. The
average precision as utilised in the KITTI benchmark uses the precision and recall at
different thresholds for this confidence as follows:

AP40 = 1
40



R∈{0,1/39...,1}

Pinterp(R) (2.4)

Pinterp(R) = max
R̃:R̃>=R

P (R̃) (2.5)

Equation 2.4 means that the precision is interpolated at 40 equally spaced recall levels
and then averaged. Equation 2.5 defines that the interpolated precision is the maximum
precision, where the recall value is greater than R, the recall level currently examined
[PND20]. This metric is computed classwise and can be combined with the mean average
precision by averaging the values across the different classes.

KITTI uses the average precision for cars considered moderately challenging to detect as
the primary evaluation metric, while nuScenes uses the mean average precision over all
classes.

MOTA

In multi-target tracking, more metrics can be used to compare different algorithms. One
of the first ones was MOTA [BS08] which stands for multiple object tracking accuracy.
A matching between object detections and ground truths must be established for every
frame. These matchings are based on a distance metric between them and are only
considered valid if this distance does not exceed a specified threshold. The formula for
MOTA is then given as:

MOTA = 1 −
�n

t=0(Mt + FPt + MMEt)�
t Gt

(2.6)

The metric is calculated for an entire sequence of N images and, t represents the timestep
in the sequence. Mt represents ground truth objects not assigned to a tracking hypothesis.
FPt corresponds to false positives, meaning detections that could not be assigned to a
detection ground truth. MMEt are mismatch errors, meaning that an assignment for
the current frame contradicts an assignment of the previous frame, and hence an identity
switch occurs. Gt is the number of ground truths for the frame in question.

HOTA

Although being used as the evaluation metric for multi-target tracking on datasets such
as KITTI, the MOTA metric has a lot of issues, such as an overemphasis on detection vs.
association. Therefore, [LOD+21] proposed a new metric called higher order tracking
accuracy (HOTA). The basic definitions for matchings, such as true positive and false
negative, are the same as in MOTA. While these terms are already used for detection,

16



2.6. Summary

with HOTA, the concept of true positive associations, false negative associations and
false positive associations are introduced for each true positive detection. True positive
associations (TPA) are defined for a given true positive detection as true positives with
the same ground truth ID and the same predicted ID as the original detection. False
negative associations (FNA) are ground truth detections with the same ID as the original
true positive that were falsely associated or missed by the tracker. Finally, false positive
associations (FPA) were assigned the same ID as the original true positive by the tracker,
but either have a different or no ground truth ID. These newly introduced concepts are
used to construct the HOTA metric for a given localisation threshold as follows:

HOTAα =
	 �

c∈{TP} A(c)
|TP| + |FN| + |FP| (2.7)

A(c) = |TPA(c)|
|TPA(c)| + |FNA(c)| + |FPA(c)| (2.8)

Here, c are the elements of the set of true positive detections, TP are true positive
detections, FN are false negative detections and FP are false positive detections.

To differentiate between the contributions of detection and association performance,
HOTA can be decomposed into two separate scores as follows:

DetAα = |TP|
|TP| + |FN| + |FP| (2.9)

AssAα = 1
|TP|



c∈{T P }

A(c) (2.10)

The final HOTA metric is obtained by averaging over the HOTAs for 19 localisation
thresholds from 0.05 to 0.95 in intervals of 0.05.

HOTA =
� 1

0
HOTAαdα ≈ 1
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α∈{0.05,0.1,...,0.9,0.95}
HOTAα (2.11)

The overall DetA and AssA values are calculated in the same way.

2.6 Summary
In this chapter, the various approaches for object detection and tracking, in general, were
presented, with a particular focus on the monocular 3D multi-target case. All state-of-
the-art approaches utilise Deep Learning and have either a convolutional encoder-decoder
network or a Vision Transformer network as a feature extractor. There are a variety of
possible representations for the 3D object detection task that all have different tradeoffs.
The currently best-performing frameworks use either a representation transformation or
some direct regression. The currently most successful multi-target tracking approaches
are jointly trained with object detector frameworks to exploit the advantages of multi-task
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learning. Public datasets with annotations exist to compare different approaches to both
detection and tracking, and there is still active development, with nuScenes only being
released in 2019. There are also meaningful metrics that enable comparison on these
datasets, mainly mean average precision for object detection and the recently proposed
HOTA for tracking, which tackles many of its predecessor’s issues, MOTA.
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CHAPTER 3
Proposed Methodology

This chapter describes the proposed methodology for the monocular 3D multi-target
object detection and tracking framework. Section 3.1 illustrates the proposed synthetic
data generation method and the generated toy dataset. Section 3.2 focuses on the
framework, including the backbone network, the representations used, and the proposed
improvements. The reID feature extraction mechanism and the target association process
are explained before concluding with the loss functions used. Section 3.3 describes the
few-shot learning approach used and illustrates the usage of the proposed GUI.

3.1 Synthetic Data Generation and Toy Dataset
The 3D datasets available mainly cover complex street scenes, which are challenging
for 3D object detection and tracking in general, but especially for the monocular case.
Therefore it may be desirable to test concepts on a simpler dataset. On the other
hand, annotating data with 3D bounding boxes takes an enormous effort and would
not be sensible for creating only simple training cases. Therefore, an approach that
requires less work is to generate synthetic training datasets because one can generate the
annotations simultaneously. Therefore, a data generation framework that creates video
sequences of simple objects with corresponding 3D tracking annotations was created in
the 3D animation software Blender (https://www.blender.org/). The annotations
include:

• the position of the object in 3D space and its metric dimensions

• the rotation angles of the object

• the camera matrix used to obtain the image
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The objects move along Lissajous curves [CR81] during the sequences, whose parameters
can be varied between different sequences. Lissajous curves are parametrised curves
defined by the following two equations:

x = a sin (ω1t) (3.1)
y = b sin (ω2t + ϕ) (3.2)

where a and b are parameters that scale the curve along the x- and y-axis, respectively,
and ϕ denotes the phase shift between the two oscillations. If the frequency ratio is a
rational number, the equations form closed curves [MM15].

The generated objects include a cube, a cylinder and a monkey head, all available
in Blender natively. The appearance can be adjusted by utilising different colours or
materials. Two example images with different colours and positions are shown in Figure
3.1. The overall dataset created consists of 16 different scenes, with 100 images each.
Per scene, the three objects depicted in Figure 3.1 - cube, cylinder and monkey head -
move along a different Lissajous curve with randomised parameters. Per object, there
are three different identities in the training set, being characterised by different colours
and each appearing in three scenes. The training set consists of 15 sequences, while the
validation set consists of one sequence with unseen identities.

