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Boundary value problems (BVPs) in ordinary differential equations (ODEs) with singularities 
arise in numerous mathematical models describing real-life phenomena in natural sciences 
and engineering. This motivates vivid research activities aiming to characterize the analytical 
properties of singular problems, to investigate convergence of the standard numerical methods 
when they are applied to simulate differential equation with singularities, and to provide software 
for their efficient numerical treatment. There are two well-known, high order numerical methods 
which we focus on in this paper, the finite difference schemes and the collocation methods. 
Those methods proved to be dependable and highly accurate in the context of regular differential 
equations, so the question arises how do they preform for singular problems. While, there is a 
strong evidence for the collocation schemes to be a robust method to solve singular systems in a 
stable and efficient way, finite difference schemes are still considered less suitable for this problem 
class.

In this paper, we shall compare the performance of the code HOFiD_bvp based on the high order 
finite difference schemes and bvpsuite2.0 based on polynomial collocation, when the codes are 
applied to singular problems in ODEs. We are fully aware of the difficulties in a code comparison, 
so in this paper, we will try to only diagnose the potential improvements, we could address in the 
next update of the codes.

1. Introduction

The class of singular ODEs we are interested in, consists of a system of second order ODEs with a singularity of the first kind,

𝑦′′(𝑡) −
𝐴1(𝑡)

𝑡
𝑦′(𝑡) −

𝐴0(𝑡)
𝑡2

𝑦(𝑡) = 𝑓 (𝑡, 𝑦(𝑡), 𝑦′(𝑡)), 𝑡 ∈ (0,𝐿], (1)

subject to correctly posed boundary conditions. The analytical investigations are usually carried out for the related ODE system of 
first order which can be derived from (1) using the Euler transformation 𝑧(𝑡) = (𝑦(𝑡), 𝑡𝑦′(𝑡))𝑇 , see [37],

𝑧′(𝑡) − 𝑀(𝑡)
𝑡

𝑧(𝑡) = 𝑔(𝑡, 𝑧(𝑡)), 𝑡 ∈ (0,𝐿]. (2)
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While in the classical literature the inhomogeneity 𝑔 is assumed to be smooth, see [19,37], recent studies also deal with right-hand 
sides which are less regular,

𝑧′(𝑡) − 𝑀(𝑡)
𝑡

𝑧(𝑡) =𝐺(𝑡, 𝑧(𝑡)) ∶= 𝑔(𝑡, 𝑧(𝑡))
𝑡

, 𝑡 ∈ (0,𝐿], (3)

cf. [13–15,36]. Problems of the form (3) arise in the modelling of snow avalanche run-up and run-out [25,28,29]. Similar problem 
formulation arises when models posed on a semi-infinite interval 𝑡 ∈ [0, ∞) are transformed to the finite domain 𝑡 ∈ (0, 1]. Search for 
the numerical method to solve problems (1) and (3) is strongly motivated by further numerous applications from physics, chemistry, 
mechanics, or ecology. Also, research activities in related fields, like the computation of connecting orbits in dynamical systems or 
singular Sturm-Liouville problems benefit from techniques developed for problems of the form (3). The computation of self-similar 
solution profiles for the nonlinear Schrödinger equation is also essentially reduced to this problem type [10,11]. For more information 
see [12,21,23,27].

In this study, we focus our attention on the scalar second order ODEs of the form

𝑦′′(𝑡) −
𝑎1
𝑡
𝑦′(𝑡) −

𝑎0

𝑡2
𝑦(𝑡) = 𝑓 (𝑡, 𝑦(𝑡), 𝑦′(𝑡)), 𝑡 ∈ (0,𝐿], (4)

subject to boundary conditions

𝑦(0) = 0, 𝑏(𝑦(𝐿), 𝑦′(𝐿)) = 0 (5)

or

𝑦′(0) = 0, 𝑏(𝑦(𝐿), 𝑦′(𝐿)) = 0. (6)

Here, 𝑓 and 𝑏 are appropriately smooth functions on [0, 𝐿], and 𝑎0, 𝑎1 are real constants.

The classes of the first and second order BVPs in singular ODEs have been extensively studied and various approaches to their 
numericals solution have been proposed, among them finite difference schemes and collocation methods,1 see [18,19,26,38,39]. 
Collocation schemes proved especially robust and efficient and therefore, they have been used in many codes as basic solvers, see

Fortran codes, COLSYS [6] and COLNEW [5,8], and Matlab codes MIRKDC [17], bvp4c [34,35], sbvp [3], and bvpsuite [4,22,

24].

