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K U R Z FA S S U N G

In dieser kumulativen Dissertation präsentieren wir kombinatorische Ansätze, um
grafische Beschreibungen von Basen der invarianten Unterräume von Tensor Produk-
ten von Darstellungen von Lie Gruppen zu erhalten. Dazu verwenden wir Chord-
Diagramme. Das sind Graphen, deren Knoten im Kreis angeordnet werden und die
Tensorpositionen der Invarianten kodieren.

Diese Arbeit besteht aus drei Publikationen, welche in internationalen Journalen
erschienen sind:

In Skew characters and cyclic sieving bestimmen wir, welche Charaktere der sym-
metrischen Gruppe eine Permutationsdarstellung der zyklischen Gruppe trägt. Diese
Resultate können wir auf die Darstellungstheorie von Tensorpotenzen der adjungierten
Darstellung der allgemeinen linearen Gruppe anwenden. Dadurch können wir die
Existenz einer Bijektion zwischen Permutationen und alternierenden Tableaux (nach
Stembridge) beweisen, welche Rotation der Diagramme/Permutationen in Promotion
der Tableaux überführt.

Dieses Resultat zeigt nur die Existenz der Bijektion, aber liefert keine explizite
Konstruktion. Wir denken, dass es möglich ist, dieses Resultat zu verfeinern und haben
als ersten Schritt eine der wichtigsten Identitäten aus dem Beweis verallgemeinert.
In A refinement of the Murnaghan-Nakayama rule by descents for border strip tableaux
erweitern wir diese Identität zu standard Young Tableaux, die eine gegebene Anzahl
von Abstiegen haben. Dazu führen wir eine neue Statistik auf Border-Strip Tableaux
ein, die die klassische Definition von Abstiegen auf standard Young Tableaux erweitert.

In Promotion and growth diagrams for fans of Dyck paths and vacillating tableaux erläutern
wir einen neuen Ansatz, um explizite diagrammatische Basen direkt vom Promotion-
sorbit von Tableaux zu erhalten. Wir verwenden diese Konstruktion, um eine Injektion
von r-Fächern von Dyck Pfaden (resp. Vacillating tableaux) der Länge n nach Chord-
Diagrammen auf [n] erhalten. Dadurch bekommen wir Diagramme, die eine Basis für
die Spindarstellung der Spingruppe, beziehungsweise für die Vektordarstellung der
speziellen orthogonalen Gruppe, indizieren.
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A B S T R A C T

In this cumulative dissertation we present combinatorial approaches to obtain pictorial
descriptions of bases of invariant spaces of tensor products of representations of Lie
groups in terms of certain graphs, which we call chord diagrams. These are graphs
whose vertices, arranged in a circle, correspond to the tensor positions of the invariant.

This thesis consists of three publications, which appeared in peer reviewed journals:
In Skew characters and cyclic sieving we determine which characters of the symmetric

group carry a permutation representation of the cyclic group. We apply our results
to the invariant theory of tensor powers of the adjoint representation of the general
linear group and prove the existence of a bijection between permutations and J. Stem-
bridge’s alternating tableaux, which intertwines rotation and promotion, yielding a
diagrammatic basis.

This is only an existential result and no explicit construction. In the hope of finding
this bijection we refine one of the key identities in A refinement of the Murnaghan-
Nakayama rule by descents for border strip tableaux. We extend it to standard Young
tableaux and border strip tableaux with a given number of descents. To do so, we
introduce a new statistic for border strip tableaux, extending the classical definition of
descents in standard Young tableaux.

In Promotion and growth diagrams for fans of Dyck paths and vacillating tableaux we
discuss a new approach to construct a diagrammatic basis from the promotion orbit of
tableaux. In particular we construct an injection from the set of r-fans of Dyck paths
(resp. vacillating tableaux) of length n into the set of chord diagrams on [n]. This
way we obtain suitable diagrams for the spin representation of the spin group and the
vector representation of the special orthogonal group.
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1
I N T R O D U C T I O N

1.1 problem definition and background

Given a simple Lie Group G and a representation U, it is an important problem to
study different bases of the invariant space

(U⊗n)G = {u ∈ U⊗n | g · u = u ∀g ∈ G},

where G acts on U⊗n diagonally, that is

g · (u1 ⊗ . . . ⊗ un) = (g · u1)⊗ . . . ⊗ (g · un) g ∈ G.

In this thesis we explore methods to obtain purely combinatorial descriptions of a
basis in terms of chord diagrams of this space.

Definition 1.1. A chord diagram of size n is a (possibly directed multi-) graph with
n vertices arranged on a circle in the corners of a regular n-gon which are labelled
1, . . . , n in counter-clockwise orientation. We denote the set of chord diagrams with n
vertices with Gn.

The rotation of a chord diagram is obtained by rotating all edges clockwise by 2π
n

around the center of the diagram.

There is also a natural action of the symmetric group Sn on U⊗n, permuting tensor
positions:

σ · (u1 ⊗ . . . ⊗ un) = uσ−1(1) ⊗ . . . ⊗ uσ−1(n) σ ∈ Sn.

This action commutes with the diagonal action of G. The action of the long cycle of
the symmetric group can be regarded as an abstraction of rotation of chord diagrams,
which motivates the general problem:

Problem 1.2. Define a basis of the invariant space (U⊗n)G in terms of chord diagrams, such
that the action of the long cycle on invariants and rotation of the diagrams coincide.

We refer to such a basis as a rotation invariant diagrammatic basis. The motivation
for studying the problem of finding a rotation invariant diagrammatic basis is Reiner,
Stanton and White’s cyclic sieving phenomenon, see [20].

The idea of using diagrams to index a basis of the invariant subspace of a tensor
power of a representation goes back to Rumer, Teller and Weyl [21]. Specifically
Brauer [3] constructed an invariant of the 2n-th tensor power of the vector repre-
sentation of the symplectic group Sp(2r), given a perfect matching of 2n elements.
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Furthermore, he showed that these invariants linearly span the invariant space. Using
a result of Sundaram [25] one can show that the invariants obtained from perfect
matchings without (r + 1)-crossings form a basis of this space. It is not hard to see
that Brauer’s construction translates rotation of the chord diagram to the action of the
long cycle of the symmetric group on the corresponding invariant.