Figure 3.1: Example images from the generated synthetic dataset.
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3.2 Monocular 3D Multi-Target Detection and Tracking
The overall proposed architecture is illustrated in Figure 3.2. The individual components,
including the feature extractor backbone, the representation used for detection and the
reID branch, are further described in the following section.

Figure 3.2: Illustration of the overall network architecture.

3.2.1 Computational Backbone

Like many state-of-the-art object detection frameworks, the backbone network utilises
the hierarchical layer fusion network DLA-34 [YWSD18] as a basis. It strikes a good
balance between runtime, complexity and accuracy and therefore was the logical choice.
Like in CenterNet [ZWK19], all hierarchical aggregation connections are replaced by a
Deformable Convolution Network [ZHLD19]. These deformable convolutions should allow
the network to consider more long-range connections, which has been shown to improve
detection performance in various object detectors. In [ZCZ+19], the authors formulate
deformable convolutions as a form of spatial attention and find that they consider
the query content and the relative position. The authors also showed that utilising
the key content improved object detection accuracy in their experiments while only
slightly increasing the complexity. This observation led to the idea to include additional
transformer attention in the DLA-34 network, as shown in Figure 3.3. However, because
the deformable convolutions already cover the query content and the relative position,
only the term focussing on the key content is non-zero. The output feature map is
downsampled to a quarter of the original image size like in previous works.
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Figure 3.3: Illustration of attended residual block used in the backbone. Taken from
[ZCZ+19]

The proposed method uses a keypoint based representation approach with the projected
3D object centre as the keypoint like in [ZWK19, LWT20]. The object detection task
is split into two branches or heads, a keypoint branch that predicts said centre and the
corresponding class on a heatmap and a regression branch that predicts the complete 3D
information of the object. The output of the two branches is a grid that represents a
downsampled version of the image. The keypoint branch outputs probabilities that there
is an object at the location of the value in this grid. After non-maximum suppression,
the most confident estimates are used for the regression. The regression information is
then contained at that location in the output grid of the regression branches, as depicted
in Figure 3.4.

Figure 3.4: Illustration of the way the predicted centres are used to obtain the regression
predictions.
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The regressed 3D information is illustrated in Figure 3.5 and includes:

• The offset of the predicted centre due to the discretisation (c)

• The offset of the keypoints (3D bounding box corners and top and bottom centre
points) from the discretised object centre (f)

• The uncertainty in that keypoint offset prediction

• The directly regressed depth (h)

• The uncertainty in that depth

• The apparent rotation angle (g)

• The objects’ dimensions (height, width and length) (e)

• The objects’ 2D bounding box dimensions (d)

Figure 3.5: Overview of output of prediction heads. Image from the KITTI dataset
[GLU12], overall graphic self made.
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3.2.2 Object Detection and Representation

The keypoint head consists of a convolution layer, followed by batch normalisation and a
leaky-ReLU activation, leading to another convolution layer. Each regression task gets
its head with the same structure as the keypoint branch.

The projected 3D object centre (xc, yc) is obtained during training from the given 3D
location (x, y, z) via the intrinsic camera matrix K as follows:

�xc

yc

1

� =

K

�x
y
z

�
z

(3.3)

A 2D Gaussian kernel then creates a ground truth heatmap from these projected centres
following [ZWK19], with the standard deviation being derived from the dimensions of
the projected 3D bounding boxes (see Figure 3.5 (b)). The larger the bounding box is on
the downsampled heatmap, the larger the radius of the Gaussian kernel.

For objects whose 3D centre is outside the image, the intersection point between the
line connecting the projected 3D centre and the 2D centre and the edge of the image is
used as input to a 1D Gaussian kernel. This representation makes the used centre more
physically meaningful, as shown in Figure 3.6. Additionally, an edge fusion module, which
processes the edge of the image concatenated to a 1D vector through 1D convolutional
layers, further decouples inside and outside objects. The result of the 1D convolutions is
finally added to the edges of the input feature map.

Figure 3.6: Illustration of the intersection point and the edge heatmap. Taken from
[ZLZ21].
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Seven parameters encode the 3D information of an object: [x, y, z, h, w, l, α]. x, y and z
describe the 3D location of the object centre, while h, w and l represent the dimensions
of the object. α denotes the apparent yaw angle of the object on the ground plane.

However, as mentioned before, the regression branch does not directly regress all of these
parameters.

First of all, instead of predicting the x and y location directly, it only calculates the
discretisation offset from the centre that is predicted using the heatmap (see Figure 3.5
(b) and (c)). The additional feature information from the edge fusion module is utilised
in the offset prediction for objects whose centre is outside the image.

Then, instead of directly regressing the object’s dimensions, the offset to the class-specific
average is predicted for each dimension.

The apparent yaw angle is directly regressed.

One of the most challenging parts of monocular object detection is depth prediction,
and the most basic solution is to let the network directly predict the estimated depth.
However, due to the inherent ambiguity between dimension and depth, it is hard for the
network to make accurate predictions, especially from a single point. In order to assist
the network in this depth prediction task, [ZLZ21] proposed the use of an adaptive depth
ensemble. In addition to the direct depth regression, they propose regressing the depth
from other keypoints of the object as well (see Figure 3.5 (f)). The keypoints chosen are
the eight corners of the 3D bounding box and the points above and below the centre
point on the corresponding face. However, the depth is not directly regressed for each
keypoint but through five vertical supporting lines as depicted in Figure 3.7.

Figure 3.7: Illustration of the three supporting lines used for depth estimation. Taken
from [ZLZ21].
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The depth of each of these vertical lines is computed via its pixel height hl and the
proposed object height H as:

zl = fH

hl
(3.4)

To get the final depth prediction, the model also predicts an uncertainty value for each of
the predicted depths and combines the predictions based on the inverse of the uncertainty:

zsoft = (
M


i=0

zi

σi
/

M

i=0

1
σi

) (3.5)

Here, zi is the depth predicted and σi the predicted uncertainty in that depth using the
ith supporting line or the direct depth prediction. M is the total number of supporting
lines used.