While due to its advantageous properties in the context of singular problems, polynomial collocation is widely acknowledged, the 
finite difference methods are not so popular. Recently, the Matlab code HOFiD_bvp, based on high order finite difference schemes, 
has been successfully applied to solve singularly perturbed2 problems with discontinuous source terms.

In order to detect advantages and possible drawbacks of the Matlab codes HOFiD_bvp and bvpsuite2.0, we compare the perfor-

mance of these software packages applied to numerically simulate the singular BVPs (4), (5) and (4), (6).

The paper is organized as follows: In Sections 2 and 3, we describe the codes HOFiD_bvp and bvpsuite2.0, respectively. Numerical 
simulations of model problems are discussed in Section 4 and summarized in Section 5.

2. Finite difference schemes and the HOFiD_bvp code

The HOFiD_bvp package [33] is based on the finite difference method of high order to treat BVPs of the second order ODEs.3

The method follows the approach of the boundary value methods, see [1,2,9,32]. It uses symmetric difference schemes (called “main 
schemes”) to approximate the solution values in the inner points of the mesh and (non-symmetric) “initial” and “final” difference 
schemes of order 𝑝 at the beginning and at the end of the interval. As main scheme central differences of order 𝑝 (computed with 𝑝 +1
points) are used for the approximation of the second derivative, while for the first derivative backward or forward formulae of the 
same order are utilized following the upwind method. Moreover, the code does not require to transform the second order problem 
to the corresponding first order one, since the derivatives are approximated separately. This become clear when we consider a scalar 
ODE posed on the interval (0, 1],

𝑦′′(𝑡) = 𝑓 (𝑡, 𝑦(𝑡), 𝑦′(𝑡)),

𝑏(𝑦(0), 𝑦′(0), 𝑦(1), 𝑦′(1)) = 0,
(7)

with a singularity at 𝑡 = 0. Let us consider the mesh

Δ𝑁 = {𝜏𝑖 = 𝜏𝑖−1 + ℎ𝑖, 𝑖 = 1,… ,𝑁, 𝜏0 = 0, 𝜏𝑁 = 1}

1 In [30], the simplified kernel reproducing method combined with the least squares was proposed to solve a class of a nonlinear singular BVP.
2 However, note that the difficulties of this problem class are essentially different from the challenges we face while dealing with singular ODEs.
185

3 Typically, the orders are 𝑝 = 4, 6, 8 or 10.
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Fig. 1. Mesh with variable stepsizes the interval [𝑎, 𝑏], 𝑎 = 𝜏0 , 𝑏 = 𝜏𝑁 .

and denote by 𝑀1 and 𝑀2 the quasi-Toeplitz matrices of size (𝑁 + 1) × (𝑁 + 1) approximating the second and the first derivative 
respectively. For 𝑖 = 𝑝∕2, … , 𝑁 − 𝑝∕2 the matrix coefficients are related to the main formulae, while for 𝑖 = 0, … , 𝑝∕2 − 1 and 
𝑖 =𝑁 − 𝑝∕2 +1, … , 𝑁 they depend on the initial and final methods of order 𝑝. Certainly, in 𝑖 = 0 and 𝑖 =𝑁 boundary conditions are 
required to hold. This means that in case of Neumann or Fourier-type conditions, the first derivative is approximated using initial 
formula of order 𝑝 having respectively zero initial conditions in 𝑖 = 0 and zero final conditions in 𝑖 =𝑁 . The variable mesh is assembled 
by blocks of different stepsize containing at least 𝑝 +4 equidistant points, so that the mesh structure on the overall interval is piecewise 
constant. Moreover, let 𝑌 = (𝑦0, 𝑦1, … , 𝑦𝑁 )𝑇 be the vector of the values of the numerical solution, and 𝑌𝜈 = (𝑦𝜈0, 𝑦

𝜈
1, … , 𝑦𝜈

𝑁
)𝑇 , 𝜈 = 1, 2, 

the vectors of the approximations of 𝑦′(𝑡) and 𝑦′′(𝑡) in the mesh points. The coefficients of the matrices 𝑀1 and 𝑀2 are computed by 
solving a Vandermonde-type linear system, where the derivative approximations are obtained from

𝑌1 = diag

(
1
ℎ𝑖

)
𝑀1𝑌 , 𝑌2 = diag

(
1
ℎ2
𝑖

)
𝑀2𝑌 ,

and the solution of the BVP (7) is obtained from the system

𝑌2 = 𝐹 (𝑇 ,𝑌 , 𝑌1).

