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A CONVERGENT FINITE-VOLUME SCHEME FOR NONLOCAL
CROSS-DIFFUSION SYSTEMS FOR MULTI-SPECIES POPULATIONS

Ansgar Jüngel1, Stefan Portisch1,* and Antoine Zurek2

Abstract. An implicit Euler finite-volume scheme for a nonlocal cross-diffusion system on the one-
dimensional torus, arising in population dynamics, is proposed and analyzed. The kernels are assumed
to be in detailed balance and satisfy a weak cross-diffusion condition. The latter condition allows for
negative off-diagonal coefficients and for kernels defined by an indicator function. The scheme preserves
the nonnegativity of the densities, conservation of mass, and production of the Boltzmann and Rao
entropies. The key idea is to “translate” the entropy calculations for the continuous equations to the
finite-volume scheme, in particular to design discretizations of the mobilities, which guarantee a discrete
chain rule even in the presence of nonlocal terms. Based on this idea, the existence of finite-volume
solutions and the convergence of the scheme are proven. As a by-product, we deduce the existence of
weak solutions to the continuous cross-diffusion system. Finally, we present some numerical experiments
illustrating the behavior of the solutions to the nonlocal and associated local models.
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1. Introduction

This paper is devoted to the design and analysis of structure-preserving finite-volume discretization of the
following one-dimensional nonlocal cross-diffusion initial-value problem:

𝜕𝑡𝑢𝑖 = 𝜕𝑥(𝜎𝜕𝑥𝑢𝑖 + 𝑢𝑖𝜕𝑥𝑝𝑖(𝑢)) in T, 𝑡 > 0, (1)
𝑢𝑖(·, 0) = 𝑢0

𝑖 in T, 𝑖 = 1, . . . , 𝑛, (2)

where 𝜎 ≥ 0 is the diffusion coefficient, T := R/Z is the one-dimensional torus of unit measure, and 𝑝𝑖 is the
nonlocal operator

𝑝𝑖(𝑢)(𝑥) := 𝑎𝑖𝑖𝑢𝑖(𝑥) +
𝑛∑︁

𝑗=1
𝑗 ̸=𝑖

𝑎𝑖𝑗(𝐵𝑖𝑗 * 𝑢𝑗)(𝑥) = 𝑎𝑖𝑖𝑢𝑖(𝑥) +
𝑛∑︁

𝑗=1
𝑗 ̸=𝑖

∫︁
T
𝑎𝑖𝑗𝐵

𝑖𝑗(𝑥− 𝑦)𝑢𝑗(𝑦)d𝑦, (3)
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where 𝑎𝑖𝑗 are some constants. The kernel functions 𝐵𝑖𝑗 : T → R are periodically extended to R, and 𝑢 =
(𝑢1, . . . , 𝑢𝑛) is the solution vector. If we define 𝐵𝑖𝑖 = 𝛿0, where 𝑖 ∈ {1, . . . , 𝑛} and 𝛿0 is the Dirac measure, we
can rewrite 𝑝𝑖 as

𝑝𝑖(𝑢) =
𝑛∑︁

𝑗=1

𝑎𝑖𝑗(𝐵𝑖𝑗 * 𝑢𝑗)(𝑥). (4)

Equation (1) with definition (4) and general kernels 𝐵𝑖𝑗 for 𝑖, 𝑗 = 1, . . . , 𝑛 can be derived from stochastic
interacting particle systems in the many-particle limit [10].

We proved in [19] that the “full” nonlocal system, i.e. system (1) and (4), where 𝐵𝑖𝑖 ̸= 𝛿0 are general kernels,
admits global weak solutions. Our analysis was based on the fact that this system possesses two Lyapunov
functionals. More precisely, assume that there exist numbers 𝜋1, . . . , 𝜋𝑛 > 0 such that the kernels 𝐵𝑖𝑗 satisfy
the so-called detailed-balance condition

𝜋𝑖𝑎𝑖𝑗𝐵
𝑖𝑗(𝑥− 𝑦) = 𝜋𝑗𝑎𝑗𝑖𝐵

𝑗𝑖(𝑦 − 𝑥) for 𝑖, 𝑗 = 1, . . . , 𝑛 and a.e. 𝑥, 𝑦 ∈ T,

and the positive semi-definiteness condition

𝑛∑︁
𝑖,𝑗=1

∫︁
T

∫︁
T
𝜋𝑖𝑎𝑖𝑗𝐵

𝑖𝑗(𝑥− 𝑦)𝑣𝑗(𝑦)𝑣𝑖(𝑥)d𝑦d𝑥 ≥ 0 for all 𝑣𝑖, 𝑣𝑗 ∈ 𝐿2(T). (5)

Then we proved that the Boltzmann (type) and Rao (type) entropies, respectively,

𝐻𝐵(𝑢) =
𝑛∑︁

𝑖=1

∫︁
T
𝜋𝑖𝑢𝑖(log 𝑢𝑖 − 1)d𝑥,

𝐻𝑅(𝑢) =
1
2

𝑛∑︁
𝑖,𝑗=1

∫︁
T

∫︁
T
𝜋𝑖𝑎𝑖𝑗𝐵

𝑖𝑗(𝑥− 𝑦)𝑢𝑗(𝑦)𝑢𝑖(𝑥) d𝑦d𝑥,

fulfill the following entropy dissipation inequalities:

𝑑𝐻𝐵

d𝑡
+ 4𝜎

𝑛∑︁
𝑖=1

∫︁
T
𝜋𝑖|𝜕𝑥

√
𝑢𝑖|2d𝑥 ≤ −

𝑛∑︁
𝑖,𝑗=1

∫︁
T

∫︁
T
𝜋𝑖𝑎𝑖𝑗𝐵

𝑖𝑗(𝑥− 𝑦)𝜕𝑥𝑢𝑗(𝑦)𝜕𝑥𝑢𝑖(𝑥)d𝑦d𝑥, (6)

𝑑𝐻𝑅

d𝑡
+

𝑛∑︁
𝑖=1

∫︁
T
𝜋𝑖𝑢𝑖|𝜕𝑥𝑝𝑖(𝑢)|2d𝑥 ≤ −𝜎

𝑛∑︁
𝑖,𝑗=1

∫︁
T

∫︁
T
𝜋𝑖𝑎𝑖𝑗𝐵

𝑖𝑗(𝑥− 𝑦)𝜕𝑥𝑢𝑗(𝑦)𝜕𝑥𝑢𝑖(𝑥)d𝑦d𝑥, (7)

and the right-hand sides are nonpositive due to (5). The Boltzmann entropy is related to the thermodynamic
entropy of the system, and the Rao entropy is a measure of the functional diversity of the species [23].

While this theoretical framework was suitable to prove the existence of weak solutions, condition (5) is
cumbersome to check in practice. In Remark 1 from [19], we proved that (5) is satisfied for smooth kernels like
the Gaussian one, i.e. 𝐵𝑖𝑗(𝑥 − 𝑦) = exp(−(𝑥 − 𝑦)2/2) for 𝑖, 𝑗 = 1, . . . , 𝑛. We also claimed that kernels 𝐵𝑖𝑗 of
the type 𝐵𝑖𝑗 = 1𝐾 for some interval 𝐾 around the origin satisfy (5). This claim is in fact not true, see the
counterexample in Appendix B.

System (1) and (4), with local or nonlocal self-diffusion terms, describes the dynamics of a population with
𝑛 species, where the evolution of each species is driven by nonlocal sensing [22]. In other words, each species
has the capability to detect other species over a spatial neighborhood, specified by the kernel 𝐵𝑖𝑗 , and weighted
by the strength of attraction (𝑎𝑖𝑗 < 0) or repulsion (𝑎𝑖𝑗 > 0). Thus, from a modeling point of view, the case
𝐵𝑖𝑗 = 1𝐾 is biologically meaningful. To include this case in our analysis (at the continuous or discrete level),
we propose to slightly modify the model studied in [19] by considering (3) instead of (4).
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For model (1)–(3), we impose the following assumptions. We assume that there exist numbers 𝜋1, . . . , 𝜋𝑛 > 0
such that 𝜋𝑖𝑎𝑖𝑗 = 𝜋𝑗𝑎𝑗𝑖 for 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, that 𝐵𝑗𝑖(−𝑥) = 𝐵𝑖𝑗(𝑥) ≥ 0 for a.e. 𝑥 ∈ T and 𝑖, 𝑗 ∈ {1, . . . , 𝑛}
(with 𝑖 ̸= 𝑗), and that for all 𝑖, 𝑗 ∈ {1, . . . , 𝑛} with 𝑖 < 𝑗, the matrices

𝑀 𝑖𝑗(𝑥) :=
(︂

𝜋𝑖𝑎𝑖𝑖 (𝑛− 1)𝜋𝑖𝑎𝑖𝑗𝐵
𝑖𝑗(𝑥)

(𝑛− 1)𝜋𝑗𝑎𝑗𝑖𝐵
𝑖𝑗(𝑥) 𝜋𝑗𝑎𝑗𝑗

)︂
(8)

are uniformly positive definite for a.e. 𝑥 ∈ T. In particular, we could choose some nonpositive off-diagonal
coefficients. The possibility to analyze system (1)–(3) with nonpositive off-diagonal coefficients is a new and
meaningful result. However, we notice that with these assumptions, the system is only “weakly” nonlocal, in
the sense that the self-diffusion coefficients have to dominate the cross-diffusion terms.

We claim that the functionals 𝐻𝐵 and 𝐻𝑅 are still entropies for system (1)–(3), where of course now

𝐻𝑅(𝑢) =
1
2

𝑛∑︁
𝑖=1

∫︁
T
𝜋𝑖𝑎𝑖𝑖|𝑢𝑖(𝑥)|2d𝑥+

1
2

𝑛∑︁
𝑖,𝑗=1
𝑖 ̸=𝑗

∫︁
T

∫︁
T
𝜋𝑖𝑎𝑖𝑗𝐵

𝑖𝑗(𝑥− 𝑦)𝑢𝑗(𝑦)𝑢𝑖(𝑥)d𝑦d𝑥.

Both functionals satisfy some entropy dissipation inequalities similar to (6)–(7), where, if 𝑖 = 𝑗, the terms on
the right-hand side are simply given by the square of the 𝐿2(T) norm of 𝜕𝑥𝑢𝑖. Under the above-mentioned
assumptions, the entropy production term

𝑄 :=
𝑛∑︁

𝑖=1

∫︁
T
𝜋𝑖𝑎𝑖𝑖|𝜕𝑥𝑢𝑖(𝑥)|2d𝑥+

𝑛∑︁
𝑖,𝑗=1
𝑖 ̸=𝑗

∫︁
T

∫︁
T
𝜋𝑖𝑎𝑖𝑗𝐵

𝑖𝑗(𝑥− 𝑦)𝜕𝑥𝑢𝑗(𝑦)𝜕𝑥𝑢𝑖(𝑥)d𝑦d𝑥 (9)

is nonnegative; see Lemma A.1 in Appendix A. Therefore, at least formally, the functionals 𝐻𝐵 and 𝐻𝑅 are
entropies for system (1)–(3). In this work, we will translate this property to the discrete level by analyzing a
two-point flux approximation finite-volume scheme for (1)–(3).

In the literature, there are some works dealing with the design and analysis of numerical schemes for nonlocal
cross-diffusion systems. The work [7] studies a positivity-preserving one-dimensional finite-volume scheme for
(1) with 𝑛 = 2 and additional local cross-diffusion terms, with a focus on segregated steady states, but without
any numerical analysis. The convergence of this finite-volume scheme was proved in [8], still focusing on the
two-species model. A converging finite-volume scheme for a nonlocal cross-diffusion system modeling either a
food chain of three species or, when dropping the cross-diffusion, being an SIR model, was analyzed in [1,3]. In
both models, the nonlocality comes from the dependence of the self-diffusion coefficients on the total mass of
the corresponding species. A structure-preserving finite-volume scheme for the nonlocal Shigesada–Kawasaki–
Teramoto system was suggested and analyzed in [17]. We also mention the paper [6] on a second-order finite-
volume scheme for a nonlocal diffusion equation, which preserves the nonnegativity and fulfills a spatially
discrete entropy inequality. Related works include a Galerkin scheme for a nonlocal diffusion equation with
additive noise [21], a finite-volume discretization of a nonlocal Lévy–Fokker–Planck equation [2], and numerical
schemes for nonlocal diffusion equations arising in image processing [14]. Up to our knowledge, there does not
exist any numerical analysis of system (1)–(3).

In this paper, we propose a finite-volume scheme which preserves the structure of equations (1)–(3). Compared
to [8], we allow for an arbitrary number of species, include linear diffusion 𝜎 ≥ 0, and prove the preservation
of the discrete Boltzmann and Rao entropies. Since we need the positive definiteness of the matrix 𝑀 𝑖𝑗(𝑥),
self-diffusion is needed in our situation. Moreover, in contrast to [8], we impose periodic boundary conditions
(instead of no-flux conditions). Our proofs rely on the discrete analog of the rule 𝜕𝑥𝐵

𝑖𝑗 * 𝑢𝑗 = 𝐵𝑖𝑗 * 𝜕𝑥𝑢𝑗 ,
see (17), which allows for kernels 𝐵𝑖𝑗 that are not differentiable, while in [8] the kernels are required to be in
𝐶2

𝑏 (R). Compared to [17], our equations do not have a Laplacian structure, which was used in [17] to define the
numerical scheme, and we allow for nonpositive off-diagonal coefficients.

Our main results can be sketched as follows (see Sect. 2.3 for details):
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– We prove the existence of solutions to the finite-volume scheme, which are nonnegative componentwise,
conserve the discrete mass, and satisfy discrete versions of the entropy inequalities (6) and (7).

– We show that the discrete solutions converge to a weak solution to (1)–(3) when the mesh size tends to zero.
As a by-product, this proves the existence of a weak solution to (1)–(2).

– We illustrate numerically the rate of convergence (in space) in the 𝐿𝑝-norm as well as the rate of convergence
in different metrics of the solution to the nonlocal system towards the solution of the local one (localization
limit). Moreover, we illustrate the segregation phenomenon exhibited by the solutions to (1)–(3); see [4].

The paper is organized as follows. The numerical scheme and our main results are introduced in Section 2.
We prove the existence of discrete solutions in Section 3, while the proof of the convergence of the scheme is
presented in Section 4. In Section 5, numerical experiments are given, Appendix A contains some auxiliary
results, and we show in Appendix B that indicator kernels generally do not fulfill inequality (5).

2. Notation and numerical scheme

2.1. Notation

A uniform mesh 𝒯 of the torus T consists of 𝑁 intervals (or cells) 𝐾ℓ of length ∆𝑥 = 1/𝑁 , given by
𝐾ℓ = (𝑥ℓ−1/2, 𝑥ℓ+1/2) with end points 𝑥ℓ±1/2 = (ℓ ± 1/2)∆𝑥 and centers 𝑥ℓ = ℓ∆𝑥 for ℓ ∈ 𝐺 = Z ∖ 𝑁Z. For
given end time 𝑇 > 0, let 𝑁𝑇 ∈ N and define the time step size ∆𝑡 = 𝑇/𝑁𝑇 and the time steps 𝑡𝑘 = 𝑘∆𝑡. A
space-time discretization of 𝑄𝑇 := T× (0, 𝑇 ) is denoted by 𝒟; it consists of the space discretization 𝒯 of T and
the time discretization (𝑁𝑇 ,∆𝑡) of (0, 𝑇 ).

We introduce some function spaces. The space of piecewise constant (in space) functions is given by

𝒱𝒯 =
{︂
𝑣 : T → R : ∃(𝑣ℓ)ℓ∈𝐺 ⊂ R, 𝑣(𝑥) =

∑︁
ℓ∈𝐺

𝑣ℓ1𝐾ℓ
(𝑥)

}︂
,

where 1𝐾ℓ
is the indicator function of 𝐾ℓ. We identify the function 𝑣 ∈ 𝒱𝒯 and the numbers (𝑣ℓ)ℓ∈𝐺 by writing

𝑣 = (𝑣ℓ)ℓ∈𝐺. For 𝑞 ∈ [1,∞) and 𝑣 ∈ 𝒱𝒯 , we introduce the 𝐿𝑞(T) norm, the discrete 𝑊 1,𝑞(T) seminorm, and the
discrete 𝑊 1,𝑞(T) norm by, respectively,

‖𝑣‖𝑞
0,𝑞,𝒯 =

∑︁
ℓ∈𝐺

∆𝑥|𝑣ℓ|𝑞, |𝑣|𝑞1,𝑞,𝒯 =
∑︁
ℓ∈𝐺

∆𝑥
⃒⃒⃒⃒
𝑣ℓ+1 − 𝑣ℓ

∆𝑥

⃒⃒⃒⃒𝑞
,

‖𝑣‖𝑞
1,𝑞,𝒯 = |𝑣|𝑞1,𝑞,𝒯 + ‖𝑣‖𝑞

0,𝑞,𝒯 .

We also define the discrete 𝐿∞(T) norm by ‖𝑣‖0,∞,𝒯 = maxℓ∈𝐺 |𝑣ℓ|. Note that ‖𝑣‖0,𝑞,𝒯 = ‖𝑣‖𝐿𝑞(T) for functions
𝑣 ∈ 𝒱𝒯 . We set

Dℓ𝑣 :=
𝑣ℓ+1 − 𝑣ℓ

∆𝑥
and D𝑣 := (Dℓ𝑣)ℓ∈𝐺.

We recall the definition of the space BV(T) of functions of bounded variation. A function 𝑣 ∈ 𝐿1(T) belongs to
BV(T) if its total variation TV(𝑣), given by

TV(𝑣) = sup
{︂ ∫︁

T
𝑣(𝑥)𝜕𝑥𝜑(𝑥)d𝑥 : 𝜑 ∈ 𝐶1

0 (T), |𝜑(𝑥)| ≤ 1 for all 𝑥 ∈ T
}︂
,

is finite. We endow the space BV(T) with the norm

‖𝑣‖BV(T) = ‖𝑣‖𝐿1(T) + TV(𝑣) for all 𝑣 ∈ BV(T).

In particular, it holds ‖𝑣‖BV(T) = ‖𝑣‖1,1,𝒯 for any 𝑣 ∈ 𝒱𝒯 ∩ BV(T).
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For any given 𝑞 ∈ [1,∞), we associate to these norms a dual norm with respect to the 𝐿2(T) inner product
by

‖𝑣‖−1,𝑞′,𝒯 = sup
{︂⃒⃒⃒⃒ ∫︁

T
𝑣𝑤d𝑥

⃒⃒⃒⃒
: 𝑤 ∈ 𝒱𝒯 , ‖𝑤‖1,𝑞,𝒯 = 1

}︂
,

where 1/𝑞 + 1/𝑞′ = 1. Then the following estimate holds for all 𝑣, 𝑤 ∈ 𝒱𝒯 ,⃒⃒⃒⃒ ∫︁
T
𝑣𝑤𝑑𝑥

⃒⃒⃒⃒
≤ ‖𝑣‖−1,𝑞′,𝒯 ‖𝑤‖1,𝑞,𝒯 .

We also need the space of piecewise constant (in time) functions taking values in 𝒱𝒯 :

𝒱𝒟 =
{︂
𝑣 : T× (0, 𝑇 ] → R : ∃(𝑣𝑘)𝑘=1,...,𝑁𝑇

, 𝑣(𝑥, 𝑡) =
𝑁𝑇∑︁
𝑘=1

1(𝑡𝑘−1,𝑡𝑘](𝑡)𝑣𝑘(𝑥)
}︂
,

and the discrete 𝐿𝑝(0, 𝑇 ;𝑊 1,𝑞(T)) norm(︂ 𝑁𝑇∑︁
𝑘=1

∆𝑡‖𝑣𝑘‖𝑝
1,𝑞,𝒯

)︂1/𝑝

, where 1 ≤ 𝑝, 𝑞 <∞, 𝑣 ∈ 𝒱𝒟.

