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We consider overdetermined collocation methods and propose a weighted least squares approach 
to derive a numerical solution. The discrete problem requires the evaluation of the Jacobian of 
the vector field which, however, appears in a 𝑂(ℎ) term, ℎ being the stepsize. We show that, 
by neglecting this infinitesimal term, the resulting scheme becomes a low-rank Runge–Kutta 
method. Among the possible choices of the weights distribution, we analyze the one based on 
the quadrature formula underlying the collocation conditions. A few numerical illustrations are 
included to better elucidate the potential of the method.

1. Introduction

In this paper, we apply an overdetermined collocation method to approximate the solution of an initial value problem in ordinary 
differential equations. This method is based on the following principle: the ansatz for the numerical solution is chosen in such 
a way that the number of equations to fix the ansatz function is larger than the number of unknown coefficients. The resulting 
overdetermined system of equations, in general nonlinear, is then solved in the least squares sense. This approach is a regularization 
technique and proves useful in cases when the analytical problem is not well-posed or whose data is noisy.

Historically, one of the most prominent fields for this approach is the numerical solution of boundary value problems (BVPs). In 
fact, an early attempt to provide professional software in the context of BVPs can be found in [2], where the ansatz functions were 
the piecewise polynomial solutions smoother at mesh points. The extra smoothness means fewer solution parameters, hence over-

determined systems of algebraic equations. It has been shown there, that nonetheless, some partial super-convergence still holds. 
Concerning the numerical solution of two-point boundary value problems, we also mention [1,13], and related software available in 
[21].

The approach has then been extended to the wider class of differential-algebraic equations (DAEs) and it can be found in the 
COLDAE software for solving boundary value problems in DAEs and extending the well-established code COLSYS [5]. Least squares 
collocation is also considered in the newest research for the numerical solution of higher index DAEs [15,16] (based on the develop-

ment described in [3,4]), where a related technique has been discussed. The use of least squares collocation in the context of higher 
index DAEs was also proposed in [20], see [17–19] for the discussion of related issues.

With this premise, we emphasize that the present paper is not directly related to the above fields but, instead, it is aimed at 
finding an alternative approach that, still retaining the basic accuracy properties of least squares collocation methods, do have a 
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much more favorable computational complexity. As a matter of fact, one main drawback in using least squares collocation is that 
the discrete problem involves the Jacobian of the vector field evaluated along the internal stages, namely the values attained by the 
unknown polynomial approximation at the collocation abscissae. This significantly enhances the overall computational complexity 
associated with the integration procedure.

However, it turns out that the Jacobian matrix appears in a term that becomes negligible as the stepsize ℎ approaches zero. 
Interestingly, for ℎ small enough, this term acts as a pertubation to a special low-rank Runge–Kutta formula named Linear Integral 
Method (LIM), specifically designed for the numerical integration of conservative problems [7,8,10,12]. Given that LIMs have un-

dergone extensive research, with the development of highly efficient techniques for their implementation [11,6], it makes sense to 
explore the connections between the solutions provided by the least squares collocation procedure and the associated LIM.

This investigation serves as the motivation for the present work and will be confined to ordinary differential equations coupled 
with initial values. In fact, at this very first stage, the primary objective is to examine the extent to which the more complex 
structure of the discrete problem arising from the least squares approach can be effectively replaced by the much simpler formulation 
represented by a Runge–Kutta method, as it is suggested by the numerical results reported in the sequel.

The paper is organized as follows. In Section 2 we introduce a weighted least squares approach to solve an overdetermined col-

location problem. We also show that the resulting nonlinear system may be interpreted as a perturbation of a corresponding discrete 
problem defining the class of line integral methods named Hamiltonian Boundary Value Methods (HBVMs). Section 3 provides an 
in-depth discussion of the similarities between least squares and line integral methods. In Section 4, we present convergence results 
and explore the degree to which the two numerical solutions closely align. Section 5 offers a set of numerical illustrations that 
validate the theoretical findings. Finally, in Section 6, we draw some concluding remarks.

2. Overdetermined collocation methods

For a sufficiently regular function 𝑓 ∶ [𝑡0, 𝑇 ] ×ℝ𝑚 →ℝ𝑚, we consider the numerical approximation of the solution of the Initial 
Value Problem (IVP)

𝑦′ = 𝑓 (𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0 ∈ℝ𝑚, 𝑡 ∈ [𝑡0, 𝑇 ], (1)

on the interval [𝑡0, 𝑡0 + ℎ] (ℎ stands for the stepsize) by means of a polynomial 𝑢(𝑡) of degree at most 𝑠 obtained by imposing the 
following 𝑘 + 1 collocation conditions:{

𝑢(𝑡0) = 𝑦0,

𝑢′(𝑡0 + 𝑐𝑖ℎ) = 𝑓 (𝑡0 + 𝑐𝑖ℎ, 𝑢(𝑡0 + 𝑐𝑖ℎ)), 𝑖 = 1,… , 𝑘,
(2)

where 0 ≤ 𝑐1 < 𝑐2 <⋯ < 𝑐𝑘 ≤ 1 are the collocation abscissae. When 𝑘 > 𝑠, system (2) is overdetermined and we handle it by solving 
a related weighted least squared problem.

Without loss of generality and to simplify the notation, we assume that the IVP (1) is scalar (𝑚 = 1) and autonomous. Denoting 
by Π𝑠 the vector space of polynomials of degree at most 𝑠, for a given distribution of (positive) weights {𝑤𝑖}𝑖=1,…,𝑘 satisfying the 
normalization condition 

∑𝑘
𝑖=1𝑤𝑖 = 1, the approximating polynomial 𝑢∗ ∈ Π𝑠 is defined by1

𝑢∗ = argmin
𝑢∈Π𝑠,𝑢(𝑡0)=𝑦0

𝑘∑
𝑖=1

𝑤𝑖

(
𝑢′(𝑡0 + 𝑐𝑖ℎ) − 𝑓 (𝑢(𝑡0 + 𝑐𝑖ℎ))

)2
. (3)

We then advance the solution by setting 𝑦1 = 𝑢∗(𝑡0 + ℎ). Note that we are imposing the quite natural constraint 𝑢(𝑡0) = 𝑦0, thus the 
least squares problem only involves the collocation conditions on the derivative of the polynomial 𝑢.

In order to determine 𝑢∗, we represent 𝑢′(𝑡0 + 𝑐ℎ) using an arbitrary basis {𝑃𝑗 (𝑐)}𝑗=0,…,𝑠−1, of Π𝑠−1:

𝑢′(𝑡0 + 𝑐ℎ) =
𝑠−1∑
𝑗=0

𝑃𝑗 (𝑐)𝛾𝑗 , (4)

from which, after integrating both sides of (4) in the interval [0, 𝑐], we obtain

𝑢(𝑡0 + 𝑐ℎ) = 𝑦0 + ℎ

𝑠−1∑
𝑗=0

𝑐

∫
0

𝑃𝑗 (𝑥)d𝑥𝛾𝑗 . (5)

Setting 𝛾 = (𝛾0, … , 𝛾𝑠−1)⊤, and substituting (4) and (5) into (3), we need to find the stationary points of the scalar function

𝐹 (𝛾) =
𝑘∑

𝑖=1
𝑤𝑖

⎡⎢⎢⎣
𝑠−1∑
𝑗=0

𝑃𝑗 (𝑐𝑖)𝛾𝑗 − 𝑓
(
𝑦0 + ℎ

𝑠−1∑
𝑗=0

𝑐𝑖

∫
0

𝑃𝑗 (𝑥)d𝑥𝛾𝑗

)⎤⎥⎥⎦
2

.

114

1 We recall that argmin denotes the solution of the minimization problem.
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Differentiating with respect to 𝛾𝓁 yields, for 𝓁 = 0, … , 𝑠 − 1, the equations

0 = 𝜕𝐹

𝜕𝛾𝓁
= 2

𝑘∑
𝑖=1

𝑤𝑖

⎡⎢⎢⎣
𝑠−1∑
𝑗=0

𝑃𝑗 (𝑐𝑖)𝛾𝑗 − 𝑓
(
𝑦0 + ℎ

𝑠−1∑
𝑗=0

𝑐𝑖

∫
0

𝑃𝑗 (𝑥)d𝑥𝛾𝑗

)⎤⎥⎥⎦
⋅
⎛⎜⎜⎝𝑃𝓁(𝑐𝑖) − ℎ

𝑐𝑖

∫
0

𝑃𝓁(𝑥)d𝑥𝑓 ′
(
𝑦0 + ℎ

𝑠−1∑
𝑗=0

𝑐𝑖

∫
0

𝑃𝑗 (𝑥)d𝑥𝛾𝑗

)⎞⎟⎟⎠ ,
that may be recast as

𝑠−1∑
𝑗=0

(
𝑘∑

𝑖=1
𝑤𝑖𝑃𝑗 (𝑐𝑖)𝑃𝓁(𝑐𝑖)