It is important to stress that the variable mesh is piecewise constant, with blocks that have at least p+4 equidistant points. The 
starting mesh is usually uniform and it is adapted using the error equidistribution principle, based on the evaluation of an absolute 
error estimate calculated from two methods of consecutive orders. Moreover, the code can potentially work with four different even 
orders using a variable order strategy proposed in [33]. We are especially interested to see if this feature will prove useful in the 
context of singular problems resulting in coarser meshes and shorter execution times, see Section 4.

3. Collocation method and bvpsuite2.0

In the scope of the code are BVPs for systems of implicit mixed order4 ODEs,

𝐹 (𝑡, 𝑝1, ..., 𝑝𝑠, 𝑦1(𝑡), 𝑦′1(𝑡), ..., 𝑦
(𝑙1)
1 (𝑡), ..., 𝑦𝑛(𝑡), 𝑦′𝑛(𝑡), ..., 𝑦

(𝑙𝑛)
𝑛 (𝑡)) = 0, (8)

𝐵(𝑝1, ..., 𝑝𝑠, 𝑦1(𝑐1), ..., 𝑦
(𝑙1−1)
1 (𝑐1), ..., 𝑦𝑛(𝑐1), ..., 𝑦

(𝑙𝑛−1)
𝑛 (𝑐1),

..., 𝑦1(𝑐𝑞), ..., 𝑦
(𝑙1−1)
1 (𝑐𝑞), ..., 𝑦𝑛(𝑐𝑞), ..., 𝑦

(𝑙𝑛−1)
𝑛 (𝑐𝑞)) = 0. (9)

Here, the solution is denoted by 𝑦(𝑡) = (𝑦1(𝑡), 𝑦2(𝑡), ..., 𝑦𝑛(𝑡))𝑇 and 𝑝𝑖, 𝑖 = 1, … , 𝑠, are unknown parameters which have to be calculated 
along with the solution 𝑦. The problem can be posed on a finite, 𝑡 ∈ [𝑎, 𝑏], or semi-finite interval, 𝑡 ∈ [𝑎, ∞), 𝑎 ≥ 0. For the latter case, a 
driver routine automatically transforms the semi-infinite domain to the finite one. The boundary conditions are multipoint boundary 
conditions posed at points 𝑐𝜈 , 𝜈 = 1, … , 𝑞.

We apply the polynomial collocation to solve the problem. To this aim, we consider a partition Δ of the interval [𝑎, 𝑏], as shown 
in Fig. 1.

In each subinterval 𝐽𝑖 = (𝜏𝑖, 𝜏𝑖+1), we introduce 𝑚 so-called collocation points

𝑡𝑖,𝑗 = 𝜏𝑖 + 𝑝𝑗ℎ𝑖, 𝑗 = 1, ...,𝑚, 0 < 𝑝1 < 𝑝2 <⋯ < 𝑝𝑚 < 1.

In many applications, singularities may occur in 𝑡 = 𝑎 and 𝑡 = 𝑏, which motivates the choice 𝑝1 > 0 and 𝑝𝑚 < 1 avoiding evaluation 
of 𝐹 at the singular point, where 𝐹 becomes unbounded. Naturally, Gaussian points or equidistant inner points are good options for 
the collocation points of the method.

The solution 𝑦 is approximated by a piecewise polynomial function which has to satisfy the boundary conditions, certain global 
continuity conditions at the points 𝜏𝑖, 𝑖 = 0, … , 𝑁 −1, and the collocation conditions, which means to satisfy the system of ODEs (up 
to the round-off errors) at the collocation points 𝑡𝑖,𝑗 , 𝑖 = 0, … , 𝑁 − 1, 𝑗 = 1, … , 𝑚.

Further problem classes in scope of bvpsuite2.0 are Sturm-Liouville eigenvalue problems for the differential operators, Index 
1 differential-algebraic equations, and parameter dependent problems solved utilizing path-following techniques.
186

4 The highest derivatives of the solution components may vary.
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Fig. 2. Problem 1: Exact solution 𝑦(𝑡) = 𝑡2 ln 𝑡.