Other famous diagrammatic bases are Kuperberg’s webs [13] for Lie algebras with
rank r ≤ 2.

In this thesis we first use Kashiwara crystal graphs [11] to translate Problem 1.2
into a purely combinatorial problem.

Crystal graphs are certain directed graphs with coloured edges. They are a means
to translate from the language of representations to the language of combinatorics. In
particular the set of isolated vertices in the crystal graph corresponds to a basis of the
invariant space of the representation. The isolated vertices are called the highest weight
words / vertices / elements of weight zero. For definitions see section 1.3.

Schützenberger’s promotion operator on standard Young tableaux can be gener-
alized to a bijection on these isolated vertices. As shown by Westbury [27, Thm. 6.7],
promotion coincides, up to sign, with the action of the long cycle on the invariant
tensors.

This reduces our problem to:

Problem 1.3. Find a suitable set of chord diagrams and a bijection with highest weight words
of weight zero such that rotation and promotion intertwine.

In our setting all chord diagrams can be either directed or undirected graphs with
possibly multiple edges between the same two vertices. We can therefore identify
chord diagrams with n vertices with their adjacency matrix. This is a n × n matrix
M = (mij)1�i,j�n with non-negative integer entries and mij denotes the number of
edges between vertex i and vertex j. In the case of an undirected graph M is symmetric.

1.2 motivating example

The results of this section are well known and appear also in [13, Section 1]. Let V be
the vector representation of SL(2). For odd n the invariant subspace of V⊗n is trivial
and for even n the highest weight words of weight zero in the corresponding crystal
graph are words

w = wn ⊗ · · · ⊗ w1

satisfying the following conditions:

1. wi ∈ {1, 2} for each 1 ≤ i ≤ n.

2. w is a Yamanouchi word: For each i the suffix wi ⊗ · · · ⊗ w1 contains at least as
many ones as twos.

3. w is balanced: The number of ones equals the number of twos in the entire word.

They are in direct bijection with rectangular standard Young tableaux of size n with
two rows. These are fillings of a 2× (n/2) rectangle with the integers {1, 2, . . . , n} such
that the the entries in each row are strictly increasing from left to right and the entries
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in each column are strictly increasing from top to bottom. Let T be a rectangular
standard Young tableau with two rows. One obtains a highest weight word of weight
zero by setting

wi =

�
1 if i is in the first row in T,
2 if i is in the second row in T

for each 1 ≤ i ≤ n. It is an easy exercise to check that this is a bijection.

Example 1.4. 2 ⊗ 2 ⊗ 1 ⊗ 2 ⊗ 1 ⊗ 1 ⊗ 2 ⊗ 1 ⊗ 2 ⊗ 2 ⊗ 2 ⊗ 1 ⊗ 2 ⊗ 1 ⊗ 1 ⊗ 1 is a high-
est weight word of weight zero. It is corresponding standard Young tableau is
1 2 3 5 9 11 12 14
4 6 7 8 10 13 15 16

.

Schützenberger’s promotion bijectively maps the set of standard Young tableaux to
itself as follows: Let T be a standard Young tableaux. Its promotion pr T is the tableau
obtained by the following procedure:

1. Delete the entry 1.

2. For an empty cell slide the unique adjacent entry to the right or below into this
cell, such that rows and columns are still strictly increasing.

3. Perform the previous step until the empty cell has no adjacent entry to the right
or below and fill the empty cell with n + 1. (For rectangular standard Young
tableaux this is the case when the bottom right cell is empty.)

4. Subtract 1 from each entry.

Example 1.5. The promotion of
1 2 3 5 9 11 12 14
4 6 7 8 10 13 15 16

is
1 2 3 4 6 10 13 15
5 7 8 9 11 12 14 16

.

A suitable set of chord diagrams is the set of non crossing perfect matchings of size n.
These are undirected graphs such that each vertex has degree one and no two edges
cross when drawing the chord diagram in a circle. We want to map non crossing
perfect matchings to rectangular standard Young tableaux with two rows. For this we
need the following terminology.

Definition 1.6. Let M be a non crossing perfect matching of size n. We denote its
edges as pairs (a, b) with a < b. The set of openers is the set

o(M) = {a : (a, b) is an edge of M}.

Similarly, the set of set of closers is the set

c(M) = {b : (a, b) is an edge of M}.

It is easy to verify the following:

Theorem 1.7. Let M be a non crossing perfect matching of size n. Let T(M) be the filled
2 × (n/2) rectangle obtained by writing o(M) in increasing order from left to right into the
first row and writing c(M) in increasing order from left to right into the second row.

The map M #→ T(M) is a bijection between non crossing perfect matchings of size n and
rectangular standard Young tableaux of size n with two rows. This map intertwines rotation of
the matching with promotion of the tableau.
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Example 1.8. This commutative diagrams visualises the theorem above.

1 2 3 5 9 11 12 14
4 6 7 8 10 13 15 16

1 2 3 4 6 10 13 15
5 7 8 9 11 12 14 16

1 12 2
3 3

4 4

5 5
6 6

7 78 89 910 10
11 11

12 12

13 13
14 14

15 15
16 16

pr

rot

In the setting of this thesis this means:

Theorem 1.9. The set of non crossing perfect matchings is a rotation invariant diagrammatic
basis for (V⊗n)SL(2).

1.3 a short introduction to crystal graphs

In this subsection we provide some background information on crystals and their
tensor products and minuscule representations. A detailed introduction can be found
in [4] and [8].