)
𝛾𝑗 =

𝑘∑
𝑖=1

𝑤𝑖𝑃𝓁(𝑐𝑖)𝑓
(
𝑦0 + ℎ

𝑠−1∑
𝑗=0

𝑐𝑖

∫
0

𝑃𝑗 (𝑥)d𝑥𝛾𝑗

)
+ℎ

𝑘∑
𝑖=1

𝑤𝑖

𝑐𝑖

∫
0

𝑃𝓁(𝑥)d𝑥𝑔𝑖(𝛾),

(6)

where, for 𝑖 = 1, … , 𝑘,

𝑔𝑖(𝛾) = 𝑓 ′
(
𝑦0 + ℎ

𝑠−1∑
𝑗=0

𝑐𝑖

∫
0

𝑃𝑗 (𝑥)d𝑥𝛾𝑗

)⎡⎢⎢⎣
𝑠−1∑
𝑗=0

𝑃𝑗 (𝑐𝑖)𝛾𝑗 − 𝑓
(
𝑦0 + ℎ

𝑠−1∑
𝑗=0

𝑐𝑖

∫
0

𝑃𝑗 (𝑥)d𝑥𝛾𝑗

)⎤⎥⎥⎦ . (7)

We introduce the matrices

𝑠 =
⎛⎜⎜⎝
𝑃0(𝑐1) … 𝑃𝑠−1(𝑐1)

⋮ ⋮
𝑃0(𝑐𝑘) … 𝑃𝑠−1(𝑐𝑘)

⎞⎟⎟⎠ , 𝑠 =
⎛⎜⎜⎝
∫ 𝑐1
0 𝑃0(𝑥)d𝑥 … ∫ 𝑐1

0 𝑃𝑠−1(𝑥)d𝑥
⋮ ⋮

∫ 𝑐𝑘
0 𝑃0(𝑥)d𝑥 … ∫ 𝑐𝑘

0 𝑃𝑠−1(𝑥)d𝑥

⎞⎟⎟⎠ ∈ℝ𝑘×𝑠,

Ω = diag(𝑤1, … , 𝑤𝑘) and the vectors 𝑔(𝛾) = (𝑔1(𝛾), … , 𝑔𝑘(𝛾))⊤ and 𝑒 = (1, … , 1)⊤ ∈ℝ𝑘. Then, in vector form, system (6) reads

⊤
𝑠 Ω𝑠𝛾 = ⊤

𝑠 Ω𝑓 (𝑒 ⊗ 𝑦0 + ℎ𝑠𝛾) + ℎ⊤
𝑠 Ω𝑔(𝛾) (8)

with the obvious meaning of 𝑓 (𝑒 ⊗𝑦0 + ℎ𝑠𝛾) and

𝑔(𝛾) = diag(𝑓 ′(𝑒 ⊗ 𝑦0 + ℎ𝑠𝛾))
(𝑠𝛾 − 𝑓 (𝑒 ⊗ 𝑦0 + ℎ𝑠𝛾)

)
. (9)

After solving (8) in the unknown vector 𝛾 , we set

𝑦1 = 𝑢∗(𝑡0 + ℎ) = 𝑦0 + ℎ

𝑠−1∑
𝑗=0

1

∫
0

𝑃𝑗 (𝑥)d𝑥𝛾𝑗 (10)

and repeat the whole procedure to advance the solution in time.

We note that solving (8) requires the evaluation of the Jacobian matrix of the vector field appearing in 𝑔(𝛾). The discrete problem 
may be considerably simplified by neglecting the last (infinitesimal) term in (8), thus obtaining the much simpler system

⊤
𝑠 Ω𝑠𝛾 = ⊤

𝑠 Ω𝑓 (𝑒 ⊗ 𝑦0 + ℎ𝑠𝛾), (11)

that, for an appropriate choice of weights, defines an integrator in the family of line integral methods (special low-rank Runge–Kutta 
methods), as is illustrated in the next section.

Remark 1. It is worth noting that, for pure quadrature problems 𝑦′ = 𝑓 (𝑡), the term 𝑔(𝛾) vanishes, so that (8) and (11) reduce to the 
standard (linear) least squares problem

⊤
𝑠 Ω𝑠𝛾 = ⊤

𝑠 Ω𝑓 (𝑡0 + 𝑐1ℎ,… , 𝑡0 + 𝑐𝑘ℎ)⊤.

This means that the residual 𝑠𝛾 − 𝑓 (𝑡0 + 𝑐1ℎ, … , 𝑡0 + 𝑐𝑘ℎ)⊤ is projected onto the orthogonal of the vector space spanned by the 
columns of 𝑠 which, in turn, are the projection of the polynomial basis {𝑃𝑗} along the mesh (𝑐1, … , 𝑐𝑘).

The resulting integrator (11) is indeed a Runge–Kutta method with rank-deficient coefficient matrix. In order to obtain the Runge–

Kutta formulation, we introduce the stage vector 𝑌 = (𝑢(𝑡0 + 𝑐1ℎ), … , 𝑢(𝑡0 + 𝑐𝑘ℎ))⊤ containing the evaluations of the polynomial at 
the internal points 𝑡0 + 𝑐𝑖ℎ, 𝑖 = 1, … , 𝑘. Exploiting (5) and (11) we obtain

𝑌 = 𝑒 ⊗ 𝑦0 + ℎ𝑠𝛾 = 𝑒 ⊗ 𝑦0 + ℎ𝑠(⊤
𝑠 Ω𝑠)−1⊤

𝑠 Ω𝑓 (𝑌 ). (12)
115

Hence, the Butcher tableau associated with the method reads
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𝑐 𝐴

𝑏⊤
(13)

where (see also (10))

𝑐 = (𝑐1,… , 𝑐𝑘)⊤,

𝐴 = 𝑠(⊤
𝑠 Ω𝑠)−1⊤

𝑠 Ω∈ℝ𝑘×𝑘,

𝑏⊤ =
⎛⎜⎜⎝

1

∫
0

𝑃0(𝑥)d𝑥,… ,

1

∫
0

𝑃𝑠−1(𝑥)d𝑥
⎞⎟⎟⎠
⊤

(⊤
𝑠 Ω𝑠)−1⊤

𝑠 Ω∈ℝ1×𝑘.

(14)

Note that the 𝑘-dimensional coefficient matrix 𝐴 has rank 𝑠 independently of the number 𝑘 of internal abscissae. For this reason, it 
is preferable to deal with system (11) in the unknown 𝛾 , whose dimension is indeed 𝑠, rather than solving the more classical system 
(12) in the unknown vector of stages 𝑌 .

3. Link with line integral methods

Line integral methods (LIMs) arise in the context of geometric integration and are particularly designed to simulate the dynamics 
of Hamiltonian systems for long times [7]. Indeed, their main feature is to preserve the energy function of canonical Hamiltonian 
systems defined by the vector field (hereafter 𝑚 is an even integer)

𝑓 (𝑦) = 𝐽∇𝐻(𝑦), 𝐽 =
(

𝐼𝑚∕2
−𝐼𝑚∕2

)
,

where 𝐼𝑟 denotes the identity matrix of dimension 𝑟. The coefficients of the polynomial 𝑢(𝑡) defined by (5), approximating the true 
solution 𝑦(𝑡) in the interval [𝑡0, 𝑡0 + ℎ], are computed by requiring the related line integral to vanish:

𝐻(𝑦1) −𝐻(𝑦0) = 𝐻(𝑢(𝑡0 + ℎ)) −𝐻(𝑢(𝑡0)) =

𝑡0+ℎ

∫
𝑡0

𝑢′(𝑡)⊤∇𝐻(𝑢(𝑡))d𝑡

= ℎ

1

∫
0

𝑢′(𝑡0 + 𝑐ℎ)⊤∇𝐻(𝑢(𝑡0 + 𝑐ℎ))d𝑐

= ℎ

𝑠−1∑
𝑗=0

𝛾⊤𝑗

1

∫
0

𝑃𝑗 (𝑐)∇𝐻(𝑢(𝑡0 + 𝑐ℎ))d𝑐.

However, in order to derive a numerical integrator, the involved integrals are approximated by a suitable quadrature formula based 
on the nodes and weights (𝑐𝑖, 𝑤𝑖), 𝑖 = 1, … , 𝑘, for a suitable 𝑘 ≥ 𝑠, having order 𝑞 (i.e., exact for polynomial integrands of order 
𝑞 − 1), which we shall assume at least (and usually much greater than) 2𝑠2:

1

∫
0

𝑃𝑗 (𝑐)∇𝐻(𝑢(𝑡0 + 𝑐ℎ))d𝑐

=
𝑘∑

𝑖=1
𝑤𝑖𝑃𝑗 (𝑐𝑖)∇𝐻(𝑦0 + ℎ

𝑠−1∑
𝓁=0

𝑐𝑖

∫
0

𝑃𝓁(𝑥)d𝑥𝛾𝓁) + 𝐸𝑗 (ℎ), 𝑗 = 0,… , 𝑠− 1,

where

𝐸𝑗 (ℎ) =

{
0, if 𝐻 ∈Π𝜈 , with 𝜈 ≤ 𝑞∕𝑠,

𝑂(ℎ𝑞−𝑗 ), otherwise.

