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Abstract

A modified Poisson–Nernst–Planck system in a bounded domain with mixed Dirichlet–Neumann bound-
ary conditions is analyzed. It describes the concentrations of ions immersed in a polar solvent and the 
correlated electric potential due to the ion–solvent interaction. The concentrations solve cross-diffusion 
equations, which are thermodynamically consistent. The considered mixture is saturated, meaning that the 
sum of the ion and solvent concentrations is constant. The correlated electric potential depends nonlo-
cally on the electric potential and solves the fourth-order Poisson–Fermi equation. The existence of global 
bounded weak solutions is proved by using the boundedness-by-entropy method. The novelty of the paper 
is the proof of the weak–strong uniqueness property. In contrast to the existence proof, we include the sol-
vent concentration in the cross-diffusion system, leading to a diffusion matrix with nontrivial kernel. Then 
the proof is based on the relative entropy method for the extended cross-diffusion system and the positive 
definiteness of a related diffusion matrix on a subspace.
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1. Introduction

The modeling of the transport of ions through biological channels is of fundamental impor-
tance in cell biology. Several strategies have been developed in past decades, using molecular 
or Brownian dynamics or the Poisson–Nernst–Planck theory. This theory relies on the assump-
tions that the dynamics of ion transport is based on diffusion and electrostatic interaction only 
and that the solution is dilute. However, the presence of narrow channel pores requires a more 
sophisticated modeling. In particular, the ion size is not small compared to the biological channel 
diameter, and many-particle interactions due to the confined geometry need to be taken into ac-
count. In this paper, we analyze a modified Poisson–Nernst–Planck system modeling ion–water 
interactions and finite ion size constraints. We prove the existence of global weak solutions and, 
as the main novelty, the weak–strong uniqueness property using entropy methods.

1.1. The model setting

The evolution of n ionic species, immersed in a solvent (like water), is assumed to be given 
by the equations

∂tui + divJi = ri(u), Ji = −Di(∇ui − ui∇ logu0 + uizi∇�), (1)

λ2(�2� − 1)�� =
n∑

j=1

zjuj + f (x) in �, t > 0, i = 1, . . . , n, (2)

where � ⊂ Rd (d ≥ 1) is a bounded Lipschitz domain, u = (u1, . . . , un) is the concentration 
vector, supplemented with initial and mixed Dirichlet–Neumann boundary conditions,

ui(·,0) = u0
i in �, i = 1, . . . , n, (3)

Ji · ν = 0 on 	N, ui = uD
i on 	D, t > 0, (4)

∇� · ν = ∇�� · ν = 0 on 	N, � = �D, �� = 0 on 	D, t > 0, (5)

where ∂� = 	D ∪ 	N , 	D ∩ 	N = ∅, and ν is the exterior unit normal vector to ∂�.
The unknowns are the ion concentrations (or volume fractions) ui(x, t) of the ith ion species 

and the correlated electric potential �(x, t). The solvent concentration (or volume fraction) 
u0(x, t) is given by u0 = 1 − ∑n

i=1 ui , which means that the mixture is saturated. Equations 
(1) are cross-diffusion equations with the fluxes Ji and the reaction rates ri(u). The parameters 
are the diffusivities Di > 0 and the valences zi ∈ Z. Equation (2) is the Poisson–Fermi equa-
tion with the scaled Debye length λ > 0, the correlation length � > 0, and the given background 
charge density f (x). We assume that the domain is isolated on the Neumann boundary, while 
the concentrations and the electric potential are prescribed on the Dirichlet boundary. We refer 
to [24] for a derivation of (1)–(2) using an averaging procedure of a Langevin model.

In the following, we discuss definition (1) of the fluxes and equation (2) for the correlated 
electric potential. We recover the classical Poisson–Nernst–Planck equations if u0 = const.
and � = 0. In this situation, we can write J id

i = −Diui∇μid
i with the electrochemical poten-

tial μid
i = logui + zi� of an ideal dilute solution. In concentrated solutions, the finite size of 

the ions needs to be taken into account, expressed by the excess chemical potential μex, so 
i
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that the electrochemical potential becomes μi = μid
i + μex

i . Bikerman [4] suggested the choice 
μex

i = − log(1 − ∑n
i=1 ui) = − logu0; also see [1, Sec. 3.1.2]. Then Ji = −Diui∇μi coincides 

with the flux adopted in our model (1). Note that solving μi = log(ui/u0) + zi� for the concen-
trations, we find that the ion profiles obey the Fermi–Dirac statistics

ui = exp(μi − zi�)

1 + ∑n
j=1 exp(μj − zj�)

, i = 1, . . . , n.

Then, given μi and �, the bounds 0 ≤ ui ≤ 1 are automatically satisfied. Other choices of the 
excess chemical potential were suggested in [3, Sec. 2.1].

In the literature, there exist also other approaches to define the fluxes Ji under finite size 
constraints. The diffusion limit of an on-lattice model, which takes into account that neighboring 
sites may be occupied (modeling size exclusion), was performed in [6], analyzed in [15], and 
numerically solved in [7], resulting to

J
(1)
i = −Di(u0∇ui − ui∇u0 + u0uizi∇�), i = 1, . . . , n. (6)

This model avoids the singular term ∇ logu0, which is delicate near u0 = 0, but it introduces 
the diffusion term u0∇ui , which degenerates at u0 = 0. Another flux definition was suggested in 
[16],

J
(2)
i = −Di

(
∇ui + uizi∇� −

n∑
j=1

zjuj∇�

)
, i = 1, . . . , n.

The additional term − 
∑n

j=1 zjuj∇� comes from the force balance in the Euler momentum 
equation for zero fluid velocity. The ion–water interaction is described in [8] by

J
(3)
i = −Di

(
∇ui + uizi∇� − ∂ε0

∂ui

|∇�|2
)

, i = 1, . . . , n,

where the dielectricity ε0 = λ2, instead of being constant, depends on u. This assumption is 
based on the experimental observation that the dielectric response of water decreases as ion 
concentrations increase [8]. Thus, ∂ε0/∂ui < 0, showing that the ion–water interaction energy is 
always nonnegative. Finite ion size effects are modeled in [20] by including an approximation of 
the Lennard–Jones potential in the energy functional, leading to

J
(4)
i = −Di

(
∇ui + ui∇

n∑
j=1

aijui + zi∇�

)
, i = 1, . . . , n.

Assuming that (aij ) is positive definite, the global existence of weak solutions for two species 
was proved in [18]. For the analysis of the stationary equations, see [14]. Finally, excluded vol-
ume effects can be included by considering nonlinear diffusivities Di(ui) = 1 +αui , where α > 0
is a measure of the volume exclusion interactions [5].
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Our model has the advantage of being consistent with the thermodynamical model [11]

Ji = −
n∑

j=1

Dijuj∇(μj − μ0), where μi = logui + zi�, μ0 = logu0 + z0�,

assuming that the diffusion matrix is diagonal, Dij = Diδij , and that the solvent is neutral, z0 =
0.

The interaction of the ions with polar solvents like water is modeled by the potential in (2). In-
deed, let φ be the electric potential of free ions, given by −λ2�φ = ρ, where ρ is the total charge 
density. Then the correlated potential � = �−2Y� ∗ φ is the convolution between the Yukawa 
potential Y�(x) = (|x|/�)−1 exp(−|x|/�) [22] and the electric potential, where � > 0 is the corre-
lation length of the screening by ions and water [26]. As this potential satisfies −�2�� +� = φ, 
we recover (2) with ρ = ∑n

j=1 zjuj +f (x). Thus, the Poisson–Fermi equation (2) includes finite 
ion size effects and polarization correlations among water molecules. It generalizes the fourth-
order differential permittivity operator of [23] and the nonlocal permittivity in ionic liquids of 
[2]. If there are no correlation and polarization effects (� = 0), we recover the standard Pois-
son equation for the electric potential. The expression ε0 = λ2(�2� − 1) can be interpreted as a 
dielectric differential operator.

1.2. Entropy structure

System (1) can be written as a cross-diffusion system with a diffusion matrix which is neither 
symmetric nor positive definite. This issue is overcome by exploiting the entropy (or free en-
ergy) structure and using the boundedness-by-entropy method [19]. The free energy associated 
to (1)–(2) is given by [2,21]

H(u) =
∫
�

h(u)dx, where (7)

h(u) =
n∑

i=0

ui∫
uD

i

log
s

uD
i

ds + λ2

2
|∇(� − �D)|2 + (λ�)2

2
|�(� − �D)|2.

The energy density h(u) consists of the internal, free-ion electric, and correlation electric ener-
gies. The free energy allows us to formulate equations (1) as a diffusion system with a positive 
semidefinite diffusion matrix. Indeed, we introduce the electrochemical potentials

μ̃i = ∂h

∂ui

= log
ui

u0
− log

uD
i

uD
0

+ zi(� − �D), i = 1, . . . , n,

where ∂h/∂ui denotes the variational derivative of h with respect to ui (see [15, Lemma 7]) and 
uD

0 = 1 − ∑n
i=1 uD

i . As in [15], we split the electrochemical potentials into the entropy variables 
wi and the boundary contributions wD

i by

wi := log
ui

u
+ zi�, wD

i := log
uD

i

uD
+ zi�

D. (8)

0 0
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Then equations (1) can be written as

∂tui − div
n∑

j=1

Bij (w,�)∇wj = ri(u), i = 1, . . . , n, (9)

where Bij = Diuiδij and ui = ui(w, �) is interpreted as a function of w = (w1, . . . , wn) and �
according to

ui(w,�) = exp(wi − zi�)

1 + ∑n
j=1 exp(wi − zj�)

. (10)

The advantage of formulation (9) is that the new diffusion matrix B = (Bij ) is symmetric and 
positive semidefinite. Observe that system (9) is of degenerate type since ui = 0 is possible, and 
detB = 0 in this case. The formulation in terms of entropy variables has the further advantage 
that the ion concentrations ui , defined by (10), are nonnegative and satisfy 

∑n
i=1 ui ≤ 1, thus 

fulfilling the saturation assumption.

