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Kurzfassung

Position-Based Fluids (PBF) gehören zu den Lagrange-Flüssigkeitssimulationsmethoden,
basieren auf Smoothed Particle Hydrodynamics (SPH) und erweitern das Position-Based
Dynamics (PBD) Framework um die Möglichkeit, Flüssigkeiten zu simulieren. PBD
verwendet Constraints, um Objektpositionen so anzupassen, dass physikalische Gesetze
möglichst eingehalten werden. Im Fall von PBF werden Flüssigkeiten durch Partikel
repräsentiert, deren Positionen mittels Constraints so kontrolliert werden, dass eine
Kompression von Teilen der Flüssigkeit unterbunden wird. Während die ursprüngliche
Version von PBF fest definierte Werte für Masse und Ruhedichte für alle Partikel vorsieht,
beschreibt diese Diplomarbeit eine allgemeinere und vielseitigere Variante, in der Partikel
variable Mengen an Flüssigkeit repräsentieren können. Das ermöglicht es, die Flüssigkeit
mit regional variierendem Detailgrad zu simulieren, wodurch Einsparungen im Bereich des
Speicherverbrauchs und der Berechnungsdauer erzielt werden können. Wir beschreiben
eine Vorgehensweise, in welcher der gewünschte Detailgrad jeder Flüssigkeitsregion auf
seiner Distanz zum Rand der Flüssigkeit basiert. Mittels Merging und Splitting werden
die Partikel dynamisch an den gewünschten Detailgrad angepasst. Weiters beschreibt
diese Diplomarbeit den Zusammenhang zwischen der Partikeldichte und der in PBF
verwendeten Kernelgröße sowie Methoden, um die Kernelgröße entsprechend an den
lokalen Detailgrad anzupassen. Die Vor- und Nachteile dieser Methoden werden aufgezeigt
und unser bester Ansatz wird einer eingehenden mathematischen Analyse unterzogen,
die die erwartete Partikelanzahl sowie die zu erwartende Anzahl von Nachbarpaaren für
Positionen innerhalb der Flüssigkeit abschätzt. Aus dieser Analyse geht hervor, dass bei
hinreichender Flüssigkeitstiefe sowohl die Anzahl der Partikel als auch die Anzahl der
Nachbarpaare im Vergleich zur ursprünglichen PBF-Version deutlich reduziert werden
können. Während unsere adaptive Methode in seichten Flüssigkeiten aufgrund eines
Zuwachses an zu evaluierenden benachbarten Partikeln eher unvorteilhafte Eigenschaften
aufweist, geht aus unseren Berechnungen hervor, dass die Anzahl der zu evaluierenden
benachbarten Partikelpaare mit zunehmender Tiefe der Flüssigkeit deutlich reduziert
wird, wodurch unsere vorgeschlagene Methode für diese Anwendungsfälle zu signifikant
weniger Rechenaufwand führen kann.
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Abstract

Position-Based Fluids (PBF) are a Lagrangian fluid-simulation method and are an
implementation of Smoothed Particle Hydrodynamics integrated into the Position-Based
Dynamics (PBD) framework. In PBD, constraints applied to object positions are used
to enforce a variety of physical laws. In the case of PBF, the fluid is represented by
particles and constraints are added that prevent fluid compression. The original PBF
method defines all particles to be of equal mass and rest density. In this thesis, we
propose a method for generalizing PBF to allow particles to represent varying amounts
of fluid. This enables the fluid to be simulated with regionally varying levels of detail
with the intent to reduce memory consumption and to increase performance. For each
fluid region, we compute the targeted level of detail based on its distance to the fluid
boundary, and use merging and splitting strategies to adapt the particles accordingly.
We discuss the relation of the particle density to the kernel width used in PBF and
provide several approaches for adapting the kernel width to fit the local level of detail.
The advantages and disadvantages of each approach are evaluated and a streamlined
implementation-variant is proposed which has advantageous properties for larger bodies
of fluid. This streamlined solution bases the kernel width entirely on the boundary
distance. Its approach is mathematically analyzed in regard to the expected number
of particles and neighbor pairs for varying fluid body sizes. The mathematical analysis
as well as measurements done in our test implementation show that while our method
might increase the neighbor pair count for shallow fluids, it greatly reduces the number
of particles and neighbor pairs if the fluid is sufficiently deep, giving the opportunity to
significantly lower the computational effort in these cases.

ix





Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1

2 Related Work 5
2.1 Position-Based Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Adaptive Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Mathematical Background 9
3.1 Position-Based Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Position-Based Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Adaptive Sampling in Position-Based Fluids 27
4.1 Variable Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Kernel Width Propagation . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Particle Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Particle Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 Adaptive Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6 Streamlined Variant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Implementation 47
5.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Particle Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Data Type of Particle Positions . . . . . . . . . . . . . . . . . . . . . . 49
5.4 Neighborhood Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.5 Challenges and Remaining Problems . . . . . . . . . . . . . . . . . . . 54

6 Results 55
6.1 Expected Reduction of the Number of Neighbor Pairs . . . . . . . . . 56
6.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xi



7 Conclusion and Future Work 71

Nomenclature 73

Acronyms 77

Bibliography 79



CHAPTER 1
Introduction

Since the invention of computers, they often get used to replicate our world as we know
it. The ability to do millions of computations within a few milliseconds makes computers
a great tool for mathematicians and physicists alike to explore and evaluate theorems
and physical laws that attempt to represent everyday phenomena. Also in the field of
entertainment, computers quickly gained a foothold by offering new possibilities that
were not achievable with traditional boardgames. Soon after computers were able to
produce visual output, computer games were created that tried to replicate real-world
scenarios.

With the advance of computer technology, computer games also developed to show more
and more details, which not only required more graphical power for rendering, but also
better suited equations and algorithms to approximate the laws of physics. Physics
engines were created to facilitate the simulation of inertia, collision of solid objects,
friction, cloth, sand, or even fluids.

While both the scientific use as well as the usage for entertainment require to model our
world in computers, they have different priorities: When doing scientific research, the
accuracy of the model is in most cases very important. In computer games, on the other
hand, it is generally sufficient to be close enough to reality that the player does not notice
a too large deviation from what they would expect to see. However, in this field it is very
important that the simulation can perform in real time. A researcher or engineer might
be content with waiting a few minutes or even hours for the result of the simulation of a
car colliding with a wall, but an interactive game demands immediate feedback so that
the game can continue in real time. It is not desirable that a player needs to wait for the
physically correct computation of some event (like a car collision in a racing game).

Because of this difference in goals, intricate physical phenomena like smoke, clouds, and
fluids are still often approximated in video games with fast but very crude methods like
images or videos prepared in advance that just get inserted into the world. This entails a
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1. Introduction

few disadvantages: A designer is needed to insert, for example, triangle meshes for puddles,
simple particle systems for fire, or a skybox textured with clouds. Furthermore, the
interaction of these approximations with their surrounding is limited to what the designer
thought of and was willing and able to implement. Simulating fluids or gases according
to physical laws would simplify the design process: Puddles would form automatically at
places where they are expected, and they interact with the environment (like dropped
objects creating waves) without further design steps necessary.

While the processing power as well as available memory in modern computers are still
not sufficient to entirely abandon the tricks that were developed in the field of computer
graphics for approximating natural phenomena, there seems to be a growing trend towards
this idea. For example, traditional rendering methods struggle to replicate many effects
like transparency, refraction, shadows, or ambient illumination/occlusion, and have to rely
on intricate workarounds to approximate them. With the development of consumer-grade
graphics cards optimized for ray tracing tasks (like the RTX-series by NVIDIA [NVI18]),
simulating the actual path of light rays—which is computationally more intensive, but
naturally includes the previously mentioned effects—becomes a viable option. In a similar
way, the NVIDIA FleX library [Mac20] offers simulation techniques that are targeted
to replace traditional approximations of physics, like for example, manually animated
collapsing buildings.

NVIDIA FleX uses a unified particle representation and is based on Position-Based
Dynamics (PBD) [MHHR07], which allows for simple interaction between different object
types. The particles are on a much bigger scale than atoms or molecules, but they still
allow for implementing simulation rules that are more general and closer to reality than,
for example, having to add a specific rule: “If a stone falls into the puddle, play a video
of concentric waves at this location on the puddle surface”. If the stone and the puddle
fluid are modeled using particles, they can naturally interact with each other using basic
collision rules. However, each particle needs space in memory and has to be included in
computations, so there are certain limitations to the possible number of particles. The
smaller the particles are, the more details can be represented with them, but the number
of particles needed to represent the same object also increases.

As a countermeasure, we can attempt to utilize methods that were devised for other,
similar problems: When rendering triangle meshes, the number of triangles increases the
necessary computations and therefore the render time. To keep the number of triangles
low, objects can be modeled at different levels of detail. Then, some heuristic has to
be created to determine which areas need a higher level of detail and which areas are
less important and can get away with a lower level of detail. Using this heuristic, some
models are replaced with a less detailed version. Cascaded shadow mapping [Dim07]
follows the same idea: A heuristic determines which areas can get by with shadows of a
lower resolution, so that the size of the high-resolution shadow map can be reduced to
only cover the remaining region. Following these ideas, the number of particles in fluid
simulations can be reduced by introducing a heuristic that determines areas where the
particle resolution can be reduced without severely impacting the quality of the result.
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This thesis focuses on fluid simulation using PBD with different levels of simulation
detail.

For fluid simulation methods like Smoothed Particle Hydrodynamics (SPH), such adaptive
sampling methods have already been proposed, but to our knowledge, no solution for
adaptive sampling in Position-Based Fluids (PBF) exists yet. The Hierarchical Position-
Based Dynamics method by Müller [Mül08] makes use of different levels of detail, but its
goal is to speed up the convergence of the constraint solver and not to reduce the number
of particles—all particles still exist and need to be updated each time step. Köster and
Krüger [KK16] also use a level-of-detail approach in PBF, but instead of locally adapting
the sampling density, they locally adapt the number of solver iterations for each particle
which reduces the workload but not the required storage space.

In this thesis, we propose a method that extends PBF to allow particles to represent
varying amounts of fluid. By merging fluid particles during the simulation, we reduce
the overall particle count with the expectation that having fewer particles to simulate
leads to a reduced computation time. A major finding of this thesis is that the particle
count is not the only decisive factor for the simulation runtime: The simulation of a fluid
requires the evaluation of the interactions between neighboring fluid particles, which
causes the neighbor pair count to also be a very important factor in regard to the time
each simulation step takes. Evaluating our method in 2D and 3D showed that the
neighbor pair count in our method depends on the depth of the fluid. For shallow fluid
bodies, our method might even increase the neighbor pair count. In 2D, the necessary
fluid depth to achieve improvements can be reached quite easily, leading to favorable
results in our measurements. For our tests in 3D, we were not able to reach the required
fluid depth because of limitations in our test implementation. Nevertheless, this thesis
shows in an in-depth mathematical analysis of the expected neighbor pair count that for
fluids of sufficient depth, our proposed method will not only reduce the particle count
but also the neighbor pair count both in 2D and 3D, leading to potential improvements
in the simulation runtime.

This thesis is structured in the following way: Chapter 2 gives a short introduction to
the concept of PBD, as well as to PBF. We also present some previous approaches to
fluid simulation in different resolutions. In Chapter 3, we describe the fundamental PBD
algorithm and the required mathematical formulae in detail, followed by a description
of how fluid simulation is performed within the PBD framework. Chapter 4 contains
our main contribution: First, we introduce the concept of “particle size” in Section 4.1
by defining an equation for calculating a particle radius that will facilitate the further
discussion of fluid sample density and more. We describe the required modifications for
correctly simulating fluid particles with varying masses in Section 4.2. Next, we propose
a way to regionally adapt the fluid resolution using particle merging (Section 4.3) and
splitting (Section 4.4). Section 4.5 describes one possible heuristic for selecting a suitable
particle resolution per area: the boundary distance. In Section 4.6, we show that using the
boundary distance as our heuristic of choice allows major simplifications to the method
described in Section 4.2. After the description of several tested approaches with an
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1. Introduction

analysis of their drawbacks in Chapter 4, Chapter 5 lists the methods we determined as the
most successful in the order they are applied in our implementation. The neighborhood
search is also affected by the variations in the fluid resolution, so we discuss the problems
with the neighbor search algorithm that is commonly used in PBF and suggest two
alternatives in Section 5.4. Chapter 6 contains a mathematical analysis of the effects
of our method on the neighbor pair count in fluid bodies, as well as an analysis of the
results from our test implementation. The nomenclature lists all mathematical variables
used in this thesis as a quick reference.

4



CHAPTER 2
Related Work

2.1 Position-Based Dynamics
In 2006, Müller et al. proposed a new method for simulating the physical behavior of
different materials and object types [MHHR07]. The original paper describes how to
implement the simulation of cloth in this framework, but Position-Based Dynamics
(PBD) can also be used for many other applications. A survey by Bender, Müller,
and Macklin from 2017 [BMM17] summarizes the results of 10 years of research in the
field of PBD and shows that this framework can be used to model a wide range of
phenomena. In addition to the original cloth simulation, PBD can be used to simulate
hair, sand, rigid objects, deformable solids, and fluids, to just mention a few of the possible
applications. The simulation of fluid within the PBD framework was proposed in 2013 by
Macklin and Müller [MM13] and is called Position-Based Fluids (PBF). They base their
fluid simulation on Smoothed Particle Hydrodynamics (SPH), which is a method for
approximating the behavior of fluids and gases developed in 1992 by Monaghan [Mon92].
The fluid is represented by particles, and the movement of the particles creates the flow of
the fluid. Therefore, PBF can be classified as a Lagrangian simulation, as opposed to the
Eulerian way, which models the fluid using a static grid instead of moving particles [Bri16].
Chapter 3 gives a more in-depth description of the operation steps in PBD as well as the
specifics about PBF.

2.2 Adaptive Sampling
With PBF, a fluid is represented by a group of particles. Each particle represents a small
portion of the fluid by storing a fixed mass. Knowing the rest density of the fluid, the
mass of each particle also defines its size. The sizes of these particles in turn determine
the resolution of the fluid. Smaller particles provide more details per fluid region, while
larger particles allow to represent a larger body of fluid with a smaller number of particles,
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2. Related Work

which reduces the necessary computations and the required storage. Typically, different
fluid resolutions (and hence, particle sizes) would be able to provide the required details
for different fluid regions. Regions without any fluid movement might not need a high
level of detail, while regions with turbulence might lose important details if the particle
size is too large. For example, in video games, where the goal is to deliver a visually
convincing—but not necessarily physically accurate—fluid behavior, more computational
resources could be assigned to the regions close to the camera and computed in higher
resolution, while regions far away or outside of the view frustum could be simplified by
using larger particles.

There exist some approaches to add adaptive sampling to Lagrangian particle methods.
Adams et al. [APKG07] base their simulation framework on SPH. In their approach, the
sample density depends on the fluid’s local feature size so that a bumpy fluid surface is
sampled densely, and particles deep within the fluid volume can be larger. They have
proposed algorithms for particle splitting and merging. Splitting replaces a big particle
with two smaller particles that are placed symmetrically around the deleted big particle.
Merging replaces two neighboring particles of the same size with one larger particle. Both
of these resampling methods take measures to prevent high pressure forces that would be
introduced if a new particle got placed too close to another particle.