Given a root system Φ with weight lattice Λ and a dominant weight λ, we associate
to the irreducible representation V(λ) its crystal graph Bλ. This is a certain connected
edge-coloured digraph with dim V(λ) vertices, each labelled with a weight of the
representation. Each edge of the crystal graph is labelled with one of the simple roots
of the root system, such that the weight of the target of the edge is obtained from
the weight of its source by subtracting the simple root. The edges correspond to the
Kashiwara lowering operators. There is a unique vertex without in-coming edges, the
highest weight vertex, and this vertex has weight λ. There is also a unique vertex without
out-going edges, the lowest weight vertex. The sum of the formal exponentials of the
weights of the vertices is the character of the representation. In particular, isomorphism
of crystal graphs corresponds to isomorphism of representations. The direct sum of
representations is then associated with the disjoint union of the corresponding crystal
graphs.

There is a (relatively) simple way to construct the crystal graph of a tensor product
of representations given their individual crystal graphs. The vertices of the tensor
product C1 ⊗ · · · ⊗ Cn of crystal graphs, corresponding to an n-fold tensor product
of representations U1,. . . , Un of G, are the words of length n whose i-th letter is a
vertex of Ci. The weight of a vertex in the tensor product is the sum of the weights
of its letters. In this context, we refer to the highest weight vertices of the connected
components as highest weight words. Isolated vertices correspond to copies of the trivial
representation and have weight zero. They are referred to as highest weight words of
weight zero. We denote the set of highest weight words of weight zero with (


Ci)∗
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Remark 1.10. Note that there are two conventions for the order tensor factors. As a set
the tensor product is the Cartesian product of the crystals. In Kashiwara’s definition
the ordered pair (x, y) is denoted with x ⊗ y. In the alternative definition by Bump
and Schilling the pair is written as y ⊗ x.

In this thesis we are using the Bump–Schilling convention and I want to apologize
to readers of my other publications. As a rule of thumb: If I have published the
paper together with Anne Schilling we are using Bump–Schilling convention. If I have
published the paper together with other authors, e.g. Gaetz, Pechenik, Rubey, Striker,
Swanson, Westbury, the paper uses Kashiwara’s convention.

In general the connected components of C1 ⊗ · · · ⊗ Cn correspond to the irreducible
representations in the decomposition�

Ui
∼=

�
µ∈Λ+

V(µ)⊕nµ ,

where Λ+ is the set of dominant weights. By definition the invariant space (U⊗n)G

is isomorphic to the direct sum of one-dimensional irreducible representations in the
decomposition. A basis of this space is thus indexed by the connected components
with only one vertex, which are given by the highest weight words of weight zero.

We can now define promotion on highest weight words of weight zero and of
length n as follows:

Definition 1.11 ([27]). pr : (C1 ⊗ · · · ⊗ Cn)∗ → (C2 ⊗ · · · ⊗ Cn ⊗ C1)∗ is the map given
by the following procedure. Let w = wn ⊗ wn−1 ⊗ · · · ⊗ w1 ∈ (C1 ⊗ · · · ⊗ Cn)∗ be a
highest weight vector and assume with out loss of generality that C1 is connected
(otherwise we can replace C1 by the connected component of C1 containing w1).

• Remove the last letter w1 of w, which is the highest weight of C1. This leaves a
word w* = wn ⊗ · · · ⊗ w2 which is a lowest weight word.

• Apply the Kashiwara raising operators to obtain a highest weight word w** in the
same component as w*.

• Prepend the lowest weight of C1 to the beginning of w** giving pr w.

This map satisfies the identity prn = id in all cases relevant to this thesis. It is
important to remark that this generalises Schützenberger’s promotion map on standard
Young tableaux.

Also note that a crystal isomorphism is uniquely determined by the images of high-
est weight elements and therefore promotion can be extended to a crystal isomorphism

pr : C1 ⊗ · · · ⊗ Cn → C2 ⊗ · · · ⊗ Cn ⊗ C1.

This isomorphism agrees with the crystal commutor σA,B : A ⊗ B → B ⊗ A defined by
Henriques and Kamnitzer [7] with A = C1 and B = C2 ⊗ · · · ⊗ Cn.

Due to theorem III.27 by Lennart [14, Thm. 4.4] the crystal commutor can be easily
obtained for highest weight words in tensor products of minuscule representations. A
representation of a Lie group is minuscule if its Weyl group W acts transitively on the
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weights of the representation: the set of weights forms a single orbit under the action
of W.

For a minuscule representation V(λ) of dominant weight λ, the vertices of the
associated crystal graph Bλ can be identified with the weights of V(λ). The edges are
given by the Kashiwara lowering operators, as follows. Let {αi : i ∈ I} be the set of
simple roots and si ∈ W be the simple reflection corresponding to αi. Then there is a

coloured edge µ
i→ µ − αi provided that si(µ) = µ − αi.
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2
S U M M A RY O F M Y R E S E A R C H

In the following we briefly summarize my (partial) solutions to problem 1.2. The
corresponding publications are collected in the second part of this thesis.

Recall that dominant weights of SL(r), Sp(2r) and SO(2r + 1) are vectors of length
r with weakly decreasing non-negative integer entries. Therefore, dominant weights
can be identified with integer partitions into at most r parts in these cases. A dominant
weight of Spin(2r + 1) is a vector of length r with weakly decreasing non-negative
half-integer entries, such that either all entries are integers or none of them. Finally,
a dominant weight of GL(r) is a vector of length r with weakly decreasing integer
entries, a so-called staircase.

To any highest weight word w = wn ⊗ · · · ⊗ w1 in a tensor product of crystals
C1 ⊗ · · · ⊗ Cn we bijectively associate a sequence of dominant weights going under
names like semistandard, oscillating, alternating, vacillating tableau.

Suppose now that in each crystal Ci, 1 ≤ i ≤ n, all vertices have distinct weight. For
example, this is the case when all the Ci correspond to minuscule representations. Then
the tableau is given by the sequence ∅ = µ0, µ1, . . . , µn = µ, where µq = ∑

q
i=1 wt(wi) is

the sum of the weights of the first q letters form the right. In this case, one can recover
the letters of the highest weight word via the successive differences wt(wi) = µi − µi−1.

