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Abstract
The dynamics of multicomponent gas mixtures with vanishing barycentric
velocity is described by Maxwell–Stefan equations with mass diffusion and
heat conduction. The equations consist of the mass and energy balances,
coupled to an algebraic system that relates the partial velocities and driv-
ing forces. The global existence of weak solutions to this system in a bounded
domain with no-flux boundary conditions is proved by using the boundedness-
by-entropy method. A priori estimates are obtained from the entropy inequality
which originates from the consistent thermodynamic modelling. Furthermore,
a conditional weak–strong uniqueness property is shown by using the relative
entropy method.
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1. Introduction

The dynamics of multicomponent gaseous mixtures with vanishing barycentric velocity and
constant temperature can be described by the Maxwell–Stefan equations [24, 27]. The exist-
ence of local-in-time smooth and global-in-time weak solutions to these systems has been
proved in [2, 13, 16, 21]. The analysis of nonisothermal gas mixtures is, however, incomplete.
The existence of local-in-time solutions was shown in [19], while [15] investigated a special
nonisothermal case. In this paper, we prove the existence of global-in-time weak solutions and
a conditional weak–strong uniqueness property for a rather general nonisothermal Maxwell–
Stefan system. The novelty of our approach is the consistent thermodynamic modelling.

1.1. Model equations

The evolution of the mass densities ρi(x, t) of the ith gas component and the temperature θ(x, t)
of the mixture is described by the mass and energy balances

∂tρi + divJi = 0, ∂t (ρe)+ divJe = 0, i = 1, . . . ,n, (1)

Ji = ρi ui, Je =−κ(θ)∇θ+
n∑

j=1

(ρjej+ pj)uj in Ω, t> 0, (2)

where Ω⊂ R3 is a bounded Lipschitz domain, Ji and Je are the diffusion and energy fluxes,
respectively, ui are the diffusional velocities, ρ=

∑n
i=1 ρi is the total mass density, pi the par-

tial pressure with the total pressure p=
∑n

i=1 pi, ρi ei the partial internal energy ρiei with the
total energy ρe=

∑n
i=1 ρi ei, and κ(θ) is the heat conductivity. Equations (1) and (2) are sup-

plemented with the boundary and initial conditions

Ji · ν = 0, Je · ν = λ(θ− θ0) on ∂Ω, t> 0, (3)

ρi (0) = ρ0i , θ (0) = θ0 in Ω, i = 1, . . . ,n, (4)

where ν is the exterior unit normal vector to ∂Ω, θ0 > 0 is the given background temperature,
and λ> 0 is a relaxation constant. The boundary conditions mean that the gas components
cannot leave the domain, while heat exchange through the boundary is possible and propor-
tional to the difference between the gas and background temperatures. To close the model, we
need to determine ui, ρiei, and pi.

The velocities ui are computed from the constrained algebraic Maxwell–Stefan system

−θ
n∑

j=1

bijρiρj (ui− uj) = di for i = 1, . . . ,n,
n∑

i=1

ρi ui = 0, (5)

where the constant coefficients bij = bji > 0 model the interaction between the ith and jth com-
ponents. The driving force di is given by

di = ρiθ∇
µi
θ
− θ (ρi ei+ pi)∇

1
θ
, i = 1, . . . ,n, (6)

2
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where µi is the chemical potential. The constraint

∇p= 0 in Ω, t> 0, (7)

is needed in order for our system to be thermodynamically consistent. We refer to section 2
for details.

The internal energies ρiei and chemical potentials µi are determined from the Helmholtz
free energy (see (17)), and the pressure is computed from the Gibbs–Duhem relation. As shown
in section 2, these quantities are explicitly given by

µi =
θ

mi
log

ρi
mi

− cvθ (logθ− 1) , ρiei = cvρiθ,

ρiηi =− ρi
mi

(
log

ρi
mi

− 1

)
+ cvρi logθ, pi =

ρiθ

mi
, i = 1, . . . ,n,

(8)

where ρiηi is the entropy density of the ith component and cv > 0 is the heat capacity. Then
the driving force di and energy flux Je simplify to

di =
∇(ρiθ)

mi
, Je =−κ∇θ+ θ

n∑
i=1

ρi ui
mi

. (9)

When dealing with weak solutions, the system presents three main mathematical
challenges:

(a) To analyse (1) and (2), we need to invert the linear system in (5) for the diffusional velocit-
ies ui. However, the linear system is singular, yielding infinitely many solutions. For this
reason, the constraint

∑
i ρiui = 0, which ensures conservation of the total mass, rules out

all non-physical solutions. This suggests that the inversion of the linear system needs to
be performed in a particular subspace; see below for more details.

(b) The inversion of the constrained linear system generates velocities ui that in general depend
on all mass densities ρi and all density gradients ∇ρi, meaning that each equation of the
system will be coupled with all others in a nonlinear fashion. As a result, maximum prin-
ciples cannot be applied and thus, bounds on the mass densities cannot be deduced.

(c) It is not clear a priori whether the inversion of the linear system generates the structure
u=−A(ρ)∇ρ, where A(ρ) is positive (semi-)definite. Therefore, it is non-trivial to derive
a priori estimates that will allow us to prove the global-in-time existence of solutions.

The matrix M associated to the algebraic system (5) is singular (since
∑n

i=1 di = 0) and
thus not positive definite. However, we recall in section 3.1 that it is positive definite on the
subspace L= {y= (y1, . . . ,yn) ∈ Rn :

√
ρ · y= 0} (here,

√
ρ is the vector with components√

ρi). Therefore, the Bott–Duffin inverse ofM, denoted byMBD =MBD(ρ), exists and is sym-
metric and positive definite on L. Moreover, we show in section 3.3 below that the fluxes can
be expressed as a linear combination of the entropy variables (or thermo-chemical potentials)
µ/θ = (µ1/θ, . . . ,µn/θ) and −1/θ,(

J
Je

)
=−Q(ρ,θ)

(
µ/θ
−1/θ

)
, where Q(ρ,θ) =

(
A B
BT a

)
, (10)

and A= (Aij) ∈ Rn×n, B= (Bi) ∈ Rn, a> 0 are given by

Aij (ρ) =MBD
ij
√
ρiρj, Bi (ρ,θ) = θ

n∑
j=1

Aij
mj
, a(ρ,θ) = θ2

κ+ n∑
i,j=1

Aij
mimj

 . (11)
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Here, variables in bold font are n-dimensional vectors. The Onsager matrixQ turns out to be
positive semidefinite (see (34)), which reveals the parabolic structure of equations (1) and (2).

1.2. State of the art

The isothermal Maxwell–Stefan equations can be derived from the multispecies Boltzmann
equations in the diffusive approximation [6]. The high-friction limit in Euler (–Korteweg)
equations reveals a formal gradient-flow form of the Maxwell–Stefan equations [17], lead-
ing to Fick–Onsager diffusion fluxes instead of (5). In fact, it is shown in [5] that the Fick–
Onsager and generalised Maxwell–Stefan approaches are equivalent. A formal Chapman–
Enskog expansion of the stationary nonisothermal model was given in [28]. Another non-
isothermal Maxwell–Stefan system was derived in [1], but with a different energy flux than
ours.

Maxwell–Stefan systems with nonvanishing barycentric velocities can be formulated in
the framework of hyperbolic–parabolic systems, which allows one to perform a local-in-time
existence analysis [13]. Global-in-time regular solutions around the constant equilibrium state
were found to exist in [14]. An existence analysis for Maxwell–Stefan systems coupled to the
incompressible Navier–Stokes equations for the barycentric velocity can be found in [8] for
the isothermal and in [23] for the nonisothermal case. For the compressible case, we refer to
[4]. For steady-state problems, see, e.g. [7, 25].

When the barycentric velocity vanishes, the (isothermal) Maxwell–Stefan equations can be
solved by generalised parabolic theory. The existence of local-in-time classical solutions was
proved in [2], while the existence of global-in-time weak solutions with general initial data
was shown in [21]. Concerning weak solutions to the nonisothermal equations with zero mean
flow, the only known result to the best of our knowledge is [15], where an existence analysis
for global-in-time weak solutions was presented. However, this model has some modelling
deficiencies explained below. Therefore, our first aim is to prove the global existence of weak
solutions for a thermodynamically consistent nonisothermal model, like the one presented for
example in [13].

The uniqueness of strong solutions to the isothermal Maxwell–Stefan equations was shown
in [2, 16, 19], but the uniqueness of weak solutions for general coefficients bij is still unsolved.
A very special case (the coefficients bij have two degrees of freedom only) was investigated in
[9]. It was shown in [18] that strong solutions are unique in the class of weak solutions, which
is known as the weak–strong uniqueness property. Our second aim is to prove this property
for the nonisothermal case.

Let us detail the main differences of our work compared to [15]:

(i) The most important difference is the lack of validity of the Onsager reciprocity relations
in the model of [15]. The relations imply the symmetry of the coefficients of the Onsager
matrix; see (10). The choice in [15] leads to a cancelation in the entropy inequality, thus
simplifying the estimation. Our results do not rely on this simplification; see remark 6 for
further details.

(ii) The constraint (7) on the pressure is not taken into account in [15]. This condition is not
necessary mathematically, but its lack creates an inconsistency with the assumption of
vanishing barycentric velocity. Indeed, a difference in pressure induces a force differ-
ence, which can result in an acceleration according to Newton’s second law, if there is no
additional force to balance it.

(iii) According to Onsager’s reciprocity relations, the Onsager matrix Q in (10) has to be pos-
itive semidefinite. We show that Q is in fact positive definite on the subspace L= {y ∈

4
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Rn : y · √ρ= 0}. In [15], is assumed that this subspace equals {y ∈ Rn : y · 1= 0}. This
is not consistent with the thermodynamic modelling.

(iv) We consider different molar masses mi, while they are assumed to be the same in [15].
When we assume equal molar masses, the cross-terms cancel, and we end up with the
simple heat flux Je =−κ∇θ (see (9) and the constraint in (5)), thus decoupling the
equations.

1.3. Main results

We impose the following assumptions:

(A1) Domain: Ω⊂ R3 is a bounded domain with Lipschitz boundary, and T > 0. We set ΩT =
Ω× (0,T) and R+ = [0,∞).

(A2) Data: ρ0i ∈ L∞(Ω) satisfies ρ0i ⩾ 0 in Ω and 0< ρ∗ ⩽
∑n

i=1 ρ
0
i ⩽ ρ∗ in Ω for some

ρ∗,ρ
∗ > 0 and for all i = 1, . . . ,n; θ0 ∈ L∞(Ω) satisfies infΩ θ0 > 0.

(A3) Coefficients: bij = bji > 0 for all i, j = 1, . . . ,n.
(A4) Heat conductivity: κ ∈ C0(Rn

+ ×R+) satisfies cκ(1+ θ2)⩽ κ(θ)⩽ Cκ(1+ θ2) for
some cκ,Cκ > 0 and all (ρ,θ) ∈ Rn

+ ×R+.

The lower bound for the total mass density ρ is needed to derive uniform estimates for the
temperature. The proof of lemma 10 in [18] shows thatMBD

ij (ρ) is bounded for all ρ ∈ Rn
+. The

growth condition for the heat conductivity is used to derive higher integrability bounds for the
temperature, which are needed to derive a uniform estimate for the discrete time derivative of
the temperature. We may also assume reaction terms Ri in (1) with the properties that the total
reaction rate

∑n
i=1Ri vanishes and the vector of reaction rates Ri is derived from a convex,

nonnegative potential [11, section 2.2].
The first main result is the existence of solutions.