Hong et al. [HHK08] extended the hybrid Fluid-Implicit-Particle (FLIP) method by
adaptive sampling. In their proposed technique, the distance of a particle from the fluid
surface is computed so that particles near the surface can be split to get a higher fluid
resolution. In addition to that, the fluid’s deformability is rated at a particle’s position
by estimating the Reynolds number [Rey83]. If this “deformability factor” is high, the
resolution is increased. They proposed to partition the fluid into four layers based on the
distance to the fluid surface. Particles in the two outer layers are merged and split so
that the outmost layer only contains particles of minimum size, and the second layer only
contains particles of standard size. In short, the size of particles in these two layers only
depends on the distance from the surface. In the two inner layers, the particle size also
depends on the deformability factor. Merging replaces a group of smaller particles with
one larger particle at the center of gravity of the smaller particles. Splitting replaces a
larger particle with two or more smaller particles of equal size, that are however placed
randomly within the larger particle’s neighborhood.

Zhang et al. [ZSP08] proposed an SPH simulation algorithm on the GPU that also allows
adaptive sampling. In their approach, only fluid surface particles are considered for
splitting, and all other particles are considered for merging. Fluid surface particles get
detected by measuring a particle’s distance from the center of mass in a fluid neighborhood.
During splitting, one large particle gets replaced with four smaller particles arranged in
a tetrahedron. Merging uses a grid of static resolution: neighboring particles that belong
to the same grid cell get merged to a larger particle. The size of the grid cells imposes a
lower and upper limit to the possible particle sizes in this approach. In their technique,
the influence of large particles on more distant neighbors is reduced. The mass correction
is based on the volume of the intersection of the neighborhood region spheres.
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2.2. Adaptive Sampling

Solenthaler and Gross [SG11] proposed an approach for SPH-based fluid simulation where
a fluid subset is selected that should contain more details. This subset is then additionally
simulated with a higher resolution. In their technique, geometry-driven criteria are used
for selecting the high-resolution region: fluid near obstacles, fluid inside the view frustum,
and the fluid surface are proposed as candidates for the high-resolution region. The
decision if a particle is part of the fluid surface is—similar to the approach by Zhang
et al. [ZSP08]—performed using the neighborhood’s center of mass. This property is
spread further into the fluid using flood fill to get a thick surface region for the additional
high-resolution simulation. Large particles entering the high-resolution region generate
a cube of eight small particles in the high-resolution simulation. When a large particle
leaves the high-resolution region, the corresponding small particles are deleted from the
high-resolution simulation.

7





CHAPTER 3
Mathematical Background

3.1 Position-Based Dynamics
The PBD framework [MHHR07] can be used to simulate the physical behavior of objects
like solids, ropes, cloth, fluids, and smoke. These objects are often represented using
particles because of their simplicity: for many applications it is sufficient to use a set of
particles that only consist of a position, a velocity vector, and a mass [MMCK14, BMM17].
In contrast to force- or impulse-based simulation models [TPBF87, BET14, BFS05,
Ben07], PBD reduces the complexity of the problem by decoupling the physical constraints
from the time [BMM17].

Many physical constraints can be expressed without including the time as a variable:
To handle collisions and prevent objects to pass through each other, a constraint that
enforces particles to keep a minimum distance can be added. To simulate cloth or ropes,
a constraint that enforces a certain distance between each cloth or rope particle and its
neighbors can be created, as illustrated in Figure 3.1. The simulation quality of cloth
can be further improved by formulating more physical properties as constraints. Bending
constraints, for example, can prevent the cloth from bending beyond a certain extent.

By defining constraints, the PBD framework is provided with rules that describe valid
and invalid states of the simulated material. For cloth particles, collision constraints,
distance constraints, and bending constraints are established. If in a specific state of
the simulation two of such cloth particles intersect with each other, then this state gets
classified as invalid because at least one collision constraint is violated.

3.1.1 The Basic Steps of Position-Based Dynamics
There are three basic steps in PBD: First, a time step is performed on the system where
the object positions are updated according to their velocity vectors. This step is oblivious
to any constraints such as physical collisions, so the resulting state of the system is
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3. Mathematical Background

C1
C2

C3 C4

Figure 3.1: Distance constraints C1, C2, . . . can be used to simulate a rope. The rope is
modeled using particles, and the particles are constrained to a fixed distance to their
direct neighbors. Limiting the bending ability of the rope requires additional constraints.

v1
p1

p2p2
C1

p3p3v2
v3

(a) Step 1

p1

p2p2 p3p3

C1

C2

C1

C2

p̂1

p̂2

p̂3

(b) Step 2

v̂1 p̂1

p̂2

p̂3

v̂2
v̂3

C1

(c) Step 3

Figure 3.2: The three steps of PBD: Step 1 predicts the new particle positions, Step
2 applies a solver to the constraints, and Step 3 updates the particle velocity vectors.
The constraint C1 is a distance constraint which gets solved by pulling p1 and p2 closer
together. C2 is a collision constraint that requires p2 and p3 to keep a certain minimum
distance. It gets solved by pushing the two particles apart.

likely invalid. In the second step, only the current snapshot of the system is considered.
The positions are displaced in an attempt to transfer the system into a valid state that
fulfills all the constraints. As a result of the displacement, the movement trajectory of
each object has changed. Therefore, the third and final step consists of updating the
velocity vectors to represent the new movement direction and speed. See Figure 3.2 for
an example of these three steps.

The first step which predicts the new particle position pi is based only on the current
position xi, the velocity vector vi, and the timestep duration ∆t and can be trivially
implemented as

pi = xi + ∆tvi. (3.1)

This ensures that each particle obeys the law of inertia. The third step is similarly trivial,
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3.1. Position-Based Dynamics

where the new velocity vector v̂i is calculated from the final new position p̂i and the
previous position xi using

v̂i = p̂i − xi

∆t
. (3.2)

This leaves the second step to be discussed, which has to transfer a predicted particle
position pi to its final new position p̂i. This step is less trivial, since it involves solving a
non-linear equation system. Whether the system is non-linear depends on the constraints,
but given that even the basic particle collision constraints are non-linear, it must generally
be expected that the problem is non-linear. The following section goes into more detail
about the constraints and how they are solved in this second step.

3.1.2 Constraints
In this thesis, constraints are represented as Cj(p). In general there are multiple
constraints, so they are indexed with j. p is a vector containing all scalar values that are
allowed to be changed in the attempt to fulfill a constraint. The constraint Cj(p) itself
is a scalar function. We use the term “equality constraint” to refer to Cj(p) = 0, and
“inequality constraint” to refer to Cj(p) ≤ 0.1

In PBD, the variable values in p are the particle positions. Depending on the dimen-
sionality d, each particle’s position pi consists of multiple scalar values. For example, if
d = 3:

pi =


pix

piy

piz


 . (3.3)

In a similar way, depending on the number of particles n, the vector p containing all
variable values consists of multiple particle positions pi, which in turn consist of d scalar
values:

p =


p1

...
pn


 =






p1x

p1y

p1z




...
pnx

pny

pnz







=





p1x

p1y

p1z
...

pnx

pny

pnz




. (3.4)

The vector p that is the argument of the constraint function Cj(p) is therefore
(n · d)-dimensional. However, in many—if not most—cases, the result of the constraint

1In other papers, the inequality is often defined as Cj(p) ≥ 0. We, instead, choose the inequality
definition to be Cj(p) ≤ 0 which is more intuitive w.r.t. fluids: There is an upper limit on the fluid
density, and the constraint’s value increases when the density increases.
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3. Mathematical Background

will not depend on all of these n · d values. As an example, we formulate constraints that
prevent particles from falling through the floor: If we define the floor to be at coordinates
y = 0 and the coordinate system is chosen so that the positive y-axis direction points
upwards, the constraints should enforce that no particle is allowed to have a y-coordinate
below 0. The simplest way to capture this requirement is by creating one inequality
constraint for each particle:

C1(p) = −p1y ≤ 0
C2(p) = −p2y ≤ 0

...
Cn(p) = −pny ≤ 0.

(3.5)

In each of these constraints, only one of the n · d values passed to the constraint function
as an argument is actually used. For this simple case, all constraints can be trivially
solved by setting piy to 0 if the corresponding constraint is violated.

To show a second, slightly more complex example, we look into creating basic constraints
for modeling cloth or ropes: If a rope is represented by a string of particles, an important
property is that the distance between each particle and its immediate neighbors does
not change (Figure 3.1). Assuming that the particles p1, . . . , pn in the rope are equally
distanced with particle distance l and ordered by their index, the equality constraints
can be set up as follows:

C1(p) = l − |p1 − p2| = 0
C2(p) = l − |p2 − p3| = 0

...
Cn(p) = l − |pn−1 − pn| = 0.

(3.6)

Each of these constraints depends on 2 · d values from p. In this case, most values
appear in two different constraints, since all except for the two particles at the ends of
the rope have two neighbors. Furthermore, the constraints are now non-linear, as the
distance between two positions has to be computed. This leads to a non-trivial system of
non-linear equations that has to be solved.

3.1.3 Constraint Solving
The original PBD framework [MHHR07] uses a non-linear Gauss-Seidel solver approach
for this task: Every constraint Cj(p) is considered independently, one after the other. If
Cj(p) is fulfilled, nothing has to be done. If it is not, the solver attempts to improve the
state of the system by performing a Newton step. Cj(p) is locally approximated at the
current state p with the following linearization:

Ĉj(p + ∆p) = Cj(p) + ∇Cj(p)∆p. (3.7)
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3.1. Position-Based Dynamics

If every particle has the same mass, ∆p is restricted to be in the direction of the steepest
constraint value change, which is the gradient ∇Cj(p). In this manner, the particle
displacement is kept as low as possible while solving this simplified model. We first
describe how to solve a constraint while ignoring the particles’ masses (Equations 3.8
to 3.11), and show afterwards how to incorporate the masses (Equations 3.12 to 3.15).

Assuming all particle masses are the same, all particles are weighted equally, and ∆p
can be restricted to the direction of the gradient using a scalar value λj with

∆p = λj∇Cj(p). (3.8)

The linearized constraint Ĉj(p) from Equation 3.7 gets solved by finding a scalar value
λj that fulfills

Ĉj(p + λj∇Cj(p)) = Cj(p) + λj |∇Cj(p)|2 = 0. (3.9)

Rearranged to explicitly express λj , we get

λj = − Cj(p)
|∇Cj(p)|2 . (3.10)

Using this λj , the current particle positions p can be shifted to a solution of the linearized
constraint Ĉj(p):

p̂ = p + λj∇Cj(p). (3.11)

The new positions p̂ are then used as p when solving the next constraint.

If the particles differ in mass, however, the goal is not to keep the overall displacement
low: Particles with lower mass should be displaced more easily than particles with higher
mass. To incorporate this behavior, each element of the gradient is weighted by the
inverse mass of the corresponding particle (compare to Equation 3.8):

∆p = λjM−1∇Cj(p), (3.12)

where M−1 is the diagonal matrix of size (n · d) × (n · d) containing the inverse masses:
M−1 = diag( 1

m1
, 1

m1
, 1

m1
, . . . , 1

mn
, 1

mn
, 1

mn
). Figure 3.3 shows the effect of this weighting.

Defining M−1/2 = diag( 1√
m1

, 1√
m1

, 1√
m1

, . . . , 1√
mn

, 1√
mn

, 1√
mn

) allows us to adapt Equa-
tions 3.9 to 3.11 with only small changes:

Ĉj(p + λjM−1∇Cj(p)) = Cj(p) + λj M−1/2∇Cj(p)
2

= 0 (3.13)

λj = − Cj(p)
M−1/2∇Cj(p) 2 (3.14)

p̂ = p + λjM−1∇Cj(p). (3.15)
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Figure 3.3: This figure shows a distance constraint C1. When solving C1, the displacement
of each particle pi is locked in the direction of ∇piC1. In this example, these directions
are ∇p1C1, ∇p2C1 and ∇p3C1. Without considering particle masses, the solver minimizes
the overall displacement and shifts p1 and p2 by the same amount until the constraint
is fulfilled. If the particles have different masses, for example m1 = 1 and m2 = 2,
the gradient has to be weighted by the inverse mass, so that the solver prefers moving
particles with lower mass. The right part of the illustration shows that using these
weights delivers the expected result: p2, having double the mass of p1, is moved only half
as far as p1. Particles that do not contribute to the constraint, like p3, have a gradient
of zero and are not shifted.

Going back to the two examples from before, we will now see how to compute λ1 in these
cases. The gradient of a function Cj with multidimensional input p and one-dimensional
output is a vector consisting of all the partial derivatives:

∇Cj(p) =




∂Cj

∂p1...
∂Cj

∂pn


 . (3.16)

The gradient for C1(p) from Equation 3.5 is therefore

∇C1(p) =




0

−1
0
...
0



 . (3.17)

The partial derivative is 0 for each component, except for the y-coordinate of the first
particle p1y, which is the second element in the (n · d)-dimensional vector p. The
information contained in this gradient is that p1y is the only parameter of influence, and
that the constraint value approximately2 increases by 1 if p1y is decreased by 1. According

2In general, this is just an approximation, but in this case the constraints are already linear and
therefore exactly match the linearized constraint approximation.
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3.1. Position-Based Dynamics

to Equation 3.14, we get λ1 = −m1C1(p) = m1p1y. Plugging this into Equation 3.15,
it now states that the y-coordinate of the first particle (the second element of p) gets
increased by the constraint value according to ∇C1(p), which means decreasing by p1y

accordingly:

p̂ = p + λ1M−1∇C1(p) = p + p1y




0

−1
0
...
0



 . (3.18)

This basically states to move the particle upwards by the distance it lies below the floor.
As the constraint was very simple, this might seem like an excessively roundabout way
to arrive at such a trivial conclusion.

For the second example—the distance constraints for simulating ropes from Equation 3.6—
the gradient gets more complex:

C1(p) = l − |p1 − p2| = l − (p1x − p2x)2 + (p1y − p2y)2 + (p1z − p2z)2 (3.19)

∇C1(p) =





− p1x−p2x√
(p1x−p2x)2+(p1y−p2y)2+(p1z−p2z)2

− p1y−p2y√
(p1x−p2x)2+(p1y−p2y)2+(p1z−p2z)2

− p1z−p2z√
(p1x−p2x)2+(p1y−p2y)2+(p1z−p2z)2

p1x−p2x√
(p1x−p2x)2+(p1y−p2y)2+(p1z−p2z)2

p1y−p2y√
(p1x−p2x)2+(p1y−p2y)2+(p1z−p2z)2

p1z−p2z√
(p1x−p2x)2+(p1y−p2y)2+(p1z−p2z)2

0
...
0





=





−p1x−p2x
|p1−p2|

−p1y−p2y

|p1−p2|

−p1z−p2z
|p1−p2|
p1x−p2x
|p1−p2|
p1y−p2y

|p1−p2|
p1z−p2z
|p1−p2|

0
...
0





=





− p1−p2
|p1−p2|


p1−p2

|p1−p2|


0
...
0





(3.20)

The first six elements are non-zero, which means that only the first two particles have
influence on the constraint value. The first three elements correspond to the position
of the first particle p1 and form a unit vector pointing from p1 to p2. The next three
elements, corresponding to p2, form a unit vector pointing from p2 to p1. With this, the
gradient states that the constraint value will approximately3 increase by 1 if p1 moves

3This time, the constraint is not linear. However, it is linear along ∇Cj(p), and since the shift of
every individual particle is limited to this direction, the approximation is, again, exact.
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towards p2 by a distance of 1. Similarly, it will approximately increase by 1 if p2 moves
towards p1 by a distance of 1. The length of M−1/2∇C1(p) is 1

m1
+ 1

m2
, and using

Equation 3.14, we get

λ1 = − l − |p1 − p2|
1

m1
+ 1

m2

. (3.21)

Equation 3.15 then gives us

p̂ = p + λ1M−1∇C1(p) = p − l − |p1 − p2|
1

m1
+ 1

m2





− 1
m1

p1−p2
|p1−p2|


1

m2
p1−p2

|p1−p2|


0
...
0




. (3.22)

In general, solving the linear approximation of a constraint does not guarantee that the
original constraint is also solved. Additionally, multiple constraints might depend on the
same particle’s position, so fulfilled constraints might become unfulfilled while solving
another constraint. To mitigate this problem, the solver can iterate over all constraints
multiple times with the goal of gradually converging towards a valid solution.