1.3. Main results

We introduce the simplex D = {u = (u1, . . . , un) ∈ (0, 1)n : ∑n
i=1 ui < 1} and set �T = � ×

(0, T ). The following hypotheses are imposed:

(H1) Domain: � ⊂ Rd (1 ≤ d ≤ 3) is a bounded Lipschitz domain with ∂� = 	D ∪ 	N , 	D ∩
	N = ∅, 	N is open in ∂�, and meas(	D) > 0.

(H2) Data: T > 0, Di > 0, zi ∈ R for i = 1, . . . , n, f ∈ L2(�).
(H3) Initial data: u0 = (u0

1, . . . , u
0
n) ∈ L1(�; Rn) satisfies u0(x) ∈ D for a.e. x ∈ �.

(H4) Boundary data: uD = (uD
1 , . . . , uD

n ) ∈ H 1(�; Rn) satisfies uD(x) ∈ D for x ∈ �, loguD
0 ∈

L2(�), and �D ∈ H 2(�) solves

λ2(�2� − 1)��D = f (x) in �, (11)

∇�D · ν = ∇��D · ν = 0 on 	N, ��D = 0 on 	D.

(H5) Reaction rates: ri ∈ C0([0, 1]n; R) for i = 1, . . . , n, and there exists Cr > 0 such that for 
all u ∈ L∞(�T ; D) and �, given by (2) and (5),

∫
�

n∑
i=1

ri(u)
∂h

∂ui

dx ≤ Cr(1 + H(u)). (12)

The restriction to three space dimensions in Hypothesis (H1) is not needed. It can be removed 
by regularizing the Poisson–Fermi equation (2) to ensure that � ∈ L∞(�); see Remark 3 be-
low. In Hypothesis (H4), it is sufficient to define the boundary data on 	D. We have extended 
them to � with the special extension of �D , fulfilling the fourth-order elliptic problem (11). 
This extension is needed to be consistent with the definition of the free energy and the entropy 
variables; see [15, Lemma 7]. The bound in Hypothesis (H5) is needed to derive gradient bounds 
on the concentrations from the free energy inequality; see (16) below. Since ∂h/∂ui contains the 
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logarithm, ri(u) needs to cancel the singularity in ∂h/∂ui at ui = 0. It is sufficient to require Hy-
pothesis (H5) for the logarithmic part of ∂h/∂ui . Indeed, since ri is continuous, ri(u) is bounded 
for u ∈ [0, 1]n, and we infer from Poincaré’s inequality that

∫
�

n∑
i=1

ri(u)(� − �D)dx ≤ C‖� − �D‖L1(�)

≤ C + C‖∇(� − �D)‖2
l2(�)

≤ C(1 + H(u)).

Therefore, we need the integrated version (12) instead of the pointwise inequality assumed in 
[19, Sec. 1.4].

We introduce the test spaces

H 1
D(�) = {v ∈ H 1(�) : v = 0 on 	D},

H 2
D,N(�) = {v ∈ H 2(�) : v = 0 on 	D, ∇v · ν = 0 on 	N }.

Our first main result is as follows.

Theorem 1 (Global existence of solutions). Let Hypotheses (H1)–(H5) hold and let T > 0 be 
an arbitrary time end point. Then there exists a bounded weak solution u1, . . . , un to (1)–(5)
satisfying ui(x, t) ∈ D for a.e. (x, t) ∈ �T , i = 1, . . . , n,

√
ui ∈ L2(0, T ;H 1(�)), ui ∈ H 1(0, T ;H 1

D(�)′) ∩ C0([0, T ];L2(�)),

� ∈ L2(0, T ;H 2(�)), logu0 ∈ L2(0, T ;H 1(�)),

the weak formulation

T∫
0

〈∂tui, φi〉dt −
T∫

0

∫
�

Ji · ∇φidxdt =
T∫

0

∫
�

ri(u)φidxdt, (13)

λ2

T∫
0

∫
�

(�2���θ + ∇� · ∇θ)dxdt =
T∫

0

∫
�

( n∑
i=1

ziui + f

)
θdxdt (14)

for all φi ∈ L2(0, T ; H 1
D(�)) and θ ∈ L2(0, T ; H 2

D,N(�)), where Ji is given by (1) and 〈·, ·〉 is 
the dual product between H 1

D(�)′ and H 1
D(�). The initial conditions (3) are satisfied a.e. in �, 

and the Dirichlet boundary conditions are fulfilled in the sense of traces in L2(	D). Furthermore, 
if ri(u) = 0 for all i = 1, . . . , n and the Dirichlet boundary conditions are in thermal equilibrium 
(e.g. wD

i := log(uD
i /uD

0 ) + zi�
D = const. in �), the solution satisfies for 0 < s < t < T the free 

energy inequality

H(u(t)) +
t∫ ∫ n∑

i=1

Diui

∣∣∣∣∇
(

log
ui

u0
+ zi�

)∣∣∣∣2

dxdσ ≤ H(u(s)). (15)
s �
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The energy dissipation is understood in the sense

ui

∣∣∣∣∇
(

log
ui

u0
+ zi�

)∣∣∣∣2

= ∣∣2∇√
ui − √

ui∇ logu0 + √
uizi∇�

∣∣2
.

We stress the fact that the solutions are nonnegative, have an upper bound, and conserve mass 
in the absence of reactions. More precisely, the solution of Theorem 1 satisfies:

• u0(x, t), u1(x, t), . . . , un(x, t) ∈ [0, 1] and 
∑n

i=0 ui(x, t) = 1 for a.e. x ∈ �, t > 0;
• the solvent concentration u0 is positive a.e. in � × (0, ∞);
• if ri(u) = 0 then 

∫
�

ui(x, t)dx = ∫
�

u0
i (x)dx for t > 0, i = 1, . . . , n.

The second point is a consequence of the integrability of logu0 ensured in Theorem 1.
The assumption of thermal equilibrium at the Dirichlet boundary, also required in [15], is 

needed to avoid expressions involving ∇wD
i in the free energy inequality. Thus, this condition, 

together with vanishing reactions, is natural to obtain the monotonicity of the free energy. The 
hypothesis of vanishing reactions is only required to derive the entropy inequality (15) and can be 
weakened. In fact, we may allow for nonnegative and quasipositive reaction terms; see Remark 17
for details. In Remark 16, we explain how the uniqueness of weak solutions can be proved under 
restrictive conditions on the parameters. Moreover, we refer to Remark 9 for the extension of the 
free energy inequality (15) to the case of nonzero reaction terms ri .

The proof of Theorem 1 is, similarly as in [15], based on an approximation procedure, where 
we regularize (9) by an implicit Euler approximation and higher-order terms in the entropy vari-
ables. The uniform estimates that are needed to perform the de-regularization limit are derived 
from the free energy inequality, which (without regularization) reads as

dH

dt
+

∫
�

n∑
i=1

Diui |∇wi |2dx ≤
∫
�

n∑
i=1

ri(u) · ∂h

∂ui

dx ≤ Cr(1 + H(u)), (16)

recalling definition (8) of wi , and we can conclude by Gronwall’s lemma. The free energy dissi-
pation term on the left-hand side can be estimated from above by (see Lemma 6)

∫
�

ui |∇wi |2dx ≥ 1

2

∫
�

(|∇√
ui |2 + |∇ logu0|2 + |∇u0|2

)
dx − C

∫
�

|∇�|2dx.

The last term is bounded by the electric energy part in H(u), thus giving H 1(�) bounds for 
ui for i = 0, . . . , n and logu0. Compared to [15], we obtain gradient estimates for all the ion 
concentrations, but we have to deal with the singular term ∇ logu0 in (1). Moreover, compared 
to [13], where a similar Nernst–Planck system (with � = 0) was investigated, we do not need any 
positivity condition on the initial solvent concentration.

While the existence proof relies on standard entropy methods, we need a new idea to prove 
the weak–strong uniqueness result. The uniqueness of weak solutions is an intricate problem. A 
uniqueness result for (1) with the fluxes (6) was shown in [15] for the case Di = D and zi = z

for all i. In this simplified situation, the solvent concentration solves a Poisson–Nernst–Planck 
system for which the uniqueness of bounded weak solutions can be proved by a combination 
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of L2(�) estimates and Gajewski’s entropy method. This strategy cannot be used for our sys-
tem; see Remark 16 in Section 4. In fact, we need the H−1(�) method and a strong regularity 
condition for ∇�, which restricts the geometry of the Dirichlet–Neumann boundary conditions. 
Therefore, we do not aim to prove the uniqueness of weak solutions but the weak–strong unique-
ness property only, which has the advantage that we may allow for different coefficients Di and 
zi . The weak–strong uniqueness property means that any weak solution to system (1)–(5) co-
incides with a strong solution emanating from the same initial conditions as long as the latter 
exists. We say that (ū, �̄) is a strong solution to (1)–(5) if it is a weak solution and

ūi ≥ c > 0 in �T , ūi, � ∈ L∞(0, T ;W 1,∞(�)) for all i = 1, . . . , n.

Our second main result is contained in the following theorem.