Consequently, one obtains:

𝐻(𝑦1) −𝐻(𝑦0)

= ℎ

𝑠−1∑
𝑗=0

𝛾⊤𝑗

⎡⎢⎢⎣
𝑘∑

𝑖=1
𝑤𝑖𝑃𝑗 (𝑐𝑖)∇𝐻(𝑦0 + ℎ

𝑠−1∑
𝓁=0

𝑐𝑖

∫
0

𝑃𝓁(𝑥)d𝑥𝛾𝓁) + 𝐸𝑗 (ℎ)
⎤⎥⎥⎦
116

2 As an example, by choosing a Gauss-Legendre formula, 𝑞 = 2𝑘.
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= ℎ𝛾⊤
[
(𝑃⊤

𝑠 Ω)⊗𝐼𝑚 ⋅∇𝐻(𝑒 ⊗ 𝑦0 + ℎ𝑠 ⊗ 𝐼𝑚 ⋅ 𝛾)
]
+ 𝐸(ℎ), (15)

where we have denoted

𝛾 =
(
𝛾⊤0 , … , 𝛾⊤

𝑠−1
)⊤

and 𝐸(ℎ) = ℎ

𝑠−1∑
𝑗=0

𝛾⊤𝑗 𝐸𝑗 (ℎ).

Setting

𝛾 = (𝑆𝑃⊤
𝑠 Ω)⊗𝐼𝑚 ⋅ 𝑓 (𝑒 ⊗ 𝑦0 + ℎ𝑠 ⊗ 𝐼𝑚 ⋅ 𝛾) (16)

where 𝑆 is a positive definite symmetric matrix, one then obtains [12]

𝐸(ℎ) =

{
0, if 𝐻 ∈Π𝜈 , with 𝜈 ≤ 𝑞∕𝑠,

𝑂(ℎ𝑞+1), otherwise.

As is clear, by choosing 𝑘 large enough, the order 𝑞 of the quadrature can be increased so that 𝐸(ℎ) vanishes, in the polynomial case, 
or becomes smaller than the round-off error level (hence negligible) otherwise. As a result, (an at least practical) energy conservation 
is gained, since

𝛾 = (𝑆𝑃⊤
𝑠 Ω)⊗𝐼𝑚 ⋅ (𝐼𝑘 ⊗ 𝐽 ) ⋅∇𝐻(𝑒 ⊗ 𝑦0 + ℎ𝑠 ⊗ 𝐼𝑚 ⋅ 𝛾)

= (𝑆𝑃⊤
𝑠 Ω)⊗𝐽 ⋅∇𝐻(𝑒 ⊗ 𝑦0 + ℎ𝑠 ⊗ 𝐼𝑚 ⋅ 𝛾)

= (𝑆 ⊗ 𝐽 ) ⋅ ((𝑃⊤
𝑠 Ω)⊗𝐼𝑚) ⋅∇𝐻(𝑒 ⊗ 𝑦0 + ℎ𝑠 ⊗ 𝐼𝑚 ⋅ 𝛾)

and, therefore (see (15)),

𝐻(𝑦1) −𝐻(𝑦0) = ℎ
[
(𝑃⊤

𝑠 Ω)⊗𝐼𝑚 ⋅∇𝐻(𝑒 ⊗ 𝑦0 + ℎ𝑠 ⊗ 𝐼𝑚 ⋅ 𝛾)
]⊤

⋅ (𝑆 ⊗ 𝐽 )⊤

⋅
[
(𝑃⊤

𝑠 Ω)⊗𝐼𝑚 ⋅∇𝐻(𝑒 ⊗ 𝑦0 + ℎ𝑠 ⊗ 𝐼𝑚 ⋅ 𝛾)
]
+𝐸(ℎ) = 𝐸(ℎ),

due to the skew-symmetry of matrix 𝑆 ⊗ 𝐽 .

By setting 𝑆 = (⊤
𝑠 Ω𝑠)−1 we obtain the method (11), which was derived as a simplification of the least squares problem (3). 

On the other hand, the most simple choice for 𝑆 , which has been generally adopted in the context of line integral methods, is the 
identity matrix 𝐼𝑠. In this respect, we observe that the two choices become identical under the following assumptions:

(A1) (𝑐𝑖, 𝑤𝑖)𝑖=1,…,𝑘 defines a quadrature formula of order 𝑞 ≥ 2𝑠 (i.e. it is exact for polynomials of degree at least 2𝑠 − 1);

(A2) for 𝑗 = 0, … , 𝑠 − 1, the polynomials 𝑃𝑗 (𝑐) are orthonormal on [0, 1], that is they are the Legendre polynomials scaled and 
normalized in the interval [0, 1]:

1

∫
0

𝑃𝑖(𝑐)𝑃𝑗 (𝑐)d𝑐 = 𝛿𝑖𝑗 , 𝑖, 𝑗 = 0,… , 𝑠− 1,

where 𝛿𝑖𝑗 is the Kronecker symbol.

In fact, in such a case, one has

(⊤
𝑠 Ω𝑠)𝑖𝑗 =

𝑘∑
𝓁=1

𝑤𝓁𝑃𝑖(𝑐𝓁)𝑃𝑗 (𝑐𝓁) =

1

∫
0

𝑃𝑖(𝑐)𝑃𝑗 (𝑐)d𝑐 = 𝛿𝑖𝑗 .

Once this relationship has been clarified, we wish to inspect how close are the problems (8) and (11) and whether we can transfer 
the convergence properties of LIMs (whose theory is well-established) to the related least squares collocation methods. This question 
is addressed in the next section.

4. Study of convergence

Hereafter, we denote by 𝛾̄ the solution of system (11), 𝛾∗ the solution of system (8) yielding the least squares approximation, 
and 𝑢̄(𝑡0 + 𝑐ℎ) and 𝑢∗(𝑡0 + 𝑐ℎ) the associated polynomials, respectively (see (5) and (4)). We continue handling the scalar problem 
(𝑚 = 1), to simplify the notation. Their existence may be derived, as usual, by the fixed point theorem applied respectively to the 
schemes

𝛾 (𝑛+1) = Φ(𝛾 (𝑛)) ∶= (⊤
𝑠 Ω𝑠)−1⊤

𝑠 Ω𝑓 (𝑒 ⊗ 𝑦0 + ℎ𝑠𝛾
(𝑛)), (17)

(𝑛+1) (𝑛) (𝑛) ⊤ −1 ⊤ (𝑛)
117

𝛾 =Ψ(𝛾 ) ∶= Φ(𝛾 ) + ℎ(𝑠 Ω𝑠) 𝑠 Ω𝑔(𝛾 ), (18)
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𝛾 (0) ∈ℝ𝑠 being a given initial guess and assuming that 𝑓 and 𝑓 ′ are bounded and Lipschitz continuous. In fact, a direct computation 
shows that, choosing ℎ small enough, both Φ and Ψ are contractions on ℝ𝑠. In the sequel, we denote by 𝐿 the Lipschitz constant of 
the vector field 𝑓 (𝑦).

Considering (8) as a perturbation of (11), we explore the closeness of the solutions of the two methods in order to assess the 
extent to which the latter may be considered a simplified version of the original one. To this end, we assume that the line integral 
method defined by (11) or, equivalently, by (13)-(14) has stage order 𝑝, which means that ℎ0 > 0 exists such that, for ℎ ≤ ℎ0,

max
1≤𝑖≤𝑘 |𝑢̄(𝑡0 + 𝑐𝑖ℎ) − 𝑦(𝑡0 + 𝑐𝑖ℎ)| ≤ 𝐶0ℎ

𝑝+1, (19)

and consequently

max
1≤𝑖≤𝑘 |𝑢̄′(𝑡0 + 𝑐𝑖ℎ) − 𝑦′(𝑡0 + 𝑐𝑖ℎ)| ≤ 𝐶1ℎ

𝑝, (20)

with 𝐶0, 𝐶1 positive constants independent of ℎ.3

Lemma 1. The residual vector 𝑅(𝛾) = 𝑠𝛾 − 𝑓 (𝑒 ⊗𝑦0 + ℎ𝑠𝛾) satisfies

||𝑅(𝛾̄)||∞ =𝑂(ℎ𝑝), (21)||𝑅(𝛾∗)||∞ =𝑂(ℎ𝑝). (22)

Proof. Considering (5) and (4), we obtain for ℎ ≤ ℎ0,

||𝑅(𝛾̄)||∞ = max
1≤𝑖≤𝑘 |𝑢̄′(𝑡0 + 𝑐𝑖ℎ) − 𝑓 (𝑢̄(𝑡0 + 𝑐𝑖ℎ))|

≤ max
1≤𝑖≤𝑘 |𝑢̄′(𝑡0 + 𝑐𝑖ℎ) − 𝑦′(𝑡0 + 𝑐𝑖ℎ)|+ max

1≤𝑖≤𝑘 |𝑓 (𝑦(𝑡0 + 𝑐𝑖ℎ)) − 𝑓 (𝑢̄(𝑡0 + 𝑐𝑖ℎ))|
≤ 𝐶1ℎ

𝑝 +𝐿 max
1≤𝑖≤𝑘 |𝑦(𝑡0 + 𝑐𝑖ℎ) − 𝑢̄(𝑡0 + 𝑐𝑖ℎ)| ≤ 𝐶1ℎ

𝑝 +𝐶0𝐿ℎ𝑝+1.