3.1.4 External Influence
Additionally, it is often desirable to add some external influence to the system. Examples
would be gravity, which pulls every particle downwards, explicitly defined wind that
pushes particles, or interaction from the user. When deciding at which time to apply
these external influences, it is necessary to take into consideration what happens with
the particle velocity vectors in each step of PBD. As described in Section 3.1.1, the first
step applies the velocity vectors, the second step adapts the particle positions to fulfill
the constraints, and the third step updates the velocity vectors based on the the particle
movement that actually happened in the end. Velocity vectors are applied in step 1, and
in step 3, the current velocity vector values are thrown away and replaced with ones
computed from the positions. Consequently, if the external influence directly modifies
the velocity vector (for example, gravity), it should be applied after step 3 and before
step 1 of the subsequent timestep, or the change would get discarded. In contrast, if the
external influence modifies the particle positions (for example, a teleporter), the change
will not get discarded either way. However, only position changes between step 1 and 3
will influence the velocity vector. If, for example, the particle displacement should act
like a teleport, and not like a movement with inertia, it has to be applied after step 3 and
before step 1 of the subsequent timestep. Otherwise, it might be advisable to implement
the displacement in the form of a constraint that automatically gets applied within step
2.
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3.2. Position-Based Fluids

3.2 Position-Based Fluids
Macklin and Müller [MM13] proposed a method for simulating incompressible fluids
inside the PBD framework. The constraints necessary for computing these PBF are
based on SPH [Mon92]. SPH uses particles to represent the fluid, and kernel functions
to calculate the fluid density at any given point.

3.2.1 Smoothed Particle Hydrodynamics
In SPH [Mon92], the fluid is represented by a finite set of particles. In the simplest
case, every particle has the same mass and the particles are approximately evenly
distributed within the fluid region. The particles can be seen as discrete samples of the
continuous fluid. Using methods from signal processing, we can attempt to reconstruct
the continuous fluid from these samples. With SPH, the use of Gaussian kernels, or
alternatively approximations of Gaussian kernels, is proposed as the reconstruction filter.
As a requirement, the integral of the kernel must amount to 1. Ideally, the kernel should
have circular/spherical symmetry and should continually decrease from the center. To
reduce the necessary computations, the spatial range of the kernel should be limited, so
that only close neighbors have any influence. Common approximations of the Gaussian
kernel like poly6 and cubic spline [MCG03, Mon92] reach zero within finite distance. If
instead the Gaussian kernel itself is used, a cutoff can be defined after which the kernel
function is set to zero. We refer to the kernel radius spanning the range of non-zero
values as the “kernel width”.

Using the kernel, the fluid’s density can be reconstructed at any given point s, using
one of two different methods (see Figure 3.4 for a visual explanation): For the first
method, the kernel is centered at point s where the density is reconstructed, and all
mass samples are weighted by this kernel and added together. In the second method,
a kernel is placed at each mass sample, and the mass of the sample is distributed to
its surrounding area according to the kernel. We call these two different approaches
“gathering” and “spreading” of the sample masses, respectively. As long as the kernel is
symmetric and of the same shape across the whole domain, both methods lead to the
same result. If the integral of the kernel is 1, the resulting weighted sum of the masses is
normalized to unit volume and therefore matches the density.

Not only the choice of the kernel function, also the kernel width has great influence on the
resulting density, as shown in Figure 3.5. The kernel width has to be chosen depending
on the density of samples: Is the kernel width too large for the sampling density, then
the kernel “over-smoothes” the data and important high-frequency information is lost in
the process. Is the kernel width too small, then the kernel may not contain a sufficient
number of samples to return meaningful results. In the worst case, the distance between
samples exceeds the kernel width, leading to disjoint droplets instead of a coherent body
as the reconstructed fluid. Furthermore, as the kernel integral is fixed to be 1, decreasing
the kernel width causes the kernel height to increase. As a result, the density within the
disjoint droplets is over-estimated and might even surpass the fluid’s rest density, as it is
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Figure 3.4: Two methods of applying a kernel: In (a), one kernel is centered on the
sampling point s, and the masses of the samples p1, p2, and p3 are weighted and gathered
using this kernel (kernel gathering). In (b), each of the samples p1, p2, and p3 gets
its own kernel and the mass gets spread according to its corresponding kernel to the
sampling point s (kernel spreading). As long as all kernels have the same symmetrical
shape, both methods result in the same weights w1, w2(, and w3).
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Figure 3.5: Density estimation in a one-dimensional space with three different kernel
widths. The samples all have the same mass and are located at the green cross-marks.
The blue line is the estimated density. The graph at the top contains large kernel widths;
the estimated density is more stable, but details about the sample distribution are lost.
The middle graph shows a smaller kernel width, with more density fluctuations, but
also more details. In the bottom graph, the kernel width is too small to reconstruct a
connected fluid, with very high density at the sample locations.

happening in the bottom row example in Figure 3.5. In Section 3.2.4, we go into more
detail on how to choose a suitable kernel width.

3.2.2 Incompressibility Constraints

In general, fluids—and especially gases—are compressible, meaning that their volume
can change, which allows, among other effects, sound to travel through the medium.
Simulating the compressibility is, however, expensive and has a negligible effect on the
macroscopic level of fluids, which the field of computer graphics is interested in. As a
result, both fluids and gases are often treated as incompressible [Bri16].

Also in PBF, the goal is to enforce incompressibility on the fluid. For this purpose,
incompressibility constraints are formulated that can be added to the PBD framework:

Ci(p) = ρi

ρ0
− 1. (3.23)

ρ0 is the rest density of the fluid, and ρi is the current density. The constraints are
indexed by i instead of j because we will create one constraint per particle position pi

for reasons that are explained in more detail below. Using i as the constraint index helps
clarifying which particle it belongs to.

19



3. Mathematical Background

Kernel:

Low High

Density

Figure 3.6: Visualization of the density within a two-dimensional fluid. In relation to the
rest density, blue areas have low density, green areas have medium density, and red areas
have high density. The circles indicate the particle positions. The density was computed
using the Gaussian kernel plotted in the bottom left corner. The limited number of
particles leads to fluctuations of the estimated density.

Each fluid particle can potentially influence the density at sampling point s. In practice,
only particles in the immediate neighborhood of s have an influence due to choosing
a kernel with limited range, and many elements in vector p can be neglected in the
computation of the constraint. From Equation 3.23 it can be noted, that the constraint
evaluates to zero when the current density ρi matches the rest density ρ0, and becomes
positive when the current density ρi surpasses the rest density ρ0. The original PBF
method [MM13] tries to enforce constant density by using Ci as equality constraints,
where each of these constraints has to evaluate to zero. Macklin et al. [MMCK14] instead
use Ci as inequality constraints that have to evaluate to zero or below. These inequality
constraints only enforce incompressibility, but allow a lower density which might occur
at droplet particles that were isolated from the main fluid body.

Each constraint Ci enforces incompressibility only at a single position. In theory, every
region in the fluid should be incompressible, so the constraint would have to be applied to
infinitely many positions within the fluid. This is not only impossible to compute within
a finite amount of time, it is also impossible to find a configuration that satisfies all
equality constraints due to only having a finite number of particles. Density estimation
using a kernel and a finite number of particles leads to fluctuations in the resulting
density field, as depicted in Figure 3.6. Only enforcing inequality upon the constraints
allows fluctuations below the rest density, but the problem of infinitely many constraints
remains.
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Consequently, the number of constrained positions has to be reduced: The particle
positions are distributed throughout the fluid, so they are a natural choice for this task.
For each particle, an incompressibility constraint is created that enforces incompressibility
at the particle’s position pi. To estimate the current density ρi at pi, a kernel W with
width h is used:

ρi =
j

mjW (pi − pj , h), (3.24)

where mj is the mass of each fluid particle.

3.2.3 Incompressibility Constraint Solving

As described in Section 3.1.3, the constraint solver only considers constraints that are
currently not fulfilled. Each incompressibility constraint Ci is responsible for adapting
the local density at position pi and only considers the kernel centered at pi. In case
the incompressibility constraints are declared as inequality constraints, and Ci(p) is
positive, the particle positions are shifted in an attempt to decrease the constraint value
to zero. In general (if the kernel continuously increases towards the center), moving a
particle towards the center of the kernel will increase this kernel’s density estimate. For
all particles pj , except for pi, the gradient will therefore point towards the kernel center
located at pi, or be zero for particles pj outside the range of the kernel. The gradient for
pi is, however, a special case: Since the kernel is defined to be centered at pi, moving that
particle also moves the whole kernel. Moving the kernel towards a particle pj increases
pj ’s contribution to the estimated density by the same rate as moving pj towards the
kernel center, which is the exact opposite direction. Concluding from this observation,
the gradient for pi is the sum of all other gradients ∇pj Ci, negated. Figure 3.7 shows an
example of a gradient ∇Ci(p).

In the original PBF paper [MM13], the same mass is assigned to each particle and
therefore, the mass can be disregarded in the solver step. Leaving out the particle mass
mj from Equations 3.23 and 3.24, the gradient can be computed with Equation 3.25.

∇Ci(p) = 1
ρ0





∇p1W (pi − p1, h)


...
∇pi−1W (pi − pi−1, h)


− j ∇pj W (pi − pj , h)


∇pi+1W (pi − pi+1, h)


...

∇pnW (pi − pn, h)





(3.25)
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Figure 3.7: These illustrations show the gradient of an incompressibility constraint
C4(p). The kernel is steeper at p2 than at p1 and p3, resulting in ∇p2C4 being of higher
magnitude. For p1, p2 and p3, the constraint value increases if they are moved towards
the kernel center at p4, as illustrated by the gradients in the bottom-left image. The
bottom-right image shows the gradient for p4, which is the sum of the negated other
three gradients. This gradient points roughly towards p2, because moving the kernel in
this direction leads to the fastest increase of the constraint value.

According to Equation 3.10, λi can be computed by

λi = − Ci(p)
|∇Ci(p)|2 =

ρ02 − ρ0 j W (pi − pj , h)

− j ∇pj W (pi − pj , h)
2

+ j ∇pj W (pi − pj , h)
2 . (3.26)

3.2.4 Kernel Width Selection
In Section 3.2.1, we mention that the kernel width has great influence on the resulting
density and describe the problems caused by kernel widths that are too small or too large.
If the kernel width is too small, the density constraint Ci(p) is positive (invalid) even if
no other particles than pi are within the kernel, and can therefore never be fulfilled. The
resulting effect is that particles entering the kernel are immediately repulsed with great
force.

A kernel width that is too large results in over-smoothing, so that the exact position of
the particles has a greatly reduced impact on the resulting density. If we assume two
particles at the same location, and the sum of their masses weighted by the kernel height
W (0, h) being still below the fluid’s rest density, this can result in the effect that particles
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pass through each other. While this can cause the particles to restlessly move around
within the fluid without settling down, the main disadvantages are the reduced grade of
detail (as illustrated in the top row of Figure 3.5) and the increased number of neighbor
particles contained in each kernel. The large number of neighbors greatly impacts the
performance of the density constraint solver.

In conclusion, the kernel width has to be chosen large enough so that the particle mass
mi weighted by the kernel height W (0, h) is below the rest density, but should ideally be
small enough so that two particles overlapping surpass the rest density:

miW (0, h) < ρ0 < 2miW (0, h). (3.27)

3.2.5 Challenges
If the incompressibility constraints are only used in the form of inequality constraints
(meaning that the constraints should only push particles apart in high density regions,
but not pull them closer together in low density regions), particles might get stuck on
walls, depending on the formulation of the collision constraints. If the collision constraint
just places every particle pi lying beyond a collision plane back onto the plane, there are
no neighbor particles in the incompressibility constraint Ci that can push pi away from
the plane. As a result, pi stays stuck against the wall forever, unless the particle is moved
away from the wall by some other influence (e.g., gravity or maybe some constraints that
simulate surface tension).

This artifact becomes especially noticeable for vertical planar walls, where the stuck
particles will stack on top of each other and stay stacked even after the rest of the fluid
flowed away from the wall, as depicted in Figure 3.8. Another effect of this behavior is that
in certain scenarios, the stuck particles can cause high densities: The incompressibility
constraints can only move the stuck neighboring particles along the plane, but if the area
along the plane in which the particles can move is also confined (for example, if the plane
is the bottom of a pool which is limited in size by the pool walls), the incompressibility
constraints might be unable to reduce the density. Figure 3.9 shows such a case.

A simple solution to this problem is to use a different collision constraint. One possibility
is to add an additional small random offset each time a particle is repulsed from the
collision plane. With this, the particles are not all on the same plane anymore and can
push each other away from the wall within the collision constraints.

A second problem with the described incompressibility constraints is that whenever
multiple particles simultaneously happen to match in all their properties (including
position, velocity vector, and mass), the incompressibility constraints are not able to
separate them again. These particles stay stuck together unless a different constraint
moves them apart. The result is a high fluid density at the location of the cluster leading
to undesired artifacts.

The situation of multiple particles having equal properties is only likely to occur with the
aforementioned collision constraints that place particles onto a single plane. In the corner

23



3. Mathematical Background

Figure 3.8: Incompressibility constraints implemented as inequality constraints are not
able to push particles away from the wall. One of the resulting artifacts are particle
stacks along the pool wall.

Low High

Density

Figure 3.9: Incompressibility constraints implemented as inequality constraints are not
able to push particles away from the floor. If there are more particles on the floor than
allowed by the fluid’s rest density, the incompressibility constraints are not able to reduce
the density because they can neither push nor pull any particles away from the ground
plane. Instead, all particles stick to the floor and lead to high density values in that area.
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of multiple walls, several particles might be placed onto the exact same position by these
collision constraints. The solution from above with the random offset also mitigates this
problem.
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CHAPTER 4
Adaptive Sampling in
Position-Based Fluids

4.1 Variable Sampling
PBF requires that the incompressibility constraints are applied to every fluid particle
in every simulation step. Fewer particles can result in a reduced amount of necessary
computations and may result in increased performance. While just reducing the sampling
density of fluids improves the performance, it also leads to a loss of smaller details both
at the boundary of the fluid and with regard to turbulence within the fluid. One possible
approach when trying to balance resolution and required workload is to introduce multiple
levels of detail: In regions of high interest, the resolution is more fine-grained, while other
areas can be simplified to a coarser resolution. Therefore, the sample density has to be
spatially and temporally variable. In Section 3.2.1, we discussed the relation between
the sample density and the kernel width (shown in Figure 3.5). If the kernel width is
too small in regions with low sample density, the fluid is not correctly reconstructed as a
coherent body. Using the largest required kernel width throughout the whole fluid avoids
this problem, but will cause over-smoothing in areas with higher sample density. The
higher precision of these areas is lost, and with it, the sole purpose of having these areas
in the first place. Consequently, the kernel width also needs to vary throughout the fluid
and adapt to the local sample density. This requires a way to estimate this local sample
density.