Theorem 2 (Weak–strong uniqueness). Let the Dirichlet boundary data be in thermal equilib-
rium in the sense of Theorem 1 and let ri = 0 for i = 1, . . . , n. Let (u, �) be a weak solution and 
(ū, �̄) be a strong solution to (1)–(5). Then u(x, t) = ū(x, t), �(x, t) = �̄(x, t) for a.e. x ∈ �

and t ∈ (0, T ).

If the reaction rates are Lipschitz continuous and satisfy some sign conditions, Theorem 2
still holds. An exhaustive discussion on this point can be found in Remark 17. The condition that 
the Dirichlet boundary data are in thermal equilibrium is actually not needed, since in contrast to 
(15), the terms involving ∇wD

i cancel out in the computations for the relative free energy

H(u,�|ū, �̄) =
∫
�

(
h1(u|ū) + h2(�|�̄)

)
dx, where

h1(u|ū) =
n∑

i=0

(
ui log

ui

ūi

− (ui − ūi )

)
,

h2(�|�̄) = λ2

2

(|∇(� − �̄)|2 + �2|�(� − �̄)|2),
which can be identified as the Bregman distance of the free energy. The key idea of the proof of 
Theorem 2 is to consider the solvent concentration u0 as an independent variable and to formulate 
the parabolic equations for the extended concentration vector U = (u0, u1, . . . , un), leading to

∂tui = div
n∑

j=0

(Aij (U)∇ loguj + Qij (U)∇�), i = 0, . . . , n,

where Aij (U) and Qij (U) depend linearly on U and
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A = (Aij ) =

⎛
⎜⎜⎜⎝

∑n
i=1 Diui −D1u1 · · · −Dnun

−D1u1 D1u1 0
... 0

. . . 0
−Dnun 0 Dnun

⎞
⎟⎟⎟⎠ ,

Q = (Qij ) =

⎛
⎜⎜⎜⎝

−∑n
i=1 Diziui 0 · · · 0

0 D1z1u1 0
... 0

. . . 0
0 0 Dnznun

⎞
⎟⎟⎟⎠ ,

(17)

setting z0 := 0. The matrix (Aij /
√

uiuj ) ∈ R(n+1)×(n+1) is positive definite only on the subspace 
L = {y ∈ Rn+1 : ∑n

i=0
√

uiyi = 0}; see Lemma 10. This situation is similar to the Maxwell–
Stefan system; see [17]. The time derivative of the relative free energy equals

dH

dt
(u,�|ū, �̄) = K1 + K2, where K1 = −

∫
�

n∑
j=0

Aij∇ log
ui

ūi

· ∇ log
uj

ūj

dx,

and K2 contains differences like Ui − Ūi and � − �̄. The properties of the matrices (Aij ) and 
(Qij ) imply that

K1 ≤ − min
i=1,...,n

Di

∫
�

(
1

u0
|(PLY )0|2 +

n∑
i=1

|(PLY )i |2
)

dx,

where PL is the projection on L and Yi = √
ui∇ log(ui/ūi), as well as for any δ > 0,

K2 ≤ δ

∫
�

(
1

u0
|(PLY )0|2 +

n∑
i=1

|(PLY )i |2
)

dx

+ C(δ)

( n∑
i=0

‖ui − ūi‖2
L2(�)

+ ‖∇(� − �̄)‖2
L2(�)

)
.

Consequently, choosing δ > 0 sufficiently small,

dH

dt
(u,�|ū, �̄) ≤ C

( n∑
i=0

‖ui − ūi‖2
L2(�)

+ ‖∇(� − �̄)‖2
L2(�)

)
≤ CH(u,�|ū, �̄)

for some constant C > 0. Since the initial data of u and ū coincide, we have H((u, �)(t)|
(ū, �̄)(t)) = 0 and finally u(t) = ū(t) and �(t) = �̄(t) for all t > 0. The idea to consider the 
parabolic system for the extended solution vector U = (u0, . . . , un) instead of u = (u1, . . . , un) is 
the main novelty of this paper. The Maxwell–Stefan equations can also be written as an extended 
system for U [17], but we are not aware of further volume-filling models with such a property. 
The understanding of volume-filling systems and mobility matrices with nontrivial kernels is a 
current field of research.
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The article is organized as follows. The proof of Theorem 1 is presented in Section 2, while 
Section 3 contains the proof of Theorem 2. We make some remarks on the uniqueness of solutions 
in Section 4.

2. Proof of Theorem 1

We assume throughout this section that Hypotheses (H1)–(H5) hold.

2.1. Solution of an approximate system

We define the approximate problem by the implicit Euler scheme and using a higher-order 
regularization. Let T > 0, N ∈ N , τ = T/N , and m ∈ N with m > d/2. We assume that uD

i ≥
η > 0 for i = 0, . . . , n. Then wD

i = log(uD
i /uD

0 ) + zi�
D ∈ H 1(�; Rn) ∩ L∞(�; Rn). Since the 

entropy variables are not needed in the weak formulation (13)–(14), we can pass to the limit η →
0 at the end of the proof, thus requiring only uD

i > 0. Let k ≥ 1 and let uk−1 −uD ∈ H 1
D(�; Rn) ∩

L∞(�; Rn) and �k−1 − �D ∈ H 2
D,N(�) be given. If k = 1, �0 ∈ H 2(�) is the unique solution 

to (2) with u0
j instead of uj on the right-hand side and satisfying the corresponding boundary 

conditions in (4)–(5). We wish to find a solution vk ∈ X := Hm(�; Rn) ∩ H 1
D(�; Rn) and �k −

�D ∈ H 2
D,N(�) to

1

τ

∫
�

(uk − uk−1) · φdx +
∫
�

∇φ : B(vk + wD,�k)∇(vk + wD)dx (18)

+ ε

∫
�

( ∑
|α|=m

Dαvk · Dαφ + vk · φ
)

dx =
∫
�

r(uk) · φdx,

λ2
∫
�

(
�2��k�θ + ∇�k · ∇θ

)
dx =

∫
�

( n∑
i=1

ziu
k
i + f

)
θdx (19)

for all φ ∈ X and θ ∈ H 2
D,N(�). Here, we have set uk := u(vk + wD, �k), where u(w, �) is 

defined by (10), Bij (w, �) = Diui(w, �)δij , r(u) = (r1(u), . . . , rn(u)), and Dα = ∂ |α|/∂x
α1
1 · · ·

∂x
αd

d is a partial derivative of order |α| = α1 +· · ·+αd . Thanks to the higher-order regularization, 
we obtain approximate solutions wk := vk +wD ∈ Hm(�; Rn) ↪→ L∞(�; Rn). Moreover, since 
d ≤ 3, we have �k ∈ H 2(�) ↪→ L∞(�). Hence, ui(w

k, �k) is well defined and integrable.

Remark 3. Adding a higher-order regularization to the Poisson–Fermi equation (19), we may 
obtain �k ∈ L∞(�) by a Sobolev embedding similarly as for wk . This allows us to remove the 
restriction d ≤ 3 in Hypothesis (H1). �
Lemma 4. There exists a unique solution vk ∈ Hm(�; Rn) ∩ H 1

D(�; Rn) and �k − �D ∈
H 2

D,N(�) to (18)–(19).

Proof. The proof is similar to that one of Lemma 5 in [15], therefore we give a sketch only. Let 
y ∈ L∞(�; Rn) and σ ∈ [0, 1]. Let �k ∈ H 2(�) be the unique solution to
47



A. Jüngel and A. Massimini Journal of Differential Equations 395 (2024) 38–68
λ2(�2� − 1)��k =
n∑

i=1

ziui(y + wD,�k) + f (x) in �

subject to the boundary conditions (5). This follows from the fact that the function (x, �) �→
ui(w(x), �) is bounded with values in (0, 1) and Lipschitz continuous in �. By the Lax–
Milgram lemma, there exists a unique solution v ∈ X to the linear problem

ε

∫
�

( ∑
|α|=m

Dαv · Dαφ + v · φ
)

ds +
∫
�

∇φ : B(y + wD,�k)∇vdx (20)

= δ

∫
�

r(u(y + wD,�k)) · φdx − δ

∫
�

∇φ : B(y + wD,�k)∇wDdx

− δ

τ

∫
�

(
u(y + wD,�k) − uk−1) · φdx.

Indeed, as B is positive semidefinite, the left-hand side is coercive in Hm(�; Rn).
This defines the fixed-point operator S : L∞(�; Rn) × [0, 1] → L∞(�; Rn), S(y, δ) = v. 

Then S(y, 0) = 0, S is continuous and, because of the compact embedding Hm(�; Rn) ↪→
L∞(�; Rn), also compact. Using φ = v as a test function in (20), standard estimates lead to 
ε‖v‖2

Hm(�) ≤ C(τ)‖v‖Hm(�), giving a bound for v in Hm(�; Rn) uniform in δ. Hence, all fixed 
points of S(·, δ) are uniformly bounded in L∞(�; Rn). We infer from the Leray–Schauder fixed-
point theorem that there exists vk ∈ X such that S(vk, 1) = vk . Then (vk, �k) is a solution to 
(18)–(19). �
2.2. Uniform estimates

We deduce estimates uniform in (ε, τ) from the following free energy inequality.

Lemma 5 (Discrete free energy inequality). Let (vk, �k) be a solution to (18)–(19) and set wk :=
vk + wD and uk := u(wk, �k). Then

H(uk) − H(uk−1) + τ

2

∫
�

n∑
i=1

Diu
k
i |∇wk

i |2dx + ετ‖wk − wD‖2
Hm(�) (21)

≤ τCr(1 + H(uk)) + τ

2

∫
�

n∑
i=1

Di |∇wD
i |2dx,

where H is defined in (7) and Cr > 0 is introduced in Hypothesis (H5).

