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ABSTRACT
We propose a communication-efficient scheme for distributed
Bayesian target tracking (distributed particle filtering) in possi-
bly nonlinear and non-Gaussian state-space models. The scheme
is a sparsity-promoting evolution of the likelihood consensus (LC)
that uses the orthogonal matching pursuit (OMP), a B-spline dictio-
nary, a distributed adaptive determination of the relevant state-space
region, and an efficient binary representation of the LC expansion
coefficients. Our simulation results show that a reduction of in-
teragent communication by a factor of about 190 can be obtained
without compromising the tracking performance.

Index Terms— Target tracking, distributed particle filter, Bayesian
filtering, likelihood consensus, sparsity.

1. INTRODUCTION
Distributed particle filters (DPFs) enable Bayesian target tracking
in decentralized agent networks and possibly nonlinear and/or non-
Gaussian state-space models [1–11]. A class of DPFs that is able
to approximate the centralized particle filter with arbitrary accuracy
uses the likelihood consensus (LC) scheme for a distributed calcula-
tion of the global likelihood function [5, 6]. The LC performs a dic-
tionary expansion of the local log-likelihood function of each agent
and disseminates and fuses the expansion coefficients by means of
a consensus algorithm [6]. Generalizations of LC-based DPFs to
scenarios with missed detections and clutter and/or a randomly ap-
pearing and disappearing target were presented in [12, 13].

Here, we propose an evolved LC methodology—dubbed “LC
2.0”—with significantly reduced communication cost. LC 2.0 fea-
tures the following innovations: (i) A sparsity-promoting computa-
tion of the LC expansion coefficients via the orthogonal matching
pursuit (OMP) [12, 14, 15]. Compared to the least-squares fit used
so far, the OMP enables an easy specification and a reduction of
the number of significant expansion coefficients, as we previously
demonstrated in a different context [12]. (ii) Use of a B-spline
dictionary [16, 17]. Contrary to the Fourier or monomial dictionary
used previously [5, 6, 12, 13], the B-spline dictionary is localized,
which is advantageous in view of the localized character of the
posterior distribution. (iii) A restriction of the dictionary expansions
to a time-dependent “region of interest,” which is calculated in a
distributed manner. (iv) Efficient binary representations of the ex-
pansion coefficients that have to be communicated. Our simulation
results show that LC 2.0 can reduce interagent communication by a
factor of about 190 without compromising the tracking performance.

This paper is organized as follows. Section 2 describes the sys-
tem model and the local particle filters. Section 3 reviews the con-
ventional LC scheme. The use of the OMP and of the B-spline dic-
tionary is discussed in Sections 4 and 5, respectively. A distributed
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calculation of the region of interest is described in Section 6. Sec-
tion 7 presents an efficient binary coefficient representation. Finally,
simulation results are presented in Section 8.

2. SYSTEM MODEL AND LOCAL PARTICLE FILTERS

We consider a target whose state xn = (xn,1 · · · xn,M )T ∈ RM

evolves according to a state-transition probability density function
(pdf) f(xn|xn−1), for n ∈ N. The target state xn is sensed by a
decentralized network of S agents (sensors). Agent s∈ {1, . . . , S}
communicates with a certain set Ns ⊆ {1, . . . , S} \ {s} of “neigh-
boring” agents. The communication graph is assumed to be con-
nected. At each time n, each agent s acquires a measurement z(s)n

that is related to the target state xn according to a local likelihood
function (LLF) f

(
z
(s)
n |xn

)
. The global likelihood function (GLF)

f(zn|xn) involves the measurements of all agents at time n, zn ≜
(z

(1)T
n · · · z(S)T

n )T. Assuming that the agent measurements z
(s)
n are

conditionally independent given xn, we have

f(zn|xn) =

S∏
s=1

f
(
z(s)n |xn

)
. (1)

At each time n, each agent s estimates the current target state
xn from the measurements of all agents up to time n, z1:n ≜
(zT

1 · · · zT
n)