Hence (21) holds. Concerning (22), we first observe that the weighted norm in (3) may be recast, in terms of the residual vector 
𝑅(𝛾), as ||Ω1∕2𝑅(𝛾)||2. Therefore, from the equivalence of vector norms, for suitable constants 𝜅1, 𝜅2 > 0, and from (20), we conclude

||𝑅(𝛾∗)||∞ ≤ 𝜅1||Ω1∕2𝑅(𝛾∗)||2 ≤ 𝜅1||Ω1∕2𝑅(𝛾̄)||2 ≤ 𝜅2||𝑅(𝛾̄)||∞ =𝑂(ℎ𝑝). □

Theorem 1. The approximating polynomials 𝑢̄(𝑡0 + 𝑐ℎ) and 𝑢∗(𝑡0 + 𝑐ℎ) satisfy the relation

max
0≤𝑐≤1 |𝑢∗(𝑡0 + 𝑐ℎ) − 𝑢̄(𝑡0 + 𝑐ℎ)| =𝑂(ℎ𝑝+2). (23)

Consequently, the least squares collocation method (8) inherits the same stage order as (11), namely

max
1≤𝑖≤𝑘 |𝑢∗(𝑡0 + 𝑐𝑖ℎ) − 𝑦(𝑡0 + 𝑐𝑖ℎ)| =𝑂(ℎ𝑝+1).

Proof. From (17) and (18), subtracting 𝛾̄ =Φ(𝛾̄) from 𝛾∗ = Ψ(𝛾∗) yields

𝛾∗ − 𝛾̄ =Φ(𝛾∗) − Φ(𝛾̄) + ℎ(⊤
𝑠 Ω𝑠)−1⊤

𝑠 Ω𝑔(𝛾∗).

From (9) and Lemma 1, we see that 𝑔(𝛾∗) =𝑂(ℎ𝑝). Consequently, setting (see (17))

𝜅3 = ||(⊤
𝑠 Ω𝑠)−1⊤

𝑠 Ω||∞, 𝜅4 = ||𝑠||∞,

we obtain||𝛾∗ − 𝛾̄||∞ ≤ 𝜅3||𝑓 (𝑒 ⊗ 𝑦0 + ℎ𝑠𝛾
∗) − 𝑓 (𝑒 ⊗ 𝑦0 + ℎ𝑠𝛾̄)||∞ +𝑂(ℎ𝑝+1)

≤ ℎ𝜅3𝜅4𝐿||𝛾∗ − 𝛾̄||∞ +𝑂(ℎ𝑝+1)

and consequently, for a suitable ℎ0 > 0 and for ℎ ≤ ℎ0 we obtain

||𝛾∗ − 𝛾̄||∞ ≤ 1
1 − ℎ𝜅3𝜅4𝐿

𝑂(ℎ𝑝+1). (24)

Relation (23) is a direct consequence of (24):
118

3 The bounds (19) and (20) may be extended to the whole interval [𝑡0, 𝑡0 + ℎ].
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|𝑢∗(𝑡0 + 𝑐ℎ) − 𝑢̄(𝑡0 + 𝑐ℎ)| ≤ ℎ

𝑠−1∑
𝑗=0

|||
𝑐

∫
0

𝑃𝑗 (𝑥)d𝑥
||| ⋅ |𝛾∗𝑗 − 𝛾̄𝑗 | =𝑂(ℎ𝑝+2).

Finally, taking into account (5) and (19),

max
1≤𝑖≤𝑘 |𝑢∗(𝑡0 + 𝑐𝑖ℎ) − 𝑦(𝑡0 + 𝑐𝑖ℎ)| ≤ max

1≤𝑖≤𝑘 |𝑢∗(𝑡0 + 𝑐𝑖ℎ) − 𝑢̄(𝑡0 + 𝑐𝑖ℎ)|
+ max

1≤𝑖≤𝑘 |𝑢̄(𝑡0 + 𝑐𝑖ℎ) − 𝑦(𝑡0 + 𝑐𝑖ℎ)|
≤ 𝑂(ℎ𝑝+2) +𝑂(ℎ𝑝+1) =𝑂(ℎ𝑝+1)

follows. □

Remark 2. Relation (23) suggests that, for ℎ → 0, the approximations 𝑢∗(𝑡0 + 𝑐ℎ) and 𝑢̄(𝑡0 + 𝑐ℎ) get close to each other at a faster 
rate than their speed of convergence to the true solution 𝑦(𝑡0 + 𝑐ℎ), so that, for ℎ small enough, they are expected to essentially yield 
the same numerical approximation.

By virtue of (21), we may conclude that 𝑔(𝛾̄) =𝑂(ℎ𝑝) (see (9)). This suggests using 𝛾̄ as a starting guess for the iteration (18), since 
each element in the sequence (18) would then be a 𝑂(ℎ𝑝+1) correction of the previous one. Since very efficient techniques for the 
solution of (11) are available (see, for example, [11,6]), this procedure would result in an easy and effective strategy for implementing 
least squares collocation formulae. Both aspects elucidated above are confirmed by the numerical experiments discussed in Section 5.

The previous results may be significantly improved under the assumptions (A1) and (A2). When working with the scaled Legendre 
polynomials, which form an orthonormal basis of 𝐿2([0, 1]), line integral methods may be equivalently derived by first considering 
the Fourier expansion of the vector field 𝑓 (𝑦)

𝑓 (𝑦(𝑡0 + 𝑐ℎ)) =
∑
𝑗≥0

𝑃𝑗 (𝑐)𝛾𝑗 (𝑦), (25)

with Fourier coefficients

𝛾𝑗 (𝑦) =

1

∫
0

𝑃𝑗 (𝑐)𝑓 (𝑦(𝑡0 + 𝑐ℎ))d𝑐, 𝑗 ≥ 0,

and then defining the polynomial approximation 𝑢(𝑡0 + 𝑐ℎ) for the true solution 𝑦(𝑡0 + 𝑐ℎ) as the solution of the following IVP 
obtained by truncating the expansion (25) up to the first 𝑠 terms:

𝑢′(𝑡0 + 𝑐ℎ) =
𝑠−1∑
𝑗=0

𝑃𝑗 (𝑐)𝛾𝑗 (𝑢), 𝑐 ∈ [0,1], 𝑢(𝑡0) = 𝑦0,

with

𝛾𝑗 (𝑢) =

1

∫
0

𝑃𝑗 (𝑐)𝑓 (𝑢(𝑡0 + 𝑐ℎ))d𝑐

=

1

∫
0

𝑃𝑗 (𝑐)𝑓
(
𝑦0 + ℎ

𝑠−1∑
𝑖=0

𝑐

∫
0

𝑃𝑖(𝑥)d𝑥𝛾𝑖(𝑢)
)
d𝑐, 𝑗 = 0,… , 𝑠− 1.

(26)

Approximating the integrals by means of the quadrature rule (𝑐𝑖, 𝑤𝑖) and recasting the equations (26) in vector form, we finally get

𝛾 = ⊤
𝑠 Ω𝑓 (𝑒 ⊗ 𝑦0 + ℎ𝑠𝛾), (27)

namely system (11) after observing that ⊤
𝑠 Ω𝑠 = 𝐼𝑠, due to assumption (A1). In system (27),

𝛾𝑗 =
𝑘∑

𝑖=1
𝑤𝑖𝑃𝑗 (𝑐𝑖)𝑓 (𝑢(𝑡0 + 𝑐𝑖ℎ)) = 𝛾𝑗 (𝑢) + Δ𝑗 (ℎ),

with the quadrature error Δ𝑗 (ℎ) =𝑂(ℎ𝑞−𝑗 ), 𝑞 being the order of the quadrature rule. In fact, Δ𝑗 (ℎ) depends on the 𝑞th derivative of 
the integrand function with respect to 𝑐 and we can apply the following property which we state in a more general form for later 
use.

Lemma 2. Let 𝑔 ∶ ℝ → ℝ be sufficiently smooth in a neighborhood of 𝑡0, 𝑣𝑗 (𝑐) a polynomial of degree 𝑗 ≥ 0, 𝑞 a nonnegative integer and 
ℎ > 0. Then

𝑞

119

𝑑

𝑑𝑐𝑞
(𝑣𝑗 (𝑐)𝑔(𝑡0 + 𝑐ℎ)) =𝑂(ℎmax{𝑞−𝑗,0}). (28)
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Proof. Formula (28) directly follows from the general Leibniz rule for the 𝑞th derivative of a product of functions:

𝑑

𝑑𝑐𝑞
(𝑣𝑗 (𝑐)𝑔(𝑡0 + 𝑐ℎ)) =

𝑞∑
𝑖=0

(
𝑞

𝑖

)
𝑣
(𝑖)
𝑗
(𝑐) 𝑑

𝑑𝑐𝑞−𝑖
𝑔(𝑡0 + 𝑐ℎ)

=
min{𝑗,𝑞}∑

𝑖=0

(
𝑞

𝑖

)
ℎ𝑞−𝑖𝑣(𝑖)

𝑗
(𝑐)𝑔(𝑞−𝑖)(𝑥)|||𝑥=𝑡0+𝑐ℎ. □

Exploiting the orthogonality properties of Legendre polynomials, we can simplify the approximation 𝑦1 to 𝑦(𝑡0 + ℎ) as follows (𝛾̄
denotes the solution of (27)):

𝑦1 = 𝑢̄(𝑡0 + ℎ) = 𝑦0 + ℎ

𝑠−1∑
𝑗=0

1

∫
0

𝑃𝑗 (𝑥)d𝑥 𝛾̄𝑗 = 𝑦0 + ℎ𝛾̄0. (29)

Usually, in order to maximize the order of the quadrature formula, the nodes 𝑐𝑖 , 𝑖 = 1, … , 𝑘, are chosen as the roots of 𝑃𝑘(𝑐), the 
scaled Legendre polynomial of degree 𝑘, which yields the Gauss-Legendre quadrature rule of order 2𝑘. We note that, under this 
choice, assumption 𝐴1 is satisfied if 𝑘 ≥ 𝑠.