2.1 existence of a diagrammatic basis for the adjoint representation
of type A

Results from this section are from our paper [2], which is Chapter I in this thesis.

Let glr be the adjoint representation of GL(r). The highest weight words for (gl⊗n
r )∗

are corresponding to Stembridge’s alternating tableaux [24] A(r)
n . An alternating

tableau is a sequence of staircases ∅= µ0, µ1, . . . , µ2n = µ, such that µ2q = µ2q−1 − e�
for some � ≤ r, and µ2q+1 = µ2q + ek for some k ≤ r.

For r large enough, a suitable set of chord diagrams is the set of permutations of
{1, . . . , n} and for r = 2 a suitable set of chord diagrams is the set of noncrossing set
partitions without singletons. An explicit bijection between alternating tableaux and
these chord diagrams intertwining promotion and rotation is given in [19].

In this thesis we extend this result for arbitrary r, but instead of an explicit con-
struction, our new result is of implicit nature.

Our results can be phrased in terms of V. Reiner, D. Stanton & D. White’s cyclic
sieving phenomenon.
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Definition 2.1 ([20]). Let X be a finite set and let ρ be a generator of an action of the
cyclic group of order n on X and let f (q) ∈ N0[q] be a polynomial with non negative
integer coefficients. Further, let ξ be a primitive n-th root of unity.

We say that the triple (X, �ρ�, f (q)) exhibits the cyclic sieving phenomenon if for all
d ∈ Z

#{x ∈ X : ρd · x = x} = f (ξd).

Let SYT(λ) denote the set of all standard Young tableaux of shape λ and size n. An
entry i of a standard Young tableau T is a descent of T, if i + 1 appears in a strictly
lower row in T in English notation. We denote with maj(T), the major index of T, the
sum of all descents of T.

Theorem 2.2 (See Theorem I.44). Let λ be a partition of n and let

f λ(q) := ∑
T∈SYT(λ)

qmaj(T)

be the generating function of the major index. Then there is a cyclic group action ρ of order n
such that �

SYT(λ)× SYT(λ), �ρ�, f λ(q)2
�

exhibits the cyclic sieving phenomenon.

We want to point out, that we can only prove the existence of ρ. For general λ no
explicit action is known. In the proof, we use a characterization of P. Alexandersson
& N. Amini [1], which says that f ∈ N0[q] is a cyclic sieving polynomial for a group
action of the cyclic group of order n, if and only if for a primitive n-th root of unity ξ

and all k | n we have that f (ξk) ∈ N0 and

∑
d|k

µ(k/d) f (ξd) ≥ 0,

where µ is the number-theoretic Möbius function.
Recall that the Robinson–Schensted correspondence provides a bijection between per-

mutations of length n and pairs of standard Young tableaux of size n with the same
shape.

Definition 2.3. The shape sh(σ) of a permutation σ is the common shape of the standard
Young tableaux corresponding to σ under the Robinson–Schensted correspondence.

As a corollary we obtain:

Theorem 2.4 (See Corollary I.56). Let Pn be the set of partitions of n. Then there exists a
map st : Sn → Pn which is invariant under rotation and equidistributed with the Robinson–
Schensted shape. That is,

st ◦ rot = st and ∑
σ∈Sn

xst(σ) = ∑
σ∈Sn

xsh(σ).

Moreover, with Sλ
n := {π ∈ Sn : st(σ) = λ}, the triple

(Sλ
n , �rot�, f λ(q)2)

exhibits the cyclic sieving phenomenon.
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With this statistic we get a rotation invariant basis:

Theorem 2.5 (See Theorem I.61). Let S
(r)
n := {π ∈ Sn : �(st(π)) ≤ r} =

%
λ0n

�(λ)≤r

Sλ
n .

Then there exists a bijection

P (r) : A(r)
n → S

(r)
n with P (r) ◦ pr = rot ◦P (r).

for 1 ≤ r ≤ n.
Equivalently, the action of promotion on the set of glr-alternating tableaux of length n, and

the action of rotation on the set of permutations S(r)
n are isomorphic:

(pr,A(r)
n ) ∼= (rot,S(r)

n ).

Again, we stress that we are unable to present such a statistic, and therefore the
basis, explicitly.

Problem 2.6. Find an explicit combinatorial statistic (i.e. a map) satisfying Theorem 2.4.

In order to find an explicit statistic to solve Problem 2.6, it can be useful to find
additional statistics, which refine Theorem 2.4.

Definition 2.7. We define the number of excedences of a permutation σ to be

ex(σ) = |{i : σ(i) > i}|
and the number of descents to be

des(σ) = |{i : σ(i) > σ(i + 1)}|.
We conjecture the following refinement of Theorem 2.4.

Conjecture 2.8. Let
f λ,d(q) := ∑

T∈SYT(λ), des(T)=d
qmaj(T).

There exists a map st : Sn → Pn which is invariant under rotation, such that the pairs (st, ex)
and (sh, des) are equidistributed. That is,

st ◦ rot = st and ∑
σ∈Sn

xst(σ)yex(σ) = ∑
σ∈Sn

xsh(σ)ydes(σ).

Moreover, with Sλ,d
n := {π ∈ Sn : st(σ) = λ, ex(σ) = d}, the triple

(Sλ,d
n , �rot�, f λ,d(q) · f λ(q))

exhibits the cyclic sieving phenomenon.

Instead of working with f λ,d(q), it is more convenient to work with the bivariate
generating function

f λ(q, t) := ∑
T∈SYT(λ)

qmaj(T)tdes(T).
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2.2 evaluating f λ(q, t) at roots of unity

Results from this section are taken from our paper [18], which is Chapter II of this
thesis.

A first step in the direction of Conjecture 2.8 is a combinatorial interpretation of
f λ(ξ, t), where ξ is a k-th primitive of unity.