T. To this end, agent s runs a local particle filter in
which the global posterior pdf f(xn|z1:n) underlying Bayesian es-
timation is represented by J pairs of particles and uniform weights,{(

x
(s,j)
n , w

(s,j)
n = 1/J

)}J

j=1
. This particle representation is calcu-

lated time-recursively as follows [18]. In the prediction step, for
each previous particle x

(s,j)
n−1 , a “predicted” particle x

(s,j)

n|n−1 is sam-
pled from f

(
xn|x(s,j)

n−1

)
. In the update step, the associated weights

are calculated as

w
(s,j)

n|n−1 = c f̂s
(
zn|x(s,j)

n|n−1

)
, j = 1, . . . , J, (2)

with normalization factor c = 1/
∑J

j=1 f̂s
(
zn|x(s,j)

n|n−1

)
. Here,

f̂s(zn|xn) is an approximation to the GLF f(zn|xn) in (1) that
involves the current measurements of all the agents, zn, and is
calculated in a distributed way via the LC scheme reviewed in Sec-
tion 3. Next, the weighted particle set

{(
x
(s,j)

n|n−1, w
(s,j)

n|n−1

)}J

j=1
is

resampled to avoid particle degeneracy [18, 19]; this results in new
particles x

(s,j)
n and weights w(s,j)

n = 1/J . The overall recursion is
initialized by particles x(s,j)

0 that are drawn from a prior pdf f(x0),
and by weights w(s,j)

0 = 1/J . Finally, agent s calculates a state
estimate as the weighted sample mean of the predicted particles
(before resampling), i.e, x̂(s)

n =
∑J

j=1w
(s,j)

n|n−1x
(s,j)

n|n−1.

3. REVIEW OF THE LC SCHEME

Next, we briefly review the LC scheme [5, 6], which is used for a
distributed calculation of the GLF approximation f̂s(zn|xn) in (2).
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Consider

Ln(xn) ≜
1

S
log f(zn|xn) =

1

S

S∑
s=1

log f
(
z(s)n |xn

)
, (3)

where (1) was used. Conversely, f(zn|xn) = exp(SLn(xn)). Us-
ing a dictionary of “atoms” {ψk(x)}Kk=1 that is identical for all
agents, each agent s approximates its log-LLF by a linear combi-
nation of the atoms, i.e.,

log f
(
z(s)n |xn

)
≈

K∑
k=1

α(s,k)
n ψk(xn) . (4)

Here, the local expansion coefficients
{
α
(s,k)
n

}K

k=1
are calculated lo-

cally at each agent s using the local measurements z(s)n , as described
in Section 4. By inserting (4) into (3), we obtain

Ln(xn) ≈
K∑

k=1

β(k)
n ψk(xn) , (5)

with the global expansion coefficients β(k)
n ≜ 1

S

∑S
s=1 α

(s,k)
n .

Approximations of the β(k)
n can be obtained at all agents in a dis-

tributed manner by means of K instances of the average consensus
algorithm [20]. In consensus iteration i ∈ {1, 2, . . .}, agent s up-
dates an iterated estimate of β(k)

n as

β̂(k,s)
n [i] =

∑
s′∈{s}∪Ns

γs,s′ β̂
(k,s′)
n [i−1] . (6)

Here, the β̂(k,s′)
n [i−1], s′∈Ns were communicated to agent s by its

neighbors s′ ∈ Ns, and the γs,s′ are suitably chosen weights, such
as the Metropolis weights [20–22]. The recursion (6) is initialized
by β̂(k,s)

n [0] = α
(s,k)
n , and terminated after a sufficient number I

of iterations. The final estimates β̂(k,s)
n [I] are then substituted for

the β(k)
n in (5) to obtain at each agent an approximation of Ln(xn)

and, in turn, an approximation f̂s(zn|xn) of the GLF f(zn|xn) =
exp(SLn(xn)). For I → ∞, the consensus recursion would con-
verge to β(k)

n because, as assumed in Section 2, the communication
graph is connected [21].

