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Abstract
To keep environmental goals of initiatives like the European Green Deal reachable, joint
efforts of the whole society are needed. As a contribution to this cause, this thesis deals
with the prominent topic of industrial energy systems process optimization. The first
part of this work revolves around the development of a mixed integer linear programming
(MILP) optimization approach that allows the simultaneous integration of heat pumps
(HP) and storages (ST) into heat exchange network synthesis (HENS). A thorough
literature study showed that energy integration and waste heat recovery were extensively
researched in the last decades. Contrary, literature about the integration of HP and
ST into HENS to enhance heat recovery capabilities and the possible integration of
renewable energy sources still shows potential for improvements. Evaluating possible
potential and the propper applicability of optimization approaches are gaps that still
have to be filled by further developments such as those carried out in this thesis. A
case study on a set of example cases based on processes of the energy intensive industry
(EII) showed the enormous economic and thermodynamic potential of the proposed novel
approach. Since every optimization is highly dependent on their input parameters and
underlying models, the second part of this thesis deals with developing methods for the
automated data-driven model adaption. Especially the nonlinearity of thermodynamic
components of energy systems and common mechanisms like fouling or abrasion that can
change physical properties during operation make accurate predictions of their behavior
complicated. If component models and thus their predictions are not accurate enough,
the savings achieved through optimization may be consumed by process control that
has to counteract the incorrect predictions to keep the real process in a feasible state.
The developed framework based on OPC UA and other state-of-the-art communication
protocols allows a continuous automated adaption of component models to match the
current properties of the real physical system. The framework’s application on a packed
bed thermal energy storage with continuous fouling during operation showed a major
improvement of the prediction capabilities of the trained model compared to a model
without adjustments.
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Kurzfassung
Um die Umweltziele von Initiativen wie dem Europäischen Green Deal erreichbar zu hal-
ten, sind gemeinsame Anstrengungen der gesamten Gesellschaft erforderlich. Als Beitrag
dazu beschäftigt sich diese Arbeit mit dem prominenten Thema der Prozessoptimierung
industrieller Energiesysteme. Der erste Teil dieser Arbeit dreht sich um die Entwick-
lung eines Optimierungsansatzes der gemischt-ganzzahligen linearen Programmierung,
der die gleichzeitige Integration von Wärmepumpen und thermischen Speichern in die
Wärmeaustauscher-Netzwerksynthese ermöglicht. Eine fundierte Literaturrecherche hat
gezeigt, dass die Energieintegration und die Abwärmenutzung in den letzten Jahrzehn-
ten in zahlreichen Studien ausführlich untersucht wurden. Im Gegensatz dazu zeigt die
Literatur über die Integration von HP und ST in HENS zur Verbesserung der Wär-
merückgewinnung und die mögliche Integration von erneuerbaren Energiequellen noch
Verbesserungspotenzial. Die Bewertung möglicher Potenziale und die bessere Anwendbar-
keit von Optimierungsansätzen sind Lücken, die durch Weiterentwicklungen, wie sie in
dieser Arbeit durchgeführt wurden, noch geschlossen werden müssen. Eine Fallstudie an
einer Reihe von Beispielen, die auf Prozessen der energieintensiven Industrie basieren,
zeigte das enorme wirtschaftliche und thermodynamische Potenzial des vorgeschlagenen
neuen Ansatzes. Da jede Optimierung in hohem Maße von ihren Eingangsparametern und
zugrundeliegenden Modellen abhängig ist, befasst sich der zweite Teil dieser Arbeit mit der
Entwicklung von Methoden zur automatisierten datengetriebenen Modellanpassung. Ins-
besondere die Nichtlinearität der thermodynamischen Komponenten von Energiesystemen
und of auftretende Mechanismen wie Verschmutzung oder Abrieb, die die physikalischen
Eigenschaften während des Betriebs verändern können, erschweren genaue Vorhersagen
ihres Verhaltens. Wenn die Komponentenmodelle und damit ihre Vorhersagen nicht genau
genug sind, können die durch die Optimierung erzielten Einsparungen durch die Prozess-
steuerung aufgezehrt werden, die den falschen Vorhersagen entgegenwirken muss, um den
realen Prozess in einem funktionsfähigen Zustand zu halten. Das entwickelte Framework
auf Basis von OPC UA und anderen modernen Kommunikationsprotokollen ermöglicht
eine kontinuierliche automatisierte Anpassung von Komponentenmodellen an die aktuel-
len Eigenschaften ihres physikalischen Gegenstückes. Die Anwendung des Frameworks
auf einen Festbett-Wärmespeicher, bei dem kontinuierlicher Verschmutzung während
des Betriebs auftritt, zeigte eine deutliche Verbesserung der Vorhersagefähigkeiten des
trainierten Modells im Vergleich zu einem Modell ohne Anpassungen.
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Preface

This thesis was enabled trough my participation in the cooperative doctoral school SIC! -
Smart Industrial Concept1. The overall aim of SIC! is the development of interdisciplinary
and holistic approaches to meet the challenges of energy optimal operation of industrial
plants through research in the area of digitalization and decarbonization. To be able
to combine a scientific approach with industrial know-how, the consortium of SIC!
consists of three scientific partners, TU Wien, AIT Austrian Institute of Technology,
and Montanuniversität Leoben as well as five industrial partners which are EVN, evon,
FunderMax, ILF Consulting Engineers, and OSIsoft. Within this consortium, 8 PhD
students conducted research in the area of the four main pillars of SIC! which are depicted
in the graphic below. Especially the cooperative work on the overlapping areas of the
individual research topics, which is one of the most important possibilities of SIC!, allowed
for detailed insights while keeping the big picture in focus.

Main pillars of SIC! ©TU Wien

1https://sic.tuwien.ac.at/

vi



My research within SIC! revolved around the pillar optimal design optimization of energy
supply with emphasis on the integration of storages and renewable energy sources, dealing
mainly with the following topics:

• Extension of computer aided design optimization approaches, especially mixed
integer linear programming (MILP) heat exchange network synthesis (HENS), for
the integration of heat pumps and storages for cost and emission reduction.

• Development of a framework for automated data-driven model adaption to enable
more accurate predictions of real component behaviour for all kind of optimization
procedures.

The importance of the topics of SIC! gets underlined by the invitation of the International
Energy Agency (IEA) that allowed SIC! to take part in the IAE IETS Annex XVIII.
Within this international research project titled "Digitalization, Artificial Intelligence and
Related Technologies for Energy Efficiency and GHG Emissions Reduction on Industry",
the SIC consortium provided the White Paper "Digitalization in Industry - An Austrian
Perspective", which combines the accumulated experience of the different PhD theses.
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Research summary

The following sections of this chapter intend to shed light on the environment in which
the research of this thesis leading to the publications was conducted. Section 1 shows
the motivation of this thesis by giving an overview of the current state of GHG emissions
and their possible reduction towards climate neutrality with a focus on the share of
the industry. Following the introduction, Section 2 provides a general explanation and
discussion of the topics addressed in this thesis to place the resulting publications in
the context of the existing literature. In Section 3, the objectives of this work and their
associated research questions are presented. Following, Section 4 provides an outline and
short motivations for each of the publications, as well as the correlations between them.
In the last section, Section 5, the results of the research are recapitulated, the research
questions are answered, and an outlook for future work is given.

1 Introduction

The modern society stands on the brink of essential decisions that can drastically shape
the future living conditions.

The increasing number of natural disasters such as recent floods, droughts, or forest
fires that not only happen on the other side of the world, but also right here on our
doorstep, should make it impossible for anybody to look away or deny the existence of
climate change. Recent publications like the report by the Intergovernmental Panel on
Climate Change clearly state that immediate action is required to be able to limit such
dramatic effects of man made climate change. Without radical reduction of overall GHG
emissions, especially CO2, the global temperature increase will very likely exceed the
2 °C target initially set by the Paris Agreement (IPCC 2021). This does not mean that
nothing has been done about this topic in the past. While the final energy consumption
of the EU in 2019 is almost on the same level as back in 1990, the total GHG emissions
decreased by almost 25 % to about 3.7 billion tonnes of CO2 as visible in Figs. 1 and 2.
This results from the shift of the energy sources from solid fuels and petroleum products
towards biofuels, renewables and electricity. Nevertheless, the direct correlation of final
energy consumption and GHG emissions is clearly visible, especially for the transport
sector, which is the only GHG source of the EU that increased emissions (by almost 32
%) between 1990 and 2019, and the industrial sector, that reduced its GHG emissions by
around 36 % (Eurostat 2021).
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Figure 1: Final energy consumption of the EU per sector compared to 1990.
Adapted from Eurostat 2021
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Figure 2: GHG emissions of the EU per sector compared to 1990. Adapted
from Eurostat 2021

The industrial sector accounts for 25 % of the final energy consumption of the European
Union and is thus one of the key areas that have to be dealt with on the way to the target
of carbon neutrality (Eurostat 2020). Considering that the average annual reduction of
GHG emissions for industry of 1.2 % since 1990 would continue, it would take another
50 years to reach a state of zero emissions.

The energy intensive industries (EII), with its most important branches iron and steel,
refineries, cement, petrochemicals, fertilizer, lime and plaster, pulp and paper, aluminum,
inorganic chemicals, and hollow glass, are responsible for 85 % of the industries GHG
emission within the EU. To reach the EU target of climate neutrality by mid-century
given by the European green deal (Eurpean Comission 2019), especially these EII have to
deal with drastic changes. According to Bruyn et al. 2020, some of the most promising
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1 Introduction

adaptions to reach this target are:

• Reduction of primary energy demand through efficiency improvements or develop-
ment of new production methods: Independent on the energy source, if less energy
is needed, less GHG emissions, either from the combustion or consumption of fossil
fuels or indirect emissions from the generation of electricity, are produced.

• Usage of renewable energy sources or carbon-neutral energy carriers: The direct
usage of electricity from carbon neutral sources or the indirect usage with the help
of carbon neutral energy carriers like hydrogen or biofuels produced with it have
enormous potential for reducing GHG emissions in all sectors.

• Utilization of carbon capture and storage technologies: Especially for processes
that produce CO2 by chemical reactions that are necessary for the process, carbon
capture and storage offers a potential solution for climate neutrality.

However, the implementation of these measures faces major obstacles that are mostly of
financial nature. Improvement of energy efficiency or development of new production
methods is always coupled with considerable cost. Investments for energy efficient or novel
alternatives are often more capital-intensive compared to their traditional counterparts.
While the usage of electricity from renewable energy sources has considerable potential,
the fluctuating nature of PV and wind creates significant challenges for the electrical
supply network, which also result in investment costs for energy storage and smart
grid management. Carbon capture and storage, the production of hydrogen, and the
production of biofuel with captured CO2 are all technologies that are coupled with
massive investment costs for infrastructure and are dependent on the availability of
low-cost renewable energy. These short term costs are often used as economic arguments
against GHG emission reducing technologies. Because to reduce the risk of investments,
often payback times have to be shorter than three to five years to be acceptable options.
But this type of thinking is not compatible with the long term task of reducing climate
change. Studies on the economic damage of climate change like from Hsiang et al. 2017
estimate that an increase of the global mean temperature by 1 °C results in damages of
about 1.2 % of the global gross domestic product, consisting of market and nonmarket
damages in sectors like agriculture, health, and natural disasters.

Overall, the question of whether carbon neutrality is reachable is not technological
but a social one. There are plenty of technologies, either already available or under
development, that have the potential to reduce GHG emissions, improve energy efficiency,
and make it possible to reach carbon neutrality. Furthermore, as presented in this thesis,
extensive research is conducted worldwide to improve or develop such technologies. The
implementation of them is solely dependent on the question if society is able to work
together towards this goal. Reaching from consumers’ behavior, which needs to shift from
buying the cheapest option to buying sustainable options, over governmental decisions
like carbon taxes or subsidies for green investments, to company policies that revolve
around sustainability and development, everyone has to participate in changing the
future.

3
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2 Context

On the way towards a sustainable future, the energy optimization of the industry plays
an important role. Numerous technologies that allow reducing the carbon footprint of
processes are already available or currently in development for employment in the near
future. One of the main obstacles for the introduction of such GHG reducing technologies
is that such investments always have to compete with traditional investments like the
expansion of production capacities, which often offer a better return over short time
horizons (Bruyn et al. 2020). To lower these barriers, developments in the sector of
mathematical optimization offer the potential to help with the optimal integration of
emission-reducing technologies and thus increase their economic viability. Especially the
integration of volatile renewable energy sources and the recovery of waste heat show high
potential but also pose major challenges for optimization procedures. Because of this,
the integration of heat pumps (HP) and storage (ST) solutions into heat supply systems
gained interest over the last years in the field of design optimization.

However, to reduce the energy consumption of processes or increase their efficiency
and thus lower their GHG emissions, it is necessary to generate and utilize detailed
knowledge about them. The results of every optimization procedure, independent of
the type of optimization, are only as accurate as allowed by their input parameters and
underlying models. Especially for the refurbishment of existing plants and operational
optimization, the current physical properties of assets are essential information needed
to apply optimization procedures effectively. Over the last years, the acquisition of
process data rapidly gained popularity in what is often referred to as the fourth industrial
revolution, which aims to use the rapidly increasing amounts of measurement data for
improvement of cost and energy efficiency (Bonilla et al. 2018). Analyzing accumulated
process data with the now available computational capabilities offers possibilities for
process insight on an unprecedented scale.

Focusing on the two topics of computer-aided design optimization of extended heat
exchange networks with HP and ST integration and methods for the automated data-
driven model adaption, this thesis aims to improve the design optimization capabilities
of industrial processes. The approaches developed during this work shall contribute to
the variety of tools needed for the industry’s transition towards a GHG emission-free
future.

This chapter provides a brief overview of the research areas in this thesis to set the
introduced developments in proper context.

4



2 Context

2.1 Design Optimization

Optimization is often understood as the improvement of the current state towards a
defined target like reduced energy demand or cost reduction. This weakened definition
can be seen as a common misunderstanding. The strict definition of optimization is
the search for the best possible solution in a defined solution space, often under the
consideration of limitations or boundary conditions (Floudas et al. 2009).

The continuously rising complexity of industrial processes made it necessary to develop
methods and procedures that help to understand, plan, and operate them. A common
distinction is made between the two main application areas of mathematical optimization
- design and operational optimization:

Operational optimization shall answer how an existing or already designed process is
operated in the best way concerning a defined target.

Design optimization has the target to either find the optimal design in the sense of where
specific components in which size have to be placed for new processes or how to replace
or integrate components in existing processes for a given operational scenario.

These definitions already show one of the main difficulties in optimizing processes: If
the design is optimized after the operational scenario is set, the operational plan is
maybe no longer optimal for the resulting design and vice versa. This is caused by
the fact that every optimization is only valid within the boundaries of the assumed
simplifications and constraints. For the design optimization, the primary constraint is
that the operational plan is set beforehand and thus an input parameter. While current
developments aim towards combined optimization that allows simultaneous optimization
of design and operation, the main focus in this work lies in the design optimization of
energy intensive industrial processes. The here developed methods in the area of heat
exchange network synthesis with the integration of renewable energies and energy storage
intend to strengthen the base of knowledge for future research.

Heat Exchange Network Synthesis

The field of heat exchange network synthesis (HENS) is a part of the broad topic of
process system engineering. Since the first introduction of the heat exchange network
(HEN) design problem almost 80 years ago by Broeck 1944 and the first formal definition
of HENS by Masso et al. 1969, the topic has undergone increasingly extensive research
because of its importance for industrial processes (Furman et al. 2002).

Basic HENS after the definition of Masso et al. 1969 is described as follows: A given
process is reduced to the process streams that are necessary for its operation, which are
hot process streams (Hs) that have to be cooled from their inlet temperatures (T in) to
their outlet temperatures (T out), and cold process streams (Cs) that have to be heated
from their inlet temperatures (T in) to their outlet temperatures (T out). The flow rates

5
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and heat capacities of all process streams have to be known. The available utilities with
their temperatures and specific costs and the cost data for heat exchangers (HEX) have
to be given. The target of HENS is to find the network of HEX with the minimum total
annual costs (TAC) considering the given physical boundaries.

The core idea originates from heat integration (HI), which can be seen as a predecessor
to process integration (PI) since heat was the main energy source for early industrial
processes. HI is still an important part of PI and stands for two different things. While in
the physical world, HI is the actual arrangement of components, equipment, or sections of
the process, it also is the name of a specialized area of process synthesis. The latter deals
with procedures and methods that have the target to improve the energy efficiency of
industrial applications by matching excess heating or cooling demands to reduce external
energy demand (Gundersen 2013).

A milestone of HENS was the development of the heat recovery pinch concept in the late
1970s, which was discovered independently by different researchers (Hohmann E.C. 1971,
Huang F. et al. 1976, Linnhoff et al. 1978, Umeda T. et al. 1978). As one of the most
commonly known HENS concepts, the pinch concept led to a change from the traditional
design practice of following the learning curve. Instead of choosing the best result of a
number of case studies that depended on the experiences of the individual designer, it
made it possible to set performance targets previous to the design phase.

Enthalpy flow (W)

T
em

p
er

at
u
re

  
(K

)

hot composite
curve

cold composite
curve

pinch point

minimum
heating
demand

minimum
cooling
demand

maximum energy
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Figure 3: Schematic temperature-enthalpy diagram with composite curves
and pinch point

The basic principle of the heat recovery pinch concept is the graphical representation
of a process’s heating and cooling demand to gain information. To achieve this, the
cumulative heating and cooling demands of a process are drawn in a temperature-enthalpy
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2 Context

diagram as exemplarily depicted in Fig. 3. These two separate curves are commonly
called "composite curves". Because heat transfer can only occur from higher to lower
temperatures, and heat transfer is dependent on the driving temperature difference, the
smallest vertical distance between the demand curves can be seen as the bottleneck of
the process. The point of its occurrence is called the pinch point or heat recovery pinch.
The heat recovery pinch splits the process into two regions above and below the pinch.
Below the pinch, there is a heat surplus, while above the pinch, heating is required. From
the diagram, the minimum heating and cooling demands, the maximum energy recovery
(MER), and the process pinch can be obtained as shown in Fig. 3. One of the most
important insights provided by this graphical representation is that any heat transfer
from above the pinch to below the pinch results in higher heating demand and cooling
demand and should thus be avoided for the target of a MER HEN. From this base,
different step-wise empirical design procedures like the pinch design method (PDM) for
the development of HEN with the lowest possible external energy demand were developed
(Linnhoff et al. 1983).

These methods aim to achieve cost optimality while only the operational costs for utility
demand are considered. Thus, these methods can guarantee to result in HEN with
minimum external energy demand. Other costs like step fixed costs for installations or
costs for variable HEX sizes can only be considered in additional steps afterward, where
parts of the solution of the previous step are the parameters for the following.

Because the different targets are not considered simultaneously, the trade-offs between
the targets can not be accounted for. Decisions in earlier steps can have negative impacts
on the results of later steps (Escobar et al. 2013).

To overcome this disadvantage approaches like the superstructure for heat integration
by Yee et al. 1990b were proposed that allow consideration of different design targets
within one optimization step without decomposition of the problem. In Yee et al. 1990a,
the approach is formulated in a mixed integer nonlinear programming (MINLP) model
where unit costs, area costs, and utility costs are all considered simultaneously to find a
network with the lowest possible TAC.

Among other factors, these developments were enabled by the rapidly increasing avail-
ability of computing power that is necessary to calculate the solutions in reasonable
times. For further understandment, it has to be said that HENS was proven to be a
NP-hard problem by Furman et al. 2001. NP-hard means that a problem is especially
hard to solve and that it is impossible to create an exact solution algorithm, solving
within polynomial time. This is caused by the combinatorial nature of the problem.

So overall, there are two opposing directions of solution approaches for HENS: On
the one side, the decomposition of HENS into different parts treated sequentially, like
maximum energy recovery, a minimum number of matches, and minimum costs, reduces
overall complexity and accuracy. On the other side, the simultaneous consideration of
all assumed targets allows considering the trade-offs between them, but with the cost of
higher complexity.
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These described basic HENS developments are still limited to the integration of HEX
between streams and HEX between streams and utilities. The need to improve efficiency
to stay competitive and changes in the environmental policies and legislatures led to
increasing interest in waste heat recovery, flexibilities in the production, and integration
of renewable energy sources. This leads to the need to optimize HEN that consider more
than one operational state and additional installations like HP or thermal energy storages,
which is even more complex. To be able to deal with this problem, different approaches
have been improved or developed over the last years by different researchers.

Becker et al. 2012 proposed a multi-objective optimization algorithm on the base of the
heat cascade formulation for HENS that solves the thermodynamic calculations and
the energy integration as subproblems in a serial manner. Miah et al. 2015 approached
the problem by developing and methodological heat integration framework that divides
the problem into different zones that are solved serial to find the optimal location for
HP. Stampfli et al. 2019 utilized insight based and nonlinear programming techniques
for the sequential integration of ST and HP into multi-period processes with the target
of optimal HP operation. The common denominator of all these approaches is that
nonlinear optimization in combination with a problem decomposition has been used to
solve the problem in multiple steps, leaving a research gap for simultaneous integration
approaches for the integration of HP and ST into multi-period HENS.

This chapter is not intended to be an all-encompassing explanation and comparison of the
development of different HENS methodologies, since this task has already been fulfilled
by various publications like the extensive reviews by Furman et al. 2002 or Escobar et al.
2013. It should be seen as an appetizer for the following description of the development of
such methods on the case of a superstructure formulation for HENS, which was extended
in the course of this thesis.

2.2 Superstructure Formulation

As already analyzed and stated by Ciric et al. 1991, a simultaneous optimization is
superior to sequential targeting optimization procedures because of the uncertainty that
is added to the solution in every decomposition step. One popular and widely used
approach for HENS without decomposition is the superstructure formulation introduced
by Yee et al. (Yee et al. 1990a, Yee et al. 1990b) as graphically represented in Fig. 4.

The starting point of the formulation is the initial definition of HENS as given by Masso
et al. 1969. A number of Hsi (i = 1,...,HPS) that need to be cooled and a number
of Csj (j = 1,...,CPS) that need to be heated are given with their corresponding inlet
temperatures, outlet temperatures, heat capacities and heat transfer coefficients. Hot
utilities (Hui) and cold utilities (Cuj) with their temperatures, heat flow capacities, and
heat transfer coefficients are also assumed to be known. To make it possible that HEX
can be positioned on multiple temperature intervals of one stream, the concept of stages
is introduced. Within every stage k (k = 1,...,NOK), HEX between every Hsi and every
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Csj can occur. It is assumed, that if more than one HEX is chosen for a stream in one
stage, the stream gets split in the beginning of the stage and mixed at the end of the
stage. For reasons of simplification, isothermal mixing of the streams is assumed.
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Figure 4: Graphical representation of the superstrucutre proposed by Yee et al. 1990b

Cost function and targets To be able to consider the trade-off between energy recovery
and thus utility demand reduction, and costs for the installation of heat exchangers,
three different kinds of costs are considered with the help of their corresponding cost
coefficients in the cost function from Yee et al. 1990b, as simplified given in Equ. 1.:

• Cost coefficient for step fixed investment costs cf : Accumulated investment
costs for every installed HEX. These costs are a combination of engineering costs,
piping costs, transportation costs, and other fixed costs that can be linked to the
additional installation of a single HEX unit.