2.2. Numerical scheme

The initial datum (2) is approximated by

𝑢0
𝑖,ℓ =

1
∆𝑥

∫︁
𝐾ℓ

𝑢0
𝑖 (𝑥)d𝑥 for ℓ ∈ 𝐺, 𝑖 = 1, . . . , 𝑛. (10)

For given 𝑘 ∈ {1, . . . , 𝑁𝑇 } and 𝑢𝑘−1 ∈ 𝒱𝑛
𝒯 , the values 𝑢𝑘 = (𝑢𝑘

𝑖,ℓ)𝑖=1,...,𝑛, ℓ∈𝐺 are determined by the implicit
Euler finite-volume scheme

∆𝑥
∆𝑡

(𝑢𝑘
𝑖,ℓ − 𝑢𝑘−1

𝑖,ℓ ) + ℱ𝑘
𝑖,ℓ+1/2 −ℱ

𝑘
𝑖,ℓ−1/2 = 0, 𝑖 = 1, . . . , 𝑛, ℓ ∈ 𝐺, (11)

with the numerical fluxes

ℱ𝑘
𝑖,ℓ+1/2 = − 𝜎

∆𝑥
(𝑢𝑘

𝑖,ℓ+1 − 𝑢𝑘
𝑖,ℓ)−

𝑢𝑘
𝑖,ℓ+1/2

∆𝑥
(𝑝𝑘

𝑖,ℓ+1 − 𝑝𝑘
𝑖,ℓ), (12)

where the discrete nonlocal operators are given by

𝑝𝑘
𝑖,ℓ = 𝑎𝑖𝑖𝑢

𝑘
𝑖,ℓ +

𝑛∑︁
𝑗=1
𝑗 ̸=𝑖

∑︁
ℓ′∈𝐺

∆𝑥𝑎𝑖𝑗𝐵
𝑖𝑗
ℓ−ℓ′𝑢

𝑘
𝑗,ℓ′ , 𝐵𝑖𝑗

ℓ−ℓ′ =
1

∆𝑥

∫︁
𝐾ℓ−ℓ′

𝐵𝑖𝑗(𝑦)d𝑦, (13)

for all 𝑖, 𝑗 = 1, . . . , 𝑛 and ℓ, ℓ′ ∈ 𝐺. We show in the proof of Lemma 4.4 that 𝑝𝑘
𝑖,ℓ = 𝑎𝑖𝑖𝑢

𝑘
𝑖 (𝑥ℓ) +

∑︀
𝑗 ̸=𝑖 𝑎𝑖𝑗(𝐵𝑖𝑗 *

𝑢𝑘
𝑗 )(𝑥ℓ) for ℓ ∈ 𝐺, verifying the consistency of the discretization of 𝑝𝑘

𝑖,ℓ. The mobility 𝑢𝑘
𝑖,ℓ+1/2 = ̂︀𝐹 (𝑢𝑘

𝑖,ℓ, 𝑢
𝑘
𝑖,ℓ+1)

is assumed to satisfy the following properties for all 𝑢𝑖,ℓ, 𝑢𝑖,ℓ+1:

– The function ̂︀𝐹 : [0,∞)2 → [0,∞) is continuous and satisfies ̂︀𝐹 (𝑢𝑖,ℓ, 𝑢𝑖,ℓ) = 𝑢𝑖,ℓ as well as min{𝑢𝑖,ℓ, 𝑢𝑖,ℓ+1} ≤̂︀𝐹 (𝑢𝑖,ℓ, 𝑢𝑖,ℓ+1) ≤ max{𝑢𝑖,ℓ, 𝑢𝑖,ℓ+1}.
– There exists 𝑐0 > 0 such that the following discrete chain rule holds:

𝑢𝑖,ℓ+1/2(𝑝𝑖,ℓ+1 − 𝑝𝑖,ℓ)(log 𝑢𝑖,ℓ+1 − log 𝑢𝑖,ℓ) ≥ 𝑐0(𝑝𝑖,ℓ+1 − 𝑝𝑖,ℓ)(𝑢𝑖,ℓ+1 − 𝑢𝑖,ℓ). (14)
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Remark 2.1 (Examples for mobilities). Property (14) is satisfied if 𝑢𝑖,ℓ (we omit the superindex 𝑘) is defined
by the upwind approximation

𝑢𝑖,ℓ+1/2 =

{︃
𝑢𝑖,ℓ+1 if 𝑝𝑖,ℓ+1 − 𝑝𝑖,ℓ ≥ 0,
𝑢𝑖,ℓ if 𝑝𝑖,ℓ+1 − 𝑝𝑖,ℓ < 0,

(15)

or by the logarithmic mean

𝑢𝑖,ℓ+1/2 =

⎧⎪⎪⎨⎪⎪⎩
𝑢𝑖,ℓ+1 − 𝑢𝑖,ℓ

log 𝑢𝑖,ℓ+1 − log 𝑢𝑖,ℓ
if 𝑢𝑖,ℓ+1 > 0, 𝑢𝑖,ℓ > 0, and 𝑢𝑖,ℓ+1 ̸= 𝑢𝑖,ℓ,

𝑢𝑖,ℓ if 𝑢𝑖,ℓ+1 = 𝑢𝑖,ℓ > 0,
0 else.

(16)

We refer to Lemma A.2 in Appendix A for a proof. ⊓⊔

Remark 2.2 (Symmetry of discrete kernels). Definition (13) of 𝐵𝑖𝑗
ℓ−ℓ′ is consistent with the discrete analog of

𝐵𝑗𝑖(−𝑥) = 𝐵𝑖𝑗(𝑥). Indeed, with the change of variables 𝑦 ↦→ −𝑦,

𝐵𝑗𝑖
−ℓ′ =

1
∆𝑥

∫︁
𝐾−ℓ′

𝐵𝑗𝑖(𝑦)d𝑦 =
1

∆𝑥

∫︁
𝐾ℓ′

𝐵𝑗𝑖(−𝑦)d𝑦 =
1

∆𝑥

∫︁
𝐾ℓ′

𝐵𝑖𝑗(𝑦)d𝑦 = 𝐵𝑖𝑗
ℓ′ .

Remark 2.3 (Discrete derivative of the convolution). A shift of ∆𝑥 in definition (13) of 𝐵𝑖𝑗
ℓ−ℓ′ shows that

𝐵𝑖𝑗
ℓ−ℓ′ = 𝐵𝑖𝑗

(ℓ+1)−(ℓ′+1), which leads to∑︁
ℓ′∈𝐺

(𝐵𝑖𝑗
(ℓ+1)−ℓ′ −𝐵𝑖𝑗

ℓ−ℓ′)𝑢𝑗,ℓ′ =
∑︁
ℓ′∈𝐺

(︀
𝐵𝑖𝑗

(ℓ+1)−(ℓ′+1)𝑢𝑗,ℓ′+1 −𝐵𝑖𝑗
ℓ−ℓ′𝑢𝑗,ℓ′

)︀
(17)

=
∑︁
ℓ′∈𝐺

𝐵𝑖𝑗
ℓ−ℓ′(𝑢𝑗,ℓ′+1 − 𝑢𝑗,ℓ′)

for all ℓ ∈ 𝐺, 𝑖, 𝑗 = 1, . . . , 𝑛. This is the discrete analog of the rule 𝜕𝑥𝐵
𝑖𝑗 * 𝑢𝑗 = 𝐵𝑖𝑗 * 𝜕𝑥𝑢𝑗 . ⊓⊔

Remark 2.4 (Asymptotic-preserving scheme). For 𝑗 ̸= 𝑖, let 𝐵𝑖𝑗 = 𝐵𝑖𝑗
𝜀 for some parameter 𝜀 > 0 and 𝐵𝑖𝑗

𝜀 → 𝛿0
in the sense of distributions as 𝜀 → 0. Let 𝑝𝑘,𝜀

𝑖,ℓ be defined as in (13) with 𝐵𝑖𝑗(𝑦) replaced by 𝐵𝑖𝑗
𝜀 (𝑦). Then, as

𝜀→ 0,

𝑝𝑘,𝜀
𝑖,ℓ →

𝑛∑︁
𝑗=1

𝑎𝑖𝑗 (𝛿0 * 𝑢𝑗) (𝑥ℓ) =
𝑛∑︁

𝑗=1

𝑎𝑖𝑗𝑢𝑗,ℓ.

Thus, our numerical scheme is asymptotic-preserving in the sense that the method converges to a finite-volume
scheme for the local system, which also preserves the nonnegativity, conserves the mass, and dissipates the
Boltzmann and Rao entropies. ⊓⊔

2.3. Main results

We impose the following hypotheses:

(H1) Domain and parameters: T is a one-dimensional torus, 𝑇 > 0, 𝜎 ≥ 0, and 𝑄𝑇 := T× (0, 𝑇 ).
(H2) Initial datum: 𝑢0 = (𝑢0

1, . . . , 𝑢
0
𝑛) ∈ 𝐿2(T; R𝑛) satisfies 𝑢0

𝑖 ≥ 0 in T.
(H3) Kernels: Let 𝐵𝑖𝑗 ∈ 𝐿∞(T) for 𝑗 ̸= 𝑖 be a nonnegative function satisfying 𝐵𝑗𝑖(𝑥) = 𝐵𝑖𝑗(−𝑥) for a.e. 𝑥 ∈ T.

There exist numbers 𝜋1, . . . , 𝜋𝑛 > 0 such that 𝜋𝑖𝑎𝑖𝑗 = 𝜋𝑗𝑎𝑗𝑖 (detailed-balance condition), and the matrices
𝑀 𝑖𝑗 , defined in (8), are uniformly positive definite for a.e. 𝑥 ∈ T.
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We consider the one-dimensional equations mainly for notational simplicity. In several space dimensions 𝑑 > 1,
we infer uniform estimates in spaces with weaker integrability than in one space dimension, because of Sobolev
embeddings. Thanks to the positive definiteness condition on 𝑀 𝑖𝑗

ℓ−ℓ′ , we obtain a bound for 𝑢𝑖 in the discrete
𝐿2(0, 𝑇 ;𝐻1(T)) norm, which allows us to conclude, together with the Rao entropy estimate, by the discrete
Gagliardo–Nirenberg inequality, a bound for 𝑢𝑖 in 𝐿2(𝑄𝑇 ), which is sufficient to estimate the product 𝑢𝑖𝜕𝑥𝑝𝑖(𝑢).
In the one-dimensional situation, this procedure simplifies; see Lemma 4.5. We discuss the multidimensional
case in Remark 4.7.

Our results also hold if 𝜎 = 0, since the condition 𝜎 > 0 provides an estimate for 𝑢𝑖 in the discrete norm
of 𝐿2(0, 𝑇 ;𝑊 1,1(T)), while the positive definiteness condition on 𝑀 𝑖𝑗

ℓ−ℓ′ allows us to conclude a stronger bound
in the discrete norm of 𝐿2(0, 𝑇 ;𝐻1(T)). Notice that kernels of the type 𝐵𝑖𝑗 = 1𝐾 satisfy Hypothesis (H3) (for
suitable 𝜋𝑖 and 𝑎𝑖𝑗).

Condition 𝑢0 ∈ 𝐿2(T; R𝑛) in Hypothesis (H2) is needed to obtain a finite initial Rao entropy 𝐻𝑅(𝑢0). For the
existence result, the assumption on the kernels can be weakened to 𝐵𝑖𝑗 ∈ 𝐿1(T). The boundedness condition
on 𝐵𝑖𝑗 in Hypothesis (H3) is needed in the proof of the convergence of the scheme.

We introduce for a given nonnegative function 𝑢 ∈ 𝒱𝑛
𝒯 the discrete entropies

ℋ𝐵(𝑢) =
𝑛∑︁

𝑖=1

∑︁
ℓ∈𝐺

∆𝑥𝜋𝑖ℎ(𝑢𝑖,ℓ), ℎ(𝑠) = 𝑠(log 𝑠− 1), (18)

ℋ𝑅(𝑢) =
1
2

𝑛∑︁
𝑖=1

∑︁
ℓ∈𝐺

∆𝑥𝜋𝑖𝑎𝑖𝑖|𝑢𝑖,ℓ|2 +
1
2

𝑛∑︁
𝑖,𝑗=1
𝑖 ̸=𝑗

∑︁
ℓ,ℓ′∈𝐺

(∆𝑥)2𝜋𝑖𝑎𝑖𝑗𝐵
𝑖𝑗
ℓ−ℓ′𝑢𝑗,ℓ′𝑢𝑖,ℓ,

and the matrices

𝑀 𝑖𝑗
ℓ−ℓ′(𝑥) :=

(︂
𝜋𝑖𝑎𝑖𝑖 (𝑛− 1)𝜋𝑖𝑎𝑖𝑗𝐵

𝑖𝑗
ℓ−ℓ′(𝑥)

(𝑛− 1)𝜋𝑗𝑎𝑗𝑖𝐵
𝑖𝑗
ℓ−ℓ′(𝑥) 𝜋𝑗𝑎𝑗𝑗

)︂
for 𝑖 < 𝑗, ℓ, ℓ′ ∈ 𝐺. (19)

In view of Hypothesis (H3), they are symmetric and positive definite uniformly in ℓ, ℓ′ ∈ 𝐺, 𝑥 ∈ T, i.e.
𝑧⊤𝑀 𝑖𝑗

ℓ−ℓ′(𝑥)𝑧 ≥ 𝑐𝑀 |𝑧|2 for 𝑧 ∈ R2, 𝑥 ∈ T and some 𝑐𝑀 > 0.
Our first main result is the existence of discrete solutions.

Theorem 2.5 (Existence of discrete solutions). Let Hypotheses (H1)–(H3) hold. Then there exists a solution
𝑢𝑘 ∈ 𝒱𝑛

𝒯 to (10)–(13) for all 𝑘 = 1, . . . , 𝑁𝑇 , satisfying 𝑢𝑘
𝑖,ℓ ≥ 0 for all 𝑖 = 1, . . . , 𝑛, ℓ ∈ 𝐺 and the discrete

entropy inequalities

ℋ𝐵(𝑢𝑘) +
𝑐0∆𝑡
𝑛− 1

𝑛∑︁
𝑖,𝑗=1
𝑖<𝑗

∑︁
ℓ,ℓ′∈𝐺

(∆𝑥)2
(︂

Dℓ𝑢
𝑘
𝑖

Dℓ′𝑢
𝑘
𝑗

)︂⊤
𝑀 𝑖𝑗

ℓ−ℓ′

(︂
Dℓ𝑢

𝑘
𝑖

Dℓ′𝑢
𝑘
𝑗

)︂
(20)

+ 4𝜎∆𝑡
𝑛∑︁

𝑖=1

𝜋𝑖|(𝑢𝑘
𝑖 )1/2|21,2,𝒯 ≤ ℋ𝐵(𝑢𝑘−1),

ℋ𝑅(𝑢𝑘) + ∆𝑡
𝑛∑︁

𝑖=1

∑︁
ℓ∈𝐺

∆𝑥𝜋𝑖𝑢
𝑘
𝑖,ℓ+1/2

(︂
𝑝𝑘

𝑖,ℓ+1 − 𝑝𝑘
𝑖,ℓ

∆𝑥

)︂2

(21)

+
𝜎∆𝑡

(𝑛− 1)

𝑛∑︁
𝑖,𝑗=1
𝑖<𝑗

∑︁
ℓ,ℓ′∈𝐺

(∆𝑥)2
(︂

Dℓ𝑢
𝑘
𝑖

Dℓ′𝑢
𝑘
𝑗

)︂⊤
𝑀 𝑖𝑗

ℓ−ℓ′

(︂
Dℓ𝑢

𝑘
𝑖

Dℓ′𝑢
𝑘
𝑗

)︂
≤ ℋ𝑅(𝑢𝑘−1).

Furthermore, the solution conserves the mass,
∑︀

ℓ∈𝐺 ∆𝑥𝑢𝑘
𝑖,ℓ =

∫︀
T 𝑢

0
𝑖 (𝑥)d𝑥 for all 𝑖 = 1, . . . , 𝑛, 𝑘 = 1, . . . , 𝑁𝑇 .
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This theorem is proved by solving a fixed-point problem based on a topological degree argument, similar as
in [18]. For this, we formulate (11) in terms of the entropy variable 𝑤𝑖 = 𝜋𝑖 log 𝑢𝑖 and regularize the equations
by adding the discrete analog of −𝜀∆𝑤𝑖 + 𝜀𝑤𝑖. The regularization ensures the coercivity in the variable 𝑤𝑖.
After transforming back to the original variable 𝑢𝑖 = exp(𝑤𝑖/𝜋𝑖), we obtain automatically the positivity of 𝑢𝑖

(and nonnegativity after passing to the limit 𝜀→ 0). Like on the continuous level, the derivation of the discrete
entropy inequalities (20) and (21) relies on the detailed-balance condition 𝜋𝑖𝑎𝑖𝑗 = 𝜋𝑗𝑎𝑗𝑖 for all 𝑖, 𝑗 = 1, . . . , 𝑛.

For our second main result, we need to introduce some notation. We define the “diamond” cell of the dual
mesh 𝑇ℓ+1/2 = (𝑥ℓ, 𝑥ℓ+1) with center 𝑥ℓ+1/2. These cells define another partition of T. The gradient of 𝑣 ∈ 𝒱𝒟
is then defined by

𝜕𝒟𝑥 𝑣(𝑥, 𝑡) = Dℓ𝑣
𝑘 =

𝑣𝑘
ℓ+1 − 𝑣𝑘

ℓ

∆𝑥
for 𝑥 ∈ 𝑇ℓ+1/2, 𝑡 ∈ (𝑡𝑘−1, 𝑡𝑘].

We also introduce a sequence of space-time discretizations (𝒟𝑚)𝑚∈N indexed by the mesh size 𝜂𝑚 =
max{∆𝑥𝑚,∆𝑡𝑚} satisfying 𝜂𝑚 → 0 as 𝑚 → ∞. The corresponding spatial mesh is denoted by 𝒯𝑚 with
𝐺𝑚 = Z ∖𝑁𝑚Z and the number of time steps by 𝑁𝑚

𝑇 . Finally, to simplify the notation, we set 𝜕𝑚
𝑥 := 𝜕𝒟𝑚

𝑥 .

Theorem 2.6 (Convergence of the scheme). Let Hypotheses (H1)–(H3) hold and let (𝒟𝑚) be a sequence of
uniform space-time discretizations satisfying 𝜂𝑚 → 0 as 𝑚 → ∞. Let (𝑢𝑚) be the solutions to (10)–(13)
constructed in Theorem 2.5. Then there exists 𝑢 = (𝑢1, . . . , 𝑢𝑛) satisfying 𝑢𝑖 ≥ 0 in 𝑄𝑇 and, up to a subsequence,
as 𝑚→∞,

𝑢𝑖,𝑚 → 𝑢𝑖 strongly in 𝐿2(𝑄𝑇 ),
𝜕𝑚

𝑥 𝑢𝑖,𝑚 ⇀ 𝜕𝑥𝑢𝑖 weakly in 𝐿2(𝑄𝑇 ),

and 𝑢 is a weak solution to (1)–(2), i.e., it holds for all 𝜓𝑖 ∈ 𝐶∞0 (T× [0, 𝑇 )) and 𝑖 = 1, . . . , 𝑛 that∫︁ 𝑇

0

∫︁
T
𝑢𝑖𝜕𝑡𝜓𝑖d𝑥d𝑡+

∫︁
T
𝑢0

𝑖𝜓𝑖(·, 0)d𝑥 =
∫︁ 𝑇

0

∫︁
T
(𝜎𝜕𝑥𝑢𝑖 + 𝑢𝑖𝜕𝑥𝑝𝑖(𝑢))𝜕𝑥𝜓𝑖d𝑥d𝑡.

The proof of Theorem 2.6 is based on suitable estimates uniform with respect to ∆𝑥𝑚 and ∆𝑡𝑚, derived
from the discrete entropy inequalites. A discrete version of the Aubin–Lions lemma from [15] yields the strong
convergence of a subsequence of solutions (𝑢𝑚) to (11)–(13). The most technical part is the identification of the
limit function as a weak solution to (1)–(2).

3. Proof of Theorem 2.5

Theorem 2.5 is proved by induction over 𝑘 = 1, . . . , 𝑁𝑇 . We first regularize the problem and prove the existence
of an approximate solution by using a topological degree argument for the fixed-point problem. The discrete
entropy inequalities yield a priori estimates independent of the approximation parameter. The de-regularization
limit is performed thanks to the Bolzano–Weierstraß theorem.

Let 𝑘 ∈ {1, . . . , 𝑁𝑇 } and 𝑢𝑘−1 ∈ 𝒱𝑛
𝒯 satisfying 𝑢𝑘−1

𝑖,ℓ ≥ 0 for 𝑖 = 1, . . . , 𝑛, ℓ ∈ 𝐺 be given.

3.1. Solution to a linearized regularized scheme

We prove the existence of a unique solution to a linearized regularized problem, which allows us to define the
fixed-point operator. Let 𝑅 > 0, 𝜀 > 0 and define

𝑍𝑅 =
{︀
𝑤 = (𝑤1, . . . , 𝑤𝑛) ∈ 𝒱𝑛

𝒯 : ‖𝑤𝑖‖1,2,𝒯 < 𝑅 for 𝑖 = 1, . . . , 𝑛
}︀
.

We introduce the mapping 𝐹 : 𝑍𝑅 → R𝑛𝑁 , 𝑤 ↦→ 𝑤𝜀, where 𝑤𝜀 is the solution to the linear regularized problem

−𝜀
𝑤𝜀

𝑖,ℓ+1 − 2𝑤𝜀
𝑖,ℓ + 𝑤𝜀

𝑖,ℓ−1

∆𝑥
+ 𝜀∆𝑥𝑤𝜀

𝑖,ℓ = −∆𝑥
𝑢𝑖,ℓ − 𝑢𝑘−1

𝑖,ℓ

∆𝑡
− (ℱ𝑖,ℓ+1/2 −ℱ𝑖,ℓ−1/2), (22)
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where 𝑖 = 1, . . . , 𝑛, ℓ ∈ 𝐺, 𝑢𝑖,ℓ is defined by 𝑢𝑖,ℓ = exp(𝑤𝑖,ℓ/𝜋𝑖), ℱ𝑖,ℓ±1/2 is defined as in (12) with 𝑢𝑘
𝑖 replaced

by 𝑢𝑖 and 𝑝𝑘
𝑖,ℓ replaced by

𝑝𝑖,ℓ = 𝑎𝑖𝑖𝑢𝑖,ℓ +
𝑛∑︁

𝑗=1
𝑗 ̸=𝑖

∑︁
ℓ′∈𝐺

∆𝑥𝑎𝑖𝑗𝐵
𝑖𝑗
ℓ−ℓ′𝑢𝑗,ℓ′ .