In each iteration i, agent s has to broadcast the real numbers
β̂
(k,s)
n [i], k = 1, . . . ,K to its neighbors s′ ∈ Ns. In the next four

sections, we will propose modifications of the LC scheme that lead
to a significant reduction of the communication cost. We note that
while the total communication cost depends on the network topol-
ogy, the relative reduction due to the proposed modifications does
not. For reasons that will become clear in Section 6, we hereafter
consider a time-dependent dictionary size Kn.

4. OMP-BASED LLF APPROXIMATION

In the original LC scheme [5, 6], the local expansion coefficients{
α
(s,k)
n

}Kn

k=1
involved in (4) are calculated at each agent s through

a least squares (LS) fit of
∑Kn

k=1 α
(s,k)
n ψk(xn) to log f

(
z
(s)
n |xn

)
,

where both functions are evaluated (sampled) at the predicted parti-
cles, i.e., at xn= x

(s,j)

n|n−1, j =1, . . . , J . We now propose a sparsity-
promoting alternative to LS that uses the OMP [14, 15]. Our goal
is to obtain a low number of “significant” expansion coefficients
and, thereby, a low communication cost. With a view toward the
highly localized B-spline atoms proposed in Section 5, we sample
log f

(
z
(s)
n |xn

)
and

∑Kn
k=1 α

(s,k)
n ψk(xn) no longer at the predicted

particles but uniformly. Indeed, we observed experimentally that this
leads to significantly better performance when a B-spline dictionary

is used. This is probably due to the fact that the expansion coeffi-
cient for a B-spline atom that is located away from the main particle
population can be heavily affected by a few local “outlier particles.”

With uniform sampling, the evaluation points x
(q)
n =

(
x
(q)
n,1 · · ·

x
(q)
n,M

)T, q = 1, . . . , Qn lie on a regular grid within an M -
dimensional (M -D) region of interest (ROI)

Rn ≜
[
a(1)n , b(1)n

]
× . . .×

[
a(M)
n , b(M)

n

]
⊂RM. (7)

(Recall that xn ∈ RM.) More specifically, in the mth coordinate di-
rection, wherem∈ {1, . . . ,M}, we useQ(m)

n evaluation points uni-
formly spaced in the interval

[
a
(m)
n , b

(m)
n

]
. The total number of M -

D evaluation points x(q)
n is thus Qn =

∏M
m=1Q

(m)
n . A distributed,

particle-based method for calculating the ROI interval bounds a(m)
n

and b(m)
n will be presented in Section 6.

The OMP is a greedy iterative algorithm that selects one atom per
iteration; thus, the number of selected atoms equals the number of
iterations. At agent s, in iteration l ∈ {1, 2, . . .}, the OMP selects
the atom index kl for which the discretized-atom vector ψn,k ≜(
ψk(x

(1)
n ) · · · ψk(x

(Qn)
n )

)T ∈ RQn best matches a residual vector
ρ
(s)
n,l−1 calculated at the previous iteration l−1, i.e.,

kl = argmax
k∈{1,...,Kn}

∣∣ψT
n,kρ

(s)
n,l−1

∣∣
∥ψn,k∥

.

(Note that kl depends on n and s, which is however not indicated for
notational simplicity.) Then, the new residual ρ(s)

n,l is formed as

ρ
(s)
n,l = η

(s)
n −Ψ

(s)
n,l c

(s)
n,l , with c

(s)
n,l ≜ Ψ

(s)+
n,l η

(s)
n ,

where η(s)
n ≜

(
log f(z

(s)
n |x(1)

n ) · · · log f(z(s)n |x(Qn)
n )

)T ∈ RQn is
a discretized-log-LLF vector, Ψ(s)

n,l ∈ RQn×l has columns ψn,k1 ,
. . . ,ψn,kl (this matrix depends on s because the OMP-based selec-
tion of its columns depends on the LLF at agent s), and Ψ

(s)+
n,l ≜(

Ψ
(s)T
n,l Ψ

(s)
n,l

)−1
Ψ

(s)T
n,l is the Moore–Penrose pseudoinverse of Ψ(s)

n,l .

We note that Ψ(s)
n,l c

(s)
n,l = Ψ

(s)
n,l Ψ

(s)+
n,l η

(s)
n is the orthogonal projec-

tion of η(s)
n onto the subspace of RQn spanned byψn,k1 , . . . ,ψn,kl .