For a filling B of a Young diagram λ with weakly increasing rows and columns, let
Bi be the collection of cells in B containing i. We say that B is a border strip tableau with
strip size k if, for all 1 ≤ i ≤ �, the cells Bi form a connected skew shape of size k that
does not contain a 2 × 2 rectangle. We denote the set of all border strip tableaux with
strip size k with BST(λ, k).

If BST(λ, k) is not empty, we also say that λ has empty k-core. In this case, it turns
out that f λ(ξ, t) is, up to sign, a generating function for a very natural statistic on this
set.

Theorem 2.9 (See Theorem II.8). The statistic des+ on border strip tableaux (Definition II.7)
has the following property: Let λ be a partition of n with empty k-core and let ξ be a primitive
k-th root of unity. Then, for some �λ,k ∈ {±1},

f λ(ξ, t) = �λ,k · ∑
B∈BST(λ,k)

tdes+(B).

This refines results of Springer [22, Proposition 4.5] and James & Kerber [10,
Theorem 2.7.27], which imply that the evaluation of f λ(q) at a k-th primitive root of
unity yields the number of border strip tableaux with all strips of size k, up to sign.

2.3 explicit construction of chord diagrams

In the last Chapter III of this thesis, which consists of our publication [15], we present
a new method to construct a rotation invariant diagrammatic basis.

For this we first need to embed the representation into a tensor product of minuscule
representations. This is always possible, except for the types G2, F4 and E8, where no
non trivial minuscule representations exist.

A key ingredient for our approach is a calculation scheme for the crystal commutor
and thus for promotion, due to Lenart [14], that makes use of van Leeuwen’s local
rules [26, Rule 4.1.1], which generalise Fomin’s [23, A 1.2.7]. For minuscule representa-
tions, van Leeuwen’s rules involve obtaining the unique dominant representative of a
weight.

Definition 2.10. Let λ be a weight of a representation of a Lie group with Weyl group
W. Then domW(λ) is the unique dominant representative of the W-orbit Wλ.

Four weight vectors λ, µ, κ, ν ∈ Λ depicted in a square diagram

λ ν

κ µ
satisfy

the local rule, if µ = domW(κ + ν − λ).

Let U be a representation embedded into a tensor product of the k minuscule
representations U1,. . . ,Uk. Moreover let w ∈ (U⊗n)∗ be a highest weight word of
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1. Compute pro-
motion repeatedly
using a calculation
scheme

2. Cut and glue
the schema to
obtain a square

3. Fill all cells
according to a
function Φ with
integers

4. Interpret
the filled square
as adjacency ma-
trix of a graph

5. Read the
chord diagram
from the adja-
cency matrix.

λ ν

κ µ
Φ(λ, κ, ν, µ)

������

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

������
◦

◦
◦

◦

◦
◦

◦

◦

Figure 1: Overview of the steps in our map

weight zero of length n and let ι(w) = wk·n ⊗ · · · ⊗ w2 ⊗ w1 ∈ ((U1 ⊗ · · · ⊗ Uk)
⊗n)∗

be the highest weight word corresponding to w of length k · n using this embedding.
Finally let T = (∅ = µ0, µ1, . . . , µk·n = ∅) be the corresponding tableau.

The local rules allow us to associate a (n · k)× (n · k) square grid with the promotion
orbit of T, where each corner is labelled with a dominant weight, which we call the
promotion matrix of T.

Our aim is to construct the adjacency matrix of a chord diagram by filling each cell
with a non negative integer. Formally, this is a function Φ that depends on the four
dominant weights labelling the corners of the cell, and yields a non negative integer.

This filling can then be regarded as an (n · k)× (n · k)-adjacency matrix and we
obtain a map (U⊗n)∗ → Gk·n. This map intertwines promotion and k-step rotation.
Depending on U, it may also be suitable to combine the vertices in groups of size k
into a single vertex to obtain a function M : (U⊗n)∗ → Gn, that intertwines promotion
and rotation.

Our construction is outlines in Figure 1 and can be summarized as follows:

Construction 2.11. step 1 Iteratively calculate promotion of a highest weight word of
weight zero and length n using local rules and Lenart’s schemea total of n times.

step 2 Group the results into a square grid, called the promotion matrix.

step 3 Fill the cells of the square grid with certain non-negative integers according to
a filling rule Φ that only depends on the four corners of the cells in the square
grid.

step 4 Regard the filling as the adjacency matrix of a graph, which is the chord
diagram.

Definition 2.12. We denote the set appearing as image M((U⊗n)∗) with Gn
U.

Now we can obtain solutions for the general problem 1.2 by solving the following.

Problem 2.13. Fix a representation U embedded into a the tensor product of k minuscule
representations. For this representation
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• define a filling rule Φ for promotion matrices,

• prove that M is injective for this filling rule,

• give a direct description of the image Gn
U.

2.3.1 Vector representation type C

Let V be the vector representation of Sp(2r). This representation is minuscule and w is
a highest weight word if and only if wi is in {±ej : 1 ≤ j ≤ r}, and µq = ∑

q
i=1 wt(wi)

is dominant for q ≤ n. The corresponding tableau is called an r-symplectic oscillating
tableau. A suitable set of chord diagrams is the set of (r + 1)-noncrossing perfect
matchings of {1, . . . , n}. An explicit bijection between r-symplectic oscillating tableaux
and these (r + 1)-noncrossing perfect matchings intertwining promotion and rotation
is given in [19]. We use our Construction 2.11 to obtain another description of the same
map.

For the following example fix r = 3. Consider the oscillating tableau of weight zero

O = (000, 100, 200, 210, 211, 210, 110, 100, 000),

which corresponds to a highest weight word of weight zero in the crystal of V⊗8.
The Weyl group of Sp(2r) is the hyperoctahedral group Hr of signed permutations of
{±1, . . . ,±r}. Thus, the dominant representative domHr(λ) of a weight λ is obtained
by sorting the absolute values of its entries into weakly decreasing order.