• Cost coefficient for variable investment costs c: Costs that are dependent
on the HEX area (A), which are linked to the size dependent on production costs
and material costs.

• Cost coefficients for utilities ccu and chu : Costs per unit of external Hu or
Cu that is needed to fulfill the physical demands of the process if it is not possible
or profitable to meet them with heat recovery.
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∀ k = 1, ..., NOK, i = 1, ..., HPS, j = 1, ..., CPS

(1)

In the term of the step fixed investment costs all possible matches between every Hsi

and every Csj in every stage k are simultaneously considered with the help of the binary
variables Zijk that indicate if a HEX exists in a given position or not. Also right before
the outlet of every stream a possible utility is considered with the binary variables Zcui

and Zhuj . Simultaneous to these binary variables, the temperatures of the streams
after every stage are considered as optimization variables of the type integer. These
temperatures are used to calculate the heat flows

Qi,j,k = Fi(Ti,k − Ti,k+1) = Fj(Tj,k − Tj,k+1) (2)

of the HEX between the streams and the utility heat flows Qcui and Qhuj analogously,
as well as the heat exchanger areas.

Ai,j,k = Qi,j,k/(Ui,j,kLMTDi,j,(Ti, Tj)) (3)

While the heat flows are linear functions of the variable stream temperatures, one can see
that even when the heat transfer coefficients U are assumed constant over the temperature,
Equ. 3 and thus the cost function is nonlinear and non-convex. The constraints of this
optimization problem, like the energy balances of the streams or the constraints that
account for no physical boundaries to be violated, are linear and thus not discussed
here.

Development of the formulation While this mixed integer nonlinear programming
(MINLP) approach was found to deliver satisfying results in terms of the minimization of
the annual costs, the non-linearity comes with several drawbacks. Nonlinear programming
procedures need a feasible initial solution to start the optimization, which is often hard
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to find even for small problems (Escobar et al. 2013). Also the computational effort is
higher compared to linear procedures.

As mentioned before, the solution of HENS problems is difficult to obtain, which is caused
by its initial definition. For every possible position for the placement of a HEX, two
questions have to be answered for a possible solution. The first question is whether or
not a HEX exists at a position, which can only be answered with yes or no, and thus
resulting in a binary variable. If a HEX exists at a certain position, the second question
is the optimal size the HEX, resulting in an integer variable.

For the formulation by Yee et al. 1990b, the number of binary variables can be calculated
with Equ. 4, and the number of integer variables can be calculated with Equ. 5. For a
given problem with two Hs (HPS = 2), two Cs (CPS = 2), and two stages (NOK = 2) as
displayed in Fig. 4, this results in a total of 12 binary variables and 8 integer variables
that have to be optimized. For a problem with only one additional Hs and one additional
Cs, these numbers increase to 24 binary variables and 12 integer variables which shows
that the complexity increases not linear but exponential with the size of the problem.

number of binary variables = HPS CPS NOK + CPS + HPS (4)

number of integer variables = (HPS + CPS) NOK (5)

As defined at the beginning of Section 2.1, optimization is the search for the best possible
solution within a defined solutions space. Because an analytical solution is rarely possible,
numerical mathematical algorithms that consist of rows of mathematical operations are
used for this purpose. The increased mathematical complexity of problems consisting of
integer variables and binary variables results from the fact that each possible combination
of binary variables leads to a different solution space that has to be searched for an
optimal solution. For N binary variables, 2N possible combinations and thus solution
spaces exist. For the example above, this results in 4096 combinations for 12, and
16.78 million combinations for 24 binary variables. This shows that a reduction of the
computational complexity for the search of each possible optimal solution in each of the
solution spaces adds up to a considerable reduction of the overall computational effort.

For this purpose, Beck et al. 2018 presented an approach to linearize the superstructure
formulation from Yee et al. 1990a. By replacing all nonlinear terms of the cost function
with convex linear approximations, a MILP approximation of the original MINLP
superstructure was created.

The main advantage of MILP formulations compared to MINLP formulations is that
solving linear problems is mathematically easier and requires less mathematical operations
than solving nonlinear problems. The computational times are drastically lower, which
is very important considering the exponential increase of complexity of the problem
with size. Also, the optimization always results in a global optimum without the need
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for a feasible starting solution. The drawback is that any linearization leads to certain
deviations of the results from the actual nonlinear behavior.

While a linearization of the formulation aims to improve and simplify the initial HENS
problem, other developments aim to enhance the formulation of HENS towards the
integration of additional installations.

For example, Beck et al. 2019 proposed a sequential MINLP approach for the integration
of thermal energy storages into HENS. In the first step, the storage size gets optimized,
while in the second step, a multi-period extension from Zhang et al. 2006 of the initial
MINLP formulation by Yee et al. 1990a gets extended and used to optimize the HEN.
This extension to multiple time periods and the possibility of additional HEX from the
streams to the storages increase the problem’s complexity even further.

Extension Within this Thesis These previous approaches inspired the further devel-
opment of the superstructure in the course of this thesis. To increase heat recovery
capabilities and allow the possibility of integrating renewable energy sources while keeping
the mathematical effort as low as possible, we developed an approach for the simultaneous
integration of HP and different thermal energy storages into a multi-period MILP HENS
superstructure. As can be seen in Fig. 5, the possible number of connections for every
stream in every stage in every time period p (p = 1,...,NOP) are increased drastically.
Additional to the HEX between every Hs and every Cs, the streams can exchange heat
with the different ST and a HP on each possible location.

For calculating the number of variables for this extended problem with Equs. 6 and 7,
again, a problem with two Hs (HPS = 2), two Cs (CPS = 2), and two stages (NOK = 2)
is assumed. Additionally, now two time periods (NOP = 2), two ST, and possible HP on
every location are given. The resulting 72 binary variables and 20 integer variables that
have to be optimized result in 4722 trillion (4.722 ∗ 1022) possible solution spaces and
therefore in an extremely increased mathematical effort.

number of binary variables = (HPS CPS NOK + (CPS + HPS)(1 + 3NOK))NOP
(6)

number of integer variables = (HPS + CPS) NOK NOP + 2NOP (7)

This increased complexity can also be seen in the cost function of the extended formulation
given in Equ. 8, which is described in detail in Publication Paper 2. The additional
terms considered in the cost function are step fixed and variable investment costs for ST,
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Figure 5: "Superstructure with possible Stream-Stream Hex (HEX), Stream-Storage
Hex (ST) and Heat Pumps (HP)" from Prendl et al. 2021c/CC BY 4.0

HEX between streams and ST, HP, and energy costs for the electrical energy needed to
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power the HP.
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(8)

A combination of different measures has been applied within this work to reduce the
computational effort drastically. To overcome the before mentioned drawbacks of nonlinear
formulations, all nonlinear parts of the cost function got linearized with convex linear
approximations inspired by the approach of Beck et al. 2018. Exemplary, the novel linear
integration of the HP carried out in multiple steps is described in the following. First, the
nonlinear characteristic curve of the relationship between the COP and the temperature
lift of the HP was approximated as shown in Fig. 6 and Equ. 9, where a1 and a2 are the
linearization coefficients.

COP (ΔT ) ≈ a1 + a2ΔT (9)

Because not the COP but the electrical power consumption (Pel) of the HP is needed
for the integration of the energy costs into the costs function, the next step was to
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Figure 6: "Linearized COP over ΔT " from Prendl et al.
2021c/CC BY 4.0

linearize the nonlinear and nonconvex correlation of the heat flow (Q̇hp) and the COP
that expresses Pel with a convex piecewise linear approximation CPel x as given in Eq.
10. For this purpose, the solution space for Pel was split into three regions along the ΔT
axis with the index x.

Pel = Q̇hp/COP = Pel(Q̇hp, ΔT ) ≈ b1x + b2xQ̇hp + b3xΔT = CPel x (10)

Furthermore, a lower boundary for the COP got implemented as a tightening measure.
In Fig. 7, where the nonlinear solution space of Pel is given with its piecewise linear
approximation in grey, the lower boundary for the COP is displayed in red. The area
above the red surface gets discarded to reduce possible potentially uneconomical solutions
because of their low COP, reducing the computational complexity and improving the
accuracy of the approximation within the remaining feasible solution space.

For the linear integration of the approximation into the superstructure formulation, the
so-called big-M formulation for the activation or deactivation of constraints was used, as
shown in Equ. 11, and described as following: The electrical power consumption Pel ijkp

of the HP on a certain position i, j, k, p of the superstructure is a positive term of the
cost function, and thus the solver aims to minimize it. If a HP exists at this position, the
binary variable Zhp ijkp equals 1, and the approximation CPel ijkp is the lower boundary
for Pel ijkp. If no HP exists, the binary variable Zhp ijkp equals 0, the big-M coefficient
ΓP el, which is a sufficiently large number bigger than the possible maximum of CPel ijkp,
leads to a right side of Equ. 11a smaller than zero, which deactivates the constraint and
makes Equ. 11b the active constraint. This makes it possible to consider HP on every
possible location in the cost function without the need for nonlinear correlations. The
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Figure 7: "Reduced solution space for Pel" from Prendl et al. 2021c/CC
BY 4.0

full mathematical formulation with the linearization steps for the remaining parts of the
cost function is given in full detail in Paper 2.

Pel ijkp ≥ CPel ijkp − ΓP el(1 − Zhp ijkp) (11a)
Pel ijkp ≥ 0 (11b)

As already mentioned in Section 1, the reduction of external energy demand and the
integration of renewable energy sources is crucial for the target of a carbon neutral
future. Novel optimization procedures like the introduced MILP HENS approach for the
simultaneous integration of HP and different ST can improve the process optimization
of existing and future industrial applications for this cause. But independent of the
type of optimization carried out, the results of the procedures are strongly dependent
on the accuracy of the used models and the assumed input parameters. Thus before
optimization, suitable component models and process data are needed.
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2.3 Model Training Framework

The development of the linear optimization approach in the first part of this thesis
inevitably led to the consideration of typical modeling peculiarities that are bound to the
nature of mathematical modeling. A mathematical model is a simplified description of a
real-world phenomenon for a given target application. Every assumption or simplification
made during the model building process can essentially change the model’s behavior and
thus alter it from reality (Hritonenko et al. 2003). Therefore, it is always crucial that the
model used meets the requirements of the application. For example, the HP model in
this thesis was linearized to reduce its mathematical complexity to be able to solve the
complex problem of HENS with HP and ST integration on the cost of reduced accuracy
compared to the real, nonlinear behavior. The solution space had to be tightened to
keep the accuracy of the simplified model in an acceptable range. But all such measures
only make sense as long as the original model matches the process sufficiently well.
Especially the modeling of nonlinear relations of thermal systems pose serious challenges
that can get even more complicated when physical properties of components change
during operation due to wear or fouling mechanisms. While processes such as design
optimization only require a snapshot of the system’s current state, process optimization
or predictive models need to be continuously adjusted to utilize their full potential for
energy and cost savings. To enable both, we developed a framework for the automated
data-driven model adaption for industrial energy systems. In the following paragraphs,
I will give a short overview of the most important topics necessary for developing the
framework.

Condition Monitoring and Digitalization The importance of condition monitoring and
process analtytics continuously gained significance over the last decades due to the
increase of process complexity and economic pressure. Condition monitoring is generally
known as recording the current state of a physical entity using measurement data (Tejado
Balsera 2018; Chaulya et al. 2016), and thus can be seen as a base for a lot of measures
concerning the operation improvement of processes. Initially, one of the main applications
was condition based maintenance, in which maintenance action is taken after a certain
parameters exceed given boundaries to prevent failure. But in the last years, the increasing
digitalization of the industry has taken place in what is often referred to as the fourth
industrial revolution. The development towards the so-called Industry4.0, which refers to
the intelligent networking of machines and processes, is driven by the constant evolution
of Information and Communication Technologies (ICT) (Parida et al. 2019) and offers
enormous potential for increasing the economic sustainability of the industry while also
reducing energy consumption (Branca et al. 2020; Kiel et al. 2017; Beier et al. 2017).
This potential can be leveraged for example with preventive or predictive maintenance,
which is an important paradigm of Industry4.0 and reliant on real-time data analytics
to achieve real-time collaboration between physical and computational processes (G.
Cheng et al. 2016). In this maintenance strategy, mathematical models of the process
are constantly feed with process data to predict and classify possible system faults.
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This allows to initiate maintenance when needed with the necessary preparation and
planning to extend the lifespan of machinery to reduce cost and end of life waste (Scarf
2007). Some prominent examples are the fault detection for wind turbines (Azevedo
et al. 2016), electric motors (Cakir et al. 2021), or general rotary machines (Hasani et al.
2017; Dinardo et al. 2016; Lim et al. 2013). Also, the analysis of anomalies of electrical
equipment (Han et al. 2003) or the wear of cutting tools (Čuš et al. 2011) have been the
subject of research in this area.

These approaches rely on parameters that are easy to measure, like vibrations, frequencies,
or temperatures. They also have the advantage that many similar or same units are
in operation, which allows gathering large amounts of data to develop the models and
provides a broad field of possible application. Contrary to this, especially in thermal
process engineering, the direct measurement of some important process variables can
be complicated, unreliable, or impossible. Also, units are often tailor-made for their
application, which makes modeling more complex.

Like predictive maintenance, process optimization also relies on accurate mathematical
models to predict the future behavior of components and processes. The difference
lies in the target application of the model. While mathematical models for predictive
maintenance are built to distinguish whether action is required or not, models for
operational optimization are needed to accurately simulate the behavior of components
or processes to make proper optimization and thus cost and energy saving possible.
Therefore the required accuracy for the later models is much higher and makes the
development of approaches like the presented framework necessary.

Communication and Data Acquisition While some concepts of Industry4.0 are theo-
retically ready for use, the implementation in existing industrial processes still poses
major difficulties. Most of these concepts need enormous amounts of measurement data
of the right quality for proper function. Thus, one important part of the broad topic of
Industry 4.0 is the functioning of cross-system communication. The service life of large
industrial systems, especially in the EII, is often very long, which traditionally causes
communication problems between system parts that are deployed years apart from each
other. Over decades communication standards can change, or the software of different
suppliers are not compatible with each other anymore.

Because of that, unified open protocol communication standards that enable interoper-
ability gain popularity and thus shares in the industrial communication market (Drahos
et al. 2018). This standard allows transporting measurement values and enriching them
with semantic data like sensor accuracy, position, control values, or calibration data
necessary for ensuring their quality. Overall, functional bidirectional communication
between all parts of a process is an essential foundation necessary for all developments in
this field, which is often the first barrier for implementation in industrial processes.
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Modeling and Automated Model Adaption There are two main types of mathematical
models for physical systems. The one type describes the process with the help of physical
relations. Because its behavior is solely dependent on the known physical relation and
thus relatively comprehensible, this type is also called white-box model. The second type,
so-called data-driven, or black-box model, uses input and output data of a system to find
a correlation between them without any additional knowledge about the physical behavior
of it (Solomatine et al. 2008). A combination of both types that is called grey-box model,
that uses physical relations and process data combined, gained research interest in the
last years (Halmschlager et al. 2021).

Simplified, the differences between these modeling approaches can be described with
the example of a heat exchanger. The input parameters for the model are the inlet
temperatures and heat flow capacities of the two streams, while the output parameters
are the outlet temperatures of the two streams that pass through the HEX. For this
assumption, Equ. 2 and Equ. 3 are a physical model of the HEX. This model needs the
heat exchanger area and heat transfer coefficient of the real physical process to deliver
accurate results. On the other hand, a black-box model would be trained with a set of
corresponding input and output data to find a correlation without the need for physical
parameters.

Suppose it is assumed that both models are fitted correctly and accurately. In that case,
they have the capability to simulate the real HEX within their given boundaries, as
long as the physical behavior of the real HEX doesn’t change. But when the physical
behavior of the HEX changes due to mechanisms like fouling or wear during operation, the
accuracy of the model output will decrease because the models are only fitted to represent
one specific physical state. If the difference between the behavior of the model and the
physical process gets too big, optimization results based on the models get unreliable. A
way to keep such models up-to-date to the physical state of the process is to continuously
adapt or retrain them, which comes with many difficulties, as explained again on the
HEX example. To keep the white-box model up-to-date, continuous measurement of the
HEX area and the heat transfer coefficient would be necessary, which is not possible
through direct measurement. But it is possible to indirectly measure a lumped parameter
as a combination of these two by measuring the input and output temperatures and then
calculate it with the help of Equs. 2 and 3. The black box model can be retrained with
current measurements of input and output data, but with the drawback that further
coherent physical behavior of the model is not automatically guaranteed.

But independent of the used model, the main difficulty lies in the automation of such
processes. The right data in the right quality must be provided in the necessary compo-
sition to utilize a training algorithm properly. This means measurement data must be
preprocessed, validated, and analyzed beforehand. If incorrect or the wrong data gets
feed into the model training, the resulting model also delivers incorrect results. Literature
research showed that the field of real time data analysis with capabilities to autonomously
act on results of predictive analytics still has a need for further improvements (Peres
et al. 2018) and that no such approach for industrial thermal energy systems has been
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presented so far. This led to development of the presented framework to enable accurate
predictions for the optimal utilization of design and operational optimization.
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3 Problem Statement

As already mentioned, the way towards a sustainable future depends on the efficient
deployment of existing technologies and the development of novel ones. Based on the
initial topic of design optimization and dynamic component modeling as well as the
consultation of relevant literature, two main research directions in the area of industrial
energy systems that serve these purposes developed:

Design Optimization: Because of the importance of the topic, numerous researches in
the last decades dealt with design optimization of industrial energy systems, especially
with the topic of HENS with many different approaches. While the focus lay on the
maximum energy recovery because external energy demand was seen as the main cost, the
development of more complex processes and the change of the economy shifted the focus.
The need for flexible production to stay competitive, the changing energy market, and
the need to integrate fluctuating renewable energy sources made it necessary to develop
methods to deal with the increasingly complex problems. Especially the simultaneous
integration of HP and ST into HEN poses a considerable challenge that can tap enormous
potentials. This discussion leads to the first objective of this thesis with its corresponding
sub-questions Q:

Objective 1: Simultaneous integration of HP and ST into HENS by the utilization of an
appropriate mathematical approach

Q1.1: Is it possible to counteract the increasing mathematical complexity
resulting from the problem extension by keeping the formulation linear?

Q1.2: Are the solutions obtained with the help of the developed method
consistent and validatable?

Q1.3: What is the economic and thermodynamic potential of the approach
for future industrial applications, especially in EII?

A widely used HENS superstructure formulation that has been adapted in various ways
from different researchers as described in Section 2.2 has been chosen as starting point
on the way towards the objective because of its proven versatility and clear structure.
Because of the lack of publicly available industry data and the low number of suitable
test cases from the literature, a set of example cases based on industrial processes from
the EII (Hamel et al. 1979) was created to search for the answers of the formulated
questions.
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Automated Model Adaption: The outcome of optimization procedure, whether design
or operational optimization, is strongly dependent on the parameters and models used
during the formulation of the problem. The used models are often based on physical
equations or relations, making them robust and reliable, given the necessary physical
properties are known. This works fine for conceptualizing new plants on the green field
but faces difficulties for operational optimization during operation or the refurbishment
of long-running equipment. To use the potentials of increasing flexibility and efficiency
of industrial processes, the accurate prediction of the behavior of a component is essen-
tial. Especially in thermal energy system engineering, nonlinear relations and changing
behavior during operation due to fouling, wear, or other effects make it necessary to use
real-time process data to keep the digital model of the physical component up to date.
To properly utilize the rapidly increasing amount of measurement data for this purpose,
the second objective within this thesis emerged:

Objective 2: Development of a framework for automated data-driven model adaption

Q2.1: Which communication, data processing and data analysis methods
are suitable as the basis of the framework?

Q2.2: Which degree of automation is reasonable considering the trade-off
between efficiency and reliability.

Q2.3: Can the functionality of the developed methodology be proven based
on a realistic use-case?

An existing test rig of a thermal energy storage, which has already been the topic of
several studies, serves as a use-case for this problem. Said storage is a sensible thermal
energy storage that uses gravel as a storage medium and is perfectly suitable for this
task for several reasons:

• Different validated models for simulation and optimization of the test rig are
available.

• The storage characteristics are nonlinear and dependent on several factors like the
heat transfer coefficients or the physical properties of the storage medium, which
can change due to processes like fouling or wear during operation.

• Measured and simulated data sets of different operational modes are available.
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4 Research Approach

The research conducted during this thesis revolves around the topic of design optimization
of industrial processes with a focus on process integration. The core of the first part
of this work is the development of an MILP optimization approach that allows the
simultaneous integration of HP and ST into HENS by the expansion and improvement
of a superstructure formulation of the basic HENS problem. The different stages of the
development processes are presented in Paper 1 and Paper 2, while in Paper 4 the
enormous potential of the approach for improvement of processes of the EII is shown.
Because accurate optimization is dependent on models that represent the real state of
their physical counterpart, the second part of this thesis deals with the creation of a
framework for an automated data-driven model adaption for industrial energy systems as
indicated in the lower section of Fig. 8. The exemplary implementation of the framework,
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Figure 8: Overview and placement of the core publications in relation to industrial
processes
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which is based on OPC UA and other state of the art communication protocols, is
presented in Paper 3. Figure 8 places the core publications of this thesis in relation to
the industrial process.

4.1 Design Optimization

Originating from the overall target of this thesis to improve the optimal design of energy
supply systems defined in the context of SIC! Smart Industrial Concept, the extension of
HENS for the integration of renewable energy sources and storage technologies crystallized
as the main focus of this work. The topic of HENS is not a new one. Due to its importance
for improving efficiency and the continuously increasing complexity of processes and
their operation boundaries, extensive research to improve heat recovery has been carried
out in the last decades. The thorough consultation of the relevant literature showed
that research concerning the integration of HP and ST into HENS for improvement
of heat recovery capabilities and the possible integration of renewable energy sources
gains interest and still has potential for further improvement. One remaining gap is
the simultaneous consideration of HP and ST without decomposition of the problem to
allow to consider all possible trade-offs. To fill this gap and overcome difficulties from
the occurring nonlinearities, the creation of a linear approach for this purpose has been
decided.

