Supporting Information (SI)

Extending the scope of a new cyanation: Design and synthesis of an anthracene derivative with exceptionally low LUMO level and improved solubility

Florian Glöcklhofer,*[†] Andreas J. Morawietz,[†] Berthold Stöger,[‡] Miriam M. Unterlass[§] and Johannes Fröhlich[†]

[†]Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria.

[‡]Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, 1060 Vienna,

Austria.

[§]Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/165, 1060 Vienna, Austria. E-Mail: florian.gloecklhofer@tuwien.ac.at

Table of contents:

1.	¹ H-, ¹³ C(APT)-NMR spectra	-S2-
2.	Cyclic voltammograms (CV)	-S6-
3.	UV-Vis absorption spectra	-S9-
4.	Fluorescence spectra	-S11-
5.	Thermogravimetric analysis (TGA)	-S12-
6.	X-ray structure determination	-S13-
7.	High-performance liquid chromatography (HPLC) measurements	-S15-

1. ¹H-, ¹³C(APT)-NMR spectra

Figure S1: ¹H NMR spectrum (600 MHz, CDCl₃) of 2.

Figure S2: ¹³C NMR spectrum (150 MHz, CDCl₃) of 2.

Figure S3: ¹H NMR spectrum (600 MHz, DMSO-d₆) of 3.

Figure S4: ¹³C NMR spectrum (150 MHz, DMSO-d₆) of **3**.

Figure S5: ¹H NMR spectrum (600 MHz, CDCI₃) of **4**.

Figure S6: ¹³C NMR spectrum (150 MHz, CDCl₃) of **4**.

2. Cyclic voltammetry (CV)

Figure S8: Cyclic voltammogram of **2** in acetonitrile solution; reduction onset at -0.58 V corresponds to a LUMO level of -4.22 eV.

Figure S9: Cyclic voltammogram of 3 in acetonitrile solution; reduction onset at -1.21 V corresponds to a LUMO level of -3.59 eV.

Figure S10: Cyclic voltammogram of **4** in acetonitrile solution; reduction onset at -0.67 V corresponds to a LUMO level of -4.13 eV.

Figure S11: Cyclic voltammogram of 9,10-dicyanoanthracene (DCA) in acetonitrile solution; reduction onset at -1.20 V corresponds to a LUMO level of -3.60 eV.

Figure S12: Reference measurement of ferrocene in acetonitrile solution; oxidation onset at 0.54 V.

3. UV-Vis absorption

Figure S13: UV-vis absorption spectrum of **2** in acetonitrile solution; absorption onset at 450.81 nm corresponds to an optical bandgap of 2.75 eV.

Figure S14: UV-vis absorption spectrum of **3** in acetonitrile solution; absorption onset at 562.76 nm corresponds to an optical bandgap of 2.20 eV.

Figure S15: UV-vis absorption spectrum of **4** in acetonitrile solution; absorption onset at 464.74 nm corresponds to an optical bandgap of 2.67 eV.

Figure S16: UV-vis absorption spectrum of 9,10-dicyanoanthracene (DCA) in acetonitrile solution; absorption onset at 435.54 nm corresponds to an optical bandgap of 2.85 eV.

4. Fluorescence emission

Figure S17: Fluorescence emission spectra of 2, 3, 4, and DCA in acetonitrile solution. Excitation wavelengths: 340 nm (2), 450 nm (3), 315 nm (4); 400 nm (DCA).

5. Thermogravimetric analysis (TGA)

Figure S18: Thermogravimetric analysis of 2.

Figure S19: Thermogravimetric analysis of 3.

6. X-ray structure determination

	2	4
formula	$C_{16}H_6N_4O_4$	$C_{15}H_6BrN_3O_4$
fw	318.2	372.1
cryst.size, mm	0.54 x 0.21 x 0.04	0.48 x 0.46 x 0.05
color, shape	yellow, needle-like	yellow, plate
crystal system	monoclinic	monoclinic
space group	<i>P</i> 2 ₁ (no. 4)	<i>P</i> 2 ₁ / <i>c</i> (no. 14)
<i>a</i> , Å	3.7419(4)	7.4784(11)
b, Å	8.4966(9)	8.6549(12)
<i>c</i> , Å	20.448(2)	20.629(3)
β, °	90.597(3)	94.493(4)
<i>V</i> , Å ³	650.06(12)	1331.1(3)
Т, К	100	100
Z, Z'	2, 1	4, 1
$\rho_{\rm calc}, {\rm g} {\rm cm}^{-3}$	1.6259	1.857
μ , mm ⁻¹ (MoK α)	0.122	3.115
<i>F</i> (000)	324	736
absorption corrections	multi-scan	multi-scan
T_{\min} - T_{\max}	0.94–1.00	0.22–0.86
θ range, deg	1.00–30.12	1.98–35.03
no. of rflns measd	9571	34605
R _{int}	0.0314	0.0400
no. of rflns unique	3787	5861
no. of rflns <i>I</i> >3 <i>o</i> (<i>I</i>)	3218	4629
no. of params / restraints	217/0	208 / 0
$R(I > 3\sigma(I))^{a}$	0.0464	0.0289
R (all data)	0.0563	0.0446
$wR(I > 3\sigma(I))$	0.0697	0.0392
wR (all data)	0.0725	0.0420
GooF	1.54	1.30
Diff.Four.peaks min/max, eÅ-3	-0.22 / 0.34	-0.67 / 1.01
CCDC no.	1530990	1530991

Table S1. Details for the crystal structure determinations of 2 and 4.

^a $R = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$, $wR = \Sigma w(|F_o| - |F_c|) / \Sigma w|F_o|$, GooF = { $\Sigma [w(F_o^2 - F_c^2)^2] / (n-p)$ }^{3/2}

Figure S20: Orientation of 2 in the diffractometer.

Figure S21: Molecular structure of **4**. Ellipsoids drawn at the 50% probability levels, H atoms represented by white spheres of arbitrary radius.

Figure S22: Crystal structure of 4. Colors as in Figure S19; H atoms were omitted for clarity.

7. High-performance liquid chromatography (HPLC) measurements

Figure S23: Chromatogram of **2** (sample dissolved in acetonitrile). The signal starting at 3.0 min is caused by high concentrations of acetonitrile in the mobile phase.

Figure S24: Chromatogram of **3** (sample dissolved in DMSO). The signal starting at 3.0 min is caused by high concentrations of acetonitrile in the mobile phase.

Figure S25: Chromatogram of **4** (sample dissolved in acetonitrile). The signal starting at 3.0 min is caused by high concentrations of acetonitrile in the mobile phase.