The resulting Runge–Kutta method, depending on the two parameters 𝑘 and 𝑠 is denoted by HBVM(𝑘, 𝑠) since its first instance 
arose in the context of Hamiltonian Boundary Value Methods [7]. The following list summarizes the main properties of a HBVM(𝑘, 𝑠), 
with 𝑘 ≥ 𝑠 (see [7,12] for more details),

• it is symmetric with order 2𝑠, that is 𝑦1 − 𝑦(𝑡0 + ℎ) =𝑂(ℎ2𝑠+1), while the stage order is 𝑠;
• for 𝑘 = 𝑠 it becomes the 𝑠-stage Gauss collocation method;

• it is energy conserving when applied to canonical Hamiltonian problems with polynomial Hamiltonian of degree not larger than 
2𝑘∕𝑠;

• for generic Hamiltonian functions, one has 𝐻(𝑦1) −𝐻(𝑦0) =𝑂(ℎ2𝑘+1). As was observed in the previous section, a practical energy 
conservation property may be easily obtained by choosing 𝑘 sufficiently large for the previous error to be within the round-off 
error level of the used finite precision arithmetic. Since the dimension of system (27) is independent of 𝑘 (indeed 𝛾 has block 
dimension 𝑠), the computational effort of the whole procedure is not strongly affected by the order of the applied quadrature 
formula.

It turns out that, due to the orthogonality of the polynomials 𝑃𝑗 (𝑐), for a HBVM(𝑘, 𝑠) or, more in general, for a LIM satisfying the 
assumptions (A1) and (A2), the relationship with the weighted least squares collocation problem becomes even more meaningful, in 
that (see (29) and (10)) the numerical approximations 𝑦̄1 = 𝑢̄(𝑡0 + ℎ) and 𝑦∗1 = 𝑢∗(𝑡0 + ℎ) get much closer to each other. To see this, 
we need some preliminary results.

Lemma 3. Let 𝑔 ∶ℝ →ℝ be sufficiently smooth in a neighborhood of 𝑡0 and 𝑣𝓁(𝑐) a polynomial of degree 𝓁. Then, under the assumptions 
(A1) and (A2), for 𝑐 ∈ [0, 1] and ℎ > 0, one has

𝑘∑
𝑖=1

𝑤𝑖𝑃𝑗 (𝑐𝑖)𝑣𝓁(𝑐𝑖)𝑔(𝑡0 + 𝑐𝑖ℎ) =

{
𝑂(ℎmax{𝑗−𝓁,0}), if 𝑗 ≤ 𝑠,

𝑂(ℎmax{2𝑠−𝑗−𝓁,0}), if 𝑗 ≥ 𝑠.

Proof. By virtue of Lemma 2 and considering 𝑞 ≥ 2𝑠, we have

𝑘∑
𝑖=1

𝑤𝑖𝑃𝑗 (𝑐𝑖)𝑣𝓁(𝑐𝑖)𝑔(𝑡0 + 𝑐𝑖ℎ) =

1

∫
0

𝑃𝑗 (𝑐)𝑣𝓁(𝑐)𝑔(𝑡0 + 𝑐ℎ)d𝑐 +𝑂(ℎmax{2𝑠−𝑗−𝓁,0})

=

1

∫
0

𝑃𝑗 (𝑐)𝑣𝓁(𝑐)
( ∞∑

𝑖=0

𝑔(𝑖)(𝑡0)
𝑖!

(𝑐ℎ)𝑖
)
d𝑐 +𝑂(ℎmax{2𝑠−𝑗−𝓁,0})

=
∞∑
𝑖=0

𝑔(𝑖)(𝑡0)
𝑖!

ℎ𝑖

1

∫
0

𝑃𝑗 (𝑐)𝑐𝑖𝑣𝓁(𝑐)d𝑐 +𝑂(ℎmax{2𝑠−𝑗−𝓁,0})

= 𝑂(ℎmax{𝑗−𝓁,0}) +𝑂(ℎmax{2𝑠−𝑗−𝓁,0}),

where the latter integral vanishes when 𝑗 > 𝑖 + 𝓁, due to the orthogonality conditions from assumption (A2). □

It is worth recalling that, due to (A1) and (A2), systems (8) and (11) become
120

𝛾 = ⊤
𝑠 Ω𝑓 (𝑒 ⊗ 𝑦0 + ℎ𝑠𝛾) + ℎ⊤

𝑠 Ω𝑔(𝛾) (30)



Applied Numerical Mathematics 203 (2024) 113–128L. Brugnano, F. Iavernaro and E.B. Weinmüller

and

𝛾 = ⊤
𝑠 Ω𝑓 (𝑒 ⊗ 𝑦0 + ℎ𝑠𝛾), (31)

respectively. We also consider the Fourier expansion

𝑓 (𝑢̄(𝑡0 + 𝑐ℎ)) =
∑
𝑗≥0

𝑃𝑗 (𝑐)𝛾̄𝑗 , 𝛾̄𝑗 =

1

∫
0

𝑃𝑗 (𝑐)𝑓 (𝑢̄(𝑡0 + 𝑐𝑖ℎ))d𝑐.

Theorem 2. Under the assumptions (A1) and (A2), the polynomials 𝑢̄(𝑡0 + 𝑐ℎ) and 𝑢∗(𝑡0 + 𝑐ℎ) generated by the line integral and weighted 
least squares collocation methods satisfy

max
0≤𝑐≤1 |𝑢∗(𝑡0 + 𝑐ℎ) − 𝑢̄(𝑡0 + 𝑐ℎ)| =𝑂(ℎ𝑠+2). (32)

|𝑢∗(𝑡0 + ℎ) − 𝑢̄(𝑡0 + ℎ)| =𝑂(ℎ2𝑠+1). (33)

Proof. Relation (32) is nothing but (23) and has been proved in Theorem 1. Concerning the superconvergence property (33) we 
begin with evaluating the term ℎ⊤

𝑠 Ω𝑔(𝛾) in (30) at 𝛾̄ . For its (𝓁 + 1)st component, 𝓁 = 0, … , 𝑠 − 1, we have

(ℎ⊤
𝑠 Ω𝑔(𝛾̄))𝓁+1 = ℎ

𝑘∑
𝑖=1

𝑤𝑖

𝑐𝑖

∫
0

𝑃𝓁(𝑥)d𝑥𝑔𝑖(𝛾̄)

= ℎ

𝑘∑
𝑖=1

𝑤𝑖

𝑐𝑖

∫
0

𝑃𝓁(𝑥)d𝑥
[
𝑓 ′(𝑢̄(𝑡0 + 𝑐𝑖ℎ))(𝑢̄′(𝑡0 + 𝑐𝑖ℎ) − 𝑓 (𝑢̄(𝑡0 + 𝑐𝑖ℎ)))

]
= ℎ

𝑘∑
𝑖=1

𝑤𝑖

𝑐𝑖

∫
0

𝑃𝓁(𝑥)d𝑥
[
𝑓 ′(𝑢̄(𝑡0 + 𝑐𝑖ℎ))(

𝑠−1∑
𝑗=0

𝑃𝑗 (𝑐𝑖)Δ𝑗 (ℎ) +
∞∑
𝑗=𝑠

𝑃𝑗 (𝑐𝑖)𝛾̄𝑗 )
]

= ℎ

𝑠−1∑
𝑗=0

Δ𝑗 (ℎ)
⏟⏟⏟
𝑂(ℎ2𝑠−𝑗 )

𝑘∑
𝑖=1

𝑤𝑖𝑃𝑗 (𝑐𝑖)

𝑐𝑖

∫
0

𝑃𝓁(𝑥)d𝑥𝑓 ′(𝑢̄(𝑡0 + 𝑐𝑖ℎ))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑂(ℎ𝑗−𝓁−1) from Lemma 3

+ℎ
∞∑
𝑗=𝑠

𝛾̄𝑗
⏟⏟⏟
𝑂(ℎ𝑗 )

𝑘∑
𝑖=1

𝑤𝑖𝑃𝑗 (𝑐𝑖)

𝑐𝑖

∫
0

𝑃𝓁(𝑥)d𝑥𝑓 ′(𝑢̄(𝑡0 + 𝑐𝑖ℎ))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑂(ℎ2𝑠−𝑗−𝓁−1) from Lemma 3

=𝑂(ℎ2𝑠−𝓁).