Proof. We choose φ = τvk = τ(wk − wD) ∈ X as a test function in (18). Using the generalized 
Poincaré inequality to estimate the ε-regularization and Hypothesis (H5) to estimate the reaction 
rates, we find that
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∫
�

(uk − uk−1) · (wk − wD)dx + τ

∫
�

∇(wk − wD) : B(wk,�k)∇wkdx

+ ετC‖wk − wD‖2
Hm(�) ≤ τCr(1 + H(uk)).

It follows from the convexity of the function g(u) = ∑n
i=0

∫ ui

uD
i

log(s/uD
i )ds and the Poisson–

Fermi equation (2) as in [15, Section 2] that

∫
�

(uk − uk−1) · (wk − wD)dx =
∫
�

n∑
i=1

(uk
i − uk−1

i )

(
log

uk
i

uk
0

− log
uD

i

uD
0

)
dx

+
∫
�

n∑
i=1

zi(u
k
i − uk−1

i )(�k − �D)dx

≥
∫
�

(
g(uk) − g(uk−1)

)
dx + λ2

2

∫
�

(
�2|�(�k − �D)|2 + |∇(�k − �D)|2)dx

− λ2

2

∫
�

(
�2|�(�k−1 − �D)|2 + |∇(�k−1 − �D)|2)dx = H(uk) − H(uk−1).

Inserting the definition Bij (w
k, �k) = Diu

k
i δij , we infer from Young’s inequality that

∇(wk − wD) : B(wk,�k)∇wk =
n∑

i=1

Diu
k
i ∇(wk

i − wD
i ) · ∇wk

i

≥ 1

2

n∑
i=1

Diu
k
i |∇wk

i |2 − 1

2

n∑
i=1

Diu
k
i |∇wD

i |2.

Collecting these estimates and observing that uk
i ≤ 1 concludes the proof. �

We sum (21) over k = 1, . . . , j ,

(1 − τCr)H(uj ) + τ

2

j∑
k=1

∫
�

n∑
i=1

Diu
k
i |∇wk

i |2dx + ετ

j∑
k=1

‖wk − wD‖2
Hm(�)

≤ τCr

j−1∑
k=1

H(uk) + H(u0) + jτCr + τ

2

j∑
k=1

∫
�

n∑
i=1

Di |∇wD
i |2dx,

and, assuming τ < 1/Cr , apply the discrete Gronwall inequality [9]:

H(uj ) + τ

2

(
min

i=1,...,n
Di

) j∑
k=1

∫
�

n∑
i=1

uk
i |∇wk

i |2dx + ετ

j∑
k=1

‖wk − wD‖2
Hm(�) ≤ C(T ),
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where C(T ) > 0 does not depend on (ε, τ). We still need to bound the second term on the left-
hand side from below.

Lemma 6. It holds that

N∑
k=1

τ

∫
�

n∑
i=1

uk
i |∇wk

i |2dx ≥ 1

2

N∑
k=1

τ

∫
�

( n∑
i=1

|∇(uk
i )

1/2|2 + |∇ loguk
0|2 + |∇uk

0|2
)

dx

− C

N∑
k=1

τ

∫
�

|∇�k|2dx,

where C > 0 depends on (Di) and (zi).

Proof. We infer from Young’s inequality and the bound uk
i ≤ 1 that

uk
i |∇wk

i |2 = uk
i

∣∣∣∣∇ log
uk

i

uk
0

+ zi∇�k

∣∣∣∣2

≥ 1

2
uk

i

∣∣∣∣∇ log
uk

i

uk
0

∣∣∣∣2

− |zi∇�k|2.

The first term on the right-hand side is rewritten as

1

2
uk

i

∣∣∣∣∇ log
uk

i

uk
0

∣∣∣∣2

= 1

2

n∑
i=1

|∇uk
i |2

uk
i

+ 1

2

n∑
i=1

uk
i |∇ loguk

0|2 −
n∑

i=1

∇uk
i · ∇ loguk

0

= 1

2

n∑
i=1

|∇uk
i |2

uk
i

+ 1

2
(1 − uk

0)|∇ loguk
0|2 − ∇(1 − uk

0) · ∇ loguk
0

= 1

2

n∑
i=1

|∇uk
i |2

uk
i

+ 1

2
|∇ loguk

0|2 + |∇uk
0|2

2uk
0

≥ 2
n∑

i=1

|∇(uk
i )

1/2|2 + 1

2
|∇ loguk

0|2 + 1

2
|∇uk

0|2,

using uk
0 ≤ 1 in the last step. �

Since the free energy is bounded from below, we conclude the following uniform bounds.

Lemma 7. There exists C > 0 not depending on (ε, τ) such that for i = 1, . . . , n,

N∑
k=1

τ
(‖(uk

i )
1/2‖2

H 1(�)
+ ‖uk

i ‖2
H 1(�)

+ ‖uk
0‖2

H 1(�)
+ ‖ loguk

0‖2
H 1(�)

) ≤ C,

ε

N∑
τ‖wk

i ‖2
Hm(�) +

N∑
τ‖�k‖2

H 2(�)
≤ C.
k=1 k=1
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Proof. The inequality

‖∇uk
i ‖L2(�) ≤ 2‖(uk

i )
1/2‖L∞(�)‖∇(uk

i )
1/2‖L2(�) ≤ 2‖∇(uk

i )
1/2‖L2(�)

shows that 
∑N

k=1 τ‖∇uk
i ‖2

L2(�)
≤ C. The H 2(�) bound for �k follows immediately from the 

Poisson–Fermi equation as its right-hand side is bounded in L2(�). The H 1(�) bound for loguk
0

is a consequence of the L2(�) bound for ∇ loguk
0 and the Poincaré inequality, using the fact that 

loguD
0 ∈ L2(�) by Hypothesis (H4). �

2.3. Limit (ε, τ) → 0

We introduce the piecewise constant in time functions u(τ)
i (x, t) = uk

i (x), w(τ)
i (x, t) = wk

i (x), 
and �(τ)(x, t) = �k(x) for x ∈ �, t ∈ ((k − 1)τ, kτ ]. At time t = 0, we set w(τ)(·, 0) = h′(u0)

and u(τ)
i (·, 0) = u0

i . Furthermore, we introduce the shift operator (στu
(τ))(·, t) = uk−1 for t ∈

((k − 1)τ, kτ ]. Then, summing (18)–(19) over k = 1, . . . , N , we see that (u(τ), �(τ)) solves

1

τ

T∫
0

∫
�

(u(τ) − στu
(τ)) · φdxdt +

T∫
0

∫
�

∇φ : B(w(τ),�(τ))∇w(τ)dxdt (22)

+ ε

T∫
0

∫
�

( ∑
|α|=m

Dα(w(τ) − wD) · Dαφ + (w(τ) − wD) · φ
)

dxdt

=
T∫

0

∫
�

r(u(τ)) · φdxdt,

λ2

T∫
0

∫
�

(
�2��(τ)�θ + ∇�(τ) · ∇θ

)
dxdt =

T∫
0

∫
�

( n∑
i=1

ziu
(τ)
i + f

)
θdxdt (23)

for piecewise constant in time functions φ : (0, T ) → X and θ : (0, T ) → H 2
D,N(�), recalling 

that X = Hm(�; Rn) ∩ H 1
D(�; Rn). Lemma 7 and the L∞(�) estimate of uk

i imply the uniform 
bounds

‖(u(τ)
i )1/2‖L2(0,T ;H 1(�)) + ‖u(τ)

i ‖L2(0,T ;H 1(�)) + ‖u(τ)
i ‖L∞(�T ) ≤ C, (24)

‖u(τ)
0 ‖L2(0,T ;H 1(�)) + ‖u(τ)

0 ‖L∞(�T ) + ‖ logu
(τ)
0 ‖L2(0,T ;H 1(�)) ≤ C, (25)

√
ε‖w(τ)

i ‖L2(0,T ;Hm(�)) + ‖�(τ)‖L2(0,T ;H 2(�)) ≤ C, (26)

where i = 1, . . . , n. We also need a uniform bound for the discrete time derivative.

Lemma 8. There exists a constant C > 0 independent of (ε, τ) such that for all i = 1, . . . , n,

τ−1‖u(τ) − στu
(τ)‖L2(0,T ;X′) + τ−1‖u(τ) − στu

(τ)‖L2(0,T ;X′) ≤ C.
i i 0 0
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Proof. Let φ : (0, T ) → X be piecewise constant. Since

T∫
0

∫
�

∇φ : B(u(τ),�(τ))∇w(τ)dxdt

=
n∑

i=1

Di

T∫
0

∫
�

(∇u
(τ)
i − u

(τ)
i ∇ logu

(τ)
0 + ziu

(τ)
i ∇�(τ)

) · ∇φidxdt,

we find that

1

τ

∣∣∣∣
T∫

0

∫
�

(u
(τ)
i − στu

(τ)
i )φidxdt

∣∣∣∣ ≤ ε‖w(τ)
i − wD

i ‖L2(0,T ;Hm(�))‖φi‖L2(0,T ;Hm(�))

+ C
(‖∇u

(τ)
i ‖L2(�T ) + ‖∇ logu

(τ)
0 ‖L2(�T ) + ‖∇�(τ)‖L2(�T )

)‖∇φi‖L2(�T )

+ ‖ri(u(τ))‖L2(�T )‖φi‖L2(�T )

≤ C‖φi‖L2(0,T ;Hm(�)).