The residual is initialized as ρ(s)
n,0 = η

(s)
n .

Let Ls ≤Kn denote the number of OMP iterations performed at
agent s, which is prespecified or defined by the condition that ∥ρ(s)

n,l∥
falls below a positive threshold. Then the result of the OMP algo-
rithm is the coefficient vector α(s)

n =
(
α
(s,1)
n · · · α(s,Kn)

n

)T whose
elements are α(s,k)

n =
(
c
(s)
n,Ls

)
l

for all k=kl with l=1, . . . , Ls and
zero otherwise. Thus, the number of nonzero α(s,k)

n equals Ls. The
fact that a prescribed sparsity of α(s)

n is obtained by terminating the
OMP after a fixed number of iterations is an advantage. Other sparse
approximation methods such as ℓ1-based methods [23] usually need
careful parameter tuning to achieve a prescribed sparsity.

5. B-SPLINE DICTIONARY

We recall that agent s approximates the log-LLF log f
(
z
(s)
n |xn

)
by

the dictionary expansion
∑Kn

k=1 α
(s,k)
n ψk(xn) (see (4)) within the

M -D ROI Rn defined in (7). In the original LC scheme, the dictio-
nary {ψk(x)}Kn

k=1 consisted of monomial [5,6] or Fourier [6,12,13]
atoms. In this section, we propose the use of a dictionary of M -D
B-splines with uniform knot spacing [16, 17]. The advantage of B-
spline dictionaries is the localization of their atoms, which is desir-
able in view of the localization of the posterior pdf in the state space.
We temporarily drop the time index n for notational simplicity.



Let us first consider 1-D B-spline dictionaries for the individual
coordinate directions of the state space. A 1-D B-spline of degree
r ∈ N0 is a piecewise polynomial function composed of polyno-
mial segments of degree r. In particular, the cubic (i.e., r=3) 1-D
B-spline prototype with knots positioned at the integers is an even
function ψ(x) with support (−2, 2) that is given by 2

3
−|x|2+ 1

2
|x|3

for 0 ≤ |x| < 1, by 1
6
(2− |x|)3 for 1 ≤ |x| < 2, and by zero

otherwise. The atoms forming the 1-D B-spline dictionary for the

mth coordinate direction,
{
ψ

(m)

k̃
(x)

}K̃m

k̃=1
, are now defined by scal-

ing and shifting the B-spline prototype ψ(x) according to

ψ
(m)

k̃
(x) = ψ

(
x−a(m)− k̃∆d(m)

∆d(m)

)
, x∈

[
a(m), b(m)] , (8)

for k̃ = 1, . . . , K̃m and for each m ∈ {1, . . . ,M}. Here, ∆d(m) ≜
(b(m)−a(m))/(K̃m+1) is the grid spacing and K̃m is the number of
shifts. Note that the ψ(m)

k̃
(x) are centered around grid points xk̃ =

a(m) + k̃∆d(m), k̃ = 1, . . . , K̃m that are placed uniformly in the
ROI interval

[
a(m), b(m)

]
(see (7)) with spacing ∆d(m).

The M -D B-spline atoms are then constructed as

ψ̃k̃(x) =

M∏
m=1

ψ
(m)

k̃m
(xm) ,

with M -D index k̃ ≜ (k̃1 · · · k̃M )T where k̃m∈ {1, . . . , K̃m}. The
M -D B-spline dictionary {ψk(x)}Kk=1 is finally obtained by map-
ping k̃ to a 1-D index k ∈ {1, . . . ,K}, with K =

∏M
m=1 K̃m . By

this construction, theM -D atoms are shifts of anM -D B-spline pro-
totype that are located on a regular M -D grid. We note that a(m),
b(m), ∆d(m), K̃m , K, and {ψk(x)}Kk=1 generally depend on the
time index n, as discussed next.