To facilitate the discussion about the sample density, we assign a radius ri to each particle.
While this is an intermediary step that could in theory be skipped, it simplifies the entire
concept by turning the abstract fluid samples into particle discs or balls of a certain
extent. The particle radius states the expected spacing between particles and is therefore
a useful measure for the local sample density. It is based on the particle’s mass mi in
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2ri

Figure 4.1: We define the particle radius ri in a way so that for fluid particle initialization,
the particles can be arranged in a regular grid with a spacing of 2ri to create a fluid at
rest density. Therefore, each fluid particle does not represent a disc or ball of fluid with
radius ri, but a square or cube of fluid with side length 2ri (or a disc or ball with the
slightly bigger radius 2π− 1

d ri or 2(4
3π)− 1

d ri with d = 2 for the 2D case, and d = 3 for
the 3D case, respectively—the difference to our definition of ri is just a constant factor).
This definition of ri is rather arbitrary, but the specific choice for the definition does
not matter since we use ri only for visualizing the particles, for re-computing the rest
density, and for computing the kernel width using Equation 4.2: The rendering has no
effect on the simulation, the re-computation is just the inverse of our radius definition in
Equation 4.1, and Equation 4.2 scales the radius by a constant factor k which can be
freely chosen to cancel out the arbitrary constant factor we introduced in the computation
of the radius.

relation to its rest density ρ0i:

ri = 1
2

d
mi

ρ0i

, (4.1)

where d is the dimensionality of the simulation. Even though this thesis focuses on the
simulation of one fluid type at a time (where the rest density is the same across all
particles), this restriction is not a requirement for our method. Therefore, we denote
the rest density not as a global constant ρ0 as in [MM13], but as a property ρ0i of each
particle.

The radius ri is chosen in a way that the equally sized particles of a fluid can be initialized
by arranging them in a regular grid with a distance of 2ri from each other, as depicted
in Figure 4.1. In this constellation, each particle has to represent a square/cube of fluid
of side length 2ri (the grid cell), which is how we arrive at Equation 4.1. As a result
of being defined in that way, 2ri gives an approximation of the distance between fluid
particles when the fluid is in rest state.

Either the rest density or the radius has to be stored as a particle property—the other
value can then be computed on demand using Equation 4.1. In our implementation, we
decided on storing the radius because we also use it when rendering the particles.

As discussed in Section 3.2.4, the kernel width has to be chosen adequately in relation to
the particle density, and ri represents an approximation of the expected spacing between
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the particles. If every particle has the same radius, then we use a kernel width of

h = kri (4.2)

with k = 4, which has led to good results in our experiments. If the radii of two particles
differ, their sample density also differs and hence, their kernel widths should vary.

A first attempt might be to let the kernel width always be kri: If the sample density
increases and the distance between the particles shrinks, the kernel width also decreases.
However, this is not sufficient. Figure 4.2 shows that basing a particle’s kernel width just
on its radius ri will lead to a situation where the kernels of small particles do not reach
adjacent big particles. As a result, the incompressibility constraint C1 of a small particle
p1 will assume that the space in the direction of a big particle p2 is empty and let p1
evade pressure into this direction. The big particle p2, on the other hand, has a larger
kernel width, which includes p1. Its incompressibility constraint C2 will push back p1,
but also cause p2 itself to be pushed back. In summary, C2 works as intended, but C1
causes wrong particle displacement due to unawareness of p2. The root of the problem is
the kernel width being too small for the small particles that are in the neighborhood of
bigger particles. As a countermeasure, we introduce kernel width propagation.

4.2 Kernel Width Propagation
Variable fluid sampling in PBF means that fluid particles of different sizes exist at the
same time and have to correctly interact with each other. To ensure that small particles
correctly interact with big particles, we propose kernel width propagation (also illustrated
in Figure 4.2): As already defined in Equation 4.2, the kernel width hi of every kernel is
initialized to

ȟi = kri, (4.3)

which we call the intrinsic kernel width ȟi. It serves as a lower bound for the kernel
width hi, but depending on the particle density in the vicinity of pi, the kernel width hi

might have to be increased. Not only does ȟi represent the minimal kernel width for Ci

of pi, but also for all Cj of particles pj that can contain pi in their respective kernel.
Therefore, ȟi is propagated to the neighboring particles pj located within distance ȟi in
an additional step before the constraint solver is executed. The propagated kernel widths
and the ȟi all represent lower bounds for the kernel widths, so each particle pi uses the
maximum of ȟi and all the kernel widths it received through propagation.

Using this approach, each particle’s kernel width hi is guaranteed to be big enough for
the constraint Ci to be aware of all relevant neighbor particles. However, a new problem
arises: Whenever a small particle leaves the neighborhood of big particles, its kernel
width instantaneously changes to a smaller value. The estimated density using this new
narrow kernel might strongly deviate from the previous result using the wide kernel. Such
sudden changes in the constraint value can lead to intense undesired particle movement.
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A1

A2

kernel width

kernels

kernel width propagationkernel width based on particle radius

particle field

Figure 4.2: Kernel width propagation visualized for a fluid containing particles of two
different sizes. Using kernel widths of kri with k = 4, the kernels of smaller particles
cover area A1, while the larger particles’ kernels cover area A2. The small particles
marked with a cross are recognized as neighbors by the large kernels as they are inside
A2, but the large particles are outside of A1 and therefore not considered in any small
particle’s incompressibility constraint. This leads to an underestimation of the density at
the particles marked with crosses, allowing the small particles to move closer together,
resulting in compression of the fluid in the region where A1 and A2 overlap. With kernel
width propagation, the small particles within A2 are assigned the same kernel width as
the large particles, which means an increased kernel width compared to the situation
depicted in the left image. Outside of A2, the propagation of the large kernel width
decreases linearly. Small kernel widths are also spread from A1 outwards, but since only
the maximum kernel width is used, this has no effect on the particles within A2.
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rest density

gathering
spreading

Figure 4.3: Exemplary density estimate for the fluid depicted on the bottom, consisting of
13 particles of different sizes, using the two different approaches gathering and spreading.
With gathering, the resulting density curve matches the rest density more closely. With
spreading, the narrow but high kernels overlap with the wide but shallow kernels at the
area of transition between kernel widths, leading to an overestimation, followed by an
underestimation where the narrow kernels do not reach far enough into the region of
shallow kernels.

To address this, we propagate the kernel width even beyond the intrinsic kernel influence
of ȟi, but let it linearly decrease from that point on (also depicted in Figure 4.2). This
creates a smooth transition between different kernel widths, and the particles have time to
slowly arrange themselves to a distribution that remains valid with the reduced smoothing
of a smaller kernel width. In our setup, we increase the neighborhood range by 50 % to
1.5ȟi and let the propagated kernel width linearly decrease from ȟi at distance ȟi to 0
at distance 1.5ȟi. As before, the propagated kernel width only overwrites a neighbor’s
kernel width if it is the larger value.

By shifting the border of larger kernel widths further into the territory of smaller particles,
every kernel is now—with respect to its surrounding particles—big enough to encompass
all relevant neighboring particles for fulfilling the incompressibility constraints.

4.2.1 Spreading or Gathering

In Section 3.2.1, we discuss two different methods for the density estimation using kernels,
which we call spreading and gathering. Both methods lead to the same result as long as
all kernels are symmetric and of the same shape. Now that we vary the kernel width
across different kernels, the shape is not the same anymore, and therefore, spreading and
gathering lead to different results. Figure 4.3 shows that the results of the gathering
method stay closer to the expected rest density, while the spreading method leads to
stronger fluctuations. Therefore, we rely on gathering in our implementation.
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4.2.2 Particle Weight
The original PBF framework [MM13] defines that all particles have the same weight and
rest density, and does not incorporate the particle masses during constraint solving. In
our setup, we do not restrict all fluids to have the same rest density. Furthermore, we let
the particle size and weight vary locally. This requires the inclusion of the particle masses
in the solver step, or otherwise light particles displace heavy particles disproportionally.
When including the masses, the constraint gradient changes from Equation 3.25 to

∇Ci(p) = 1
ρ0i





m1 ∇p1W (pi − p1, h)


...
mi−1 ∇pi−1W (pi − pi−1, h)


− j mj∇pj W (pi − pj , h)


mi+1 ∇pi+1W (pi − pi+1, h)


...

mn ∇pnW (pi − pn, h)





(4.4)

and using Equation 3.14, λi changes from Equation 3.26 to

λi = − Ci(p)
M−1/2∇Ci(p) 2

=
ρ0i

2 − ρ0i j mjW (pi − pj , h)
1√
mi j mj∇pj W (pi − pj , h)

2
+ j

√
mj∇pj W (pi − pj , h)

2 . (4.5)

These values can be used in Equation 3.15 to update the particle positions. Using these
equations ensures that each constraint is solved while obeying the rule that light particles
are pushed easier than heavy particles. However, each constraint is only solved once
per iteration, resulting in denser regions with many small particles—and therefore many
constraints—getting more importance: The dense regions cause more particle shifts
due to more solved constraints Ci. As a countermeasure, we scale the particle shift in
Equation 3.15 proportionally to the constraint’s particle’s mass mi:

p̂ = p + mi

mmin
λiM−1∇Ci(p). (4.6)

We additionally normalize this factor by the mass of the boundary particles mmin so that
their solver equations stay unaffected and only the influence of the larger particles in the
fluid center is increased.

4.3 Particle Merging
The method described in the previous section allows us to simulate a fluid with spatial
variations in sampling density. The next step is to create a method for transitioning
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between different sample densities. One possible approach for changing the sampling
density is to increase or reduce the number of particles in certain areas, while also
adapting the properties of each particle so that all particles together still represent
the same amount of fluid. Particle merging and splitting can be used to achieve this.
Merging and splitting generally allow to reduce or increase the particle count in an area
while keeping the influence of this change local and introducing only a small amount of
particle movement. Section 2.2 mentions several approaches that use different variations
of particle merging and splitting. Our method implements a merging and splitting
algorithm that differs from these other variations.

During particle merging, a particle s (source particle) transfers its data into another
particle t (target particle) and subsequently gets deleted. The overall mass of the fluid
has to stay the same, so the mass gets transferred with the formula:

m̂t = mt + ms, (4.7)

where mt is the mass of particle t and ms is the mass of particle s, both before the merge,
and m̂t is the mass of t after the merge. As mentioned in Section 4.1, we store the radius
instead of the fluid’s rest density for every particle, so we also have to adapt the radius.
The addition has to be performed not directly on the radius, but in regard to the volume:

r̂t = d
rt

d + rs
d. (4.8)

rt and rs are the radii of particles t and s respectively, and d is the dimensionality of the
simulation. r̂t is the radius of t after the merge. For interpolating the particle velocity
vectors, as well as the particle positions, a weighted average can be used where the
weights are the particle masses:

v̂t = mtvt + msvs

mt + ms
(4.9)

p̂t = mtpt + msps

mt + ms
. (4.10)

Sudden changes in the particle count and particle properties can lead to strong changes in
the fluid density estimate. This leads to large position corrections by the incompressibility
constraints and therefore results in large undesired particle velocities. One approach to
mitigate this effect would be to apply the incompressibility constraints after merging
happened, but to not use the resulting position changes to update the particle velocity
vectors. This approach requires additional solver iterations and careful damping of
particle displacement to reach a valid state. To avoid this computational overhead, we
decided to merge gradually over time. In every timestep, some of the source particle’s
data gets transferred to the target particle, until the mass of the source particle reaches
0. At that time, the source particle is deleted.

This process can be thought of as removing a part q from the source particle and adding
it to the target particle, as illustrated in Figure 4.4. q carries data like particle mass mq,
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s t

q

after transfer
before transfer

Figure 4.4: Particle transfers happen during particle merging and splitting. Each timestep
of the transfer, a part q gets removed from the source particle s and added to the target
particle t. The transferred data includes particle properties like the radius, position,
mass, and velocity vector. The transfer’s effect on the radius of s and t is shown in the
illustration. The volume of the fluid has to stay constant throughout the transfer, leading
to a relatively smaller radius decrease for the bigger particle s compared to the radius’
increase for the smaller particle t.

radius rq, velocity vector vq, and position pq. “Removing” this data from the source
particle s has different effects depending on the property: Removing part of the mass is
straightforward and can be expressed with a simple subtraction:

m̂s = ms − mq. (4.11)

For the radius, the subtraction has to be performed after converting the radius to the
corresponding volume, resulting in the equation

r̂s = d
rs

d − rq
d. (4.12)

Removing a part q from s does not change the velocity vector of s, so vs stays unchanged.
Also, we do not change the position of the source particle ps.

Adding the data from q to the target particle t is performed in the same way as the
instantaneous merging described in Equations 4.7 to 4.10, where q is the source particle
that gets merged into t:

m̂t = mt + mq (4.13)

r̂t = d
rt

d + rq
d (4.14)

v̂t = mtvt + mqvq

mt + mq
(4.15)

p̂t = mtpt + mqpq

mt + mq
. (4.16)
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This transfer happens each timestep, leading to a smoother transition if the transferred
portion q is small enough. We decided to implement the gradual merge in a linear fashion,
meaning that the transferred mass per second is constant throughout the whole merge
duration. Given the remaining duration tleft of a merge as well as the duration ∆t of the
current time step, we define a factor

cm = min
 ∆t

tleft
, 1


(4.17)

that is used in the computation of the data of q:

mq = cmms (4.18)

rq = d
cmrs

d = rs
d
√

cm (4.19)

vq = vs (4.20)
pq = ps. (4.21)

The final equations for the particle property update during a gradual merge are therefore:

m̂t = mt + cmms (4.22)
m̂s = ms − cmms = ms(1 − cm) (4.23)

r̂t = d
rt

d + cmrs
d (4.24)

r̂s = d
rs

d − cmrs
d = rs

d√1 − cm (4.25)

v̂t = mtvt + cmmsvs

mt + cmms
(4.26)

p̂t = mtpt + cmmsps

mt + cmms
. (4.27)

Transferring the velocity and the position actually leads to worse results in our experiments,
so we omit Equations 4.26 and 4.27 in our implementation. More details about the
problem with position and velocity transfer are given in Section 4.4.2. We do not allow
transfers to be canceled halfway through and only allow each particle to partake in at
most one transfer at a time to avoid edge cases.