Table 1

Problem 1: Results from bvpsuite2.0.

order TOL mesh error exact rel. error exact abs. error

6 1e-8 51 6.1013e-10 3.3430e-14 6.1490e-15

8 1e-8 51 6.6641e-10 1.7964e-13 3.3029e-14

10 1e-8 51 9.2947e-10 1.1065e-11 2.0351e-12

6 1e-8 21 3.4399e-09 2.8829e-13 5.2993e-14

8 1e-8 21 7.3561e-09 1.8116e-13 3.3168e-14

10 1e-8 21 7.3319e-09 1.0511e-11 1.9334e-12

Each code module is equipped with an error estimation routine which is used as a basis for the mesh adaptation. The error 
estimation is based on the ℎ − ℎ∕2 idea which means that the collocation scheme is executed on two meshes, with 𝑁 +1 and 2𝑁 +1
mesh points, and the values of both solutions on the coarser mesh deliver the error estimate for the global error there.

The mesh adaptation strategy has been developed in [31]. It consists of two steps. The first step is carried out on a coarse mesh 
with 51 mesh points.5 The aim of the first step is to relocate the mesh points in such a way that they correctly reflect the solution 
behaviour. This is done in a few iteration steps aiming at the equidistribution of the defect. In the second step appropriately many 
points are added (along the grid density function from the first step) to satisfy the tolerance for the global error prescribed by the 
user.

4. Numerical results

Problem 1
We first consider the following BVP:

𝑦′′(𝑡) − 1
𝑡
𝑦′(𝑡) − 2 = 0, 𝑦(0) = 𝑦(1) = 0,

whose exact solution is given by 𝑦(𝑡) = 𝑡2 ln 𝑡, see Fig. 2.

The results of the numerical simulation using bvpsuite2.0 are documented in Table 1. By order we denoted the order of the 
collocation method, TOL is the tolerance parameter for the mixed error control (in which relative and absolute tolerances are set 
equal to TOL), and mesh shows the number of mesh points 𝑁 in the final mesh. The maximum of the error estimate which has to 
satisfy the tolerance requirement to terminate the run is denoted by error, while exact rel. error and abs. error is the 
maximum of the true relative and absolute error, respectively.6

The solution of Problem 1 is not smooth and its higher derivatives become unbounded close to 𝑡 = 0. The problem is solved using 
mesh adaptation and two starting meshes with 21 and 51 mesh points. One can see that the tolerance is satisfied already on the 
starting mesh with 21 points. The exact errors are much smaller than TOL, and range between 10−14 to 10−11.

5 This number is used on the normalized interval of the length equal to 1 and has to be enlarged for longer intervals accordingly.
187

6 Note that these maximal values have been obtained as discrete maxima taken over the mesh points and collocation points.
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Fig. 3. Problem 1: Starting mesh and adapted final mesh with 21 mesh points.

Table 2

Problem 1: Results from HOFiD_bvp. The third column shows the estimated absolute error which 
is basically of the same size as the relative one. In this example, the error estimate satisfies the 
prescribed tolerance, however the true error is slightly larger.

order TOL mesh error exact abs. error exact rel. error

4 1e-8 3585 3.0059e-09 1.4246e-08 1.4243e-08

6 1e-8 918 9.3704e-09 7.6807e-08 7.6806e-08

8 1e-8 474 9.8446e-09 1.0902e-07 1.0902e-07

10 1e-8 571 9.9055e-09 1.3958e-07 1.3958e-07

However, the mesh points have been appropriately relocated to correctly reflect the solution behaviour and the size of the error, 
see Fig. 3. The region, where the solution is non smooth is correctly detected and the mesh points lay denser close to the origin, 
where that error is large. In the subinterval [0.3, 1] the mesh becomes coarser than the uniform mesh.

The simulation results obtained by HOFiD_bvp can be found in Table 2. The code controls both, the absolute and the relative 
error but the results turn to be less accurate although the mesh is much denser. For the lower orders 4 and 6, we obtain more accurate 
results than for the higher orders 8 and 10. This behaviour is a consequence of the order reduction down to 2 which can be observed 
in all tests.

Problem 2
Let us consider the singular BVP [34,35],

𝑦′′(𝑡) + 2
𝑡
𝑦′(𝑡) − 𝜙2𝑦(𝑡) exp

(
𝛾𝛽(1 − 𝑦(𝑡))

1 + 𝛽(1 − 𝑦(𝑡))

)
= 0, 𝑦′(0) = 0, 𝑦(1) = 1,

where 𝜙 = 0.6, 𝛾 = 40, and 𝛽 = 0.2. The problem has three solutions which can be computed using different starting solutions, see 
Fig. 4.