The formulation proposed in this thesis is based on a prominent MINLP superstructure
formulation of the basic HENS problem that has proven to be adaptable for different
purposes. To allow a linear integration into the cost function, the energy consumption of
HP in dependency of the thermal energy flow and the temperature lift was approximated
by a convex linearization. This concept is first presented in Paper 1 on a small test case
with four streams, one possible ST, and an assumed HP characteristic curve of the COP.
The optimization results already delivered two essential insights. Firstly, the integration
of HP and ST led to more complex HEN but was able to drastically reduce external
energy demand and TAC and thus fulfilled its purpose. The second important finding
was, that the resulting HEN as well as the computational times are strongly dependent
on the chosen coefficients and physical parameters, which is caused by the combinatorial
nature of mixed integer programming.

With the basic functions of the concept proven to work, the further development and
refinement of the formulation was the logical next step. Based on the results of the
initial concept, we identified several areas for potential improvement towards better
applicability. For a linear formulation, the size and temperature of a storage can not be
optimized simultaneously, which reduces the capabilities for optimal integration. Thus,
we extended the superstructure to allow simultaneous integration of different types of
ST. While the 1T ST has a fixed mass and variable temperature, the 2T ST operates
at two preset temperature levels, but its size is variable and part of the optimization.
The fixed temperatures of the 2T ST are needed for the linear integration of the HP,
while the variable initial temperature of the 1T ST allows its integration on the economic
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optimal temperature interval. To improve the accuracy of the HP approximation while
also reducing the computational effort, we introduced tightening measures for the solution
space of the COP. To obtain a realistic HP characteristic curve and thus realistic HP
behavior, a simulation of a vapor compression HP was deployed. In Paper 2, we
published the complete mathematical formulation of this tightened multi-period MILP
HENS approach together with a test case used to validate its behavior. Compared to a
HEN without HP and ST options, the application of the approach reduced the TAC by
61.2 % and the total external energy demand by 58.4 %, respectively. In combination
with the resulting HEN structures and ST charging curves, these results underlined the
functionality and applicability of the method while also keeping the computational effort
reasonably low.

Finally, to show the economic and thermodynamic potential for industrial applications
and to comprehensibly test the robustness of the approach, we performed a case study.
Because literature research showed that only a very limited number of example cases
with suitable temperature ranges for the integration of HP exist for multi-period HENS,
a set of four example cases based on representative processes of the EII was created. The
cases come from the sectors pulp and paper, refineries and petrochemical, and inorganic
chemicals. Accounting for around 33 % of the industrial CO2 emissions in the EU, these
sectors are especially important for the transition towards carbon neutrality (Bruyn et al.
2020). In Paper 4, the results of the study are presented. The integration of HP an
ST led to a reduction of the TAC between 29.39 % and 55.43 % compared to the basic
HEN solutions. The different heat recovery potentials led to a wide variation of resulting
external energy demands. While for three cases the external energy demand got reduced
between 12.52 % and 87.10 %, the external energy demand of the fourth case increased by
13.31 %. This behavior is caused by the structure of the formulation and the specific cost
coefficients. Because even if the external energy demand increased, the annual energy
costs, in this case, got reduced by 2, 003, 480 €y−1. Under the simplifying assumption
that the electrical energy demand is satisfied through and GHG neutral sources and that
the Hu are the only GHG source during the operation of the processes, the extended HEN
solutions yield a theoretical potential for the drastic reduction of GHG emissions between
52.3 % and 100 % in this study. The payback times of the cases were calculated with
an assumed lifespan of 25 years to analyze the economic viability of the extended HEN
results. Three of the cases lay within the realistic set limit of 5 years for the profitability
of the investment with 4.9 years, 3.6, and 4 years of payback time, while one case with
5.2 years payback time is not profitable according to the given limit. Overall, the results
obtained in the study show the enormous potential of heat integration in the EII and
that the set of test cases is perfectly suitable for the validation of multi-period HENS
procedures under realistic conditions.
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4.2 Automated Model Adaption

The topic of the second part of this work emerged during the evaluation of the developed
optimization approach. Process optimization aims to reduce cost or energy demand, which
gets more and more important due to economic pressure and the need to reduce GHG
emissions. But every optimization procedure optimizes the process as depicted by the
models and information used as input for them. Because the real operation of the process
is bound to its physical behavior, theoretical savings from inaccurate optimization results
can be consumed by process control that is needed to keep the process in a physically
feasible state. This gets even more problematic when the physical behavior changes
during operation. Especially industrial thermodynamic machinery has to deal with
mechanisms like fouling or wear that are hard to monitor during operation and directly
impact important physical properties like heat transfer coefficients or surface properties.
To deal with this problem and to allow to utilize the full potential of optimization
procedures, we decided to develop a framework for a continuous automated data-driven
model adaption for industrial thermal energy systems as presented in Paper 3.

Literature research showed that most developments in the direction of automated model
adaption revolve around the topic of fault detection in the context of condition monitoring,
where models are continuously trained to predict and classify possible damages and
determine if a process is in a normal or abnormal state. The classification in these cases
for rotary equipment (Azevedo et al. 2016; Cakir et al. 2021), cutting tools (Čuš et al.
2011), or electrical components (Han et al. 2003) is used to classify well-known and
distinguishable phenomena with the help of easy-to-measure properties like frequencies,
forces, or temperatures. In contrast, the approach developed in this work allows up-to-
date prediction of future behavior of thermodynamic components to enable operation
adaptions for maximum efficiency.

The proposed framework is based on the OPC UA communication protocol, allowing
maximum flexibility and changeability of the used components. It was developed on the
use-case of an existing packed bed regenerator (PBR) thermal energy storage test rig in
a TU Wien laboratory, an ideal example of the heterogeneous structure of technologies
typically found in industries with long service life.

The concept of the framework is shown in Fig. 8 and can be described with the help of
the use-case: Measurement data of the PBR is provided by an OPC UA server hosted on
the programmable logic controller of the PBR in real-time and stored in a data processing
server of the OSIsoft® PI System. The stored time series data gets preprocessed, analyzed,
and grouped into individual states like charging or discharging of the storage for further
usage in model training. The preprocessed and sorted data is transferred to MATLAB®

where the actual model training takes place. The now retrained model is used to predict
the response of the PBR for the planned future operation, which is then transferred back
to the PI System and to the process control, which directly allows the consideration of
the actual system behavior for further operation.
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The framework was tested with the help of two existing models of the PBR. A validated
finite-difference model based on the modeling approach by Walter et al. 2018 was used to
generate training and test data sets to train a grey-box model presented by Halmschlager
et al. 2021. For simulated pollution of the PBR during operation, the heat transfer
coefficient between the storage medium and heat transfer fluid was reduced continuously
for a given repeating load cycle. For comparison, one model was only trained with
the initial not polluted simulated measurements, and the appliance of the framework
continuously updated a second model. The comparison of the predictions of the two
models showed that the framework’s application reduced the prediction error up to 70 %
compared to the static model within the given boundaries. This accuracy improvement
shows that the framework allowed the model to learn the changed behavior and thus
proves the concept’s capabilities.
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5 Conclusion and Outlook

The research of this thesis focuses on the improvement of process optimization of in-
dustrial systems. During the first part of this work, a multi-period mixed integer linear
programming optimization approach for the simultaneous integration of heat pumps and
storages into heat exchange network synthesis was developed and tested in a case study.
In the second part of this thesis, a framework for the automated data-driven model adap-
tion for industrial energy systems was developed. The improvement of energy recovery
capabilities and the integration of renewable energies as achievable with optimization
procedures like the developed MILP HENS approach, on the base of accurate component
models as provided by the introduced framework, are essential steps on the way towards
a sustainable and carbon neutral future.

The extended MILP HENS superstructure formulation is based on the linearization of a
prominent MINLP superstructure formulation for the basic HENS problem. To keep the
complexity of the extended problem and thus the needed computational effort low, we
aimed for a linear integration of HP and ST into the formulation. First, to allow the
integration of HP into the cost function of the formulation, the energy consumption of
HP as a function of the thermal energy flow and the temperature lift was approximated
by a convex linearization. Further, different storage types were integrated to enhance
the capabilities to exploit heat recovery potentials. In summary, the presented approach
allows finding an optimal global solution for the simultaneous integration of HP and
ST into HEN without decomposition of the problem within one optimization step while
considering all possible trade-offs between the possible installations.

For a comprehensible test of the robustness and capabilities of the approach, while
also showing the thermodynamic and economic potential for industrial applications,
the developed optimization procedure was applied on a set of example cases based on
representative processes of the EII. The most important findings of this case study,
where the solutions of the here presented novel approach are compared with basic HENS
solutions without the possibility of HP and ST integration, are given in the following:

• The integration of HP and ST led to considerable possible reductions of the external
energy demand of up to 87.1 % and possible reductions of the total annual costs of
up to 55.43 % for the examined cases under the given boundary conditions.

• The computational effort necessary for solving the optimization problem as well
as the resulting HEN configurations are very sensitive to changes of the input
parameters like cost coefficients or physical parameters, which is related to the
combinatorial nature of HENS and MILP.

• An economic analysis of the optimization outcomes resulted in payback times
between 3.6 and 5.2 years for the different cases, which underlines the potential of
energy integration with the help of design optimization for the reduction of CO2
emissions while improving the cost efficiency of industrial processes.

28



5 Conclusion and Outlook

During the development of the here presented approach, possible starting points for future
work on this topic have been derived: The utilized mathematical formulation has a clear
structure and can be easily adapted to integrate additional considerations. Examples for
such adaptions could be the consideration of specific energy cost coefficients for each time
period to include the dynamic behavior of the energy market or the restriction of specific
installations to incorporate additional requirements of real processes. Also, integrating
more detailed storage characteristics may improve the significance of possible HEN
solutions. For the application of the approach for the refurbishment of existing processes,
it could be useful to consider preexisting HEX to incorporate their possible re-utilization
into the HEN solution directly. Furthermore, a comprehensive parameter sensitivity
analysis on the optimization approach’s input parameters may provide additional insights
on how to reduce the mathematical complexity further and thus reduce the computational
effort. This excerpt of possible future work shows that research in this area is far from
exhausted. Even if individual methods such as the developed MILP HENS optimization
procedure already provide satisfactory results within their boundaries and assumptions,
only continuous research and development will allow us to keep up with the increasingly
complex tasks of the ongoing energy transition.

Finally, the following conclusion can be drawn concerning the objective and research
questions formulated in Section 3: The developed multi-period MILP HENS approach
allows the simultaneous integration of HP and ST for the improvement of heat recovery
capabilities and the possible integration of renewable energies into HEN. The linearization
of the energy consumption of HP as a function of the temperature lift and the thermal
energy flow allowed to keep the mathematical formulation linear, which reduces the
mathematical complexity, and thus the computational effort as well as the computational
time needed for optimization. Also, the linearity of the formulation causes that the
optimization always results in a globally optimal solution within the given boundary
conditions. Initially, a small test case has been optimized with a variation of different
cost coefficients to verify the fundamental behavior of the procedure. As expected,
increasing electrical power costs or decreasing utility costs led to a reduction of the size
and number of HP until all HP options get discarded from the solution, while increasing
costs for storage material led to decreasing storage sizes until no more additional storage
is considered in the solution. Further comprehensive testing of the approach on a set
of example cases also showed a consistent and traceable behavior conforming to the
mathematical structure of the formulation and the used cost coefficients. The case study
on these representative cases based on representative processes of the EII shows enormous
potential for the reduction of the external energy demand of up to 87.1 % and the total
annual cost of up to 55.43 % by the integration of HP and ST in comparison to basic
HEN solution without HP and ST options. With payback times between 3.6 and 5.2
years, these obtained results prove the economic and thermodynamic potential of the
approach for industrial applications, especially in the EII.
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The second part of this thesis deals with the development of a framework for the automated
data-driven model adaption to satisfy the need for accurate component models that
represent the current state of a physical entity, even if changes of the behavior during
operation occur. Such models are essential for the appropriate utilization of process
optimization measures and other smart services emerging from the developments towards
Industry4.0. Especially industrial thermal energy systems show considerable potential
for energy and cost optimization, but are also commonly prone to changes of the physical
behaviour during operation due to mechanisms like wear or fouling that make the
utilization of real-time process data necessary to keep digital models up to date. The
framework is based on open protocol bidirectional live communication with OPC UA
and other state of the art communication protocols to enable the proper communication
between the broad range of different technical systems that traditionally occur in grown
industrial systems.

The application of the developed framework to a packed bed thermal energy storage that
is operated under conditions that lead to continuous fouling to prove the functionality of
the concept led to the following revelations:

• The comparison of a static model that is only trained once with data from the
unpolluted test rig and a model continuously adapted during the simulated operation
of the test rig with the help of the proposed framework showed the capabilities
and enormous potential of the framework. The learning of the changing physical
behavior improved the accuracy of the continuously updated models prediction
by up to 70 % compared to the prediction of the static model within the given
assumptions.

• The proper application of the framework is highly dependent on the used component
model and the data preprocessing implemented. Automated data-driven model
adaption can only work if the data is filtered, analyzed, and validated according to
the requirements of the particular model, which requires high effort in error-proofing
when no human interaction is intended. Also, the used model has to be robust and
suitable for the given purpose. As for every data-driven model training, only the
combination of a suitable model and suitable data can lead to successive results.

• The structure of the framework makes it highly adaptable for different thermal
energy systems. Because it is based on open protocol live communication utilizing
the broadly recognized OPC UA standard, the framework is not bound to the
software components used in the proof of concept. It can easily be fitted to the
given digital infrastructure of possible industrial applications, which considerably
increases the possible range of applications.

In the ongoing development of methodologies for the usage of the continuously increasing
amounts of process data, the proposed framework can be seen as an addition to the
foundation necessary for live condition monitoring, fault prediction, predictive mainte-
nance, and other smart services. Future work should include the further evaluation of the
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framework with the help of real measurement data including physical changes of processes
during operation. For this purpose, our research unit has already started a research
project concerning the enhancement of the PBR test rig used for the proof of concept that
allows the contamination of the heat transfer fluid with pollutants. Also, the real-time
usage of the framework on a model utilized by an operational optimization procedure
could be considered as the logical next step in the development towards Industry4.0.

In summary, the objective formulated in Section 3 was achieved by the development of
a framework for automated data-driven model adaption that relies on open protocol
bidirectional communication. The framework features real-time analyzes and feedback
based on the current physical properties of the system and can fast and easily be modified
for different models or applications. Following, the associated research questions from
Section 3 are addressed: The utilization of a unified open communication protocol as the
base for the formulation allows the real-time communication necessary to extract data
from different processes or systems. Simultaneously, the enrichment of measurement data
with semantic information like sensor accuracy, measurement position, control values, or
calibration data enables the detailed analyses necessary to extract further information.
Dependent on the requirements of the model, the data has to be validated, filtered and
analyzed to allow a proper automated model adaption. The difficulty lies in the fact
that the automated treatment of the raw data has to include analyzes like plausibility
checks that verify if the behavior of the measurement data is consistent with the real
physical process to guarantee proper model training. If incorrect or the wrong training
data is fed to the model training procedure, the resulting model becomes useless. For
manual model training, such tasks are often undertaken by the operator. The automated
process lacks the human experience and pattern recognition capabilities if they are not
explicitly integrated, which is often complex and time-consuming. Thus, depending on
the application, it is necessary to decide if human interaction or the automation of an
analysis task is more efficient or reliant. The application of the framework on the use-case
of a thermal energy storage showed that the continuous training of a model during the
operation of a process with changing physical properties improves its capabilities for
accurate predictions considerably and thus proves the framework’s effectiveness.

Overall, the developed MILP HENS approach for the simultaneous integration of HP
and ST and the proposed framework for automated data-driven model adaption could
satisfactory prove their functionality and potential within their given boundaries and
assumptions. Future work could include further adaptions of the HENS optimization
procedure that considers more detailed component models or boundaries that include
additional process requirements to improve its potential. Combining the framework with
an application that utilizes the predictions of a model continuously adapted by it could be
the next step towards Industry4.0. In summary, the approaches developed in this thesis
can contribute to the overall goal of a clean energy future. Nevertheless, the achievability
of carbon neutrality depends not only on the availability of the technology but also on
the willingness of each individual to take responsibility and act accordingly.
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$EVWUDFW 
This paper deals with the extension of the linearized superstructure formulation for heat 
exchange network synthesis (HENS) proposed by Beck and Hofmann (2018a). The 
energy consumption of heat pumps as a function of the temperature lift and the thermal 
energy flow is approximated by a convex linearization to enable the integration into a 
linear cost function. This allows for a linear extension of the cost function that takes the 
size and the energy consumption of heat pumps into account. As given problem an 
existing process and a predetermined heat pump characteristic is assumed. A test case 
consisting of two hot and two cold process streams has been constructed to investigate 
the proposed optimization method. The test case has been optimized with and without the 
extended approach for comparable results. The HEN resulting from the newly developed 
approach has 16.1 % lower total annual costs (TAC) and a 48.1 % lower external energy 
demand than the network resulting from the HENS without storages or heat pumps. This 
improvements come with the drawback of a more complex HEN with 15 installations 
compared to the simple HEN with 7 installations. 

.H\ZRUGV: Mathematical Programming, Linearization, Heat Recovery, Heat Pump, 
HENS 

�� ,QWURGXFWLRQ 
The recovery of thermal energy is becoming more and more important, taking into 
account the overall objective of the reduction of primary energy consumption and thus 
reduction of greenhouse gas emissions. One way towards achieving this goal is the 
enhancement of energy exchange and conversion networks. Heat exchange network 
synthesis (HENS) was broadly investigated and approached with many different 
approaches over the last decades as recapitulated by Escobar and Trierweiler (2013). The 
integration of heat pumps into non continuous processes has also been the subject to a 
number of scientific publications as, for example, by Stampfli et al. (2019). Nonetheless, 
the integration of heat pumps into HENS for the economic optimization of batch 
processes with multiple time steps was not being thoroughly investigated. An existing 
paper from Becker and Maréchal (2012)  uses the heat cascade formulation as approach. 
In contrast to this, a superstructure formulation was used as starting point for this work. 
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Figure 1: Extended Superstructure with possible Stream-Stream Hex (Hex), Stream-Storage Hex 
(St) and Heat Pumps (HP). 

�� ([WHQGHG 0DWKHPDWLFDO 0RGHO 
The superstructure is based on the formulation by Beck and Hofmann (2018a), which is 
a linearization of the superstructure proposed by Yee and Grossmann (1990). The 
objective function as shown in Eq. (1) is extended by considering a two tank liquid 
thermal storage, heat exchangers between the streams and the storage and heat pumps 
between the streams and the storage. The possible connections for every stream in every 
stage are exemplarily represented in Figure 1.  The two tank storage is modelled according 
to Beck and Hofmann (2018b). The multiple time periods during the cyclic process are 
realized by using the time slice model for cutting the process into different time slices in 
which the process parameters are constant. Isothermal mixing after every stream split is 
assumed. If heat exchangers occur at the same spot in different time periods p, the largest 
heat exchanger area A is taken into account for the calculation. In the other time steps the 
isothermal mixing is assured by bypasses. Furthermore, as a simplification to keep the 
problem linear, the heat transfer coefficients are assumed to be constant. 

f ijk f i f j ijk
i j k i j i j k

cu i j cu ip p hu jp p
i j i p j p

fixst varst st f ijk ijk
i j k i j k

hp ijk ijk Pel ijkp
i j k i j k i j k p

cu hu

hu cu hu

st st

hp hp el

min  TAC c Z c Z c Z cA

cA cA c q c q

C C Size c Z cA

c Z cA c P p

 (1) 
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Figure 2: Linearized COP over deltaT             Figure 3: Linear Approximation of Pel 

�� /LQHDUL]DWLRQ  
For the integration of heat pumps into the MILP superstructure several linearizations are 
necessary. In the following chapter the chosen approach is explained in detail. 
The coefficient of performance (COP) of heat pumps is defined in Eq. (2) as the ratio of 
useful heat supplied by the heat pump (Qth) to the required work (Pel).  

th

el

QCOP
P

 (2) 

In this work it is assumed that the heat pump characteristic curve of the COP over the 
temperature lift of the heat pump (deltaT) is known. For the linearization this 
characteristic curve is approximated by a polynomial of first order. In Figure 2 an example 
for a characteristic curve with its associated linear approximation is shown. From Eq. (2) 
it is visible that Pel can be calculated as the ratio of Qth to COP. This nonlinear relation is 
linearized with an approach inspired by the linearization of the heat exchange area by 
Beck and Hofmann (2018a). The nonconvex, nonlinear feasible solution space is split 
into three regions. Each of these regions is then approximated by a linear equation which 
is fitted with least squares methods. This piecewise linear approximation is shown in 
Figure 3 with the underlying solution space. The linear approximations are used as 
constraints for Pel with the help of big-M formulations. In these constraints  is a sufficient 
large number to activate or deactivate Eq. (3) dependent on whether a Heat Pump exists 
on this position or not. 

el el,approx ijkhpP P (1 Z )  (3) 

The heat exchanger area between the streams and heat pumps is approximated with the 
same procedure as for the heat exchangers between the streams. As measurement to keep 
the objective function linear, the heat pump approach temperature gets set to a fixed value. 
Due to the preset storage temperatures it is possible to linearize the reduced heat exchange 
area between storage and heat pump as function of the heat flow Qhpst as shown in Eq. (4) 
because the denominator remains constant. 

hpst
hpst hpst A1 A2 hpst

hpst

Q
A A c c Q

U LMTD
 (4) 
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�� 7HVW &DVH 
Table 1: Stream data and cost coefficients 

Stream Tin (°C) Tout (°C) CP 
(kW/K) 
period 1 

CP 
(kW/K) 
period 2 

CP 
(kW/K) 
period 3 

h 
(kW/m2K) 

H1 120 40 18 50 9 0.5 
H2 90 30 22 22 1 0.5 
C1 20 100 20 10 10 0.5 
C2 50 90 50 40 70 0.5 
UT h 150 150 - - - 1 
UT c 5 10 - - - 1 
exchanger cost = 4000+500[A(m2)]β €y-1, storage cost = 7000+0.15[kg] €y-1,                         
hot utility cost = 0.07 €kW-1h-1, cold utility cost = 0.007 €kW-1h-1, β = 0.83,                                 
electrical power costs = 0.06 €kW-1h-1, dTmin = 5 °C, Heat Pump cost = 11000 €y-1 

 
As test case an example which consists of two hot and two cold process streams was 
investigated. The assumed cyclic process has a duration of three hours and is split into 
three periods of one hour each. It is assumed that the process is operated annually for 
8600 h. The superstructure model was set up with two stages. The cost coefficients and 
stream data used are given in Table 1. A two tank storage which operates at 70 °C and 
100 °C with thermo-oil as storage medium with an specific heat capacity of                         
cpoil = 2 kJkg-1K-1 and an heat transfer coefficient of hoil = 0.5 kWm-2K-1 was chosen. The 
assumed heat pump has a power consumption range from 400 kW to 2000 kW and a given 
approach temperature of Thpaproach = 5 K. The linearized COP characteristic is given as                   
COP = 10 – 0.15 K-1 deltaT and the heat transfer coefficient as hhp = 5 kWm-2K-1. A lower 
boundary of the COP of COPmin = 1 was set as constraint. As solver for the MILP Gurobi 
8.1.0 was used.  
The plausibility of the optimization was tested with the variation of different cost 
coefficients. With increasing costs for electrical power or decreasing costs for utilities, 
the size and number of heat pumps gets reduced until no more heat pumps get chosen for 
the system. Similarly increasing costs for storage material lead to smaller storage sizes 
and finally the exclusion of solutions containing storages. This behavior matches the 
results expected from the structure of the used cost function. 