4.4 Particle Splitting
While particle merging allows to simplify the fluid representation in an area by reducing
the sample density, there also needs to be a method for increasing the level of representable
fluid detail in other areas of higher interest. Analogous to merging, we first describe how
to implement splitting as a gradual process. However, in the case of splitting, this can
introduce erratic particle movement, which we explain in more detail in Section 4.4.2.
Section 4.4.3 describes an alternative that avoids said problem.
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4.4.1 Gradual Splitting
Gradual splitting starts off by creating a new particle t of zero mass next to the particle s
that gets split. This step has no impact on the local density estimate. After that, particle
s transfers some of its data to particle t in every timestep until both particles have the
same radius. Again using q to denote the data that gets transferred, we can re-use most
of the equations in Section 4.3 just by replacing the factor cm with a factor cs defined as

cs = min
 ∆t

tleft
, 1


· rs

d − rt
d

2rs
d

. (4.28)

This factor ensures a linear transfer of the mass and volume from s to t ending in both
particles having the same volume (and radius). rs

d − rt
d is the difference in volume

between s and t at the current timestep; throughout tleft, half of it has to be transferred
to balance their volume. The factor cs represents a fraction of the source particle, so
the transfer volume is normalized by the volume of the source particle rs

d, leading to
Equation 4.28.

In our implementation, every particle is restricted to only engage in at most one transfer
(merge or split) at a time to prevent edge cases that would require special handling. For
example, a particle created by a split starts off very small and would likely be chosen to
immediately partake in a merge to lower the resolution. Under the added restriction, the
rest densities of s and t are guaranteed to be the same.1 As a consequence, having the
same radius and volume equals to having the same mass, which allows a simplification of
Equation 4.28:

cs = min
 ∆t

tleft
, 1


· ms − mt

2ms
. (4.29)

All particles ps ready for a split each spawn a new particle pt next to them that is
initialized to

mt = 0
vt = vs

The initial positioning of the new particle requires more consideration: In Section 3.2.5,
we describe that it is problematic if two particles have exactly the same position in
PBF. If both particles have the same mass and position, they have the same effect on
adjacent particles and will in return both receive the same displacement vectors during
incompressibility constraint solving. And if both particles have the same position, mass,
radius/rest density, and kernel width, each of their own incompressibility constraints
will also result in the same displacement vector for themselves. As a result, these two
particles will forever “stick together” unless a different constraint somehow moves them

1Furthermore, the merging process should ideally already be restricted to particles with the same
rest density to prevent merging of different fluids.
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apart. However, this problem only occurs if the position, mass, radius/rest density, and
kernel width all match—the gradual splitting starts off both particles with different
masses and radii and therefore avoids this issue.

There is still one caveat: If the two particles are far off from any adjacent particles, they
will not receive different displacement vectors and the problem arises anyway. While
this is unlikely to happen for many scenarios, it might still be advisable to initialize the
particle position at least slightly displaced. For the displacement direction, the direction
opposite to the incompressibility constraint gradient of the source particle itself can be
used (−∇psCs), as this direction points towards a region with lower density which can
then be filled with the new particle from the split.

4.4.2 Problems Caused by Gradual Splitting

Unless small particles group together, they are basically playthings of the larger particles,
which represent a much larger portion of fluid and therefore have a bigger influence. The
large particles determine the fluid density field, and isolated small particles try to adapt
their position according to this imposed density field. As a result, small particles that
are located in a region of larger particles might accumulate high velocities while they
attempt to find their place in the ever changing density field.

Towards the end of gradual merges and at the beginning of gradual splits, there is a short
time window in which one of the two involved particles has a very small size compared to
its surrounding particles. During merges, this can cause the shrinking source particle ps

to suddenly accumulate high velocity. The effect of this high velocity on the simulation is,
however, rather low: After the merge finishes, ps is removed from the simulation without
further impacting the simulation with its high velocity. To also prevent any negative
impact during the merging process, we neither transfer the velocity nor the position from
ps to pt, meaning that we omit Equations 4.26 and 4.27 in our implementation.

For splits, on the other hand, this poses a problem: The target particle starts off small
and might accelerate during this phase, moving it far away from the source particle.
The split continues to transfer data from ps to pt, which equals to movement of fluid
across the increasingly large distance between ps and pt. With the growth of pt while
keeping its high velocity, pt also gains more kinetic energy. Even if this is avoided by
also transferring velocity data using Equation 4.26, the growing particle starts to push
away the surrounding particles, causing undesired particle motion.

4.4.3 Instant Splitting

The core problem with gradual splitting is the time period in which one particle is small.
By going back to the simpler instant splitting, this problematic time period is avoided.
The source particle gets halved in volume and mass, and afterwards duplicated, resulting
in two equal particles of smaller size.
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There are, however, several points that need to be considered to ensure that the instant
split executes smoothly: First, the split should have little impact on the density field,
which can be achieved if both resulting particles are (nearly) at the same location as the
source particle was, and if both particles keep the large kernel width of the source particle.
Furthermore, the two resulting smaller particles must not share the same position, or
else they will stick together as explained in Sections 3.2.5 and 4.4.1.

Following these requirements, the two particles are positioned close to the source particle’s
position, but slightly apart from each other. They can (and should) be close enough to
overlap, which does not result in exceedingly high density because their kernel width is
set to be the same as the source particle’s (this intentionally violates Equation 3.27). To
avoid a sudden change in the kernel width the next time it is updated using Equation 4.2,
we let the kernel width adapt slowly to new values instead of directly assigning the result
of Equation 4.2. This kernel width treatment is not limited to the particles created by a
split, but is applied constantly to all fluid particles, so that abrupt kernel width changes
are avoided altogether. While the kernel width slowly shrinks, the two overlapping
particles start to naturally move apart without causing any sudden changes in the fluid
density field.

4.5 Adaptive Sampling
We now have a method for transitioning a high-resolution area to a lower resolution and
vice versa, and we are also able to let the areas of differing resolution correctly interact
with each other. The remaining question is how to determine the local target resolution
throughout the fluid. Previous works (see Section 2.2) often base the target resolution
on the depth within the fluid, where the depth is defined as the shortest distance to the
fluid surface. We consider the whole boundary of the fluid body as the surface, not only
the top2 layer of a fluid (e.g., the water surface of a lake). This includes the regions
where the fluid collides with other objects, be it a pool wall, a fish, or a rock that has
been dropped into the fluid and is slowly sinking to the ground. To prevent confusion,
we use the term fluid boundary instead.

Areas deep within the fluid get a lower target resolution, whereas regions near the
boundary get a high target resolution. There are two reasons for this: First, the collision
of the fluid with other objects might cause increased turbulence, which requires a higher
resolution for adequate representation. And second, when rendering the fluid, only the
surface is visible, and a higher resolution for this area increases the visual details. To
compute the depth within the fluid, a way to detect the fluid boundary is required.

4.5.1 Fluid Boundary Detection
Zhang et al. [ZSP08] classify each particle p as either boundary or non-boundary particle
by taking all neighboring particles, computing their center of mass χp, and measuring

2assuming the fluid is under the influence of downwards gravity
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the distance between χp and p. If p is within the fluid, the neighbors are expected to be
approximately evenly distributed around it, resulting in a short distance from χp to p.
In case p is located at the fluid boundary, there will be a direction without neighboring
particles, and this imbalance shifts the center of mass away from p, leading to a longer
distance between χp and p.

Our approach follows the same basic concept, but instead of computing the center of mass,
we re-use a value that already has to be computed during incompressibility constraint
solving. Equation 4.4 shows the gradient of an incompressibility constraint. Assuming
the constraint applies to the kernel centered at particle pi, the gradient for pi itself is

∇piCi(p) = − 1
ρ0i

j mj∇pj W (pi − pj , h)


. (4.30)

This vector indicates the direction of greatest constraint value (density) increase for pi,
and its length determines the rate of increase. If pi is surrounded by other fluid particles,
there will not be a single direction that significantly increases the density, resulting in a
short vector. In case pi is a boundary particle, this vector will be longer and point away
from the direction where neighbor particles are “missing”. In Figure 3.7, the gradient
∇p4C4 is relatively long because particle p4 is not evenly submerged in the fluid and is
therefore classified as a boundary particle. We use the length of ∇piCi(p) to determine
if a particle lies at the fluid boundary.

This classification has to be scale independent. For example, scaling the whole system
(specifically, the positions and the particle radii) by a factor of two halves the length of
the gradient. To account for this, we multiply the gradient with the kernel width before
using a threshold on the gradient length to detect boundary particles.

Our gradient-based approach as well as the center-of-mass method both result in occasional
misclassifications where particles within the fluid are detected as boundary particles due
to the constraint solver terminating before an equilibrium is reached. These false positives
are removed by checking if any of the neighbor particles pj lie in the approximate opposite
direction of the gradient:

− ∇piCi(p)
|∇piCi(p)| · pj − pi

|pj − pi| > 0.6. (4.31)

If this condition is fulfilled by at least one neighbor particle pj , pi is not considered a
boundary particle.

One problem with the gradient-based approach (as well as with the center-of-mass
approach) is that a particle without neighbors will not be classified as a boundary particle.
Without neighbors, there is no change in density when moving the particle, and the
gradient has length zero. Our solution addresses this by additionally considering the
estimated density at the particle location. This value is also already available due to
incompressibility constraint solving and is far below the rest density for isolated particles.

A similar problem occurs in areas where the fluid is only a thin film, as shown in Figure 4.5.
If the fluid only consists of one layer of particles lying on a plane in a three-dimensional
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Figure 4.5: If the fluid particles form a thin film with a thickness of only one particle,
the gradient ∇piCi has a short length, which usually only happens for particles fully
submerged in the fluid. In the depicted situation, the sum of all gradients ∇pj C5 with
j = 1, 2, 3, 4, 6, 7, 8, 9 results in a very short gradient ∇p5C5, which would prevent a
classification of p5 as a boundary particle. In a one-dimensional case, this classification
of p5 is correct, but for higher dimensions, p5 should be a boundary particle.

environment or on a straight line in a two-dimensional environment, the gradient can be
small, which would be misinterpreted as an indicator that the particle is deep within the
fluid. While the gradient would normally point from the boundary deeper into the fluid,
in the case of a thin film of fluid, the fluid is equally shallow in all directions. We do
not handle this case explicitly, because in our test setups, these thin layers only occur in
areas of low density, which already leads to a classification as boundary particles due to
the additional boundary criterion introduced in the previous paragraph.

4.5.2 Boundary Distance
Knowing which particles belong to the fluid boundary now allows us to estimate the
depth of each particle within the fluid. We define the depth as the shortest distance
to a boundary particle and call this the boundary distance. By using the neighborhood
relationship of the fluid particles (which has already been computed for incompressibility
constraint solving), this problem turns into a multiple-source shortest path (MSSP) graph
theory problem where the nodes are the particles and the edges are the neighborhood
pairs with the distances as their weights. This could be solved with a fast marching
algorithm, for example Dijkstra’s algorithm (but modified to allow multiple sources).
However, to utilize the parallel computing power of the GPU, instead of propagating
the boundary distance sequentially from one particle at a time, we instead update the
boundary distance by propagating the distance from every fluid particle to its neighbors
in every iteration. Furthermore, the movement of fluid particles between each time step
is small, so instead of recomputing the boundary distance from scratch every time step
by performing several propagation iterations in a row, we only do one iteration per time
step as an update to the old boundary distances to reduce the workload. Therefore, it
takes a few time steps after the start of the simulation until the entire fluid body is
populated with correct boundary distance values. At the start, every particle is initialized
as a boundary particle and therefore starts with a small boundary distance. Since we
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are mapping a small boundary distance to a fine level of detail, all particles start in
the highest fluid resolution, which corresponds to basic PBF. During a short warmup
phase, our algorithm propagates the boundary distances, evolving the simulation into our
adaptively sampled variant. The duration of the warmup phase approximately equals the
fluid depth divided by the kernel width of the small boundary particles, which amounts
to less than 30 simulation steps (or half a second) for all examples shown in Section 6.2.

The steps in every iteration are as follows: The boundary distance of boundary particles
is set to their own particle radius, and then the boundary distance of every fluid particle
is propagated to its neighbors. When propagating the boundary distance b1 of particle
p1 to a neighbor particle p2, the distance between p1 and p2 is added:

b2 = b1 + |p2 − p1| . (4.32)

This boundary distance b2 of particle p2 is only an approximation, because it assumes
that p1 lies exactly in the direction of the closest boundary from p2. In general, a particle
pj will have multiple adjacent particles pi that propagate their boundary distance to pj .
Unless one of the particles pi lies exactly in the direction to the closest boundary, all
of the propagated boundary distances will be overestimations. To select the boundary
distance closest to the truth, only the smallest propagated boundary distance is accepted.

4.5.3 Target Radius
With increasing depth into the fluid, the granularity of the fluid simulation should
decrease. For this, the radius of the particles has to increase with increasing boundary
distance. Using a linear function based on the boundary distance, we compute a target
radius per particle. Newly created particles generally start with boundary distance b and
target radius ř both set to r, but for particles pt created during a particle split, bt and řt

are copied from the source particle ps.

To get all particle radii as close to their target radii as possible, the particles can be split
to reduce the particle radius, and merged with a neighbor particle to increase the particle
radius. We only split a particle ps if after the split, the radius of both resulting smaller
particles is still at least as big as the target radius řs:

rs ≥ d√2řs, (4.33)

where rs is the particle radius before the split.

Conversely, we only merge two adjacent particles if after the merge, the radius of the
resulting bigger particle is still at most as big as the target radius ř:

rs
d + rt

d ≤ řd, (4.34)

where rs and rt are the radii of the two particles before the merge.

As we only allow each particle to partake in either one split or one merge, we do not have
to take into consideration any external changes of the particle radius throughout the
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merging duration. The target radius, on the other hand, might change throughout this
duration, but we do not include this possibility in the merging decision making. Even if
the target radius changes during the merging process, the current transfer is completed
as planned. If afterwards, the target radius deviates far enough from the particle radius
to fulfill one of the above conditions, the particle can partake in a new merge or split.

4.5.4 Finding Particle Pair Candidates for Merging

Equation 4.34 describes which condition the target radius has to fulfill to allow a merge
of ps into pt. Aside from this requirement, both particles should also be close to each
other in order to keep the resulting particle movement minimal. Some further control
over the merging pair regularity might be desired to prevent situations in which small
particles will become isolated without any potential merging partner after all surrounding
particles chose a different merging partner.

Our initial solution to this problem included the construction of a regular grid with
different levels of detail, similar to the data structure described in Section 5.4.2. Only
particles sharing the same cell on their respective level of detail would be allowed to
merge. The results from following this approach exhibited suboptimal behavior, since
particle pairs which would actually be ideal for being merged were often disregarded by
this method because the particles were assigned to different cells. In search of a better
approach, we switched to a different method that does not only work better, but is also
simpler.

Instead of basing the intrinsic kernel width ȟi on the actual particle radius ri as in
Equation 4.3, we base it on the target radius ři:

ȟi = kři. (4.35)

The effect is that particles that are smaller than their target radius—and are therefore
ready for a merge—will start passing through other particles that are also ready for
merging, as exemplarily shown in Figure 4.6 (the reason for particles passing through each
other is explained in Section 3.2.4). With this approach, the particles arrange themselves
in preparation for a potential merge. Particles that can merge together according to
their target radius will start forming clusters, and particle merge pairs can be selected by
finding particles overlapping each other that fulfill Equation 4.34. In our implementation,
we define two particles as “overlapping” if their distance is less than any of the two
particle’s radii. The smaller one of the two particles is chosen as the source particle that
merges into the larger target particle.