Lenart’s calculation scheme gives the following

000 100 200 210 211 210 110 100 000
000 100 110 111 110 100 110 100 000

where the first row is the tableau O and the second row is calculated from the first by
initializing with 000 and then recursively applying the local rules.

From this we can read off the promotion of O,

prO = (000, 100, 110, 111, 110, 100, 110, 100, 000).

Now we iteratively apply promotion a total of eight times to obtain the following
diagram.

000 100 200 210 211 210 110 100 000
000 100 110 111 110 100 110 100 000

000 100 110 111 110 210 200 100 000
000 100 110 111 211 210 110 100 000

000 100 110 210 211 111 110 100 000
000 100 200 210 110 111 110 100 000

000 100 110 100 110 111 110 100 000
000 100 110 210 211 210 200 100 000

000 100 200 210 211 210 110 100 000

Note that the first and last lines are equal and in this example the orbit of promotion
has maximal length.
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We now transform this diagram by copying everything to the right of the 8-th
column into the triangular empty space on the left to obtain the promotion matrix.

000 100 200 210 211 210 110 100 000

100 000 100 110 111 110 100 110 100

200 100 000 100 110 111 110 210 200

210 110 100 000 100 110 111 211 210

211 111 110 100 000 100 110 210 211

210 110 111 110 100 000 100 200 210

110 100 110 111 110 100 000 100 110

100 110 210 211 210 200 100 000 100

000 100 200 210 211 210 110 100 000

Note that the weights on the left and right border are equal by construction.
We now define a filling rule Φ for the vector representation of the symplectic group.

Definition 2.14. The filling rule for oscillating tableaux is

Φ(λ, κ, ν, µ) =

�
1 if κ + ν − λ contains a negative entry,
0 else,

(1)

where the cells are labelled as depicted below:

λ ν

κ µ
Φ(λ, κ, ν, µ)

. (2)

To improve readability we will leave cells with filling 0 empty. The filling 1 is
rendered as a cross. We obtain:

×

×
×

×

×
×

×
×

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8
000 100 200 210 211 210 110 100 000

100 000 100 110 111 110 100 110 100

200 100 000 100 110 111 110 210 200

210 110 100 000 100 110 111 211 210

211 111 110 100 000 100 110 210 211

210 110 111 110 100 000 100 200 210

110 100 110 111 110 100 000 100 110

100 110 210 211 210 200 100 000 100

000 100 200 210 211 210 110 100 000
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The chord diagram corresponding to this filling is a perfect matching with circular
layout

12

3

4

5 6

7

8

.

One can verify the following:

Theorem 2.15 (See Theorem III.50). Denote with MO the function mapping an oscillating
tableau to a chord diagram following above construction. Let V denote the vector representation
of the symplectic group Sp(2r). Then MO : (V⊗2n)∗ → G2n is an injection. The chord
diagrams G2n

V are precisely the (r + 1)-non-crossing matchings of {1, 2, . . . , 2n} and the map
coincides with the one given in [19].

2.3.2 Vector representation of type A

Let V be the vector representation of SL(r). Then the highest weight words can be
identified with standard Young tableaux of size n with at most r rows: the position
of the unique entry equal to 1 in wi is the row of the tableau in which the number i
appears. Since the weight lattice of SL(r) is the image of Zr in the quotient of Rr by
the span of (1, . . . , 1), a highest weight word has weight zero if and only if all r rows
of the corresponding tableau have the same length.

A diagrammatic basis for the invariant space was constructed by Cautis, Kam-
nitzer and Morrison [5], generalising Kuperberg’s webs for SL(2) and SL(3), see [13].
However, only Kuperberg’s web bases are preserved by rotation. For these, Petersen,
Pylyavskyy and Rhoades [17] demonstrated that the growth algorithm of Khovanov
and Kuperberg in [12] intertwines promotion with rotation. Their result was then
generalised by Patrias [16] to the invariant space of a tensor product containing not
only V but also its dual V∗ in arbitrary order.

The first generalisation to higher rank was recently achieved by the author of thesis
in joint work with Gaetz, Pechenik, Striker and Swanson [6], which is not part of
this thesis. An important notion in this work are promotion permutations, which are
fillings of the promotion diagram that are essentially given by the following filling
rule.

Definition 2.16. The filling rule for rectangular standard Young tableaux is

Φ(λ, κ, ν, µ) =

�
1 if ν − λ &= µ − κ

0 else
, (3)

where the cells are labelled as in (2).

In Section 1.2 we have seen a bijection between the set of rectangular standard
Young tableaux of size 2n and non crossing perfect matchings with 2n vertices. It is
straight forward to see, that this bijection can be recovered by our construction using
the filling rule (3).
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2.3.3 Spin representation of type B

Let S be the spin representation of the spin group Spin(2r + 1) and let λi =
1
2 ∑r

j=1 ej be
its dominant weight. Then w is a highest weight word if and only if wi = (± 1

2 , . . . ,± 1
2)

and µq is dominant for all q ≤ n.
Therefore, a highest weight word w of weight zero can be identified with a fan of

r Dyck paths of length n: the first entry of wi is 1
2 if and only if the top most Dyck path

has an up-step at position i. In general, the j-th entry of wi is 1
2 if and only if the j-th

Dyck path has an up-step at position i.

Definition 2.17. The filling rule for fans of Dyck paths is

Φ(λ, κ, ν, µ) = number of negative entries in κ + ν − λ, (4)

where the cells are labelled as in (2).

Theorem 2.18 (See Theorem III.51). Denote with MF the function mapping a r-fan of Dyck
paths to a chord diagram using the filling rule (4). Then MF : (S⊗n)∗ → Gn is an injection
that intertwines promotion and rotation.

Thus the image of this map gives a rotation invariant diagrammatic basis, but we
do not know a nice direct characterisation of the set of chord diagrams obtained by
this construction for arbitrary r.

Example 2.19. Consider the 3-fan of Dyck paths of length 8

F = (000, 111, 222, 311, 422, 331, 222, 111, 000).