3.2.3 ReID and Tracking
Using two sub-models, one for the detection task and one for the tracking task, has the
disadvantage of an increased computational cost and not utilising shared features of the
two. Therefore, the proposed architecture uses Joint Detection nd Embedding. In the
proposed methods, objects are tracked through a combination of a Kalman Filter with
reID from an embedding.

Figure 3.8: Overview of deformable attention module introduced by [ZSL+20]. Taken
from [ZSL+20]
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3.2. Monocular 3D Multi-Target Detection and Tracking

The Kalman Filter [K+60] is a means of iteratively estimating parameters based on
potentially erroneous observations, which in this application are the bounding box
estimates of the detector network. The embedding is obtained by feeding the disentangled
features for reID into a Transformer Encoder [VSP+17] with deformable instead of
multi-head attention as introduced by [ZSL+20] (see Figure 3.8).

First, a position embedding is added to the extracted features to preserve spatial relations.
These feature maps are then forwarded through three separate linear layers. The output
of the first one is used to generate sampling offsets for each query node. These offsets
are then used together with the output of the second linear layer for each node to obtain
key sample vectors for each query node. The third linear layer is followed by a softmax
and generates attention weights for each feature. These attention weights are multiplied
for each sample vector, and the result is aggregated. Finally, the result is the input to a
final linear layer whose output is the final embedding. During inference, this embedding
generates a cost matrix between existing tracks and detections in the new image, then
used to match them via the Hungarian algorithm [Kuh55]. Additionally, a Kalman Filter
[K+60] excludes physically impossible tracks by keeping track of the objects’ approximate
expected position and velocity.

3.2.4 Loss Functions
The multi-task learning framework is trained using several losses, whose values are
combined using a weighted sum to form the total loss. The individual loss functions are
described in this section.

Keypoint Classification Loss

The penalty-reduced pixel-wise logistic regression with focal loss [ZWK19, LGG+17] is
applied to the centre estimation on the downsampled heatmaps, which is defined as
follows:

Lcentre = −1
N


 �
(1 − Ŷxyc)α log (Ŷxyc) if Yxyc = 1
(1 − Yxyc)β(Ŷxyc)α log (1 − Ŷxyc) otherwise

(3.6)

α and β are tunable hyperparameters that, in the proposed method, are set to their
default parameters of α = 2 and β = 4. The indices xy denote the location on the
heatmap, while c denotes the class. Y represents the value on the ground truth heatmap,
while Ŷ is the value on the predicted heatmap. Compared to the standard cross-entropy
loss, focal loss tackles the issue of the substantial imbalance between foreground and
background points on object detection heatmaps while also enabling differentiation
between easy and challenging examples. The imbalance can lead to a significant loss
even for effortlessly classified examples with a high estimated probability. Introducing
the term (1 − p)α helps combat both issues at once by firstly weighting the loss term
in order to combat the imbalance and secondly including the predicted probability to
down weight easy examples while up weighing challenging examples. The parameter
α determines the magnitude of this focus. The term (1 − y)β represents the penalty
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reduction part of the loss function. Because points close to the actual projected centre
are acceptable too, especially when the object is close, the area around the centre is less
penalised compared to faraway points.

Regression Losses

The regression of the discretisation offset is optimised using the L1 loss for objects whose
centre is inside the image and the log-scale L1 loss for those whose centre is outside the
image:

Loffset =
�

| ˆδinside − δinside| if inside
log (1 + | ˆδoutside − δoutside|) otherwise

(3.7)

The apparent angle is directly regressed and clamped to [−π, π] for estimating the
orientation. The loss is calculated as an L2 loss:

Langle = (sin (α̂) − sin (α))2 + (cos (α̂) − cos (α))2 (3.8)

Here, α denotes the ground truth of the apparent angle and α̂ the predicted value.

The dimensions are regressed using the L1 loss as follows:

Ldimension =



k∈{h,w,l}
|k̄ce

δ̂k − k| (3.9)

where δ̂k represents the predicted offset from the statistical mean for that class c. The
keypoints are regressed as offsets from the projected centre and optimised using L1 loss:

Lkeypoints =
�Nk

i=0 Iinside(ki)|δ̂ki − δki|�Nk
i=0 Iinside(ki)

(3.10)

Note that the term Iinside(ki) means that only keypoints visible inside the image are
penalised.

Although the task is 3D object detection, experiments by [ZLZ21] have shown that
incorporating a loss for 2D bounding boxes improves accuracy for the 3D task. Therefore,
the network predicts the 2D bounding boxes too by regressing the distances of the top left
and bottom right corners to the centre point. The GIoU loss [RTG+19] is then applied
for optimisation:

GIoU = IoU − Ac − U

Ac
L2D = 1 − GIoU (3.11)

Instead of only using the IoU, as described in Section 2.5.2, there is an additional term
subtracting the portion of the smallest enclosing bounding box of the two compared
boxes, denoted as Ac, that is not covered by the union.
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3.2. Monocular 3D Multi-Target Detection and Tracking

Instead of the Laplacian Kullback-Leibler loss used in [ZLZ21], the robust Kullback-
Leibler loss proposed in [CHT+21] is used to optimise the direct depth. The Laplacian
Kullback-Leibler loss has the issue that its gradient w.r.t to µ usually increases during
training as the uncertainty σ decreases. This gradient increase can lead to loss imbalance
in multi-task learning scenarios as L1 and L2 losses either have a decreasing or constant
loss. During experiments, this sometimes led to an explosion of the depth loss during
validation. Additionally, the function is not differentiable at ŷ = y, so if the prediction
ŷ exactly matches the ground truth y. To overcome these issues, [CHT+21] propose a
robust Kullback-Leibler loss that uses an exponential moving average to normalise the
uncertainty and a mix of a Gaussian and a Laplacian Kullback-Leibler loss:

LRobust KL = 1
ŵ

�1
2e2 + log σ |e| <=

√
2√

2|e| − 1 + log σ |e| >
√

2
(3.12)

ŵ ← αŵ + (1 − α) 1
N

N

i=0

1
σi

(3.13)

where e = |ŷ − y|/σ is the L1 error of the prediction, σ denotes the predicted uncertainty
in the estimation, and N is the number of predictions made. α is a hyperparameter that
determines the impact of new observations on the exponential moving average of the
inverse of the uncertainties ŵ.