�� 5HVXOWV         
The test case was optimized in two different configurations. In the first configuration the 
HEN was optimized without heat pumps or storages in order to be able to obtain 
comparable results. In the second configuration the test case was optimized with the 
extended approach including a storage and heat pumps. 
5.1. Configuration 1: Test case without heat pumps and storage 
For this setup, the solver found a solution after 0.02 s with total annual costs of                                   
TAC = 1,120,500 €y-1. The obtained heat exchange network which is shown in Figure 4 
consists of three stream – stream heat exchangers and four utility heat exchangers. The 
obtained heat flows for the different time periods are given in Table 2. The high amount 
of needed cold utility in period 2 and needed hot utility in period 3 shows potential for 
temporal energy shifting. The total utility energy demand adds up to 20.869 GWh y-1. 
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                                                                                 Table 2: Heat Flows without Heat Pump (kW) 

 
Figure 4: Hen obtained without Heat Pump 

 
5.2. Configuration 2: Test case with integrated heat pumps and storage 
For the extended case a solution was found after 54.12 s with total annual costs of                                   
TAC = 940,260 €y-1. The extended heat exchange network which is shown in Figure 6 
consists of five stream – stream heat exchangers, two stream – storage heat exchangers, 
four utility heat exchangers, two heat pumps and a storage tank with 192334 kg of thermo-
oil which has a storage capacity of 3.206 MWh. The obtained heat flows and the electrical 
power demands for the different time periods are given in Table 3. The total utility energy 
demand is 6.074 GWh y-1 and the electrical energy demand for the heat pumps is 4.755 
GWh y-1. This adds up to a total external energy demand of 10.829 GWh y-1. The charging 
state of the storage over the cycle time is given in Figure 5. The storage has a variable 
storage charge at the beginning of the cycle which has to be reached again at the end of 
the cycle. This is ensured by suitable boundary conditions. 
5.3. Comparison: 
The TAC of the extend network are 16.1 % lower compared to the simple network and 
the total external energy demand of the obtained extended structure is only 51.9 % of the 
total energy demand of configuration 1. From Table 2 and Table 3 it is visible that the 
utilities are significantly smaller for configuration 2 and that a big part of the energy is 
supplied by the heat pumps instead. Although configuration 2 has lower TAC and energy 
demand it has to be noticed that it is much more complex with 15 installations and a 
storage compared to the simple configuration 1 with 7 installations.  

�� &RQFOXVLRQ 
An extension for the integration of heat pumps into HENS for multi-period MILP 
superstructures by linearizing the energy consumption of heat pumps has been developed. 
A test case consisting of two hot and two cold process streams with varying mass flows 
for different time steps has been constructed to demonstrate the proposed method. This 
test case was optimized with and without the possibility of including a storage and heat 
pumps to compare the gained results. The obtained extended HEN has 16.1 % lower TAC 
and 48.1 % lower external energy demand compared to the conventional HEN which 
comes with the drawback of a higher complexity of the network. The test case was chosen 
rather small because the target was to check if the optimization results are plausible which 
is hardly possible for bigger problems. From the results of the optimization without 
storage and heat pumps it can be concluded that a storage device that shifts energy 
between the time periods is able to reduce the TAC if the costs of the storage, the heat 
pumps and the electrical energy are low enough compared to the utility costs. This is 
consistent with the results of the second configuration. When comparing results it has to 
be taken into account that the results of these optimizations are strongly dependent on the  

 p1 p2 p3 
1 294.3 150.00 720.00 
2 875.70 1600.00 - 
3 1300.00 650.00 - 
Hu1 
Hu2 
Cu1 
Cu2 

5.72 
1124.3 
270.00 
20.00 

- 
- 

2250.00 
670.00 

80 
2800.00 

- 
60.00 
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Figure 5: Storage Charging           Figure 6: Hen obtained with Heat Pumps and Storage                                                                       
State over Cycle Time 

Table 3: Heat Flows and Pel results with Heat Pump (kW) 

 p1 p2 p3   p1 p2 p3 
1 549.38 456.93 216.24  Hu1 100.00 - 50.00 
2 577.21 630.00 368.76  Hu2 250.00 200.00 - 
3 770.00 770.00 -  Cu1 47.84 622.29 - 
4 373.64 - 398.76  Cu2 238.59 550.00 60.00 
5 402.79 - 262.44  Hp1 - 1947.70 - 
6 
7 
 

265.58 
311.41 

343.07 
- 

135.00 
- 
 

 Hp2 
Pel Hp1 
Pel Hp2 

- 
- 
- 

- 
1257.80 

- 

2168.80 
- 

400.90 
 
chosen coefficients. Small changes of cost coefficients or physical parameters can result 
in very different network solutions because of the nature of mixed integer programming. 
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Simultaneous integration of heat pumps and different thermal energy
storages into a tightened multi-period MILP HENS superstructure
formulation for industrial applications
Published in Computers and Chemical Engineering in collaboration with Karl Schenzel
and René Hofmann

In this paper, the approach presented in Paper 1 was developed into the direction of
applicability for real industrial applications. The improved multi-period MILP HENS
superstructure formulation allows simultaneous integration of heat pumps and different
thermal storages. Furthermore, measures for tightening the solution space of the COP
are introduced, improving the accuracy of the HP approximation while simultaneously
reducing the computational effort. Additionally, a simulation of a vapor compression
HP with a chosen refrigerant was deployed to obtain realistic HP characteristic curves.
Applying the proposed method on a test case resulted in the reduction of cost of 61.2
% and a reduction of the external energy demand of 58.4 %. These significant results
underline the capability of computer aided design optimization.
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a b s t r a c t 

Design optimization of industrial installations with help of mathematical programs offers high potential 

for energy savings and cost reduction, which steadily gains importance. Heat exchange network synthesis 

(HENS) is one of the commonly used and promising methods. This paper deals with simultaneous in- 

tegration of heat pumps and two different storage types into mixed integer linear programming (MILP) 

HENS by extending a multi-period superstructure formulation proposed by Beck and Hofmann (2018c). 

Further measures for tightening the solution space for the coefficient of performance (COP) are intro- 

duced. This improves the accuracy of the heat pump (HP) approximation, reduces computational effort 

and prevents solutions with uneconomical low COP. The obtained approach allows to design cost efficient 

heat recovery systems with storages (ST) and HP for the improvement of the energy recovery capabili- 

ties. A constructed test case was used to analyze the performance of the method and to show its possible 

potential. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

In the last decades extensive research in the area of waste heat 

recovery has been carried out and it still gains scientific popular- 

ity. This is caused by the complexity of the topic and the consid- 

erable potential for energy savings which provides economic bene- 

fits with short payback times ( Eichhammer and Rohde, 2016 ). The 

problem gets even more complex by extending classical HENS by 

additional installations like HP or ST. Simplified approaches are 

needed to find suitable solutions with acceptable computational 

effort. The complexity is caused by the nature of the mathemat- 

ical formulation of HENS. It is proven to be an NP-hard prob- 

lem, which means there is no possibility for the existence of a 

polynomial exact solution algorithm for the problem ( Furman and 

Sahinidis, 2001 ). The advantage of linear programming approaches 

is that they always deliver global optimal solutions without the 

need for initial feasible solutions. Even for small problems suit- 

able initial solutions are often hard to find ( Escobar and Trier- 

weiler, 2013 ). As proposed by Nemet et al. (2019) for basic HENS 

without HP, solutions obtained by MILP approaches could also be 

∗ Corresponding author. 

E-mail address: Rene.Hofmann@tuwien.ac.at (R. Hofmann). 

URL: http://www.tuwien.ac.at (R. Hofmann) 

used as near optimum starting solutions for a mixed integer non- 

linear programming (MINLP) optimization. As already stated by 

Ciric and Floudas (1991) , the simultaneous optimization with a 

minimum cost target is superior to sequential performed target- 

ing, because every decomposition adds an element of uncertainty 

to the solution. Other researchers already approached the prob- 

lem of integrating HP into heat exchange networks. For example 

Stampfli et al. (2019) used the principle of heat recovery loops 

to integrate ST and HP into non-continuous processes by utiliz- 

ing insight based and nonlinear programming techniques sequen- 

tial with the target of optimal HP operation. Miah et al. (2015) de- 

veloped an methodological framework for heat integration which 

consists of several analysis steps that divide the problem into dif- 

ferent zones to decide where HP have to be located. Becker and 

Maréchal (2012) utilize heat cascade formulations and calculate the 

optimal solution by setting up an multi objective optimization al- 

gorithm that solves the thermodynamic calculations and the en- 

ergy integration serial as sub problems. In contrast, this work is 

based on the linearization of the widely used superstructure for- 

mulation initially introduced by Yee and Grossmann (1990) , which 

was proposed by Beck and Hofmann (2018c) . 

Differing from the sequential approach for integration of multi- 

ple thermal ST used by Beck and Hofmann (2019) , here an simulta- 

neous optimization that considers different thermal ST and HP in 

one step was developed. The linear integration of the HP and ST 

https://doi.org/10.1016/j.compchemeng.2021.107237 

0098-1354/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Nomenclature 

Acronyms 

HENS heat exchanger network synthesis 

MINLP mixed integer nonlinear programming 

MILP mixed integer linear programming 

LP linear programming 

HEX heat exchanger 

HP heat pump 

ST storage 

Hu hot utility 

Cu cold utility 

Hs hot stream 

Cs cold stream 

Parameters 

a 1 , a 2 linearization coefficients COP (-) 

b linearization coefficients Pel (-) 

COP coefficient of performance (-) 

Q st storable heat (kJ) 

β cost exponent (-) 

U heat transfer coefficient (kW m 

−2 K −1 ) 
F flow capacity of process streams (kW/K) 

c cost coefficient for heat exchanger area ( € m 

−2 β ) 

c f step-fixed cost coefficient ( € ) 

c p specific heat capacity (kJ kg −1 K −1 ) 
m mass (kg) 

˙ m massflow (kgs −1 ) 

c f st step-fixed storage cost coefficient ( € ) 

c v st variable storage cost coefficient ( € kg −1 ) 

c hp step-fixed HP cost coefficient ( € ) 

c hu cost coefficient hot utility ( € kWh −1 ) 

c cu cost coefficient cold utility ( € kWh −1 ) 

c Pel cost coefficient electricity ( € kWh −1 ) 

� upper bound for heat exchange (kW) 

�T min minimum approach temperature ( ◦C ) 
�T temperature big-M coefficients ( ◦C ) 
�A area big-M coefficients (m 

2 ) 

�Pel electircal power big-M coefficients (kW) 

NOK number of stages (-) 

NOP number of time periods (-) 

HP S number of hot process streams (-) 

CP S number of cold process streams (-) 

τ duration of time interval (h) 

τa annual duration of time interval (h) 

Subscripts 

shift shift variable 

ap approach 

st storage 

hp heat pump 

2T two tank storage 

1T one tank storage 

i index hot stream 

j index cold stream 

x index approximation region 

k index temperature stage 

p index time period 

min minimum value 

max maximum value 

hu hot utility 

cu cold utility 

h hot tank temperature 

c cold tank temperature 

Superscripts 

in inlet 

out outlet 

2T two tank storage 

1T one tank storage 

hp heat pump 

Variables 

A heat exchanger area (m 

2 ) 

CA constraint heat exchanger area (m 

2 ) 
˙ Q heat flow (kW) 

LMT D logarythmic mean temperature difference ( ◦C ) 
CLMT D constraint logarythmic mean temperature difference 

( ◦C ) 
Z binary variable for existence of HEX (-) 

S st storge size (kg) 

Z st binary variable for existence of storage (-) 

Z hp binary variable for existence of heat pump (-) 

LMT D logarithmic mean temperature difference ( ◦C ) 
T temperature ( ◦C ) 
�T temperature difference ( ◦C ) 
T AC total annual costs ( € ) 

Pel electrical power (kW) 

CPel constraint electrical power (kW) 

CH storage charge state (%) 

allows to find a global optimal solution for the given parameters 

without the need for initial feasible solutions. All adaptions that 

have been made compared to previous superstructure approaches 

are shown in the following Chapter 2 . 

2. Proposed extension of the HENS superstructure 

A previous publication Prendl and Hofmann (2020) ex- 

tended the linearized superstructure proposed by Beck and Hof- 

mann (2018c) to consider the integration of HP. In continuation 

of this work a further extension has been made by introducing 

additional storage possibilities to enhance the capability of shift- 

ing energy on different temperature levels over time periods. A 

real vapor compression HP was modeled and simulated to obtain 

a realistic HP characteristic as explained in Chapter 4 . Also the so- 

lution space for the COP has been tightened to improve the ac- 

curacy of the approximation and to reduce the computational ef- 

fort. As can be seen in Fig. 1 , possible installations are a one tank 

ST (1T ST), a two tank ST (2T ST), heat pumps between streams 

and the 2T ST, HEX between streams, HEX between streams and 

ST as well as hot and cold utilities. The 1T ST has a preset fixed 

mass and variable temperature. Because the initial temperature of 

the 1T ST is also an optimization parameter the storage gets inte- 

grated on the economically optimal temperature interval. The 2T 

ST operates at two preset temperature levels. The size of the ST 

gets optimized simultaneously with the solution of the superstruc- 

ture. For both ST the heat transfer fluid is used as storage medium 

so no HEX inside the ST are needed. The simultaneous integra- 

tion of ST with fixed mass and variable temperature as described 

by Beck and Hofmann (2019) and ST with fixed temperatures and 

variable mass allows to utilize the benefits of both types simulta- 

neously ( Walmsley et al., 2014 ). The course of the charging states 

of the different thermal energy storages over the operation peri- 

ods resulting from the solving of the optimization problem allows 

to gain better insights into the system behavior. HEX, HP and ST 

are possible in every stage, while utilities are only possible before 

the first and after the last stage. The utilities provide the energy 

needed to fulfill the temperature boundaries of the streams if it is 

not possible to satisfy them within the stages. 
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Fig. 1. Extended Superstructure with possible Stream-Stream HEX (HEX), Stream-Storage HEX (ST) and Heat Pumps (HP). 

3. Mathematical model 

The objective for the extended stagewise superstructure shown 

in Fig. 1 is a minimization of the total annual costs (TAC) to pro- 

vide the needed energy to change the temperatures of the streams 

to match the given process parameters. The cost function ( Eq. (1) ) 

consists of three different types of costs: 
• Step fixed investment costs for the installation of stream- 

stream HEX, hot- and cold utilities (Hu,Cu), Storages (ST), stream- 

storage HEX and heat pumps (HP). 
• Variable investment costs for the surface area and thus the 

size of all HEX as well as variable costs for the size of the two tank 

storage. 
• Energy costs for the external energy demand of the obtained 

solution which consists of the costs for the hot and cold utilities 

and the costs for the electrical energy consumed by the HP. 

min T AC = 


 

i 


 

j 


 

k c f Z i jk + 


 

i c f Z cui 
+ 


 

j c f Z hu j + c f st 2 T Z st 2 T + c f st 1 T Z st 1 T 
+ 


 

i 


 

j 


 

k c f Z 2 T i jk + 


 

i 


 

j 


 

k c f Z 1 T i jk 

+ 

	 

i 

	 

j 

	 

k 

c hp Z hp i jk � �� � 
step fixed investment costs 

+ 


 

i 


 

j 


 

k cA 
β
i jk 

+ 


 

i cA 
β
cui 

+ 


 

j cA 
β
hu j 

+ c v st 2 T S st 2 T + 


 

i 


 

j 


 

k cA 
β
2 T i jk 

+ 

	 

i 

	 

j 

	 

k 

cA 
β
1 T i jk 

+ 

	 

i 

	 

j 

	 

k 

cA 
β
hp i jk � �� � 

variable investment costs 

+ 


 

i 


 

p c cu ˙ Q cuip τap + 


 

j 


 

p c hu ˙ Q hu jp τap 
+ 

	 

i 

	 

j 

	 

k 

	 

p 

c Pel P el i jkp τap � �� � 
energy costs 

∀ p = 1 , . . . , NOP, k = 1 , . . . , NOK, 

i = 1 , . . . , HP S, j = 1 , . . . , CP S 

(1) 

3.1. Energy balances 

In the following ( Eq. (2) ), the energy balances for all process 

streams are given with the extensions necessary for considering 

the heat flows to the storages and heat pumps. 	 

j 

	 

k 

˙ Q i jkp + 

	 

k 

( ˙ Q 2 T ikp + 

˙ Q 1 T ikp + 

˙ Q hp ikp ) 

+ 

˙ Q cuip = ˙ m ip cp ip (T 
in 
ip − T out ip ) = 

˙ Q ip 	 

i 

	 

k 

˙ Q i jkp + 

	 

k 

( ˙ Q 2 T jkp + 

˙ Q 1 T jkp + 

˙ Q hp jkp ) 

+ 

˙ Q hu jp = ˙ m jp cp jp (T 
out 
jp − T in jp ) = 

˙ Q jp 

∀ p = 1 , . . . , NOP, k = 1 , . . . , NOK, 

i ∈ HP S, j ∈ CP S (2) 

T in and T out , the inlet and outlet temperatures of the streams, 

where i are the hot streams and j are the cold streams, with their 

heat capacities cp ip and cp jp as well as their massflows ˙ m ip and 

˙ m jp are the physical requirements that have to be fulfilled for a 

given problem. The balances for every stage k in every time period 

p which are given in the following Eq. (3) show that isothermal 

mixing is assumed after every stage. If more than one installation 

occurs at one one position i jkp, the stream is split up and they are 

arranged in parallel configuration. 	 

j 

˙ Q i jkp + 

˙ Q 2 T ikp + 

˙ Q 1 T ikp + 

˙ Q hp ikp 

= ˙ m ip cp ip (T ik − T i,k +1 ) 	 

i 

˙ Q i jkp + 

˙ Q 2 T jkp + 

˙ Q 1 T i jkp + 

˙ Q hp jkp 

= ˙ m ip cp jp (T jk − T j,k +1 ) 

i ∈ HP S, j ∈ CP S 

T i,k =1 = T in i , T j,k = NOK = T in j (3) 

For simplification of the formulation, utilities are only allowed 

directly before the outlet of streams as in the basic superstructure 

proposed by Yee and Grossmann (1990) . The utility heat loads 

in Eq. (4) are calculated as the heat flows that are needed to 

change the temperatures of the streams to the demanded output 

temperatures required by the given processes. In the proposed su- 

perstructure, utilities are modeled as streams with fixed input and 

output temperatures that are provided in the needed quantities. 

They have corresponding HEX to interact with the hotstreams and 
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coldstreams. 

˙ Q cu ip = ˙ m ip cp ip (T i,k = NOK+1 ,p − T out 
ip 

) 

˙ Q hu jp = ˙ m jp cp jp (T 
out 
jp 

− T j,k =1 ,p ) 
(4) 

For the 1T ST, the accumulated energy content is calculated 

through the temperature change of the storage medium ( Eq. (5) ), 

where a perfect mixing inside the storage tank is assumed. The 

temperature differences for the heat transfers ( Eq. (11) ) are calcu- 

lated with the temperatures at the start and end of the time pe- 

riods according to the formulation by Beck and Hofmann (2018a) . 

For taking the periodic operation into account, the temperature at 

the start of the first time period has to be the same as the temper- 

ature at the end of the last time period and is defined as T shi f t . To 

consider the physical constraint of thermal stability of the storage 

medium, a maximum storage temperature T max 1 T is defined. The 

requirement to keep the program linear prevents a simultaneous 

optimization of the temperature and sizing of the one tank stor- 

age. However, the resulting temperature curve of the storage can 

be used to gain information of the system and to adapt the stor- 

age size or material. 

m 1 T cp 1 T (T 1 T p+1 − T 1 T p ) = �	 

i 

	 

k 

˙ Q 1 T ikp −
	 

j 

	 

k 

˙ Q 1 T jkp 

�
τp 

T 1 T p=1 = T shi f t = T 1 T p= NOP 
0 ≤ T 1 T ≤ T max 1 T (5) 

The 2T ST operates at fixed temperatures and the masses in 

the two tanks change. The energy balance of the ST ( Eq. (6) ) is an 

adaption of the storage model by Beck and Hofmann (2018a) . The 

constant temperatures are one of the enablers for the linear inte- 

gration of heat pumps. This storage can be charged or discharged 

either directly over HEX from the streams or over heat pumps. 

The variable CH 2 T represents the charging state of the ST and 

has the physical limitation to be between zero (empty) and one 

(full charged). Similar to the 1T ST, CH shi f t gets used to ensure that 

the ST has the same state of charge at the beginning and end of 

the cycle. The storage size S st 2 T gets calculated by multiplying the 

available storage mass m 2 T with the maximum charging difference 

that occurs during one cycle. It is assumed as a linear component 

of the cost function ( Eq. (1) ). 

Q st 2 T = m 2 T cp 2 T (T h 2 T − T c2 T ) 

C H 2 T,p+1 = C H 2 T,p + 

τp 

Q st 2 T � 	 

i 

	 

k 

( ˙ Q 2 T ikp + 

˙ Q hpst ikp ) 

−
	 

j 

	 

k 

( ˙ Q 2 T jkp + 

˙ Q hp st jkp ) 
� 

C H 2 T,p=1 = C H shi f t = C H 2 T,p= NOP 
S st 2 T = m 2 T ( max (CH 2 T ) − min (CH 2 T )) 

0 ≤ CH 2 T ≤ 1 (6) 

The heat pumps are formulated as power to heat device with- 

out losses. In Eq. (7) it can be seen that HP that charge the ST can 

only occur between hot streams and ST. HP that discharge the ST 

are only possible between cold stream and ST. 