We claim that 𝐹 is well defined. For this, we write (22) in the form

𝑀𝑤𝜀 = 𝑣, where 𝑣𝑖,ℓ = −∆𝑥
𝑢𝑖,ℓ − 𝑢𝑘−1

𝑖,ℓ

∆𝑡
− (ℱ𝑖,ℓ+1/2 −ℱ𝑖,ℓ−1/2).

The matrix 𝑀 ∈ R𝑛𝑁×𝑛𝑁 is a block diagonal matrix with entries 𝑀 ′ ∈ R𝑁×𝑁 , which are tridiagonal matrices
such that 𝑀 ′

ℓ,ℓ = 𝜀∆𝑥+ 2𝜀/∆𝑥, 𝑀 ′
ℓ+1,ℓ = 𝑀 ′

ℓ,ℓ+1 = −𝜀/∆𝑥. We can decompose the full system 𝑀𝑤𝜀 = 𝑣 into
the subsystems 𝑀 ′𝑤𝜀

𝑖 = 𝑣𝑖 for 𝑖 = 1, . . . , 𝑛. Since 𝑀 ′ is strictly diagonally dominant, there exists a unique
solution to 𝑀 ′𝑤𝜀

𝑖 = 𝑣𝑖 and consequently for 𝑀𝑤𝜀 = 𝑣 by setting 𝑤𝜀 = (𝑤𝜀
1, . . . , 𝑤

𝜀
𝑛). We infer that the mapping

𝐹 is well defined.

3.2. Continuity of 𝐹

We fix 𝑖 ∈ {1, . . . , 𝑛}, multiply (22) by 𝑤𝜀
𝑖,ℓ, and sum over ℓ ∈ 𝐺:

𝜀
∑︁
ℓ∈𝐺

(︂
−
𝑤𝜀

𝑖,ℓ+1 − 2𝑤𝜀
𝑖,ℓ + 𝑤𝜀

𝑖,ℓ−1

∆𝑥
+ ∆𝑥𝑤𝜀

𝑖,ℓ

)︂
𝑤𝜀

𝑖,ℓ (23)

= −
∑︁
ℓ∈𝐺

∆𝑥
𝑢𝑖,ℓ − 𝑢𝑘−1

𝑖,ℓ

∆𝑡
𝑤𝜀

𝑖,ℓ −
∑︁
ℓ∈𝐺

(ℱ𝑖,ℓ+1/2 −ℱ𝑖,ℓ−1/2)𝑤𝜀
𝑖,ℓ.

The left-hand side can be rewritten by using discrete integration by parts (or summation by parts):

𝜀
∑︁
ℓ∈𝐺

(︂
−

(𝑤𝜀
𝑖,ℓ+1 − 𝑤𝜀

𝑖,ℓ)− (𝑤𝜀
𝑖,ℓ − 𝑤𝜀

𝑖,ℓ−1)
∆𝑥

𝑤𝜀
𝑖,ℓ + ∆𝑥(𝑤𝜀

𝑖,ℓ)
2

)︂
(24)

= 𝜀
∑︁
ℓ∈𝐺

(𝑤𝜀
𝑖,ℓ+1 − 𝑤𝜀

𝑖,ℓ)
2

∆𝑥
+ 𝜀

∑︁
ℓ∈𝐺

∆𝑥(𝑤𝜀
𝑖,ℓ)

2 = 𝜀‖𝑤𝜀
𝑖 ‖21,2,𝒯 .

The first term on the right-hand side of (23) is estimated by the Cauchy–Schwarz inequality, taking into account
that 𝑤 ∈ 𝑍𝑅, which implies a finite discrete 𝐿2(T) norm for 𝑢𝑖,ℓ = exp(𝑤𝑖,ℓ/𝜋𝑖):⃒⃒⃒⃒

−
∑︁
ℓ∈𝐺

∆𝑥
𝑢𝑖,ℓ − 𝑢𝑘−1

𝑖,ℓ

∆𝑡
𝑤𝜀

𝑖,ℓ

⃒⃒⃒⃒
≤ 𝐶(∆𝑡)‖𝑢𝑖 − 𝑢𝑘−1

𝑖 ‖0,2,𝒯 ‖𝑤𝜀
𝑖 ‖0,2,𝒯 ≤ 𝐶(∆𝑡, 𝑅)‖𝑤𝜀

𝑖 ‖1,2,𝒯 ,

where here and in the following 𝐶 > 0, 𝐶(∆𝑡, 𝑅) > 0, etc. are generic constants with values changing from line
to line. We split the second term on the right-hand side of (23) into two parts:

−
∑︁
ℓ∈𝐺

(ℱ𝑖,ℓ+1/2 −ℱ𝑖,ℓ−1/2)𝑤𝜀
𝑖,ℓ = 𝐼1 + 𝐼2, where

𝐼1 = 𝜎
∑︁
ℓ∈𝐺

(︂
𝑢𝑖,ℓ+1 − 𝑢𝑖,ℓ

∆𝑥
− 𝑢𝑖,ℓ − 𝑢𝑖,ℓ−1

∆𝑥

)︂
𝑤𝜀

𝑖,ℓ,

𝐼2 =
∑︁
ℓ∈𝐺

(︂
𝑢𝑖,ℓ+1/2

𝑝𝑖,ℓ+1 − 𝑝𝑖,ℓ

∆𝑥
− 𝑢𝑖,ℓ−1/2

𝑝𝑖,ℓ − 𝑝𝑖,ℓ−1

∆𝑥

)︂
𝑤𝜀

𝑖,ℓ.
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For 𝐼1, we use discrete integration by parts, the Cauchy–Schwarz inequality, and the fact that 𝑤 ∈ 𝑍𝑅:

|𝐼1| =
⃒⃒⃒⃒
− 𝜎

∑︁
ℓ∈𝐺

∆𝑥
𝑢𝑖,ℓ+1 − 𝑢𝑖,ℓ

∆𝑥
𝑤𝜀

𝑖,ℓ+1 − 𝑤𝜀
𝑖,ℓ

∆𝑥

⃒⃒⃒⃒

≤ 𝜎

(︂ ∑︁
ℓ∈𝐺

∆𝑥
⃒⃒⃒⃒
𝑢𝑖,ℓ+1 − 𝑢𝑖,ℓ

∆𝑥

⃒⃒⃒⃒2)︂1/2(︂ ∑︁
ℓ∈𝐺

∆𝑥
⃒⃒⃒⃒
𝑤𝜀

𝑖,ℓ+1 − 𝑤𝜀
𝑖,ℓ

∆𝑥

⃒⃒⃒⃒2)︂1/2

= 𝜎|𝑢𝑖|1,2,𝒯 |𝑤𝜀
𝑖 |1,2,𝒯 ≤ 𝐶(𝑅)‖𝑤𝜀

𝑖 ‖1,2,𝒯 .

Using discrete integration by parts, and definition (13) of 𝑝𝑖,ℓ, we obtain

|𝐼2| =
⃒⃒⃒⃒
−

∑︁
ℓ∈𝐺

∆𝑥𝑢𝑖,ℓ+1/2
𝑝𝑖,ℓ+1 − 𝑝𝑖,ℓ

∆𝑥
𝑤𝜀

𝑖,ℓ+1 − 𝑤𝜀
𝑖,ℓ

∆𝑥

⃒⃒⃒⃒
≤ 𝐼21 + 𝐼22, where

𝐼21 =
⃒⃒⃒⃒ ∑︁

ℓ∈𝐺

∆𝑥𝑢𝑖,ℓ+1/2𝑎𝑖𝑖
(𝑢𝑖,ℓ+1 − 𝑢𝑖,ℓ)

∆𝑥
(𝑤𝜀

𝑖,ℓ+1 − 𝑤𝜀
𝑖,ℓ)

∆𝑥

⃒⃒⃒⃒
,

𝐼22 =
⃒⃒⃒⃒ 𝑛∑︁

𝑗=1
𝑗 ̸=𝑖

∑︁
ℓ,ℓ′∈𝐺

(∆𝑥)2𝑢𝑖,ℓ+1/2𝑎𝑖𝑗

𝐵𝑖𝑗
ℓ+1−ℓ′ −𝐵𝑖𝑗

ℓ−ℓ′

∆𝑥
𝑢𝑗,ℓ′

𝑤𝜀
𝑖,ℓ+1 − 𝑤𝜀

𝑖,ℓ

∆𝑥

⃒⃒⃒⃒
.

For 𝐼21, because of the bound in 𝑍𝑅, we can estimate 𝑢𝑖,ℓ+1/2 ≤ max{𝑢𝑖,ℓ+1, 𝑢𝑖,ℓ} ≤ 𝐶(𝑅). Then, thanks to the
Cauchy–Schwarz inequality, we obtain

𝐼21 ≤ 𝐶(𝑅)𝑎𝑖𝑖 |𝑢𝑖|1,2,𝒯 |𝑤𝜀
𝑖 |1,2,𝒯 ≤ 𝐶(𝑅) ‖𝑤𝜀

𝑖 ‖1,2,𝒯 .

For 𝐼22, applying the discrete analog (17) of the rule 𝜕𝑥𝐵
𝑖𝑗 * 𝑢𝑗 = 𝐵𝑖𝑗 * 𝜕𝑥𝑢𝑗 ,

𝐼22 =
⃒⃒⃒⃒ 𝑛∑︁

𝑗=1
𝑗 ̸=𝑖

∑︁
ℓ,ℓ′∈𝐺

(∆𝑥)2𝑢𝑖,ℓ+1/2𝑎𝑖𝑗𝐵
𝑖𝑗
ℓ−ℓ′

𝑢𝑗,ℓ′+1 − 𝑢𝑗,ℓ′

∆𝑥
𝑤𝜀

𝑖,ℓ+1 − 𝑤𝜀
𝑖,ℓ

∆𝑥

⃒⃒⃒⃒

=
⃒⃒⃒⃒ 𝑛∑︁

𝑗=1
𝑗 ̸=𝑖

∑︁
ℓ,ℓ′∈𝐺

(∆𝑥)2𝑢𝑖,ℓ+1/2𝑎𝑖𝑗𝐵
𝑖𝑗
ℓ−ℓ′(Dℓ′𝑢𝑗)(Dℓ𝑤𝑖)

⃒⃒⃒⃒
,

where we used the notation of Section 2.1. Similarly to 𝐼21, we infer that

𝐼22 ≤ 𝐶(𝑅)
𝑛∑︁

𝑗=1
𝑗 ̸=𝑖

𝑎𝑖𝑗

∑︁
ℓ∈𝐺

∆𝑥
(︂ ∑︁

ℓ′∈𝐺

∆𝑥𝐵𝑖𝑗
ℓ−ℓ′Dℓ′𝑢𝑗

)︂
Dℓ𝑤𝑖.

Then, by the Cauchy–Schwarz inequality and the discrete convolution inequality from Lemma A.3 in
Appendix A,

𝐼22 ≤ 𝐶(𝑅)
𝑛∑︁

𝑗=1
𝑗 ̸=𝑖

{︂ ∑︁
ℓ∈𝐺

∆𝑥
(︂ ∑︁

ℓ′∈𝐺

∆𝑥𝐵𝑖𝑗
ℓ−ℓ′Dℓ′𝑢𝑗

)︂2}︂1/2

|𝑤𝑖|1,2,𝒯

≤ 𝐶(𝑅)
𝑛∑︁

𝑗=1
𝑗 ̸=𝑖

‖𝐵𝑖𝑗‖𝐿1(T)|𝑢𝑗 |1,2,𝒯 |𝑤𝑖|1,2,𝒯 ≤ 𝐶(𝑅)‖𝑤𝑖‖1,2,𝒯 .

Combining these estimates, we deduce from (23) that 𝜀‖𝑤𝜀
𝑖 ‖1,2,𝒯 ≤ 𝐶(∆𝑡, 𝑅).
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We can proceed to show the continuity of 𝐹 . Let (𝑤𝑘)𝑘∈N be such that 𝑤𝑘 → 𝑤 ∈ 𝑍𝑅 as 𝑘 → ∞ and set
𝑤𝜀,𝑘 := 𝐹 (𝑤𝑘). We have just proved that (𝑤𝜀,𝑘)𝑘∈N is bounded with respect to the ‖ · ‖1,2,𝒯 norm. By the
Bolzano–Weierstraß theorem, there exists a subsequence (not relabeled) such that 𝑤𝜀,𝑘 → 𝑤𝜀 in 𝑍𝑅 as 𝑘 →∞.
Performing the limit 𝑘 →∞ in (23), satisfied for 𝑤𝜀,𝑘, shows that 𝑤𝜀 solves scheme (23) with 𝑢𝑖,ℓ = exp(𝑤𝜀

𝑖 /𝜋𝑖).
This means that 𝑤𝜀 = 𝐹 (𝑤), which proves the continuity of 𝐹 .

3.3. Existence of a fixed point

We show that 𝐹 : 𝑍𝑅 → R𝑛𝑁 admits a fixed point by using a topological degree argument. We recall that
the Brouwer topological degree is a mapping deg : 𝑀 → Z, where

𝑀 =
{︀

(𝑓, 𝑍, 𝑦) : 𝑓 ∈ 𝐶0(T), 𝑍 is open, bounded, 𝑦 ̸∈ 𝑓(𝜕𝑍)
}︀

;

see Chapter 1, Theorem 3.1 from [11] for details and properties. If we show that any solution (𝑤𝜀, 𝜌) ∈ 𝑍𝑅×[0, 1]
to the fixed-point equation 𝑤𝜀 = 𝜌𝐹 (𝑤𝜀) satisfies (𝑤𝜀, 𝜌) ̸∈ 𝜕𝑍𝑅 × [0, 1] for sufficiently large values of 𝑅 > 0,
then we deduce from the invariance by homotopy that deg(𝐼−𝜌𝐹,𝑍𝑅, 0) is invariant in 𝜌. Then, choosing 𝜌 = 0,
deg(𝐼, 𝑍𝑅, 0) = 1 and, if 𝜌 = 1, deg(𝐼 − 𝐹,𝑍𝑅, 0) = deg(𝐼, 𝑍𝑅, 0) = 1. This implies that there exists 𝑤𝜀 ∈ 𝑍𝑅

such that (𝐼 − 𝐹 )(𝑤𝜀) = 0, which is the desired fixed point.
Let (𝑤𝜀, 𝜌) be a fixed point of 𝑤𝜀 = 𝜌𝐹 (𝑤𝜀). If 𝜌 = 0, there is nothing to show. Therefore, let 𝜌 > 0. Then

𝑤𝜀
𝑖 solves

−𝜀
𝑤𝜀

𝑖,ℓ+1 − 2𝑤𝜀
𝑖,ℓ + 𝑤𝜀

𝑖,ℓ−1

∆𝑥
+ 𝜀∆𝑥𝑤𝜀

𝑖,ℓ = −𝜌
(︂

∆𝑥
𝑢𝜀

𝑖,ℓ − 𝑢𝑘−1
𝑖,ℓ

∆𝑡
+ ℱ𝜀

𝑖,ℓ+1/2 −ℱ
𝜀
𝑖,ℓ−1/2

)︂
(25)

for all ℓ ∈ 𝐺 and 𝑖 = 1, . . . , 𝑛, where 𝑢𝜀
𝑖,ℓ = exp(𝑤𝜀

𝑖,ℓ/𝜋𝑖), and the fluxes ℱ𝜀
𝑖,ℓ±1/2 are defined as in (12) with 𝑢𝑘

𝑖,ℓ

replaced by 𝑢𝜀
𝑖,ℓ. We multiply the previous equation by ∆𝑡𝑤𝜀

𝑖,ℓ, sum over ℓ ∈ 𝐺, 𝑖 = 1, . . . , 𝑛, and use discrete
integration by parts as in (24):

𝜀∆𝑡
𝑛∑︁

𝑖=1

‖𝑤𝜀
𝑖 ‖21,2,𝒯 = −𝜌

𝑛∑︁
𝑖=1

∑︁
ℓ∈𝐺

(︀
∆𝑥(𝑢𝜀

𝑖,ℓ − 𝑢𝑘−1
𝑖,ℓ )𝑤𝜀

𝑖,ℓ + ∆𝑡(ℱ𝜀
𝑖,ℓ+1/2 −ℱ

𝜀
𝑖,ℓ−1/2)𝑤𝜀

𝑖,ℓ

)︀
. (26)

For the first term on the right-hand side, we use 𝑤𝜀
𝑖,ℓ = 𝜋𝑖 log 𝑢𝜀

𝑖,ℓ and the convexity of ℎ(𝑠) = 𝑠(log 𝑠− 1):

(𝑢𝜀
𝑖,ℓ − 𝑢𝑘−1

𝑖,ℓ )𝜋𝑖 log 𝑢𝜀
𝑖,ℓ ≥ 𝜋𝑖

(︀
ℎ(𝑢𝜀

𝑖,ℓ)− ℎ(𝑢𝑘−1
𝑖,ℓ )

)︀
.

Recalling definition (18) of ℋ𝐵 , this shows that

−𝜌
𝑛∑︁

𝑖=1

∑︁
ℓ∈𝐺

∆𝑥(𝑢𝜀
𝑖,ℓ − 𝑢𝑘−1

𝑖,ℓ )𝑤𝜀
𝑖,ℓ ≤ −𝜌

(︀
ℋ𝐵(𝑢𝜀)−ℋ𝐵(𝑢𝑘−1)

)︀
.

Like in Section 3.2, we split the second term in (26) into two parts:

− 𝜌∆𝑡
𝑛∑︁

𝑖=1

∑︁
ℓ∈𝐺

(ℱ𝜀
𝑖,ℓ+1/2 −ℱ

𝜀
𝑖,ℓ−1/2)𝑤𝜀

𝑖,ℓ = 𝐼3 + 𝐼4, where (27)

𝐼3 = 𝜌𝜎∆𝑡
𝑛∑︁

𝑖=1

∑︁
ℓ∈𝐺

(︂
𝑢𝜀

𝑖,ℓ+1 − 𝑢𝜀
𝑖,ℓ

∆𝑥
−
𝑢𝜀

𝑖,ℓ − 𝑢𝜀
𝑖,ℓ−1

∆𝑥

)︂
𝑤𝜀

𝑖,ℓ,

𝐼4 = 𝜌∆𝑡
𝑛∑︁

𝑖=1

∑︁
ℓ∈𝐺

(︂
𝑢𝜀

𝑖,ℓ+1/2

𝑝𝜀
𝑖,ℓ+1 − 𝑝𝜀

𝑖,ℓ

∆𝑥
− 𝑢𝜀

𝑖,ℓ−1/2

𝑝𝜀
𝑖,ℓ − 𝑝𝜀

𝑖,ℓ−1

∆𝑥

)︂
𝑤𝜀

𝑖,ℓ.
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We use discrete integration by parts, the definition 𝑤𝜀
𝑖,ℓ = 𝜋𝑖 log 𝑢𝜀

𝑖,ℓ, and the elementary inequality (𝑎−𝑏)(log 𝑎−
log 𝑏) ≥ 4(

√
𝑎−

√
𝑏)2 for 𝑎, 𝑏 > 0 to estimate the first term:

𝐼3 = −𝜌𝜎∆𝑡
𝑛∑︁

𝑖=1

∑︁
ℓ∈𝐺

𝑢𝜀
𝑖,ℓ+1 − 𝑢𝜀

𝑖,ℓ

∆𝑥
(𝑤𝜀

𝑖,ℓ+1 − 𝑤𝜀
𝑖,ℓ)

≤ −4𝜌𝜎∆𝑡
𝑛∑︁

𝑖=1

∑︁
ℓ∈𝐺

𝜋𝑖

∆𝑥
(︀
(𝑢𝜀

𝑖,ℓ+1)1/2 − (𝑢𝜀
𝑖,ℓ)

1/2
)︀2 = −4𝜌𝜎∆𝑡

𝑛∑︁
𝑖=1

𝜋𝑖|(𝑢𝜀
𝑖 )1/2|21,2,𝒯 .