The depths estimated using the keypoints are also optimised with the same loss function.
However, only visible keypoints contribute to the added log term, allowing the model to
disregard non-visible points actively. Additionally, the final depth prediction obtained
via Equation 3.5 is optimised via an L1 loss function.

An L1 loss is used on the 3D boxes being generated using the predicted orientation,
dimension, location and uncertainty guided depth to guide the combination of the different
subtasks:

Lbounding box =
7


i=0
|v̂i − vi| (3.14)

where vi denotes the corner points of the 3D bounding boxes.

ReID loss

During training, the reID task is implemented as a classification task. The embeddings
are extracted at the ground truth location of the object centre (see Figure 3.4) and then
fed through a linear layer with the number of unique objects in the training data K as
its output dimension. The cross-entropy loss is then used as the loss function:

LreID = −
N


i=0

K

k=0

Li(k) log (p(k)) (3.15)
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Here, p(k) denotes the predicted probability that the detection belongs to object k
of the K unique identities in total in the training set. Li(k) is the one-hot encoded
representation of the ground truth identity label, and N is the total number of detections
in the image.

3.3 Few-Shot Object Detection and Tracking

3.3.1 Backbone

Here, the intention was to use the same backbone as mentioned earlier, along with the
proposed added attention changes. However, the goal was also to implement the network
on an embedded device (NVIDIA Jetson Xavier NX) and that it is real-time capable.
These requirements meant that directly using PyTorch was not enough since running
times were too high, as further evaluated in the results section. Instead, the network is
run using TensorRT-Torch, the highly optimised framework for PyTorch on NVIDIA
Hardware. However, this framework does not support deformable convolutions directly,
and hence the DLA-34 is replaced by a standard ResNet-101. This change negatively
impacts detection performance but is a necessary sacrifice.

3.3.2 Object Detection and Representation

The requirements were only to have a 2D object detector in this setup because the depth
information is available via a stereo camera configuration. Therefore, the detection task
is simplified, and only the object centres and the 2D bounding box sizes need to be
predicted.

Again, the object centres, this time the 2D ones, are predicted using a heatmap, where
the ground truth heatmap is created using a 2D Gaussian kernel. Because only the 2D
centres are of interest here, there are no outside centres, and thus no edge heatmap is
used. However, because the network should adapt to new, unseen classes with very little
training data (1 - 10 images), the convolution block used as the classification head is
replaced by an adaptive cosine head introduced by [ZCW+21]. It transforms the input
feature map into a similarity heatmap that indicates how similar the features are to a
learned class prototype. Additionally, an adaptive, class-specific scale factor τc normalises
different intra-category variances. The final similarity function is as follows:

Sxyc = σ(τ · τc
W T

c · Fxy

|Wc| · |Fxy
) (3.16)

where τ is a general scaling factor and Wc are the learnable prototypes.

The 2D bounding box is parametrised via its dimensions and centre [cx, cy, w, h].
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3.3. Few-Shot Object Detection and Tracking

3.3.3 Losses
Again, the penalty reduced cross-entropy loss is used for the heatmap, and the offsets
and the dimensions are optimised using L1 loss

Lcentre = −1
N


 �
(1 − Ŷxyc)α log (Ŷxyc) if Yxyc = 1
(1 − Yxyc)β(Ŷxyc)α log (1 − Ŷxyc) otherwise

(3.17)

Loffset = | ˆδinside − δinside| (3.18)
Ldimension =



k∈{h,w}

|k̂ − k| (3.19)

3.3.4 Training and Inference
The large-scale COCO [LMB+14] dataset is used for the initial training to obtain
prototypes for the base categories and learn a class-agnostic bounding-box regressor. In
the few-shot learning phase, a new head is added parallel to the previous ones, generating
the similarity heatmaps for the new classes. It is initialised using weights from the
original classification head to preserve previously learned high-level knowledge. Then all
other network parameters are fixed, and only the new head is optimised using the same
penalty reduced cross-entropy loss as during base training. For the inference part, the
outputs of the different classification heads are stacked to obtain the heatmap predictions
for all categories. The bounding boxes are extracted at the found points of interest.

3.3.5 Graphical User Interface
A graphical user interface (GUI) was designed to ease model loading and few-shot learning
in practical applications, and it is showcased in Figure 3.9.

Figure 3.9: Graphical User Interface that enables life capturing, annotating and specialis-
ing on new classes.
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The GUI allows a user to look at a live video feed of an attached camera. The user can
then load a model pre-trained on a large dataset or a previously specialised one. The
user can then capture an image of a new object that the network should detect from a
live camera feed. The image can then be annotated by simply clicking on the estimated
top left and bottom right corner of the object’s bounding box and then specifying the
name of the class. One can also annotate multiple new classes at once. After annotating
the desired number of images, the user can specialise the model with a simple button
push. After the specialisation is finished, the newly trained model is directly loaded, and
the new objects should be detected.

3.4 Summary
In summary, the proposed monocular 3D object detection and tracking framework uses a
feature extractor shared between separate branches for each task. This backbone has
been modified with additional attention layers to enhance its ability to capture long-range
relationships.

The object detection branch predicts object centres via a probability heatmap and
regresses the 3D bounding box information at that location. An uncertainty guided
ensemble of direct and keypoint based depth prediction is used for the depth estimation.
This depth estimation is optimised using the robust Kullback-Leibler loss, mitigating an
increasing gradient during training.

For the reID task, a transformer encoder with deformable attention is used instead of
vanilla CNNs capturing long-range spatial relationships to extract meaningful object
embeddings. During inference, these embeddings are combined with a Kalman Filter,
which excludes physically impossible matches, to generate a cost matrix used for the
association between detections and tracks using the Hungarian algorithm.

Finally, a few-shot detection framework that uses an adaptive cosine similarity was
combined with a GUI to enable simple live model adaption to new classes for 2D tracking.
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CHAPTER 4
Results and Discussion

In the previous section, the proposed algorithmic concepts were introduced. As shown in
Figure 4.1, the proposed contributions affect all stages of object attribute learning and
tracking. Spatial awareness and target-specificity were vital guiding principles to enhance
the proposed object detection and tracking scheme. Accordingly, experiments have been
devised to demonstrate the representational strength of these concepts through several
experiments. Following validation experiments are designed and addressed:

• Enhancing long-range representation within the backbone feature computation step
using additional attention layers

• Disentangling features for the object detection and the reID task using a Global
Context Disentanglement layer

• Stabilising the gradient during training using a robust version of the Kullback-
Leibler loss

• Extracting meaningful long-range features for reID using a Transformer Encoder
and comparing it to a standard convolutional layer, and comparing the association
results to a simple Kalman Filter

These concepts are evaluated in the context of the monocular 3D multi-target object
detection and tracking tasks. This experimental section describes the employed train-
ing and validation methodology and the used datasets and validation metrics. Next,
qualitative and quantitative analysis for the four experiments is presented.
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4. Results and Discussion

Figure 4.1: Overview of different stages and conducted experiments

4.1 Methodology
This section describes the methodology used for evaluating the proposed framework.
First, the dataset and the metrics used are described, followed by an explanation of how
the framework is compared to other approaches. Finally, the training parameters used
are given.