6. DISTRIBUTED ROI ADAPTATION

The choice of the ROI Rn in (7) influences the accuracy and com-
munication cost of the LC. We now present a distributed algorithm
for calculating the ROI interval bounds a(m)

n , b(m)
n . The goal is to

adaptively “zoom in” on the effective support of the current global
posterior pdf f(xn|z1:n) in order to avoid using computation and
communication resources to approximate the log-LLF on irrelevant
parts of the state space. The proposed algorithm calculates the “ROI
center point” ξn = (ξ

(1)
n · · · ξ(M)

n )T with ξ(m)
n ≜ (a

(m)
n + b

(m)
n )/2

and the “ROI extent vector” dn = (d
(1)
n · · · d(M)

n )T with d(m)
n ≜

b
(m)
n − a

(m)
n at each time n in a distributed manner. This is done

before the LC is performed, because the LC dictionary depends on
the ROI. Note that a(m)

n and b(m)
n can be recovered from ξn and dn

as a(m)
n = ξ

(m)
n − d

(m)
n /2 and b(m)

n = ξ
(m)
n + d

(m)
n /2.

First, each agent s calculates the sample variances of the predicted
particles

{
x
(s,j)

n|n−1

}J

j=1
in all coordinate directions m,

σ
(s)2
n,m ≜

1

J

J∑
j=1

(
x
(s,j)

n|n−1,m− x̂(s)n,m

)2
, m = 1, . . . ,M,

where x(s,j)n|n−1,m denotes the mth element of x(s,j)

n|n−1 and x̂(s)n,m ≜
1
J

∑J
j=1 x

(s,j)

n|n−1,m. Then, for each m, x̂(s)n,m and σ
(s)2
n,m are av-

eraged over all agents in a distributed manner. To this end, we
perform 2M instances of the average consensus algorithm to com-
pute approximations ¯̂x

(s)
n,m of ¯̂xn,m ≜ 1

S

∑S
s=1 x̂

(s)
n,m and σ2(s)

n,m

of σ2
n,m

≜ 1
S

∑S
s=1 σ

(s)2
n,m , for m = 1, . . . ,M . These approxi-

mations will be (slightly) different at different agents s. Because

Fig. 1: An ROI Rn for dimension M=2 (green rectangle) is covered with
B-spline atoms of two different densities. The small grid rectangles within
the ROI indicate the effective supports of the B-spline atoms, and the blue
dots indicate the predicted particles x(s,j)

n|n−1
for all the agents.

the LC requires the same ROI Rn at each agent, we next perform
2M instances of the maximum consensus algorithm [24] to calcu-
late ¯̂xmax

n,m ≜ max
{
¯̂x
(s)
n,m

}S

s=1
and σ2 max

n,m ≜ max
{
σ2(s)
n,m

}S

s=1
for

m = 1, . . . ,M . The maximum consensus algorithm converges in
a finite number of iterations that is given by the diameter of the
agent network [24]. The ROI center point ξn is now taken to be the
vector with elements ξ(m)

n = ¯̂xmax
n,m , m = 1, . . . ,M . Furthermore,

we choose each ROI extent d(m)
n as a function of sn,m ≜

√
σ2 max
n,m

in such a way that Rn tends to include all particles but is not unnec-
essarily large because this would result in an excessive dictionary
size Kn. Thus, we set d(m)

n =γ sn,m, with a scaling factor γ > 1, if
γ sn,m≥ d

(m)
min , and d(m)

n = d
(m)
min otherwise. Here, thresholding d(m)

n

at a lower bound d(m)
min adds robustness in cases where the predicted

particles
{
x
(s,j)

n|n−1

}J

j=1
are highly concentrated in the state space.

If the 1-D B-spline density κn,m , i.e., the number of 1-D B-spline
atoms ψ(m)

k̃
(x) per unit length in the mth coordinate direction, is

specified, then the number K̃n,m of 1-D B-spline atoms follows as

K̃n,m =
⌈
κn,md

(m)
n

⌉
. (9)

The overall dictionary size, i.e., the number of M -D B-spline atoms
ψk(x), k = 1, . . . ,Kn, is then Kn =

∏M
m=1 K̃n,m. Fig. 1 illus-

trates the covering of the ROI Rn with B-spline atoms using two
different atom densities. A higher density enables a more accurate
log-LLF approximation within Rn but implies a larger dictionary
size Kn and, typically, a higher communication cost.