We obtain:

MF(F) =

�����������

0 0 0 0 0 0 0 3
0 0 2 0 0 0 1 0
0 2 0 0 0 1 0 0
0 0 0 0 2 0 1 0
0 0 0 2 0 1 0 0
0 0 1 0 1 0 1 0
0 1 0 1 0 1 0 0
3 0 0 0 0 0 0 0

�����������

12

3

4

5 6

7

8
3

1

2

1 1
2

1
1

2.3.4 Vector representation of type B

Let V be the vector representation of SO(2r + 1) and let λi = e1 be its dominant weight.
Then w is a highest weight word if and only if wi is in {±ej : 1 ≤ j ≤ r} ∪ {0}, µq is
dominant for q ≤ n and wi &= 0 if µi−1 contains an entry equal to 0. The corresponding
tableaux are called vacillating tableaux1 and can be identified with r-fans of Riordan
paths, see [9].

Note that V is not minuscule. We can use two workarounds:
1 The name vacillating tableaux also appears in the context of partition algebras with a different meaning.
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• Embed V in the tensor product S ⊗ S to obtain a map ιV→F from vacillating
tableaux to r-fans of Dyck paths.

• Use virtual crystals to obtain a map ιV→O from vacillating tableaux to oscillating
tableaux of twice the length.

Combining these maps with the constructions MF and MO, respectively, we obtain
the maps MV→F and MV→O.

Our main result for vacillating tableaux is:

Theorem 2.20 (See III.57). The maps MV→F and MV→O are injective and intertwine promo-
tion and rotation. Moreover, for a vacillating tableau V we have

MV→O(V) = MV→F(V).

Thus the image of this map gives a rotation invariant diagrammatic basis, but we
do not know any direct characterisation of the set of chord diagrams obtained by this
construction.

Example 2.21. Let V = (000, 100, 200, 210, 211, 111, 111, 110, 100, 000) a vacillating
tableau. We can map this to the oscillating tableau

ιV→O(V) = (000, 100, 200, 300, 400, 410, 420, 421, 422, 322, 222, 221,
222, 221, 220, 210, 200, 100, 000).

This gives the chord diagram:

MV→O(V) =

�������������

0 0 0 0 0 1 1 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1
0 2 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 1 0 1 0 0 0

�������������

1
2

3

4

5 6

7

8

9

1
1

2 1

1

1
1

1
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abstract

In 2010, B. Rhoades proved that promotion on rectangular standard Young tableaux
together with the associated fake-degree polynomial provides an instance of the cyclic
sieving phenomenon.

We extend this result to m-tuples of skew standard Young tableaux of the same
shape, for fixed m, subject to the condition that the mth power of the associated fake-
degree polynomial evaluates to nonnegative integers at roots of unity. However, we
are unable to specify an explicit group action.
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Put differently, we determine in which cases the mth tensor power of a skew
character of the symmetric group carries a permutation representation of the cyclic
group.

To do so, we use a method proposed by N. Amini and the first author, which
amounts to establishing a bound on the number of border-strip tableaux of skew
shape.

Finally, we apply our results to the invariant theory of tensor powers of the adjoint
representation of the general linear group. In particular, we prove the existence of
a bijection between permutations and J. Stembridge’s alternating tableaux, which
intertwines rotation and promotion.

i.1 introduction

We determine which tensor powers of a skew character χλ/µ of the symmetric group
Sn carry a permutation representation of the cyclic group of order n.

This problem can be rephrased in terms of V. Reiner, D. Stanton & D. White’s cyclic
sieving phenomenon [19]. Let SYT(λ/µ) be the set of standard Young tableaux of skew
shape λ/µ, and let f λ/µ(q) be G. Lusztig’s fake degree polynomial for χλ/µ. Then
there exists an action ρ of the cyclic group of order n = |λ/µ| such thatSYT(λ/µ)× · · · × SYT(λ/µ)� �� �

m

, �ρ�, f λ/µ(q)m


exhibits the cyclic sieving phenomenon, if and only if f λ/µ evaluates to nonnegative
integers at nth roots of unity. If m is even this is always the case. If m is odd, this is
the case if and only if there exists a tiling of λ/µ with border-strips of size k of even
height for every k | n, see Theorem I.44.

We also show that for any skew shape λ/µ and any integer s > 0 there is an action
τ of the cyclic group of order s on stretched shapes such that�

SYT(sλ/sµ), �τ�, f sλ/sµ(q)
�

exhibits the cyclic sieving phenomenon, see Theorem I.49.
At this point we are unable to present ρ and τ explicitly for general skew shapes

λ/µ. Instead, we use a characterization of P. Alexandersson & N. Amini [1], which
says that f ∈ N0[q] is a cyclic sieving polynomial for a group action of the cyclic group
of order n, if and only if for a primitive nth root of unity ξ and all k | n we have that
f (ξk) ∈ N0 and

∑
d|k

µ(k/d) f (ξd) ≥ 0,

where µ is the number-theoretic Möbius function.
To apply this result, we establish a new bound for the absolute value of the skew

character evaluated at a power of the long cycle. More precisely, Theorem I.31 implies
that, for any k | n,

| f λ/µ(ξk)| ≥ ∑
d|k,d<k

| f λ/µ(ξd)|
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provided | f λ/µ(ξk)| ≥ 2.
To prove this inequality, we note that | f λ/µ(ξd)| = |χλ/µ((md))| = |BST(λ/µ, m)|,

the number of border-strip tableaux of shape λ/µ with strips of size m, extending the
theorems for straight shapes by T. Springer [27] and G. James & A. Kerber [10]. We
then approximate the number of border-strip tableaux using a bound by S. Fomin &
N. Lulov [8].