4.1.1 Datasets
The tracking results are evaluated on the KITTI tracking benchmark dataset using the
training/validation split proposed by [VKO+19]. The details about the split are shown
in Table 4.1, which also includes a different split proposed by [ZKK20]. This latter split
has the issue that by splitting the sequences in half, there are objects that are both in
the training and the validation data, denoted in Table 4.1 as "Obj. ID overlap". These
shared object identities are problematic for appearance-based tracking schemes, as this
means there is an information leak from the training to the validation set. Hence, the
performance may appear higher than it actually is, as further discussed in Section 4.1.3.

The dataset depicts dynamic street scenes focusing on cars, pedestrians and cyclists. An
attempt has also been made to evaluate the framework on the much larger nuScenes
dataset. Cleaning the data from impossible to see object annotations proved to be a
challenging task, and hence it was deemed out of scope for this thesis, and without this
pre-processing step, there were no sensible results. However, evaluation was performed
on a synthetic dataset depicting simple objects, including a monkey head, a cylinder and
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Split Training Validation Obj. ID
overlapNo. seq. No. img. No. seq. No. img.

Full training 21 8,008 0 0 No

CenterTrack split
[ZKK20] 21 3,999 21 4,009 Yes

MOTS split
[VKO+19] 12 5,027 9 2,981 No

Table 4.1: Three splits used for evaluation on the KITTI dataset. All experiments
conducted in this thesis use the MOTS split.

a cube on a black background moving on tracks defined by Lissajous figures. Object
detection was also evaluated on the KITTI dataset and its 3D object detection benchmark
using the split suggested by Mono 3D [CKZ+16]. This work contains no results on the
KITTI test set because the upload to the evaluation server is restricted to published
papers.

4.1.2 Metrics
HOTA [LOD+21] is the primary metric for the tracking benchmark, with detection
accuracy and association accuracy also being reported to break down the individual
contributions of the two. Object detection is evaluated using the AP at an IoU of 0.7
for the car class across three difficulty levels - easy, moderate and hard - defined on the
official website of the benchmark and shown here in Table 4.2 1.

Difficulty
Level

Min. 2D
bounding box height

Max.
occlusion level

Max.
truncation

Easy 40 Pixel Fully visible 15 %
Moderate 25 Pixel Partly occluded 30 %
Hard 25 Pixel Difficult to see 50 %

Table 4.2: The definitions of the diffculty levels of the KITTI 3D object detection
benchmark as stated on the official website.

4.1.3 Comparison to State-of-the-Art
A comparison with other 3D detection frameworks is difficult because there are currently
no other published results for monocular multi-target 3D object detection on the KITTI
validation dataset. Most other works tackle 2D object detection and tracking or utilise
LiDAR detections for training. Therefore, a baseline only using a Kalman Filter with a
Hungarian Matching for the association is used as a comparison. This baseline utilises
the same object detection approach. However, it does not utilise reID features for target

1http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
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association, only relying on the IoU of detections in a new frame with bounding boxes
that the Kalman Filter predicts based on the previous frame instead.

Additionally, comparisons in 2D object detection to other state-of-the-art tracking
frameworks are given. However, this comparison is not fair in several regards. Motion-
based trackers such as CenterTrack [ZKK20] use all 21 available sequences for training,
only splitting each sequence in half as the training/validation split. This split leads to
better object detection performance, as the model has more variety in the training data,
and therefore it is sensible for these types of tracking frameworks.

However, this split should not be used with appearance-based trackers because the
validation set most likely contains objects used to train the appearance-based model.
This overlap probably leads to better performance on these objects, while there is no
guarantee for a good generalisation. Therefore, the validation set results of DEFT
[CZBO21], for example, are likely higher than they would be if the two sets were wholly
separated. Additionally, DEFT trains only for the 2D task on that benchmark, while
this work trains for both 3D and 2D.

4.1.4 Training
The network was jointly trained on both 3D object detection and reID simultaneously.
The training parameters used are shown in Table 4.3.

Parameter Value
Input image size 384 × 1280
Resizing method Padding
Optimiser AdamW
Learning rate 3 × 10−4, with decay at 80 and 90 epochs by 10
Training epochs 100
Augmentation Random horizontal flip
Total loss weights reID: 1 , detection: 1

Detection loss weights
Lcentre: 1, Loffset inside: 0.5, Loffset outside: 0.1, Langle: 1,
Ldimension: 1, Lkeypoints 0.2, Ldirect depth: 1,
Lkeypoint depth: 0.2, Lsoft depth: 0.2, Lbounding box: 0.2, L2D: 1

Table 4.3: The parameters used for training across all experiments.

4.2 Qualitative Results
Figure 4.2 shows qualitative results on the KITTI tracking validation set. The same
colour of the boxes means the same track ID has been assigned. As one can see, most of
the ids are consistent across the sequence. The pedestrian with the red box at the red
light disappears for some frames but is recognised several frames later as the same object.
The car’s identity is teal in the first two frames and changes to purple in the last one.
This identity loss is likely to the truncation introduced in the last frame. In Figure 4.3,
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one can see a situation where the reID approach shows its advantage: While turning into
a street, the sudden movement exceeds the capabilities of the Kalman Filter and leads to
a new identity in every frame for the four cars on the right, as can be seen at bottom
three images. On the top three images, one can see that the reID approach manages to
track three of the four cars accurately in the last two frames and one of them even for all
three frames.

Figure 4.2: Example tracking results of proposed method on the KITTI validation set.
Same coloured bounding boxes denote the same track identity assigned.
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Figure 4.3: Comparison between proposed reID approach (left) and simple Kalman Filter
(right) on the KITTI validation set.