7. BINARY COEFFICIENT REPRESENTATION

In LC iteration i, each agent s broadcasts its iterated coefficient es-
timates β̂(k,s)

n [i], k = 1, . . . ,Kn (see (6)) to the neighboring agents
s′ ∈ Ns. If each β̂(k,s)

n [i] is represented by a bit sequence of length
nb, then Knnb bits have to be broadcast by agent s in LC iteration
i. This communication cost can be significantly reduced by broad-
casting only the nonzero β̂(k,s)

n [i] plus additional bits that indicate
their indices k. Let Ls[i] denote the number of nonzero β̂(k,s)

n [i].
Before the first LC iteration i= 1, the coefficient estimates are ini-
tialized as β̂(k,s)

n [0] = α
(s,k)
n , and thus Ls[0] equals the number of

nonzero α(s,k)
n . In the course of the LC iterations i = 1, 2, . . . , I ,

Ls[i] will generally grow beyond Ls[0] because at different agents
s, the sets of indices k for which the β̂(k,s)

n [i] are nonzero are typi-
cally not exactly equal, and thus the consensus update operation in
(6) will produce some additional nonzero β̂(k,s)

n [i].
We now propose an efficient method for binary encoding of the

indices k of the nonzero β̂(k,s)
n [i]. This method is specifically suited



Fig. 2: Surveillance region, agent network, and target trajectory.

to the highly localized B-spline atoms. According to Section 5,
the B-spline atom ψk(x) corresponding to β̂

(k,s)
n [i] is localized

around some point x(k) on a regular M -D grid within the ROI
Rn. This grid point can also be indexed by k̃ = (k̃1 · · · k̃M )T with
k̃m ∈ {1, . . . , K̃n,m} (see (8)). The M -D indices k̃ corresponding
to the nonzero β̂

(k,s)
n [i] are then located in a—typically small—

M -D “discrete hyperrectangle” K(s)
n [i] that consists of all k̃ with

k̃m∈
{
l̃
(s)
n,m[i], . . . , l̃

(s)
n,m[i] +∆k̃

(s)
n,m[i]

}
for m = 1, . . . ,M , where

l̃
(s)
n,m[i] and l̃(s)n,m[i] +∆k̃

(s)
n,m[i] are, respectively, the minimum and

maximum mth-coordinate index k̃m of any nonzero β̂(k,s)
n [i]. The

number of different β̂(k,s)
n [i] contained in K(s)

n [i] is |K(s)
n [i]| =∏M

m=1(∆k̃
(s)
n,m[i] + 1); out of these, Ls[i] are nonzero.

Agent s then broadcasts the Ls[i] nonzero β̂(k,s)
n [i] using Ls[i]

binary sequences of length nb , and a binary indicator vector of
length |K(s)

n [i]| whose kth bit is 1 if β̂(k,s)
n [i] ̸= 0 and 0 otherwise.

This requires Ls[i]nb + |K(s)
n [i]| bits. In addition, agent s broad-

casts the position and extent of K(s)
n [i] via binary representations

of the “minimum vertex vector” l̃(s)n [i] ≜
(
l̃
(s)
n,1[i] · · · l̃

(s)
n,M [i]

)T and

the “extent vector” ∆
(s)
n [i] ≜

(
∆k̃

(s)
n,1[i] · · · ∆k̃

(s)
n,M [i]

)T. We need

⌈log2(Kn)⌉ =
⌈∑M

m=1 log2(K̃n,m)
⌉

bits for l̃(s)n [i] (since l̃(s)n [i]

may be one ofKn=
∏M

m=1 K̃n,m M -D indices k̃) and ⌈log2(N∆)⌉
=
⌈∑M

m=1 log2(K̃n,m− l̃(s)n,m[i])
⌉

bits for ∆(s)
n [i] (since ∆k̃(s)n,m[i]∈

{1, . . . , K̃n,m − l̃
(s)
n,m[i]} and thus there are N∆ ≜

∏M
m=1(K̃n,m

− l̃
(s)
n,m[i]) different ∆(s)

n [i]). We conclude that the total number of
bits broadcast by agent s in LC iteration i is

N (s)= Ls[i]nb + |K(s)
n [i]|+ ⌈log2(Kn)⌉+ ⌈log2(N∆)⌉ .