Theorem 1 (Existence of weak solutions). Let assumptions (A1)–(A4) hold. Then there
exists a weak solution to (1)–(8) satisfying ρi > 0, θ > 0 a.e. in ΩT =Ω× (0,T) and

√
ρi ∈ L∞ (ΩT)∩C0

(
[0,T] ;L2 (Ω)

)
∩L2

(
0,T;H1 (Ω)

)
, ∂tρi ∈ L2

(
0,T;H1 (Ω)

∗)
,

θ ∈ C0
w

(
[0,T] ;L2 (Ω)

)
∩L2

(
0,T;H1 (Ω)

)
, ∂t (ρθ) ∈ L16/11

(
0,T;W1,16/11 (Ω)

∗
)
,

θ2, logθ ∈ L2
(
0,T;H1 (Ω)

)
, i = 1, . . . ,n,

the weak formulation

ˆ T

0
⟨∂tρi,ϕi⟩H1(Ω)∗dt+

ˆ T

0

ˆ
Ω

n∑
i,j=

MBD
ij
(
2∇√

ρj+ ρj∇ logθ
)
dxdt= 0,

ˆ T

0

ˆ
Ω

⟨∂t (ρθ) ,ϕ0⟩W1,16/5(Ω)∗dt+
ˆ T

0

ˆ
Ω

n∑
i,j=1

θMBD
ij

mimj

√
ρi
(
2∇√

ρj+
√
ρj∇ logθ

)
·∇ϕ0dxdt

+

ˆ T

0

ˆ
Ω

κ∇θ ·∇ϕ0dxdt= λ

ˆ T

0

ˆ
∂Ω

(θ0 − θ)ϕ0dsdt

holds for all φ1, . . . ,φn ∈ L2(0,T;H1(Ω)) and φ0 ∈ L16/5(0,T;W1,16/5(Ω)∗), and the initial
conditions (4) are satisfied in the sense ρi(0) = ρ0i in L

2(Ω) and θ(0) = θ0 weakly in L2(Ω).

5
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The idea of the proof is to apply the boundedness-by-entropy method, which automatically
yields L∞(ΩT) bounds [20]. More precisely, we formulate system (1) and (2) in terms of the
relative entropy variables (µi−µn)/θ for i = 1, . . . ,n− 1 and logθ. We show in lemma 3 that
this defines the mass densities and temperature uniquely as a function of (w1, . . . ,wn−1,w). We
introduce the mathematical entropy density

h(ρ ′,θ) =
n∑

i=1

ρi
mi

(
log

ρi
mi

− 1

)
− cvρ logθ,

where the nth partial mass density is computed from ρn = ρ−
∑n−1

i=1 ρi, i.e. h depends on ρ
′ =

(ρ1, . . . ,ρn−1) and θ. Gradient estimates for (ρ,θ) are first derived from the entropy equality

d
dt

ˆ
Ω

h(ρ ′,θ)dx+
ˆ
Ω

κ

θ2
|∇θ|2dx+

n∑
i,j=1

ˆ
Ω

MBD
ij

di
θ
√
ρi

dj
θ
√
ρj
dx= 0,

which becomes an inequality for weak solutions. Second, as in [15], the energy balance
equation (2) yields a bound for θ2 in L2(0,T;H1(Ω)). As mentioned before, the derivation
of the entropy inequality differs from that one in [15], because the cross-term

I5 = 2
ˆ
Ω

n−1∑
i=1

Bi
θ
∇µi−µn

θ
·∇ logθdx,

which cancels out in [15], needs to be controlled. (We recall definition (11) of Bi.) This is done
by observing that the sum I4 + I5 + I8 (see (41)) is nonnegative,

I4 + I5 + I8 =
ˆ
Ω

n∑
i,j=1

Aij∇
(
µi
θ
+

1
mi

logθ

)
·∇
(
µj
θ
+

1
mj

logθ

)
dx⩾ 0,

as (Aij) is positive semidefinite due to (34).
From a technical viewpoint, we approximate equations (1) and (2) by replacing the time

derivative by the implicit Euler discretisation to avoid issues with the time regularity and by
adding a higher-order regularisation to achieve H2(Ω) and hence L∞(Ω) regularity for the
entropy variables. The approximation is chosen in such a way that a discrete entropy inequality
can be derived, yielding uniform estimates for both the compactness of the fixed-point operator
(to obtain a solution to the approximate problem) and the de-regularisation limit (to obtain a
solution to the original problem).

Our second main result concerns a conditional weak–strong uniqueness property.

Theorem 2 (Weak–strong uniqueness). Let the assumptions of theorem 1 hold, let λ= 0
in (3), let (ρ,θ) be a weak solution and (ρ̄, θ̄) be a strong solution to (1)–(8). We assume that
there exist m,M> 0 such that

0< ρi ⩽ ρ∗, 0< θ ⩽M, 0< ρ̄i ⩽ ρ∗, 0< m⩽ θ̄ ⩽M in ΩT.

Furthermore, we suppose that ūi, |∇ log θ̄| ∈ L∞(ΩT) for i = 1, . . . ,n and that the thermal
conductivity κ is Lipschitz continuous. If the initial data of (ρ,θ) and (ρ̄, θ̄) coincide then
ρ(x, t) = ρ̄(x, t) and θ(x, t) = θ̄(x, t) for a.e. x ∈ Ω and all t> 0.

6
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By a strong solution, we understand a solution that has sufficient regularity to satisfy the
entropy equality stated in lemma 14; see section 5. We require more regularity than provided
by the existence theory, for instance the boundedness of the temperature θ, which is not proved
in theorem 1, explaining the notion of ‘conditional weak-strong uniqueness’. For more details
on the regularity of strong solutions, we refer to [2] for the isothermal case and to [13, 19] for
the nonisothermal one. The proof of theorem 2 is based on the relative entropy, defined by

H
(
ρ,θ|ρ̄, θ̄

)
=

ˆ
Ω

(
h(ρ,θ)− h

(
ρ̄, θ̄
)
−

n∑
i=1

∂h
∂ρi

(
ρ̄, θ̄
)
(ρi− ρ̄i)−

∂h
∂E

(
ρ̄, θ̄
)
(E− Ē)

)
dx

=

ˆ
Ω

{
n∑

i=1

1
mi

(
ρi log

ρi
ρ̄i

− (ρi− ρ̄i)

)
− cvρ

(
log

θ

θ̄
−
(
θ− θ̄

))}
dx, (12)

where E= cvρθ and Ē= cvρθ̄ are the internal energy densities. The idea is to compute the time
derivative:

dH
dt

(
ρ,θ|ρ̄, θ̄

)
+ c
ˆ
Ω

n∑
i=1

ρi|ui− ūi|2dx+ c
ˆ
Ω

|∇
(
logθ− log θ̄

)
|2dx

⩽ C
ˆ
Ω

(
n∑

i=1

(ρi− ρ̄i)
2
+
(
θ− θ̄

)2)
dx,

where c> 0 is some constant and C> 0 depends on the L∞(ΩT) norms of θ, ūi, and ∇ log θ̄,
i = 1, . . . ,n. The difficulty is to estimate the expressions arising from the time derivative of the
relative entropy in such a way that only ūi and θ̄ need to be bounded. Thanks to the positive
lower bound for θ̄, we can bound the right-hand side in terms of the relative entropy,

ˆ
Ω

(
n∑

i=1

(ρi− ρ̄i)
2
+
(
θ− θ̄

)2)
dx⩽

ˆ
Ω

H
(
ρ,θ|ρ̄, θ̄

)
dx.

Then Gronwall’s lemma shows that H((ρ,θ)(t)|(ρ̄, θ̄)(t)) = 0 for t> 0 and hence (ρ,θ)(t) =
(ρ̄, θ̄)(t). Compared to [18], we include the temperature terms and combine them with the
entropy variables wi in such a way that the positive semidefiniteness ofMBD can be exploited.

The paper is organised as follows.We detail the thermodynamicmodelling of equations (1)–
(8) in section 2. The inversion of theMaxwell–Stefan system (5), the definition of the (relative)
entropy variables, and the formulations of the fluxes in terms of the relative entropy variables,
as well as the corresponding weak formulation is presented in section 3. Section 4 is concerned
with the proof of theorems 1 and 2 is proved in section 5.

2. Modelling

We consider the following system of equations modelling the dynamics of a nonisothermal
gas mixture of n components with mass diffusion and heat conduction:

∂tρi + div(ρi (v+ ui)) = 0, i = 1, . . . ,n, (13)

∂t (ρv)+ div(ρv⊗ v) = ρb−∇p, (14)

7
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∂t

(
ρe+

1
2
ρ|v|2

)
+ div

((
ρe+

1
2
ρ|v|2

)
v

)
= div(κ∇θ)− div

n∑
j=1

(ρiei+ pi)ui− div(pv)+ ρr+ ρb · v+
n∑

i=1

ρi bi · ui. (15)

Besides of the variables introduced in the introduction, v denotes the barycentric velocity of the
mixture. The quantities ρibi are the body forces, where ρb=

∑n
i=1 ρibi is the total force exerted

on the mixture, and ρr is the total heat supply due to radiation. The diffusional velocities ui
are determined by solving the linear system (5) with driving forces given by (16), while the
partial internal energy densities ρiei, and the partial pressures pi are determined from the free
energy; see below.

Equations (13)–(15) correspond to a so-called class-I model. They can be derived either
via an entropy invariant model reduction [3] or in the high-friction limit [12] from a class-II
model, in which each component has its own velocity vi. Equation (13) are the partial mass
balances, (14) is the momentum balance, and (15) the energy balance. As proved in [12],
system (13)–(15) and (5) fits into the general theory of hyperbolic–parabolic composite-type
systems introduced in [22] and further explored in [26].

Asmentioned in the introduction, system (1), (2) and (7) is supplemented by the constrained
Maxwell–Stefan system (5) for the velocities ui. These equations can be derived from a class-
II model in the diffusion approximation [3, section 14, (210)] or in the high-friction limit [12,
section 2, (2.50)] with the driving forces

di =−ρi
ρ
∇p+ ρiθ∇

µi
θ
− θ (ρiei+ pi)∇

1
θ
+ ρi (b− bi) , (16)

where µi is the chemical potential of the ith component. Since the pressure is uniform in
space, ∇p= 0, and we have neglected external forces, the driving force becomes (6). Then
equations (1), (2) and (7) are obtained by setting v= 0 and r= bi = 0.

The internal energy densities ρiei, partial pressures pi, and the chemical potential µi are
determined from the Helmholtz free energy. We assume that the gas is a simple mixture, which
implies that these quantities can be calculated from the partial free energy densities ψi(ρi,θ),
i = 1, . . . ,n. We have

µi =
∂ψi
∂ρi

, ρiηi =−∂ψi
∂θ

, ρiei = ψi + θρiηi, pi = ρiµi−ψi,

where ρiηi is the entropy density of the ith component and the equation for pi is called the
Gibbs–Duhem relation. Defining the partial Helmholtz free energy as

ψi = θ
ρi
mi

(
log

ρi
mi

− 1

)
− cvρθ (logθ− 1) , i = 1, . . . ,n, (17)

the thermodynamic quantities are given by (8). Moreover, the driving force di and enthalpy
hi := ρiei+ pi read as

di =
∇(ρiθ)

mi
, hi =

(
cv+

1
mi

)
ρiθ, i = 1, . . . ,n. (18)

This corresponds to equation (9).

8
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3. Preparations

3.1. Inversion of the Maxwell–Stefan system

We discuss the inversion of the Maxwell–Stefan system (5) following [12] and [18, section 2].
We write (5) equivalently as

−θ√ρi
n∑

j=1

Mij
√
ρjuj = di, i = 1, . . . ,n, (19)

where the matrix M(ρ) = (Mij) ∈ Rn×n is given by

Mij =

{∑n
k=1,k ̸=i bikρk if i = j,

−bij
√
ρiρj if i 6= j.

(20)

We wish to invertMv= w, where vi =
√
ρiui and wi =−di/(θ

√
ρi). Since (bij) is symmetric,

0= (Mv)i =
∑

i̸=j bij
√
ρj(

√
ρjvi−

√
ρivj) shows that the kernel of M consists of span{√ρ}.