4.3 Quantitative Results
The monocular 3D object detection and tracking results on the KITTI tracking validation
set can be found in Table 4.4. The results are averaged over three runs with different
random seeds due to a non-negligible run to run variation. One can see an improvement
in HOTA compared to the baseline using the Kalman Filter only. The 3D object detection
results on the KITTI 3D object detection validation set are shown in Table 4.5, showing
the competitiveness with state of the art. The 2D multi-target tracking results compared
to DEFT are shown in Table 4.6. There is a massive performance difference between
all three entries shown. DEFT trained on the entire training dataset and evaluated
on the KITTI test split has the best results. The proposed method follows in second,
with decent results considering that 2D detection is not the focus. To compare the
proposed framework more directly to DEFT, the published code has been used with the
same parameters as stated in the paper but using the same training and validation split
introduced by [VKO+19] that was used for training the proposed method. The results
are underwhelming compared to both other results. Note, however, that no adaptations
were made to the parameters in DEFT. Therefore, the comparison is still not fair, this
time favouring the proposed method.

Method HOTA DetA AssA
Baseline (Kalman Filter) 30.86 22.79 42.68
Proposed Method 30.96 22.89 42.81

Table 4.4: The monocular 3D multi-target tracking results of the proposed method
compared to the Kalman Baseline.

38



4.4. Ablation Studies

Method AP3D

Easy Moderate Hard
SMOKE [LWT20] 14.76 12.85 11.50
MonoGeo [ZMY+21] 18.45 14.48 12.87
Ground-aware Monocular 3D Obj. Det. [LYL21] 23.63 16.16 12.06
MonoFlex [ZLZ21] 23.64 17.51 14.83
Proposed Method 20.56 15.00 11.79

Table 4.5: The monocular 3D object detection results of the proposed method compared
to state of the art methods.

Method HOTA DetA AssA
DEFT on test split 74.23 75.33 73.79
DEFT trained on train/val split 37.66 28.55 50.33
Proposed Method 56.64 54.68 59.26

Table 4.6: The 2D multi-target tracking results of the proposed method compared to
DEFT [CZBO21].

4.4 Ablation Studies
After demonstrating the overall results of the proposed framework, this section focuses
on the effect of the proposed changes. In Table 4.7, the quantitative results of these
changes are shown. It demonstrates that all the proposed changes positively impact the
model performance. The detailed effects of the individual components are discussed in
the following section.

Method HOTA DetA AssA
Without attention in backbone 30.04 21.88 42.34
With GCD module 28.63 19.98 42.02
Without Robust KL loss 29.57 21.23 42.57
With vanilla CNNs instead of Transformer Encoder 30.25 21.77 43.5
Full model 30.96 22.89 42.81

Table 4.7: The impact of the proposed changes to the 3D multi-target tracking results.

4.4.1 Attention-Enriched Backbone
The first entry in Table 4.7 shows the model performance with a vanilla backbone network.
Compared to the full model, there is a slight improvement in HOTA of 0.92%. The AssA
only increased by 0.44%, while the DetA increased by 1.01%. The former shows that
the ability to extract representative appearance features only minimally benefits from
the additional attention layer. The latter demonstrates that the additional information
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Figure 4.4: Global Context Disentanglement approach by [YLHW69]

extracted leads to an increased ability to extract meaningful spatial representations from
the images, thus enabling better detection results. This observation is in line with the
results of [ZCZ+19], who saw similar improvements in their studies regarding 2D object
detection.

4.4.2 Global Context Disentanglement (GCD)
While multi-task learning has been proven to be beneficial in object detection and tracking
tasks, there is still an optimisation contradiction, as shown in [LZL+20]. While in object
detection, the network wants to represent objects of the same class similarly, in reID,
two object embeddings, even ones of the same class, should be as far apart as possible.
To overcome this issue, [YLHW69] proposed a Global Context Disentangling module to
decouple feature representations for reID and 2D detection. Here, this approach was
applied to 3D detection. The feature decoupling works by first calculating a global
context vector as follows:

z =
Np

j=0

exp (Wkxk)�N
pm=0 exp (Wkxm)

xj (4.1)

where the Wk are learnable weights that stem from a 1 × 1 convolution layer. {xi}Np

i=1
are the input feature maps with Np = H × W , where H and W are the height and width
of the feature maps, respectively. Two transforms then decouple this global vector into
two task-specific weight maps, which are finally added to the original feature maps to
generate the decoupled feature maps, which are the input to the two different branches:

di = xi + Wd2ReLU(Ψln(Wd1z)) (4.2)
ri = xi + Wr2ReLU(Ψln(Wr1z)) (4.3)
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where the Wx are learnable weight matrices, ReLU is the rectified linear unit activation
function, and Ψln is the batch normalisation operator. di are the feature maps that are
used for object detection, and ri those that are used for the reID branch.

The results of introducing this additional layer are shown in Table 4.7. It shows that
while the approach led to improvements in the 2D case in RelationTrack, it yields worse
results when applied to the proposed framework. Therefore, it was not utilised in the
final model.

4.4.3 Robust Kullback-Leibler Loss
Replacing the Kullback-Leibler loss with the robust version proposed in [CHT+21]
increased the HOTA, as illustrated in Table 4.7. This difference indicates that mitigating
the increased gradient caused by the decreasing uncertainty during training helps with
optimisation.

4.4.4 Transformer Encoder for ReID Feature Extraction
The performance increase due to the additional use of reID features for track association
is shown in Table 4.8. This difference indicates that the extracted embeddings provide
helpful information for the reID process and that certain situations are handled better
via appearance features than simple motion features. However, when only relying on the
appearance-based approach, the performance decays and becomes worse than relying
solely on the Kalman Filter. Additionally, Table 4.8 also compares the Transformer
Encoder based embeddings against the simple convolutional embeddings proposed by
FairMOT. These embeddings yielded a better AssA score, but the HOTA suffered slight
losses. This result may indicate that, while the CNN approach is competitive regarding
the association, it interferes more with the object detection task and thus leads to worse
overall performance.

Method HOTA DetA AssA
Proposed Method only reID 29.16 22.40 38.89
Proposed Method vanilla CNN 30.25 21.77 43.50
Proposed Method 30.96 22.89 42.81

Table 4.8: The monocular 3D multi-target tracking results of the proposed method
compared the proposed method without the Kalman Filter to exclude impossible tracks
and to using vanilla CNNs for reID as in [ZWW+21].