By a density argument, this inequality holds for all φi ∈ L2(0, T ; X), showing the desired bound 
for the discrete time derivative of u(τ)

i . Summing the bounds over i = 1, . . . , n yields the bound 

for u(τ)
0 . �

Estimates (24)–(25) and Lemma 8 allow us to apply the Aubin–Lions lemma in the version of 
[10] to conclude the existence of a subsequence, which is not relabeled, such that for i = 1, . . . , n, 
as (ε, τ) → 0,

u
(τ)
i → ui, u

(τ)
0 → u0 strongly in L2(�T ).

In view of the uniform L∞(�T ) bound for u(τ)
i and u(τ)

0 , these convergences hold in Lp(�T ) for 
all p < ∞. Moreover, by (26) and Lemma 8, up to a subsequence,

εw
(τ)
i → 0 strongly in L2(0, T ;Hm(�)),

�(τ) ⇀ � weakly in L2(0, T ;H 2(�)),

τ−1(u
(τ)
i − στu

(τ)
i ) ⇀ ∂tui weakly in L2(0, T ;X′), i = 1, . . . , n.

We claim that ∇ logu
(τ)
0 ⇀ ∇ logu0 weakly in L2(�T ). It follows from (25) that (for a sub-

sequence) ∇ logu
(τ)
0 ⇀ v weakly in L2(�T ). We need to identify v = ∇ logu0. We know that 

(again for a subsequence) u(τ)
0 → u0 a.e. in �T . Therefore logu

(τ)
0 → logu0 a.e. in �T , since 

u0 can vanish at most on a set of measure zero. The L2(�T ) bound for logu
(τ)
0 shows that 

logu
(τ)
0 → logu0 strongly in L2(�T ). Hence, we conclude that v = ∇ logu0, proving the claim.

These convergences are sufficient to pass to the limit (ε, τ) → 0 in (22)–(23) to find that 
(u, �) solves (13)–(14) for smooth test functions. By a density argument, we may choose test 
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functions from L2(0, T ; H 1
D(�)) and L2(0, T ; H 2

D,N(�)), respectively. The validity of the ini-
tial and Dirichlet boundary conditions is shown as in [15]. Estimates similar as in the proof of 
Lemma 8 (with ε = 0) show that ∂tui ∈ L2(0, T ; H 1

D(�)′) for i = 1, . . . , n. Then we conclude 
from ui ∈ L2(0, T ; H 1(�)) that ui ∈ C0([0, T ]; L2(�)). Thus, the initial datum is satisfied in 
the sense of L2(�).

It remains to verify the free energy inequality (15) under the assumptions ri(u) = 0 and 
log(uD

i /uD
0 ) + zi�

D = ci ∈ R for i = 1, . . . , n. By definition of wD
i , this implies that ∇wD

i = 0. 
Then (21) becomes

H(uk) − H(uk−1) + τ

∫
�

n∑
i=1

Diu
k
i

∣∣∣∣∇
(

log
uk

i

uk
0

+ zi�
k

)∣∣∣∣2

dx + ετ‖wk − wD‖2
Hm(�) ≤ 0.

A summation over k = j, . . . , J gives

H(u(τ)(t)) − H(u(τ)(s)) +
t∫

s

∫
�

n∑
i=1

Diu
(τ)
i

∣∣∣∣∇
(

log
u

(τ)
i

u
(τ)
0

+ zi�
(τ)

)∣∣∣∣2

dxdσ (27)

+ ε

t∫
s

‖w(τ) − wD‖2
Hm(�)dσ ≤ 0,

where s ∈ ((j − 1)τ, jτ ] and t ∈ ((J − 1)τ, Jτ ]. We wish to pass to the limit (ε, τ) → 0 in this 
inequality.

The a.e. convergence of u(τ)
i implies that H(u(τ)(t)) → H(u(t)) for a.e. t ∈ (0, T ) and, since 

ui ∈ C0([0, T ]; L2(�)), this convergence holds in fact for all t ∈ [0, T ]. Moreover, ε(w(τ) −
wD) → 0 strongly L2(0, T ; Hm(�)). It follows from the strong convergence of u(τ)

i in L2(�T )

that (u(τ)
i )1/2 → √

ui strongly in L4(�T ). Hence, together with the weak convergence of ∇�(τ)

in L2(�T ), we have

(u
(τ)
i )1/2∇�(τ) ⇀

√
ui∇� weakly in L4/3(�T ).

Furthermore, since ∇ logu
(τ)
0 ⇀ ∇ logu0 weakly in L2(�T ),

(u
(τ)
i )1/2∇ log

u
(τ)
i

u
(τ)
0

= 2∇(u
(τ)
i )1/2 − (u

(τ)
i )1/2∇ logu

(τ)
0 (28)

⇀ 2∇√
ui − √

ui∇ logu0 =: √ui∇ log
ui

u0
weakly in L4/3(�T ).

On the other hand, the sequences ∇(u
(τ)
i )1/2 and (u(τ)

i )1/2∇ logu
(τ)
0 are uniformly bounded in 

L2(�T ). Therefore, convergence (28) also holds in L2(�T ). Consequently,

∫
ui

∣∣∣∣∇
(

log
ui

u0
+ zi�

)∣∣∣∣2

dx =
∫ ∣∣2∇√

ui − √
ui∇ logu0 + √

uizi∇�
∣∣2

dx
� �
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≤ lim inf
(ε,τ )→0

∫
�

u
(τ)
i

∣∣∣∣∇
(

log
u

(τ)
i

u
(τ)
0

+ zi�
(τ)

)∣∣∣∣2

dx.

Then (15) follows after passing to the limit inferior (ε, τ) → 0 in (27), completing the proof of 
Theorem 1.

Remark 9. Let the reaction rates ri : D → R be Lipschitz continuous and quasi-positive, i.e. 
ri(u) ≥ 0 for all u ∈ D with ui = 0. We assume that the total reaction rate is nonnegative, i.e. ∑n

i=1 ri(u) ≤ 0 for all u ∈D, and that ri(u) logui = 0 if ui = 0. This assumption is only needed 
to derive the free energy inequality. We claim that it becomes

H(u(t)) +
t∫

s

∫
�

n∑
i=1

Diui |∇wi |2dxdσ ≤ H(u(s)) +
t∫

s

∫
�

n∑
i=1

ri(u)(wi − wD
i )dxdσ. (29)

This inequality follows from (27) after including the reaction rates and taking the limit (ε, τ) in

t∫
s

∫
�

n∑
i=1

ri(u
(τ))(w

(τ)
i − wD

i )dxdσ

=
t∫

s

∫
�

n∑
i=1

ri(u
(τ))

(
logu

(τ)
i − logu

(τ)
0 + zi�

(τ) − wD
i

)
dxdσ.

Indeed, the strong limit u(τ)
i → ui in L2(�T ) shows that ri(u(τ))wD

i → ri(u)wD
i strongly 

in L1(�T ) as (ε, τ) → 0. Moreover, since logu
(τ)
0 → logu0 strongly in L2(�), we have 

ri(u
(τ)) logu

(τ)
0 → ri(u) logu0 strongly in L1(�T ). It remains to show that ri(u(τ)) logu

(τ)
i →

ri(u) logui strongly in L1(�T ). We have ri(u(τ)) logu
(τ)
i → ri(u) logui a.e. in �T if ui > 0. If 

ui = 0, by assumption, we have ri(u) logui = 0 and therefore ri(u(τ)) logu
(τ)
i → ri(u) logui

a.e. in �T as well. Moreover, ri(u) logui is bounded. Hence, by dominated convergence, 
ri(u

(τ)) logu
(τ)
i → ri(u) logui strongly in L1(�T ), and the claim follows. �

3. Proof of Theorem 2

Let (u, �) be a weak solution and (ū, �̄) be a strong solution to (1)–(5). In this section, we 
interpret H(u) and H(ū) as functionals depending on u = (u0, . . . , un) and ū = (ū0, . . . , ūn). 
This notation is only needed to determine the variational derivative of H and will not lead to any 
confusion in the following computations. We split the lengthy proof in several steps.

Step 1: Calculation of the time derivative of H(u, �|ū, �̄). In the following, we write

H(u,�|ū, �̄) = H1(u|ū) + H2(�|�̄), where

H1(u|ū) = H1(u) − H1(ū) − H ′
1(ū)(u − ū),

H2(�|�̄) = H2(�) − H2(�̄) − H ′
2(�̄)(� − �̄),
54



A. Jüngel and A. Massimini Journal of Differential Equations 395 (2024) 38–68
where H1(u) = ∫
�

h1(u)dx with h1(u) = ∑n
i=0

∫ ui

uD
i

log(s/uD
i )ds, H2(�) = 1

2λ2
∫
�
(�2|�(� −

�D)|2 + |∇(� − �D)|2)dx, and H ′
1(ū)(u − ū) is the variational derivative of H1 at ū in the 

direction of u − ū (similarly for H ′
2(�̄)(� − �̄)). We compute the time derivative of H1(u|ū), 

split the sum over i = 0, . . . , n into i = 0 and the sum over i = 1, . . . , n, and insert ∂tu0 =
− 

∑n
i=1 ∂tui , ∂t ū0 = − 

∑n
i=1 ∂t ūi :

dH1

dt
(u|ū) = dH1

dt
(u) − dH1

dt
(ū) − d

dt

∫
�

n∑
i=0

∂h1

∂ui

(ū)(ui − ūi )dx

= dH1

dt
(u) −

n∑
i=0

(〈
∂tui,

∂h1

∂ui

(ū)

〉
+

〈
∂t ūi ,

ui

ūi

− 1

〉)

= dH1

dt
(u) −

n∑
i=1

(〈
∂tui,

∂h1

∂ui

(ū) − ∂h1

∂u0
(ū)

〉
+

〈
∂t ūi ,

ui

ūi

− u0

ū0

〉)
.