Thus, we can invertM only on the subspace L= {y ∈ Rn :
√
ρ · y= 0}. We define the projec-

tions PL on L and PL⊥ on L⊥ by

(PL)ij = δij− ρ−1√ρiρj, (PL⊥)ij = ρ−1√ρiρj for i, j = 1, . . . ,n,

where δij is the Kronecker symbol. The matrix M= (Mij) is positive definite on L
[18, lemma 4]:

zTMz⩾ µM|PLz|2 for all z ∈ Rn, (21)

where µM =mini̸=j bij > 0. Since the matrix MPL+PL⊥ is invertible [18, lemma 4], we can
define the Bott–Duffin inverse of M with respect to L as MBD = PL(MPL+PL⊥)

−1. Hence,
we can invert (19) by

√
ρiui =−

n∑
j=1

MBD
ij

dj
θ
√
ρj
, i = 1, . . . ,n. (22)

The matrix MBD =MBD(ρ) is symmetric and positive definite on L [18, lemma 4],

zTMBDz⩾ µ|PLz|2 for all z ∈ Rn, (23)

where µ= (2
∑

i̸=j(bij+ 1))−1.

3.2. Entropy variables

The mathematical analysis becomes easier when formulating the system in terms of the so-
called entropy variables. To this end, we introduce the mathematical entropy density

h=−
n∑

i=1

ρiηi =
n∑

i=1

ρi
mi

(
log

ρi
mi

− 1

)
− cvρ logθ, (24)

which is the negative of the physical (total) entropy density (8). Summing themass balances (1)
over i = 1, . . . ,n and using the constraint

∑n
i=1 ρiui = 0 from (5), we obtain ∂tρ= 0. Thus, the

total density is determined by the initial total density, ρ(x, t) =
∑n

i=1 ρ
0
i (x) for x ∈ Ω, and is

independent of time. This suggests to compute only the first n− 1 mass densities, since the

9
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last one can be determined by ρn = ρ−
∑n−1

i=1 ρi. Then we interpret the entropy density h as a
function of (ρ ′,θ) := (ρ1, . . . ,ρn−1,θ):

h(ρ ′,θ) =
n−1∑
i=1

ρi
mi

(
log

ρi
mi

− 1

)
+
ρn
mn

(
log

ρn
mn

− 1

)
− cvρ logθ

with the partial derivatives

∂h
∂ρi

=
1
mi

log
ρi
mi

− 1
mn

log
ρn
mn
, i = 1, . . . ,n− 1,

∂h
∂θ

=−cv
ρ

θ
.

The Hessian matrix

D2h=

(
R 0
0T cvρ/θ2

)
∈ Rn×n, where Rij =

δij
miρi

+
1

mnρn
,

is positive definite, showing that the entropy is convex.
According to thermodynamics [3], the entropy variables equal (µ1/θ, . . . ,µn/θ,−1/θ). We

set

qi =
µi
θ

=
1
mi

log
ρi
mi

− cv (logθ− 1) for i = 1, . . . ,n. (25)

Since the nth partial density is determined by the densities ρ1, . . . ,ρn−1, we prefer to work with
the relative entropy variables

wi = qi− qn =
µi−µn
θ

=
∂h
∂ρi

, i = 1, . . . ,n− 1. (26)

Setting additionally w= logθ, our new set of variables is (w1, . . . ,wn−1,w). The following
lemma states that the mapping (ρ1, . . . ,ρn,θ) 7→ (w1, . . . ,wn−1,w) is invertible.

Lemma 3. Let (w1, . . . ,wn−1,w) ∈ Rn and ρ> 0 be given. Then there exists a unique
(ρ1, . . . ,ρn,θ) ∈ Rn+1

+ with ρi > 0 for i = 1, . . . ,n satisfying
∑n

i=1 ρi = ρ, wi = ∂h/∂ρi for
i = 1, . . . ,n− 1, and w= logθ.

Proof. The proof is similar to [8, lemma 6] with some small changes. Given w ∈ R, the tem-
perature equals θ = exp(w)> 0. The function

f(s) =
n−1∑
i=1

mi e
miwi

(
ρ− s
mn

)mi/mn

for s ∈ [0,ρ] ,

is strictly decreasing and 0= f(ρ)< f(s)< f(0) for s ∈ (0,ρ). By continuity, there exists a
unique fixed point s0 ∈ (0,ρ). Then ρi := mi exp(miwi)((ρ− s0)/mn)

mi/mn for i = 1, . . . ,n sat-
isfies ρi > 0 and

∑n−1
i=1 ρi = f(s0) = s0 < ρ. Consequently, ρn := ρ−

∑n−1
i=1 ρi = ρ− s0 > 0

and ρi/mi = exp(miwi)(ρn/mn)
mi/mn is equivalent to

wi =
1
mi

log
ρi
mi

− 1
mn

log
ρn
mn

=
∂h
∂ρi

for i = 1, . . . ,n− 1, which finishes the proof.

10
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3.3. Formulation of the fluxes and parabolicity

We can compute the fluxes as a linear combination of ∇(w1, . . . ,wn−1,w) or
∇(q1, . . . ,qn,−1/θ).

Lemma 4. It holds for i = 1, . . . ,n that

Ji =−
n−1∑
j=1

Aij∇wj−
Bi
θ
∇w=−

n∑
j=1

Aij∇qj−Bi∇
(
−1
θ

)
, (27)

Je =−κθ∇w−
n−1∑
j=1

Bj∇wj− θ
n∑

i,j=1

Aij
mimj

∇w (26)

=−
n∑

j=1

Bj∇qj− θ2

κ+ n∑
i,j=1

Aij
mimj

∇
(
−1
θ

)
, (28)

where the coefficients

Aij =MBD
ij
√
ρiρj, Bi = θ

n∑
j=1

Aij

(
cv+

1
mj

)
= θ

n∑
j=1

Aij
mj

(29)

for i, j = 1, . . . ,n depend on (ρ,θ) and satisfy the relations

n∑
i=1

Aij =
n∑

j=1

Aij =
n∑

i=1

Bi = 0. (30)

Proof. We wish to express the driving force dj =∇(ρjθ)/mj from (9) in terms of ∇qj =
∇ logρj/mj− cv∇ logθ. A computation, using w= logθ, yields

dj = ρjθ∇qj+ ρjθ

(
cv+

1
mj

)
∇w. (31)

Therefore, by (22), for i = 1, . . . ,n,

Ji = ρiui =−√
ρi

n∑
j=

MBD
ij

dj
θ
√
ρj

=−
n∑

j=1

MBD
ij
√
ρiρj

{
∇qj+

(
cv+

1
mj

)
∇w
}

=−
n∑

j=1

Aij∇qj−
n∑

j=1

Aij

(
cv+

1
mj

)
∇ logθ =−

n∑
j=1

Aij∇qj−
Bi
θ
∇ logθ.

This shows the second relation in (27). The first relation then follows from (30) (which is
proved below), since, using qj = wj+ qn for j = 1, . . . ,n− 1 (see (26)),

n∑
j=1

Aij∇qj =
n−1∑
j=1

Aij (∇wj+∇qn)+Ain∇qn =
n−1∑
j=1

Aij∇wj. (32)

11



Nonlinearity 37 (2024) 075016 S Georgiadis and A Jüngel

Next, we compute the energy flux defined in (2). We use (18), (22) and (31):

Je =−κθ∇w+
n∑

i=1

√
ρiθ

(
cv+

1
mi

)
√
ρiui

=−κθ∇w− θ
n∑

i,j=1

√
ρi

(
cv+

1
mi

)
MBD
ij

dj
θ
√
ρj

=−κθ∇w− θ
n∑

i,j=1

(
cv+

1
mi

)
MBD
ij
√
ρiρj

{
∇qj+

(
cv+

1
mj

)
∇w
}

=−κθ∇w−
n∑

j=1

Bj∇qj− θ
n∑

i,j=1

Aij

(
cv+

1
mi

)(
cv+

1
mj

)
∇w

=−κθ∇w−
n∑

j=1

Bj∇qj− θ
n∑

i,j=1

Aij
mimj

∇w,

where the last equation follows from (30). Moreover, because of

n∑
j=1

Bj∇qj =
n−1∑
j=1

Bj∇(wj+ qn)+Bn∇qn =
n−1∑
j=1

Bj∇wj, (33)

we have proved (28).
It remains to verify (30). We recall the property PL(MPL+PL⊥)

−1PL⊥ = 0 from [29,
lemma 2], which implies thatMBDPL⊥ = 0. Hence, L⊥ ⊂ kerMBD and since L⊥ = span{√ρ},
we conclude that

∑n
j=1M

BD
ij
√
ρj = 0. This shows that, by the definition of Aij,

n∑
j=1

Aij =
√
ρi

n∑
j=1

MBD
ij
√
ρj = 0.

The symmetry of (Aij) immediately gives
∑n

i=1Aij = 0. Finally, by the definition of Bi,

n∑
i=1

Bi = θ
n∑

i,j=1

MBD
ij
√
ρiρj

(
cv+

1
mj

)
= θ

n∑
j=1

(
cv+

1
mj

) n∑
i=1

Aij = 0.

This finishes the proof.

The previous proof shows that we can formulate the diffusion fluxes in different ways.

Corollary 5. It holds for i = 1, . . . ,n that

Ji = ρiui =−
n∑

j=1

Aij∇
(
qj+

w
mj

)
=−√

ρi

n∑
j=1

MBD
ij

dj
θ
√
ρj
.

12
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We claim that the Onsager matrix Q ∈ R(n+1)×(n+1) in (10) is positive semidefinite. Let
a= θ(κ+

∑n
i,j=1Aij/(mimj)). We compute for ξ ∈ Rn+1:

ξTQξ =
n∑

i,j=1

Aijξiξj+ 2
n∑

i=1

Biξiξn+1 + aξnn+1

=
n∑

i,j=1

Aijξiξj+ 2θ
n∑

i,j=1

Aij
mj
ξiξn+1 + θ2

κ+ n∑
i,j=1

Aij
mimj

ξ2n+1

=
n∑

i,j=1

Aij

(
ξi +

θξn+1

mi

)(
ξj+

θξn+1

mj

)
+κθ2ξ2n+1 ⩾ 0, (34)

where the nonnegativity follows from the positive semidefiniteness (23) of MBD. This reveals
the parabolicity of our system in terms of the entropy variables.

3.4. Weak formulation

The previous subsection shows that we can write our system as the mass and energy bal-
ances (1), (2) with the fluxes (27) and (28). The weak formulation in the relative entropy
variables (26) reads as

ˆ T

0
〈∂tρi,φi〉dt+

ˆ T

0

ˆ
Ω

n−1∑
j=1

Aij∇wj+ e−wBi∇w

 ·∇φi dxdt= 0, (35)

ˆ T

0
〈∂tE,φ0〉dt+

ˆ T

0

ˆ
Ω

ew

κ+ n∑
i,j=1

Aij
mimj

∇w ·∇φ0dxdt

+

ˆ T

0

ˆ
Ω

n−1∑
j=1

Bj∇wj ·∇φ0dxdt= λ

ˆ T

0

ˆ
∂Ω

(θ0 − θ)φ0dsdt (36)

for test functions φ1, . . . ,φn ∈ L2(0,T;H1(Ω)) and φ0 ∈ L∞(0,T;W1,∞(Ω)). According to (8),
the energy is given by E= cvρθ. Moreover, ρi, Aij, Bi, and E are interpreted as functions of
(w1, . . . ,wn−1,w).

4. Proof of theorem 1

The proof follows the lines of [15, section 3], which is based on the boundedness-by-entropy
method [20], but some details are different. We approximate equations (35) and (36) by repla-
cing the time derivative by the implicit Euler scheme and adding a higher-order regularisation
in wi. The existence of solutions to the approximate system is shown by means of the Leray–
Schauder fixed-point theorem, where the compactness of the fixed-point operator is obtained
by the approximate entropy inequality. This inequality yields estimates uniform in the regular-
isation parameters, allowing for the de-regularisation limit via the Aubin–Lions compactness
lemma.