For the second term 𝐼4, we use discrete integration by parts and 𝑤𝜀
𝑖,ℓ = 𝜋𝑖 log 𝑢𝜀

𝑖,ℓ again as well as property
(14) (discrete chain rule):

𝐼4 = −𝜌∆𝑡
∆𝑥

𝑛∑︁
𝑖=1

∑︁
ℓ∈𝐺

𝜋𝑖𝑢
𝜀
𝑖,ℓ+1/2(𝑝𝜀

𝑖,ℓ+1 − 𝑝𝜀
𝑖,ℓ)(log 𝑢𝜀

𝑖,ℓ+1 − log 𝑢𝜀
𝑖,ℓ)

≤ −𝜌𝑐0
∆𝑡
∆𝑥

𝑛∑︁
𝑖=1

∑︁
ℓ∈𝐺

𝜋𝑖(𝑝𝜀
𝑖,ℓ+1 − 𝑝𝜀

𝑖,ℓ)(𝑢
𝜀
𝑖,ℓ+1 − 𝑢𝜀

𝑖,ℓ).

Then, inserting definition (3) of 𝑝𝜀
𝑖,ℓ and using the discrete analog (17) of 𝜕𝑥𝐵

𝑖𝑗 * 𝑢𝑗 = 𝐵𝑖𝑗 * 𝜕𝑥𝑢𝑗 ,

𝐼4 ≤ −𝜌𝑐0
∆𝑡
∆𝑥

(𝐼41 + 𝐼42), where

𝐼41 =
𝑛∑︁

𝑖=1

∑︁
ℓ∈𝐺

𝜋𝑖𝑎𝑖𝑖(𝑢𝜀
𝑖,ℓ+1 − 𝑢𝜀

𝑖,ℓ)
2,

𝐼42 =
𝑛∑︁

𝑖,𝑗=1
𝑗 ̸=𝑖

∑︁
ℓ,ℓ′∈𝐺

∆𝑥𝜋𝑖𝑎𝑖𝑗𝐵
𝑖𝑗
ℓ−ℓ′(𝑢

𝜀
𝑗,ℓ′+1 − 𝑢𝜀

𝑗,ℓ′)(𝑢
𝜀
𝑖,ℓ+1 − 𝑢𝜀

𝑖,ℓ).

We insert (𝑛− 1)−1
∑︀

𝑗 ̸=𝑖 1 = 1 and
∑︀

ℓ′∈𝐺 ∆𝑥 = 1 (note that m(T) = 1) in 𝐼41 and split the resulting sum into
two parts:

𝐼41 =
1

𝑛− 1

𝑛∑︁
𝑖,𝑗=1
𝑖<𝑗

∑︁
ℓ,ℓ′∈𝐺

∆𝑥𝜋𝑖𝑎𝑖𝑖(𝑢𝜀
𝑖,ℓ+1 − 𝑢𝜀

𝑖,ℓ)
2 +

1
𝑛− 1

𝑛∑︁
𝑖,𝑗=1
𝑖>𝑗

∑︁
ℓ,ℓ′∈𝐺

∆𝑥𝜋𝑖𝑎𝑖𝑖(𝑢𝜀
𝑖,ℓ+1 − 𝑢𝜀

𝑖,ℓ)
2.

We exchange 𝑖 and 𝑗 as well as ℓ and ℓ′ in the second term, which leads to

𝐼41 =
1

𝑛− 1

𝑛∑︁
𝑖,𝑗=1
𝑖<𝑗

∑︁
ℓ,ℓ′∈𝐺

∆𝑥
[︀
𝜋𝑖𝑎𝑖𝑖(𝑢𝜀

𝑖,ℓ+1 − 𝑢𝜀
𝑖,ℓ)

2 + 𝜋𝑗𝑎𝑗𝑗(𝑢𝜀
𝑗,ℓ′+1 − 𝑢𝜀

𝑗,ℓ′)
2
]︀
.

Similarly, we distinguish between 𝑖 < 𝑗 and 𝑖 > 𝑗 in 𝐼42 and exchange 𝑖 and 𝑗 as well as ℓ and ℓ′ in the sum
over 𝑖 > 𝑗, leading to

𝐼42 =
𝑛∑︁

𝑖,𝑗=1
𝑖<𝑗

∑︁
ℓ,ℓ′∈𝐺

∆𝑥𝜋𝑖𝑎𝑖𝑗𝐵
𝑖𝑗
ℓ−ℓ′(𝑢

𝜀
𝑗,ℓ′+1 − 𝑢𝜀

𝑗,ℓ′)(𝑢
𝜀
𝑖,ℓ+1 − 𝑢𝜀

𝑖,ℓ)

+
𝑛∑︁

𝑖,𝑗=1
𝑖<𝑗

∑︁
ℓ,ℓ′∈𝐺

∆𝑥𝜋𝑗𝑎𝑗𝑖𝐵
𝑗𝑖
ℓ′−ℓ(𝑢

𝜀
𝑖,ℓ+1 − 𝑢𝜀

𝑖,ℓ)(𝑢
𝜀
𝑗,ℓ′+1 − 𝑢𝜀

𝑗,ℓ′).
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By Remark 2.2, we have 𝐵𝑗𝑖
ℓ′−ℓ = 𝐵𝑖𝑗

ℓ−ℓ′ . Therefore,

𝐼42 =
𝑛∑︁

𝑖,𝑗=1
𝑖<𝑗

∑︁
ℓ,ℓ′∈𝐺

∆𝑥(𝜋𝑖𝑎𝑖𝑗 + 𝜋𝑗𝑎𝑗𝑖)𝐵
𝑖𝑗
ℓ−ℓ′(𝑢

𝜀
𝑗,ℓ′+1 − 𝑢𝜀

𝑗,ℓ′)(𝑢
𝜀
𝑖,ℓ+1 − 𝑢𝜀

𝑖,ℓ).

The sum of 𝐼41 and 𝐼42 can be written as a quadratic form in Dℓ𝑢
𝜀
𝑖 and Dℓ′𝑢

𝜀
𝑗 with the matrix 𝑀 𝑖𝑗

ℓ−ℓ′ , defined
in (19). This shows that

𝐼4 ≤ −
𝜌𝑐0∆𝑡
(𝑛− 1)

𝑛∑︁
𝑖,𝑗=1
𝑖<𝑗

∑︁
ℓ,ℓ′∈𝐺

(∆𝑥)2
(︂

Dℓ𝑢
𝜀
𝑖

Dℓ′𝑢
𝜀
𝑗

)︂⊤
𝑀 𝑖𝑗

ℓ−ℓ′

(︂
Dℓ𝑢

𝜀
𝑖

Dℓ′𝑢
𝜀
𝑗

)︂
≤ 0.

Collecting the estimates for 𝐼3 and 𝐼4 in (27), we deduce from (26) the following regularized discrete entropy
inequality:

𝜌ℋ𝐵(𝑢𝜀) + 𝜀∆𝑡
𝑛∑︁

𝑖=1

‖𝑤𝜀
𝑖 ‖21,2,𝒯 + 4𝜌𝜎∆𝑡

𝑛∑︁
𝑖=1

𝜋𝑖|(𝑢𝜀
𝑖 )1/2|21,2,𝒯 (28)

+
𝜌𝑐0∆𝑡
(𝑛− 1)

𝑛∑︁
𝑖,𝑗=1
𝑖<𝑗

∑︁
ℓ,ℓ′∈𝐺

(∆𝑥)2
(︂

Dℓ𝑢
𝜀
𝑖

Dℓ′𝑢
𝜀
𝑗

)︂⊤
𝑀 𝑖𝑗

ℓ−ℓ′

(︂
Dℓ𝑢

𝜀
𝑖

Dℓ′𝑢
𝜀
𝑗

)︂
≤ 𝜌ℋ𝐵(𝑢𝑘−1).

We proceed with the topological degree argument. We set 𝑅 = 1 + (ℋ𝐵(𝑢𝑘−1)/(𝜀∆𝑡))1/2. Then (28) implies
that

𝜀∆𝑡
𝑛∑︁

𝑖=1

‖𝑤𝜀
𝑖 ‖21,2,𝒯 ≤ 𝜌ℋ𝐵(𝑢𝑘−1) ≤ ℋ𝐵(𝑢𝑘−1) = 𝜀∆𝑡(𝑅− 1)2 < 𝜀∆𝑡𝑅2,

and hence 𝑤𝜀 ̸∈ 𝜕𝑍𝑅. We infer that deg(𝐼 − 𝐹,𝑍𝑅, 0) = 1 and consequently, 𝐹 admits a fixed point. Note that
we did not use the estimate for 𝑢𝜀

𝑖 in the seminorm | · |1,2,𝒯 at this point, such that 𝜎 = 0 is admissible here
(and also in the following two subsections).

3.4. Limit 𝜀 → 0

There exists a constant 𝐶 > 0 such that 𝐶(𝑠− 1) ≤ ℎ(𝑠) for all 𝑠 ≥ 0. Hence,

𝐶𝜋𝑖∆𝑥(𝑢𝜀
𝑖,ℓ − 1) ≤ 𝜋𝑖∆𝑥ℎ(𝑢𝜀

𝑖,ℓ) ≤ ℋ𝐵(𝑢𝜀) ≤ ℋ𝐵(𝑢𝑘−1),

for all ℓ ∈ 𝐺, 𝑖 = 1, . . . , 𝑛. Thus, (𝑢𝜀
𝑖,ℓ) is bounded in 𝜀 and the Bolzano–Weierstraß theorem implies the existence

of a subsequence (not relabeled) such that 𝑢𝜀
𝑖,ℓ → 𝑢𝑘

𝑖,ℓ ≥ 0 as 𝜀→ 0. It follows from (28) that 𝜀𝑤𝜀
𝑖,ℓ → 0. Thus,

the limit 𝜀→ 0 in (25) shows that 𝑢𝑘 is a solution to the numerical scheme (11)–(13). Moreover, the limit 𝜀→ 0
in (28) leads to the discrete entropy inequality (20).

3.5. Discrete Rao entropy inequality

We prove inequality (21). To this end, we multiply (11) by ∆𝑡𝜋𝑖𝑝
𝑘
𝑖,ℓ and sum over ℓ ∈ 𝐺, 𝑖 = 1, . . . , 𝑛:

𝑛∑︁
𝑖=1

∑︁
ℓ∈𝐺

∆𝑥𝜋𝑖(𝑢𝑘
𝑖,ℓ − 𝑢𝑘−1

𝑖,ℓ )𝑝𝑘
𝑖,ℓ +

𝑛∑︁
𝑖=1

∑︁
ℓ∈𝐺

∆𝑡𝜋𝑖(ℱ𝑘
𝑖,ℓ+1/2 −ℱ

𝑘
𝑖,ℓ−1/2)𝑝𝑘

𝑖,ℓ = 0. (29)
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For the first term in (29), we use the definition of 𝑝𝑘
𝑖,ℓ:

𝑛∑︁
𝑖=1

∑︁
ℓ∈𝐺

∆𝑥𝜋𝑖(𝑢𝑘
𝑖,ℓ − 𝑢𝑘−1

𝑖,ℓ )𝑝𝑘
𝑖,ℓ = 𝐼5 + 𝐼6, where

𝐼5 =
𝑛∑︁

𝑖=1

∑︁
ℓ∈𝐺

∆𝑥𝜋𝑖𝑎𝑖𝑖(𝑢𝑘
𝑖,ℓ − 𝑢𝑘−1

𝑖,ℓ )𝑢𝑘
𝑖,ℓ,

𝐼6 =
𝑛∑︁

𝑖,𝑗=1
𝑗 ̸=𝑖

∑︁
ℓ,ℓ′∈𝐺

(∆𝑥)2𝜋𝑖𝑎𝑖𝑗𝐵
𝑖𝑗
ℓ−ℓ′(𝑢

𝑘
𝑖,ℓ − 𝑢𝑘−1

𝑖,ℓ )𝑢𝑘
𝑗,ℓ′ .

We rewrite 𝐼5 and 𝐼6 according to

𝐼5 =
1
2

𝑛∑︁
𝑖=1

∑︁
ℓ∈𝐺

∆𝑥𝜋𝑖𝑎𝑖𝑖

(︀
(𝑢𝑘

𝑖,ℓ)
2 − (𝑢𝑘−1

𝑖,ℓ )2
)︀

+
1
2

𝑛∑︁
𝑖=1

∑︁
ℓ∈𝐺

∆𝑥𝜋𝑖𝑎𝑖𝑖

(︀
𝑢𝑘

𝑖,ℓ − 𝑢𝑘−1
𝑖,ℓ

)︀2
,

𝐼6 =
1
2

𝑛∑︁
𝑖,𝑗=1
𝑗 ̸=𝑖

∑︁
ℓ,ℓ′∈𝐺

(∆𝑥)2𝜋𝑖𝑎𝑖𝑗𝐵
𝑖𝑗
ℓ−ℓ′(𝑢

𝑘
𝑖,ℓ𝑢

𝑘
𝑗,ℓ′ − 𝑢𝑘−1

𝑖,ℓ 𝑢𝑘−1
𝑗,ℓ′ )

+
1
2

𝑛∑︁
𝑖,𝑗=1
𝑗 ̸=𝑖

∑︁
ℓ,ℓ′∈𝐺

(∆𝑥)2𝜋𝑖𝑎𝑖𝑗𝐵
𝑖𝑗
ℓ−ℓ′(𝑢

𝑘
𝑖,ℓ − 𝑢𝑘−1

𝑖,ℓ )(𝑢𝑘
𝑗,ℓ′ − 𝑢𝑘−1

𝑗,ℓ′ ).

Combining the second terms in 𝐼5 and 𝐼6, using similar computations as for 𝐼4 in Section 3.3, and applying
Hypothesis (H3) shows that the second term of 𝐼5 + 𝐼6 is nonnegative leading to

𝐼5 + 𝐼6 ≥
1
2

𝑛∑︁
𝑖=1

∑︁
ℓ∈𝐺

∆𝑥𝜋𝑖𝑎𝑖𝑖

(︀
(𝑢𝑘

𝑖,ℓ)
2 − (𝑢𝑘−1

𝑖,ℓ )2
)︀

+
1
2

𝑛∑︁
𝑖,𝑗=1
𝑗 ̸=𝑖

∑︁
ℓ,ℓ′∈𝐺

(∆𝑥)2𝜋𝑖𝑎𝑖𝑗𝐵
𝑖𝑗
ℓ−ℓ′(𝑢

𝑘
𝑖,ℓ𝑢

𝑘
𝑗,ℓ′ − 𝑢𝑘−1

𝑖,ℓ 𝑢𝑘−1
𝑗,ℓ′ ).

Then it holds that
𝑛∑︁

𝑖=1

∑︁
ℓ∈𝐺

∆𝑥𝜋𝑖(𝑢𝑘
𝑖,ℓ − 𝑢𝑘−1

𝑖,ℓ )𝑝𝑘
𝑖,ℓ ≥ ℋ𝑅(𝑢𝑘)−ℋ𝑅(𝑢𝑘−1).

Now, we split the second term in (29) again into two parts:
𝑛∑︁

𝑖=1

∑︁
ℓ∈𝐺

∆𝑡𝜋𝑖(ℱ𝑘
𝑖,ℓ+1/2 −ℱ

𝑘
𝑖,ℓ−1/2)𝑝𝑘

𝑖,ℓ = 𝐼7 + 𝐼8, where

𝐼7 = −𝜎∆𝑡
𝑛∑︁

𝑖=1

∑︁
ℓ∈𝐺

𝜋𝑖

(︂
𝑢𝑘

𝑖,ℓ+1 − 𝑢𝑘
𝑖,ℓ

∆𝑥
−
𝑢𝑘

𝑖,ℓ − 𝑢𝑘
𝑖,ℓ−1

∆𝑥

)︂
𝑝𝑘

𝑖,ℓ,

𝐼8 = −∆𝑡
𝑛∑︁

𝑖=1

∑︁
ℓ∈𝐺

𝜋𝑖

(︂
𝑢𝑘

𝑖,ℓ+1/2

𝑝𝑘
𝑖,ℓ+1 − 𝑝𝑘

𝑖,ℓ

∆𝑥
− 𝑢𝑘

𝑖,ℓ−1/2

𝑝𝑘
𝑖,ℓ − 𝑝𝑘

𝑖,ℓ−1

∆𝑥

)︂
𝑝𝑘

𝑖,ℓ.

We reformulate 𝐼7 by using discrete integration by parts:

𝐼7 = 𝜎∆𝑡
𝑛∑︁

𝑖=1

∑︁
ℓ∈𝐺

𝜋𝑖

𝑢𝑘
𝑖,ℓ+1 − 𝑢𝑘

𝑖,ℓ

∆𝑥
(𝑝𝑘

𝑖,ℓ+1 − 𝑝𝑘
𝑖,ℓ).
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Then, with similar computations as for 𝐼4 in Section 3.3, we obtain

𝐼7 =
𝜎∆𝑡

(𝑛− 1)

𝑛∑︁
𝑖,𝑗=1
𝑖<𝑗

∑︁
ℓ,ℓ′∈𝐺

(∆𝑥)2
(︂

Dℓ𝑢
𝑘
𝑖

Dℓ′𝑢
𝑘
𝑗

)︂⊤
𝑀 𝑖𝑗

ℓ−ℓ′

(︂
Dℓ𝑢

𝑘
𝑖

Dℓ′𝑢
𝑘
𝑗

)︂
≥ 0.

Finally, the term 𝐼8 can be rewritten as

𝐼8 = ∆𝑡
𝑛∑︁

𝑖=1

∑︁
ℓ∈𝐺

𝜋𝑖𝑢
𝑘
𝑖,ℓ+1/2

𝑝𝑘
𝑖,ℓ+1 − 𝑝𝑘

𝑖,ℓ

∆𝑥
(𝑝𝑘

𝑖,ℓ+1 − 𝑝𝑘
𝑖,ℓ) = ∆𝑡

𝑛∑︁
𝑖=1

∑︁
ℓ∈𝐺

𝜋𝑖∆𝑥
⃒⃒
(𝑢𝑘

𝑖,ℓ+1/2)1/2Dℓ𝑝
𝑘
𝑖

⃒⃒2
.

Hence, we infer from (29) that

ℋ𝑅(𝑢𝑘) + ∆𝑡
𝑛∑︁

𝑖=1

∑︁
ℓ∈𝐺

𝜋𝑖∆𝑥
⃒⃒
(𝑢𝑘

𝑖,ℓ+1/2)1/2Dℓ𝑝
𝑘
𝑖

⃒⃒2
+

𝜎∆𝑡
(𝑛− 1)

𝑛∑︁
𝑖,𝑗=1
𝑖<𝑗

∑︁
ℓ,ℓ′∈𝐺

(∆𝑥)2
(︂

Dℓ𝑢
𝑘
𝑖

Dℓ′𝑢
𝑘
𝑗

)︂⊤
𝑀 𝑖𝑗

ℓ−ℓ′

(︂
Dℓ𝑢

𝑘
𝑖

Dℓ′𝑢
𝑘
𝑗

)︂
≤ ℋ𝑅(𝑢𝑘−1),

which proves (21).
Finally, conservation of mass follows from summing (11) over ℓ ∈ 𝐺 and observing that the sum over the

numerical fluxes vanishes. This ends the proof of Theorem 2.5.

4. Proof of Theorem 2.6

To prove the convergence of the scheme, we derive first some uniform estimates and then apply a discrete
Aubin–Lions compactness lemma.

4.1. Uniform estimates

Let (𝑢𝑚)𝑚∈N be a sequence of finite-volume solutions to (11)–(13) associated to the mesh 𝒟𝑚 and constructed
in Theorem 2.5. The conservation of mass and the discrete entropy inequalities (20) and (21) show that, after
summing over 𝑘 = 1, . . . , 𝑁𝑚

𝑇 ,

max
𝑘=1,...,𝑁𝑚

𝑇

‖𝑢𝑘
𝑖 ‖20,2,𝒯𝑚

+
𝑁𝑚

𝑇∑︁
𝑘=1

∆𝑡𝑚‖(𝑢𝑘
𝑖 )1/2‖21,2,𝒯𝑚

≤ 𝐶, 𝑖 = 1, . . . , 𝑛, (30)

where 𝐶 > 0 denotes here and in the following a constant independent of the mesh size 𝜂𝑚 = max{∆𝑥𝑚, ∆𝑡𝑚},
but possibly depending on 𝑢0 and 𝑇 . Because of the positive definiteness of 𝑀 𝑖𝑗

ℓ−ℓ′ , we conclude a bound for 𝑢𝑘
𝑖

in the norm ‖ · ‖1,2,𝒯𝑚 .