4.5 Evaluation on other Datasets
Evaluation has also been conducted on synthetically generated data using the proposed
methodology from section 3.1. The qualitative results are shown in Figure 4.5. Here,
one can see that the monkey head is accurately detected and identified across the three
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frames. The cube is accurately detected in all three images, but it is not reidentified
correctly. The cylinder is not detected accurately in the first frame and also receives
a new identity for each frame. The quantitative results are shown in Table 4.9. Only
the 2D tracking results are shown because the model was not able to make any accurate
3D predictions. This poor performance is probably due to the lack of surroundings that
enable recognising a ground plane and utilising other hidden cues. Additionally, the
reID part struggles to extract meaningful features that distinguish the individual objects,
which may be due to the simplicity of the objects.

Task HOTA DetA AssA
Cube 7.44 52.21 1.08
Cylinder 7.05 49.93 1.03
Monkey head 9.08 50.21 1.67

Table 4.9: The monocular 2D multi-target tracking results of the proposed method on
the synthetically generated dataset.

The framework was also qualitatively evaluated in the scope of the FFG Project Bike2CAV,
illustrated in Figure 4.6, but due to the lack of annotations, no quantitative results can
be shown. As one can see in Figure 4.6, the framework manages to detect and track the
cyclist accurately but fails to detect the car. This may be caused by the different camera
setups of the training dataset (KITTI) and the evaluation dataset since they vary in
position and field of view. In Figure 4.7, one can see an example where the method was
not able to reidentify the car after a missed detection.

Figure 4.5: Qualitative results on the synthetically generated data-
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Figure 4.6: Qualitative results on the Bike2CAV dataset where the cyclist is accurately
detected and tracked but the car is not detected.
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Figure 4.7: Qualitative results on the Bike2CAV dataset where a car is detected in the
first frame, missed in the second frame and then detected correctly again but falsely
identified in the third frame.
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4.6 Evaluation of the Few-Shot Detection Framework
This section presents a quantitative and qualitative evaluation of the few-shot detection
framework. First, the dataset and the training procedure are described, followed by qual-
itative results on a public dataset and a private live demonstration. Finally, quantitative
results on the public dataset are shown. The motivation for this framework was to be
able to add classes after training with an easy-to-use GUI. This was demonstrated as a
proof-of-concept with a 2D framework only because a 3D few-shot detection framework
is out of scope for this thesis.

4.6.1 Dataset
The training and evaluation are conducted on the COCO dataset using the official training
and validation splits. For the qualitative results of the live demonstrator, the whole
training set, including all classes, was used for the base class training. The specialisation
then used five images of the novel class acquired and annotated using the presented GUI.
Five randomly selected images from the COCO dataset were used as negative examples,
ensuring that the novel class is neither contained in the original training data nor the
randomly selected images. For the qualitative and quantitative evaluation on the COCO
dataset, two classes, namely the "cow" and the "sandwich" class, were excluded during
base class training by simply skipping the label. Afterwards, the model was specialised
using one, five and ten images for each class plus the same amount of randomly selected
negative examples. However, results above 0.0 mAP were achieved only when using ten
images in the COCO benchmark.

4.6.2 Training
The training procedure consists of two stages. In the first stage, the network is trained on
the large scale COCO dataset for learning the base classes. Here, the training parameters
are shown in Table 4.10. The second stage is the few-shot training stage, where the
network learns novel categories on one to ten images per class. This training stage uses
an initial learning rate of 1 × 10−5 and a cosine annealing decay strategy [LH16] with a

Parameter Value
Input image size 512 × 512
Resizing method Affine transform
Optimiser AdamW
Learning rate 1 × 10−4, with decay at 180 epochs by 10
Training epochs 206 (early stopping)

Augmentation Random horizontal flip,
scaling (0.6 - 1.3) and cropping

Table 4.10: The training parameters for the first training stage of the few-shot detection
framework.
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minimal learning rate of 1 × 10−6. The model is finetuned for 200 epochs, with the other
parameters remaining the same as shown in Table 4.10.

4.6.3 Qualitative Results

The results in Figure 4.8 show mixed results on the COCO validation set. The network
manages to detect the newly learned classes in the shown examples partly. The cow is
detected in the top left image, and the sandwiches are detected correctly in the bottom
right image. In the top right image, one of the cows depicted is detected, while the others
are not. Additionally, false positives, where an object is detected both as a base class
and a new class object, happen, as shown in the bottom left image. Here the banana
is detected and classified as a banana and a sandwich. Figure 4.9 shows the detection
results in the developed GUI before and after few-shot training. The clay soldier is not
detected in the upper image as that class was not part of the original training data.
The clay soldier is detected in the bottom image after training on five images, manually
annotated using the included annotation tool.

Figure 4.8: Qualitative results of the few-shot detection framework on the COCO
validation set.
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Figure 4.9: Qualitative results of the few-shot detection framework using the developed
GUI for live detection and finetuning. The top image shows the results before finetuning,
the bottom image after.

4.6.4 Quantitative Results

The quantitative results on the COCO validation set are shown in Table 4.11. As one can
see, based on only ten training images per class, the network manages an mAP on the
novel classes of about 2%, while the mAP on the base classes stays the same at 35.5%.
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While these results are underwhelming compared to state-of-the-art methods such as
Meta-DETR or FSOD, they demonstrate the existence of basic functionality.

Method mAP
Base 10-shot

FSOD - 22.4
Meta-DETR - 30.5
Proposed Method 35.5 2.0

Table 4.11: The few-shot detection results of the proposed framework on the MS COCO
val2017 split compared with state-of-the-art methods. Note that the state-of-the-art
methods use 60 base and 20 novel classes, while the proposed framework uses 78 base
and 2 novel categories.

4.7 Summary
Overall, the proposed reID-based tracking framework performs slightly better than the
simple Kalman Filter approach, although training data is limited. However, motion
features also need to be considered to achieve the performance by excluding impossible
tracks using a Kalman Filter in parallel. The evaluation on the KITTI dataset shows
competitiveness with state-of-the-art monocular 3D object detection methods and hints
at competitive performance in the 3D tracking benchmark.

The proposed spatial-aware appearance feature extraction scheme using a Transformer
Encoder with deformable attention yields improvements compared to the vanilla CNN
approach. The same holds for the proposed enhancement using additional attention
layers in the backbone and utilising the robust instead of the Laplacian Kullback-Leibler
loss.