13
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Let ε ∈ (0,1), N ∈ N, and τ = T/N. We set w0 = logθ0 and w= (w1, . . . ,wn−1,w). Let
w̄= (w̄1, . . . , w̄n−1, w̄) ∈ L∞(Ω;Rn) be given. We define for test functions φi ∈ H2(Ω), i =
0, . . . ,n− 1, the approximate scheme

0=
1
τ

ˆ
Ω

(ρi (w)− ρi (w̄))φidx+
ˆ
Ω

n−1∑
j=1

Aij∇wj+ e−wBi∇w

 ·∇φidx

+ ε

ˆ
Ω

(
D2wi : D

2φi +wiφi
)
dx, (37)

0=
1
τ

ˆ
Ω

(E(w)−E(w̄))φ0dx+
ˆ
Ω

ew

κ(ew)+ n∑
i,j=1

Aij
mimj

∇w ·∇φ0dx

+

ˆ
Ω

n−1∑
i=1

Bi∇wi ·∇φ0dx−λ

ˆ
∂Ω

(ew0 − ew)φ0ds

+ ε

ˆ
Ω

(ew0 + ew)(w−w0)φ0dx+ ε

ˆ
Ω

ew
(
D2w : D2φ0 + |∇w|2∇w ·∇φ0

)
dx, (38)

whereD2wi is theHessematrix ofwi, the double point ‘:’ denotes the Frobeniusmatrix product,
we recall that E(w) = cvρθ, and Aij and Bi are interpreted as functions of w. The higher-
order regularisation yields solutions wi,w ∈ H2(Ω), and the W1,4(Ω) regularisation allows us
to estimate the higher-order terms when using the test function e−w0 − e−w (see the estimate of
I11 below). The lower-order regularisation (ew0 − ew)(w−w0) provides an ε-dependent L2(Ω)
bound for w.

4.1. Solution of the linearised approximate problem

Let w∗ ∈W1,4(Ω;Rn) and σ ∈ [0,1]. We want to find a solution w ∈ H2(Ω;Rn) to the linear
problem

a(w,ϕ) = σF(ϕ) for ϕ = (φ1, . . . ,φn−1,φ0) ∈ H2 (Ω;Rn) , (39)

where

a(w,ϕ) =
ˆ
Ω

κ
(
ew

∗
)
ew

∗
∇w ·∇φ0dx+ ε

ˆ
Ω

n−1∑
i=1

(
D2wi : D

2φi +wiφi
)
dx

+ ε

ˆ
Ω

(
ew0 + ew

∗
)
wφ0dx+ ε

ˆ
Ω

ew
∗ (

D2w : D2φ0 + |∇w∗|2∇w ·∇φ0
)
dx,

F(ϕ) =−
ˆ
Ω

n−1∑
i,j=1

Aij (w∗)∇w∗
j ·∇φidx−

ˆ
Ω

ew
∗

n∑
i,j=1

Aij (w∗)

mimj
∇w∗ ·∇φ0dx

−
ˆ
Ω

n−1∑
i=1

Bi (w∗)e−w∗
∇w∗ ·∇φidx−

ˆ
Ω

n−1∑
i=1

Bi (w∗)∇w∗
i ·∇φ0dx

− 1
τ

ˆ
Ω

n−1∑
i=1

(ρ∗i − ρ̄i)φidx−
1
τ

ˆ
Ω

(E∗ − Ē)φ0dx+λ

ˆ
∂Ω

(
ew0 − ew

∗
)
φ0ds

+ ε

ˆ
Ω

(
ew0 + ew

∗
)
w0φ0dx,

14
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wherewe abbreviated ρ∗i = ρi(w∗), ρ̄i = ρi(w̄),E∗ = cvρew
∗
, and Ē= cvρew̄. The bilinear form

a is clearly coercive onH2(Ω;Rn), and both a and F are continuous on this space. By the Lax–
Milgram lemma, there exists a unique solution w ∈ H2(Ω;Rn) to (39).

4.2. Solution of the approximate problem

The solution w ∈ H2(Ω;Rn) to (39) defines the fixed-point operator S :W1,4(Ω;Rn)× [0,1]→
W1,4(Ω;Rn), S(w∗,σ) = w. The operator is continuous, compact (because of the compact
embedding H2(Ω;Rn) ↪→W1,4(Ω;Rn)), and it satisfies S(w∗,0) = 0 for all w∗ ∈W1,4(Ω;Rn).
It remains to find a uniform bound for all fixed points of S(·,σ). Let w ∈ H2(Ω;Rn) be such
a fixed point. Then w solves (39) with w∗ = w. We choose the test functions φi = wi for
i = 1, . . . ,n− 1 and φ0 = e−w0 − e−w in (39):

0=
σ

τ

ˆ
Ω

n−1∑
i=1

(ρi− ρ̄i)widx+
σ

τ

ˆ
Ω

(E− Ē)
(
−e−w

)
dx+

σ

τ

ˆ
Ω

(E− Ē)e−w0dx

+σ

ˆ
Ω

n−1∑
i,j=1

Aij (w)∇wi ·∇wjdx+ 2σ
ˆ
Ω

n−1∑
i=1

Bi (w)e−w∇wi ·∇wdx

+

ˆ
Ω

κ(ew) |∇w|2dx+ ε

ˆ
Ω

n−1∑
i=1

(
|D2wi|2 +w2

i

)
dx+σ

ˆ
Ω

n∑
i,j=1

Aij (w)
mimj

|∇w|2dx

−σλ

ˆ
∂Ω

(ew0 − ew)
(
e−w0 − e−w

)
ds+ ε

ˆ
Ω

(ew0 + ew)
(
e−w0 − e−w

)
(w−σw0)dx

+ ε

ˆ
Ω

(
|D2w|2 −Dw : (∇w⊗∇w)+ |∇w|4

)
dx=: I1 + · · ·+ I11. (40)

We estimate the terms I1, . . . , I11 step by step. First, by the convexity of the entropy and arguing
similarly as in [15, section 3, Step 2],

I1 + I2 =
σ

τ

ˆ
Ω

n−1∑
i=1

(
(ρi− ρ̄i)

∂h
∂ρi

+
(
θ− θ̄

) ∂h
∂θ

)
dx

⩾ σ

τ

ˆ
Ω

(
h(ρ1, . . . ,ρn−1,θ)− h

(
ρ̄1, . . . , ρ̄n−1, θ̄

))
dx,

where we have set θ = ew and θ̄ = ew̄. Definition (26) of wi, definition (29) of Bi, and the
relations

n−1∑
j=1

Aij (w)∇wj =
n∑

j=1

Aij (w)∇qj,
n−1∑
i=1

Bi (w)∇wi =
n∑

j=1

Bi (w)∇qi

from (32) and (33) allow us to rewrite the sum I4 + I5 + I8 as

I4 + I5 + I8 = σ

ˆ
Ω

n∑
i,j=1

Aij (w)∇
(
qi +

w
mi

)
·∇
(
qj+

w
mj

)
dx. (41)
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This expression is nonnegative because of the positive semidefiniteness of Aij =MBD
ij
√
ρiρj;

see (23). Furthermore, since sinh(z)/z⩾ 1 for z ∈ R, z 6= 0,

I9 = σλ

ˆ
∂Ω

e−w−w0 (ew− ew0)
2 dx⩾ 0,

I10 = 2ε
ˆ
Ω

sinh(w−w0)(w−σw0)dx= 2ε
ˆ
Ω

(w−w0)(w−σw0)
sinh(w−w0)

w−w0
dx

= ε

ˆ
Ω

w2 sinh(w−w0)

w−w0
dx+ ε

ˆ
Ω

(
w2 − 2(1+σ)ww0 + 2σw2

0

) sinh(w−w0)

w−w0
dx

⩾ ε

ˆ
Ω

w2dx+ ε

ˆ
Ω

(
w2 − 2(1+σ)ww0 + 2σw2

0

) sinh(w−w0)

w−w0
dx.

We claim that there exists m= m(w0,σ)> 0 such that for all w ∈ R,

g(w) =
(
w2 − 2(1+σ)ww0 + 2σw2

0

) sinh(w−w0)

w−w0
⩾−m,

where w0 ∈ R and σ ∈ (0,1] are given. Indeed, this follows from g(w)→∞ as |w| →∞ and
g((1+σ)w0)< 0 (unless w0 = 0). We conclude that

I10 ⩾ ε

ˆ
Ω

w2dx− εm.

Finally, we can estimate

I11 =
ε

2

ˆ
Ω

(
|D2w|2 + |D2w−∇w⊗∇w|2 + |∇w|4

)
dx⩾ ε

2

ˆ
Ω

(
|D2w|2 + |∇w|4

)
dx.

Summarising these estimates, we find that

σ

τ

ˆ
Ω

(
h(ρ1, . . . ,ρn−1,θ)+Ee−w0

)
dx+ εC

(
‖w‖2H2(Ω) + ‖∇w‖4L4(Ω)

)
+

ˆ
Ω

κ(ew) |∇w|2dx⩽ σ

τ

ˆ
Ω

(
h
(
ρ̄1, . . . , ρ̄n−1, θ̄

)
+ Ēe−w0

)
dx+ εm. (42)

The right-hand side is bounded since w̄ ∈ L∞(Ω;Rn) by assumption, implying that
(ρ̄1, . . . , ρ̄n−1, θ̄) ∈ L∞(Ω;Rn). The first term on the left-hand side is bounded from below
since, by definition (24) of h and Ee−w0 = cvρθ/θ0,

h(ρ1, . . . ,ρn−1,θ)+Ee−w0 =
n∑

i=1

ρi
mi

(
log

ρi
mi

− 1

)
− cvρ

(
logθ− θ

θ0

)
.

Thus, we obtain a uniform bound for w in H2(Ω;Rn) and consequently also in W1,4(Ω;Rn).
We can apply the Leray–Schauder fixed-point theorem to conclude the existence of a fixed
point of S(·,1). This, in turn, shows that w is a weak solution to the approximate problem (37)
and (38).

Remark 6 (Treatment of the cross-terms). In the paper [15], the fluxes are given by(
J
Je

)
=−

(
M −G
GT κθ2

)
∇
(

µ/θ
−1/θ

)
,
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where M=M(ρ,θ) ∈ Rn×n and G= G(ρ,θ) ∈ Rn. A multiplication of this equation by
∇(µ/θ,−1/θ) shows that the cross-terms cancel out,

−∇
(

µ/θ
−1/θ

)T

:

(
J
Je

)
=

n∑
i,j=1

Mij∇
µi
θ
·∇

µj
θ
+κ|∇ logθ|2 ⩾ 0,

since M is assumed to be positive semidefinite in [15]. In the present work, we have(
J
Je

)
=−

(
A B
BT a

)
∇
(

µ/θ
−1/θ

)
,

and the cross-terms do not cancel. This is compensated by the sum
∑n

i,j=1Aij/(mimj). Indeed,
a computation shows that (also see (41))

−∇
(

µ/θ
−1/θ

)T

:

(
J
Je

)
=

n∑
i,j=1

Aij∇
(
qi +

w
mi

)
·∇
(
qj+

w
mj

)
+κ|∇ logθ|2 ⩾ 0,

since A is positive semidefinite because of (34). □

4.3. Discrete entropy inequality

We derive some estimates from (40) with σ= 1, which are uniform in (ε,τ), by exploiting the
sum I4 + I5 + I8, which we have neglected in (42). Taking into account that the estimate of I10
becomes for σ= 1

I10 = 2ε
ˆ
Ω

sinh(w−w0)(w−w0)dx⩾ 2ε
ˆ
Ω

(w−w0)
2 dx⩾ 0,

we obtain the discrete entropy inequality

σ

τ

ˆ
Ω

(
h(ρ1, . . . ,ρn−1,θ)+Ee−w0

)
dx+ εC

(
‖w‖2H2(Ω) + ‖∇w‖4L4(Ω)

)
+

ˆ
Ω

κ(ew) |∇w|2dx+
ˆ
Ω

n∑
i,j=1

Aij∇
(
qi+

w
mi

)
·∇
(
qj+

w
mj

)
dx

⩽ σ

τ

ˆ
Ω

(
h
(
ρ̄1, . . . , ρ̄n−1, θ̄

)
+ Ēe−w0

)
dx. (43)

Lemma 7. It holds thatˆ
Ω

n∑
i,j=1

Aij∇
(
qi+

w
mi

)
·∇
(
qj+

w
mj

)
dx⩾

ˆ
Ω

n∑
i=1

µ

m2
i

|2∇√
ρi+

√
ρi∇w|2dx, (44)

where µ> 0 is defined in (23).