Lemma 4.1. Let the assumptions of Theorem 2.6 hold. Then there exists 𝐶 > 0 independent of 𝜂𝑚 (but
depending on the positive definiteness constant 𝑐𝑀 ) such that for all 𝑚 ∈ N, 𝑖 = 1, . . . , 𝑛,

𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚‖𝑢𝑘
𝑖 ‖21,2,𝒯𝑚

≤ 𝐶. (31)

Proof. We infer from (20) that

𝑐0
𝑛− 1

𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚
𝑛∑︁

𝑖,𝑗=1
𝑖<𝑗

∑︁
ℓ,ℓ′∈𝐺𝑚

(∆𝑥)2
(︂

Dℓ𝑢
𝑘
𝑖

Dℓ′𝑢
𝑘
𝑗

)︂⊤
𝑀 𝑖𝑗

ℓ−ℓ′

(︂
Dℓ𝑢

𝑘
𝑖

Dℓ′𝑢
𝑘
𝑗

)︂
≤ ℋ𝐵(𝑢0),
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Since 𝑀 𝑖𝑗
ℓ−ℓ′ is uniformly positive definite with constant 𝑐𝑀 > 0,

𝑐0
𝑛− 1

𝑛∑︁
𝑖,𝑗=1
𝑖<𝑗

∑︁
ℓ,ℓ′∈𝐺𝑚

(∆𝑥)2
(︂

Dℓ𝑢
𝑘
𝑖

Dℓ′𝑢
𝑘
𝑗

)︂⊤
𝑀 𝑖𝑗

ℓ−ℓ′

(︂
Dℓ𝑢

𝑘
𝑖

Dℓ′𝑢
𝑘
𝑗

)︂

≥ 𝑐𝑀𝑐0
𝑛− 1

𝑛∑︁
𝑖,𝑗=1
𝑖<𝑗

∑︁
ℓ,ℓ′∈𝐺𝑚

(∆𝑥)2
(︀
|Dℓ𝑢

𝑘
𝑖 |2 + |Dℓ′𝑢

𝑘
𝑗 |2

)︀

= 𝑐𝑀𝑐0

𝑛∑︁
𝑖=1

∑︁
ℓ∈𝐺𝑚

∆𝑥|Dℓ𝑢
𝑘
𝑖 |2 + 𝑐𝑀𝑐0

𝑛∑︁
𝑗=1

∑︁
ℓ′∈𝐺𝑚

∆𝑥|Dℓ′𝑢
𝑘
𝑗 |2

= 2𝑐𝑀𝑐0

𝑛∑︁
𝑖=1

∑︁
ℓ∈𝐺𝑚

∆𝑥|Dℓ𝑢
𝑘
𝑖 |2.

Together with the first bound in (30), this finishes the proof. �

Lemma 4.2. Let the assumptions of Theorem 2.6 hold. Then there exists a constant 𝐶 > 0 independent of 𝜂𝑚

(but depending on 𝜎) such that for all 𝑚 ∈ N, 𝑖 = 1, . . . , 𝑛,

𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚‖𝑢𝑘
𝑖 ‖21,1,𝒯𝑚

+
𝑁𝑚

𝑇∑︁
𝑘=1

∆𝑡𝑚‖𝑢𝑘
𝑖 ‖20,∞,𝒯𝑚

≤ 𝐶.

Moreover, there exists another constant, still denoted by 𝐶 > 0 and independent of 𝜂𝑚, such that

𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚|𝑝𝑘
𝑖 |21,2,𝒯𝑚

≤ 𝐶. (32)

Proof. As m(T) = 1, thanks to the Cauchy–Schwarz inequality,

|𝑢𝑘
𝑖 |1,1,𝒯𝑚

=
∑︁

ℓ∈𝐺𝑚

|𝑢𝑘
𝑖,ℓ+1 − 𝑢𝑘

𝑖,ℓ| ≤ |𝑢𝑘
𝑖 |1,2,𝒯𝑚

.

Using (31), this shows that

𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚‖𝑢𝑘
𝑖 ‖21,1,𝒯𝑚

≤ 2
𝑁𝑚

𝑇∑︁
𝑘=1

∆𝑡𝑚
(︀
‖𝑢𝑘

𝑖 ‖20,1,𝒯𝑚
+ |𝑢𝑘

𝑖 |21,1,𝒯𝑚

)︀
≤ 2𝑇 max

𝑘=1,...,𝑁𝑚
𝑇

‖𝑢𝑘
𝑖 ‖20,1,𝒯𝑚

+ 2
𝑁𝑚

𝑇∑︁
𝑘=1

∆𝑡𝑚|𝑢𝑘
𝑖 |21,2,𝒯𝑚

≤ 𝐶(𝑢0, 𝑇 ).

To show the discrete 𝐿∞(T) bound, we apply the continuity of the embedding BV(T) →˓ 𝐿∞(T) (in one space
dimension). We conclude that, for 𝑖 = 1, . . . , 𝑛,

𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚‖𝑢𝑘
𝑖 ‖20,∞,𝒯𝑚

≤ 𝐶

𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚‖𝑢𝑘
𝑖 ‖2BV(T) = 𝐶

𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚‖𝑢𝑘
𝑖 ‖21,1,𝒯𝑚

≤ 𝐶(𝑢0, 𝑇 ).
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For the last part, we estimate as follows:

|𝑝𝑘
𝑖 |21,2,𝒯𝑚

=
∑︁

ℓ∈𝐺𝑚

∆𝑥𝑚

⃒⃒⃒⃒
𝑝𝑘

𝑖,ℓ+1 − 𝑝𝑘
𝑖,ℓ

∆𝑥𝑚

⃒⃒⃒⃒2

≤ 𝐶𝑎2
𝑖𝑖|𝑢𝑘

𝑖 |21,2,𝒯𝑚
+ 𝐶

∑︁
ℓ∈𝐺𝑚

∆𝑥𝑚

⃒⃒⃒⃒ 𝑛∑︁
𝑗=1
𝑗 ̸=𝑖

∑︁
ℓ′∈𝐺𝑚

∆𝑥𝑚𝑎𝑖𝑗

𝐵𝑖𝑗
ℓ+1−ℓ′ −𝐵𝑖𝑗

ℓ−ℓ′

∆𝑥𝑚
𝑢𝑘

𝑗,ℓ′

⃒⃒⃒⃒2

≤ 𝐶|𝑢𝑘
𝑖 |21,2,𝒯𝑚

+ 𝐶
∑︁

ℓ∈𝐺𝑚

∆𝑥𝑚

⃒⃒⃒⃒ 𝑛∑︁
𝑗=1
𝑗 ̸=𝑖

∑︁
ℓ′∈𝐺𝑚

∆𝑥𝑚𝑎𝑖𝑗𝐵
𝑖𝑗
ℓ−ℓ′

𝑢𝑘
𝑗,ℓ′+1 − 𝑢𝑘

𝑗,ℓ′

∆𝑥𝑚

⃒⃒⃒⃒2

≤ 𝐶|𝑢𝑘
𝑖 |21,2,𝒯𝑚

+ 𝐶
∑︁

ℓ∈𝐺𝑚

∆𝑥𝑚

⃒⃒⃒⃒ 𝑛∑︁
𝑗=1
𝑗 ̸=𝑖

∑︁
ℓ′∈𝐺𝑚

∆𝑥𝑚𝑎𝑖𝑗𝐵
𝑖𝑗
ℓ−ℓ′Dℓ′𝑢

𝑘
𝑗

⃒⃒⃒⃒2
.

Then we deduce from the elementary inequality (
∑︀𝑛

𝑗=1, 𝑗 ̸=𝑖 𝑎𝑗)2 ≤ (𝑛 − 1)
∑︀𝑛

𝑗=1, 𝑗 ̸=𝑖 𝑎
2
𝑗 for 𝑎𝑗 ∈ R and the

discrete Young convolution inequality in Lemma A.3 that

∑︁
ℓ∈𝐺𝑚

∆𝑥𝑚

⃒⃒⃒⃒ 𝑛∑︁
𝑗=1
𝑗 ̸=𝑖

∑︁
ℓ′∈𝐺𝑚

∆𝑥𝑚𝑎𝑖𝑗𝐵
𝑖𝑗
ℓ−ℓ′Dℓ′𝑢

𝑘
𝑗

⃒⃒⃒⃒2

≤ (𝑛− 1)
𝑛∑︁

𝑗=1
𝑗 ̸=𝑖

∑︁
ℓ∈𝐺𝑚

∆𝑥𝑚

(︂ ∑︁
ℓ′∈𝐺𝑚

∆𝑥𝑚𝑎𝑖𝑗𝐵
𝑖𝑗
ℓ−ℓ′Dℓ′𝑢

𝑘
𝑗

)︂2

≤ 𝐶

𝑛∑︁
𝑗=1
𝑗 ̸=𝑖

‖𝐵𝑖𝑗‖2𝐿2(T)|𝑢
𝑘
𝑗 |21,1,𝒯𝑚

.

Summing over 𝑘, we infer that

𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚|𝑝𝑘
𝑖 |21,2,𝒯𝑚

≤ 𝐶

{︂ 𝑛∑︁
𝑖=1

𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚|𝑢𝑘
𝑖 |21,2,𝒯𝑚

+
𝑛∑︁

𝑗=1
𝑗 ̸=𝑖

(︂
‖𝐵𝑖𝑗‖2𝐿2(T)

𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚|𝑢𝑘
𝑗 |21,1,𝒯𝑚

)︂}︂
≤ 𝐶,

where we used Lemma 4.2 for the last inequality. At this point, we need the discrete 𝐿2(0, 𝑇 ;𝐻1(T)) bound of
(𝑢𝑚,𝑖). This ends the proof. �

Next, we show a uniform bound for the discrete time derivative.

Lemma 4.3. Let the assumptions of Theorem 2.6 hold. Then there exists 𝐶 > 0 independent of 𝜂𝑚 such that
for all 𝑚 ∈ N, 𝑖 = 1, . . . , 𝑛,

𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚

⃦⃦⃦⃦
𝑢𝑘

𝑖 − 𝑢𝑘−1
𝑖

∆𝑡𝑚

⃦⃦⃦⃦4/3

−1,2,𝒯𝑚

≤ 𝐶.

Proof. Let 𝜑 = (𝜑ℓ)ℓ∈𝐺𝑚 ∈ 𝒱𝒯𝑚 be such that ‖𝜑‖1,2,𝒯𝑚 = 1. We multiply (11) by 𝜑ℓ, sum over ℓ ∈ 𝐺𝑚, and use
discrete integration by parts:
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∑︁
ℓ∈𝐺𝑚

∆𝑥𝑚

𝑢𝑘
𝑖,ℓ − 𝑢𝑘−1

𝑖,ℓ

∆𝑡𝑚
𝜑ℓ = 𝜎

∑︁
ℓ∈𝐺𝑚

(︂
𝑢𝑘

𝑖,ℓ+1 − 𝑢𝑘
𝑖,ℓ

∆𝑥𝑚
−
𝑢𝑘

𝑖,ℓ − 𝑢𝑘
𝑖,ℓ−1

∆𝑥𝑚

)︂
𝜑ℓ (33)

+
∑︁

ℓ∈𝐺𝑚

(︂
𝑢𝑘

𝑖,ℓ+1/2

𝑝𝑘
𝑖,ℓ+1 − 𝑝𝑘

𝑖,ℓ

∆𝑥𝑚
− 𝑢𝑘

𝑖,ℓ−1/2

𝑝𝑘
𝑖,ℓ − 𝑝𝑘

𝑖,ℓ−1

∆𝑥𝑚

)︂
𝜑ℓ

= −𝜎
∑︁

ℓ∈𝐺𝑚

∆𝑥𝑚

𝑢𝑘
𝑖,ℓ+1 − 𝑢𝑘

𝑖,ℓ

∆𝑥𝑚

𝜑ℓ+1 − 𝜑ℓ

∆𝑥𝑚
−

∑︁
ℓ∈𝐺𝑚

∆𝑥𝑚𝑢
𝑘
𝑖,ℓ+1/2

𝑝𝑘
𝑖,ℓ+1 − 𝑝𝑘

𝑖,ℓ

∆𝑥𝑚

𝜑ℓ+1 − 𝜑ℓ

∆𝑥𝑚

=: 𝐼9 + 𝐼10.

By the Cauchy–Schwarz inequality,

|𝐼9| ≤ 𝜎
∑︁

ℓ∈𝐺𝑚

∆𝑥𝑚

(︀
(𝑢𝑘

𝑖,ℓ+1)1/2 + (𝑢𝑘
𝑖,ℓ)

1/2
)︀⃒⃒⃒⃒ (𝑢𝑘

𝑖,ℓ+1)1/2 − (𝑢𝑘
𝑖,ℓ)

1/2

∆𝑥𝑚

⃒⃒⃒⃒⃒⃒⃒⃒
𝜑ℓ+1 − 𝜑ℓ

∆𝑥𝑚

⃒⃒⃒⃒
≤ 2𝜎‖(𝑢𝑘

𝑖 )1/2‖0,∞,𝒯𝑚
|(𝑢𝑘

𝑖 )1/2|1,2,𝒯𝑚
|𝜑|1,2,𝒯𝑚

.

Furthermore, using (𝑢𝑘
𝑖,ℓ+1/2)1/2 ≤ max{(𝑢𝑘

𝑖,ℓ)
1/2, (𝑢𝑘

𝑖,ℓ+1)1/2} ≤ ‖(𝑢𝑘
𝑖 )1/2‖0,∞,𝒯𝑚 ,

|𝐼10| ≤
∑︁

ℓ∈𝐺𝑚

∆𝑥𝑚

⃒⃒
(𝑢𝑘

𝑖,ℓ+1/2)1/2
⃒⃒⃒⃒⃒⃒

(𝑢𝑘
𝑖,ℓ+1/2)1/2

𝑝𝑘
𝑖,ℓ+1 − 𝑝𝑘

𝑖,ℓ

∆𝑥𝑚

⃒⃒⃒⃒⃒⃒⃒⃒
𝜑ℓ+1 − 𝜑ℓ

∆𝑥𝑚

⃒⃒⃒⃒

≤ ‖(𝑢𝑘
𝑖 )1/2‖0,∞,𝒯𝑚

(︂ ∑︁
ℓ∈𝐺𝑚

∆𝑥𝑚

⃒⃒⃒⃒
(𝑢𝑘

𝑖,ℓ+1/2)1/2
𝑝𝑘

𝑖,ℓ+1 − 𝑝𝑘
𝑖,ℓ

∆𝑥𝑚

⃒⃒⃒⃒2)︂1/2

|𝜑|1,2,𝒯𝑚
.

Applying the elementary inequality (𝑎 + 𝑏)𝑟 ≤ 𝐶(𝑎𝑟 + 𝑏𝑟) for all 𝑎, 𝑏 ≥ 0 and 𝑟 > 1, inserting the previous
estimates into (33), and using Hölder’s inequality, we find that

𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚

⃦⃦⃦⃦
𝑢𝑘

𝑖 − 𝑢𝑘−1
𝑖

∆𝑡𝑚

⃦⃦⃦⃦4/3

−1,2,𝒯𝑚

=
𝑁𝑚

𝑇∑︁
𝑘=1

∆𝑡𝑚 sup
‖𝜑‖1,2,𝒯𝑚=1

⃒⃒⃒⃒ ∑︁
ℓ∈𝐺𝑚

∆𝑥𝑚

𝑢𝑘
𝑖,ℓ − 𝑢𝑘−1

𝑖,ℓ

∆𝑡𝑚
𝜑ℓ

⃒⃒⃒⃒4/3

≤ 𝐶

𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚‖(𝑢𝑘
𝑖 )1/2‖4/3

0,∞,𝒯𝑚
|(𝑢𝑘

𝑖 )1/2|4/3
1,2,𝒯𝑚

+ 𝐶

𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚‖(𝑢𝑘
𝑖 )1/2‖4/3

0,∞,𝒯𝑚

(︂ ∑︁
ℓ∈𝐺𝑚

∆𝑥𝑚

⃒⃒⃒⃒
(𝑢𝑘

𝑖,ℓ+1/2)1/2
𝑝𝑘

𝑖,ℓ+1 − 𝑝𝑘
𝑖,ℓ

∆𝑥𝑚

⃒⃒⃒⃒2)︂2/3

≤ 𝐶

(︂ 𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚‖(𝑢𝑘
𝑖 )1/2‖40,∞,𝒯𝑚

)︂1/3(︂ 𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚|(𝑢𝑘
𝑖 )1/2|21,2,𝒯𝑚

)︂2/3

+ 𝐶

(︂ 𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚‖(𝑢𝑘
𝑖 )1/2‖40,∞,𝒯𝑚

)︂1/3(︂ 𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚
∑︁

ℓ∈𝐺𝑚

∆𝑥𝑚

⃒⃒⃒⃒
(𝑢𝑘

𝑖,ℓ+1/2)1/2
𝑝𝑘

𝑖,ℓ+1 − 𝑝𝑘
𝑖,ℓ

∆𝑥𝑚

⃒⃒⃒⃒2)︂2/3

≤ 𝐶(𝑢0, 𝑇 ),

and the last bound follows from Lemma 4.2 and the discrete Rao entropy inequality (21). �

4.2. Compactness

We claim that the estimates from Lemmas 4.2 and 4.3 are sufficient to conclude the relative compactness of
(𝑢𝑚)𝑚∈N. In fact, the result follows from the discrete Aubin–Lions lemma Theorem 3.4 from [15] if the following
two properties are satisfied:
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– For any (𝑣𝑚)𝑚∈N ⊂ 𝒱𝒯𝑚
such that sup𝑚∈N ‖𝑣𝑚‖1,2,𝒯𝑚

≤ 𝐶 for some 𝐶 > 0, there exists 𝑣 ∈ 𝐿2(T) satisfing,
up to a subsequence, 𝑣𝑚 → 𝑣 strongly in 𝐿2(T). This property follows from Theorem 14.1 from [13].

– If 𝑣𝑚 → 𝑣 strongly in 𝐿2(T) and ‖𝑣𝑚‖−1,2,𝒯𝑚 → 0 as 𝑚 → ∞, then 𝑣 = 0. This property can be replaced
by the condition that ‖ · ‖1,2,𝒯𝑚

and ‖ · ‖−1,2,𝒯𝑚
are dual norms with respect to the 𝐿2(T) norm, which is

the case Remark 6 from [15]. A more detailed proof can be found in Proposition 10 from [18].

Hence, it follows Theorem 3.4 from [15] that there exists a subsequence, which is not relabeled, such that

𝑢𝑚,𝑖 → 𝑢𝑖 strongly in 𝐿1(0, 𝑇 ;𝐿2(T)) as 𝑚→∞.

Let us now adapt the Gagliardo–Nirenberg inequality to our situation. Let 𝑘 = 1, . . . , 𝑁𝑚
𝑇 be fixed. We first

apply Lemma A.4 with 𝑠 = 𝑝 = 2:

‖𝑢𝑘
𝑚,𝑖‖0,∞,𝒯𝑚

≤ 𝐶‖𝑢𝑘
𝑚,𝑖‖

1/2
1,2,𝒯𝑚

‖𝑢𝑘
𝑚,𝑖‖

1/2
0,2,𝒯 .

Then it follows from the Hölder inequality

‖𝑢𝑘
𝑚,𝑖‖0,6,𝒯𝑚

≤ ‖𝑢𝑘
𝑚,𝑖‖

2/3
0,∞,𝒯𝑚

‖(𝑢𝑘
𝑚,𝑖)

1/3‖0,6,𝒯𝑚
= ‖𝑢𝑘

𝑚,𝑖‖
2/3
0,∞,𝒯𝑚

‖𝑢𝑘
𝑚,𝑖‖

1/3
0,2,𝒯𝑚

that

‖𝑢𝑘
𝑚,𝑖‖0,6,𝒯𝑚

≤ 𝐶‖𝑢𝑘
𝑚,𝑖‖

1/3
1,2,𝒯𝑚

‖𝑢𝑘
𝑚,𝑖‖

2/3
0,2,𝒯 .

Therefore,

𝑁𝑇∑︁
𝑘=1

∆𝑡𝑚‖𝑢𝑘
𝑚,𝑖‖60,6,𝒯𝑚

≤ 𝐶 max
𝑘=1,...,𝑁𝑇

‖𝑢𝑚,𝑖‖40,2,𝒯𝑚

𝑁𝑇∑︁
𝑘=1

∆𝑡𝑚 ‖𝑢𝑘
𝑚,𝑖‖21,2,𝒯𝑚

.

Recalling estimates (30) and (31), we conclude that (𝑢𝑚,𝑖)𝑚∈N is uniformly bounded in 𝐿6(T). The convergence
dominated theorem implies that, up to a subsequence, for every 𝑝 < 6,

𝑢𝑚,𝑖 → 𝑢𝑖 strongly in 𝐿𝑝(𝑄𝑇 ) as 𝑚→∞.

Lemma 4.2 implies that the sequence of discrete derivatives (𝜕𝑚
𝑥 𝑢𝑚,𝑖)𝑚∈N is bounded in 𝐿2(𝑄𝑇 ). Thus, there

exists a subsequence (not relabeled) such that 𝜕𝑚
𝑥 𝑢𝑚,𝑖 ⇀ 𝑣𝑖 weakly in 𝐿2(𝑄𝑇 ), and the proof of Lemma 4.4

from [9] allows us to identify 𝑣𝑖 = 𝜕𝑥𝑢𝑖.

Lemma 4.4. The following convergences hold, up to subsequences, as 𝑚→∞,

𝑝𝑚,𝑖 → 𝑝𝑖(𝑢) strongly in 𝐿2(𝑄𝑇 ),
𝜕𝑥𝑝𝑚,𝑖 ⇀ 𝜕𝑥𝑝𝑖(𝑢) weakly in 𝐿2(𝑄𝑇 ), 𝑖 = 1, . . . , 𝑛.