Consequently, in vector notation,

|ℎ⊤
𝑠 Ω𝑔(𝛾̄)| = (𝑂(ℎ)2𝑠,𝑂(ℎ2𝑠−1),… ,𝑂(ℎ𝑠+1))⊤. (34)

We now consider the sequence (see (17) and (18)){
𝛾 (0) = 𝛾̄ ,

𝛾 (𝑛+1) = Ψ(𝛾 (𝑛)) = Φ(𝛾 (𝑛)) + ℎ⊤
𝑠 Ω𝑔(𝛾 (𝑛)), 𝑛 = 1,2,… ,

and show that, positive constants ℎ0 and 𝑀(ℎ0) exist such that for any ℎ ≤ ℎ0, the sequence {𝛾 (𝑛)} is entirely contained in the 
neighborhood 𝐵𝛾̄ defined as

𝑧 ∈ 𝐵𝛾̄ ⇔ |𝑧− 𝛾̄| ≤ 𝑟(ℎ0) ∶=𝑀(ℎ0)(ℎ2𝑠0 , ℎ2𝑠−10 ,… , ℎ𝑠+1
0 )⊤, (35)

and is a contraction there. Then, the contraction mapping theorem assures that the sequence converges to the unique fixed point 𝛾∗
of Ψ in 𝐵𝛾̄ .

Let 𝜈1, 𝜈2, … , 𝜈𝑠 be the Lipschitz constants of the 𝑠 components of the iteration function Ψ, and set 𝜈 =max𝑖{𝜈𝑖}. Since 𝜈 =𝑂(ℎ), 
we can choose ℎ0 and 𝑀(ℎ0) such that 𝜈 < 1 in 𝐵𝛾̄ and, by (34),

|ℎ⊤
𝑠 Ω𝑔(𝛾̄)| ≤ (1 − 𝜈)𝑟(ℎ0) for ℎ ≤ ℎ0.

Now, we use an induction argument. For 𝑛 = 1 we have

|𝛾 (1) − 𝛾̄| = |Ψ(𝛾̄) − Φ(𝛾̄)| = |ℎ⊤
𝑠 Ω𝑔(𝛾̄)| ≤ (1 − 𝜈)𝑟(ℎ0).
121

Assuming now that 𝛾 (𝑛) ∈𝐵𝛾̄ , we obtain
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≤ |Ψ(𝛾 (𝑛)) − Ψ(𝛾̄)|+ (1 − 𝜈)𝑟(ℎ0)

≤ 𝜈|𝛾 (𝑛) − 𝛾̄|+ (1 − 𝜈)𝑟(ℎ0) ≤ 𝑟(ℎ0).

Having shown that 𝛾∗ ∈𝐵𝛾̄ , from (35) we deduce that, in particular, |𝛾̄0 − 𝛾∗0 | =𝑂(ℎ2𝑠) and hence, by (29) and (10) with 𝛾𝑗 = 𝛾∗
𝑗
,

|𝑢∗(𝑡0 + ℎ) − 𝑢̄(𝑡0 + ℎ)| = |𝑦0 + ℎ𝛾∗0 − 𝑦0 − ℎ𝛾̄0| = ℎ|𝛾∗0 − 𝛾̄0| =𝑂(ℎ2𝑠+1),

which completes the proof. □

As an immediate consequence of Theorem 2 we have the following convergence result.

Corollary 1. A least squares collocation method satisfying conditions (A1) and (A2) inherits the same stage order 𝑠 + 1 as the underlying 
LIM integrator, as well as the same superconvergence property, namely

|𝑢∗(𝑡0 + ℎ) − 𝑦(𝑡0 + ℎ)| =𝑂(ℎ2𝑠+1). (36)

Remark 3. Strictly speaking, since formula (36) means that

|𝑢∗(𝑡0 + ℎ) − 𝑦(𝑡0 + ℎ)| ≤ 𝐶ℎ2𝑠+1,

for a given constant 𝐶 independent of ℎ, this result does not prevent the least squares method to exhibit an order higher than 2𝑠. 
Indeed, as we will show in the next section, we have experienced an order precisely equal to 2𝑠 for all least squares integrators, 
with the only exception of the method corresponding to the choice 𝑠 = 1 which, for many tested IVPs (both autonomous and non 
autonomous) yields an “ultraconvergence” property with order 𝑝 = 3, whenever 𝑘 ≥ 2.

This remark does not apply to the stage order property, since the 𝑂(ℎ𝑠+2) closeness between the polynomials 𝑢̄(𝑡0 + 𝑐ℎ) and 
𝑢∗(𝑡0 + 𝑐ℎ), combined with the fact that the LIM has stage order 𝑠 +1, unambiguously determines the stage order of the corresponding 
least squares formula.

Due to the super-convergence behavior, we can extend property (32) to the whole integration interval, provided that, in view of 
Remark 3, the least squares formula has order precisely equal to 2𝑠. For a given 𝑁 > 0, we set

ℎ =
𝑇 − 𝑡0
𝑁

, 𝑡𝑛 = 𝑡0 + 𝑛ℎ, 𝑛 = 0,… ,𝑁,

and denote by 𝑢̄(𝑡𝑛 + 𝑐ℎ) and 𝑢∗(𝑡𝑛 + 𝑐ℎ) the numerical approximations obtained by applying the line integral and least squares 
methods to problem (1) sequentially on the intervals [𝑡𝑛, 𝑡𝑛 + ℎ], assuming 𝑦̄𝑛 = 𝑢̄(𝑡𝑛−1 + ℎ) and 𝑦∗𝑛 = 𝑢∗(𝑡𝑛−1 + ℎ) as initial conditions 
at the current step.

Corollary 2. Under the assumptions (A1) and (A2), if the least squares method has order 2𝑠, the following estimation holds true for 
𝑛 = 0, … , 𝑁 − 1:

max
0≤𝑐≤1 |𝑢∗(𝑡𝑛 + 𝑐ℎ) − 𝑢̄(𝑡𝑛 + 𝑐ℎ)| =𝑂(ℎ𝑠+2). (37)

5. Numerical illustrations

We present a few numerical illustrations to confirm the theoretical findings and, in particular, the behavior of least squares 
methods w.r.t. the underlying LIMs, as explained in Theorem 2 and Corollaries 1 and 2, with due attention to Remark 3. For this 
purpose, we introduce the following notations

𝑒𝑛(𝑐) = |𝑢̄(𝑡𝑛−1 + 𝑐ℎ) − 𝑦(𝑡𝑛−1 + 𝑐ℎ)|,
𝑒∗𝑛(𝑐) = |𝑢∗(𝑡𝑛−1 + 𝑐ℎ) − 𝑦(𝑡𝑛−1 + 𝑐ℎ)|,
𝑒𝑛(𝑐) = |𝑢̄(𝑡𝑛−1 + 𝑐ℎ) − 𝑢∗(𝑡𝑛−1 + 𝑐ℎ)|, (38)

for 𝑛 = 1, … , 𝑁 . The first two examples are simple test models whose exact solution 𝑦(𝑡) is known. In addition, in the last example, 
we compare the two methods in terms of their geometric properties, when applied to a simple canonical Hamiltonian system.

All the numerical tests have been implemented in Matlab (R2023a) on a 3.6 GHz Intel I9 core computer with 32 GB of memory.

5.1. Example 1

We solve the initial value problem
122

𝑦′ = 𝑡3 exp(𝑦) − 𝑡, 𝑦(0) = 1, 𝑡 ∈ [0,1], (39)
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Table 1

Convergence behavior of the numerical solutions 𝑦̄𝑁 and 𝑦∗
𝑁

generated by the line 
integral and least squares methods of order four (𝑠 = 2) applied to Problem (39).

𝑁 |𝑦̄𝑁 − 𝑦(𝑇 )| order |𝑦∗
𝑁
− 𝑦(𝑇 )| order |𝑦̄𝑁 − 𝑦∗

𝑁
| order

2 5.81e-03 3.90e-02 4.48e-02

22 4.56e-04 3.67 2.63e-03 3.89 3.09e-03 3.86

23 3.08e-05 3.89 1.36e-04 4.27 1.67e-04 4.21

24 1.97e-06 3.97 7.05e-06 4.27 9.02e-06 4.21

25 1.24e-07 3.99 3.91e-07 4.17 5.14e-07 4.13

26 7.75e-09 4.00 2.28e-08 4.10 3.06e-08 4.07

27 4.84e-10 4.00 1.38e-09 4.05 1.86e-09 4.04

28 3.03e-11 4.00 8.46e-11 4.03 1.15e-10 4.02

29 1.89e-12 4.00 5.24e-12 4.01 7.13e-12 4.01

210 1.18e-13 4.01 3.24e-13 4.02 4.41e-13 4.01

Table 2

Convergence behavior of the polynomial approximations 𝑢̄(𝑡𝑁−1+𝑐ℎ) and 𝑢∗(𝑡𝑁−1+
𝑐ℎ) to the true solution 𝑦(𝑡𝑁−1 + 𝑐ℎ) generated by the line integral and least squares 
methods of order four (𝑠 = 2) applied to Problem (39).