˙ Q hpst ikp = 

˙ Q hp ikp + P el ikp 
˙ Q hpst jkp = 

˙ Q hp jkp − P el jkp 
(7) 

3.2. Additional constraints 

The constraints given in the following Eq. (8) make sure that 

the binary variables for the existence of installations are only non 

zero when the corresponding heat flows lie within their bound- 

aries and thus establish the needed connection between them. 

For the stream - stream HEX and the stream - storage HEX, the 

minimum heat flow 

˙ Q min has the aim of tightening the solution 

space for the HEX area. Thus the accuracy of the linear approxima- 

tions can be improved and the computational time can be reduced 

( Beck and Hofmann, 2018b ). 

Z i jkp ˙ Q min ≤ ˙ Q i jkp ≤ Z i jkp ˙ Q max i jkp 

˙ Q max i jkp = min ( ˙ Q ip , ˙ Q jp ) 

Z 2 T i jkp ˙ Q min st ≤ ˙ Q 2 T i jkp ≤ Z 2 T i jkp ˙ Q i jkp 

Z 1 T i jkp ˙ Q min st ≤ ˙ Q 1 T i jkp ≤ Z 1 T i jkp ˙ Q i jkp 

Z cu ip ≤ ˙ Q cu ip ≤ Z cu ip ˙ Q ip 

Z hu jp ≤ ˙ Q hu jp ≤ Z cu jp ˙ Q jp 

(8) 

The constraints for the temperature differences for all heat ex- 

changes in the system ( Eq. (11) ) are set up by using BIG-M for- 

mulations, where � is a sufficient large number to deactivate the 

constraint if no installation exists at a given position. Additional, a 

lower boundary for all temperature differences is set as a tighten- 

ing measure ( Eq. (9) ). 

�T ≥ �T min (9) 

With decreasing logarithmic mean temperature difference (LMTD) 

values, the heat exchange areas and thus the variable costs in- 

crease, which causes that the optimization wants to maximize the 

temperature differences in HEX. Thus it is possible to formulate 

the constraints for the LMTD as given in Eq. (10) . CLMT D are the 

piecewise linear approximated solution spaces for the logarith- 

mic mean temperature difference as introduced by Beck and Hof- 

mann (2018c) . This approach benefits from the strict convexity of 

the LMTD that is proven in Mistry and Misener (2016) . 

LM T D i jkp ≤ CLM T D i jkp (�T i jkp , �T i j,k +1 ,p ) 

LM T D 2 T i jkp ≤ CLM T D 2 T i jkp (�T 2 T, 1 
i jkp 

, �T 2 T, 2 
i jkp 

) 

LM T D 1 T i jkp ≤ CLM T D 1 T i jkp (�T 1 T, 1 
i jkp 

, �T 1 T, 2 
i jkp 

) 

LM T D hp i jkp ≤ CLM T D hp i jkp (�T hp, 1 
i jkp 

, �T hp, 2 
i jkp 

) 

(10) 

�T i jkp ≤ T ikp − T jkp + �T (1 − Z i jkp ) 
�T i j,k +1 ,p ≤ T i,k +1 ,p − T j,k +1 ,p + �T (1 − Z i jkp ) 

�T 2 T, 1 
ikp 

≤ T ikp − T h 2 T + �2 T 
T (1 − Z 2 T ikp ) 

�T 2 T, 1 
jkp 

≤ T h 2 T − T j,k +1 ,p + �2 T 
T (1 − Z 2 T jkp ) 

�T 2 T, 2 
ikp 

≤ T i,k +1 ,p − T c 2 T + �2 T 
T (1 − Z 2 T ikp ) 

�T 2 T, 2 
jkp 

≤ T c 2 T − T j,k +2 ,p + �2 T 
T (1 − Z 2 T jkp ) 

�T 1 T, 1 
ikp 

≤ T ikp − T 1 T p + �1 T 
T (1 − Z 1 T ikp ) 

�T 1 T, 1 
jkp 

≤ T 1 T p − T j,k +1 ,p + �1 T 
T (1 − Z 1 T jkp ) 

�T 1 T, 2 
ikp 

≤ T i,k +1 ,p − T 1 T p+1 + �1 T 
T (1 − Z 1 T ikp ) 

�T 1 T, 2 
jkp 

≤ T 1 T p+1 − T j,k +2 ,p + �1 T 
T (1 − Z 1 T jkp ) 

�T hp, 1 
ikp 

≤ T ikp − T i,k +1 ,p + T hp ap + �T (1 − Z hp ikp ) 

�T hp, 1 
jkp 

≤ T hp ap + �T (1 − Z hp jkp ) 

�T hp, 2 
ikp 

≤ T hp ap + �T (1 − Z hp ikp ) 

�T hp, 2 
jkp 

≤ T j,k +1 ,p − T j,k +2 ,p + T hp ap 
+�T (1 − Z hp jkp ) 

(11) 

As physical constraints Eq. (12) are given which prevent that the 

heat flows or the HEX areas get negative. 

A β ≥ 0 , ˙ Q ≥ 0 (12) 
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The lower boundary for the HEX area is necessary because in the 

constraints for the heat exchange areas ( Eq. (13) ), the BIG-M coef- 

ficient �A has to be big enough to make the right side of the equa- 

tion smaller than zero to deactivate the constraint ( Beck and Hof- 

mann, 2018c ). The boundary for the heat flows enforces the mono- 

tonic temperature decrease over the stages. 

A 
β
i jkp 

≥ CA 
β
i jkp 

− �A (1 − Z i jkp ) 

C A 
β
i jkp 

= C A 
β
i jkp 

(LMT D i jkp , ˙ Q i jkp ) 

A 
β
2 T i jkp 

≥ CA 
β
2 T i jkp 

− �A (1 − Z 2 T i jkp ) 

A 
β
1 T i jkp 

≥ CA 
β
1 T i jkp 

− �A (1 − Z 1 T i jkp ) 

A 
β
hp i jkp 

≥ (C A β
hp i jkp 

+ C A 
β
hpst i jkp 

) 

−�A (1 − Z hp i jkp ) 

(13) 

The decision whether a storage is introduced or not is derived 

from the existence of installations that connect streams to them as 

given in the following Eq. (14) . 

Z st 2 T ≥ Z 2 T i jkp , Z st 2 T ≥ Z hp i jkp 
Z st 1 T ≥ Z 1 T i jkp 

(14) 

For the proposed formulation it is assumed, that if a HEX, HP 

or utility exits at one position in more than one time step p, the 

biggest heat exchange area gets installed and at the other time 

steps bypasses balance out the differences ( Eq. (15) ). 

A 
β
i jk 

≥ A 
β
i jkp 

, Z i jk ≥ Z i jkp (15) 

The following Eq. (16) formulate the tightening of the solution 

space for the COP which is described in Chapter 4 and Eq. (17) are 

the HP formulations derived from Eqs. (8) and (13) for the HEX. 

˙ Q hp st ikp /P el ikp ≥ COP min 

˙ Q hp jkp /P el ikp ≥ COP min 

�T hp i jkp ≤ �T hp max + �T (1 − Z hp i jkp ) 
�T hp i jkp ≥ �T hp min − �T (1 − Z hp i jkp ) 

(16) 

Z hp i jkp P el min ≤ P el i jkp ≤ Z hp i jkp P el max 

Z hp i jkp ˙ Q min hp ≤ ˙ Q hp i jkp ≤ Z hp i jkp ˙ Q i jkp 

P el i jkp ≥ CP el i jkp − �Pel (1 − Z hp i jkp ) 

(17) 

4. Linearized HP model 

Due to the nonlinearities of the process-specific thermodynamic 

relations as well as material properties, the heat pump character- 

istics between Pel, ˙ Q and �T are of nonlinear nature. As stated in 

Prendl and Hofmann (2020) , it is necessary to linearize this char- 

acteristics for a linear integration of heatpumps into the super- 

structure. The approach explained in the following is based on the 

linearization of the nonlinear relationship between COP and �T . 

While in the previous publication ( Prendl and Hofmann, 2020 ), a 

typical heat pump characteristic was assumed, now a real vapor 

compression HP was modeled and simulated with a given refriger- 

ant and given temperature ranges to obtain the corresponding HP 

characteristic. 

The T-h-diagram in Fig. 2 shows the thermodynamic cycle of 

the refrigerant (yellow) in a heat pump. This cycle consists of com- 

pression of the superheated vapor (1-2), condensation and sub- 

cooling (2-3), expansion (3-4) and the vaporization (4-1). In the 

HP model these single processes were modeled according to their 

corresponding thermodynamic relations and connected to a closed 

thermodynamic cycle. As stated in Eq. (7) any external losses were 

neglected. The refrigerant R1234 ZE was chosen in the model. 

With the assumption of exact saturation of vapor and condensa- 

tion a characteristic for the relationship between COP and temper- 

ature difference was obtained. In Fig. 3 this characteristic is shown 

Fig. 2. T-h-Diagram of the HP model. 

Fig. 3. Linearized COP over �T . 

alongside with its linear approximation given in Eq. (18) . The maxi- 

mum deviation between the calculated COP values and the approx- 

imation for this case lies at 7.5%. 

COP (�T ) ≈ a 1 + a 2 �T (18) 

With this relation the electrical power consumption can be ex- 

pressed as a function of the supplied heat flow (in this case Q hpst ) 

and the temperature lift ( Eq. (19) ). 

P el = 

˙ Q hpst /COP = P el( ˙ Q hpst , �T ) (19) 

Due to the similarity of the nonlinear equation of Pel to the 

calculation of the heat exchanger area, a similar linearization ap- 

proach as Beck and Hofmann (2018c) proposed was used. The non- 

linear and nonconvex solution space for Pel gets split up into three 

regions along the �T hp axis according to Eq. (20) with the index 

x . In this regions Pel as formulated in Eq. (19) gets approximated 

with linear polynomials as expressed in Eq. (21) with least squares 

procedure. The maximum of the obtained planes ( Eq. (22) ), which 

are shown in Fig. 4 , is then used as piecewise linear and convex 

Constraint CPel in Eq. (17) with means of BIG-M formulations. 

�T hp 1 = �T hp min + 0 . 3(�T hp max − �T hp min ) 
�T hp 2 = �T hp min + 0 . 7(�T hp max − �T hp min ) 
�T hp min ≥ �T hp > �T hp 1 → x = 1 
�T hp 1 ≥ �T hp > �T hp 2 → x = 2 
�T hp 2 ≥ �T hp > �T hp max 1 → x = 3 

(20) 

P el x ( ˙ Q hpst , �T hp ) ≈ b 1 x + b 2 x ˙ Q hpst + b 3 x �T hp = CP el x ( ˙ Q hpst , �T hp ) 

(21) 
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Fig. 4. Linear approximation of P el . 

Fig. 5. Reduced solution space for Pel. 

CP el( ˙ Q hpst , �T hp ) = max (CP el x ( ˙ Q hpst , �T hp ) 
x = 1 , 2 , 3 

(22) 

Fixed boundaries for parameters of the HP, a minimum 

and maximum power consumption ( Pel min = 400 kw, Pel max = 

20 0 0 kw ) as well as boundaries for the temperature lift �T hp min = 

20 K and �T hp max = 50 K were used. Also the HP approach tem- 

perature gets set to fixed value ( T hp ap = 5 K). As further tighten- 

ing measure, a lower boundary for the COP is chosen ( COP min = 3 ), 

which cuts of the solution space as displayed in Fig. 5 . The solu- 

tion space above the red surface gets discarded which reduces the 

possible solutions and thus the computational effort considerably. 

The limitation of the range for the COP is justified by the fact, that 

heat pumps are often only considered as an economically reason- 

able option over an certain COP. Also the accuracy of the approxi- 

mation improves and the computational times sink if the approxi- 

mation domain gets tightened. 

In Fig. 6 it is visible, that the percentual deviation of the ap- 

proximation lies well under 10% in broad areas of the solution 

space. It can also be seen that the tightening cuts off areas with 

higher deviations, which are caused by the type and shape of 

the approximation surface. The lower boundary of the power con- 

sumption of the heat pump cuts of areas where even small abso- 

lute deviations cause high relative deviations where the calculated 

power consumption approaches zero. 

Fig. 6. Deviation of the approximation for P el . 

5. Test case 

For the evaluation of the proposed method, a previous used 

test case from Prendl and Hofmann (2020) has been extended. The 

assumed process has a cycle time of four hours and is split into 

four operational periods of one hour each. It consists of three hot 

and three cold process streams which have varying mass flows in 

the different time slices. The annual operation time of the pro- 

cess is assumed as 8600 h. The extended superstructure model 

was set up with two stages with the stream data and cost coef- 

ficients given in Table 1 . The two storages operate with thermo-oil 

as storage medium, where both oils have a heat transfer coeffi- 

cient of h oil = 0 . 5 kW m 

−2 K −1 , the oil for the one tank ST has a heat 

capacity of cp oil 1 T = 1 . 5 kJk g −1 K −1 and the oil for the two tank ST 

has a heat capacity of cp oil 2 T = 2 kJk g −1 K −1 . The fixed size of the 

one tank ST is 10 0 0 0 0 kg and the two tank ST operates at 70 ◦C 
and 100 ◦C. The parameters and boundaries of the chosen HP are 

given in Chapter 4 except the assumed heat transfer coefficient of 

h hp = 5 kW m 

−2 K −1 . Gurobi 8.1.0 was used as solver for the MILP. 

The test case was chosen rather small to keep the results more 

traceable and the computational effort low. It has to be mentioned 

that even in the linear cost function, small changes of the coeffi- 

cients can have huge impacts on the solution of the system. For 

example a modification of the variable HEX costs has an effect on 

all installation options and the changes in the results are hard to 

trace because of the complexity of the problem. Some parameters 

have been varied to test the behavior of the optimization for plau- 

sibility. When the electrical power costs increase, the system tends 

to chose HP that operate at points with higher COP, until the costs 

surpass a critical point where no more HP get chosen for the sys- 

tem. The same behavior is obtained for sinking utility costs. Also 

when the costs for the two tank ST increase, at some point the 

ST and also the HP are not chosen anymore because of the con- 

nection between them. These reactions are expected from the op- 

timization, and are only traceable for small problems. 

6. Results 

The test case described in Chapter 5 was optimized in two dif- 

ferent setups with the same parameters. First the optimization was 

done without the option for ST or HP to be chosen in the HEN to 

be able to compare the new method to traditional HENS. Then the 

proposed integration of HP and ST was applied to the problem. 

6.1. Test case optimized without HP and ST 

The optimized HEN without options for HP or ST is shown in 

Fig. 7 and has total annual costs of T AC = 3 , 132 , 700 € y −1 . It con- 

sists of seven stream - stream HEX and six utility HEX and the heat 

flows of the installations for each time period are given in Table 2 . 

The total utility energy demand adds up 25.413 GWh y −1 . 
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Table 1 

Stream data and cost coefficient of the test case. 

Stream T in T out CP CP CP CP h 

(C ◦) (C ◦) (kW/K) (kW/K) (kW/K) (kW/K) (kW/m 

[ 2] K) 

period 1 period 2 period 3 period 4 

Hs1 120 40 18 50 9 6 0.5 

Hs2 90 30 22 22 1 2 0.5 

Hs3 190 120 50 - - - 0.5 

Cs1 20 100 20 10 10 15 0.5 

Cs2 50 90 50 40 70 30 0.5 

Cs3 120 150 - - 25 25 0.5 

Hu 200 200 - - - - 1 

Cu 10 15 - - - - 1 

HEX cost = 40 0 0+50 0 [ A (m 

2 )] β € y −1 , ST cost 1T = 280 0 0 € y −1 , ST cost 2T = 70 0 0+0.15 

[ kg] € y −1 , hot utility cost = 0.2 € kW 

−1 h −1 , cold utility cost = 0.02 € kW 

−1 h −1 , β = 0 . 83 , 

dT min = 5 ◦C electrical power costs = 0.03 € kW 

−1 h −1 , HP cost = 110 0 0 € y −1 

Fig. 7. HEN obtained without HP and ST. 

Table 2 

Heat Flows without HP and ST ( kW ). 

p1 p2 p3 p4 

1 279.90 361.10 - 480.00 

2 656.40 1600.0 585.00 - 

3 914.80 - - - 

4 694.50 - - - 

5 186.00 297.70 135.00 

6 219.30 141.30 - 120.00 

7 649.10 - - - 

Cu1 317.70 1741.3 - - 

Cu2 1100.7 1178.7 60.000 - 

Cu3 1241.7 - - - 

Hu1 - - 665.00 600.00 

Hu2 - - 2215.0 1200.0 

Hu3 - - 750.00 750.00 

6.2. Test case optimized with integrated HP and ST 

The obtained extended HEN after the application of the pro- 

posed method is shown in Fig. 8 and has total annual costs 

of T AC = 1 , 214 , 400 € y −1 . The network consists of six stream - 

stream HEX, five stream - ST HEX, four utility HEX, two HP, one 1T 

ST and one 2T ST and its calculated heat flows and electrical power 

demands are given in Table 3 . For the extended HEN the total util- 

ity energy demand is 5.7873 GWh y −1 and the electrical energy 

demands for powering the heat pumps is 4.7904 GWh y −1 which 

adds up to a total external energy demand of 10.578 GWh y −1 . The 

optimized storage size for the 2T ST is m St = 247684 kg thermo-oil 

with a storage capacity of 4.1280 MWh. Its charging state displayed 

over the cycle time is given in Fig. 9 . The 1T ST operates between 

132 ◦C and 161 ◦C and its temperature profile over the cycle time 

is given in Fig. 10 . 

Fig. 8. HEN obtained with HP and ST. 

Table 3 

Heat Flows and P el results with HP and ST ( kW ). 

p1 p2 p3 p4 

1 608.92 - 134.29 180.00 

2 - - 120.00 - 

3 - 228.50 - - 

4 1193.2 - - - 

5 - 1058.5 744.00 1200.0 

6 737.10 421.50 465.71 300.00 

7 253.99 - - 120.00 

8 516.01 541.50 - - 

9 2306.8 - - - 

10 - - 200.00 555.00 

11 - - 724.40 468.80 

Cu1 93.990 936.01 - - 

Cu2 550.00 550.00 60.000 - 

Hu1 - 150.00 - 45.000 

Hu2 - - 25.582 281.24 

HP1 - 2642.5 - - 

HP2 1484.0 - 1936.0 - 

Pel HP1 - 1321.2 - - 

Pel HP2 400.00 - 506.90 - 

6.3. Comparison 

The TAC of the HEN obtained with the proposed extended ap- 

proach are 61.2% lower than the TAC for the network optimized 

without HP and ST. The total external energy demand is 58.4% 

lower compared to the total external energy demand of the ba- 

sic HEN which can also be seen from the values in Tables 2 and 3 . 

Much less energy is needed because the storages allow to shift the 

energy over the time periods as visible in Figs. 9 and 10 . The 2T ST 

gets charged in the first and second period and discharged at the 

third and fourth period. Similar the 1T ST gets charged during the 

first time period and discharged in the third and fourth. 
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Fig. 9. Storage charging state 2T ST over cycle time. 

Fig. 10. Storage temperature 1T ST over cycle time. 

7. Conclusion 

A multi period MILP HENS approach that allows the integration 

of HP has been extended for the option to integrate ST with vari- 

able mass and fixed temperatures as well as ST with fixed mass 

and variable temperatures. In order to get more realistic HP char- 

acteristic curves, a simulation of a vapor compression HP with a 

chosen refrigerant was deployed. Further tightening of the COP so- 

lution space is used to improve the accuracy of the approxima- 

tion and to reduce the computational effort. An previously used 

test case has been adapted to demonstrate the proposed method 

and to verify its behavior. The HEN resulting from the optimiza- 

tion with the new approach was able to reduced the TAC by 61.2% 

and the total external energy demand by 58.4% compared to the 

classic HEN obtained without HP and ST options. It was found that 

the computational times of the optimization are very sensitive to 

changes of physical parameters or cost coefficients. This sensitiv- 

ity can also be seen in the very different network solutions that 

result when parameters are varied, which is caused by the nature 

of mixed integer programming. For comparisons with real appli- 

cations, additional factors have to be considered. Costs like piping 

or instrumentation of installations are not included and the costs 

coefficients are highly dependent on specific geographical and eco- 

nomical factors. Although, the high reduction of cost and energy 

demand of the used test case is not directly comparable with real 

applications, even after inclusion of additional costs considerable 

savings can be expected trough the utilization of the developed 

mathematical approach. 
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ABSTRACT Increasing flexibility and efficiency of energy-intensive industrial processes is generally seen
as a big lever towards a decarbonized energy system of the future. However, to leverage these potentials,
the accurate prediction of unit behavior is essential to be able to close the gap between supply and demand.
Not only pose nonlinear relations a serious challenge in thermal systems engineering and optimization
but real-world unit behavior furthermore changes during operation due to wear, fouling and other effects.
In the present work, a novel framework for automated data-driven model adaption is presented which is
capable of automating fast and accurate predictions of current system behavior. The framework is based
on open protocol bidirectional live communication and mechanistic grey box modeling. While especially
thermal energy storage is considered a solution to increase flexibility, it is very challenging for operation
optimization. A packed bed thermal energy storage operated under severe conditions leading to continuous
fouling acts as proof of concept of the proposed framework. The obtained results indicate major improvement
for storage output prediction with the novel framework compared to a conventional approach without
readjustment. Furthermore, the presented framework is perfectly suitable and an essential foundation for
live condition monitoring, fault prediction, predictive maintenance, and operation optimization.

INDEX TERMS Automated model adaption, data-driven modeling, industrial energy systems, OPC UA.

ABBREVIATIONS AND SYMBOLS
ṁ Mass Flow of the Heat Transfer Fluid.
li Vertical Distances between the Measurement

Layers.
T1−4 Inner Temperatures of the Test rig.
Tb Temperature on the bottom of the Test rig.
Tin Input Temperature of the Test rig.
Tout Output Temperature of the Test rig.
Tt Temperature on the top of the Test rig.
Vi Partial Volumes of the Test rig.
PBR Packed Bed Regenerator.
PI AF PI Automation Framework.
PI DA PI Data Archive.
PLC Programmable Logic Controller.
RMSE Root Mean Square Error.
SCADA Supervisory Control and Data Acquisition.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jamshid Aghaei .

SM Storage Medium.
TES Thermal Energy Storage.

I. INTRODUCTION
This Introduction presents a short motivation for the present
work and a brief history and summary of related work that can
be found in current literature, followed by highlighting the
main contributions and the remaining structure of this paper.