We deduce from assumption (A4) that κ(ew)|∇w|2 ⩾ cκ|∇w|2, and in view of (43), this
quantity is bounded in L2(Ω). Therefore, lemma 7 yields a gradient bound for

√
ρi in L2(Ω),

since

4|∇√
ρi|2 ⩽ |2∇√

ρi+
√
ρi∇w|2 + ρi|∇w|2.

17
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Proof of lemma 7. It follows from (25) and (30) that

n∑
i,j=1

Aij∇qi =
n∑

i,j=1

Aij
∇ logρi
mi

− cv

n∑
i,j=1

Aij∇w=
n∑

i,j=1

Aij
∇ρi
miρi

and therefore, in view of the definition Aij =MBD
ij
√
ρiρj and the positive definiteness (23) on

the subspace L,

n∑
i,j=1

Aij∇
(
qi+

w
mi

)
·∇
(
qj+

w
mj

)
=

n∑
i,j=1

Aij

(
∇ρi
miρi

+
∇w
mi

)
·
(
∇ρj
mjρj

+
∇w
mj

)

=
n∑

i,j=1

MBD
ij

1
mi

(
∇ρi√
ρi

+
√
ρi∇w

)
· 1
mj

(
∇ρj√
ρj

+
√
ρj∇w

)

⩾ µ

∣∣∣∣PL( 1
mi

(
∇ρi√
ρi

+
√
ρi∇w

))n

i=1

∣∣∣∣2.
We insert the definition of the projection matrix PL:[
PL

(
1
mj

(
∇ρj√
ρj

+
√
ρj∇w

))n

j=1

]
i

=
n∑

j=1

(
δij−

√
ρiρj

ρ

)
1
mj

(
∇ρj√
ρj

+
√
ρj∇w

)

=
1
mi

(
∇ρi√
ρi

+
√
ρi∇w

)
−

√
ρi

ρ

n∑
j=1

1
mj

(∇ρj+ ρj∇w)

=
1
mi

(
∇ρi√
ρi

+
√
ρi∇w

)
.

The last step follows from the pressure constraint (7). Indeed, by (8),
n∑

j=1

1
mj

(∇ρj+ ρj∇w) =
1
θ

n∑
j=1

∇(ρjθ)

mj
=

1
θ
∇p= 0. (45)

We have shown that

n∑
i,j=1

Aij∇
(
qi+

w
mi

)
·∇
(
qj+

w
mj

)
⩾

n∑
i=1

µ

m2
i

∣∣2∇√
ρi+

√
ρi∇w

∣∣2,
which equals (44) after integration over Ω.

Remark 8. We observe that the sum (45) vanishes even without requiring the constraint (7).
Indeed, by (18),

n∑
j=1

1
mj

(∇ρj+ ρj∇w) =
1
θ

n∑
j=1

1
mj

∇(ρjθ) =
1
θ

n∑
j=1

dj = 0.

The fact that
∑n

j=1 dj vanishes is a necessary condition for the invertibility of the linear
system (19).

In view of lemma 7 and the lower bound κ⩾ cκ(1+ θ2), we conclude from (43) the fol-
lowing discrete entropy inequality.

18
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Lemma 9 (Discrete entropy inequality). It holds that

1
τ

ˆ
Ω

(
h(ρ1, . . . ,ρn−1,θ)+Ee−w0

)
dx+ εC

(
‖w‖2H2(Ω) + ‖∇w‖4L4(Ω)

)
+

ˆ
Ω

(
|∇w|2 + |∇θ|2

)
dx+

ˆ
Ω

n∑
i=1

µ

m2
i

∣∣2∇√
ρi+

√
ρi∇w

∣∣2dx
⩽ 1
τ

ˆ
Ω

(
h
(
ρ̄1, . . . , ρ̄n−1, θ̄

)
+ Ēe−w0

)
dx.

Finally, we derive an estimate for the temperature.

Lemma 10. There exists a constant C> 0, only depending on λ, Ω, ∂Ω, and θ0 such that

cv
2τ

ˆ
Ω

ρθ2dx+
cκ
2

ˆ
Ω

(
1+ θ2

)
|∇θ|2dx⩽ C+C

ˆ
Ω

n∑
i=1

|∇√
ρi|2dx+

cv
2τ

ˆ
Ω

ρθ̄2dx.

Proof. We use θ as a test function in the approximate energy equation (38). Observing that
∇wi =∇ρi/(miρi)−∇ρn/(mnρn) by (26) and

∑n
i=1Bi∇wi =

∑n
i=1Bi(miρi)

−1∇ρi by (30),
we find that

0=
cv
τ

ˆ
Ω

ρ
(
θ− θ̄

)
dx+

ˆ
Ω

κ(θ) |∇θ|2dx+
ˆ
Ω

n∑
i,j=1

Aij
mimj

|∇θ|2dx
ˆ
Ω

n∑
i=1

Bi
miρi

∇ρi ·∇θdx

−λ

ˆ
∂Ω

(θ0 − θ)θds+ ε

ˆ
Ω

(θ0 + θ)(logθ− logθ0)θdx

+ ε

ˆ
Ω

(
|D2θ|2 − 1

θ
D2θ : (∇θ⊗∇θ)+ |∇θ|4

θ2

)
dx= J1 + · · ·+ J7.

We deduce from Young’s inequality and assumption (A4) on κ that

J1 ⩾
cv
2τ

ˆ
Ω

ρ
(
θ2 − θ̄2

)
dx, J2 ⩾ cκ

ˆ
Ω

(
1+ θ2

)
|∇θ|2dx.

Furthermore, J3 ⩾ 0. Definition (29) of Bi and Aij as well as the bound ρj ⩽ ρ∗ show that

J4 = θ
n∑

i,j=1

Aij
mimjρi

∇ρi ·∇θdx= θ
n∑

i,j=1

MBD
ij

mimj

√
ρj

√
ρi
∇ρi ·∇θdx

⩾−cκ
2

ˆ
Ω

θ2|∇θ|2dx−C
ˆ
Ω

n∑
i=1

|∇√
ρi|2dx.

The integrals J5 are J6 are bounded from below since

J5 ⩾−λ
4

ˆ
∂Ω

θ20ds⩾−C(λ,∂Ω,θ0) ,

and the dominant term in J6 is θ2 logθ, which is bounded from below by a negative constant.
Finally, J7 is nonnegative:

J7 =
ε

2

ˆ
Ω

(
|D2θ|2 + |∇θ|4

θ2
+

∣∣∣∣D2θ− 1
θ
∇θ⊗∇θ

∣∣∣∣2
)
dx⩾ 0.

Collecting these estimates finishes the proof.
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4.4. Uniform estimates

Let (wk1, . . . ,w
k
n−1,w

k) be a solution to the approximate scheme (37), (38) with
(wk−1

1 , . . . ,wk−1
n−1,w

k−1) = (w̄1, . . . , w̄n−1, w̄). We set θk = exp(wk) and ρki = ρi(wk) determined
from lemma 3. Furthermore, we set Ek = cvρθk, recalling that ρ=

∑n
i=1 ρ

0
i . We introduce the

piecewise constant in time functions

ρ
(τ)
i (x, t) = ρki (x) , q(τ)i =

1
mi

log
ρki
mi

− cv
(
logθk− 1

)
for i = 1, . . . ,n,

θ(τ) (x, t) = θk (x) , E(τ) (x, t) = Ek (x) , w(τ)
i (x, t) = wki (x) for i = 1, . . . ,n− 1,

where x ∈ Ω, t ∈ ((k− 1)τ,kτ ], and k= 1, . . . ,N. At time t= 0, we set ρ(τ)i (0) = ρ0i and

θ(τ)(0) = θ0. Furthermore, we introduce the shift operator (στρ
(τ)
i )(x, t) = ρk−1

i (x) if t ∈
((k− 1)τ,kτ ]. Then (ρ(τ),θ(τ)) solves

0=
1
τ

ˆ T

0

ˆ
Ω

(
ρ
(τ)
i −στρ

(τ)
i

)
φidxdt+ ε

ˆ T

0

ˆ
Ω

(
D2w(τ)

i : D2φi+w(τ)
i φi

)
dxdt

+

ˆ T

0

ˆ
Ω

n−1∑
j=1

Aij
(
w(τ)

)
∇w(τ)

j + e−w(τ)

Bi
(
w(τ)

)
∇w(τ)

 ·∇φidxdt, (46)

0=
1
τ

ˆ T

0

ˆ
Ω

(
E(τ) −στE

(τ)
)
φ0dxdt+

ˆ T

0

ˆ
Ω

κ
(
θ(τ)

)
∇θ(τ) ·∇φ0dxdt

+

ˆ T

0

ˆ
Ω

n−1∑
i=1

Bj
(
w(τ)

)
∇w(τ)

i ·∇φ0dx−λ

ˆ T

0

ˆ
∂Ω

(
θ0 − θ(τ)

)
φ0dsdt

+

ˆ T

0

ˆ
Ω

n∑
i,j=1

Aij
(
w(τ)

)
mimj

∇θ(τ) ·∇φ0dxdt

+ ε

ˆ T

0

ˆ
Ω

(
θ0 + θ(τ)

)
(logθ(τ) − logθ0)φ0dxdt

+ ε

ˆ T

0

ˆ
Ω

θ(τ)
(
D2 logθ(τ) : D2φ0 + |∇ logθ(τ)|2∇ logθ(τ) ·∇φ0

)
dxdt. (47)

The discrete entropy inequality in lemma 9 and the temperature estimates in lemma 10 yield,
after summation over k= 1, . . . ,N,

sup
0<t<T

ˆ
Ω

(
h
(
ρ
(τ)
1 (t) , . . . ,ρ(τ)n−1 (t) ,θ

(τ) (t)
)
+
cv
θ0
ρθ(τ) (t)

)
dx

+

ˆ T

0

ˆ
Ω

(
|∇ logθ(τ)|2 + |∇θ(τ)|2

)
dxdt

+ εC
ˆ T

0

(
‖w(τ)‖2H2(Ω) + ‖∇w(τ)‖4L4(Ω)

)
dt

+

ˆ T

0

ˆ
Ω

n∑
i=1

µ

m2
i

∣∣2∇(ρ(τ)i

)1/2
+
(
ρ
(τ)
i

)1/2
∇ logθ(τ)

∣∣2dxdt
⩽
ˆ
Ω

(
h
(
ρ01, . . . ,ρ

0
n−1,θ

0
)
+ cvρθ

0
)
dx, (48)
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cv sup
0<t<T

ˆ
Ω

ρ
(
θ(τ)

)2
dx+ cκ

ˆ T

0

ˆ
Ω

(
1+

(
θ(τ)

)2)
|∇θ(τ)|2dxdt

⩽ C(T)+C
ˆ T

0

ˆ
Ω

n∑
i=1

|∇
(
ρ
(τ)
i

)1/2
|2dxdt+ cv

2

ˆ
Ω

ρ(θ0)2dx. (49)

Lemma 11. There exists C> 0 not depending on (ε,τ) such that

‖ρ(τ)‖L∞(ΩT) + ‖θ(τ)‖L∞(0,T;L1(Ω)) ⩽ C, (50)

‖ logθ(τ)‖L2(0,T;H1(Ω)) + ‖θ(τ)‖L2(0,T;H1(Ω)) ⩽ C, (51)

ε1/2‖w(τ)‖L2(0,T;H2(Ω)) + ε1/4‖∇w(τ)‖L4(ΩT) ⩽ C, (52)

Proof. Estimates (50) and (52) are an immediate consequence of (48) and ρ⩾ ρ∗ > 0.
Bound (48) also shows that sup(0,T)

´
Ω
(− logθ(τ) + θ(τ))dx is uniformly bounded from

above. Thus, logθ(τ) is uniformly bounded in L∞(0,T;L1(Ω)). Then the uniform bounds for
∇ logθ(τ) and ∇θ(τ) as well as the Poincaré–Wirtinger inequality yield bounds for logθ(τ)

and θ(τ) in L2(ΩT), proving (51).