𝑁 max𝑖 𝑒𝑁 (𝑐𝑖) order max𝑖 𝑒∗𝑁 (𝑐𝑖) order max𝑖 𝑒𝑁 (𝑐𝑖) order

2 2.62e-02 3.43e-02 4.38e-02

22 5.66e-03 2.21 5.72e-03 2.58 3.01e-03 3.86

23 1.07e-03 2.40 1.05e-03 2.45 1.61e-04 4.23

24 1.76e-04 2.61 1.72e-04 2.61 8.53e-06 4.23

25 2.56e-05 2.78 2.55e-05 2.75 4.78e-07 4.16

26 3.48e-06 2.88 3.47e-06 2.87 2.81e-08 4.09

27 4.54e-07 2.94 4.54e-07 2.94 1.70e-09 4.05

28 5.80e-08 2.97 5.80e-08 2.97 1.05e-10 4.02

29 7.33e-09 2.98 7.33e-09 2.98 6.48e-12 4.01

210 9.21e-10 2.99 9.21e-10 2.99 4.00e-13 4.02

whose true solution is

𝑦(𝑡) = log
(

1
exp(𝑡2∕2)(exp(−1) − 2) + 𝑡2 + 2

)
,

using the least squares and line integral methods of order 4 (𝑠 = 2), 6 (𝑠 = 3) and 8 (𝑠 = 4), with 𝑘 = 10 abscissae. To assess 
the convergence properties of these formulae, we progressively halve the stepsize ℎ, and consequently double the number 𝑁 of the 
subdivisions of the integration interval, until an error close to the machine epsilon is attained. These formulae satisfy the assumptions 
of Corollary 2, allowing us to focus our attention on the errors (38) evaluated in the rightmost subinterval [𝑡𝑁−1, 𝑡𝑁 ] = [1 − ℎ, 1].

Tables 1 and 2 summarize the results for the methods of order four. Regarding Table 1, the following details are provided:

- The first column reports the number of subdivisions 𝑁 : for the problem at hand, selecting 𝑁 = 210 yields an approximation 
accuracy of about 10−13 at the final time 𝑡 = 𝑇 = 1 for both methods.

- The second and third columns display the errors |𝑦̄𝑁 −𝑦(𝑇 )| produced by the line integral method at time 𝑡 = 1 and the associated 
order of convergence, which is four, as expected.

- In the fourth and fifth columns are the errors |𝑦∗
𝑁
− 𝑦(𝑇 )| produced by the least squares method at time 𝑡 = 1 and the corre-

sponding order of convergence which is also four, consistently with what stated in Corollary 1.

- The last two columns present the distances |𝑦̄𝑁 − 𝑦∗
𝑁
| between the two computed approximations at 𝑡 = 1, confirming the result 

(33) in Theorem 2.

With reference to Table 2, the following details are provided:

- The second and third columns show the maximum errors max𝑖 𝑒𝑁 (𝑐𝑖) produced by the line integral method at the internal 
abscissae 𝑡𝑁−1 + 𝑐𝑖ℎ located within the last subinterval [𝑡𝑁−1, 𝑡𝑁 ]. It is well-known from the literature [7] that the corresponding 
order of convergence (stage order) is 𝑠 + 1 = 3.

- The fourth and fifth columns contain the errors max𝑖 𝑒∗𝑁 (𝑐𝑖) of the polynomial approximation 𝑢∗(𝑡𝑁−1 + 𝑐ℎ) generated by the 
least squares method along with the associated order of convergence which is as well 𝑠 +1 = 3, consistently with what stated in 
Corollary 1.

- The last two columns report the distance max𝑖 𝑒𝑁 (𝑐𝑖) between the two polynomial approximations 𝑢̄(𝑡𝑁−1 +𝑐ℎ) and 𝑢∗(𝑡𝑁−1 +𝑐ℎ)
evaluated at the internal abscissae, confirming the result (32) in Theorem 2.

Tables 3-4 and 5-6 summarize the results for the methods of order six and eight respectively, confirming the same conclusions 
123

discussed above for these higher order methods.
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Table 3

Convergence behavior of the numerical solutions 𝑦̄𝑁 and 𝑦∗
𝑁

generated by the 
line integral and least squares methods of order six (𝑠 = 3) applied to Problem 
(39).

𝑁 |𝑦̄𝑁 − 𝑦(𝑇 )| order |𝑦∗
𝑁
− 𝑦(𝑇 )| order |𝑦̄𝑁 − 𝑦∗

𝑁
| order

2 7.99e-05 3.88e-03 3.96e-03

22 1.19e-06 6.07 1.03e-04 5.24 1.04e-04 5.25

23 1.63e-08 6.19 1.75e-06 5.87 1.77e-06 5.88

24 2.36e-10 6.11 2.53e-08 6.11 2.56e-08 6.11

25 3.59e-12 6.04 3.63e-10 6.13 3.67e-10 6.12

26 5.71e-14 5.97 5.36e-12 6.08 5.41e-12 6.08

27 1.33e-15 5.42 8.08e-14 6.05 8.22e-14 6.04

Table 4

Convergence behavior of the polynomial approximations 𝑢̄(𝑡𝑁−1+𝑐ℎ) and 𝑢∗(𝑡𝑁−1+
𝑐ℎ) to the true solution 𝑦(𝑡𝑁−1 + 𝑐ℎ) generated by the line integral and least squares 
methods of order six (𝑠 = 3) applied to Problem (39).

𝑁 max𝑖 𝑒𝑁 (𝑐𝑖) order max𝑖 𝑒∗𝑁 (𝑐𝑖) order max𝑖 𝑒𝑁 (𝑐𝑖) order

2 4.38e-03 5.70e-03 3.82e-03

22 6.91e-04 2.66 7.04e-04 3.02 9.60e-05 5.31

23 7.89e-05 3.13 7.77e-05 3.18 2.39e-06 5.32

24 7.09e-06 3.48 7.01e-06 3.47 1.45e-07 4.04

25 5.42e-07 3.71 5.39e-07 3.70 6.05e-09 4.59

26 3.77e-08 3.85 3.76e-08 3.84 2.20e-10 4.78

27 2.49e-09 3.92 2.49e-09 3.92 7.43e-12 4.89

28 1.60e-10 3.96 1.60e-10 3.96 2.41e-13 4.94

29 1.02e-11 3.98 1.02e-11 3.98 7.77e-15 4.96

210 6.39e-13 3.99 6.39e-13 3.99 2.22e-16 5.13

Table 5

Convergence behavior of the numerical solutions 𝑦̄𝑁 and 𝑦∗
𝑁

generated by the 
line integral and least squares methods of order eight (𝑠 = 4) applied to Problem 
(39).

𝑁 |𝑦̄𝑁 − 𝑦(𝑇 )| order |𝑦∗
𝑁
− 𝑦(𝑇 )| order |𝑦̄𝑁 − 𝑦∗

𝑁
| order

2 1.84e-06 3.63e-04 3.62e-04

22 1.65e-08 6.80 3.85e-06 6.56 3.83e-06 6.56

23 9.17e-11 7.49 2.18e-08 7.46 2.17e-08 7.46

24 4.07e-13 7.81 8.95e-11 7.93 8.91e-11 7.93

25 6.66e-16 9.26 3.32e-13 8.07 3.32e-13 8.07

Table 6

Convergence behavior of the polynomial approximations 𝑢̄(𝑡𝑁−1 + 𝑐ℎ) and 
𝑢∗(𝑡𝑁−1 + 𝑐ℎ) to the true solution 𝑦(𝑡𝑁−1 + 𝑐ℎ) generated by the line integral and 
least squares methods of order eight (𝑠 = 4) applied to Problem (39).

𝑁 max𝑖 𝑒𝑁 (𝑐𝑖) order max𝑖 𝑒∗𝑁 (𝑐𝑖) order max𝑖 𝑒𝑁 (𝑐𝑖) order

2 9.40e-04 1.10e-03 3.37e-04

22 9.32e-05 3.33 9.37e-05 3.55 4.57e-06 6.20

23 6.25e-06 3.90 6.23e-06 3.91 1.57e-07 4.86

24 3.10e-07 4.34 3.09e-07 4.33 4.40e-09 5.16

25 1.25e-08 4.63 1.25e-08 4.63 9.57e-11 5.52

26 4.49e-10 4.80 4.49e-10 4.80 1.78e-12 5.75

27 1.50e-11 4.90 1.50e-11 4.90 3.04e-14 5.87

5.2. Example 2

As was anticipated in Remark 3, the least squares method corresponding to the choice 𝑠 = 1 and 𝑘 > 1, exhibits an order equal to 
three, so that Corollary 2 does not apply for this method. With 𝑘 = 10, we use this method to solve the IVP

𝑦′ = −sin(𝑦), 𝑦(0) = 1, 𝑡 ∈ [0, 𝑇 ], (40)

whose true solution is
124

𝑦(𝑡) = 2arctan(exp(log(tan(1∕2)) − 𝑡)).
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Table 7

Convergence behavior of the numerical solutions 𝑦̄1 and 𝑦∗1 generated by the line 
integral and least squares methods corresponding to the choice 𝑠 = 1, applied to 
Problem (40).