A. MOTIVATION
Decarbonization efforts are a driving force for the
energy-intensive industries to drastically increase energy
efficiency. At the same time, we are in the middle of what is
often referred to as the fourth industrial revolution or Indus-
try4.0, driven by evolving Information and Communication
Technologies [1]. Industry4.0 and the sustainable energy
transition share important characteristics and can mutually
benefit from each other [2], both being highly influenced
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by technological innovations [3]. Most researchers agree on
the huge potential of digitalization for reducing energy con-
sumption and for increasing economic sustainability [4]–[7].
As another paradigm of Industry4.0, Predictive Maintenance,
achieved by real-time monitoring, can also positively affect
the environment [3]. Preventive and predictive maintenance
promoted by data analytics extends the lifespan of machinery,
thus minimizing end of life waste [8].
The key foundation for Predictive Maintenance, as well

as energy optimization is automated real-time data analytics,
therefore achieving collaborative and real-time interaction
between computational and physical processes [9]. Espe-
cially in thermal process engineering, so called soft sensors
provide essential insights into the state of process operations
especially in cases where the direct measurement of key
process variables is very difficult, impossible or unreliable
[10]–[12]. Such soft sensors have thus been developed to
estimate key quality variables that are difficult to measure by
constructing mathematical prediction models using the easy-
to-measure process variables [13]–[15]. Predictive data, i.e.
probable future values or states forecasted based on accurate
models representing a given process, are therefore essential
for numerous applications [16].

B. STATE OF THE ART
In the last decades, process analytics and condition monitor-
ing have gained significant importance due to the increasing
complexity of plants and machinery and vigorous economic
competition. Condition monitoring can be described as ‘‘the
assessment of the current condition of a physical entity by
employing measurement data’’ [17], [18]. By preprocessing
the raw data (normalization, PCA, Feature Extraction, sen-
sor fusion, soft sensors, . . .), valuable information about the
current state of the physical entity is gathered and further
utilized in several condition monitoring related services like
fault detection, predictive maintenance, and operation opti-
mization. Condition monitoring approaches have relied on
specific measurements during plant and machinery operation
(e.g. vibration analysis, strain measurement, and thermogra-
phy) [18], [19]. Current developments in sensors and signal
processing systems, big data management machine learning,
and improvements in computational capabilities have opened
up opportunities for integrated and in-depth condition mon-
itoring analytics [19]. Latest concepts like cyber-physical
systems [20] and digital twins [21] aim to take automation to
the next level and achieve collaborative and real-time inter-
action between the real world and the digital world [22]. The
foundation for this is the bidirectional connection between the
real and the digital world [21] and, therefore, virtual model
synchronization.
Automated model adaption in the context of condition

monitoring is primarily applied to classify and detect system
faults. Prominent examples are bearing fault detection for
electric motors [23], fault detection for wind turbines [24],
or general rotary machines [25]–[27]. Also, condition moni-
toring for electrical equipment like transformers [28], or the

wear of cutting tools [29] has been the topic of machine learn-
ing studies where models have been trained for classification
purposes.
In general, the goal of condition monitoring applications

is to detect states of damage early or to initiate maintenance
before actual damage occurs, based on learned characteris-
tics [30]. So basically, the output of the beforehand trained
analysis tools is a decision if the process is in a normal or
abnormal state by determining if parameters (e.g. vibration
signatures, forces or temperatures) exceed defined or learned
borders. This is possible because the damage mechanisms
behind the phenomena to classify are often well known and
distinguishable.
Contrary to this, the automated data-driven model adaption

approach presented in this work allows up-to-date prediction
of the future behavior of the thermodynamic component,
which extends the range of possible enhancements. Common
mechanisms like fouling or abrasion within industrial ther-
modynamic machinery bear the challenge that they are often
hard to monitor during operation and are likely to impact
performance and change important physical properties like
heat transfer. If these changes are not critical for the lifespan
of a machine, the successive task is to adapt it’s operation for
maximum efficiency. Accurate predictions of the asset’s per-
formance gain importance for operational optimization, since
the margins of energy and resource savings are shrinking.
In case of inaccurate optimization results based on non up-
to-date asset models, the forecasted savings are consumed by
process control, needed to keep the real process in a physi-
cally feasible state [31]. To be able to meet the need for accu-
rate predictions mentioned above, the aim of this study was
to create an innovative framework for automated data-driven
model adaption for industrial thermal energy systems.
Industrial thermal energy systems are often designed for

long-time service life, which traditionally comes with com-
munication problems between systems that become deployed
decades apart from each other. Either the software of the sup-
pliers is not compatible or even the communication standard
has changed. To tackle this problem, the use of unified open
protocol standards continuously gains shares in the industrial
communications market [32]. The OPC UA standard is
widely recognized in various industries to enable interoper-
ability and communication in all operational layers. Because
the hardware and software available during the research were
compatible, and the free availability of the communication
standard that enables barrier-free research, OPC UA was
chosen as the base of the proposed framework.

C. MAIN CONTRIBUTIONS
Peres et al. [16] state that there is still a clear need to further
combine real-time and historical data at both the resource and
system levels, as well as closing the loop to autonomously
act on the results of the predictive analytics. Furthermore,
solutions should be highly adaptable, being capable of chang-
ing even after deployment by learning from newly generated
knowledge [33].
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To the best of the authors’ knowledge, no automated
data-driven model adaption framework for industrial ther-
mal energy systems has been presented so far. We therefore
consider our main contribution in presenting an automated
continuous model adaption framework for the application on
industrial energy systems that
- relies on open protocol live communication for maxi-
mum flexibility,

- features real-time analyzes and feedback considering the
current physical properties of the system and,

- is fast and easily modified on models and systems for
similar applications.

Compared to systems that rely on manufacturer-specific
communication standards, the presented framework can be
used with a wide range of devices or programs from differ-
ent sources, as long as they support the open source OPC
UA standard. Because the framework allows a continuous
and automated adaption of prediction models to match the
properties of the real physical system, less human interven-
tion is needed compared to traditional condition monitoring
systems.

D. PAPER STRUCTURE
The remainder of this paper is structured as follows:
In Section II, the proposed automation framework is
described. In the following Section III, the use case subject
to the proof of concept is given. The results of the exemplary
framework application are then discussed in Section IV, fol-
lowed by Section V, where the conclusion and an outlook on
future research is given.

II. AUTOMATION FRAMEWORK
The way measurement data is recorded has undergone a long
series of changes and improvements. Starting from written
recordings, the emerging of new information processing tech-
nologies led to new paradigms. As data storage became cheap
and practicable enough, the storage of considerable amounts
of raw measurement data started. Nowadays, it is clear that
the simple storage of measured data without proper proces-
sion is not sufficient for detailed analyzes that are needed
for improvements of efficiency or resource demand. The raw
measurement data has to be enriched with semantic data
like the accuracy of the used sensors, measurement position,
calibration data, or control values. A framework for automatic
data acquisition and model training for industrial energy
systems based on OPC UA and other modern communication
protocols has been implemented exemplary on an existing test
rig to meet the requirements above.
A programmable logic controller (PLC) from hardware

manufacturer B&R Industrial Automation GmbH provides
the operational data of the test rig via an OPC UA server
hosted on the PLC itself. The test rig is controlled via the
XAMControl SCADA system from evon GmbH, whereas the
data handling and storage are performed by the OSIsoft R� PI
System.

A complete illustration of the digital infrastructure of this
framework is given in Fig. 1. The test rig is located in a
laboratory of TU Wien. It is connected via the university
network to the control and data processing server, located in
a central server room in a different physical location.
The digital and analog sensor data of the test rig (on the

left-hand side of Fig. 1) gets processed in the PLC and passed
on to the OPC UA server, which supplies the data to possible
clients in the same network. Alongwith everymeasured value
of a data point, the timestamp of the measurement and the
quality of the data are transmitted.
The so-called ‘‘PI Connector for OPCUA’’ of the PI system

acts as an OPC UA client that requests the time-series data
with all its associated information from the PLC in defined
intervals. This information is then copied into a specific
subsystem of the PI server, the PI Data Archive (PI DA),
where it is stored as a PI point. The PI DA retrieves data
and serves it in real-time to all components of the PI sys-
tem. The PI Asset Framework (PI AF), which is the second
part of the PI server, allows an object-orientated, consis-
tent grouping of the measurements of assets. Within the PI
AF, the first analyses with low complexity are performed.
For example, suppose redundant temperature measurements
on the same measurement position are compared, and the
difference is higher than expected by known uncertainties.
In that case, a warning will be generated that initializes
external intervention or even emergency procedures if nec-
essary. So-called event frames allow the classification of
states like charging or discharging, making it easier to com-
pare the behavior of an asset for recurring operation condi-
tions. Another connector of the PI System, the PI SQL Data
Access Server, is used as a gateway to pass time series data
via SQL queries to MATLAB R� (on the right-hand side of
Fig. 1), where the actual model training and simulation takes
place.
In the given use case, the query requests a defined amount

of recently completed charging and discharging events to
train the model with the current state of the test rig. The
trained model is then used to predict the response of the PBR
and thus its temperature curves for planned future operation.
The resulting prediction is then transferred back into the PI
system with the help of a universal file loading interface
that reads the data points from a defined output file of the
MATLAB R� model and copies them into the PI DA (bottom
right in Fig. 1).
The predicted values of the temperature measurements are

stored as future control values, which can be seen as addi-
tional attributes of the measurements, allowing for a real-time
comparison of the measured values and their prediction,
taking the test rig’s real condition into account. Decisions
resulting from the analyses or comparisons are then sent back
to the PLC and thus to the SCADA system via a custom pro-
grammed PythonTM Wrapper that acts as connector between
OPC and OPC UA, allowing the system to react to them
directly.
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FIGURE 1. Digital infrastructure of the presented framework.

III. SELECTED USE CASE
Industrial energy systems typically consist of energy supply-
ing components, energy storages, energy conversion compo-
nents like heat pumps, and energy demanding components as
exemplary depicted in Fig. 2. Therein, two processes, a frac-
tionating column and a particle dryer, are fed with thermal
energy by an energy supply component. Without the possi-
bility of storage or conversion of energy, the energy supply
has to satisfy the demands regardless of efficiency concerns
to keep the processes running. As addressed in earlier work
of Prendl et al. [34], energy demand and excess energy in
industrial processes are often offset in time. Hence, heat
recovery in combination with energy storage allows to reduce
the external energy demand and, thus, the use of resources
and the emission of CO2. Furthermore, since different tem-
perature levels often occur in energy-intensive processes and
not only one temperature level like in Fig. 2, the integration
and operational optimization of several different storage units
is a common problem. Economic operation of such industrial
energy systems is even more complicated by the increasing
share of renewable energy sources and the resulting highly
volatile energy prices. Therefore, increasing focus is laid on
process control with optimized storagemanagement, which is
dependent on accurate predictions of component behaviour.
In the following, this paper deals with the storage as central
component.

A. PBR TEST RIG
As exemplary use case, an existing packed bed regenera-
tor (PBR) thermal energy storage (TES) test rig situated in a
TUWien laboratory is used. It consists of an insulated conical
metal container filled with gravel as a storage medium (SM)
that is equipped with temperature measurement sensors in
several layers as shown in Fig. 3. The PBR is charged by
electrically heated air acting as heat transfer fluid (HTF) from
top to bottom and discharged with ambient air from bottom
to top. A detailed description of the PBR can be found in
several scientific publications that dealt with different aspects
of the storage and already provided insights on it’s properties

and behavior [35]–[39]. Also, different models for simulation
[36], [37], [40] and optimization [31], [38] for the test rig have
been created and validated in the past.
However, in real operation, deviations from ideal labo-

ratory conditions can influence the behavior of machinery.
Processes such as fouling or wear that occur over time are
often hard to measure or quantify, especially in the running
operation. In case of the PBR for example, deposition can
occur if the HTF is polluted with particles smaller than the
bed material. The passable cross section can change, flow
channels can form, or the heat transfer to the bed material
can be influenced. Further, the particle size of the bedmaterial
can change because of thermal degradation or abrasion. These
or similar effects can occur during real plant operation and
change the heat transfer inside the PBR. Thus, to maintain
optimum operational capability, models used to predict the
future behavior of assets must be kept up to date.

B. GREY BOX MODEL
Amongst the simulation models mentioned above, espe-
cially the mechanistic grey box model developed by
Halmschlager et al. [40] is capable of fast and easy adaption
to changed properties and is robust at the same time. This
modelling approach is therefore used and adapted for the
proof of concept of our framework and described in the
following paragraph. For a detailed mathematical descrip-
tion of the applied modelling approach, we refer to the
chapter ‘‘Extended Grey Box Model 2’’ in the original
publication [40].
The mechanistic grey box model consists of physical

relations/equations and uses measurement data to optimize
specific parameters of these equations. While only a small
number of equations needs to be solved for model training,
the model shows excellent prediction performance and stands
out compared to data-driven and physical models by its high
accuracy, low computational effort and high robustness [40].
An illustration of the test rig and the vertical position of
the measurement layers is given on the left hand side of
Fig. 3. The model uses the inlet temperature Tin and the mass
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FIGURE 2. Exemplary industrial energy system, consisting of energy supplying components, energy storage components, energy
conversion components, and energy demanding components.

FIGURE 3. Actual conical shape of the PBR with the vertical position of
the measurement layers in comparison to the cylindrical simplification of
the grey box model.

flow ṁ of the HTF to calculate the corresponding output
temperature Tout of the PBR. During charging, Tin equals
the temperature at the top of the PBR Tt and the Tout equals
the temperature at the bottom of the PBR Tb. During discharg-
ing, Tin equals Tb and Tout equals Tt , since the direction of
flow is reversed, as explained above.
If the model’s target is to predict the output temperature,

the cost function to be minimized consists of the root mean
squared error (RMSE) of the model output temperature com-
pared to the training data output temperature. In [40], existing
measurement data of the PBR is used for the training and
validation of the model. While predictions of Tout showed
high accuracy, predictions of internal temperature values T1
to T4, which were not part of the optimization target, showed
significant deviations. This is due to the fact that the conical
vessel shape of the PBR was approximated to a cylindri-
cal shape.

In case not only the output temperature of the PBR, but
also its internal condition is of interest, the prediction of
the internal behavior gains importance. In order to improve
the prediction, the vector of the measurement positions is
corrected in this work, in a way that the ratios of the volumes
and thus the ratio of the masses between the measurement
layers match the ratio of the volumes of the real conical shape.
This transformation is depicted in Fig. 3. Because the heat
capacity of the SM, the HTF, and the wall are included in
the factors that are fitted during training, only the ratio of the
volumes (Vi) and not the absolute values of them is of impor-
tance for the accurate prediction of the internal temperatures
T1 to T4. The assumption of a cylindrical vessel causes the
ratios of the distances (li) between the measurement positions
to equal the volume ratio as expressed in (1). The correction
introduced here has no significant impact on the prediction
of Tout but results in a vast improvement of the prediction of
the internal temperatures, which can be seen in Fig. 4. In the
upper part of Fig. 4, a time series of simulated temperature
measurements of the PBR compared with the predictions of
the uncorrected model (dotted lines) and the new corrected
model (dashed line) is shown. In combination with the pre-
diction error plot below, it is visible that drastic improvement
could be achieved. This shows the importance of choosing the
right assumptions and simplifications for the development of
models or correlations to meet specific demands.

V1 : V2 : V3 : V4 : V5
= l1 : l2 : l3 : l4 : l5
= 0.117 : 0.352 : 0.503 : 0.682 : 0.375 (1)

IV. EVALUATION AND RESULTS
For a comprehensive testing of the framework, a validated
one-dimensional finite difference model of the PBR based
on the modelling approach introduced by [39] is used to
generate training and test data sets. The assumed load cycle
as given in Fig. 5 is used as an exemplary measurement
data. The charging temperatures vary between 170 ◦C and
260 ◦C whereas the discharging temperature is constant at a
22 ◦C ambient temperature. The HTFmass flow ṁ is assumed
constant at a value of 150 kg/h.
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FIGURE 4. Comparison of simulated inner temperatures with the uncorrected model (Ti g.un) and the corrected grey box
model (Ti g) and their respective error compared to the measurement values (Ti ).

FIGURE 5. Time series of temperature values of the assumed test data set.

For the simulation of pollution or fouling, it is assumed
that the given load cycle is repeated in a cyclical manner
while the heat transfer coefficient between HTF and SM
is gradually decreasing over time. Naturally, real pollution
processes not only cause a reduction of the heat trans-
fer coefficient. A variety of mechanisms lead to changes
in the behavior of the PBR or the flow conditions of the
HTF. However, in this work, the change of the heat transfer
coefficient was chosen as pollution indicator, because of
the clear impact and traceability of the simulated behavior
change.
The temperature response of the PBR is simulated for 8

example cycles while the heat transfer coefficient between
the HTF and the SM is reduced by 10 % in every cycle. The
resulting temperature curves are then stored on the PLC and

supplied to the framework as would be the case when using
real sensor data.
Two different model training scenarios are assumed for

evaluation of the proposed framework on real operation
conditions. Firstly, a traditional model training approach is
applied, where the model is trained only once with the ini-
tial data without reduced heat transfer coefficient. Secondly,
a model is initially trained with the same data but is retrained
after every full cycle with the measurements from the previ-
ous cycle in order to adapt to changes in the physical behavior
caused by pollution. The predictions of the temperatures for
the subsequent cycles of the only once trained model (in the
following denoted as Ti g) and the continuously trainedmodel
(in the following denoted as Ti gtrain) are then compared to the
simulated measurement data.
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FIGURE 6. Comparison of simulation results for the input and output temperatures of the cyclical trained model (Ti gtrain)
and the only initial trained model (Ti g) over the continuous sinking heat transfer between HTF and SM and their errors
(Ei ) compared to the generated measurements (Ti ).

FIGURE 7. Simulation results of the cyclical trained model (Ti gtrain) and the only initial trained model (Ti g) for the cycle
with the maximum pollution and their respective errors (Ei ) compared to the generated measurement values (Ti ).

In Fig. 6 the input and output temperature curves are given
with their respective prediction results and the absolute errors
between them. The values for the static model Ti g are dotted,
and the values of the adapted model Ti gtrain are dashed. It is
clearly visible here, that the absolute error of the once trained
model is steadily increasing over time while the error of the
continuously trained model stays in the same range. The error
for Ti gtrain even slightly decreases over time, which might
be a consequence of more data that is available for model
training.
For the sake of better visibility, the inner temperatures

predictions are not shown in Fig. 6. However, to visualize the
vast improvement the last test cycle with maximum pollu-
tion is given in detail with all inner temperatures in Fig. 7.
One can see that the predictions of the static model (dot-
ted lines) clearly differ from the measurements, while the
predictions of the continuously trained model are hardly

visible because of the small error. This also shows in the
lower part of Fig. 7, where the errors of the predictions are
displayed.
For quantitative analysis, the total RMSE (Root Mean

Square Error) for all temperature predictions of the cycle
with the highest pollution, given in Fig. 7, is calculated.
For the untrained model, a RMSE of 9.10 ◦C was obtained
whereas the retrained model featured a RMSE of 4.05 ◦C.
This improvement in accuracy requires additional computa-
tional time of only a few seconds for retraining of the model,
whereas measurement intervals for the PBR sensors of one
minute are considered sufficient. Even this seemingly small
difference of a few degrees in the model output can signif-
icantly change the optimum solution of optimization proce-
dures like the heat exchange network synthesis (HENS) [34]
or scheduling [31], resulting in deviating planning and control
strategies.
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V. CONCLUSION
A novel framework for the automated data-driven model
adaption for industrial energy systems is presented. The
framework’s capability to autonomously collect measure-
ment data, train a model, predict an asset’s future behavior,
and analyze the current system behavior is shown with the
help of a PBR TES as a use case.
The automated model adaption is applied on an assumed

cyclical operation of the storage where continuous pollution
reduces the heat transfer betweenHTF and SMover time. The
predictions of the model that was able to learn the changed
behavior of the PBR due to the developed framework provide
an accurate forecast and show considerable improvements in
accuracy compared to a static model. The maximum absolute
error of the static model was up to 14.2 ◦C whereas the
maximum error of the learning model was only 4.3 ◦C. This
means the prediction error could be reduced up to 70 %
within the given boundaries. Considering that even small
potential efficiency improvements add up to large monetary
savings for the energy-intensive industry, improvements like
this are gaining importance as the crucial factor in economic
operation.
However, it is important to consider that automated model

adaption comes with all its advantages and disadvantages.
As long as a robust and suitable model is used, the automa-
tion reduces the operator’s workload. However, if incorrect
measurement data is not detected and then used for the
model training, the resulting model and it’s predictions
are also incorrect. Thus, accurate and up-to-date predic-
tions are needed to monitor the measurements and initial-
ize immediate system response or external intervention if
necessary.
The implemented framework can be seen as a foundation

for real-time condition monitoring, fault prediction, predic-
tive maintenance, and operation optimization, all of which
rely on advanced communication.
The presented automation framework yields the potential

to characterize similar TES with small adaptions and only
little training data from initial measurements.
Furthermore, our framework is applicable for variable

industrial energy systems, provided appropriate system mod-
els are used. For further evaluation of this topic, a research
project concerning the enhancement of the test rig that allows
for the contamination of the HTF with pollutants is already
in the development state within the author’s research unit.
The real measurement data obtained by this enhancement
of the test rig will allow for comprehensive comparisons of
different prediction approaches for this problem and further
evaluation of the framework presented in this work.
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Abstract: The environmental goals of initiatives such as the European Green Deal, which aims to
achieve climate neutrality for the EU by 2050, increase the importance of improving and optimizing
industrial processes. Mathematical optimization methods like heat exchange network synthesis
(HENS) are crucial tools in enabling industry to identify potential energy savings and cost reductions.
The lack of publicly available industry data suitable for comprehensive testing of novel optimization
procedures is often a major obstacle in development and research. To tackle this problem for
extended HENS with potential heat pump and storage integration and show the potential of energy
integration in energy-intensive industries (EII), the authors introduce a set of four use-cases based
on representative industrial processes from the EII. The application of a previously presented a
HENS approach for the integration of heat pumps and storage on these cases resulted in a potential
reduction of total annual costs up to 55.43% and total external energy demand up to 87.1%. The
presented cases, their solutions, and the open-access mathematical formulation of the optimization
procedure make a valuable contribution to the literature and future research in the field of HENS.