Lemma 12. There exists C> 0 not depending on (ε,τ) such that for i = 1, . . . ,n,

‖
(
ρ
(τ)
i

)1/2
‖L2(0,T;H1(Ω)) + ‖ρ(τ)i ‖L2(0,T;H1(Ω)) ⩽ C, (53)

‖θ(τ)‖L∞(0,T;L2(Ω)) + ‖
(
θ(τ)

)2
‖L2(0,T;H1(Ω)) + ‖θ(τ)‖L16/3(ΩT) ⩽ C. (54)

Proof. We infer from (48) that

ˆ T

0

ˆ
Ω

|∇
(
ρ
(τ)
i

)1/2
|2dxdt⩽ C

ˆ T

0

ˆ
Ω

∣∣2∇(ρ(τ)i

)1/2
|2 +

(
ρ
(τ)
i

)1/2
∇ logθ(τ)

∣∣2dxdt
+C
ˆ T

0

ˆ
Ω

|∇ logθ(τ)|2dxdt⩽ C,

and the L∞(ΩT) bound (50) gives for i = 1, . . . ,n,

‖ρ(τ)i ‖L2(0,T;H1(Ω)) ⩽ 2‖ρ(τ)i ‖1/2L∞(ΩT)
‖∇
(
ρ
(τ)
i

)1/2
‖L2(ΩT) + ‖ρ(τ)i ‖L2(ΩT) ⩽ C.

Therefore, the right-hand side of (49) is uniformly bounded, which proves the first two estim-
ates in (54). The remaining one is a consequence of the Gagliardo–Nirenberg inequality with
η = 3/4:

‖
(
θ(τ)

)2
‖8/3
L8/3(ΩT)

⩽ C
ˆ T

0
‖
(
θ(τ)

)2
‖8η/3H1(Ω)

‖
(
θ(τ)

)2
‖8(1−η)/3
L1(Ω)

dt

⩽ ‖θ(τ)‖4/3L∞(0,T;L2(Ω))

ˆ T

0
‖
(
θ(τ)

)2
‖2H1(Ω)dt⩽ C.

This finishes the proof.

The following lemma can be proved as in [15, lemma 9].

Lemma 13. There exists C> 0 not depending on (ε,τ) such that

‖ρ(τ)i −στρ
(τ)
i ‖L2(0,T;H2(Ω)∗) + ‖θ(τ) −στθ

(τ)‖L16/15(0,T;W2,16(Ω)∗) ⩽ Cτ. (55)
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4.5. The limit (ε,τ)

The bounds (51), (53) and (55) allow us to apply the Aubin–Lions lemma in the version of
[10]. There exist subsequences, which are not relabelled, such that as (ε,τ)→ 0,

ρ
(τ)
i → ρi, θ(τ) → θ strongly in L2 (ΩT) , i = 1, . . . ,n− 1.

The convergence also holds for i= n since ρ(τ)n = 1−
∑n−1

i=1 ρ
(τ)
i . Thanks to the L∞(ΩT) bound

for ρ(τ)i and the L16/3(ΩT) bound for θ(τ), we have

ρ
(τ)
i → ρi strongly in Lr (ΩT) for all r<∞,

θ(τ) → θ strongly in Lr (ΩT) for all r< 16/3.

We claim that ρi > 0 and θ > 0 a.e. in ΩT. The positivity of ρi is proved as in [15, p 16].
The strong convergence of (θ(τ)) implies a.e. convergence and in particular logθ(τ) → Z a.e.
Thus, θ(τ) → exp(Z) a.e. We conclude that θ = exp(Z)> 0 a.e. in ΩT.

It follows that logθ ∈ L2(ΩT) and estimate (51) yields

∇ logθ(τ) ⇀∇ logθ weakly in L2 (ΩT) . (56)

Furthermore, in view of (51), (53) and (55), up to subsequences,

ρ
(τ)
i ⇀ρi, θ(τ) ⇀ θ weakly in L2

(
0,T;H1 (Ω)

)
,

τ−1
(
ρ
(τ)
i −στρ

(τ)
i

)
⇀∂tρi weakly in L2

(
0,T;H2 (Ω)

∗)
,

τ−1
(
θ(τ) −στθ

(τ)
)
⇀∂tρi weakly in L16/15

(
0,T;W2,16 (Ω)

∗)
,

and the bounds (52) show that

ε logθ(τ) → 0, εw(τ)
i → 0 strongly in L2

(
0,T;H2 (Ω)

)
.

The embedding H1(Ω) ↪→ L2(∂Ω) is compact, giving θ(τ) → θ strongly in L2(0,T;L2(∂Ω)).
These convergences are sufficient to pass to the limit (ε,τ)→ 0 in (46) and (47), showing

that (ρ,θ) solves the weak formulation (35) and (36). We only detail the limits in the terms
A(τ)
ij = Aij(w(τ)) and B(τ)

i = Bi(w(τ)). We know that ∇(ρ
(τ)
i )1/2 ⇀∇ρ1/2i weakly in L2(ΩT)

and

A(τ)
ij

mj

(
ρ
(τ)
j

)1/2 =MBD
ij

(
ρ(τ)

) (ρ(τ)i

)1/2
mj

→MBD
ij (ρ)

ρ
1/2
i

mj
=

Aij

mjρ
1/2
j

strongly in Lγ(ΩT) for all γ <∞. Using (32) and (25), this implies that

n−1∑
j=1

A(τ)
ij ∇w(τ)

j =
n∑

j=1

A(τ)
ij

mj
∇ log

ρ
(τ)
i

mj
= 2

n∑
j=1

MBD
ij

(
ρ(τ)

) (ρ(τ)i

)1/2
mj

∇
(
ρ
(τ)
j

)1/2
⇀ 2

n∑
j=1

MBD
ij
ρ
1/2
i

mj
∇ρ1/2j weakly in Ls (ΩT) , s< 2.
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Since the sequence is bounded in L2(ΩT), this convergence also holds in this space. Similarly,

B(τ)
i e−w(τ)

∇w(τ) =
n∑

j=1

A(τ)
ij

mj
∇ logθ(τ) ⇀

n∑
j=1

Aij
mj

∇ logθ weakly in L2 (ΩT) ,

A(τ)
ij ∇θ(τ) =MBD

ij

(
ρ(τ)

)(
ρ
(τ)
i ρ

(τ)
j

)1/2
∇θ(τ) ⇀ Aij∇θ weakly in L2 (ΩT) ,

and using θ(τ) → θ strongly in Lr(ΩT) for r< 16/3,

n−1∑
i=1

B(τ)
i ∇w(τ)

i = 2
n∑

i,j=1

MBD
ij

(
ρ(τ)

)
mimj

θ(τ)
(
ρ
(τ)
j

)1/2
∇
(
ρ
(τ)
i

)1/2
⇀ 2

n∑
i=1

Bi

miρ
1/2
i

∇ρ1/2i

weakly in Ls(ΩT) for s< 16/11, and since the right-hand side lies in L16/11(ΩT), this conver-
gence also holds in L16/11(ΩT).

Next, we claim that ρi(0) and θ(0) satisfy the initial data. The time derivative of the linear
interpolant

ρ̃
(τ)
i (t) = ρki −

kτ − t
τ

(
ρki − ρk−1

i

)
for (k− 1)τ < t< kτ

is bounded since, because of (55),

‖∂tρ̃(τ)i ‖L2(0,T;H2(Ω)∗) ⩽ τ−1‖ρ(τ)i −στρ
(τ)
i ‖L2(0,T;H2(Ω)∗) ⩽ C.

Thus, ρ̃(τ)i is uniformly bounded in H1(0,T;H2(Ω)∗) ↪→ C0([0,T];H2(Ω)∗) and we conclude

for a subsequence that ρ0i = ρ̃
(τ)
i (0)⇀ ri weakly in H2(Ω)∗ for some ri ∈ H2(Ω)∗. It follows

that ri = ρ0i . As ρ̃
(τ)
i and ρ(τ)i converge to the same limit,

‖ρ̃(τ)i − ρ
(τ)
i ‖L2(0,T;H2(Ω)∗) ⩽ ‖ρ(τ)i −στρ

(τ)
i ‖L2(0,T;H2(Ω)∗) ⩽ Cτ → 0,

this shows that ρ0i = ri = ρi(0) in H2(Ω)∗. In an analogous way, we verify that θ(0) = θ0 in
W2,16(Ω)∗.

The initial data are satisfied in better spaces. Indeed, going back to (35) and (36), the
regularity of ρi implies that ∂tρi ∈ L2(0,T;H1(Ω))∩H1(0,T;H1(Ω)∗) ↪→ C0([0,T];L2(Ω))
and thus ρi(0) = ρ0i in the sense of L2(Ω). The temperature satisfies θ ∈ L∞(0,T;L2(Ω))∩
C0([0,T];W2,16(Ω)∗), which gives θ ∈ C0

w([0,T];L
2(Ω)). Consequently, θ(0) = θ0 weakly

in L2(Ω). Moreover, we deduce from |κ∇θ|⩽ Cκ(|∇θ|+ θ|∇θ2|) ∈ L16/11(ΩT) that ∂tθ ∈
L16/11(0,T;W1,16/11(Ω)∗). This completes the proof.

5. Proof of theorem 2

Let (ρ,θ) be a weak solution and (ρ̄, θ̄) be a strong solution to (1)–(8). We introduce the
entropy

H(ρ(t) ,θ (t)) =
ˆ
Ω

(
n∑

i=1

ρi
mi

(
log

ρi
mi

− 1

)
− ρ logθ

)
dx.
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Lemma 14 (Entropy equality for strong solutions). Let (ρ̄, θ̄) be a strong solution to (1)–(8)
(in the sense mentioned after theorem 2) with λ= 0. Then

H
(
ρ̄(t) , θ̄ (t)

)
+

ˆ t

0

ˆ
Ω

κ
(
θ̄
)

θ̄2
|∇θ̄|2dxds+ 1

2

ˆ t

0

ˆ
Ω

n∑
i,j=1

bijρ̄iρ̄j|ūi− ūj|2dxds=H
(
ρ̄(0) , θ̄ (0)

)
.