Next, we insert equation (1) for ui and ūi and use (∂h1/∂ui)(ū) = log(ūi/u
D
i ):

dH1

dt
(u|ū) = dH1

dt
(u) +

∫
�

n∑
i=1

Diui∇wi · ∇
(

log
ūi

ū0
− log

uD
i

uD
0

dx

)
dx

+
∫
�

n∑
i=1

Diūi∇w̄i ·
(

ui

ūi

∇ log
ui

ūi

− u0

ū0
∇ log

u0

ū0

)
dx.

A similar computation for H2(�|�̄) leads to

dH2

dt
(�|�̄) = λ2〈(�2� − 1)�∂t (� − �̄),� − �̄

〉 = n∑
i=1

〈zi∂t (ui − ūi ),� − �̄〉

= −
∫
�

n∑
i=1

Dizi(ui∇wi − ūi∇w̄i) · ∇(� − �̄)dx

= dH2

dt
(�) +

∫
�

n∑
i=1

Dizi

(
ui∇wi · ∇�̄ − ui∇wi · ∇�D + ūi∇w̄i · ∇(� − �̄)

)
dx,

where we abbreviated w̄i = log(ūi/ū0) + zi�̄. As ui is only nonnegative, the expression ∇ logui

may be not integrable. Therefore, we define ∇ log(ui/u0) := (2∇√
ui − √

ui∇ logu0)/
√

ui

if ui > 0 and ∇ log(ui/u0) := 0 else. This expression may be still not integrable, but √
ui∇ log(ui/u0) lies in L2(�T ), since ∇√

ui , ∇ logu0 ∈ L2(�T ). Thus, the expression √
ui∇wi = ui∇ log(ui/u0) + uizi∇� ∈ L2(�T ) is well defined. In a similar way, we define 

∇ log(ui/ūi), which is possible since ūi is strictly positive, and we have 
√

ui∇ log(ui/ūi) ∈
L2(�T ).
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We insert the free energy inequality (15), namely

dH1

dt
(u) + dH2

dt
(�) ≤ −

∫
�

n∑
i=1

Diui |∇wi |2dx,

and rearrange the terms,

dH

dt
(u,�|ū, �̄) = dH1

dt
(u|ū) + dH2

dt
(�|�̄) (30)

≤ −
∫
�

n∑
i=1

Diui∇wi ·
(

∇ log
ui

ūi

− ∇ log
u0

ū0
+ zi∇(� − �̄)

)
dx

+
∫
�

n∑
i=1

Diūi∇w̄i ·
(

ui

ūi

∇ log
ui

ūi

− u0

ū0
∇ log

u0

ū0
+ zi∇(� − �̄)

)
dx.

At this point, we observe that the terms involving ∇wD
i cancel even if ∇wD

i does not vanish, 
since they also appear in the free energy inequality (15).

The terms involving the solvent concentrations u0 and ū0 can be integrated into the sum over 
i if we interpret system (1) as equations for u0, u1, . . . , un. For this, we observe that u0 solves

∂tu0 = −div
n∑

i=1

Diui∇wi = −div

{ n∑
i=1

Diui∇ log
ui

u0
+

( n∑
i=1

Diziui

)
∇�

}
.

Then (1) reads as

∂tui = div
n∑

j=0

(Aij∇ loguj + Qij∇�), i = 0, . . . , n, (31)

where Aij and Qij are defined in (17). Recall that z0 := 0. We define in a similar way Ā and Q̄. 
With this notation, (30) becomes

dH

dt
(u,�|ū, �̄) ≤ −

∫
�

n∑
i,j=0

(Aij∇ loguj + Qij∇�) ·
(

∇ log
ui

ūi

+ zi∇(� − �̄)

)
dx

+
∫
�

n∑
i,j=0

(Āij∇ log ūj + Q̄ij∇�̄) ·
(

ui

ūi

∇ log
ui

ūi

+ zi∇(� − �̄)

)
dx.

We add and subtract the integral

∫ n∑
i,j=0

(Aij∇ log ūj + Qij∇�̄) ·
(

∇ log
ui

ūi

+ zi∇(� − �̄)

)
dx
�
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and integrate over (0, t):

H((u,�)(t)|(ū, �̄)(t)) − H((u,�)(0)|(ū, �̄)(0)) ≤ I1 + I2 + I3, where (32)

I1 = −
t∫

0

∫
�

n∑
i,j=0

(
Aij∇ log

uj

ūj

+ Qij∇(� − �̄)

)
·
(

∇ log
ui

ūi

+ zi∇(� − �̄)

)
dxds,

I2 = −
t∫

0

∫
�

n∑
i,j=0

ui

{(
Aij

ui

− Āij

ūi

)
∇ log ūj +

(
Qij

ui

− Q̄ij

ūi

)
∇�̄

}
· ∇ log

ui

ūi

dxds,

I3 = −
t∫

0

∫
�

n∑
i,j=0

(
(Aij − Āij )∇ log ūj + (Qij − Q̄ij )∇�̄

) · zi∇(� − �̄)dxds.

Observe that u(0) = ū(0), implying that H((u, �)(0)|(ū, �̄)(0)) = 0.
Step 2: Estimation of I3. By Young’s inequality, we have

I3 ≤ C

t∫
0

n∑
i=1

(‖ui − ūi‖2
L2(�)

+ ‖∇(� − �̄)‖2
L2(�)

)
ds, (33)

where C > 0 depends on the L∞(�T ) norms of ∇ log ūj and ∇�̄.
The treatment of I1 and I2 is more delicate.
Step 3: Estimation of I1. We write I1 = I11 + I12 + I13, where

I11 = −
t∫

0

∫
�

n∑
i,j=0

Aij∇ log
uj

ūj

· ∇ log
ui

ūi

dxds,

I12 = −
t∫

0

∫
�

n∑
i,j=0

ziQij |∇(� − �̄)|2dxds,

I13 = −
t∫

0

∫
�

n∑
i,j=0

ziAij∇ log
uj

ūj

· ∇(� − �̄)dxds

−
t∫

0

∫
�

n∑
i,j=0

Qij∇ log
ui

ūi

· ∇(� − �̄)dxds.

It follows from 0 ≤ ui ≤ 1 that |Qij | ≤ C and consequently

I12 ≤ C

t∫
‖∇(� − �̄)‖2

L2(�)
ds.
0
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The matrix A is not positive definite since ui = 0 is possible. However, a modified matrix is 
positive definite on the subspace L, as shown in the following lemma.

Lemma 10. The matrix G, defined by

Gij =
{

Aij /
√

uiuj if uiuj > 0,

0 else,
i, j = 0, . . . , n, (34)

is positive definite on the subspace L = {z ∈Rn+1 : ∑n
i=0

√
uizi = 0}, namely

zT Gz ≥ D∗
(

z2
0

u0
+

n∑
i=1

z2
i

)
for every z ∈ L, (35)

where D∗ = mini=1,...,n Di > 0.

Proof. We start by considering the matrix

G∗ = D∗

⎛
⎜⎜⎜⎝

u−1
0

∑n
i=1 ui −√

u1/u0 · · · −√
un/u0

−√
u1/u0 1 0
... 0

. . . 0
−√

un/u0 0 1

⎞
⎟⎟⎟⎠ ,

where D∗ = mini=1,...,n Di > 0. For every ξ ∈ L, we have 
∑n

i=1
√

uiξi = −√
u0ξ0. Therefore, 

together with the size-exclusion constraint 
∑n

i=1 ui = 1 − u0, we obtain

ξT G∗ξ = D∗
ξ2

0

u0

n∑
i=1

ui − 2D∗
ξ0√
u0

n∑
i=1

√
uiξi + D∗

n∑
i=1

ξ2
i

= D∗
ξ2

0

u0
(1 − u0) + 2D∗

ξ0√
u0

√
u0ξ0 + D∗

n∑
i=1

ξ2
i

= D∗
{(

1

u0
+ 1

)
ξ2

0 +
n∑

i=1

ξ2
i

}
≥ D∗

(
ξ2

0

u0
+

n∑
i=1

ξ2
i

)
.

This implies that

ξT (G − G∗)ξ = ξ2
0

u0

n∑
i=1

(Di − D∗)ui − 2
ξ0√
u0

n∑
i=1

(Di − D∗)
√

uiξi +
n∑

i=1

(Di − D∗)ξ2
i

=
n∑

i=1

(Di − D∗)
(

ξ0√
u0

√
ui − ξi

)2

≥ 0,

and we infer that ξT Gz ≥ ξT G∗ξ , which ends the proof. �
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Lemma 10 is crucial in the weak–strong uniqueness proof. The corresponding positive bound 
helps us to conclude a negative upper estimate for I11, which is used to absorb the contributions 
from I13 and I2. We introduce the projections

(PLY )i = Yi − √
ui

n∑
j=0

√
ujYj , (PL⊥Y)i = √

ui

n∑
j=0

√
ujYj ,

for all i = 0, . . . , n and Y ∈Rn+1.

Lemma 11. Let Yi = √
ui∇ log(ui/ūi) ∈ L2(�T ) for i = 0, . . . , n. Then

I11 ≤ −D∗
t∫

0

∫
�

( |(PLY )0|2
u0

+
n∑

i=1

|(PLY )i |2
)

dxds,

where D∗ = mini=1,...,n Di > 0.