Proof. We follow the strategy of Corollary 14 from [17]. First, we rewrite 𝑝𝑘
𝑖,ℓ defined in (13). By a change of

variables, we have

𝑝𝑘
𝑖,ℓ = 𝑎𝑖𝑖𝑢

𝑘
𝑚,𝑖,ℓ +

𝑛∑︁
𝑗=1
𝑗 ̸=𝑖

∑︁
ℓ′∈𝐺𝑚

𝑎𝑖𝑗

(︂ ∫︁
𝐾ℓ−ℓ′

𝐵𝑖𝑗(𝑦)d𝑦
)︂
𝑢𝑘

𝑚,𝑗,ℓ′

= 𝑎𝑖𝑖𝑢
𝑘
𝑚,𝑖,ℓ +

𝑛∑︁
𝑗=1
𝑗 ̸=𝑖

∑︁
ℓ′∈𝐺𝑚

𝑎𝑖𝑗

∫︁
𝐾ℓ′

𝐵𝑖𝑗(𝑥ℓ − 𝑧)𝑢𝑘
𝑚,𝑗(𝑧)𝑑𝑧

= 𝑎𝑖𝑖𝑢
𝑘
𝑚,𝑖(𝑥ℓ) +

𝑛∑︁
𝑗=1
𝑗 ̸=𝑖

𝑎𝑖𝑗(𝐵𝑖𝑗 * 𝑢𝑘
𝑚,𝑗)(𝑥ℓ).
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We introduce the piecewise constant function 𝑄𝑖𝑗
𝑚 by setting 𝑄𝑖𝑗

𝑚 := (𝐵𝑖𝑗 * 𝑢𝑚,𝑗)(𝑥ℓ) in 𝐾ℓ for ℓ ∈ 𝐺𝑚. Then

𝑝𝑖(𝑢)− 𝑝𝑚,𝑖 = 𝑎𝑖𝑖(𝑢𝑖 − 𝑢𝑚,𝑖) +
𝑛∑︁

𝑗=1
𝑗 ̸=𝑖

𝑎𝑖𝑗(𝐵𝑖𝑗 * 𝑢𝑗 −𝑄𝑖𝑗
𝑚).

Since we know that 𝑢𝑖 − 𝑢𝑚,𝑖 → 0 strongly in 𝐿2(𝑄𝑇 ), it is sufficient to prove that 𝐵𝑖𝑗 * 𝑢𝑗 −𝑄𝑖𝑗
𝑚 → 0 strongly

in 𝐿2(𝑄𝑇 ). For this, we write

(𝐵𝑖𝑗 * 𝑢𝑗 −𝑄𝑖𝑗
𝑚)(𝑥, 𝑡) = 𝐵𝑖𝑗 * (𝑢𝑗 − 𝑢𝑚,𝑗)(𝑥, 𝑡) +

∫︁
T
(𝐵𝑖𝑗(𝑥− 𝑦)−𝐵𝑖𝑗(𝑥ℓ − 𝑦))𝑢𝑚,𝑗(𝑦, 𝑡)d𝑦.

By Young’s convolution inequality, we have

‖𝐵𝑖𝑗 * (𝑢𝑗 − 𝑢𝑚,𝑗)‖𝐿2(𝑄𝑇 ) ≤ ‖𝐵𝑖𝑗‖𝐿1(T)‖𝑢𝑗 − 𝑢𝑚,𝑗‖𝐿2(𝑄𝑇 ) → 0.

Setting 𝜉(𝑥, 𝑦) = 𝐵𝑖𝑗(𝑥− 𝑦)−𝐵𝑖𝑗(𝑥ℓ − 𝑦) for 𝑥 ∈ 𝐾ℓ and 𝑦 ∈ T, we estimate⃦⃦⃦⃦ ∫︁
T
𝜉(·, 𝑦)𝑢𝑚,𝑗(𝑦, 𝑡)d𝑦

⃦⃦⃦⃦2

𝐿2(𝑄𝑇 )

≤
∫︁

T
‖𝜉(𝑥, ·)‖2𝐿2(T)d𝑥‖𝑢𝑚,𝑗‖2𝐿2(𝑄𝑇 )

≤ sup
|𝑧|≤Δ𝑥𝑚

‖𝐵𝑖𝑗(𝑧 + ·)−𝐵𝑖𝑗‖2𝐿2(T)‖𝑢𝑚,𝑗‖2𝐿2(𝑄𝑇 ).

Since (𝑢𝑚,𝑗) is bounded in 𝐿2(𝑄𝑇 ), it remains to verify that the first factor converges to zero as ∆𝑥𝑚 → 0.
This follows from the density of continuous functions in 𝐿2(T). Indeed, let 𝜀 > 0 and 𝐵𝑖𝑗

𝜀 be continuous such
that ‖𝐵𝑖𝑗

𝜀 −𝐵𝑖𝑗‖𝐿2(T) ≤ 𝜀. Then

sup
|𝑧|≤Δ𝑥𝑚

‖𝐵𝑖𝑗(𝑧 + ·)−𝐵𝑖𝑗‖𝐿2(T) ≤ sup
|𝑧|≤Δ𝑥𝑚

‖𝐵𝑖𝑗(𝑧 + ·)−𝐵𝑖𝑗
𝜀 (𝑧 + ·)‖𝐿2(T)

+ sup
|𝑧|≤Δ𝑥𝑚

‖𝐵𝑖𝑗
𝜀 (𝑧 + ·)−𝐵𝑖𝑗

𝜀 ‖𝐿2(T) + ‖𝐵𝑖𝑗
𝜀 −𝐵𝑖𝑗‖𝐿2(T)

≤ 2𝜀+ sup
|𝑧|≤Δ𝑥𝑚

‖𝐵𝑖𝑗
𝜀 (𝑧 + ·)−𝐵𝑖𝑗

𝜀 ‖𝐿2(T).

The last term is smaller than 𝜀 if we choose ∆𝑥𝑚 sufficiently small. We have shown that sup|𝑧|≤Δ𝑥𝑚
‖𝐵𝑖𝑗(𝑧 +

·) − 𝐵𝑖𝑗‖2𝐿2(T) → 0 as 𝑚 → ∞ and 𝐵𝑖𝑗 * 𝑢𝑗 − 𝑄𝑖𝑗
𝑚 → 0 strongly in 𝐿2(𝑄𝑇 ). This proves the first part of the

lemma.
Thanks to (32), we have shown that (𝜕𝑚

𝑥 𝑝𝑚,𝑖)𝑚∈N is bounded in 𝐿2(𝑄𝑇 ). Hence, up to a subsequence,
𝜕𝑚

𝑥 𝑝𝑚,𝑖 ⇀ 𝑧 weakly in 𝐿2(𝑄𝑇 ). The first part of the proof shows that 𝑧 = 𝜕𝑥𝑝𝑖(𝑢), finishing the proof. �

4.3. Convergence of the scheme

We show that the limit 𝑢 = (𝑢1, . . . , 𝑢𝑛) of the finite-volume solutions is a weak solution to (1)–(2). Let
𝑖 ∈ {1, . . . , 𝑛} be fixed, let 𝜓𝑖 ∈ 𝐶∞0 (T×[0, 𝑇 )) be given, and let 𝜂𝑚 = max{∆𝑥𝑚,∆𝑡𝑚}. We set 𝜓𝑘

𝑖,ℓ := 𝜓𝑖(𝑥ℓ, 𝑡𝑘),
multiply (11) by ∆𝑡𝑚𝜓𝑘−1

𝑖,ℓ and sum over ℓ ∈ 𝐺𝑚, 𝑘 = 1, . . . , 𝑁𝑚
𝑇 . This yields 𝐹𝑚

1 + 𝐹𝑚
2 + 𝐹𝑚

3 = 0, where

𝐹𝑚
1 =

𝑁𝑚
𝑇∑︁

𝑘=1

∑︁
ℓ∈𝐺𝑚

∆𝑥𝑚(𝑢𝑘
𝑖,ℓ − 𝑢𝑘−1

𝑖,ℓ )𝜓𝑘−1
𝑖,ℓ ,

𝐹𝑚
2 = −𝜎

𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚
∑︁

ℓ∈𝐺𝑚

(︂
𝑢𝑘

𝑖,ℓ+1 − 𝑢𝑘
𝑖,ℓ

∆𝑥𝑚
−
𝑢𝑘

𝑖,ℓ − 𝑢𝑘
𝑖,ℓ−1

∆𝑥𝑚

)︂
𝜓𝑘−1

𝑖,ℓ ,

𝐹𝑚
3 = −

𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚
∑︁

ℓ∈𝐺𝑚

(︂
𝑢𝑘

𝑖,ℓ+1/2

𝑝𝑘
𝑖,ℓ+1 − 𝑝𝑘

𝑖,ℓ

∆𝑥𝑚
− 𝑢𝑘

𝑖,ℓ−1/2

𝑝𝑘
𝑖,ℓ − 𝑝𝑘

𝑖,ℓ−1

∆𝑥𝑚

)︂
𝜓𝑘−1

𝑖,ℓ .
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Furthermore, we introduce the terms

𝐹𝑚
10 = −

∫︁ 𝑇

0

∫︁
T
𝑢𝑚,𝑖𝜕𝑡𝜓𝑖d𝑥d𝑡−

∫︁
T
𝑢𝑚,𝑖(𝑥, 0)𝜓𝑖(𝑥, 0)d𝑥,

𝐹𝑚
20 = 𝜎

∫︁ 𝑇

0

∫︁
T
𝜕𝑚

𝑥 𝑢𝑚,𝑖𝜕𝑥𝜓𝑖d𝑥d𝑡,

𝐹𝑚
30 =

∫︁ 𝑇

0

∫︁
T
𝑢𝑚,𝑖𝜕

𝑚
𝑥 𝑝𝑚,𝑖𝜕𝑥𝜓𝑖d𝑥d𝑡.

Lemma 4.5. Let the assumptions of Theorem 2.6 hold. Then it holds that, as 𝑚→∞,

𝐹𝑚
10 → −

∫︁ 𝑇

0

∫︁
T
𝑢𝑖𝜕𝑡𝜓𝑖d𝑥d𝑡−

∫︁
T
𝑢0

𝑖 (𝑥)𝜓𝑖(𝑥, 0)d𝑥, (34)

𝐹𝑚
20 → 𝜎

∫︁ 𝑇

0

∫︁
T
𝜕𝑥𝑢𝑖𝜕𝑥𝜓𝑖d𝑥d𝑡, (35)

𝐹𝑚
30 →

∫︁ 𝑇

0

∫︁
T
𝑢𝑖𝜕𝑥𝑝𝑖(𝑢)𝜕𝑥𝜓𝑖d𝑥d𝑡. (36)

Proof. The strong convergence of (𝑢𝑚,𝑖)𝑚∈N and the weak convergence of (𝜕𝑚
𝑥 𝑢𝑚,𝑖)𝑚∈N in 𝐿2(𝑄𝑇 ) as well as

the fact that 𝑢𝑚,𝑖(𝑥, 0) = (∆𝑥𝑚)−1
∫︀

𝐾ℓ
𝑢0

𝑖 (𝑧)𝑑𝑧 for 𝑥 ∈ 𝐾ℓ and ℓ ∈ 𝐺 immediately show convergences (34) and
(35). It remains to verify (36). We know from Lemma 4.4 that 𝜕𝑚

𝑥 𝑝𝑚,𝑖 ⇀ 𝜕𝑥𝑝𝑖(𝑢) weakly in 𝐿2(𝑄𝑇 ). Since
𝑢𝑚,𝑖 → 𝑢𝑖 strongly in 𝐿2(𝑄𝑇 ), this implies that

𝑢𝑚,𝑖𝜕
𝑚
𝑥 𝑝𝑚,𝑖 ⇀ 𝑢𝑖𝜕𝑥𝑝𝑖(𝑢) weakly in 𝐿1(𝑄𝑇 ).

In fact, since 𝑢1/2
𝑚,𝑖𝜕

𝑚
𝑥 𝑝𝑚,𝑖 is uniformly bounded in 𝐿2(𝑄𝑇 ) and 𝑢

1/2
𝑚,𝑖 is uniformly bounded in 𝐿∞(0, 𝑇 ;𝐿4(T)),

this weak convergence even holds in 𝐿2(0, 𝑇 ;𝐿4/3(T)). This proves (36) and ends the proof. �

Lemma 4.6. Let the assumptions of Theorem 2.6 hold. Then it holds that, as 𝑚→∞,

𝐹𝑚
10 − 𝐹𝑚

1 → 0, 𝐹𝑚
20 − 𝐹𝑚

2 → 0, 𝐹𝑚
30 − 𝐹𝑚

3 → 0.

The lemma implies that

𝐹𝑚
10 + 𝐹𝑚

20 + 𝐹𝑚
30 = (𝐹𝑚

10 − 𝐹𝑚
1 ) + (𝐹𝑚

20 − 𝐹𝑚
2 ) + (𝐹𝑚

30 − 𝐹𝑚
3 ) + (𝐹𝑚

1 + 𝐹𝑚
2 + 𝑓𝑚

3 )
= (𝐹𝑚

10 − 𝐹𝑚
1 ) + (𝐹𝑚

20 − 𝐹𝑚
2 ) + (𝐹𝑚

30 − 𝐹𝑚
3 ) → 0 as 𝑚→∞.

Therefore, thanks to Lemma 4.5, we conclude that 𝑢 = (𝑢1, . . . , 𝑢𝑛) is a weak solution to (1)–(2). This finishes
the proof of Theorem 2.6, once Lemma 4.6 is proved.

Proof of Lemma 4.6. The limit 𝐹𝑚
10−𝐹𝑚

1 → 0 is shown in Theorem 5.2 from [9]. For the convergence of 𝐹𝑚
20−𝐹𝑚

2 ,
we use discrete integration by parts:

𝐹𝑚
2 = 𝜎

𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚
∑︁

ℓ∈𝐺𝑚

𝑢𝑘
𝑖,ℓ+1 − 𝑢𝑘

𝑖,ℓ

∆𝑥𝑚
(𝜓𝑘−1

𝑖,ℓ+1 − 𝜓𝑘−1
𝑖,ℓ )

= 𝜎

𝑁𝑚
𝑇∑︁

𝑘=1

∑︁
ℓ∈𝐺𝑚

∫︁ 𝑥ℓ+1

𝑥ℓ

𝑢𝑘
𝑖,ℓ+1 − 𝑢𝑘

𝑖,ℓ

∆𝑥𝑚

∫︁ 𝑡𝑘

𝑡𝑘−1

𝜓𝑘−1
𝑖,ℓ+1 − 𝜓𝑘−1

𝑖,ℓ

∆𝑥𝑚
d𝑥d𝑡,

𝐹𝑚
20 = 𝜎

𝑁𝑚
𝑇∑︁

𝑘=1

∑︁
ℓ∈𝐺𝑚

∫︁ 𝑡𝑘

𝑡𝑘−1

∫︁ 𝑥ℓ+1

𝑥ℓ

𝑢𝑘
𝑖,ℓ+1 − 𝑢𝑘

𝑖,ℓ

∆𝑥𝑚
𝜕𝑥𝜓𝑖d𝑥d𝑡.
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By the mean-value theorem,⃒⃒⃒⃒ ∫︁ 𝑡𝑘

𝑡𝑘−1

1
∆𝑥𝑚

∫︁ 𝑥ℓ+1

𝑥ℓ

(︂
𝜓𝑘−1

𝑖,ℓ+1 − 𝜓𝑘−1
𝑖,ℓ

∆𝑥𝑚
− 𝜕𝑥𝜓𝑖

)︂
d𝑥d𝑡

⃒⃒⃒⃒
≤ 𝐶∆𝑡𝑚𝜂𝑚.

This shows that, as 𝑚→∞,

|𝐹𝑚
2 − 𝐹𝑚

20 | ≤ 𝜎

𝑁𝑚
𝑇∑︁

𝑘=1

∑︁
ℓ∈𝐺𝑚

⃒⃒⃒⃒ ∫︁ 𝑡𝑘

𝑡𝑘−1

∫︁ 𝑥ℓ+1

𝑥ℓ

(︂
𝜓𝑘−1

𝑖,ℓ+1 − 𝜓𝑘−1
𝑖,ℓ

∆𝑥𝑚
− 𝜕𝑥𝜓𝑖

)︂
𝑢𝑘

𝑖,ℓ+1 − 𝑢𝑘
𝑖,ℓ

∆𝑥𝑚
d𝑥d𝑡

⃒⃒⃒⃒

≤ 𝐶𝜂𝑚

𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚
∑︁

ℓ∈𝐺𝑚

|𝑢𝑘
𝑖,ℓ+1 − 𝑢𝑘

𝑖,ℓ| = 𝐶𝜂𝑚

𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚|𝑢𝑘
𝑖 |1,1,𝒯𝑚

→ 0,

where we used the uniform discrete 𝐿2(0, 𝑇 ;𝑊 1,1(T)) bound from Lemma 4.2.
It remains to prove that |𝐹𝑚

30 −𝐹𝑚
3 | → 0. First, using discrete integration by parts, we rewrite 𝐹𝑚

3 as well as
𝐹𝑚

30 as

𝐹𝑚
3 =

𝑁𝑚
𝑇∑︁

𝑘=1

∑︁
ℓ∈𝐺𝑚

∫︁ 𝑡𝑘

𝑡𝑘−1

𝑢𝑘
𝑖,ℓ+1/2

𝑝𝑘
𝑖,ℓ+1 − 𝑝𝑘

𝑖,ℓ

∆𝑥𝑚
(𝜓𝑘−1

𝑖,ℓ+1 − 𝜓𝑘−1
𝑖,ℓ )d𝑡,

𝐹𝑚
30 =

𝑁𝑚
𝑇∑︁

𝑘=1

∑︁
ℓ∈𝐺𝑚

∫︁ 𝑡𝑘

𝑡𝑘−1

(︂ ∫︁ 𝑥ℓ+1/2

𝑥ℓ

𝑢𝑘
𝑖,ℓ

𝑝𝑘
𝑖,ℓ+1 − 𝑝𝑘

𝑖,ℓ

∆𝑥𝑚
𝜕𝑥𝜓𝑖d𝑥

+
∫︁ 𝑥ℓ+1

𝑥ℓ+1/2

𝑢𝑘
𝑖,ℓ+1

𝑝𝑘
𝑖,ℓ+1 − 𝑝𝑘

𝑖,ℓ

∆𝑥𝑚
𝜕𝑥𝜓𝑖d𝑥

)︂
.

Then we find that

|𝐹𝑚
3 − 𝐹𝑚

30 | =
⃒⃒⃒⃒ 𝑁𝑚

𝑇∑︁
𝑘=1

∑︁
ℓ∈𝐺𝑚

(𝑢𝑘
𝑖,ℓ+1/2 − 𝑢𝑘

𝑖,ℓ)
𝑝𝑘

𝑖,ℓ+1 − 𝑝𝑘
𝑖,ℓ

∆𝑥𝑚

×
∫︁ 𝑡𝑘

𝑡𝑘−1

(︂
𝜓𝑘−1

𝑖,ℓ+1 − 𝜓𝑘−1
𝑖,ℓ

2
−

∫︁ 𝑥ℓ+1/2

𝑥ℓ

𝜕𝑥𝜓𝑖(𝑥)d𝑥
)︂

d𝑡

+
𝑁𝑚

𝑇∑︁
𝑘=1

∑︁
ℓ∈𝐺𝑚

(𝑢𝑘
𝑖,ℓ+1/2 − 𝑢𝑘

𝑖,ℓ+1)
𝑝𝑘

𝑖,ℓ+1 − 𝑝𝑘
𝑖,ℓ

∆𝑥𝑚

×
∫︁ 𝑡𝑘

𝑡𝑘−1

(︂
𝜓𝑘−1

𝑖,ℓ+1 − 𝜓𝑘−1
𝑖,ℓ

2
−

∫︁ 𝑥ℓ+1

𝑥ℓ+1/2

𝜕𝑥𝜓𝑖(𝑥)d𝑥
)︂

d𝑡
⃒⃒⃒⃒
.

Thanks to the regularity of 𝜓𝑖, there exists a constant 𝐶 independent of 𝜂𝑚 such that⃒⃒⃒⃒ ∫︁ 𝑡𝑘

𝑡𝑘−1

(︂
𝜓𝑘−1

𝑖,ℓ+1 − 𝜓𝑘−1
𝑖,ℓ

2
−

∫︁ 𝑥ℓ+1/2

𝑥ℓ

𝜕𝑥𝜓𝑖(𝑥)d𝑥
)︂

d𝑡
⃒⃒⃒⃒
≤ 𝐶𝜂𝑚∆𝑡𝑚.