In Table 3, the results of the numerical simulation with HOFiD_bvp are collected. The code solved the problem within the 
prescribed tolerance from initial meshes specified below. No difficulties have been observed.

The results obtained from bvpsuite2.0 can be found in Table 4. The tolerance requirement has been satisfied on the initial mesh 
with 51 equidistant points, no mesh adaptation was necessary. If we compare the solution accuracy, the collocation code delivers 
results whose errors are a few orders of magnitude more accurate. However, we were not able to recover 𝑦2(𝑡). We have tried various 
starting profiles, but could observe convergence only to either 𝑦1(𝑡) or 𝑦3(𝑡). Solution 𝑦2(𝑡) seems to be a repulsive fixed point for the 
collocation code.

Problem 3
Let us now consider the BVP problem arising from electromagnetic self-interaction theory [7],
188

𝑦′′(𝑡) + 4
𝑡
𝑦′(𝑡) + (𝑡𝑦(𝑡) − 1)𝑦(𝑡) = 0, 𝑦′(0) = 0,
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Fig. 4. Problem 2: Solutions computed using HOFiD_bvp of order 6. The solution 𝑦1(𝑡), depicted in blue (lowest curve), has been computed using the initial profile 
𝑦(𝑡) ≡ 0. To obtain the solution 𝑦2(𝑡), shown in red (central curve), the following starting values have been used: 𝑦(0) = 0.38, 𝑦(0.5) = 0.75, and 𝑦(1) = 1. Finally, the 
starting guess 𝑦(𝑡) ≡ 1 provided the solution 𝑦3(𝑡) depicted in magenta (upper most curve). For interpretation of the colours in the figure(s), the reader is referred to 
the web version of this article.

Table 3

Problem 2: The initial mesh for solutions 𝑦2(𝑡) and 𝑦3(𝑡) contained 
15 points. For the solution 𝑦1(𝑡), the starting mesh with 21 points 
was used for the methods of order 4, 6, and 8, while for order 10
the initial mash with 51 was utilized.

order TOL mesh abs. error rel. error

𝑦1(𝑡)

4 1e-8 157 9.8068e-09 8.4706e-09

6 1e-8 66 8.2490e-09 8.2432e-09

8 1e-8 57 1.3310e-09 1.3243e-09

10 1e-8 54 1.4665e-10 1.2778e-10

𝑦2(𝑡)

4 1e-8 167 6.5398e-09 4.4201e-09

6 1e-8 47 6.5869e-09 4.8281e-09

8 1e-8 27 1.1974e-08 8.6217e-09

10 1e-8 29 6.1202e-09 4.4882e-09

𝑦3(𝑡)

4 1e-8 44 1.7429e-08 9.1387e-09

6 1e-8 18 6.6477e-09 3.4857e-09

8 1e-8 15 6.5300e-10 3.4240e-10

10 1e-8 15 1.3426e-10 7.0396e-11

Table 4

Problem 2: Solutions 𝑦1(𝑡) and 𝑦3(𝑡) obtained 
from the bvpsuite2.0 code.

order TOL mesh abs. error

𝑦1(𝑡)

6 1e-8 51 3.4230e-14

8 1e-8 51 2.2180e-14

10 1e-8 51 1.8676e-13

𝑦3(𝑡)

6 1e-8 51 7.5002e-14

8 1e-8 51 7.4565e-14

10 1e-8 51 6.9790e-14
189
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Fig. 5. Problem 3: Solutions computed using HOFiD_bvp of order 6.

Table 5

Problem 3: Numerical results computed using HOFiD_bvp with an initial mesh of 
32 and 48 points for 𝐿 = 5 and 𝐿 = 20, respectively.