Proof. Recall that by definition, ∇ log(ui/ūi) = (2∇√
ui −√

ui∇ log ūi )/
√

ui = Yi/
√

ui if ui >

0. In this case,

Aij∇ log
ui

ūi

· ∇ log
uj

ūj

= GijYiYj ,

where the matrix G is defined in (34). If ui = 0 or uj = 0, either Yi = 0 or Yj = 0 and hence, the 
previous expression vanishes. Therefore, we rewrite I11 as

I11 = −
t∫

0

∫
�

n∑
i,j=0

GijYiYjdxds.

A straightforward computation shows that ranG = L, implying that kerG = L⊥. Hence, for 
every Y ∈Rn+1,

YT GY = (PLY )T G(PLY ),

where (PLY )i = Yi − √
ui

∑n
j=0

√
ujYj . Define ξi := (PLY )i = Yi − √

ui

∑n
j=0

√
ujYj for 

i = 0, . . . , n. Then ξ ∈ L, since

n∑
i=0

√
ui(PLY )i =

n∑
i=0

√
uiYi −

( n∑
i=0

ui

) n∑
j=0

√
ujYj = 0.

The inequality

(PLY )T G(PLY ) ≥ |(PLY )0|2
u0

+
n∑

|(PLY )i |2, (36)

i=1
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follows directly from (35), applied to ξ = PLY . Recall that u0 > 0 a.e. in �T .
We choose now Yi = √

ui∇ log(ui/ūi). The expression

|(PLY )0|2
u0

=
∣∣∣∣∇ log

u0

ū0
−

n∑
j=0

√
ujYj

∣∣∣∣2

is integrable in �T since ∇ logu0 ∈ L2(�T ), and 
√

ujYj ∈ L2(�T ). Therefore, we can integrate 
inequality (36) to obtain

I11 = −
t∫

0

∫
�

YT GYdxds = −
t∫

0

∫
�

(PLY )T G(PLY )dxds

≤ −D∗
t∫

0

∫
�

( |(PLY )0|2
u0

+
n∑

i=1

|(PLY )i |2
)

dxds,

which finishes the proof. �
Lemma 12. Let Yi = √

ui∇ log(ui/ūi ) for i = 0, . . . , n. For any ε > 0, there exists C(ε) > 0
such that

I13 ≤ ε

t∫
0

∫
�

( |(PLY )0|2
u0

+
n∑

i=1

|(PLY )i |2
)

dxds + C(ε)

t∫
0

‖∇(� − �̄)‖2
L2(�)

ds.

Proof. We take into account the structures of the matrices A and Q:

I13 = −
t∫

0

∫
�

n∑
i=1

zi

(
Ai0∇ log

u0

ū0
+ Aii∇ log

ui

ūi

)
· ∇(� − �̄)dxds

−
t∫

0

∫
�

(
Q00∇ log

u0

ū0
+

n∑
i=1

Qii∇ log
ui

ūi

)
· ∇(� − �̄)dxds.

Since Q00 = − 
∑n

i=1 Diziui and Qii = Diziui , we have

Q00∇ log
u0

ū0
+

n∑
i=1

Qii∇ log
ui

ūi

= −
n∑

i=1

Diziui∇
(

log
u0

ū0
− log

ui

ūi

)
dx.

Furthermore, because of Ai0 = −Diui and Aii = Diui ,

n∑
zi

(
Ai0∇ log

u0

ū0
+ Aii∇ log

ui

ūi

)
= −

n∑
Diziui∇

(
log

u0

ū0
− log

ui

ūi

)
dx.
i=1 i=1

60



A. Jüngel and A. Massimini Journal of Differential Equations 395 (2024) 38–68
This gives

I13 = 2

t∫
0

∫
�

n∑
i=1

Diziui∇
(

log
u0

ū0
− log

ui

ūi

)
· ∇(� − �̄)dxds

= 2

t∫
0

∫
�

n∑
i=1

Dizi

(
ui

Y0√
u0

− √
uiYi

)
· ∇(� − �̄)dxds.

Next, we calculate for i = 0, . . . , n,

(PL⊥Y)i = √
ui

n∑
j=0

uj∇ log
uj

ūj

= √
ui

n∑
j=0

(∇uj − uj∇ log ūj ) (37)

= −√
ui

n∑
j=0

uj∇ log ūj = √
ui

n∑
j=0

(ūj − uj )∇ log ūj ,

where we used the constraint 
∑n

i=0 ui = 1 to cancel the term 
∑n

j=0 ∇uj in the third equality and 
we added 0 = ∑n

j=0 ∇ūj = ∑n
j=0 ūj∇ log ūj in the last equality. Hence,

ui

(PL⊥Y)0√
u0

− √
ui(PL⊥Y)i = ui√

u0

(√
u0

n∑
j=0

(ūj − uj )∇ log ūj

)

− √
ui

(√
ui

n∑
j=0

(ūj − uj )∇ log ūj

)
= 0.

We split Yi = (PLY )i + (PL⊥Y)i in I13, which leads to

I13 = 2

t∫
0

∫
�

n∑
i=1

Dizi

(
ui

(PLY )0√
u0

− √
ui(PLY )i

)
· ∇(� − �̄)dxds.

An application of Young’s lemma finishes the proof. �
The previous lemmas show that

I1 ≤ (ε−D∗)
t∫

0

∫
�

( |(PLY )0|2
u0

+
n∑

i=1

|(PLY )i |2
)

dxds+C(ε)

t∫
0

‖∇(�−�̄)‖2
L2(�)

ds. (38)

Step 4: Estimation of I2. We split I2 = I21 + I22, where

I21 = −
t∫ ∫ n∑

i,j=0

ui

(
Aij

ui

− Āij

ūi

)
∇ log ūj · ∇ log

ui

ūi

dxds,
0 �
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I22 = −
t∫

0

∫
�

n∑
i,j=0

ui

(
Qij

ui

− Q̄ij

ūi

)
∇�̄ · ∇ log

ui

ūi

dxds. (39)

Lemma 13. For any ε > 0, there exists C(ε) > 0 such that

I21 ≤ ε

t∫
0

∫
�

|(PLY )0|2
u0

dxds + C(ε)

t∫
0

n∑
i=0

‖ui − ūi‖2
L2(�)

ds.

Proof. Recalling that Yi = √
ui∇ log(ui/ūi), we reformulate I21 as

I21 = −
t∫

0

∫
�

n∑
i,j=0

ui

(
Aij

ui

− Āij

ūi

)
Yi√
ui

· ∇ log ūj dxds.

All rows of the matrix (Aij /ui − Āij /ūi) vanish except the first one,

A00

u0
− Ā00

ū0
=

n∑
i=1

Di

(
ui

u0
− ūi

ū0

)
,

A0j

u0
− Ā0j

ū0
= −Di

(
uj

u0
− ūj

ū0

)
for j = 1, . . . , n.

This shows that

I21 = −
t∫

0

∫
�

n∑
j=0

u0

(
A0j

u0
− Ā0j

ū0

)
Y0√
u0

· ∇ log ūj dxds (40)

= −
t∫

0

∫
�

M ·
(

(PLY )0√
u0

+ (PL⊥Y)0√
u0

)
dxds,

where

M =
n∑

j=0

(
A0j − u0

ū0
Ā0j

)
∇ log ūj

=
n∑

i=1

Di

(
ui − u0

ū0
ūi

)
∇ log ū0 −

n∑
i=1

Di

(
ui − u0

ū0
ūi

)
∇ log ūi

=
n∑

i=1

Di(ui − ūi )∇ log ū0 +
(

1 − u0

ū0

) n∑
i=1

Diūi∇ log ū0

−
n∑

Di(ui − ūi )∇ log ūi −
(

1 − u0

ū0

) n∑
Diūi∇ log ūi
i=1 i=1
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=
n∑

i=1

Di(ui − ūi )∇ log
ū0

ūi

+ (u0 − ū0)

n∑
i=1

Di

ūi

ū0
∇ log

ū0

ūi

.

Since ∇ log ūi is bounded in L∞(�T ), we can bound the first term in I21:

−
t∫

0

∫
�

M · (PLY )0√
u0

dxds ≤ C

t∫
0

∫
�

n∑
i=0

|ui − ūi | |(PLY )0|√
u0

dxds (41)

≤ ε

t∫
0

∫
�

|(PLY )0|2
u0

dxds + C(ε)

t∫
0

n∑
i=0

‖ui − ūi‖2
L2(�)

ds,

where ε > 0 is arbitrary. To estimate the second term in I21, we use (37) and the elementary 
inequality (

∑n
i=0 |ui − ūi |)2 ≤ (n + 1) 

∑n
i=0 |ui − ūi |2:

−
t∫

0

∫
�

M · (PL⊥Y)0√
u0

dxds ≤ C

t∫
0

∫
�

n∑
i=0

|ui − ūi |
n∑

j=0

|ūj − uj |dxds (42)

≤ C(n + 1)

t∫
0

∫
�

n∑
i=0

|ui − ūi |2dxds.

The lemma follows after inserting (41) and (42) into (40). �
Lemma 14. For any ε > 0, there exists C(ε) > 0 such that

I22 ≤ ε

t∫
0

∫
�

|(PLY )0|2
u0

dxds + C(ε)

t∫
0

n∑
i=0

‖ui − ūi‖2
L2(�)

,

recalling definition (39) of I22.