We obtain a similar expression if we integrate 𝜕𝑥𝜓𝑖 over (𝑥ℓ+1/2, 𝑥ℓ+1). Thus, since

|𝑢𝑘
𝑖,ℓ+1/2 − 𝑢𝑘

𝑖,ℓ| ≤ |𝑢𝑘
𝑖,ℓ+1 − 𝑢𝑘

𝑖,ℓ| and

|𝑢𝑘
𝑖,ℓ+1/2 − 𝑢𝑘

𝑖,ℓ+1| ≤ |𝑢𝑘
𝑖,ℓ − 𝑢𝑘

𝑖,ℓ+1|,
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we have

|𝐹𝑚
3 − 𝐹𝑚

30 | ≤ 2𝐶𝜂𝑚

𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚
∑︁

ℓ∈𝐺𝑚

|𝑢𝑘
𝑖,ℓ+1 − 𝑢𝑘

𝑖,ℓ||Dℓ 𝑝
𝑘
𝑖 |

≤ 2𝐶𝜂𝑚

(︂ 𝑛∑︁
𝑖=1

𝑎𝑖𝑖

𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚|𝑢𝑘
𝑖 |21,2,𝒯𝑚

+
𝑛∑︁

𝑗=1
𝑗 ̸=𝑖

𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚
∑︁

ℓ,ℓ′∈𝐺𝑚

|𝑢𝑘
𝑖,ℓ+1 − 𝑢𝑘

𝑖,ℓ||𝑎𝑖𝑗(𝐵𝑖𝑗
ℓ+1−ℓ′ −𝐵𝑖𝑗

ℓ−ℓ′)𝑢
𝑘
𝑗,ℓ′ |

)︂
.

It follows for 𝑗 ∈ {1, . . . , 𝑛} with 𝑗 ̸= 𝑖, using the discrete analog (17) of 𝜕𝑥𝐵
𝑖𝑗 * 𝑢𝑗 = 𝐵𝑖𝑗 * 𝜕𝑥𝑢𝑗 , that

max
ℓ∈𝐺𝑚

(︂ ∑︁
ℓ′∈𝐺𝑚

|𝑎𝑖𝑗(𝐵𝑖𝑗
ℓ+1−ℓ′ −𝐵𝑖𝑗

ℓ−ℓ′)𝑢
𝑘
𝑗,ℓ′ |

)︂
= max

ℓ∈𝐺𝑚

(︂ ∑︁
ℓ′∈𝐺𝑚

∆𝑥𝑚|𝑎𝑖𝑗 ||𝐵𝑖𝑗
ℓ−ℓ′ ||Dℓ′𝑢

𝑘
𝑗 |

)︂
≤ |𝑎𝑖𝑗 |‖𝐵𝑖𝑗‖𝐿∞(T)|𝑢𝑘

𝑗 |1,1,𝒯𝑚
.

At this point, we need the regularity condition 𝐵𝑖𝑗 ∈ 𝐿∞(T) from Hypothesis (H3). Hence, it holds that

|𝐹𝑚
3 − 𝐹𝑚

30 | ≤ 2𝐶𝜂𝑚

(︂ 𝑛∑︁
𝑖=1

𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚|𝑢𝑘
𝑖 |21,2,𝒯𝑚

+
𝑁𝑚

𝑇∑︁
𝑘=1

∆𝑡𝑚|𝑢𝑘
𝑖 |1,1,𝒯𝑚

𝑛∑︁
𝑗=1
𝑗 ̸=𝑖

|𝑢𝑘
𝑗 |1,1,𝒯𝑚

)︂
.

It remains to apply the Cauchy–Schwarz inequality to conclude that

|𝐹𝑚
3 − 𝐹𝑚

30 | ≤ 2𝐶𝜂𝑚

{︂ 𝑛∑︁
𝑖=1

𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚|𝑢𝑘
𝑖 |21,2,𝒯𝑚

+
𝑛∑︁

𝑗=1
𝑗 ̸=𝑖

(︂ 𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚|𝑢𝑘
𝑖 |21,1,𝒯𝑚

)︂1/2(︂ 𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚|𝑢𝑘
𝑗 |21,1,𝒯𝑚

)︂1/2}︂
.

Finally, we infer from Lemma 4.2 that |𝐹𝑚
3 − 𝐹𝑚

30 | → 0 as 𝑚→∞. Here, we need the discrete 𝐿2(0, 𝑇 ;𝐻1(T))
bound for 𝑢𝑖, which follows if 𝑎𝑖𝑖 > 0. This concludes the proof of Lemma 4.6. �

Remark 4.7 (Multidimensional case). Theorems 2.5 and 2.6 also hold in the multidimensional situation. The
proof of Theorem 2.5 does not change, but the Sobolev embeddings in the proof of Theorem 2.6 change because
of their dependence on the space dimension. We only sketch the changes. We consider a uniform mesh on T𝑑

by taking the tensor product of the mesh 𝒯 introduced in Section 2.1. The cells 𝐾ℓ are then 𝑑-dimensional
cubes with cell centers ℓ = (ℓ1, . . . , ℓ𝑑) and measure m(𝐾ℓ) = (∆𝑥)𝑑. We write 𝜍 = 𝐾ℓ|𝐾ℓ′ for the edge (or
hyper-face) 𝜍 between the neighboring cells 𝐾ℓ and 𝐾ℓ′ and ℰℓ for the set of edges of the cell 𝐾ℓ. Finally, for
every 𝜍 = 𝐾ℓ|𝐾ℓ′ , we define the transmissibility coefficient 𝜏𝜍 := m(𝜍)/d𝜍 with m(𝜍) = (∆𝑥)𝑑−1 and d𝜍 being
the Euclidean distance between the cell centers. The numerical scheme (11)–(12) changes to

m(𝐾ℓ)
𝑢𝑘

𝑖,ℓ − 𝑢𝑘−1
𝑖,ℓ

∆𝑡
+

∑︁
𝜍∈ℰℓ

ℱ𝑘
𝑖,ℓ,𝜍 = 0, 𝑖 = 1, . . . , 𝑛, ℓ ∈ 𝐺𝑑, (37)

ℱ𝑘
𝑖,ℓ,𝜍 = −𝜎 𝜏𝜍 Dℓ,𝜍𝑢

𝑘
𝑖 − 𝜏𝜍 𝑢

𝑘
𝑖,𝜍 Dℓ,𝜍𝑝

𝑘
𝑖 , (38)
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where we have set Dℓ,𝜍𝑣 = 𝑣ℓ′ − 𝑣ℓ for edges 𝜍 = 𝐾ℓ|𝐾ℓ′ , the mobilities are defined by 𝑢𝑘
𝑖,𝜍 = ̂︀𝐹 (𝑢𝑘

𝑖,ℓ, 𝑢
𝑘
𝑖,ℓ′) witĥ︀𝐹 as in Section 2.2, and the discrete nonlocal operators are given by

𝑝𝑘
𝑖,ℓ = 𝑎𝑖𝑖𝑢

𝑘
𝑖,ℓ +

𝑛∑︁
𝑗=1
𝑗 ̸=𝑖

∑︁
ℓ′∈𝐺𝑑

m(𝐾ℓ′)𝑎𝑖𝑗𝐵
𝑖𝑗
ℓ,ℓ′𝑢

𝑘
𝑗,ℓ′ , 𝐵𝑖𝑗

ℓ,ℓ′ =
1

m(𝐾ℓ−ℓ′)

∫︁
𝐾ℓ−ℓ′

𝐵𝑖𝑗(𝑦)d𝑦. (39)

Let 𝑢𝑚 be a solution to (37)–(39) associated to some space-time discretization indexed by the mesh size
𝜂𝑚 = max{∆𝑥𝑚,∆𝑡𝑚} satisfying 𝜂𝑚 → 0 as 𝑚 → ∞. The corresponding spatial mesh is denoted by 𝒯 𝑑

𝑚 and
the number of time steps by 𝑁𝑚

𝑇 . The uniform estimates (30) and (31) also hold for 𝑑 ≥ 2, but the regularity
obtained in Lemma 4.2 is slightly weaker. Indeed, the embedding BV(T𝑑) →˓ 𝐿𝑑/(𝑑−1)(T𝑑) (with 𝑑/(𝑑− 1) = ∞
if 𝑑 = 1) yields

𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚‖𝑢𝑘
𝑖 ‖21,1,𝒯 𝑑

𝑚
+

𝑁𝑚
𝑇∑︁

𝑘=1

∆𝑡𝑚‖𝑢𝑘
𝑖 ‖20,𝑑/(𝑑−1),𝒯 𝑑

𝑚
≤ 𝐶,

see for instance [5, 18] for the definitions of the discrete norms. Then Hölder’s inequality ‖𝑣‖0,2𝑑/(2𝑑−1),𝒯 𝑑
𝑚
≤

‖𝑣1/2‖0,2𝑑/(𝑑−1),𝒯 𝑑
𝑚
‖𝑣1/2‖0,2,𝒯 𝑑

𝑚
for 𝑣 ∈ 𝒱𝒯 𝑑

𝑚
gives the following bound on the discrete time derivative (replacing

the estimate in Lem. 4.3):
𝑁𝑇

𝑀∑︁
𝑘=1

∆𝑡𝑚

⃦⃦⃦⃦
𝑢𝑘

𝑖 − 𝑢𝑘−1
𝑖

∆𝑡𝑚

⃦⃦⃦⃦4/3

−1,2𝑑/(2𝑑−1),𝒯 𝑑
𝑚

≤ 𝐶.

Similarly as in the one-dimensional case, we conclude from Theorem 3.4 from [15] the existence of a subse-
quence (which is not relabeled) such that 𝑢𝑚,𝑖 → 𝑢𝑖 strongly in 𝐿1(0, 𝑇 ; 𝐿2𝑑/(2𝑑−1)(T𝑑)) as 𝑚→∞. We deduce
from the discrete Gagliardo–Nirenberg inequality Lemma 3.1 from [5]

‖𝑢𝑘
𝑖 ‖0,2𝑑/(𝑑−1),𝒯 𝑑

𝑚
≤ 𝐶‖𝑢𝑘

𝑖 ‖
1/2

1,2,𝒯 𝑑
𝑚
‖𝑢𝑘

𝑖 ‖
1/2

0,2,𝒯 𝑑
𝑚
,

that the strong convergence 𝑢𝑚,𝑖 → 𝑢𝑖 holds in 𝐿𝑝(𝑄𝑇 ) for every 𝑝 < 2𝑑/(𝑑 − 1) (instead of 𝑝 < 6 in the
one-dimensional case) and in particular in 𝐿2(𝑄𝑇 ). Thus, the statement of Lemma 4.4 holds, and we have
∇𝑚𝑝𝑚,𝑖 ⇀ ∇𝑝𝑖(𝑢) weakly in 𝐿2(𝑄𝑇 ), where ∇𝑚 denotes the discrete gradient. In particular, 𝑢𝑚,𝑖∇𝑚𝑝𝑚,𝑖 ⇀
𝑢𝑖∇𝑝𝑖(𝑢) weakly in 𝐿4/3(𝑄𝑇 ) as in the one-dimensional case. From this point on, the convergence of the scheme
follows the lines of Section 4.3. ⊓⊔

5. Numerical experiments

In this section, we present several numerical experiments to illustrate the behavior of the scheme. The scheme
was implemented in one space dimension using Matlab. In all the subsequent numerical tests, we choose the
upwind mobility (15). The code is available at https://gitlab.tuwien.ac.at/asc/nonlocal-crossdiff. Our
code is an adaptation of that one developed in [17] for the approximation of the nonlocal SKT system. We refer
the reader to Section 6.1 of [17] for a complete presentation of the different methods used to implement the
scheme.

5.1. Test case 1. Rate of convergence in space for various 𝐿𝑝-norms, convolution kernels,
and initial data

We investigate the rate of convergence in space of the scheme at final time 𝑇 = 1. In all test cases of this
section, we consider 𝑛 = 2 species, 𝜎 = 10−4, the coefficient matrix 𝐴 = (𝑎𝑖𝑗)1≤𝑖,𝑗≤2 given by

𝐴 =
(︂

0.1251 0.25
1 2

)︂
,

https://gitlab.tuwien.ac.at/asc/nonlocal-crossdiff
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Table 1. Orders of convergence in the 𝐿1 and 𝐿∞ norms in space at final time 𝑇 = 1 for
different kernels and initial data.

Kernel →
Indicator (43) Triangle (44) Gaussian (45)

Initial Data ↓

(40)

Testcase 13 Testcase 16 Testcase 19
𝐿1-order: 1.1741 𝐿1-order: 1.1741 𝐿1-order: 1.0109
𝐿1-error: 9.76 · 10−4 𝐿1-error: 9.76 · 10−4 𝐿1-error: 3.20 · 10−3

𝐿∞-order: 1.14 𝐿∞-order: 1.1331 𝐿∞-order: 0.98437
𝐿∞-error: 1.49 · 10−3 𝐿∞-error: 1.68 · 10−3 𝐿∞-error: 2.45 · 10−2

(41)

Testcase 14 Testcase 17 Testcase 20
𝐿1-order: 1.0948 𝐿1-order: 1.0336 𝐿1-order: 0.93381
𝐿1-error: 1.81 · 10−5 𝐿1-error: 2.78 · 10−5 𝐿1-error: 2.35 · 10−3

𝐿∞-order: 1.0486 𝐿∞-order: 1.0092 𝐿∞-order: 0.91831
𝐿∞-error: 4.73 · 10−5 𝐿∞-error: 8.57 · 10−5 𝐿∞-error: 8.87 · 10−3

(42)

Testcase 15 Testcase 18 Testcase 21
𝐿1-order: 0.97752 𝐿1-order: 0.97495 𝐿1-order: 0.9611
𝐿1-error: 6.39 · 10−5 𝐿1-error: 5.35 · 10−5 𝐿1-error: 9.27 · 10−4

𝐿∞-order: 0.99787 𝐿∞-order: 0.99741 𝐿∞-order: 0.9761
𝐿∞-error: 1.74 · 10−4 𝐿∞-error: 11.48 · 10−4 𝐿∞-error: 3.69 · 10−3

and 𝜋1 = 4, 𝜋2 = 1. We consider various initial data and kernels. More precisely, we choose

𝑢0
1(𝑥) = 1[1/4,3/4](𝑥), 𝑢0

2(𝑥) = 1[0,1/4](𝑥) + 1[3/4,1](𝑥), (40)

𝑢0
1(𝑥) = cos (2𝜋𝑥) + 1, 𝑢0

2(𝑥) = sin (2𝜋𝑥− 𝜋/2) + 1, (41)
𝑢0

1(𝑥) = max (1− |1− 2𝑥|, 0) , 𝑢0
2(𝑥) = max (1− 2|𝑥|, 0) (42)

and the kernels

𝐵𝑖𝑗(𝑧) = 1[−0.3,0.3](𝑧), (43)

𝐵𝑖𝑗(𝑧) = 2 max (1− |𝑧|/0.3, 0) , (44)

𝐵𝑖𝑗(𝑧) = exp
(︀
−|𝑧|2/2𝜀2

)︀
/
√

2𝜋𝜀2, 𝜀 = 10−3. (45)

First, we consider a mesh of 𝑁init = 32 cells and the time step size ∆𝑡init = 1/64. Then, starting from
this initial mesh, we refine the mesh in space by doubling the number of cells and halving the time step size,
i.e. 𝑁new = 2𝑁old and ∆𝑡new = ∆𝑡old/2. This refinement of the meshes is in agreement with the first-order
convergence rate of the Euler discretization in time and the expected first-order convergence rate in space of the
scheme, due to the choice of the upwind mobility in the numerical fluxes. As exact solutions to system (1)–(3)
are not explicitly known, we refine the mesh in space and time until 𝑁end = 2048 and ∆𝑡end = 1/4096, and we
consider the solutions of the scheme obtained for 𝑁end and ∆𝑡end as reference solutions. The error is computed
between the reference solutions and the solutions obtained for 𝑁 = 1024 cells and ∆𝑡 = 1/2048 at final time
𝑇 = 1. Finally, using linear regression in logarithmic scale, we present in Table 1 the experimental order of
convergence in the 𝐿1 and 𝐿∞-norms. As expected, we observe a rate of convergence around one. In Table 1,
the numbers in bold letters denote the number of the test case available in our code (see the file loadTestcase.m).

5.2. Test case 2. Rate of convergence of the localization limit in various metrics

In the second test case, following [17], we evaluate numerically the rate of convergence of the localization limit.
More precisely, for some sequences of kernels converging towards the Dirac measure 𝛿0, we compute the rate of
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convergence in different metrics of the solutions to scheme (10)–(13) towards its local version, i.e. 𝐵𝑖𝑗 = 𝛿0 for
all 𝑖, 𝑗 = 1, . . . , 𝑛. At the continuous level, one can show, by adapting the approach of [19], that the localization
limit holds thanks to a compactness method; see also [12] for the SKT system. However, so far no explicit
rate of convergence is available. The goal of this numerical test is to obtain a better insight into this rate of
convergence. Besides, it also illustrates Remark 2.4.

We consider the following parameters (for all 6 test cases of this section): 𝑛 = 3 species, diffusion parameter
𝜎 = 10−4, coefficient matrix

𝐴 =

⎛⎝ 0.5 0.2 0.125
0.4 1 0.2
0.25 0.2 1

⎞⎠ ,

and 𝜋1 = 4, 𝜋2 = 2, 𝜋3 = 2. We choose the final time 𝑇 = 1, a mesh of 𝑁 = 512 cells, and the time step size
∆𝑡 = 10−3. Furthermore, we take the nonsmooth initial data

𝑢0
1(𝑥) = 1[3/6,5/6](𝑥), 𝑢0

2(𝑥) = 1[0,1/6](𝑥) + 1[5/6,1](𝑥), 𝑢0
3(𝑥) = 1[1/6,3/6](𝑥), (46)

and the smooth initial data

𝑢0
1(𝑥) = cos (2𝜋𝑥) + 1, 𝑢0

2(𝑥) = sin (2𝜋𝑥) + 1, (47)
𝑢0

3(𝑥) = (cos (2𝜋𝑥) + sin (2𝜋𝑥) + 2) /2.

The kernels are chosen according to

𝐵𝑖𝑗
𝛼 (𝑧) = 1[−𝛼,𝛼](𝑧)/2𝛼, (48)

𝐵𝑖𝑗
𝛼 (𝑧) = max (1− |𝑧|/𝛼, 0) /𝛼, (49)

𝐵𝑖𝑗
𝛼 (𝑧) = exp

(︀
−|𝑧|2/2𝛼2

)︀
/
√

2𝜋𝛼2. (50)

In our experiments, starting from 𝛼init = 27∆𝑥, we successively halve 𝛼 until we reach 𝛼 = ∆𝑥. For each
value of 𝛼, we compute the solutions to the nonlocal scheme (10)–(13) at final time. We evaluate the 𝐿1, 𝐿∞,
and Wasserstein distance 𝑊1 between the solution to the nonlocal scheme and the solution to the local one (for
this, it is enough to set 𝛼 = 0 in our code). Since we work in one space dimension, we can explicitly compute the
Wasserstein distance 𝑊1; see Chapter 2 from [24]. The rates of convergence are estimated by linear regression (in
log scale) and the results are presented in Table 2. Surprisingly, we observe a slightly better rate of convergence
in the case of nonsmooth initial data. As before, the names in bold letters in Table 2 denote the name of the
test case available in our code (see the file loadTestcase.m).

5.3. Test case 3. Segregation phenomenon

In this numerical experiment, we set 𝜎 = 0. Under the assumptions 𝑛 = 2 species, 𝑎𝑖𝑗 = 1, and 𝐵𝑖𝑗 = 𝛿0 for
𝑖, 𝑗 = 1, 2, it has been shown in [4] that if the initial data are segregated (initial data with disjoint supports)
then the solutions remain segregated (i.e., they have disjoint supports) for all time. The main goal of this
subsection is to illustrate the segregation pattern due to the nonlocal terms, i.e. 𝐵𝑖𝑗 ̸= 𝛿0. We expect that the
solutions to the nonlocal model, given segregated initial data, are completely segregated, and that there exists
a small region, i.e. a “gap” between the supports of the species, with a size that is related to the radius of the
interaction kernels. Let us notice that in the subsequent test cases, Hypothesis (H3) is never satisfied. However,
we did not encounter any numerical issues with our code.

We launched the code for a mesh of 512 cells and the time step size ∆𝑡 = 10−4. In the case of 𝑛 = 2 species,
we considered the initial data

𝑢0
1(𝑥) = 1[0.1,0.4](𝑥), 𝑢0

2(𝑥) = 1[0.6,0.8](𝑥),
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Table 2. Rates of convergence of the localization limit in the 𝐿1, 𝐿∞ and 𝑊1 metric for
different initial data and kernels.