Proof. We use (1) and (2) and integrate by parts to obtain

dH
dt

=

ˆ
Ω

(
n∑

i=1

∂tρ̄i
mi

log
ρ̄i
mi

−
ρ
∂t
(
ρθ̄
))

dx

=

ˆ
Ω

{
n∑

i=1

ρ̄iūi
mi

∇ log
ρ̄i
mi

+
∇θ̄
θ̄2

(
−κ̄∇θ̄+ θ̄

n∑
i=1

ρ̄iūi
mi

)}
dx

=−
ˆ
Ω

κ̄

θ̄2
|∇θ̄|2dx+

ˆ
Ω

n∑
i=1

ūi
mi

·
(
∇ρ̄i+ ρ̄i∇ log θ̄

)
dx

=−
ˆ
Ω

κ̄

θ̄2
|∇θ̄|2dx+

ˆ
Ω

n∑
i=1

1

θ̄
ūi · d̄idx,

where κ̄= κ(θ̄) andwe used (18) in the last step. By the algebraic system (5) and the symmetry
of (bij),

n∑
i=1

1

θ̄
ūi · d̄i =−

n∑
i,j=1

bijρ̄iρ̄j (ūi− ūj) · ūi =−1
2

n∑
i,j=1

bijρ̄iρ̄j|ūi− ūj|2. (57)

This shows the claim.

Lemma 15 (Entropy inequality for weak solutions). Let (ρ̄, θ̄) be a weak solution to (1)–(8)
with λ= 0. Then

H(ρ(t) ,θ (t))+
ˆ t

0

ˆ
Ω

κ

θ2
|∇θ|2dxds+ 1

2

ˆ t

0

ˆ
Ω

n∑
i,j=1

bijρiρj|ui− uj|2dxds⩽ H
(
ρ0,θ0

)
.

Proof. Let (ρk,θk) for k= 1, . . . ,N be a solution to the approximate problem (37) and (38),
constructed in section 4.2. According to (43), this solution satisfies

H
(
ρk,θk

)
+ τ

ˆ
Ω

κ
(
θk
)
|∇ logθk|2dx+ τ

ˆ
Ω

n∑
i,j=1

Akij∇
(
qki +

wk

mi

)
·∇

(
qkj +

wk

mj

)
dx⩽ H

(
ρk−1,θk−1

)
,

where the superindex k denotes the kth time step. By corollary 5 as well as relations (22)
and (57),

n∑
i,j=1

Akij∇
(
qki +

wk

mi

)
·∇
(
qkj +

wk

mj

)
=

n∑
i,j=1

(
MBD
ij

)k dki

θk
(
ρki
)1/2 · dkj

θk
(
ρkj

)1/2
=−

n∑
i=1

1
θk
dki · uki =

1
2

n∑
i,j=1

bijρ
k
i ρ

k
j |uki − ukj |2.
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Therefore,

H
(
ρk,θk

)
+ τ

ˆ
Ω

κ
(
θk
)
|∇ logθk|2dx+ τ

2

ˆ
Ω

n∑
i,j=1

bijρ
k
i ρ

k
j |uki − ukj |2dx⩽ H

(
ρk−1,θk−1

)
.

We sum over k= 1, . . . , j with t ∈ (( j− 1)τ, jτ ] and use the notation of section 4.4:

H
(
ρ(τ) (t) ,θ(τ) (t)

)
+

ˆ t

0

ˆ
Ω

κ
(
θ(τ)

)
|∇ logθ(τ)|2dxds

+
1
2

ˆ t

0

ˆ
Ω

n∑
i,j=1

bijρ
(τ)
i ρ

(τ)
j |u(τ)i − u(τ)j |2dxds⩽ H

(
ρ0,θ0

)
(58)

for a.e. t ∈ (0,T).
It remains to pass to the limit (ε,τ)→ 0 in (58). We deduce from the strong convergence

of (ρ(τ)) and (θ(τ)) that

H(ρ(t) ,θ (t))⩽ liminf
(ε,τ)→0

H
(
ρ(τ) (t) ,θ(τ) (t)

)
.

We deduce from the strong convergence ρ(τ)i → ρi in Lq(ΩT) for any q<∞ and the bounded-
ness of MBD

ij that MBD
ij (ρ(τ))→MBD

ij (ρ) strongly in any Lq(ΩT). In view of the weak conver-

gences∇ logθ(τ) ⇀∇ logθ from (56) and∇(ρ
(τ)
i )1/2 ⇀∇ρ1/2i from (53) weakly in L2(ΩT),

we have

2∇
(
ρ
(τ)
i

)1/2
+ ρ

(τ)
i ∇ logθ(τ) ⇀ 2∇ρ1/2i + ρi∇ logθ weakly in L2 (ΩT) .

Hence, using (22),

(
ρ
(τ)
i

)1/2
u(τ)i =

n∑
j=1

MBD
ij

(
ρ(τ)

) 1
mj

(
2∇
(
ρ
(τ)
i

)1/2
+ ρ

(τ)
i ∇ logθ(τ)

)

⇀
n∑

j=1

MBD
ij (ρ)

1
mj

(
2∇ρ1/2i + ρi∇ logθ

)
= ρ

1/2
i ui.

Weakly in L2(ΩT), where the last identity is the definition of ui. Then, taking into account the
boundedness of ρ(τ)i in L∞(ΩT), for any i, j = 1, . . . ,n,(

bijρ
(τ)
i ρ

(τ)
j

)1/2
u(τ)i ⇀ (bijρiρj)

1/2 ui weakly in L2 (ΩT) .

As the L2(ΩT) norm is weakly lower semicontinuous,

ˆ T

0

ˆ
Ω

n∑
i,j=1

bijρiρj|ui− uj|2dxds⩽ liminf
(ε,τ)→0

ˆ T

0

ˆ
Ω

n∑
i,j=1

∣∣(bijρ(τ)i ρ
(τ)
j

)1/2(
u(τ)i − u(τ)j

)∣∣2dxds
= liminf

(ε,τ)→0

ˆ T

0

ˆ
Ω

n∑
i,j=1

bijρ
(τ)
i ρ

(τ)
j |u(τ)i − u(τ)j |2dxds.
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Finally, κ(θ(τ))1/2∇ logθ(τ) → κ(θ)1/2∇ logθ weakly in L1(ΩT) and, because of the uniform
bounds, also in L2(ΩT). Hence,

ˆ t

0

ˆ
Ω

κ(θ)

θ2
|∇θ|2dxds⩽ liminf

(ε,τ)→0

ˆ t

0

ˆ
Ω

κ
(
θ(τ)

)(
θ(τ)

)2 |∇θ(τ)|2dxds.
Thus, applying the limit inferior (ε,τ)→ 0 to both sides of (58) yields the result.

Lemma 16 (Relative entropy inequality). Let the assumptions of theorem 2 hold and let
ρi(0) = ρ̄i(0) for i = 1, . . . ,n and θ(0) = θ̄(0). Then

H
(
(ρ,θ)(t) |

(
ρ̄, θ̄
)
(t)
)
+
µM
2

ˆ t

0

ˆ
Ω

n∑
i=1

ρi|ui− ūi|2dxds

+
cκ
2

ˆ t

0

ˆ
Ω

|∇
(
logθ− log θ̄

)
|2dxds⩽ C

ˆ t

0

ˆ
Ω

 n∑
j=1

(ρj− ρ̄j)
2
+
(
θ− θ̄

)2dxds, (59)

where the relative entropy H(ρ,θ|ρ̄, θ̄) is defined in (12).

Proof. We use the test functions φi = m−1
i log(ρ̄i/mi)− cv log θ̄ and φ0 =−1/θ̄ in the weak

formulations satisfied by ρi− ρ̄i and ρ(θ− θ̄), respectively,

ˆ
Ω

(ρi− ρ̄i)(t)φi (t)dx=
ˆ t

0

ˆ
Ω

(ρi− ρ̄i)∂tφidxds+
ˆ t

0

ˆ
Ω

(ρiui− ρ̄iūi) ·∇φi dxds,
ˆ
Ω

cvρ
(
θ− θ̄

)
(t)φ0 (t)dx=

ˆ t

0

ˆ
Ω

cvρ
(
θ− θ̄

)
∂tφ0dxds−

ˆ t

0

ˆ
Ω

(
κ∇θ− κ̄∇θ̄

)
·∇φ0dxds

+

ˆ t

0

ˆ
Ω

n∑
j=1

(
hjuj− h̄jūj

)
·∇φ0dxds,

where hj = (cv+ 1/mj)ρjθ, h̄j = (cv+ 1/mj)ρ̄jθ̄, and κ= κ(θ), κ̄= κ(θ̄). Strictly speaking,
we cannot use φi as a test function since log ρ̄i and 1/θ̄ may be not integrable. However, we
can use a density argument similarly as in the proof of [18, lemma 8]. Then, summing over
i = 1, . . . ,n,

ˆ
Ω

{
n∑

i=1

(ρi− ρ̄i)(t)

(
1
mi

log
ρ̄i
mi

− cv log θ̄

)
(t)− cvρ

θ− θ̄

θ̄
(t)

}
dx

=

ˆ t

0

ˆ
Ω

{
n∑

i=1

(
(ρi− ρ̄i)

∂tρ̄i
miρ̄i

+(ρiui− ρ̄iūi) ·
∇ρ̄i
miρ̄i

)
+ cvρ

(
θ− θ̄

)
∂t

(
−1

θ̄

)}
dxds

−
ˆ t

0

ˆ
Ω

(
κ∇θ− κ̄∇θ̄

)
·∇
(
−1

θ̄

)
dxds+

ˆ t

0

ˆ
Ω

n∑
j=1

(
hjuj− h̄jūj

)
·∇
(
−1

θ̄

)
dxds.

We subtract this identity and the entropy equality from lemma 14 for (ρ̄, θ̄) from the entropy
inequality for (ρ,θ) obtained in lemma 15 and insert equations (1), (2) to replace the time
derivatives ∂tρ̄i and ∂t(−1/θ̄). A computation shows that
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H
(
(ρ,θ)(t) |

(
ρ̄, θ̄
)
(t)
)
⩽ K1 · · ·+K5, where

K1 =−
ˆ t

0

ˆ
Ω

(
κ|∇ logθ|2 − κ̄|∇ log θ̄|2

)
dxds+

ˆ t

0

ˆ
Ω

κ̄∇θ̄ ·∇
(
θ

θ̄2
− 1

θ̄

)
dxds

+

ˆ t

0

ˆ
Ω

(
κ∇θ− κ̄∇θ̄

)
·∇
(
−1

θ̄

)
dxds,

K2 =−
ˆ t

0

ˆ
Ω

n∑
i=1

ρ̄iūi
mi

·∇
(
ρi
ρ̄i

)
dxds−

ˆ t

0

ˆ
Ω

n∑
i=1

∇ρ̄i
miρ̄i

· (ρiui− ρ̄iūi)dxds,

K3 =−
ˆ t

0

ˆ
Ω

n∑
i=1

h̄iūi ·∇
(
θ

θ̄2
− 1

θ̄

)
dxds−

ˆ t

0

ˆ
Ω

n∑
i=1

(
hiui− h̄iūi

)
·∇
(
−1

θ̄

)
dxds,

K4 =−1
2

ˆ t

0

ˆ
Ω

n∑
i,j=1

bijρiρj|ui− uj|2dxds,

K5 =
1
2

ˆ t

0

ˆ
Ω

n∑
i,j=1

bijρ̄iρ̄j
∣∣ūi− ūj

∣∣2dxds. (60)

The term K1 can be rewritten as

K1 =−
ˆ t

0

ˆ
Ω

1

θ̄

(
κθ̄− κ̄θ

)
∇
(
logθ− log θ̄

)
·∇ log θ̄dxds−

ˆ t

0

ˆ
Ω

κ
∣∣∇(logθ− log θ̄

)∣∣2dxds
+

ˆ t

0

ˆ
Ω

θ− θ̄

θ̄
∇ log θ̄ ·

(
κ∇ logθ− κ̄∇ log θ̄

)
dxds=: K11 +K12 +K13.

The algebraic system (5) with di =∇(ρiθ)/mi can be formulated as

−mi

n∑
j=1

bijρ̄iρ̄j (ūi− ūj)− ρ̄i∇ log θ̄ =∇ρ̄i.