We also considered adding additional restrictions for the merging: Instead of just requiring
similarity in the particles’ positions, their velocity vector could also be required to match
in order to avoid merging away fluid turbulence. However, we did not notice any difference
in our setup, so we removed this requirement.
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Figure 4.6: This figure shows the fluid behavior when the intrinsic kernel width is based
on the target radius instead of the current radius. The target radius increases with the
fluid depth, which causes the particles in the fluid center to naturally form clusters which
can then be merged into bigger particles. Particle pairs currently selected for merging
are highlighted in color.

4.6 Streamlined Variant

The concepts described up to now can be used to set up a fluid simulation with adaptive
sampling. However, some aspects have potential for simplification thanks to the way we
let the fluid’s target resolution be dependent on the boundary distance. The kernel width
propagation is necessary for a balanced interaction between big and small particles, but
it also adds complexity as well as the need to search for neighbors in a significantly larger
area than within the radius of a particle’s kernel width. The target radius increases
with the boundary distance, and so does the kernel width, which is in linear dependence
to the target radius. But the kernel width propagation has to work into the opposite
direction, to adapt the kernel width of fluid regions closer to the fluid boundary to ensure
the correct interaction with deeper, larger particles.

As the coarseness of the fluid resolution (and therefore the target radius) is only dependent
on the boundary distance, it is easy to predict the particle radii in the close vicinity of
any given particle pi. This allows to predict the effects of the kernel width propagation
and express the estimated final kernel width explicitly in a function only depending on
the boundary distance without having to perform the propagation step. Or, looked upon
from a different viewpoint, in this variant we define the kernel width to be in linear
dependence to the boundary distance and find the corresponding target radii that still
satisfy the conditions that were previously enforced by kernel width spreading.
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fȟ

fř ¼
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Figure 4.7: The kernel width fh(b), the intrinsic kernel width fȟ(b), and the target radius
fř(b) can be calculated based on the boundary distance b. First, fh is defined using
Equation 4.36 with a fixed gradient a. Once fh is decided, an fȟ has to be found that
fulfills the following condition: For every particle pi, all of its adjacent particles pj (that
lie within the intrinsic kernel width ȟi = fȟ(bi)) must have a kernel width hj = fh(bj) for
which hj ≥ ȟi holds true, so that pi is included in the neighborhood of those adjacent pj .
The target radius fř is defined by Equation 4.35 (and assuming k = 4) as one quarter of
the intrinsic kernel width fȟ.

Figure 4.7 shows the kernel width plotted against the boundary distance which we define
as a linear relationship fh. Ideally, every kernel lies completely inside the fluid for an
accurate density estimation. Therefore, the kernel width should not be larger than the
boundary distance, meaning that the gradient of fh should not surpass 1, which is the
dashed line angled at 45◦ in the plot of Figure 4.7. For several reasons, the gradient
should be chosen even lower than 1: If the kernel always extends all the way to the
boundary, the particles in the fluid center might have almost all other fluid particles
as their neighbor, leading to a high computational cost (Figure 4.8). In addition to
that, the boundary distance is computed using a distance propagation method that
furthermore only performs one iteration per time step, causing the resulting boundary
distance to always be slightly outdated. This boundary distance should only be seen as
an approximation that will often over-estimate the distance, so a security margin should
be included.

With the linear relationship fh between boundary distance and kernel width fixed, we can
attempt to find a fitting linear relationship fȟ between boundary distance and intrinsic
kernel width, and finally a linear relationship fř between boundary distance and target
radius. The requirement is, as described in Section 4.2, that every particle’s kernel needs
to be big enough to cover all adjacent particles, even if they are larger and therefore
further away. This means that the intrinsic kernel width ȟi of a particle pi can only be
chosen in a way where all particles pj within the intrinsic kernel (i.e., within range ȟi)
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p0

Figure 4.8: The effect of setting the kernel width to the boundary distance: particles near
the center of the fluid body might have almost all particles as their neighbors. The kernel
centered at p0 reaches all the way to the boundary, and all neighbor particles within
the kernel are highlighted with red circles. The high number of neighbors increases the
computational effort.

have a kernel width hj at least as big as ȟi. If we define fh to be

fh(b) = ab (4.36)

with a fixed gradient a < 1, then we can construct fȟ as

fȟ(b) = a

1 + a
b (4.37)

so that it fulfills the aforementioned requirement.

Considering our definition of the intrinsic kernel width in Equation 4.35, fř can easily be
derived from fȟ as

fř(b) = a

k + ka
b. (4.38)

Because we specified that the kernel should always lie completely inside the fluid to get
an accurate density estimation, the kernel widths (and particles) shrink without limit
the closer they get to the boundary. This would result in infinitely many particles, so we
define a lower bound rmin for the target radius, which changes Equation 4.38 to

fř(b) = max


a

k + ka
b, rmin


. (4.39)
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Equations 4.36 and 4.37 change to

fh(b) = max(ab, krmin) (4.40)

fȟ(b) = max


a

1 + a
b, krmin


. (4.41)

By using fř and fh to set the target radius and the kernel width of each particle, the
computationally expensive kernel width propagation can be avoided. However, it also
introduces a disadvantage: The linear functions increase without limit, and for any given
particle pi, it is predicted that there will be larger adjacent particles further into the
fluid, and that the kernel width has to be increased from the intrinsic kernel width to
accommodate for that. If pi is in the center of the fluid, this kernel width increase is
unnecessary and increases the workload because of the larger neighborhood. However,
the plots in Chapter 6 show that the impact on the total workload is negligible.
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CHAPTER 5
Implementation

In the previous chapter, we discussed several variations of our approach for implementing
adaptive sampling in PBF. In this chapter, we describe which of these methods we have
selected for our concrete implementation and how they integrate into the general PBD
algorithm. Our method selection led to the best results in our tests in terms of quality
and performance. The results presented in Chapter 6 have been generated using this
setup as well. Furthermore, we also address some implementation details like the used
data structures, the data types, and the neighborhood search.

5.1 Algorithm
We implemented the streamlined variant as described in Section 4.6 in a GPU-accelerated
manner using C++ and Vulkan 1.2 [Khr21] to exploit the parallelizability of the problem.
The steps of the general PBF algorithm extended by our method result in the following
sequence of operations:

1. The next particle positions pi are predicted based on xi and vi. This is one of the
basic PBD steps described in Section 3.1.1.

2. Active particle transfers that perform gradual merges or splits are applied. This
step is part of our adaptive sampling extension and is described in Sections 4.3
and 4.4. The active transfers are stored in a GPU buffer where each entry contains
references to the source and target particles ps and pt, the remaining duration
tleft of the transfer, and the transfer type (merge or split). Finished transfers are
deleted from the transfer list. Because our final solution uses instant splitting, all
splits finish immediately. After a specific gradual merge has finished, its source
particle is deleted.
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3. Each particle’s kernel width is updated using its boundary distance according to
the streamlined variant. This step is also added by our method and is described in
Section 4.6. As mentioned at the end of Section 4.4.3, the kernel width change per
timestep is limited to a certain percentage of the old value to prevent the negative
effects of large sudden changes. In our implementation, this limit is set to 1 %.

4. The neighborhood search is executed. Our choice for the neighborhood search
algorithm is described in Section 5.4.2. For each particle pi, all particles pj closer
than hi are determined and the neighborhood information is stored in the form of
neighbor pairs (pi, pj).

5. The constraints are solved. This is one of the basic PBD steps described in
Section 3.1.1.

6. Each particle’s ∇piCi(p) that was computed for the incompressibility constraint
during the constraint solver’s last iteration is used to detect boundary particles.
This is one of our added steps and is described in Section 4.5.1.

7. Each particle’s boundary distance is updated by performing one iteration of distance
propagation. This step introduced by our method is described in Section 4.5.2.

8. Each particle’s target radius is computed using the boundary distance. This step,
too, is an extension of our method over basic PBD, and is described in Section 4.5.3.

9. Merge and split opportunities are detected and added to the particle transfer list.
This step adds the adaptive sampling characteristic to PBF, and is described in
Sections 4.5.3 and 4.5.4. For splits, new target particles are generated in the vicinity
of the source particles, as described in Section 4.4.1.

10. The particle velocity vectors are updated based on the old and the new particle
positions. This is one of the basic PBD steps, as described in Section 3.1.1.

5.2 Particle Data Structure
Allowing particles to split and merge increases the requirements on the used data
structures and therefore also the complexity of the implementation. With splitting and
merging, the total number of particles fluctuates over time, and particles might have to
be deleted from various locations in the buffer, either leading to gaps in the buffer or
requiring a memory relocation of other particles to fill the gap. As our implementation
runs on the GPU, we often execute one thread per element in the particle buffer. If this
buffer were to contain gaps, the respective threads would have no work to do, leading to
high divergence within warps and reducing the efficiency. Therefore, it is preferable to
fill the gaps. In case the particles are resorted every timestep to preserve their locality1,
the particles have to be moved anyway, which can be combined with filling the gaps.

1For example by using a Z-order curve [Mor66]; the particles are stored in the buffer in a way so that
particles with positions close to each other are also likely stored close to each other within the buffer.
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The memory relocation of particles, however, gives rise to another problem: Our merging
processes are happening over a period of time during which we need to keep references
to the source and the target particles which are currently in the process of being merged.
Whenever a particle is relocated within the buffer, its reference has to be updated as well.

This could be avoided by alternating between two phases: One where merges are
happening, and one immediately after the merges finished, where the gaps caused by the
merges are closed. Particle resorting for locality preservation could also only happen in the
latter phase. As this limits the times when merging can happen, in our implementation
we are following the reference-update approach instead.

5.3 Data Type of Particle Positions
Our GPU implementation solves multiple constraints simultaneously. Several of these
constraints might share the same particle as being of influence, and they might attempt
to shift this particle at the same time, possibly in different directions. To handle this
concurrent memory access, we use atomic add functions provided by the GPU. The
Vulkan API—which we used for the GPU implementation—only supported atomic add
functions for integer data types at the time when we implemented our solution [Khr21].
Therefore, we decided to store the particle positions not as float vectors, but as integer
vectors, and scale the entire simulation so that the resolution of the position grid is
sufficiently fine.

There is another argument that can be made for choosing integer over float for representing
positions: The float data type is especially precise around the value zero, but loses precision
with increasing absolute value. This makes it especially useful for representing velocities
or masses, where small value changes are of more importance if they happen close to zero
than if they appear at some high value: As an example, the difference between masses of
0.01 and 0.11 is very important, while the difference between masses of 100.0 and 100.1
is most of the time negligible, even though in both cases the difference is 0.1. However,
in the case of positions, value changes are of equal importance across the whole domain.
Moving an object by a distance of 0.1 has the same relevance at position 0.01 as it has at
100.0. With integer values, the precision is equal everywhere within the representable
range, which makes them appropriate for storing positions.

5.4 Neighborhood Search

5.4.1 Grid-Based Neighborhood Search
Finding the neighbor particles to each fluid particle makes up a large portion of the
necessary computation time per timestep. A commonly used method in the field of fluid
simulation is the grid-based neighborhood search [MM13, MMCK14]. An efficient GPU
implementation was first described by Green [Gre08]. For this method, a uniform grid
spanning the whole simulation domain is used. Each particle is assigned to a cell, and
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the grid data structure is set up to allow the lookup of cell content in constant time.
Using this data structure, finding the neighbors of a particle pi amounts to the lookup of
all cells close to the cell that pi belongs to.

In the original method, Green [Gre08] recommends to set the cell size to be equal to
the particle size 2r to find particle collisions. For incompressibility constraints, the cell
size accordingly should be equal to the kernel width h to find all neighbors. With this
condition fulfilled, only the directly adjacent cells (including diagonal adjacency) have to
be regarded, leading to a lookup of 3d cells (9 cells in 2D or 27 cells in 3D).

Our fluid simulation method leads to particles of varying sizes and kernel widths, which
makes this recommended optimization impossible. Setting the cell size according to the
smallest occurring particle radius rmin to krmin has the effect that larger particles have
to lookup a large number of neighbor cells. On the other hand, setting the cell size to a
larger value leads to an insufficient resolution in the area of small particles so that each
cell contains a large amount of particles, many of which will not be close enough to be
relevant for the neighborhood search.

The second argument against the grid-based approach for the neighborhood search is
that it requires to restrict the simulation domain to an area small enough to be covered
by a uniform grid. To allow for linear cell lookup times, the data structure requires
storage proportional to the number of cells. Therefore, the possible size of the grid is
severely limited. A grid with the dimensions 2048 × 2048 × 1024 cells already exhausts
the whole range of numbers representable by an unsigned 32-bit integer for enumerating
the cells. One advantage of Lagrangian fluid simulation over Eulerian fluid simulation is
that the simulation domain does not have to be limited by a fixed-size grid, and using
a fixed-size grid for the neighborhood search removes that advantage. The core of this
problem is that the density of particles will likely vary throughout the simulation domain.
Some regions do not contain any fluid at all, and with our variable sampling method,
some regions deep within the fluid have a coarser fluid resolution and therefore contain
fewer particles. As the cells are only sparsely occupied, a possible countermeasure is
to use a hash map to store the cell contents. This preserves the linear cell lookup time
but reduces the required storage. However, this also introduces a new disadvantage by
increasing the randomness of the storage access.

5.4.2 Binary Neighborhood Search
This section describes our modifications to the grid-based neighborhood search by Green
that avoid the two problems described above (fixed cell size and simulation domain
bounded by grid size), while also avoiding scattered storage access. This method is
related to octrees and uses the Z-order curve in combination with binary searches to find
the neighbors.

The Z-order [Mor66, TH81] assigns a scalar value to any multidimensional data point in
a way so that two data points that are close together in their multidimensional space
are likely also close together in their one-dimensional mapping. This makes the Z-order
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Figure 5.1: For the Z-order, the binary representations of a cell’s coordinates are
interlinked. In this example, the Z-order index of the two-dimensional point (17, 6) is
computed. This Z-order index can also be seen as a sequence of quadtree node IDs. From
left to right, each digit pair equals the next child index, beginning from the tree root: 0,
1, 0, 2, 2, 1.

very useful for storing the particles, because then neighboring particles are mostly close
together in memory, which improves the performance of buffer reads. The Z-order
bijectively maps cells of a uniform grid to a unique integer. The uniform grid has d
dimensions, and for every cell, each of its d coordinates is stored in the form of a binary
number with g digits. Because it is bijective (one-to-one correspondence), the mapped
integer has d · g digits in its binary representation.

The mapping works by interlinking the binary digits of the d coordinates (Figure 5.1
shows an example with d = 2). The least significant bit of every coordinate is placed in
the d least significant bits of the resulting integer, the next d digits of the result are the
next-to-least binary digits of every coordinate, and so on. As a result, leaving out the
last ḡ · d digits of the Z-order index is the same as leaving out the last ḡ digits of every
cell coordinate, which in turn is the same as reducing the grid’s granularity. In fact, the
Z-order is closely related to quadtrees and octrees [Mor66]: In an octree (where d = 3),
the first three binary digits of the Z-order index identify the child of the octree root node
that contains the data point. The next three digits identify this child’s child node, and
so on.

This property simplifies the access to the data on different coarseness levels: If the Z-order
was computed based on a 2g × 2g × 2g uniform grid, then we can easily interpret the data
as being structured in a coarser grid of 2g−1 × 2g−1 × 2g−1 just by omitting the last three
digits of the Z-order index. Any of the g granularity levels is accessible by dropping a
multiple of three digits from the end of the index.