Proof. All entries of the matrix (Qij /ui − Q̄ij /ūi) vanish except the element Q00/u0 −
Q̄00/ū0 = − 

∑n
i=1 Dizi(ui/u0 − ūi/ū0). This leads to

I22 =
t∫

0

∫
�

n∑
i=1

Diziu0

(
ui

u0
− ūi

ū0

)
∇�̄ · ∇ log

u0

ū0
dxds

=
t∫

0

∫
�

n∑
i=1

Dizi

(
(ui − ūi ) + ūi

ū0
(ū0 − u0)

)
∇�̄ · Y0√

u0
dxds

=
t∫ ∫ n∑

i=1

Dizi

(
(ui − ūi ) + ūi

ū0
(ū0 − u0)

)(
(PLY )0√

u0
+ (PL⊥Y)0√

u0

)
· ∇�̄dxds
0 �
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≤ C

t∫
0

∫
�

n∑
j=0

|uj − ūj |
( |(PLY )0|√

u0
+ |(PL⊥Y)0|√

u0

)
|∇�̄|dsdx.

It follows from (37) that

|(PL⊥Y)0|√
u0

=
∣∣∣∣∑
j=0

(ūj − uj )∇ log ūj

∣∣∣∣ ≤ C

n∑
j=0

|ūj − uj |.

Hence, Young’s inequality completes the proof. �
We conclude that

I2 ≤ 2ε

t∫
0

∫
�

|(PLY )0|2
u0

dxds + C(ε)

t∫
0

n∑
i=0

‖ui − ūi‖2
L2(�)

ds. (43)

Step 5: End of the proof. We collect (33), (38), and (43):

I1 + I2 + I3 ≤ (3ε − D∗)
t∫

0

∫
�

( |(PLY )0|2
u0

+
n∑

i=1

|(PLY )i |2
)

dxds

+ C(ε)

t∫
0

( n∑
i=0

‖ui − ūi‖2
L2(�)

+ ‖∇(� − �̄)‖2
L2(�)

)
ds.

Thus, choosing ε ≤ D∗/3, we conclude from (32) that

H((u,�)(t)|(ū, �̄)(t)) ≤ C

t∫
0

( n∑
i=0

‖ui − ūi‖2
L2(�)

+ ‖∇(� − �̄)‖2
L2(�)

)
ds. (44)

The first term on the right-hand side of (44) can be bounded by the relative entropy, as shown in 
the following lemma.

Lemma 15. It holds for any u, ū ∈ (0, 1) that

u log
u

ū
≥ 1

2
(u − ū)2.

Proof. The lemma has been proved in [17, Lemma 16]. For the convenience of the reader, we 
recall the short proof. Let f (u) = u logu. Then, for u, ū ∈ (0, 1),
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u log
u

ū
− (u − ū) = f (u) − f (ū) − f ′(ū)(u − ū) = f (θ(u − ū) + ū)

∣∣1
θ=0 − f ′(ū)(u − ū)

= (u − ū)

t∫
0

(
f ′(θ(u − ū) + ū) − f ′(ū)

)
dθ = (u − ū)

1∫
0

f ′(s(u − ū) + ū)
∣∣θ
s=0dθ

= (u − ū)2

1∫
0

θ∫
0

f ′′(s(u − ū) + ū)dsdθ.

The result follows from the observation f ′′(s(u − ū) + ū) = (s(u − ū) + ū)−1 ≥ 1. �
The previous lemma shows that

n∑
i=0

∫
�

ui log
ui

ūi

dx ≥ 1

2

n∑
i=0

∫
�

(ui − ūi )
2dx (45)

and hence,

2H(u,�|ū, �̄) ≥
n∑

i=0

‖ui − ūi‖2
L2(�)

+ λ2‖∇(� − �̄)‖2
L2(�)

.

Consequently, we obtain from (44):

H((u,�)(t)|(ū, �̄)(t)) ≤ C

t∫
0

H(u,�|ū, �̄)ds,

and Gronwall’s lemma finishes the proof.

4. Remarks on the uniqueness of solutions

Remark 16 (Uniqueness of weak solutions). The uniqueness of weak solutions for our model 
is more delicate than for the model of [15], even in the case Di = zi = 1 for i = 1, . . . , n. The 
reason is that we cannot use simple L2(�) estimations. Instead, we use the H−1(�) method 
under the (restrictive) condition that ∇� ∈ L∞(�T ). This regularity holds if the Dirichlet 
and Neumann boundaries do not intersect and if ∂� ∈ C1,1, f ∈ Lp(�), and �D ∈ W 2,p(�)

for some p > 3. Indeed, we conclude from elliptic regularity [25, Theorem 3.17] that � ∈
L∞(0, T ; W 2,p(�)) ↪→ L∞(0, T ; W 1,∞(�)). We also assume that 

∑n
i=1 ri(u) = 0. Summing 

(1) over i = 1 . . . , n, the pair (u0, �) solves

∂tu0 = div(∇ logu0 − (1 − u0)∇�), λ2(�2� − 1)�� = 1 − u0 + f (x) in �, (46)

together with the corresponding initial and boundary conditions (3)–(5). We claim that this sys-
tem has at most one solution. Let (u0, �) and (v0, �) be two weak solutions to this problem and 
let χ ∈ L2(0, T ; H 1(�)) be the unique solution to −�χ = u0 − v0 in �, ∇χ · ν = 0 on ∂�. 
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This solution exists since 
∫
�
(u0 − v0)dx = 0 because of mass conservation. We use χ as a test 

function in the first equation of (46):

1

2

d

dt

∫
�

|∇χ |2dx +
∫
�

(logu0 − logv0)(u0 − v0)dx

=
∫
�

( − (u0 − v0)∇� + (1 − v0)∇(� − �)
) · ∇χdx.

Using (logu0 − logv0)(u0 −v0) ≥ 4(
√

u0 −√
v0)

2 and |u0 −v0| = |√u0 +√
v0||√u0 −√

v0| ≤
2|√u0 − √

v0|, we find that

1

2

d

dt

∫
�

|∇χ |2dx + 4
∫
�

(
√

u0 − √
v0)

2dx ≤ C‖√u0 − √
v0‖L2(�T )‖∇�‖L∞(�T )‖∇χ‖L2(�T )

+ C‖∇(� − �)‖L2(�T )‖∇χ‖L2(�T )

≤ 2‖√u0 − √
v0‖2

L2(�T )
+ C‖∇χ‖2

L2(�T )
,

where we used the elliptic estimate ‖∇(� − �)‖L2(�T ) ≤ C‖u0 − v0‖L2(�T ) and the assump-
tion ‖∇�‖L∞(�T ) ≤ C. We conclude from Gronwall’s lemma that ∇χ(t) = 0 and consequently 
u0(t) = v0(t) and �(t) = �(t) for t > 0. Now, the equation

∂tui = div(∇ui − ui∇(logu0 − �)) (47)

can be interpreted as a drift-diffusion equation for ui with given (u0, �). The regularity 
∇ logu0 − � ∈ L2(�T ) is sufficient for the application of Gajewski’s entropy method; see [15, 
Sec. 3]. Thus, there exists at most one solution ui to (47) with the corresponding initial and 
boundary conditions. �
Remark 17 (Weak–strong uniqueness in the presence of reaction terms). We claim that Theo-
rem 2 holds for reaction rates ri : D → R, which are Lipschitz continuous and quasi-positive 
(i.e. ri(u) ≥ 0 for all u ∈ D with ui = 0) such that the total reaction rate is nonnegative, i.e. ∑n

i=1 ri(u) ≤ 0 for all u ∈ D, and that ri(u) logui = 0 if ui = 0. Proceeding as in Step 1 of 
the proof of Theorem 2 and taking into account Remark 9, we need to estimate additionally the 
expression

R =
∫
�

n∑
i=1

ri(u)(wi − w̄i)dx =: R1 + R2, where

R1 =
∫
�

n∑
i=1

{
ri(u)

(
log

ui

ūi

− log
u0

ū0

)
− ri(ū)

(
ui

ūi

− u0

ū0

)}
dx,

R2 =
∫
�

n∑
i=1

zi(ri(u) − ri(ū))(� − �̄)dx.
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The assumptions on ri imply that ri(u) logui is integrable. Therefore, following [12, p. 202f],

R1 =
∫
�

n∑
i=1

{
ri(u)

(
log

ui

ūi

− ui

ūi

+ 1

)
− (ri(u) − ri(ū))

(
ui

ūi

− 1

)

− ri(u)

(
log

u0

ū0
− u0

ū0
+ 1

)
+ (ri(ū) − ri(ū))

(
u0

ū0
− 1

)}
dx.

We deduce from 0 ≥ log z − z + 1 ≥ −|z − 1|2/ min{1, z} for z > 0 that

R2 ≤
∫
�

n∑
i=1

{
CRui

|ui − ūi |2
ūi min{ui, ūi} + C

ūi

|ri(u) − ri(ū)||ui − ūi |

− ri(u)

(
log

u0

ū0
− u0

ū0
+ 1

)
+ C

ū0
|ri(ū) − ri(ū)||u0 − ū0|

}
dx

≤ C

∫
�

n∑
i=1

|ui − ūi |2dx −
∫
�

n∑
i=1

ri(u)

(
log

u0

ū0
− u0

ū0
+ 1

)
dx

≤ C

∫
�

n∑
i=1

|ui − ūi |2dx,

where we used in the last step the assumption 
∑n

i=1 ri(u) ≤ 0. Furthermore, by the Lipschitz 
continuity of ri , the Poincaré inequality, and the elliptic estimate for the Poisson–Fermi equation,

R2 ≤ C

n∑
i=1

‖ui − ūi‖L2(�)‖∇(� − �̄)‖L2(�) ≤ C

n∑
i=1

‖ui − ūi‖2
L2(�)

.

Thus, estimate (44) is still valid with another constant, and Theorem 2 follows. �
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