This allows us to rewrite K2:

K2 =

ˆ t

0

ˆ
Ω

n∑
i,j=1

bijρiρj (ui− uj) · ūidxds−
ˆ t

0

ˆ
Ω

n∑
i,j=1

bijρiρ̄j (ūi− ūj) · ūidxds

+

ˆ t

0

ˆ
Ω

n∑
i,j=1

bijρiρ̄j (ūi− ūj) · uidxds−
ˆ t

0

ˆ
Ω

n∑
i,j=1

bijρ̄iρ̄j (ūi− ūj) · ūidxds

+

ˆ t

0

ˆ
Ω

n∑
i=1

1
mi
ρi∇ logθ · ūidxds−

ˆ t

0

ˆ
Ω

n∑
i=1

1
mi
ρi∇ log θ̄ · ūidxds

+

ˆ t

0

ˆ
Ω

n∑
i=1

1
mi
ρi∇ log θ̄ · uidxds−

ˆ t

0

ˆ
Ω

n∑
i=1

1
mi
ρ̄i∇ log θ̄ · ūidxds

=: K21 + · · ·+K28.
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Furthermore, it follows from hi = (cv+ 1/mi)ρiθ and
∑n

i=1 ρiui =
∑n

i=1 ρ̄iūi = 0 that

K3 =−
ˆ t

0

ˆ
Ω

n∑
i=1

h̄iūi ·∇
(
θ

θ̄2

)
dxds−

ˆ t

0

ˆ
Ω

n∑
i=1

hiui ·∇
(
−1

θ̄

)
dxds

=−
ˆ t

0

ˆ
Ω

n∑
i=1

(
cv+

1
mi

)
θ̄ρ̄iūi ·∇

(
θ

θ̄2

)
dxds

−
ˆ t

0

ˆ
Ω

n∑
i=1

(
cv+

1
mi

)
θρiui ·∇

(
−1

θ̄

)
dxds

=−
ˆ t

0

ˆ
Ω

n∑
i=1

ρ̄iθ̄

mi
ūi ·∇

(
θ

θ̄2

)
dxds−

ˆ t

0

ˆ
Ω

n∑
i=1

ρiθ

mi
ui ·∇

(
−1

θ̄

)
dxds

=−
ˆ T

0

ˆ
Ω

n∑
i=1

ρ̄iūi
miθ̄

·∇θdxds+ 2
ˆ T

0

ˆ
Ω

n∑
i=1

ρ̄iūiθ

miθ̄2
·∇θ̄dxds

−
ˆ T

0

ˆ
Ω

n∑
i=1

ρiuiθ

miθ̄2
·∇θ̄dxds.

We reformulate K4 as

K4 =−1
2

ˆ t

0

ˆ
Ω

n∑
i,j=1

bijρiρj
∣∣(ui− ūi)− (uj− ūj)

∣∣2dxds+ 1
2

ˆ t

0

ˆ
Ω

n∑
i,j=1

bijρiρj|ūi− ūj|2dxds

−
ˆ t

0

ˆ
Ω

n∑
i,j=1

bijρiρj (ui− uj) · (ūi− ūj)dxds=: K41 +K42 +K43.

A long but straightforward computation shows that

K21 +K22 +K23 +K24 +K42 +K43 +K5

=−
ˆ T

0

ˆ
Ω

n∑
i,j=1

bijρi (ρj− ρ̄j)(ui− ūi) · (ūi− ūj)dxds=: L1

and

K25 +K26 +K27 +K28 +K3 =

ˆ T

0

ˆ
Ω

n∑
i=1

1
mi

(ρi− ρ̄i)
(
∇ logθ−∇ log θ̄

)
· ūidxds

+

ˆ T

0

ˆ
Ω

n∑
i=1

1
mi
ρ̄iūi ·

(
∇ logθ−∇ log θ̄

)(
1− θ

θ̄

)
dxds

+

ˆ T

0

ˆ
Ω

n∑
i=1

1
mi
ρi (ui− ūi) ·∇ log θ̄

(
1− θ

θ̄

)
dxds

+

ˆ T

0

ˆ
Ω

n∑
i=1

1
mi

(ρi− ρ̄i) ūi ·∇ log θ̄

(
1− θ

θ̄

)
dxds

=: L2 +L3 +L4 +L5.
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Inserting these expressions into (60), putting K12 on the left-hand side, and rearranging the
terms, we find that

H
(
(ρ,θ)(t) |

(
ρ̄, θ̄
)
(t)
)
+

1
2

ˆ t

0

ˆ
Ω

n∑
i,j=1

bijρiρj
∣∣(ui− ūi)− (uj− ūj)

∣∣2dxds
+

ˆ t

0

ˆ
Ω

κ|∇
(
logθ− log θ̄

)
|2dxds⩽ K11 +K13 +L1 + · · ·+L5. (61)

The second term on the left-hand side can be bounded from below. Indeed, it follows from the
symmetry of (bij), definition (20) of Mij, and the positive definiteness (21) of M on L that

1
2

n∑
i,j=1

bijρiρj
∣∣(ui− ūi)− (uj− ūj)

∣∣2
=

n∑
i=1

 n∑
j=1, j̸=i

bijρj

ρi|ui− ūi|2 −
n∑

i,j=1, i ̸=j

bijρiρj (ui− ūi) · (uj− ūj)

=
n∑

i,j=1

Mij
√
ρi (ui− ūi) ·

√
ρj (uj− ūj)⩾ µM|PLY|2,

where Yj =
√
ρj(uj− ūj). The norm of the projection is computed according to

|PLY|2 = |Y|2 − |PL⊥Y|2 =
n∑

i=1

ρi|ui− ūi|2 −
n∑

i=1

ρi
ρ2

∣∣∣∣ n∑
j=1

ρj (uj− ūj)

∣∣∣∣2

=
n∑

i=1

ρi|ui− ūi|2 −
1
ρ

∣∣∣∣ n∑
j=1

(ρj− ρ̄j) ūj

∣∣∣∣2 ⩾ n∑
i=1

ρi|ui− ūi|2 −C1

n∑
j=1

(ρj− ρ̄j)
2
,

where we used
∑n

i=1 ρiui = 0 in the third equality, and C1 > 0 depends on ρ∗ and the L∞(ΩT)
norms of ūj, j = 1, . . . ,n. Consequently,

1
2

ˆ t

0

ˆ
Ω

n∑
i,j=1

bijρiρj
∣∣(ui− ūi)− (uj− ūj)

∣∣2dxds
⩾ µM

ˆ t

0

ˆ
Ω

n∑
i=1

ρi|ui− ūi|2dxds−C2

ˆ t

0

ˆ
Ω

n∑
j=1

(ρj− ρ̄j)
2 dxds. (62)

We turn to the estimation of the terms on the right-hand side of (61). By the Lipschitz continuity
of κ and Young’s inequality, K11 is estimated as

K11 =−
ˆ t

0

ˆ
Ω

1

θ̄

(
κ
(
θ̄− θ

)
+(κ− κ̄)θ

)
∇θ̄ ·∇

(
logθ− log θ̄

)
dxds

⩽ cκ
8

ˆ t

0

ˆ
Ω

|∇
(
logθ− log θ̄

)
|2dxds+C3

ˆ t

0

ˆ
Ω

(
θ− θ̄

)2
dxds,
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and C3 > 0 depends on cκ (see assumption (A4)), and the L∞(ΩT) norms of θ and ∇ log θ̄. A
similar estimate shows that

K13 =−
ˆ t

0

ˆ
Ω

θ− θ̄

θ̄

(
κ∇
(
logθ− log θ̄

)
+(κ− κ̄)∇ log θ̄

)
·∇ log θ̄dxds

⩽ cκ
8

ˆ t

0

ˆ
Ω

|∇
(
logθ− log θ̄

)
|2dxds+C4

ˆ t

0

ˆ
Ω

(
θ− θ̄

)2
dxds,

L2 ⩽
cκ
8

ˆ t

0

ˆ
Ω

|∇
(
logθ− log θ̄

)
|2dxds+C5

ˆ t

0

ˆ
Ω

n∑
i=1

(ρi− ρ̄i)
2 dxds,

L3 ⩽
cκ
8

ˆ t

0

ˆ
Ω

|∇
(
logθ− log θ̄

)
|2dxds+C6

ˆ t

0

ˆ
Ω

(
θ− θ̄

)2
dxds,

observing that C4 depends on cκ, δ and the L∞(ΩT) norms of θ, ∇ log θ̄, and ūi, C5 depends
on the L∞(ΩT) norms of ūi, and C6 depends on cκ, ρ∗, δ, and the L∞(ΩT) norms of ūi (i =
1, . . . ,n). Moreover, by Young’s inequality again,

L1 ⩽
µM
4

ˆ t

0

ˆ
Ω

n∑
i=1

ρi|ui− ūi|2dxds+C7

ˆ t

0

ˆ
Ω

n∑
i=1

(ρi− ρ̄i)
2 dxds,

L4 ⩽
µM
4

ˆ t

0

ˆ
Ω

n∑
i=1

ρi|ui− ūi|2dxds+C8

ˆ t

0

ˆ
Ω

(
θ− θ̄

)2
dxds,

where C7 depends on ρ∗, µM , and the L∞(ΩT) norms of ūi (i = 1, . . . ,n), while C8 depends on
δ, ρ∗, and the L∞(ΩT) norm of ∇ log θ̄. Finally,

L5 ⩽ C9

ˆ T

0

ˆ
Ω

n∑
i=1

(ρi− ρ̄i)
2 dxds+C10

ˆ T

0

ˆ
Ω

(
θ− θ̄

)2
dxds,

where C9 > 0 depends on the L∞(ΩT) norms of ūi (i = 1, . . . ,n), and C10 depends on δ and
the L∞(ΩT) norm of ∇ log θ̄.

Summarising the previous estimations, we infer from (61), (62) and the lower bound for κ
(see assumption (A4)) the conclusion.

It remains to estimate the right-hand side of (59) in terms of the relative entropy. For this,
we observe that, by [18, lemma 16],

ˆ
Ω

n∑
i=1

1
mi

(
ρi log

ρi
ρ̄i

− (ρi− ρ̄i)

)
dx⩾ C

ˆ
Ω

n∑
i=1

(ρi− ρ̄i)
2 dx.

Furthermore, for all functions f ∈ C1(R) with f ′(1) = 0,

f(s)− f(1) = (s− 1)
ˆ 1

0
f ′ (σ (s− 1)+ 1)dσ = (s− 1)

ˆ 1

0
f ′ (τ (s− 1)+ 1)

∣∣σ
τ=0

dσ

= (s− 1)2
ˆ 1

0

ˆ σ

0
f ′ ′ (τ (s− 1)+ 1)dτdσ.
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This yields, choosing f(s) =− logs+ s− 1 and s= θ/θ̄,

ˆ
Ω

cvρ

(
− log

θ

θ̄
+

1

θ̄

(
θ− θ̄

))
dx⩾

ˆ
Ω

cvρ

(
θ− θ̄

)2
max

{
θ, θ̄
}2 dx⩾ C

ˆ
Ω

(
θ− θ̄

)2
dx,

where C> 0 depends on the lower bound for θ̄ in ΩT. By definition of the relative entropy, we
conclude from lemma 16 that

H
(
(ρ,θ)(t) |

(
ρ̄, θ̄
)
(t)
)
+
µM
2

ˆ t

0

ˆ
Ω

n∑
i=1

ρi|ui− ūi|2dxds

+
cκ
2

ˆ t

0

ˆ
Ω

|∇
(
logθ− log θ̄

)
|2dxds⩽ C

ˆ t

0
H
(
ρ,θ|ρ̄, θ̄

)
ds.

Gronwall’s lemma shows that H((ρ,θ)(t)|(ρ̄, θ̄)(t)) = 0 and hence ρ(t) = ρ̄(t) and θ(t) =
θ̄(t) = 0 in Ω for t> 0. This finishes the proof.

Data availability statement
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