Keywords: mixed integer linear programming; heat recovery; heat pump; thermal energy storage;
design optimization; case study

1. Introduction

With a share of around 25% of the final energy consumption in the European Union,
the industrial sector plays an essential role in the ongoing transition necessary to reach the
target of carbon neutrality [1]. A certain part of the industry, the energy-intensive industries
(EII), which mainly consist of the sectors iron and steel, refineries, cement, petrochemicals,
fertilizer, lime and plaster, pulp and paper, aluminum, inorganic chemicals, and hollow
glass, account for 85% of Europe’s industrial greenhouse gas (GHG) emissions. Especially
for these EII, the planned climate neutrality by mid-century is coupled with drastic changes
in production. The most promising adaption options are reducing energy demand through
efficiency improvement, using clean energy sources in the form of renewable electricity or
carbon-neutral energy carriers, and utilizing carbon capture and storage technologies. Ma-
jor obstacles for these measures are that over short time horizons, traditional investments
like capacity expansion often offer a better return, and the lower costs of comparable fossil
technologies [2]. To lower these barriers as much as possible, the optimal integration of
emission-reducing technologies, and thus research in mathematical optimization of pro-
cesses, plays a crucial role in the energy transition. Independent of the type of optimization,
extensive tests with example data sets are needed to evaluate and verify the capabilities of
novel approaches. Often industrial data in the right quality or amount are not available,
or existing data from the literature are insufficient or unsuitable. This problem was also
encountered during previous work on the development of an approach for multi-period

mixed integer linear programming (MILP) heat exchange network synthesis (HENS)
with simultaneous integration of storage (ST) and heat pumps (HP) presented in [3].
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In this approach, the introduction of HP and ST to HENS represents the before mentioned
measures of improving energy efficiency by the possibility of shifting thermal energy over
time and usage of renewable electricity through HP. Since suitable multi-period example
data for proof of concept was not available in the literature, a previously used test case was
extended to multiple time periods to show how the approach is able to properly integrate
HP and ST into heat exchange networks.

HENS is an extensively researched and prominent topic which shows in the high
number of recently published studies. They deal with the different aspects of HENS, for ex-
ample, with cost-optimal HENS [4], practical retrofitting of HEN [5], or the consideration
of different types of heat exchangers (HEX) in HENS [6]. Case studies for different HENS
procedures show some difficulties, as explained in the following. For basic single period
HENS, the results of different solvers are generally comparable. An example is a case study
comparison by Escobar and Trierweiler [7], where some of the most cited example cases,
such as the stream data introduced in [8] or [9] are analyzed. Because these cases only
deal with continuous operation in one thermodynamic state and only basic HEN solutions
with HEX and utilities are considered, solutions of different optimization approaches are
reasonably comparable. In contrast to this, the solutions of multi-period HENS solvers
are often not directly comparable, which is due to the different approaches that are used.
Further extended multi-period HENS solutions that integrate HP and ST options are even
more specific because of the possible placement of installations or the cost coefficients used
in the different approaches.

For multi-period HENS, only a tiny number of examples can be found in the literature,
like the stream data presented in [10] or [11]. The cases used or introduced in these studies
are given for several time periods, but their operational temperatures lay mostly out
of the physical boundaries of HP and are therefore not suitable for usage in this work.
Other multi-period stream data are used with wholly different approaches like the heat
recovery loop approach by Stampfli et al. [12]. This approach focuses more on selecting
the optimum HP technology than the optimized integration of given components by using
wholly different optimization targets and specific cost coefficients.

As already stated in [3], mixed-integer programming optimizations solutions are
sensitive to changes of parameters in the cost function, on account of its combinatorial
nature. This means those cost coefficients that have to be assumed because they are not
available for given problems, like for HP or ST cost, strongly impact the specific solutions.
Because of this, a meaningful comparison of the resulting networks or the total annual
cost (TAC) with solutions of cases dealt with in the literature is nearly impossible. We
therefore limit ourselves in this paper to comparing the solutions without ST and HP
with the solutions with possible HP and ST installations obtained using the described
optimization program.

For a more comprehensive evaluation of the approach presented in [3], to show the
potential of HP and ST integration for EII, and to augment the existing literature, it was
decided to generate a set of example problems, which are described in Section 2 below.
These cases are based on information from the detailed energy analyses of a wide variety of
processes provided by Hamel et al. [13], which provide flowcharts and energy balances of
108 prominent industrial processes. In combination with the optimization results obtained
with the application of the approach explained in Section 1.2, these example problems are
intended to extend the possibility of evaluating future multi-period HENS approaches,
with an emphasis on the integration of renewable energy sources and contributing to the
existing literature.

1.1. Objectives, Novelty and Contribution

As elaborated above, the development and verification of optimization approaches
relies on the availability of suitable data. Contrary to HENS studies like the case study by
Escobar et al. [7], the analyses by Floudas et al. [10], or the case study by Zhang et al. [11],
where only the integration of HEX between the streams and utility HEX are considered,
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the possible integration of HP and ST has stricter thermodynamicall requirements for
suitability of stream data. Because no cases found, either from industry or the literature,
satisfyingly fulfill these requirements, this work aimed to provide suitable cases for further
research in the area of HENS with HP and ST integration and to show the potential of energy
integration for energy integration in EII. Therefore we consider our main contribution in
the introduction of four use-cases for HENS that
• Are based on the thermal requirements of representative real industrial processes

from different sectors of the EII;
• Have varying potentials for energy shifting and the integration of renewable en-

ergy sources;
• Lay within the operational temperature range of HP.

On the one hand, analysis of the presented cases in described in Section 1.2 shows
the potential of HP and ST integration for reducing energy demand and costs for different
sectors of the EII. On the other hand, the introduced cases with their corresponding
solutions and the fully given and open-access mathematical formulation of the optimization
procedure are a valuable base for future research in the area.

1.2. Applied MILP HENS Optimization Tool

As mentioned in the Introduction, the implementation of new example cases presented
in this paper results from the need for data to support extended testing of the multi-period
MILP HENS with simultaneous integration of ST and HP approach presented in [3].

The setup of the stage-wise superstructure of this approach is shown in Figure 1 with
all its possible connections and installations. A set of hot streams (Hs) and cold streams (Cs)
that have to reach a defined target temperature represent the demands of a given process.
The possible installations for each stage in each timestep are heat exchangers (HEX) between
every Hs and every Cs, HEX between the streams and the storages, and HP between a two
tank storage and the streams. If more than one installation is chosen for one stream in a
stage, the stream is split at the beginning of the stage and mixed isothermally at the end of
the stage. Utilities are only permitted after the last and before the first stage. If the same
HEX location is selected in more than one timestep, the largest HEX surface area is chosen,
and bypasses are assumed for the other timesteps. The cost function given in Equation (A1)
of Appendix A consists of step fixed investment costs and variable investment costs for
all installations, and energy costs for external energy demand. The optimization finds the
best combination of the possible installations to minimize the cost function while assuring
that all streams reach their required target temperature. The simplifications necessary for
the linearization of the problem formulation come with the introduction of uncertainties
in the calculations. This negative aspect is canceled out by the multiple advantages, like
the reduction of the mathematical complexity, which reduces the calculation effort and
thus processing time. The linearity of the approach eliminates the need for an initial
solution, which is often difficult to find for mixed-integer problems. Moreover, the linear
and convex optimization procedure always results in a globally optimal solution under
the consideration of all given boundaries. These improvements allow for quick and easy
analysis of a wide range of problems.

For reasons of completeness, the full mathematical formulation of the applied MILP
HENS from Prendl et al. [3] is given in Appendix A in Equations (A1)–(A13).
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Figure 1. “Superstructure with possible Stream-Stream Hex (HEX), Stream-Storage Hex (ST) and
Heat Pumps (HP)” from Prendl et al. [3]/CC BY 4.0.

2. Test Cases

Four processes representative for the EII described in Section 1 have been chosen
to analyze the potential improvement by introducing HP and ST with the help of the
optimization approach described in Section 1.2. The processes are a weaving mill for
human-made fiber (case 1), a pulp mill (case 2), an alkalies and chlorine process (case 3),
and a PVC-suspension process (case 4). As explained earlier in Section 1, the data given by
the literature are often not suitable for specific approaches without additional assumptions
caused by the lack of essential information. The process data from [13], which are used
as the base case, are only given for continuous operation in one particular state as energy
balances of the different process steps. To generate suitable use-cases, the processes are
analyzed to extract streams that have properties suitable for heat exchange between streams.
The extracted inlet temperatures and outlet temperatures of this streams are given in the
stream data Tables 1–4. Because the energy balances in [13] are scaled down to energy
demand per produced unit, the heat capacities are scaled to plant sizes suitable for the
optimization procedure, while the ratios of the heat capacities of the streams are kept
constant for the first operational period p. The stream data are extended for multiple
periods, assuming that parts of the processes change over time depending on the product
or startup or shutdown processes, to generate suitable example cases for heat pump and
storage integration. Cases 1-3 are extended to four, and case 4 to three time periods.
The cases are assumed to repeat cyclically over the annual operation time of 8600 h. Care
was taken to ensure that timely mismatch of excess energy and energy demand occurs to
generate possible opportunities for storages. Often, multi-period test cases in the literature
consist of equal time periods for reasons of simplification as in [14], where stream data
from [10] are used and adapted to be usable for the applied method. To test the optimization
procedure on its ability to deal with a broader range of applications, the duration of the
periods is varied for two of the cases.

The same hot utilities (Hu) and cold utilities (Cu) are given for all processes. Further-
more, the possible ST and HP options are the same for all examined cases.

As utilities, steam with an inlet and outlet temperature of 200 °C and hot utility costs
of chu = 0.2 ekWh−1, and cold water with an inlet temperature of 10 °C and an outlet
temperature of 15 °C with cold utility costs of ccu = 0.02 ekWh−1 are given. As HP option,
the linearized HP in [3] is used with the following boundaries: The power consumption
of the HP lies in the range from Pelmin = 400 kW to Pelmax = 2000 kW while the possible
temperature lift of the HP ranges from ΔThp min = 20 K to ΔThp max = 50 K. The maximum
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condensation temperature of the HP is 115 °C. The lower boundary of the COP is set to
COPmin = 3, and the HP approach temperature is chosen as Thp ap = 5 K. The heat transfer
coefficient of the HP is assumed with hhp = 5 kWm−2K−1.

The one tank ST uses thermo-oil as storage medium with a heat capacity of cpoil1T =
1.5 kJkg−1K−1 and a heat transfer coefficient of hoil = 0.5 kWm−2K−1. The thermo-oil
used by the two tank St has the same heat transfer coefficient but a higher heat capacity
of cpoil2T = 2 kJkg−1K−1. The one tank storage has a fixed size of 100,000 kg while its
operational temperature is optimized during the HENS. The two tank storage has a variable
size, but the temperatures of the two tanks, 70 °C and 100 °C, are preset. The remaining
cost coefficients used for all cases are given at the bottom of Table 1. In the following
subsections, the individual cases are described in detail:

2.1. Case 1

According to the analyses by Shen et al. [15], comparing human-made fiber produc-
tion around the world, the processes involved have considerable potential for energy
optimization. The growing customer demand for environmentally friendly products has
increased the industry’s willingness to invest in measures to tap this potential. The streams
suitable for HENS within the process include pulp slurry that needs to be heated (Cs1)
or cooled (Hs2), process water for mixing (Cs2) or cooling (Hs3), process air (Hs3, Hs4),
and flue gases (Hs1). As shown in Table 1, where the stream data for case 1 are given,
the streams operate in a range from 25 °C to 200 °C. The overlapping temperature intervals
of the Hs and the Cs show potential for heat exchange between the streams. The accumu-
lated heat flows of the individual streams range from 350 kW to 7500 kW. Without the
possibility of energy transfer between the time periods and assuming no thermodynamic
restrictions exist, the minimum heat surplus or demand can be simplified estimated by
adding the heat flows of the Hs and subtracting the heat flows of the Cs for each time
period. This minimum is in reality only reachable, if the heating and cooling demands
fulfill all thermodynamic requirements for heat transfer and is thus only used for a first
estimation. For case 1, this results in a theoretical heat surplus of 100 kw in period 1 and a
heat surplus of 3200 kW in period 2, while period 3 and 4 have a heat demand of 4400 kW
and 1800 kW, respectively. The timely mismatch of energy surplus and demand on the
given temperature levels offers potential for the integration of HP and ST to significantly
reduce the external energy demand.

Table 1. Stream data and cost coefficients for case 1.

Tin (°C) Tout (°C)
CP CP CP CP

h (kW/m2K)Stream (kW/K) (kW/K) (kW/K) (kW/K)
Period 1 Period 2 Period 3 Period 4

Hs1 200 100 20 40 10 40 0.5
Hs2 190 90 20 20 20 20 0.5
Hs3 60 30 100 20 100 20 0.5
Hs4 70 30 35 25 35 25 0.5
Hs5 120 80 40 40 40 40 0.5
Cs1 25 150 14 20 14 60 0.5
Cs2 25 70 150 70 150 70 0.5
Cs3 95 130 40 10 140 10 0.5
Hu 200 200 - - - - 1
Cu 10 15 - - - - 1

HEX cost = (4000 + 500[A(m2)]fi) ey−1, ST cost 1T = 28,000 ey−1, ST cost 2T = (7000 + 0.15[kg]) ey−1, hot utility cost = 0.2 ekW−1h−1, cold
utility cost = 0.02 ekW−1h−1, β = 0.83, dTmin = 5 °C electrical power costs = 0.03 ekW−1h−1, HP cost = 11,000 ey−1 period durations:
τ1 = 2 h, τ2 = 3 h, τ3 = 2 h, τ4 = 1 h.
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2.2. Case 2

The pulp and paper industry is constantly growing, driven by the need for environ-
mentally friendly packaging and other factors, but faces a challenge in increasing cost
efficiency to stay competitive while reducing their environmental impact because of regula-
tions. From the pulp mill process different streams of pulp solutions with cooling demand
(Hs1, Hs2) or heating demand (Cs1, Cs3) as well as process water (Hs3, Cs2) have been
found potential candidates for HENS. The stream data for these extracted streams are
given in Table 2. The temperature intervals of the streams lay between 20 °C and 170 °C
and the heat flows of the streams reach from 300 kW to 2610 kW. In period 1 and 4 a
theoretical minimal heat demand of 1405 kW and 2490 kW can be calculated, while period
2 has a theoretical heat surplus of 500kW and period 3 has a theoretical heat surplus of
2640 kW, while on the one side the overall utility demand can be potentially reduced by
the introduction of ST to shift energy from periods 2 and 3 to periods 1 and 4, especially the
streams Hs2, Cs2, and Cs3 seem suitable for installations of HP to replace utility demand
with renewable energy sources because of their temperatures.

Table 2. Stream data for case 2.

Tin (°C) Tout (°C)
CP CP CP CP

h (kW/m2K)Stream (kW/K) (kW/K) (kW/K) (kW/K)
Period 1 Period 2 Period 3 Period 4

Hs1 170 20 9 9 12 9 0.5
Hs2 110 60 16 32 40 16 0.5
Hs3 60 40 26 26 70 26 0.5
Cs1 25 170 15 6 8 18 0.5
Cs2 55 100 20 40 20 30 0.5
Cs3 30 80 20 6 10 24 0.5
Hu 200 200 - - - - 1
Cu 10 15 - - - - 1

period durations: τ1 = 1 h, τ2 = 1 h, τ3 = 1 h, τ4 = 1 h.

2.3. Case 3

Chlorine production is an energy-intensive process, where a direct supply of electricity
is needed for the electrolysis necessary to produce it. Thus, energy savings are only possible
through the reduction of the auxiliary energy demand according to the economic analyses
of the chlor-alkali industry by Herrero et al. [16], which is achievable through HENS. From
the base process in [13], heating and cooling of brine (Cs1, Cs2, Hs1), process water heating
(Cs3), NaOH solution heating (Cs4), as well as hydrogen ( Hs2), chlorine gas (Hs3) and
caustic liquid cooling (Hs4) were identified as possible streams for this purpose. In Table 3,
the stream data for all operational periods are given. The heat flows of the streams reach
from 75 kW to 11250 kW and the operational temperature reaches from 25 °C to 110 °C.
Theoretically, periods 1 and 2 have a heat surplus of 600 kW and 3900 kW, respectively,
while period 4 has an heat demand of 6175 kW. In Period 3, theoretically no external energy
is needed if all surplus heat from the Hs is transferable to the Cs. The temperatures of
the streams and the timely mismatch of surplus heat and heat demand offer potentials for
HEX, HP and ST introduction to reduce the external energy demand.
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Table 3. Stream data for case 3.

Tin (°C) Tout (°C)
CP CP CP CP

h (kW/m2K)Stream (kW/K) (kW/K) (kW/K) (kW/K)
Period 1 Period 2 Period 3 Period 4

Hs1 80 60 50 50 20 50 0.5
Hs2 110 35 110 150 110 160 0.5
Hs3 110 35 60 60 60 60 0.5
Hs4 100 40 40 40 40 40 0.5
Cs1 25 80 120 120 120 120 0.5
Cs2 60 100 130 70 130 60 0.5
Cs3 25 95 40 70 40 60 0.5
Cs4 40 85 30 30 30 30 0.5
Hu 200 200 - - - - 1
Cu 10 15 - - - - 1

period durations: τ1 = 2 h, τ2 = 1 h, τ3 = 2 h, τ4 = 1 h.

2.4. Case 4

The energy-intensive production of PVC, which is the main application of chlorine
in the EU, shows energy recovery potential on temperature levels suitable for HP and St
integration [16]. This is also shown by the stream data extracted from the PVC-suspension
process given in Table 4. The process operates on temperatures between 25 °C and 180 °C
and the heat flows of the streams range from 680 kW to 9300 kW. The theoretical heat
demands of period 1 and 3 are 1740 kW and 6830 kW, while period 2 has a heat surplus
of 2860 kW. The relatively high heat demand at the given temperature levels offers op-
portunities for integration of renewable energies with the help of HP to reduce the hot
utility demand.

Table 4. Stream data for case 4

Tin (°C) Tout (°C)
CP CP CP

h (kW/m2K)Stream (kW/K) (kW/K) (kW/K)
Period 1 Period 2 Period 3

Hs1 80 25 40 60 40 0.5
Hs2 120 90 90 120 40 0.5
Hs3 180 25 50 60 12 0.5
Cs1 26 60 35 20 50 0.5
Cs2 50 80 60 90 70 0.5
Cs3 50 150 40 40 40 0.5
Cs4 90 180 40 24 16 0.5
Cs5 25 120 40 40 30 0.5
Hu 200 200 - - - 1
Cu 10 15 - - - 1

period durations: τ1 = 1 h, τ2 = 1 h, τ3 = 1 h.

In summary, the provided set of example cases covers the following aspects:

• Broad variety: The processes come from different energy-intensive industrial sectors
to show the potentially wide range of application opportunities for HP and ST.

• Huge potential reduction of external primary energy demand and thus CO2 emissions:
The sectors pulp and paper, refineries and petrochemicals, and inorganic chemicals
account for around 33% of the total industrial CO2 emissions in the EU, and thus even
small improvements can have huge impacts [2].

• Temperature range: The processes operate in the range of the physical boundaries
of the HP, which is necessary for possible integration and thus usage of renewable
energy sources.
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3. Results and Discussion
3.1. Results

All test cases presented in Section 2 are optimized in two variations. In the first
variation, which in the following is referred to as traditional HEN, only HEX between
the streams and utilities are permitted in order to create a basic multi-period HEN in the
traditional sense by setting all binary variables for the existence of Zhp) and the existence of
ST (Zst (HP) to zero. In the second, the integration of the possible ST and HP options in the
extended superstructure formulation given in Appendix A is enabled. The optimization
results are described in the following Sections 3.1.1 to 3.1.4 and summarized discussed
in Section 3.2.

3.1.1. Results Case 1

In Tables 5 and 6, the heat flows of the HEN solutions for case 1 in Figures 2 and 3 are
given. The traditional HEN solution consists of eight stream - stream HEX and four utility
HEX and has total annual costs of TAC = 2, 999, 100 ey−1. The utilities for periods 1 to
4 for this case fit exactly to the minimum utility demand calculated in Section 2.1, which
means that within the single periods, the maximum possible energy recovery is obtained.

The extended HEN consists of ten streams, stream HEX, five streams, ST HEX, three
utility HEX, and two storages, and has total annual costs of TAC = 1, 336, 700 ey−1.
The chosen 1T ST operates between 100 °C and 183 °C and the 2T ST has a optimized size
of mStC1 = 155, 887 kg.

Table 5. Heat Flows without HP and ST case 1 (kW).

Installation p1 p2 p3 p4

1 1005.3 1425.4 - 3340.8
2 994.7 129.2 1000 659.2
3 1400 350 1555.8 350
4 1355.3 1420.8 1350 890.8
5 500 895.5 444.2 1650
6 3000 600 3000 600
7 1400 1000 1400 1000
8 244.7 179.2 250 709.2

Cu1 - 2445.5 - -
Cu2 100 754.5 - -
Hu1 - - 1055.8 1800
Hu2 - - 3344.2 -
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Figure 2. HEN obtained without HP and ST options case 1.
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Table 6. Heat Flows and Pel results with HP and ST options case 1 (kW).

Installation p1 p2 p3 p4

1 - - - 3150
2 - - 497.5 250
3 825.1 2000 - 1884.1
4 - - 488.1 -
5 906.5 1100 906.5 -
6 425.1 350 502.5 100
7 974.9 - 1800 -
8 3000 600 3000 600
9 1400 1000 1400 100
10 693.5 500 205.3 1600
11 920.4 474.4 - 200
12 - - 1732.1 -
13 1443.5 450 1443.5 1500
14 654.5 3175.6 - 300
15 231.5 - 566.5 865.9

Cu1 200 - 200 115.9
Hu1 - - 490 -
Hu2 - - 367.9 -
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Figure 3. HEN obtained with HP and ST options case 1.

3.1.2. Results Case 2

In Tables 7 and 8, the heat flows of the HEN solutions for case 2 in Figures 4 and 5 are
given. The traditional HEN solution consists of five stream - stream HEX and six utility
HEX and has total annual costs of TAC = 2, 581, 300 ey−1. That Hu and Cu are necessary
within the same time periods show that the theoretical minimum utility demand is not
reachable, or at least not financial desirable for this case.

The extended HEN consists of eight stream - stream HEX, two stream—ST HEX, five
utility HEX, two HP, and a 2T ST and has total annual costs of TAC = 1, 336, 000 ey−1.
The 2T ST has a optimized size of mStC2 = 490, 601 kg and the HP have a maximum
electrical power consumption of PelHP1 = 638.3 kW and PelHP2 = 475.2 kW, respectively.
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Table 7. Heat Flows without HP and ST case 2 (kW).

Installation p1 p2 p3 p4

1 1260 660 924.4 1260
2 - 180 - -
3 - 150 250 -
4 800 1600 900 800
5 - 180 195.6 -

Cu1 90 360 625.6 90
Cu2 - - 1100 -
Cu3 20 190 954.4 -
Hu1 915 30 40 1350
Hu2 100 20 - 550
Hu3 500 - - 680

Table 8. Heat Flows and Pel results with HP and ST options case 2 (kW).