𝑁 |𝑦̄1 − 𝑦(𝑇 )| order |𝑦∗1 − 𝑦(𝑇 )| order |𝑦̄1 − 𝑦∗1| order

2 2.98e-03 1.41e-05 2.96e-03

22 3.63e-04 3.04 1.28e-05 0.13 3.76e-04 2.98

23 4.33e-05 3.07 1.35e-06 3.25 4.46e-05 3.07

24 5.22e-06 3.05 1.02e-07 3.72 5.32e-06 3.07

25 6.39e-07 3.03 6.96e-09 3.88 6.46e-07 3.04

26 7.90e-08 3.02 4.53e-10 3.94 7.95e-08 3.02

27 9.82e-09 3.01 2.88e-11 3.97 9.85e-09 3.01

28 1.22e-09 3.00 1.82e-12 3.99 1.23e-09 3.01

29 1.53e-10 3.00 1.14e-13 3.99 1.53e-10 3.00

210 1.91e-11 3.00 7.22e-15 3.98 1.91e-11 3.00

Table 8

Convergence behavior of the polynomial approximations 𝑢̄(𝑡0 + 𝑐ℎ) and 𝑢∗(𝑡0 +
𝑐ℎ) to the true solution 𝑦(𝑡0 + 𝑐ℎ) generated by the line integral and least squares 
methods corresponding to the choice 𝑠 = 1, applied to Problem (40).

𝑁 max𝑖 𝑒1(𝑐𝑖) order max𝑖 𝑒∗1(𝑐𝑖) order max𝑖 𝑒1(𝑐𝑖) order

2 1.38e-02 1.51e-02 2.93e-03

22 3.55e-03 1.96 3.72e-03 2.02 3.71e-04 2.98

23 8.84e-04 2.00 9.06e-04 2.04 4.40e-05 3.07

24 2.19e-04 2.01 2.22e-04 2.03 5.25e-06 3.07

25 5.46e-05 2.01 5.49e-05 2.02 6.38e-07 3.04

26 1.36e-05 2.00 1.37e-05 2.01 7.84e-08 3.02

27 3.40e-06 2.00 3.40e-06 2.00 9.72e-09 3.01

28 8.49e-07 2.00 8.49e-07 2.00 1.21e-09 3.01

29 2.12e-07 2.00 2.12e-07 2.00 1.51e-10 3.00

210 5.30e-08 2.00 5.30e-08 2.00 1.88e-11 3.00

We now focus on the asymptotic behavior of the solution in the first subinterval [0, ℎ], as ℎ approaches zero. To this end, we choose 
𝑇 = 1∕𝑁 , with 𝑁 = 2𝑘, 𝑘 = 1, … , until the accuracy gets close enough to the machine epsilon. The results are summarized in Tables 7

and 8, with the same meaning as in the previous example, except that now the errors have a local nature. The following conclusions 
may be drawn:

- The third column of Table 7 displays the order of convergence related to the local truncation error associated with the line 
integral method. We can observe a third-order convergence (the stage order remains 𝑠 +1 as in the previous example due to the 
superconvergence property).

- The local truncation error of the least squares method and the associated order of convergence appear in the fourth and fifth 
columns of Table 7: it turns out that the method exhibits local order four and hence global order three.

- The last two columns of Table 7 show the distances |𝑦̄1 − 𝑦∗1| between the two computed approximations at the very first step, 
confirming the result (33) in Theorem 2.

- Finally, the results in Table 8 are consistent with the stage order result in Corollary 1 and the property (32) of Theorem 2.

5.3. Example 3

To provide a conclusive comparison, we examine the geometric properties of two methods applied to the Kepler problem [7,14]

𝑞̇ = 𝑝, 𝑝̇ = −‖𝑞‖−32 𝑞, (41)

𝑞 = (𝑞1, 𝑞2)⊤, 𝑝 = (𝑝1, 𝑝2)⊤ ∈ ℝ2 being the generalized coordinates and momenta, respectively. Problem (41) is a canonical Hamilto-

nian system with two degrees of freedom that describes the (planar) motion of two massive bodies, under their mutual gravitational 
attraction, around their center of mass. The initial condition

𝑞(0) = (1 − 𝜀,0)⊤ , 𝑝(0) =

(
0,
√

1 + 𝜀

1 − 𝜀

)⊤

, 𝜀 ∈ [0,1),

yields a periodic orbit of period 𝑇 = 2𝜋 that, in the 𝑞-plane, is given by an ellipse of eccentricity 𝜀. Two well-known constants of 
motion of system (41) are:
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• the total energy: 𝐻(𝑞, 𝑝) = 1
2‖𝑝‖22 − ‖𝑞‖−12 ;
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Fig. 1. Errors |𝐻(𝑞𝑛, 𝑝𝑛) −𝐻(𝑞0, 𝑝0)| in the Hamiltonian function (left picture) and |𝑀(𝑞𝑛, 𝑝𝑛) −𝑀(𝑞0, 𝑝0)| in the angular momentum (right picture) produced by the 
line integral method (bottom line, blue) and least squares method (upper line, red). (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

Fig. 2. Errors in the solution at multiples of the period 𝑇 produced by the line integral method (left picture) and least squares method (right picture).

• the angular momentum: 𝑀(𝑞, 𝑝) = 𝑞1𝑝2 − 𝑝1𝑞2.

For our experiment, we set 𝜖 = 0.6 and integrate the problem over the time interval [0, 50𝑇 ] using fourth-order line integral and 
least squares methods (𝑠 = 2) with 𝑘 = 10 abscissae and a constant stepsize ℎ = 𝑇 ∕50. Our interest lies in comparing the long-term 
behavior of solutions produced by the two methods in terms of conserving the aforementioned first integrals. The results are displayed 
in Fig. 1.

As was illustrated in Section 3, the line integral method, turns out to be energy-conserving for the problem at hand, up to an error 
that is below the machine epsilon. This is confirmed by the left picture of Fig. 1 which displays the error |𝐻(𝑞𝑛, 𝑝𝑛) −𝐻(𝑞0, 𝑝0)| of the 
Hamiltonian function evaluated along the numerical solution: the bottom line, colored blue, is of the order of 10−15 throughout the 
considered time interval. This is not the case for the least squares method, for which a drift in the error may be observed (upper red 
line). The right picture of Fig. 1 shows the errors |𝑀(𝑞𝑛, 𝑝𝑛) −𝑀(𝑞0, 𝑝0)| in the angular momentum. Despite the line integral method 
does not preserve this constant of motion precisely, the error remains uniformly bounded over time. Conversely, the least squares 
method produces a drift. We conclude that the least squares method (2)-(3) under the conditions (A1)-(A2) is not recommended for 
geometric integration purposes.

The absence of conservation, or near-conservation of first integrals also impacts the accuracy of the numerical solution. In Fig. 2, 
we present the errors ||(𝑞𝑛, 𝑝𝑛) − (𝑞0, 𝑝0)||∞ evaluated at times 𝑡𝑛 = 𝑘𝑇 , 𝑘 = 0, … , 50, multiples of the period 𝑇 , where the solution is 
exactly (𝑞0, 𝑝0) due to its periodic behavior. In the left picture, displaying the results of the line integral method, we observe a linear 
growth of the error, which remains at the order of 10−1. Conversely, the error in the solution generated by the least squares method, 
displayed in the right panel of Fig. 2, exhibits a more erratic behavior and is one order greater.

We conclude that the least squares method (2)-(3) under the conditions (A1)-(A2) is not recommended for geometric integration 
purposes.

6. Conclusions

We have explored a weighted least squares approach to tackle an overdetermined collocation problem arising from the require-

ment that a polynomial of degree 𝑠 satisfies an ODE-IVP over 𝑘 ≥ 𝑠 collocating points 𝑡0 + 𝑐𝑖, 𝑖 = 1, … , 𝑘. Our analysis revealed that 
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the resulting nonlinear system can be interpreted as a perturbation of a corresponding system defining line integral methods (LIMs), 
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which are special low-rank Runge–Kutta methods introduced in the context of geometric integration. This interpretation has led to 
several interesting insights:

- The LIM solution can serve as a convenient initial guess for solving the least squares problem.

- The convergence properties of LIMs can be extended to least squares collocation methods, including superconvergence behavior 
when using the Legendre basis to represent the approximating polynomials.

- These polynomial approximations converge to each other at a rate exceeding the underlying order of convergence. Consequently, 
for small stepsizes ℎ, the two methods essentially yield the same approximation.

Given that the perturbation term involves the Jacobian matrix of the vector field, LIMs may be viewed as a computationally simplified 
variant of least squares methods. Considering the recent successful application of the latter class of integrators to differential algebraic 
equations (DAEs) of higher order, a potential future research could be investigating the performance of LIMs applied to DAEs, starting 
from the preliminary results in [9].
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