In Section 5.4.1, we briefly describe the grid-based neighborhood search by Green [Gre08],
but also explain why we consider this method unfitting for our implementation. One of
the reasons is the uniformness of the grid, which is less suitable if the particle density—
and especially the queried neighborhood area—varies depending on the location. This
problem is avoided now, because as described above, the Z-order can be used to interpret
the data as being structured in different grid resolutions. Our other argument against
using the grid-based neighborhood search was in regard to the limitation of the overall
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size of the uniform grid. Because each cell needs its own space in memory, the number of
cells is limited by the available memory. In our method, we instead store the particles in
a list sorted in Z-order, but without leaving a space in the place of empty cells. Due to
this, we cannot achieve the constant lookup time that is possible with the grid-based
method by Green [Gre08]. Instead, we use binary search to look for a Z-order index.
As we store particle positions as 32-bit integer vectors, the data points are already in a
uniform grid with a size of 232 cells along each axis. For a three-dimensional simulation,
the Z-order index accordingly has to be a 96-bit unsigned integer, so that the grid covers
the whole available space.

The final algorithm for our neighborhood query based on binary search is as follows:

1. Calculate the Z-order index of every particle.

2. Sort the particles by their Z-order index.

3. For every particle pi, find its neighbors within a certain particle-dependent distance
hi:

a) Select the finest grid resolution where the cell widths are not smaller than hi.
b) Omit the corresponding number of binary digits from the end of the Z-order

index in all following computations, so that we work in the correct grid
resolution.

c) Get the Z-order index of pi.
d) Get the Z-order indices zn of all 3d neighboring cells (which includes the cell

pi is located in).
e) Find all particles with a Z-order index equal to any zn by using 3d binary

searches on the sorted particle list.
f) Remove all particles with a distance to pi greater than hi from the neighbor-

hood query result.

5.4.3 Ray Tracing-Based Neighborhood Search
As an alternative to the binary neighborhood search, we tested one more approach
that is currently only applicable for a small subset of available graphics cards. For this
method, we exploit the ray tracing technology that is supported by some of the latest
high-end graphics cards, like NVIDIA’s RTX GPUs [NVI18]. The following description
assumes a three-dimensional fluid simulation, but applies in the same way to one- or
two-dimensional cases.

The ray tracing API allows us to create a list of bounding boxes that repre-
sent the scene, build an acceleration structure (we are using the Vulkan extension
VK_KHR_acceleration_structure [Khr21]), and then query all boxes that inter-
sect with a given line segment using VK_KHR_ray_query. This line segment can be
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Figure 5.2: A ray tracing query used for the neighborhood search. A ray starting from
position p0 is created and set to a short length so that it approximates a single point.
Using this ray, the ray tracing API will report hits on the objects (kernels) W0, W1, W2,
W3, and W4. From this, we know that p0 is a neighbor of p1, p2, p3, and p4. It is worth
noting that the inverse is not necessarily true: p1 and p2 are not neighbors of p0.

set to a very short length, which effectively turns the query from a line-box intersection
into a point-box intersection. By defining the box as the bounding box of a sphere and
filtering out any query results where the “point” lies outside of the sphere, the query can
be turned into a point-sphere intersection.

For our fluid simulation method, we need to find all neighbor particles that lie within
the kernel Wi for each particle pi. Specifically, for each particle pi, we need to query
all particles within a sphere of radius hi that is centered at pi. This is equivalent to a
point-sphere intersection and can be done using the ray tracing API.

The data passed to the ray tracing API for building an acceleration structure are the
bounding boxes of all n kernels. Afterwards, we perform a ray tracing query for each
particle pj , where the ray is a very short line segment at position pj . Figure 5.2 shows
one such query. The result of the query is a list of kernels which encompass pj , meaning
that the result is not the list of neighbors, but a list of particles pi that pj is a neighbor
of. To get the list of neighbors for each particle pi, we could append pj to the neighbor
list of each query result pi. However, as we do not need the lists explicitly compiled,
we instead append the information about the neighborhood of pj to pi to a list of all
neighborhood relationships within the fluid.

53



5. Implementation

5.5 Challenges and Remaining Problems
An inherent problem of our streamlined variant is that the kernel width increase happens
before merging. This causes the neighbor pair count to initially increase due to the larger
kernels before being reduced due to the overall particle count reduction after merging
has finished.

Another inconvenience is caused by the fact that we do not impose any restrictions on
allowed particle radii with the goal to merge and split as often as possible. This can
lead to situations where a particle gets near to the boundary with a radius bigger than
the minimum target radius, but the particle is too small to be split. Such a situation
can occur, for example, if three particles of minimum radius (called minimum particles
in the context of this example) merge together. After one split of this big particle, the
two resulting particles are still bigger than the minimum radius, but neither of them
can split any further, since both only consist of 1.5 minimum particles. More generally,
this problem occurs whenever a particle that does not consist of an even number of
minimum particles gets split. One way to avoid this would be to only allow merges of two
equally sized particles, but this could prevent many useful merges. Alternatively, splits
of particles containing an uneven number of minimum particles could be implemented in
a way so that the resulting two particles do not contain fractions of minimum particles
by not having them both equally sized.
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CHAPTER 6
Results

In this chapter, we compare our method (using the streamlined variant) with basic PBF
where all particles have the same mass and kernel width. We compare two scenes, each
of them in both 2D and 3D: a waterfall scene where the fluid starts in the upper pool
and pours down into the lower pool, and a circular/spherical fluid body without any
movement, which is the ideal setup to showcase the advantages of our method. For the
2D and 3D waterfall scene, we compare the runtime of our method with the runtime
of basic PBF. The most time-consuming steps are the neighborhood search and the
constraint solving, so we list the durations of these two steps in addition to the overall
time it takes to complete an entire simulation step. Because the computation time of our
method fluctuates, we capture it at several points in time instead of averaging it over the
whole simulation to present more meaningful results.
The runtime fluctuations in our method were expected: The number of compute shader
threads for the neighbor search depends on the particle count, and the number of threads
for constraint solving is determined by the particle count as well as the neighbor pair
count. Both of these counts greatly vary throughout the simulation with our method—the
particle count due to merging and splitting, and the neighbor count due to the variations
in sampling density, kernel width, and particle count. Regarding the particle count,
our method provides certain guarantees: With sufficient fluid depth, our method will
always reduce the number of particles. It is also guaranteed to never increase the number
of particles. For the neighbor pair count, no such general statements can be made.
Therefore, the analysis in this chapter will mainly focus on the number of neighbor pairs
in different scenarios.
Due to the increasing kernel widths, the number of neighbor pairs can be higher with our
method compared to basic PBF. This is especially noticeable in situations where a big fluid
body consisting only of small particles starts the merging process—this situation might
occur immediately after initialization of a fluid body, or after strong turbulence inside the
fluid that caused most particles being split into particles of smallest size. Our method first
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increases the kernel width, leading to an increase of neighbor pairs, followed by particle
merges, leading to a reduction of particles and neighbor pairs. Whether the reduction of
neighbor pairs as a result of the merges manages to outweigh the initial increase depends
on the fluid depth. Section 6.1 addresses this question with a mathematical analysis,
while Section 6.2 presents actual measurements from our simulations.

6.1 Expected Reduction of the Number of Neighbor Pairs
In this section, we analyze the expected number of neighbor pairs when using our method—
the streamlined variant described in Section 4.6—and compare it to the expected number
of neighbor pairs when using basic PBF where all particles represent the same amount
of fluid. We do these computations for the one-, two-, and three-dimensional case and
compare these results to see the effect of the dimensionality on the results.

For simplicity, we assume a spherical/circular fluid body with the radius rf , centered
at the origin of the coordinate system. The distance to the fluid boundary is therefore
defined as

b = rf − |x|, (6.1)

with x being the distance from the fluid center.

After horizontally shifting the function so that the fluid center is at x = 0, the computation
of the kernel width turns from Equation 4.40 into

fh(x) = max(a(rf − |x|), krmin). (6.2)

The target radius is defined similar to Equation 4.39, only shifted:

fř(x) = max


a

k + ka
(rf − |x|), rmin


. (6.3)

Equations 6.1 to 6.3 apply to one-, two-, and also three-dimensional setups. The following
equations are specifically for the one-dimensional case: Assuming that the particle radii
match the target radii, the particle density can be computed using

fd(x) = 1
2fř(x) . (6.4)

The expected number of neighbors of a particle at any given distance from the fluid
center can be computed with

fn(x) =
x+fh(x)

x−fh(x)
fd(y1) dy1. (6.5)

Weighing this number by the particle density gives us the neighbor pair distribution

fp(x) = fd(x)fn(x), (6.6)
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Figure 6.1: The distribution of neighbor pairs within a one-dimensional fluid of radius
35. This plot shows the functions from the Equations 6.2 to 6.6. fh represents the kernel
width, which has a lower bound of krmin = 4 and starts increasing at a boundary distance
of b = krmin

a = 8 (x = 27 from the fluid center). With the growth of the kernel, the
neighbor count fn also increases, but reaches an equilibrium as soon as the kernel only
contains the linear section of fř (between x = 0 and x = 23). Closer to x = 0, the kernel
overlaps with the peak of fř, again leading to an increase of the neighbor count. This
increase of neighbors per particle is counteracted by the reduction of particles starting
at x = 23. The particle density fd shrinks with increasing fluid depth, resulting in the
actual neighbor pair distribution fp. Compared to non-adaptive PBF, the outskirts of the
fluid produce more neighbor pairs (light red area), but the center of the fluid produces
less (light blue area). With increasing fluid radius rf , the blue area outweighs the red
one, leading to fewer neighbor pairs, which in turn means there are less computations
necessary.

and integrating this over the whole fluid body results in the expected number of neighbor
pairs:

pe =
rf

−rf
fp(y1) dy1. (6.7)

Figure 6.1 shows plots of these functions for rf = 35, a = 0.5, k = 4, and rmin = 1. For
small fluid bodies, our method causes the number of neighbor pairs to be higher than
in basic PBF. The kernels of many particles grow in size, but due to the lack of fluid
depth, not many particles get merged. The small reduction of the number of particles is
outweighed by the increase of neighbors per particle, so that our method is inferior for
shallow fluids. However, with increasing depth, more particles get merged, which soon
mitigates the effects of the increased kernel size. With the properties

a = 0.5
k = 4

rmin = 1,

our method starts reducing the number of neighbor pairs compared to basic PBF at
rf ≈ 32 (Table 6.1).
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6. Results

a = 0.5 Fixed a From Table 6.2
d = 1 32 32
d = 2 50 47
d = 3 80 62

Table 6.1: The minimum fluid body radius rf where our method starts to produce fewer
neighbor pairs than basic PBF. The other properties are fixed to k = 4 and rmin = 1.
With increasing dimensionality, the required radius also increases.

In two dimensions, the Equations 6.4 to 6.7 become

fd(x) =
 1

2fř(x)

2
(6.8)

fn(x) =
fh(x)

−fh(x)

√
fh(x)2−y12

−
√

fh(x)2−y12
fd


(x + y1)2 + y22


dy2 dy1 (6.9)

fp(x) = fd(x)fn(x) (6.10)

pe =
2π

0

rf

0
fp(y2)y2 dy2 dy1. (6.11)

With the same values for a, k, and rmin as above, the turning point from which on our
method produces fewer neighbor pairs is at rf ≈ 50 (Table 6.1).

The equations for the three-dimensional case are

fd(x) =
 1

2fř(x)

3
(6.12)

fn(x) =
fh(x)

−fh(x)

√
fh(x)2−y12

−
√

fh(x)2−y12

√
fh(x)2−y12−y22

−
√

fh(x)2−y12−y22
fd


(x + y1)2 + y22 + y32


dy3 dy2 dy1

(6.13)

fp(x) = fd(x)fn(x) (6.14)

pe =
2π

0

π

0

rf

0
fp(y3)y3

2 sin( dy2) dy3 dy2 dy1. (6.15)

Using the same values for a, k, and rmin also in this case, our method starts producing
better results at rf ≈ 80 (Table 6.1).

While we have constantly used a = 0.5 for our analysis so far in order to directly compare
the performance of our method for different dimensionalities, the optimal value for a
actually varies depending on the dimensionality and the other properties (rf , k, rmin).

We do not consider variations for k, as smaller values would lead to wrong density
estimates, and larger values are guaranteed to increase the number of neighbor pairs
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rf = 35 rf = 50 rf = 75 rf = 100 rf = 200 Fixed
d = 1 0.44 0.47 0.5 0.5 0.51 0.5
d = 2 0 0.33 0.4 0.4 0.44 0.4
d = 3 0 0 0.28 0.31 0.35 0.3

Table 6.2: The optimal values of a for each dimensionality, depending on the fluid body
radius rf . The rightmost column contains our chosen fixed values for each dimensionality.

Particle Count Neighbor Pair Count
Basic Our Method Reduction Basic Our Method Reduction

d = 1 100 38 −62.0 % 400 218 −45.5 %
d = 2 7854 3331 −57.6 % 98 696 63 245 −35.9 %
d = 3 523 599 296 159 −43.4 % 17 545 963 13 809 794 −21.3 %

Table 6.3: A comparison of the expected number of particles and neighbor pairs when
using basic PBF and when using our method. The fluid radius rf is set to 100, rmin is
set to 1, k is 4, and the fixed values from Table 6.2 are used for a.

and worsen the performance. Without loss of generality, we also fix rmin = 1. Doubling
rmin is the same as halving rf , meaning the relation between rmin and rf is what actually
matters. This leaves rf as the only remaining influence to consider.

Table 6.2 lists approximations of the ideal a values (in regard to the resulting neighbor
pair count) in the one-, two-, and three-dimensional case for a selection of fluid body
sizes. These values show that the dimensionality has a rather strong influence on the
ideal a values, while the different rf values only lead to minor variations (once the fluid
surpasses the size given in Table 6.1). Consequently, we decided that using a fixed global
value for a that only depends on the dimensionality is sufficient. Our values chosen as
the “fixed a” are listed in Table 6.2 and are based on the other optimal values for a, also
listed in the table.

Using these fixed values for a, the thresholds for rf from which on our method reduces the
total number of neighbor pairs shrink to rf = 47 and rf = 62 for two and three dimensions,
respectively (see Table 6.1). The actually expected reduction in the particle count and
the neighbor pair count for a fluid of radius 100 is listed in Table 6.3. Figure 6.2 and
Figure 6.3 plot the expected reduction in the particle count and the neighbor pair count
depending on the size of the fluid body.