Installation p1 p2 p3 p4

1 596.3 594.7 700.3 540
2 - 147.4 350.2 -
3 - 150 - -
4 100 - 350.6 -
5 633.8 245.3 419.7 698.8
6 442.5 - - 741.2
7 257.5 227.1 199.2 -
8 500 150 250 520
9 500 0 250 680
10 542.5 - - -

Cu1 90 212.6 329.8 111.2
Cu2 - 89.2 199.2 58.8
Cu3 20 370 1150 -
Hu1 472.5 30 40 630
Hu2 - - - 36.6
HP1 - 1283.7 1251 -
HP2 - 1425.6 - 1313.4

Pel HP1 - 638.3 625.5 -
Pel HP2 - 475.2 - 437.8
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Figure 4. HEN obtained without HP and ST options case 2.
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Figure 5. HEN obtained with HP and ST options case 2.

3.1.3. Results Case 3

In Tables 9 and 10, the heat flows of the HEN solutions for case 3 in Figures 6 and 7
are given. The traditional HEN solution consists of eleven stream - stream HEX and
seven utility HEX and has total annual costs of TAC = 3, 594, 800 ey−1. As for case 2,
the theoretical minimum utility demand is not reachable, or at least not financial desirable
for this case.

The extended HEN consists of nine stream, stream HEX, one stream, ST HEX, three
utility HEX, four HP, and a 2T ST and has total annual costs of TAC = 1, 880, 200 ey−1.
The 2T ST has a optimized size of mStC3 = 294, 312 kg and the HP have a maximum
electrical power consumption of PelHP1 = 665.5 kW, PelHP2 = 637.8 kW, PelHP3 = 597.3 kW,
and PelHP4 = 424.6 kW, respectively.

Table 9. Heat Flows without HP and ST case 3 (kW).

Installation p1 p2 p3 p4

1 - - 229.7 518.3
2 4467.8 2259.8 4900 -
3 - 2100 - -
4 1874 1598.8 2345.5 3398.6
5 556.6 592.8 120.8 373.1
6 2800 2800 2800 2800
7 180.2 209.8 170.3 481.7
8 569.8 540.2 - -
9 3782.2 3879.8 3350 -
10 763.7 911.7 734.2 728.4
11 705.7 757.2 699.5 -

Cu1 250 250 - -
Cu2 - 3010.5 - 75
Cu3 600 639.5 600 -
Hu1 - - - 1991.4
Hu2 162.3 - 200 2400
Hu3 - - - 1400
Hu4 87.7 - 300 458.6
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Table 10. Heat Flows and Pel results with HP and ST options case 3 (kW).

Installation p1 p2 p3 p4

1 2728.3 2384.9 3021.5 -
2 - 2100 - -
3 1605.4 1688.4 1605.4 2519.5
4 587.8 509.8 587.8 765.4
5 2800 2800 2800 2800
6 750 514.1 300 750
7 4050 4494.1 4050 -
8 944.6 417.5 944.6 1215.2
9 762.2 840.2 762.2 -
10 - - - 584.6

Cu1 250 584.9 100 250
Cu2 - 895.4 - 75
Cu3 600 1044.1 600 -
HP1 1471.7 1375.6 1178.5 -
HP2 - - - 2865.4
HP3 1721.7 - 1878.5 1650
HP4 - - - 1400

Pel HP1 665.5 649.3 574.6 -
Pel HP2 - - - 637.8
Pel HP3 552.8 - 597.3 532.4
Pel HP4 - - - 424.6
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Figure 6. HEN obtained without HP and ST options case 3.
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Figure 7. HEN obtained with HP and ST options case 3.

3.1.4. Results Case 4

In Tables 11 and 12, the heat flows of the HEN solutions for case 4 in Figures 8 and 9
are given. The traditional HEN solution consists of ten stream - stream HEX and seven
utility HEX and has total annual costs of TAC = 7, 160, 800 ey−1. The large Hu and Cu
needed within the same time periods show that the temperature levels and heat capacities
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of the streams do not allow a heat recovery near the theoretical optimum calculated
in Section 2.4.

The extended HEN consists of eight stream, stream HEX, one stream, ST HEX, five
utility HEX, four HP, and a 2T ST and has total annual costs of TAC = 5, 056, 600 ey−1.
The 2T ST has a optimized size of mStC4 = 199, 932 kg and the HP have a maximum elec-
trical power consumption of PelHP1 = 456.7 kW, PelHP2 = 739.3 kW, PelHP3 = 1423.8 kW,
and PelHP4 = 709.6 kW, respectively.

Table 11. Heat Flows without HP and ST case 4 (kW).

Installation p1 p2 p3

1 1000 - 1000
2 326.7 1571.1 -
3 1000 822.1 -
4 1805.6 279.32 902.4
5 2444.4 2040 117.6
6 840 371.1 960
7 - 1128.9 -
8 1373.3 1206.8 1200
9 - 308.9 -
10 2600 2777.9 780

Cu1 360 1800 240
Cu2 900 1380 600
Hu1 350 - 740
Hu2 473.3 - 1100
Hu3 821.1 - 1897.6
Hu4 1155.6 120 1322.4
Hu5 200 200 2070

Table 12. Heat Flows and Pel results with HP and ST options case 4 (kW).

Installation p1 p2 p3

1 471.1 - 471.1
2 143.2 1600 -
3 - 1871.1 -
4 3400 2040 1020
5 1190 680 1173.4
6 770 2000 775.7
7 1800 839.7 -
8 - - 526.6
9 285.7 1160.3 728.9

Cu1 240 620 250.8
Cu2 2088.4 2541.4 313.4
Hu1 1400 - 1400
Hu2 200 120 420
Hu3 668.8 200 576.4
HP1 - 1860.3 2100
HP2 2218 - 1497.8
HP3 2261.6 2847.6 -
HP4 2128.9 2128.9 -

Pel HP1 - 400 456.7
Pel HP2 739.3 - 499.3
Pel HP3 1130.8 1423.8 -
Pel HP4 709.6 709.6 -

Paper 4

81



Energies 2021, 14, 6741 14 of 21


�

�

 �
 �

�� �  ��


��


��

��� � 


� � 

� � 

�� � 
�
� � 

�
 � 

�� � 

"�  � ��������� ���


� ��� � �
 �  ��

 �
 



��


�


��� 
�
� 

��� � 
��� � 

 �
�� �� � �� � 

�

�
�


�

�
�

�

�

��

Figure 8. HEN obtained without HP and ST options case 4.
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Figure 9. HEN obtained with HP and ST options case 4.

3.2. Discussion

The summarized results of the optimization of the four cases are given in Table 13,
where it can be seen that for all cases, the integration of HP and ST into the HEN signifi-
cantly reduced the TAC. The TAC of case 1 were reduced by 1, 662, 400 ey−1 or 55.43%,
the TAC of case 2 were reduced by 945, 300 ey−1 or 41.43%, the TAC of case 3 were reduced
by 1, 714, 600 ey−1 or 47.70% and the TAC of case 4 were reduced by 2, 104, 200 ey−1

or 29.39%. The total external energy demand for cases 1-3 decreased by 87.10%, 20.95%,
and 12.52%, respectively, while the total external energy demand of case 4 increased by
13.31%. Except for case 3, all extended HEN consist of more installations than their basic
HEN counterpart.

Table 13. Summary of optimization results.

Case TAC Utilities/Year Pel/Year Energy
Demand/Year Installations Storage

ey−1 GWh y−1 GWh y−1 GWh y−1 -

1 2,999,100 21.93 - 21.93 12
1 extended 1,336,700 2.829 - 2.829 20 1T, 2T

2 2,281,300 16.37 - 16.37 12
2 extended 1,336,000 8.256 4.680 12.94 18 2T

3 3,594,800 21.25 - 21.25 18
3 extended 1,880,200 8.527 10.07 18.59 18 2T

4 7,160,800 45.09 - 45.09 17
4 extended 5,056,600 31.66 19.43 51.09 19 2T

For case 1, the significant reduction of the utility energy demand is caused by the
optimal integration of the two different possible ST options. This is possible because the 1T
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ST has a fixed size and the operational temperatures are chosen during the optimization
while for the 2T ST the temperature levels of the tanks are fixed and the size gets optimized.
Thanks to this combination, the optimized storages allow to shift the heat surplus from
period 2 mentioned in Section 2.1 to periods 3 and 4. This reduces the overall Cu energy
demand and the overall Hu energy demand for one cycle by 8884.1 kWh, which results in
an annual reduction of utility costs of 2, 101, 111 ey−1 for the given cost coefficients.

The optimal integration of a 2T ST and two HP in case 2 led to a reduction of the Cu
demand per cycle of 799.2 kWh and a reduction of the Hu demand per cycle of 2975.9 kWh.
The electrical energy demand of the two HP per cycle is 2176.7 kWh, which shows that Hu
demand is shifted towards electrical energy demand, which reduces the annual energy
costs by 1, 173, 599 ey−1.

For case 3, the four HP and the 2T ST chosen by the optimization reduced the Cu
demand per cycle by 925.6 kWh and led to a solution without Hu, thus decreasing the Hu
demand by 7950 kWh. The Hu demand is replaced by the HP, which has an electrical energy
demand per cycle of 7024.4 kWh, reducing the annual energy costs by 2, 003, 480 ey−1.

The integration of the 2T ST and the four HP in the resulting extended HEN of case
4 resulted in a higher annual external energy demand than the traditional HEN solution.
The Cu demand increased by 774 kWh while the Hu demand was reduced by 5464.8 kWh.
The electrical energy demand per cycle of the 4 HP combined adds up to 6778.7 kWh.
While it may seem that an increased external energy demand is not an improvement, it
must be remembered that the optimization target is the minimization of the TAC and only
depends on the specific cost coefficients. Although in this case the external energy demand
increased, the annual energy costs for the extended network solution are 2, 003, 480 ey−1

lower than for the traditional HEN solution. Even small changes of the cost parameters can
result in massive changes in the resulting network solutions. Assuming that the electrical
energy demand is satisfied through GHG neutral energy sources and that the Cu only needs
electrical energy for transportation of the fluid, the generation of steam for the Hu remains
the only GHG source during operation. With this assumption and the given case data and
cost coefficients, the extended HEN solutions for cases 1 to 4 yield the theoretical potential
for a drastic reduction of GHG emission of 83.8%, 71.1%, 100%, and 52.3% respectively.

As mentioned in the introduction, energy-saving or emission reduction investments
have to compete with other measures like capacity improvements. The payback time is
often taken as an indicator to determine if a more expensive investment in an environ-
mentally friendly alternative is profitable or not. For the proposed cases, the payback
time for an assumed lifespan of 25 years is calculated by dividing the investment cost
difference of the extended and the basic HEN results by the annual saving of energy costs.
For visualization, the annual cost savings of the cases are given over their investment cost
difference in Figure 10. The diagonal line in Figure 10 represents a payback time of five
years, which is exemplary set as a realistic limit for the profitability of the investments.
Regarding the extended HEN for case 1, a payback time of 5.2 years was obtained, making
it not profitable under the assumptions given in Sections 1.2 and 2. The payback times of
cases 2–4, that are 4.9 years, 3.6 years, and 4.0 years, respectively, are within the limit and
thus profitable investments. The fact that the payback times of the analyzed cases lay close
to the profitability limit fits well with reality in the industry. The difficulty of achieving
carbon neutrality without the influence of regulations or subsidies is highlighted in the
results of case 1, where even an energy demand reduction of 87.10% by the introduced HEN
can not be considered profitable from an economic point of view. The obtained results show
that the introduced set of test cases with their different optimization potentials are perfectly
suitable for extensive tests of multi-period HENS procedures under realistic conditions.
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Figure 10. Cost savings per year over investment cost difference between conventional HEN and
extended HEN results. In the green area the payback time is shorter than 5 years and in the red area
the payback time is longer than 5 years.

4. Conclusions

A set of four example cases suitable for HP and ST integration was created based on
industrial processes from the EII to increase the small number of publicly available test
cases in the field of multi-period HENS and to show the potential of energy integration in
different sectors of the EII. The application of an approach that allows the simultaneous
integration of HP and different types of ST presented in earlier work [3] led to a significant
reduction of the total annual cost compared to the basic HEN of up to 55.43% for the
introduced cases. Moreover, the external energy demand was reduced (up to 87.1%),
or shifted towards possible renewable energy sources. These results are perfectly plausible
considering the chosen cost coefficients and the structure of the cost function. Within the
taken assumptions, three of the four extended HEN results have payback times under five
years and are thus potential profitable investments. The results underline the potential of
design optimization in the reduction of CO2 emissions while also improving cost-efficiency,
especially in the EII. While it is clear that the optimization of constructed test cases is not
directly transferable to real applications, the introduced stream data combined with the
results obtained and the fully given mathematical formulation provide a valuable extension
to the existing HENS literature and contribute to future research in the field.
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Appendix A. Mathematical Formulation of the Applied Multi-Period MILP
HENS Approach

Mathematical formulation as presented in Prendl et al. [3]:
Cost function

min TAC = ∑
i

∑
j

∑
k

c f Zijk + ∑
i

c f Zcui

+ ∑
j

c f Zhuj + c f st 2TZst 2T + c f st 1TZst 1T

+ ∑
i

∑
j

∑
k

c f Z2T ijk + ∑
i

∑
j

∑
k

c f Z1T ijk

+∑
i

∑
j

∑
k

chpZhp ijk� �� �
step fixed investment costs

+ ∑
i

∑
j

∑
k

cAβ
ijk + ∑

i
cAβ

cui

+ ∑
j

cAβ
huj + cvst 2TSst 2T + ∑

i
∑

j
∑
k

cAβ
2T ijk

+∑
i

∑
j

∑
k

cAβ
1T ijk + ∑

i
∑

j
∑
k

cAβ
hp ijk� �� �

variable investment costs

+ ∑
i

∑
p

ccuQ̇cuipτap + ∑
j

∑
p

chuQ̇hujpτap

+∑
i

∑
j

∑
k

∑
p

cPel Pelijkpτap� �� �
energy costs

∀ p = 1, ..., NOP, k = 1, ..., NOK,

i = 1, ..., HPS, j = 1, ..., CPS

(A1)

subject to:
stream-wise energy balance

∑
j

∑
k

Q̇ijkp + ∑
k
(Q̇2T ikp + Q̇1T ikp + Q̇hp ikp)

+ Q̇cuip = ṁipcpip(Tin
ip − Tout

ip ) = Q̇ip

∑
i

∑
k

Q̇ijkp + ∑
k
(Q̇2T jkp + Q̇1T jkp + Q̇hp jkp)

+ Q̇hujp = ṁjpcpjp(Tout
jp − Tin

jp ) = Q̇jp

∀ p = 1, ..., NOP, k = 1, ..., NOK,

i ∈ HPS, j ∈ CPS

(A2)
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stage-wise energy balance

∑
j

Q̇ijkp + Q̇2T ikp + Q̇1T ikp + Q̇hp ikp

= ṁipcpip(Tik − Ti,k+1)

∑
i

Q̇ijkp + Q̇2T jkp + Q̇1T ijkp + Q̇hp jkp

= ṁipcpjp(Tjk − Tj,k+1)

i ∈ HPS, j ∈ CPS

Ti,k=1 = Tin
i , Tj,k=NOK = Tin

j

(A3)

utility heat loads

Q̇cuip = ṁipcpip(Ti,k=NOK+1,p − Tout
ip )

Q̇hujp = ṁjpcpjp(Tout
jp − Tj,k=1,p)

(A4)

energy balance 1T storage

m1Tcp1T(T1T p+1 − T1T p) =�
∑

i
∑
k

Q̇1T ikp − ∑
j

∑
k

Q̇1T jkp

�
τp

T1T p=1 = Tshi f t = T1T p=NOP

0 ≤ T1T ≤ Tmax1T
(A5)

energy balance 2T storage

Qst 2T = m2Tcp2T(Th2T − Tc2T)

CH2T,p+1 = CH2T,p +
τp

Qst 2T�
∑

i
∑
k
(Q̇2T ikp + Q̇hpst ikp)

− ∑
j

∑
k
(Q̇2T jkp + Q̇hp st jkp)

�
CH2T,p=1 = CHshi f t = CH2T,p=NOP

Sst 2T = m2T(max(CH2T)− min(CH2T))

0 ≤ CH2T ≤ 1

(A6)

energy balance heat pumps

Q̇hpst ikp = Q̇hp ikp + Pel ikp

Q̇hpst jkp = Q̇hp jkp − Pel jkp
(A7)

Publications

86



Energies 2021, 14, 6741 19 of 21

constraints for binary variables for installations

ZijkpQ̇min ≤ Q̇ijkp ≤ ZijkpQ̇max ijkp

Q̇max ijkp = min(Q̇ip, Q̇jp)

Z2T ijkpQ̇min st ≤ Q̇2T ijkp ≤ Z2T ijkpQ̇ijkp

Z1T ijkpQ̇min st ≤ Q̇1T ijkp ≤ Z1T ijkpQ̇ijkp

Zcu ip ≤ Q̇cu ip ≤ Zcu ipQ̇ip

Zhu jp ≤ Q̇hu jp ≤ Zcu jpQ̇jp

Zst 2T ≥ Z2T ijkp, Zst 2T ≥ Zhp ijkp

Zst 1T ≥ Z1T ijkp

(A8)

physical constraints

ΔT ≥ ΔTmin, Aβ ≥ 0, Q̇ ≥ 0 (A9)

constraints for temperature differences

LMTDijkp ≤ CLMTDijkp(ΔTijkp, ΔTij,k+1,p)

LMTD2T ijkp ≤ CLMTD2T ijkp(ΔT2T,1
ijkp , ΔT2T,2

ijkp )

LMTD1T ijkp ≤ CLMTD1T ijkp(ΔT1T,1
ijkp , ΔT1T,2

ijkp )

LMTDhp ijkp ≤ CLMTDhp ijkp(ΔThp,1
ijkp , ΔThp,2

ijkp )

ΔTijkp ≤ Tikp − Tjkp + ΓT(1 − Zijkp)

ΔTij,k+1,p ≤ Ti,k+1,p − Tj,k+1,p + ΓT(1 − Zijkp)

ΔT2T,1
ikp ≤ Tikp − Th 2T + Γ2T

T (1 − Z2T ikp)

ΔT2T,1
jkp ≤ Th 2T − Tj,k+1,p + Γ2T

T (1 − Z2T jkp)

ΔT2T,2
ikp ≤ Ti,k+1,p − Tc 2T + Γ2T

T (1 − Z2T ikp)

ΔT2T,2
jkp ≤ Tc 2T − Tj,k+2,p + Γ2T

T (1 − Z2T jkp)

ΔT1T,1
ikp ≤ Tikp − T1T p + Γ1T

T (1 − Z1T ikp)

ΔT1T,1
jkp ≤ T1T p − Tj,k+1,p + Γ1T

T (1 − Z1T jkp)

ΔT1T,2
ikp ≤ Ti,k+1,p − T1T p+1 + Γ1T

T (1 − Z1T ikp)

ΔT1T,2
jkp ≤ T1T p+1 − Tj,k+2,p + Γ1T

T (1 − Z1T jkp)

ΔThp,1
ikp ≤ Tikp − Ti,k+1,p + Thp ap + ΓT(1 − Zhp ikp)

ΔThp,1
jkp ≤ Thp ap + ΓT(1 − Zhp jkp)

ΔThp,2
ikp ≤ Thp ap + ΓT(1 − Zhp ikp)

ΔThp,2
jkp ≤ Tj,k+1,p − Tj,k+2,p + Thp ap + ΓT(1 − Zhp jkp)

(A10)
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constraints for heat exchange area

Aβ
ijkp ≥ CAβ

ijkp − ΓA(1 − Zijkp)

CAβ
ijkp = CAβ

ijkp(LMTDijkp, Q̇ijkp)

Aβ
2T ijkp ≥ CAβ

2T ijkp − ΓA(1 − Z2T ijkp)

Aβ
1T ijkp ≥ CAβ

1T ijkp − ΓA(1 − Z1T ijkp)

Aβ
hp ijkp ≥ (CAβ

hp ijkp + CAβ
hpst ijkp)

−ΓA(1 − Zhp ijkp)

(A11)

summation constraints

Aβ
ijk ≥ Aβ

ijkp, Zijk ≥ Zijkp (A12)

heat pump constraints

Q̇hp st ikp/Pel ikp ≥ COPmin
Q̇hp jkp/Pel ikp ≥ COPmin
ΔThp ijkp ≤ ΔThp max + ΓT(1 − Zhp ijkp)
ΔThp ijkp ≥ ΔThp min − ΓT(1 − Zhp ijkp)
Zhp ijkpPel min ≤ Pel ijkp ≤ Zhp ijkpPel max
Zhp ijkpQ̇min hp ≤ Q̇hp ijkp ≤ Zhp ijkpQ̇ijkp
Pel ijkp ≥ CPel ijkp − ΓPel(1 − Zhp ijkp)

(A13)
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Further Publications

Further Publications
Parts of this work’s content were not only published in the core publications of this thesis
but were the subject of other dissemination activities. These contributions are listed
below.

Presentations

The work on the SIC! cooperation doctoral school included a presentation in front of
knowledgeable audience of the scope of SIC! with emphasis on the topics of this thesis:

R. Hofmann, L. Prendl, V. Halmschlager, S. Knöttner, A. Knöttner, J. Triebnig. Smart
Industrial Concept - Holistic Approach with Digitalization of Industrial Processes and
Applications for 2050 and beyond, Presentation: Blickpunkt Forschung: Klimaschutz
konkret @ TU Wien 23.10.2019 in Wien, Österreich.

Scientific Reports

The SIC! community was invited to take part in the IEA IETS Annex XVIII on "Digital-
ization, Artificial Intelligence and Related Technologies for Energy Efficiency and GHG
Emissions Reduction in Industry". In the course of this Annex, I participated in the
creation of the White Paper "Digitalization in Industry – An Austrian Perspective":

R. Hofmann, V. Halmschlager, S. Knöttner, B. Leitner, D. Pernsteiner, L. Prendl, C.
Sejkora,G. Steindl, and A. Traupmann. "Digitalization in Industry - An Austrian
Perspective". Tech.rep. accessed September 2021. https://sic.tuwien.ac.at/fileadmi
n/t/sic/Dokumente/White-Paper-Digitalization-in-Industry.pdf

Supervised Theses

In the course of this thesis, I have supervised a master’s thesis that added valuable
contributions to my research.

M. Holzegger: "Framework for automated data acquisition and analysis of a fixed-bed
regenerator using OSIsoft PI"; Betreuer/in(nen): R. Hofmann, L. Prendl; E302 - Institut
für Energietechnik und Thermodynamik, 2021; Final exam: planned in spring 2022.
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