8. SIMULATION RESULTS

We evaluate the performance and communication cost of LC 2.0 rel-
ative to the conventional LC. We simulated a target moving in the
2-D surveillance region [−200m, 200m] × [−200m, 200m]. The
target state xn comprises position and velocity, and its evolution
is modeled by the nearly constant velocity model [25, Ch. 6] with
Gaussian driving noise (standard deviation 1/3 m/s2). The agent
network consists of S = 10 agents. Fig. 2 shows the surveillance
region, agent network, and target trajectory. Each agent s produces
nonlinear range-bearing measurements z(s)n with Gaussian measure-
ment noise (standard deviations 5/3m and 10/3◦).

We compare a DPF using LC 2.0 (dubbed DPF-LC2.0), a DPF
using the conventional LC (DPF-LC), and a centralized multisen-
sor particle filter (CPF). All particle filters use J =10000 particles.

Fig. 3: Position RMSE versus time.

DPF-LC2.0 and DPF-LC perform I=20 consensus iterations. DPF-
LC2.0 uses B-spline atoms placed within the ROI, with K̃n,1 and
K̃n,2 chosen adaptively according to (9) with κn,1 = κn,2 = 1/20.
The ROI is calculated adaptively using γ =10 and d(m)

min = 20. The
log-LLF is sampled uniformly on the ROI with a density of one sam-
ple per meter. The number of OMP iterations is L=min{5,Kn},
where Kn = K̃n,1K̃n,2 . The binary wordlength for each nonzero
coefficient is nb =32. By contrast, DPF-LC employs LS-based cal-
culation of the local expansion coefficients, using the ten dominant
coefficients and setting the other coefficients to zero; K = 1681
Fourier atoms covering the entire surveillance region; and nb = 32
bits to represent each coefficient. We measure the tracking accuracy
by the root mean square error (RMSE) of the position estimate and
by the track loss percentage, based on 100 simulation runs performed
over 50 time steps n. The RMSE is averaged over all agents and over
all simulation runs for which it is smaller than 5m for n≥ 11; the
other simulation runs are considered track losses.

Fig. 3 shows that the RMSE of DPF-LC2.0 is similar to that of
DPF-LC, and close to that of CPF. (We note that the parameters of
the two DPFs were chosen to obtain similar RMSEs, as a basis for a
meaningful comparison of the communication costs.) On the other
hand, the track loss percentage of DPF-LC2.0 and DPF-LC was mea-
sured as 0.2% and 4.2%, respectively, and thus the overall tracking
performance of DPF-LC2.0 is considerably better than that of DPF-
LC. The average communication cost per time step, agent, and LC
iteration was measured as 284 bit for DPF-LC2.0 and 53792 bit for
DPF-LC. Thus, the communication cost of DPF-LC2.0 is only about
0.53% of that of DPF-LC, corresponding to a reduction by a fac-
tor of about 190. We furthermore observed that, after a short initial
phase, the number of B-spline atoms employed by DPF-LC2.0 was
only Kn=4 for almost all times and simulation runs.

9. CONCLUSION
The likelihood consensus (LC) scheme enables approximately
Bayes-optimal distributed particle filtering in nonlinear and non-
Gaussian agent networks. We improved the LC scheme by intro-
ducing the use of the OMP and a B-spline dictionary, a distributed
adaptation of the region of interest, and efficient binary representa-
tions. In the resulting “LC 2.0” scheme, interagent communication
is significantly reduced without a loss in tracking performance.

We remark that the proposed LC 2.0 scheme can also be used in
other distributed filtering frameworks involving a factorizing global
likelihood function, such as the distributed probabilistic data asso-
ciation (DPDA) filter [12] and the distributed Bernoulli filter [13].
An extended presentation, including the use of LC 2.0 for the DPDA
filter and additional simulation results, is provided in [26].
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