One thing to take note of is that with our method, the number of neighbors fn(x) strongly
varies between all fluid particles. Figure 6.4 shows that especially in higher dimensions,
particles in the center of the fluid can have over four times more neighbors compared to
particles at the fluid boundary. Depending on the implementation of the incompressibility
constraint solver, this might introduce additional computational bottlenecks. If the solver
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Figure 6.2: The expected particle count reduction for different fluid sizes. The fixed values
from Table 6.2 are used for a in each respective dimensionality. The other properties are
fixed to k = 4 and rmin = 1.
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Figure 6.3: The expected neighbor pair count reduction for different fluid sizes. The
fixed values from Table 6.2 are used for a in each respective dimensionality. The other
properties are fixed to k = 4 and rmin = 1. The 0 % crossing points result in the values
listed in Table 6.1.
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Figure 6.4: The dimensionality has high influence on the shape of the functions used to
predict the number of neighbor pairs. With an increasing number of dimensions, the
number of neighbors per particle fn(x) increases dramatically—especially in the center
of the fluid. All three plots use the properties rf = 75, k = 4, and rmin = 1. For a, the
fixed values from Table 6.2 are used.

should be parallelized on the GPU, then one possible approach might be to start one
thread per fluid particle and in each thread iterate over all of the particle’s neighbors to
use them in the necessary calculations. Because of the high fluctuation of the neighbor
count, there is a high potential for loop divergence, which will likely incur performance
penalties.

Having the particles stored in a locality preserving order (e.g., the Z-order [Mor66]) can
reduce the severity of this problem. The number of neighbors is similar for particles that
are close together (fn(x) is continuous), so if the particles handled within the same warp
are close together, the loop divergence is minimized.

Alternatively, the solver can be implemented using a different structure: Instead of having
one thread per particle, each thread could handle one neighbor pair. This ensures that
each thread has the same workload. However, this method also severely increases the
number of threads and necessary memory reads.

In our test implementation, we decided on the latter option in conjunction with atomic
add operations. While the thread divergence is kept low, the computation time of our
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test implementation is rather high, probably due to the high number of memory reads
and atomic operations.

6.2 Measurements
In this section we will present some measurements of our test implementation to evaluate
our method. Additionally, we will show some screenshots that allow a visual comparison
of our method with the original PBF. Finally, we also include some measurements that
evaluate the accuracy of the equations presented in Section 6.1.

As mentioned before, our test implementation is currently not optimized for performance:
We use an indexed data structure for the particles that allows for a modular design where
fluid particles can be stored as regular particles with their fluid-specific properties being
stored in separate dedicated buffers, but the extensive use of indexed data structures
also adds some overhead in computation and especially memory access. Optimizing the
performance of our implementation would require major structural changes, which are
left for future research.

Nonetheless, the neighbor pair count reduction discussed in Section 6.1 shows the
advantages of our method over the original PBF for large fluid bodies. Figure 6.5
compares a circular fluid simulated with basic PBF to the same circular fluid simulated
with our method. Some particle properties of the fluid in Figure 6.5b are plotted
in Figure 6.6 and compared to the expected properties based on the equations from
Section 6.1. As this circular fluid has the same properties as the one analyzed in Table 6.3,
the particle count and the neighbor pair count can also be directly compared to the
expected values, which is done in Table 6.4.

For a comparison of our method to basic PBF in regard to the visual results, we have listed
several snapshots of the two simulations in Figure 6.7. In this two-dimensional scenario,
the fluid pours from one container down into another. Since most of the time the fluid is
splashing and swirling, our method keeps the particle size small throughout the pouring
phase. Once the fluid gathers in the lower container, the particles start merging again.
However, in preparation for merging, the kernel widths increase beforehand, leading to
an increased number of neighbor pairs. After reaching a peak of 231 567 neighbor pairs
in Figure 6.7l, the particle reduction due to the ongoing merges takes effect and reduces
the number of neighbor pairs in Figures 6.7n and 6.7p.

The measured computation times listed in Table 6.5 reflect the numbers of particles and
neighbor pairs: The lower number of particles in our method reduces the time spent
searching each particle’s neighbors, and the increased number of neighbor pairs during
the start of merging leads to more time spent solving incompressibility constraints. In
the first snapshot after 30 seconds, the neighbor pair count is reduced by a quarter, but
the constraint solving still takes approximately the same time. This might be caused
by our test implementation using atomic operations for shifting the particles: In our
method, most particles are neighbor to more particles than in basic PBF, resulting in
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6.2. Measurements

(a) Basic PBF (b) Our Method

Figure 6.5: A comparison between basic PBF and our method on the example of a
circular, two-dimensional fluid. In (a) are 7853 particles, while in (b), our method has
reduced the number of particles to 3154.

Particle Count Neighbor Pair Count
Basic Our Method Reduction Basic Our Method Reduction

Expected 7854 3331 −57.6 % 98 696 63 245 −35.9 %
Measured 7853 3154 −59.8 % 92 200 66 011 −28.4 %

Table 6.4: A comparison of the expected particle count and neighbor pair count listed in
Table 6.3 to the numbers measured from our simulated fluid depicted in the screenshots
in Figure 6.5. Our method actually reduced the number of particles more than expected.
This is probably caused by bigger particles advancing towards the boundary but still
not being close enough to perform a split, or also by particles affected by the problem
described in Section 5.5. On the other hand, the total neighbor pair count shows less
reduction than expected, which aligns with the results from Figure 6.6, as this plot shows
that the neighbor count is higher than expected for all particles closer to the fluid center.
Lastly, the difference between the expected and the actual neighbor pair count for both
methods might be surprising, but this is probably caused by Equation 6.8 not accounting
for the missing particles beyond the fluid boundary.
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Figure 6.6: A selection of particle properties measured from the two-dimensional circular
fluid depicted in Figure 6.5b is plotted against the particle distance from the fluid center.
The expected values are drawn as dashed lines, while the actual values form the zigzag
lines. The boundary distance based on propagation starting at the boundary is close to
the expected value throughout the fluid, and so are the directly derived kernel width and
target radius. Merging and splitting are mostly able to closely adapt the actual radius
to the target radius. Only near the fluid center, the radius lies below the target radius
because some merge opportunities were not yet detected, or the merges were not finished.
The neighbor count is higher than expected, probably due to particle clustering and the
variation in particle sizes caused by ongoing or missed merges. Nevertheless, the total
neighbor pair count is with 66 011 noticeably smaller than with basic PBF, where the
neighbor pair count is 92 200.
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increased simultaneous write accesses to the same memory location when each constraint
shifts the neighbor particles.

A similar comparison, but for three dimensions, is done in Figure 6.8, with the corre-
sponding computation times listed in Table 6.6. With the higher dimensionality, the
target radius grows even slower with increasing boundary distance. The fluid is not very
deep, so only few merges were performed in the first 30 seconds. Instead of showcasing
the merging and splitting, this comparison mainly shows that the kernel width variation
in our method has no noticeable adverse effect on the visual simulation results. In its
current state, our method does not provide any advantage when applied to fluids of
insufficient depth like in this example. The reason for this limitation is that our method
sets all boundary particles to the smallest possible size and should be addressed in future
research.
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Figure 6.7: A two-dimensional test scenario containing a waterfall: The left column shows
snapshots of a simulation using basic PBF, while the right column contains snapshots of
a simulation using our method. The red particles are classified as boundary particles.
The left wall of the upper container vanishes after 30 seconds, during which our method
merged most particles in the middle of the fluid. When the amount of fluid in the
upper container diminishes, the big particles are split so that the thin stream of water is
simulated with the highest allowed detail. In (l), (n), and (p), the fluid calms down and
the particles in the fluid center start to merge again.
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Figure 6.8: A test scenario similar to Figure 6.7, but in three dimensions. The particle
color encodes the velocity. Both methods result in very similar particle positions and
velocities.
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Simulation Step Neighbor Search Constraint Solver
Basic Our Method Basic Our Method Basic Our Method

30 s 5.658 4.670 4.087 2.084 1.490 1.457
34 s 5.569 4.830 4.086 2.346 1.402 1.343
40 s 5.581 4.757 4.169 2.623 1.329 1.138
45 s 5.558 6.097 4.167 3.468 1.309 1.510
50 s 5.592 6.138 4.212 3.271 1.298 1.823
60 s 5.626 5.403 4.207 2.612 1.336 1.824
70 s 5.665 5.554 4.208 2.413 1.374 2.056
90 s 5.644 4.579 4.162 2.079 1.399 1.421

Table 6.5: The computation time of each snapshot listed in Figure 6.7. All measured
times are given in milliseconds, measured using an NVIDIA RTX 2070. The column
“Simulation Step” contains all computations necessary for the simulation, including the
neighbor search, the constraint solver, the other steps of PBD, and the additional steps
needed for our method (like boundary distance computation, merging/splitting, etc.).
During the pouring phase, the big particles are split into smaller particles causing the
particle count and the neighbor pair count to increase. The larger number of particles
increases the neighbor search duration, and the larger number of neighbor pairs increases
the constraint solver duration. The overhead of merging/splitting—and especially the
creation and deletion of particles—occasionally causes our method to be slower than
basic PBF during the pouring phase, but during phases with sufficient fluid depth, the
performance gain due to the reduced particle count outweighs the overhead.

Simulation Step Neighbor Search Constraint Solver
Basic Our Method Basic Our Method Basic Our Method

30 s 10.607 18.712 5.177 10.014 5.324 6.898
43 s 9.286 12.241 5.065 6.392 4.116 4.285
58 s 9.389 20.909 4.921 11.688 4.363 7.399
90 s 9.407 18.137 4.949 10.707 4.353 5.788

Table 6.6: The computation time of each snapshot listed in Figure 6.8. All measured
times are given in milliseconds, measured using an NVIDIA RTX 2070. These results
show the drawback when using our method on fluids with insufficient depth.
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CHAPTER 7
Conclusion and Future Work

In this thesis, we have presented a modification to PBF that allows fluid particles to
adapt in size according to the fluid shape so that the number of particles is lowered
and the computational effort can be reduced. We have analyzed how fluid particles of
different sizes should interact with each other while maintaining results consistent with
basic PBF. A crucial step in this regard is to prevent missing out on relevant particles
in the neighborhood (especially referring to larger neighboring particles). An approach
for smoothly transitioning between different fluid granularities (i.e., the particle sizes)
using gradual merging and splitting has been described in detail. For particle splitting,
we have discussed the properties and tradeoffs of gradual and instant splitting strategies.
Furthermore, we have proposed to use the fluid depth (defined as the distance to the
fluid boundary) for choosing the fluid granularity at any given location in the fluid.
Using this criterion enables further simplifications, leading to a concrete streamlined
implementation variant which we have described in Section 4.6. In addition, we have
analyzed our method mathematically, showing that our method has the potential to
increase a PBF implementation’s performance through overall reduced neighborhood
evaluations. Expressing the expected number of neighbor pairs in a mathematical
equation has shown that for shallow fluid bodies, our method might increase the number
of neighbors, but with increasing fluid depth, the neighbor count quickly falls below that
of basic PBF.

There are still some problems that have to be addressed in future research: The per-
formance of our test implementation has to be improved so that running tests with
higher numbers of particles becomes feasible at real-time frame rates. Our decision to let
the fluid resolution exclusively depend on the boundary distance allows to simplify our
algorithm, but it also means that the fluid bodies need to be of considerable size (depth)
until our method actually reduces the total number of neighbors. Exploring alternative
criteria for the target radius computation seems promising for the purpose of further
particle count reductions. A possible starting point might be to not set every boundary
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particle immediately to the smallest target radius, but to choose the assigned target
radius depending on further criteria, e.g., the fluid’s local feature size as used by Adams
et al. [APKG07] in their SPH simulation.

Regarding the future development of adaptive sampling in PBF, a desirable goal might
be the creation of a method that allows to specify an upper limit on the number of
particles, where particle merging and splitting are utilized to always obey this limit.

Another aspect worth analyzing might be the effect of the larger kernel sizes on the
propagation speed of pressure throughout the fluid. In our tests, we did not notice any
negative effects caused by the local variations of the kernel widths, but with increasing
particle size differences, this might lead to problems that have to be addressed explicitly.
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Nomenclature

Per Particle Properties (of Particle with Index i)

mi Particle mass

ri Particle radius (for implicitly storing ρ0i of every fluid particle)

vi Particle velocity vector

v̂i New particle velocity vector after constraint solving

pi Particle position (during constraint solving); also used to refer to specific particles

p̂i New particle position after constraint solving

xi Old particle position from the previous timestep

bi Boundary distance

ři Target radius

ρi Fluid’s current density at position pi

ρ0i Fluid’s rest density (might vary between particles if they represent different fluids)

Per Constraint Properties (for Constraint with Index j)

λj Lagrange multiplier used during constraint solving

l Target distance in distance constraints

h Kernel width

ȟj Intrinsic kernel width

Global Properties

n Total number of particles

d Dimensionality of the simulation
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p Vector containing all particle positions (i.e., all pi)

∆t Predicted duration of the timestep

rmin Smallest allowed particle radius

Functions

Cj(p) Constraint

Ĉj(p) Linearization of the constraint (tangential plane at a specific position)

W (p, h) Kernel function with kernel width h (p = 0 is at kernel center)

fh(b) Function mapping boundary distance to kernel width

fȟ(b) Function mapping boundary distance to intrinsic kernel width

fř(b) Function mapping boundary distance to target radius

fh(x) Function mapping fluid center distance to kernel width

fȟ(x) Function mapping fluid center distance to intrinsic kernel width

fř(x) Function mapping fluid center distance to target radius

fd(x) Function mapping fluid center distance to particle density

fn(x) Function mapping fluid center distance to number of neighbors per particle

fp(x) Function mapping fluid center distance to neighbor pair distribution

Symbols Used for Split and Merge

s Source particle (during split/merge)

t Target particle (during split/merge)

ms Mass of the source particle (before split/merge)

mt Mass of the target particle (before split/merge)

m̂t Mass of the target particle (after split/merge)

rs Radius of the source particle (before split/merge)

rt Radius of the target particle (before split/merge)

r̂t Radius of the target particle (after split/merge)

ps Position of the source particle (before split/merge)

pt Position of the target particle (before split/merge)
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p̂t Position of the target particle (after split/merge)

vs Velocity vector of the source particle (before split/merge)

vt Velocity vector of the target particle (before split/merge)

v̂t Velocity vector of the target particle (after split/merge)

q Transferred part during split/merge

tleft Remaining duration during a split/merge

cm Factor used to perform merges

cs Factor used to perform splits

Other Symbols

i Integer value used for indexing particles

j Integer value used for indexing constraints or neighbor particles

M−1 Diagonal matrix containing the inverse particle masses

M−1/2 M−1 with component-wise application of the square root

s Sampling position for the fluid density

χp Center of mass of a set of particles

a Gradient of fh(b)

g Number of digits in a binary number

ḡ Number of deleted digits in a binary number

zn Set of neighboring Z-Order indices

rf Radius of a spherical fluid body

x Distance from fluid center

k Kernel scale

pe Expected number of neighbor pairs

y1, y2, y3 Integration variables

wi Weights during kernel sampling (kernel gathering and spreading)

Mathematical Notation

pix The x-coordinate of the position of the particle with index i
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∆p Displacement of the particle position during constraint solving

∇Cj(p) Gradient of the constraint function

∇piC Gradient of the constraint function if only the position of the particle with index
i is variable

∂C
∂pu

Gradient of the constraint function if only the u-th value of the position vector is
variable

|v| Length of vector v

(x, y) Point with the coordinates x and y
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Acronyms

FLIP Fluid-Implicit-Particle. 6

PBD Position-Based Dynamics. vii, ix, 2, 3, 5, 9–12, 16, 17, 20, 47, 48, 68

PBF Position-Based Fluids. vii, ix, 3, 5, 17, 19–21, 27, 29, 32, 36, 41, 47, 48, 55–59,
61–70

SPH Smoothed Particle Hydrodynamics. vii, 3, 5–7, 17
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