Kernel →
(48) (49) (50)

Initial Data ↓

nonsmooth (46)

Testcase NLTL2 Testcase NLTL4 Testcase NLTL6
𝐿1-order: 1.8280 𝐿1-order: 1.8709 𝐿1-order: 1.7386
𝐿∞-order: 1.8271 𝐿∞-order: 1.8698 𝐿∞-order: 1.7379
𝑊1-order: 1.8306 𝑊1-order: 1.8724 𝑊1-order: 1.7426

smooth (47)

Testcase NLTL3 Testcase NLTL5 Testcase NLTL7
𝐿1-order: 1.7430 𝐿1-order: 1.8240 𝐿1-order: 1.5991
𝐿∞-order: 1.7462 𝐿∞-order: 1.8261 𝐿∞-order: 1.6038
𝑊1-order: 1.7451 𝑊1-order: 1.8252 𝑊1-order: 1.6023

Figure 1. Comparison of the segregation pattern for two species at times 𝑡 = 0.02 (top) and
𝑡 = 0.2 (bottom) obtained from the local model (left) and nonlocal model (right). The solutions
are almost in the steady state at 𝑡 = 0.2.
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Figure 2. Comparison of the segregation patterns for three species at times 𝑡 = 0.02 (top) and
𝑡 = 0.2 (bottom) obtained from the local model (left) and nonlocal model (right). The solutions
are almost in the steady state at 𝑡 = 0.2.

while for 𝑛 = 3 species, we have taken

𝑢0
1(𝑥) = 1[0.5,0.6](𝑥), 𝑢0

2(𝑥) = 1[0.8,0.9](𝑥), 𝑢0
3(𝑥) = 1[0.1,0.2](𝑥).

In both cases, we set 𝑎𝑖𝑗 = 1 for all 𝑖, 𝑗 = 1, . . . , 𝑛.
In Figures 1 and 2, we present the segregation pattern at time 𝑡 = 0.02 and 𝑡 = 0.2 obtained for the local

model, 𝐵𝑖𝑗 = 𝛿0, and the nonlocal model with

𝐵𝑖𝑗(𝑧) = 100 · 1[−0.1,0.1](𝑧).

For small times, the support of the species extends until reaching the support of another species. In the local
model, the species slightly mix (due to numerical diffusion), while we observe a “gap” between the supports of
the solutions in the nonlocal model. This “gap” is of order 0.1 which is the size of the radius of the kernels 𝐵𝑖𝑗 .
Similar numerical results have been observed in Section 6 of [8] but using different kernel functions and two
species only.
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Figure 3. Temporal decay of the Boltzmann and Rao entropies for test cases 15 (left) and 16
(right) in semi-logarithmic scale.

5.4. Test case 4. Dissipation of entropy

In the last numerical experiment, we plot the two entropies ℋ𝐵(𝑢(𝑡)) and ℋ𝑅(𝑢(𝑡)) over time in semi-
logarithmic scale to illustrate the entropy production as proved in Theorem 2.5. We set 𝑇 = 1.5, ∆𝑡 = 10−4, use
a mesh of 𝑁 = 512 cells, and choose 𝑛 = 2 species. The remaining parameters are taken as in Section 5.1; see
Table 1 and the test cases therein. As expected, the entropies are decreasing functions of time. The Rao entropy
decays first quickly but then stabilizes slowly, while the Boltzmann entropy takes more time to stabilize.

Appendix A. Some auxiliary results

Lemma A.1. Under Hypothesis (H3), the entropy dissipation 𝑄, defined in (9), is nonnegative.

Proof. We follow the approach of [12] and write 𝑄 = 𝑄1 + · · ·+𝑄3, where

𝑄1 =
1

𝑛− 1

𝑛∑︁
𝑖,𝑗=1, 𝑖<𝑗

∫︁
T
𝜋𝑖𝑎𝑖𝑖|𝜕𝑥𝑢𝑖(𝑥)|2d𝑥+

1
𝑛− 1

𝑛∑︁
𝑖,𝑗=1, 𝑖>𝑗

∫︁
T
𝜋𝑖𝑎𝑖𝑖|𝜕𝑥𝑢𝑖(𝑦)|2d𝑦,

𝑄2 =
𝑛∑︁

𝑖,𝑗=1, 𝑖<𝑗

∫︁
T

∫︁
T
𝜋𝑖𝑎𝑖𝑗𝐵

𝑖𝑗(𝑥− 𝑦)𝜕𝑥𝑢𝑗(𝑦)𝜕𝑥𝑢𝑖(𝑥)d𝑦d𝑥,

𝑄3 =
𝑛∑︁

𝑖,𝑗=1, 𝑖>𝑗

∫︁
T

∫︁
T
𝜋𝑖𝑎𝑖𝑗𝐵

𝑖𝑗(𝑥− 𝑦)𝜕𝑥𝑢𝑗(𝑦)𝜕𝑥𝑢𝑖(𝑥)d𝑦d𝑥.

Exchanging 𝑖 and 𝑗 in the second integral of 𝑄1 and using m(T) = 1, we have

𝑄1 =
1

𝑛− 1

𝑛∑︁
𝑖,𝑗=1, 𝑖<𝑗

∫︁
T

∫︁
T

(︀
𝜋𝑖𝑎𝑖𝑖|𝜕𝑥𝑢𝑖(𝑥)|2d𝑥+ 𝜋𝑗𝑎𝑗𝑗 |𝜕𝑥𝑢𝑗(𝑦)|2

)︀
d𝑦d𝑥.
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Exchanging 𝑖 and 𝑗 as well as 𝑥 and 𝑦 in 𝑄3 gives

𝑄3 =
𝑛∑︁

𝑖,𝑗=1, 𝑖<𝑗

∫︁
T

∫︁
T
𝜋𝑗𝑎𝑗𝑖𝐵

𝑗𝑖(𝑦 − 𝑥)𝜕𝑥𝑢𝑗(𝑦)𝜕𝑥𝑢𝑖(𝑥)d𝑦d𝑥

=
𝑛∑︁

𝑖,𝑗=1, 𝑖<𝑗

∫︁
T

∫︁
T
𝜋𝑗𝑎𝑗𝑖𝐵

𝑖𝑗(𝑥− 𝑦)𝜕𝑥𝑢𝑗(𝑦)𝜕𝑥𝑢𝑖(𝑥)d𝑦d𝑥.

We collect these expressions to obtain

𝑄 =
1

(𝑛− 1)

𝑛∑︁
𝑖,𝑗=1, 𝑖<𝑗

∫︁
T

∫︁
T

(︂
𝜕𝑥𝑢𝑖(𝑥)
𝜕𝑥𝑢𝑗(𝑦)

)︂⊤
𝑀 𝑖𝑗(𝑥− 𝑦)

(︂
𝜕𝑥𝑢𝑖(𝑥)
𝜕𝑥𝑢𝑗(𝑦)

)︂
d𝑦d𝑥 ≥ 0,

where 𝑀 𝑖𝑗 is defined in (8), and the last inequality follows from Hypothesis (H3). �

Lemma A.2. The upwind approximation (15) and the logarithmic mean (16) satisfy property (14) of the mobil-
ities 𝑢𝑖,𝜎.

Proof. The proof is based on the following inequalities for the logarithmic mean:

min{𝑎, 𝑏} ≤ 𝑎− 𝑏

log 𝑎− log 𝑏
≤ max{𝑎, 𝑏} for all 𝑎, 𝑏 > 0. (A.1)

They imply the linear growth 𝑢𝑖,ℓ+1/2 ≤ max{𝑢𝑖,ℓ, 𝑢𝑖,ℓ+1} for the logarithmic mean, which also holds, by
definition, for the upwind approximation. We show that property (14) is satisfied for the upwind approximation
(15). Let 𝑝𝑖,ℓ+1 − 𝑝𝑖,ℓ ≥ 0. Then, by (A.1),

𝑢𝑖,ℓ+1/2(𝑝𝑖,ℓ+1 − 𝑝𝑖,ℓ)(log 𝑢𝑖,ℓ+1 − log 𝑢𝑖,ℓ) = 𝑢𝑖,ℓ+1(𝑝𝑖,ℓ+1 − 𝑝𝑖,ℓ)(log 𝑢𝑖,ℓ+1 − log 𝑢𝑖,ℓ)
≥ (𝑝𝑖,ℓ+1 − 𝑝𝑖,ℓ)(𝑢𝑖,ℓ+1 − 𝑢𝑖,ℓ).

On the other hand, if 𝑝𝑖,ℓ+1 − 𝑝𝑖,ℓ < 0, again by (A.1),

𝑢𝑖,ℓ+1/2(𝑝𝑖,ℓ+1 − 𝑝𝑖,ℓ)(log 𝑢𝑖,ℓ+1 − log 𝑢𝑖,ℓ) = 𝑢𝑖,ℓ(𝑝𝑖,ℓ+1 − 𝑝𝑖,ℓ)(log 𝑢𝑖,ℓ+1 − log 𝑢𝑖,ℓ)
≥ (𝑝𝑖,ℓ+1 − 𝑝𝑖,ℓ)(𝑢𝑖,ℓ+1 − 𝑢𝑖,ℓ).

Property (14) follows immediately after inserting definition (16) of the logarithmic mean. This ends the
proof. �

Lemma A.3 (Discrete Young convolution inequality). Let 1 ≤ 𝑝, 𝑞 ≤ ∞ and 1 ≤ 𝑟 ≤ ∞ be such that 1 + 1/𝑟 =
1/𝑝 + 1/𝑞 and let 𝐵 ∈ 𝐿𝑝(T) and 𝑣 = (𝑣ℓ)ℓ∈𝐺 ∈ 𝒱𝒯 . Furthermore, let 𝐵ℓ−ℓ′ = (∆𝑥)−1

∫︀
𝐾ℓ−ℓ′

𝐵(𝑦)d𝑦 for every
ℓ and ℓ′ ∈ 𝐺. Then (︂ ∑︁

ℓ∈𝐺

∆𝑥
⃒⃒⃒⃒ ∑︁

ℓ′∈𝐺

∆𝑥𝐵ℓ−ℓ′ 𝑣ℓ′

⃒⃒⃒⃒𝑟)︂1/𝑟

≤ ‖𝐵‖𝐿𝑝(T)‖𝑣‖0,𝑞,𝒯 .

Proof. First, let ℓ ∈ 𝐺 be fixed. Then⃒⃒⃒⃒ ∑︁
ℓ′∈𝐺

∆𝑥𝐵ℓ−ℓ′𝑣ℓ′

⃒⃒⃒⃒
≤

∑︁
ℓ′∈𝐺

∆𝑥
(︀
|𝐵ℓ−ℓ′ |𝑝|𝑣ℓ′ |𝑞

)︀1/𝑟|𝐵ℓ−ℓ′ |(𝑟−𝑝)/𝑟|𝑣ℓ′ |(𝑟−𝑞)/𝑟.
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Thanks to the assumption 1 = 1/𝑝+ 1/𝑞 − 1/𝑟, we can apply Hölder’s inequality with exponents 𝑟, 𝑝𝑟/(𝑟− 𝑝),
and 𝑞𝑟/(𝑟 − 𝑞) to obtain⃒⃒⃒⃒ ∑︁

ℓ′∈𝐺

∆𝑥𝐵ℓ−ℓ′𝑣ℓ′

⃒⃒⃒⃒
≤

(︂ ∑︁
ℓ′∈𝐺

∆𝑥|𝐵ℓ−ℓ′ |𝑝|𝑣ℓ′ |𝑞
)︂1/𝑟(︂ ∑︁

ℓ′∈𝐺

∆𝑥|𝐵ℓ−ℓ′ |𝑝
)︂(𝑟−𝑝)/𝑝𝑟

×
(︂ ∑︁

ℓ′∈𝐺

∆𝑥|𝑣ℓ′ |𝑞
)︂(𝑟−𝑞)/𝑞𝑟

=
(︂ ∑︁

ℓ′∈𝐺

∆𝑥|𝐵ℓ−ℓ′ |𝑝|𝑣ℓ′ |𝑞
)︂1/𝑟

‖𝐵‖(𝑟−𝑝)/𝑟
0,𝑝,𝒯 ‖𝑣‖(𝑟−𝑞)/𝑟

0,𝑞,𝒯 .

Then, taking the exponent 𝑟 and summing over ℓ ∈ 𝐺,∑︁
ℓ∈𝐺

∆𝑥
⃒⃒⃒⃒ ∑︁

ℓ′∈𝐺

∆𝑥𝐵ℓ−ℓ′𝑣ℓ′

⃒⃒⃒⃒𝑟
≤ ‖𝐵‖𝑟−𝑝

0,𝑝,𝒯 ‖𝑣‖
𝑟−𝑞
0,𝑞,𝒯

(︂ ∑︁
ℓ∈𝐺

∆𝑥
∑︁
ℓ′∈𝐺

∆𝑥|𝐵ℓ−ℓ′ |𝑝|𝑣ℓ′ |𝑞
)︂

≤ ‖𝐵‖𝑟−𝑝
0,𝑝,𝒯 ‖𝑣‖

𝑟−𝑞
0,𝑞,𝒯

(︂ ∑︁
ℓ′∈𝐺

∆𝑥|𝑣ℓ′ |𝑞
∑︁
ℓ∈𝐺

∆𝑥|𝐵ℓ−ℓ′ |𝑝
)︂

≤ ‖𝐵‖𝑟−𝑝
0,𝑝,𝒯 ‖𝑣‖

𝑟−𝑞
0,𝑞,𝒯 ‖𝑣‖

𝑞
0,𝑞,𝒯 ‖𝐵‖

𝑝
0,𝑝,𝒯 = ‖𝐵‖𝑟

0,𝑝,𝒯 ‖𝑣‖𝑟
0,𝑞,𝒯 .

Finally, it holds that

‖𝐵‖𝑝
0,𝑝,𝒯 ≤

∑︁
ℓ∈𝐺

∆𝑥
⃒⃒⃒⃒

1
∆𝑥

∫︁
𝐾ℓ

𝐵(𝑦)d𝑦
⃒⃒⃒⃒𝑝
≤

∑︁
ℓ∈𝐺

(︂ ∫︁
𝐾ℓ

|𝐵(𝑦)|𝑝d𝑦
)︂(︂ ∫︁

𝐾ℓ

d𝑥
∆𝑥

)︂𝑝−1

≤
∑︁
ℓ∈𝐺

∫︁
𝐾ℓ

|𝐵(𝑦)|𝑝d𝑦 = ‖𝐵‖𝑝
𝐿𝑝(T),

which concludes the proof. �

Lemma A.4. Let 𝑠 > 1 and 𝑝 > 1. Then for any sequence 𝑢 = (𝑢ℓ)ℓ∈𝐺, there exists a constant 𝐶 > 0 only
depending on 𝑠 such that

‖𝑢‖0,∞,𝒯 ≤ 𝐶‖𝑢‖1/𝑠
1,𝑝,𝒯 ‖𝑢‖

1−1/𝑠
0,(𝑠−1)𝑝/(𝑝−1),𝒯 .

Proof. We adapt the proof of Lemma 4.1 from [5] to the one-dimensional case. By the embedding BV(T) →˓
𝐿∞(T) applied to the sequence (|𝑢ℓ|𝑠)ℓ∈𝐺,

‖𝑢‖𝑠
0,∞,𝒯 ≤ 𝐶

(︂
‖𝑢‖𝑠

0,𝑠,𝒯 +
∑︁
ℓ∈𝐺

⃒⃒
|𝑢ℓ|𝑠 − |𝑢ℓ+1|𝑠

⃒⃒)︂
. (A.2)

Since 𝑠 > 1, we have ∑︁
ℓ∈𝐺

⃒⃒
|𝑢ℓ|𝑠 − |𝑢ℓ+1|𝑠

⃒⃒
≤ 𝑠

∑︁
ℓ∈𝐺

(︀
|𝑢ℓ|𝑠−1 + |𝑢ℓ+1|𝑠−1

)︀
|𝑢ℓ − 𝑢ℓ+1|.

We apply Hölder’s inequality with exponents 𝑝 and 𝑝/(𝑝− 1):

∑︁
ℓ∈𝐺

⃒⃒
|𝑢ℓ|𝑠 − |𝑢ℓ+1|𝑠

⃒⃒
≤ 2𝑠

(︂ ∑︁
ℓ∈𝐺

|𝑢ℓ − 𝑢ℓ+1|𝑝

∆𝑥𝑝−1

)︂1/𝑝(︂ ∑︁
ℓ∈𝐺

∆𝑥|𝑢ℓ|
(𝑠−1)𝑝

𝑝−1

)︂(𝑝−1)/𝑝

.
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Besides, using again Hölder’s inequality (with the same exponents), we find that

‖𝑢‖0,𝑠,𝒯 =
(︂ ∑︁

ℓ∈𝐺

∆𝑥|𝑢ℓ||𝑢ℓ|𝑠−1

)︂1/𝑠

≤ ‖𝑢‖1/𝑠
0,𝑝,𝒯𝑚

‖𝑢‖(𝑠−1)/𝑠
0,(𝑠−1)𝑝/(𝑝−1),𝒯 .

Then, inserting the last two inequalities into (A.2) yields the desired result. This concludes the proof of
Lemma A.4. �

Appendix B. Counter-example

We claim that there exist kernels 𝐵𝑖𝑗 , being indicator functions, and piecewise constant functions 𝑢1, . . . , 𝑢𝑛

such that the positive semi-definiteness condition

𝐽 :=
𝑛∑︁

𝑖,𝑗=1

∫︁
T

∫︁
T
𝜋𝑖𝑎𝑖𝑗𝐵

𝑖𝑗(𝑥− 𝑦)𝑢𝑗(𝑦)𝑢𝑖(𝑥)d𝑦d𝑥 ≥ 0,

is not satisfied. For this statement, we assume that the matrix (𝜋𝑖𝑎𝑖𝑗) ∈ R𝑛×𝑛 is (symmetric and) positive
definite. With the notation of Section 2.1, we set ∆𝑥 = 1/𝑁 for some even number 𝑁 > 5 and choose 𝑟 = 3∆𝑥/2
as well as the kernels

𝐵𝑖𝑗(𝑥) = 1(−𝑟,𝑟)(𝑥) for 𝑥 ∈ T.

Let 𝑢𝑖 = (𝑢𝑖,ℓ)ℓ∈𝐺 ∈ 𝒱𝒯 for 𝑖 = 1, . . . , 𝑛. Then we can write 𝐽 as

𝐽 =
𝑛∑︁

𝑖,𝑗=1

∑︁
ℓ,ℓ′∈𝐺

𝜋𝑖𝑎𝑖𝑗
̂︁𝑀 𝑖𝑗

ℓ,ℓ′𝑢𝑗,ℓ′𝑢𝑖,ℓ, where ̂︁𝑀 𝑖𝑗
ℓ,ℓ′ =

∫︁
𝐾ℓ

∫︁
𝐾ℓ′

𝐵𝑖𝑗(𝑥− 𝑦)d𝑦d𝑥. (B.3)

A straightforward, but rather tedious computation shows that the matrix ̂︁𝑀 𝑖𝑗 = (̂︁𝑀 𝑖𝑗
ℓ,ℓ′)ℓ,ℓ′∈𝐺 ∈ R𝑁×𝑁 is

pentadiagonal with entries

𝑀 𝑖𝑗
ℓ,ℓ′ = (∆𝑥)2, 𝑀 𝑖𝑗

ℓ,ℓ±1 =
7
8

(∆𝑥)2, 𝑀 𝑖𝑗
ℓ,ℓ±2 =

1
8

(∆𝑥)2.

This matrix possesses the eigenvector 𝑤 ∈ R𝑁 , defined by 𝑤ℓ = 1 for ℓ odd and 𝑤ℓ = −1 for ℓ even, associated
with the negative eigenvalue 𝜆 = −4(∆𝑥)2.

Let 𝑣1, . . . , 𝑣𝑛 ∈ R𝑛 be the eigenvectors of the symmetric matrix (𝜋𝑖𝑎𝑖𝑗)𝑖,𝑗=1,...,𝑛 associated with the eigen-
values 0 < 𝜈1 ≤ . . . ≤ 𝜈𝑛, respectively. We define the 𝑛𝑁 ×𝑛𝑁 matrix ̂︁𝑀 = (𝜋𝑖𝑎𝑖𝑗

̂︁𝑀 𝑖𝑗) consisting of the 𝑁 ×𝑁
blocks 𝜋𝑖𝑎𝑖𝑗

̂︁𝑀 𝑖𝑗 . It can be verified that the matrix ̂︁𝑀 possesses the eigenvector 𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ R𝑛𝑁 with
𝑧𝑖 = 𝑣𝑛,𝑖𝑤 ∈ R𝑁 for 𝑖 = 1, . . . , 𝑛 associated with the eigenvalue 𝜆𝜈𝑛 = −4(∆𝑥)2𝜈𝑛. Then, choosing 𝑢𝑖 = 𝑧𝑖 in
(B.3), we find that

𝐽 =
𝑛∑︁

𝑖,𝑗=1

𝜋𝑖𝑎𝑖𝑗𝑧
⊤
𝑖

̂︁𝑀 𝑖𝑗𝑧𝑗 = −4(∆𝑥)2𝜈𝑛

𝑛∑︁
𝑖=1

|𝑧𝑖|2 < 0.

This provides the desired counter-example.
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[1] V. Anaya, M. Bendahmane and M. Sepúlveda, Numerical analysis for a three interacting species model with nonlocal and cross
diffusion. ESAIM:M2AN 49 (2015) 171–192.

[2] N. Ayi, M. Herda, H. Hivert and I. Tristani, On a structure-preserving numerical method for fractional Fokker–Planck equations.
Math. Comput. 92 (2023) 635–693.
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