𝐿 order TOL mesh abs. error rel. error

𝑦′(0) = 0, 𝑦(𝐿) + 𝑦′(𝐿) = 0

5 4 1e-8 4033 2.9461e-09 9.6905e-10

5 6 1e-8 143 6.8640e-09 2.2562e-09

5 8 1e-8 169 1.7346e-09 5.7010e-10

5 10 1e-8 52 6.0698e-09 2.0002e-09

5 6 8 10 1e-2 1e-5 1e-8 49 1.2210e-08 4.0235e-09

20 4 1e-8 2077 1.0856e-08 6.3889e-09

20 6 1e-8 829 6.9737e-09 2.2297e-09

20 8 1e-8 188 8.4732e-09 8.4655e-09

20 10 1e-8 171 1.5021e-08 4.8028e-09

20 6 8 10 1e-2 1e-5 1e-8 133 1.5724e-08 5.0274e-09

𝑦′(0) = 0, 𝑦(𝐿) = 0

5 4 1e-8 2753 3.1070e-08 9.2501e-09

5 6 1e-8 389 3.8279e-09 1.1397e-09

5 8 1e-8 78 6.6038e-09 4.9040e-09

5 10 1e-8 52 3.0596e-09 9.1231e-10

5 6 8 10 1e-2 1e-5 1e-8 50 2.6145e-08 7.7963e-09

20 4 1e-8 11105 2.6538e-09 8.4660e-10

20 6 1e-8 1781 4.7281e-09 1.5121e-09

20 8 1e-8 387 3.8053e-09 1.2167e-09

20 10 1e-8 261 3.0595e-08 9.7821e-09

20 6 8 10 1e-2 1e-5 1e-8 141 8.0393e-09 2.5704e-09

where 𝐿 = 5, 8, 10, or 20. The second boundary condition is posed at 𝑡 =𝐿 and reads: 𝑦(𝐿) + 𝑦′(𝐿) = 0 or 𝑦(𝐿) = 0.

Using the initial solution profile,

𝑦(𝑡) =

{
2, 𝑡 ≤ 1.5,
2𝑒1.5−𝑡, 𝑡 > 1.5.

results in the convergence to the desired non-trivial solution. In Fig. 5, the solutions for 𝐿 = 5 and 20 are presented. Since the solutions 
of the problem are not smooth, utilizing mesh adaptation is the only way to approximate the solution in an efficient way. Note that 
the finite difference code is adapting the mesh in a proper way by enhancing the mesh density in the regions of difficulty.

In Table 5, the numerical results obtained from the finite difference code are recorded. Here, an order variation strategy has been

applied, see the fifth row of the block. The orders 6, 8, and 10 were used to reach the accuracies 10−2, 10−5, and 10−8, respectively. 
This strategy allows to satisfy the final tolerance 10−8 on a mesh with less points, compare the third and the fifth row in a block. In 
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Table 6

Problem 3: Results obtained using bvpsuite2.0 from 
starting meshes with 51 points.

𝐿 order TOL mesh abs. error

𝑦′(0) = 0 𝑦(𝐿) + 𝑦′(𝐿) = 0

5 6 1e-08 51 6.3159e-15

5 8 1e-08 51 5.7958e-15

5 10 1e-08 51 1.5234e-12

20 6 1e-08 51 1.7189e-10

20 8 1e-08 51 1.7451e-12

20 10 1e-08 51 2.9796e-12

𝑦′(0) = 0 𝑦(𝐿) = 0

5 6 1e-08 51 8.5716e-15

5 8 1e-08 51 1.2037e-14

5 10 1e-08 51 9.0060e-13

20 6 1e-08 51 1.7187e-10

20 8 1e-08 51 3.6224e-13

20 10 1e-08 51 2.9859e-12

Fig. 6. Problem 4, 𝜉 = 0.1: Solution of the problem computed with HOFiD_bvp of order 8 using an initial uniform mesh with 15 points and initial solution profile 
defined in [20].

When comparing the results of the finite difference method with those of collocation, see Table 6, we observe a very good accuracy 
of the latter solution. The absolute error ranges from 10−14 to 10−10 on meshes with 51 mesh points.7

Problem 4
Let us finally consider the singular BVP arising from the Cahn-Hillard theory and used in hydrodynamics to study the behaviour 

of non-homogeneous fluids. In particular, the equation describes the formation of microscopic bubbles in a non-homogeneous fluid 
(vapour inside liquid). The problem reads [16,20,21]:

𝑦′′(𝑡) + 𝑁−1
𝑡

𝑦′(𝑡) − 4𝜆2(𝑦(𝑡) + 1)𝑦(𝑡)(𝑦(𝑡) − 𝜉) = 0, 𝑦′(0) = 0, 𝑦(∞) = 𝜉,

where 𝑁 = 3, 𝜆 = 1, and 𝜉 = 0.1, 0.6. We now transform the problem to a finite domain using the transformation

𝜏 = 1 − 1√
1 + 𝑡

, 𝜏 ∈ [0,1].