In the synthesised dataset, the lack of surrounding environments proves to be too
challenging for 3D detection, and the appearance variety during training is not enough
to achieve satisfying reID results. For 2D detection, the only issue was differentiating
between cylinders and cubes, while the monkey head was detected accurately.

The qualitative results on the Bike2CAV data demonstrate the real-world capabilities of
the framework.

Finally, the few-shot detection approach was evaluated qualitatively and quantitatively
on the COCO dataset, showing worse results compared to state-of-the-art methods but
still proving the feasibility of the proposed framework. Additionally, qualitative results
on the live demonstrator were shown, showcasing the GUI and practical applicability of
the method.
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CHAPTER 5
Conclusions and Future Work

This section provides concluding remarks that highlight the main findings and results from
the presented experiments. These results are related to the original scientific concepts
and endeavours toward enhancing reasoning within a spatial context. Establishing an
accurate spatial context is crucial for many applications, as correctly estimated depth
(distance to the camera), object dimension, and orientation parameters significantly
contribute to performing robust path planning, avoiding collisions or interacting with
the environment. Temporal reasoning for an arbitrary number of moving targets also
benefits from improved spatial accuracy, as target motion paths become less noisy or
spurious. Learning-based target representation enhancements can well complement these
spatial and temporal aspects, leading to improvements with better discernible targets
moving along more accurately estimated spatial locations. Furthermore, our scenarios
are dynamic, where previously unseen object categories might appear. To cope with this
phenomenon, a simple learning paradigm was introduced, demonstrating the feasibility
of adding newly learned categories to a previously existing pool of category models. This
concept was implemented as a real-time demonstrator with the ability for the user to
add new categories via a graphical interface.

The introduced learning concepts, which target a reduction of spatial and tracking
ambiguities, seem to accomplish these task-specific objectives across all experiments for
the targeted critical tasks. These improvements are reflected in the HOTA scores and its
components, DetA and AssA. From an algorithmic point of view, these improvements
are triggered by the following representational enhancements: The attention-enriched
backbone and the robust KL loss contribute to an increase in object detection performance
of more than one per cent. Using appearance features to associate detections to tracks is
especially helpful in scenarios where a sudden movement change occurs, as demonstrated
in Figure 4.3. These sudden changes often occur in safety-critical situations, e.g. when
an AV turns into a street, where a correct association is crucial for a correct assessment
of the situation. Based on the experimental results, the advantages and drawbacks of the
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presented representational enhancements are analysed in terms of a machine learning
workflow and practical use. Since the application-driven need for monocular depth-aware
detection and tracking methodologies is increasing, an outlook to elaborate on possible
methodology extensions and future developments is also presented.

5.1 Conclusions
The topic of this thesis focuses on challenging learning and regression tasks. Their
challenging nature stems from the fact that the presented image-based recognition
involves estimating 3D spatial parameters, which are associated with ambiguities as the
projection of the 3D world onto a 2D image plane involves loss of information. Motivated
by the enormous representational capacity of deep neural networks, the thesis investigates
how to formulate learning and regression tasks such that different spatial estimates jointly
enforce valid proposals. Moreover, enlarging the spatial range of learned representations
within the image is a second research target. The perspective view (as represented by
converging parallel lines, textures, shading, variable blur and haze) implicitly hints at
scene depth and object distance. However, conventional CNNs capture only a limited
range of spatial correlations, leading to a localised analysis that limits the discovery of
cues establishing a broader spatial context.

This thesis shows that formulating an end-to-end learning scheme for joint monocular
3D object detection and tracking using appearance-based reID features is possible,
outperforming simple motion-based tracking. Experiments also demonstrate that using
a Transformer Encoder for spatially-aware appearance feature extraction is superior
to a simple convolutional embedding. As increasing the number of parameters to be
estimated directly calls for the need for larger amounts of training data, integrating
many tasks into an end-to-end optimised monocular 3D pipeline is not straightforward.
However, using a common backbone representation, mutually supporting parametric
representations to be regressed and re-used representations across different tasks render
the overall learning task tractable. Nevertheless, it is evident from the experiments that
the training dataset of limited size does not permit the full exploitation of the devised
representational enhancements. Accordingly, it is shown that simply adding additional
attention layers (described in Section 3.2.1) does not directly lead to significantly improved
performance, and further data and investigation are necessary. Also, the Global Context
Disentanglement approach (described in Section 4.4.2) does not directly translate from
the 2D to the 3D case.

In light of the original research motivation and postulated applied task, the obtained
results accomplish measurable detection and tracking improvements within the metric 3D
space compared to the current state-of-the-art. LiDAR-based systems still represent the
spatially most accurate detection/tracking schemes in this domain. Given the improved
spatial accuracy and tracking obtained, this accuracy gap to LiDAR has become smaller.

The proposed monocular 3D learning and inference framework demonstrates the potential
for practical applications. It represents a real-time analysis solution for capturing the
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spatial and temporal attributes of an unknown number of targets around a moving vehicle.
Due to these capabilities, the developed analysis pipeline has been deployed as a runtime
optimised environment perception module in the Bike2CAV project. Current large-scale
testing is ongoing, targeting the enhanced safety of cyclists in city environments.

5.2 Future Work
The proposed methodology simultaneously estimates multiple unknowns, such as object
3D pose, dimensions and motion trajectory. Due to the multitude of postulated learning
tasks, such a learning step requires a large dataset labelled in terms of multiple categories,
distinct trajectories and within a 3D metric space. Discovering complex non-linearities
and correlations between the 2D-3D domains while balancing individual learning tasks’
accuracy depends on the quality and quantity of training data. A significant drawback
was the limited availability of multi-attribute (category, track, 3D) annotated datasets,
which hindered reaching the maximum representational potential of proposed algorithmic
concepts (attention, robust loss, reID).

Therefore, experiments on more diverse and challenging datasets (e.g., nuScenes) could be
conducted to further elaborate on the effect of the enhanced spatial reasoning capabilities
of the framework. Another strategy to further enhance the amount and diversity of
training data could be to use a self-supervised enrichment scheme that augments the
training data by moving objects within an image while maintaining the background.

Furthermore, a sensor fusion approach with LiDAR data could be explored to combine the
strong objectness and appearance information contained in images with the 3D accuracy
of LiDAR sensors.
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