Consequently,

1
4 (1 − 𝜏)6𝑦′′(𝜏) +

(
𝑁−1

2𝜏(2−𝜏) −
3
4

)
(1 − 𝜏)5𝑦′(𝜏) − 4𝜆2(𝑦(𝜏) + 1)𝑦(𝜏)(𝑦(𝜏) − 𝜉) = 0,

subject to the boundary conditions 𝑦′(0) = 0, 𝑦(1) = 𝜉 follows. The problem is parameter dependent with 𝜉 ∈ (0, 1). The larger the 
value of 𝜉, the steeper the inner boundary layer becomes, see Fig. 6 and 7.
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Fig. 7. Problem 4, 𝜉 = 0.1 and 𝜉 = 0.6: Solution of the problem computed with bvpsuite2.0 using an initial uniform mesh with 51 points and initial solution profile 
defined in [20].

Table 7

Problem 4, 𝜉 = 0.1: Results obtained from HOFiD_bvp.

order TOL mesh abs. error rel. error

4 1e-8 787 1.1073e-09 8.4874e-10

6 1e-8 247 4.6386e-09 3.5608e-09

8 1e-8 86 8.2062e-09 6.2899e-09

10 1e-8 48 1.2494e-08 9.5763e-09

6 8 10 1e-2 1e-5 1e-8 51 1.1820e-08 9.0598e-09

Table 8

Problem 4, 𝜉 = 0.1 and 𝜉 = 0.6: Results obtained from bvp-

suite2.0. The tolerances have been satisfied on the initial 
mesh with 51 mesh points. The mesh adaptation strategy im-

plemented in the code, requires a certain asymptotic quality 
of the solution, so that lowering the number of the mesh 
points in the starting mesh is not recommended. The code 
can also work with less points in the initial mesh, see Prob-

lems 1, but coarse initial meshes are risky.

order TOL mesh abs. error

𝜉 = 0.1

6 1e-8 51 2.8471e-14

8 1e-8 51 1.4489e-15

10 1e-8 51 2.2298e-13

𝜉 = 0.6

6 1e-8 51 7.6069e-10

8 1e-8 51 2.7590e-12

10 1e-8 51 6.1910e-12

Clearly, the choice for the initial solution profile is crucial. For any initial profile which is not sufficiently close to the exact 
solution, the iteration diverges or converges to the trivial solution 𝑦(𝑡) = 𝜉.

In Table 7, we record the results of the simulation carried out with HOFiD_bvp. Here, we see that the variable order strategy,8

only slightly changes the number of points in the final mesh, when compared to the run, where the final accuracy of TOL = 10−8 is 
sought to become satisfied directly, see rows four and five in Table 7.

The results obtained using bvpsuite2.0 can be found in Fig. 7 and in Table 8. We again observe that the tolerances are satisfied 
on the initial mesh with errors considerably smaller than the required accuracy of 10−8 . Similar to the previous observations, only at 
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order 10 and for variable orders 6, 8, and 10, the HOFiD_bvp solves the problem on a mesh whose size is comparable to the one of

bvpsuite2.0.

We simulated a few more singular BVPs with somewhat similar findings, so we are not documenting all results here.

5. Conclusion

The results of the simulations described above suggest that the high order difference schemes may suffer from order reductions 
in the context of singular ODEs which result in very fine meshes. Here, the convergence analysis would be in place to clarify the 
situation before designing a code version for singular ODEs. However, the code HOFiD_bvp proved able to cope with the singularity 
in a very dependable way and reasonable execution times.

The code bvpsuite2.0 shows to be suitable for singular ODEs with a singularity of the first kind. The meshes used stay coarse 
and when adapted correctly reflect the solution behaviour. In most of the cases the tolerances are satisfied on the initial mesh with 
51 points. Clearly, the code is ‘overdoing’ by delivering solutions which are a few orders of magnitude more accurate than required. 
This can be explained by the size of the initial mesh which seems to ‘have too many points’ to precisely hit the tolerance. On the 
other hand, reducing the number of points in the initial mesh is not recommended due to a certain asymptotic quality of the solution 
calculated on the initial mesh in order to obtain a proper mesh density function, see the first step of the mesh adaptation routine 
described at the end of Section 3. This solution and the adapted initial mesh are the basis for the second step and their good quality 
is necessary for the mesh adaptation module to work dependably, cf. Section 3.
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