Our main motivation is an implication for the invariant theory of the general linear
group, as we now explain. Let glr be the adjoint representation of GLr, and consider
its nth tensor power gl⊗n

r . The symmetric group Sn acts on this space by permuting
tensor positions. Thus, using Schur–Weyl duality, we can determine the subspace of
GLn-invariants of gl⊗n

r , regarded as a representation of Sn. This representation turns
out to be isomorphic to �

λ0n
�(λ)≤r

Sλ ⊗ Sλ,

where the direct sum is over all partitions of n into at most r parts, and Sλ is the
irreducible representation of Sn corresponding to λ. In particular, for r ≥ n, the
dimension of the space of invariants equals the size of Sn.

A fundamental question of invariant theory is to find an explicit basis of the space
of invariants, which, if possible, enjoys further desirable properties. One such property
is invariance under rotation of tensor positions, following G. Kuperberg’s idea of web
bases [12].

An elegant and useful solution would be to describe a set of permutations in
Sn, and a bijection from these to the basis elements which intertwines rotation of
permutations (that is, conjugation with the long cycle) and rotation of tensor positions.
It would be even nicer if this set of permutations for the invariants of gl⊗n

r were a
subset of the set of permutations for the invariants of gl⊗n

r+1.
Although it appears to be difficult to exhibit such an intertwining bijection explicitly,

our results, combined with previous work of S. Pfannerer, M. Rubey & B. Westbury [17],
implies that such a solution must exist, see Theorem I.61.

The existence of such an intertwining bijection is closely related to the existence
of a rotation invariant statistic st mapping permutations to partitions, such that
|{σ ∈ Sn : st(σ) = λ}| = |SYT(λ)× SYT(λ)|, see Corollary I.56.

i.1.1 Outline of the paper

In Section I.2 we recall the definition of the cyclic sieving phenomenon and establish the
connection with characters of cyclic group actions. In Sections I.3 to I.6 we generalize
T. Springer’s theorem to skew shapes and show, using the Murnaghan–Nakayma
rule, the abacus of G. James & A. Kerber and the Littlewood map, that the character
evaluation of a skew character is, up to sign, equal to a certain number of border-strip
tableaux. We stress that these identities are known for the straight shape case. However,
they are somewhat underappreciated gems which deserve more attention.

In Section I.7 we provide the crucial bound on the number of border-strip tableaux
of given shape, building on the approximation of S. Fomin & N. Lulov. In Section I.8
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we use this bound and the characterization of P. Alexandersson & N. Amini to prove
the existence of the group actions announced above for skew standard tableaux.

Finally in Section I.9 we apply our results to permutations and the invariant theory
of the adjoint representation of the general linear group.

i.2 cyclic group actions and cyclic sieving

In this section we recall V. Reiner, D. Stanton & D. White’s cyclic sieving phenomenon,
characters of cyclic group actions and a result of P. Alexandersson & N. Amini char-
acterizing characters arising from cyclic group actions. We also recall R. Brauer’s
permutation lemma, which guarantees that two actions of the cyclic group which have
the same character as linear representations are even isomorphic as group actions.

Definition I.1 ([19]). Let X be a finite set and let ρ be a generator of an action of the
cyclic group of order n on X.

Given a polynomial f (q) ∈ N0[q] we say that the triple (X, �ρ�, f (q)) exhibits the
cyclic sieving phenomenon if for all d ∈ Z

#{x ∈ X : ρd · x = x} = f (ξd),

where ξ is a primitive nth root of unity. In this case f (q) is a cyclic sieving polynomial
for the group action.

In particular, the cardinality of X is given by f (1). More generally, realizing the
cyclic group of order n as the group of nth roots of unity and identifying its ring
of characters with Z[q]/(qn − 1), the cyclic sieving polynomial f (q) modulo qn − 1
reduces to the character of the group action.

The cyclic sieving phenomenon owes its name to the fact that, mysteriously often,
the most natural q-analogue of the counting formula for the cardinality of X as a
function of n is a cyclic sieving polynomial. In many cases, the only known way to
prove that a given q-analogue indeed is a cyclic sieving polynomial is to enumerate
the number of fixed points of the group action, and verify that the evaluation of the
polynomial yields the same number.

Remark I.2. If (X, �ρ�, f (q)) exhibits the cyclic sieving phenomenon, then so does
(X, �ρk�, f (q)) for any positive integer k, which restricts the group action to a subgroup.
Moreover, for any positive integer m, the triple (Xm, �ρ�, f (q)m), where �ρ� acts on Xm

via ρ · (x1, . . . , xm) = (ρ · x1, . . . , ρ · xm), also exhibits the cyclic sieving phenomenon.

Much attention has been given to prove cyclic sieving phenomena on certain
families of tableaux, see Table 1. Most famously, B. Rhoades showed that SYT(ab)
exhibits the cyclic sieving phenomenon, where the group action is promotion and the
cyclic sieving polynomial is the fake degree polynomial f λ(q) associated with λ = (ab).
There are now several alternative proofs of this result, notably [18], [9], [31] and [32].
For an overview of some of these approaches, see [20].

It turns out that it is possible to determine whether a polynomial reduces modulo
qn − 1 to the character of a cyclic group action of order n.
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Set Group action Statistic/ f (q) Reference

SYT(ab) Promotion maj [21]
SYT((n − m, 1m)) Promotion† [n−1

m ]q [5]
SYT(λ) Evacuation‡ maj [30]
SSYT(ab, k) k-promotion q−κ(λ)sab(1, q, . . . , qk−1) [21]
COF(nλ/nµ) Cyclic shift a variant of maj [3]

Table 1: Summary of known cyclic sieving phenomena on various sets of tableaux. †Note that
promotion on hook shaped SYT with n cells has order n − 1. ‡Evacuation is an involution, so
the cyclic group has order two.

Theorem I.3 ([1, Thm. 2.7]). Let f (q) ∈ N0[q] and suppose that f (ξd) ∈ N0 for all
d ∈ {1, . . . , n}, where ξ is a primitive nth root of unity. Let X be any set of size f (1).

Then there exists a cyclic group action ρ of order n such that (X, �ρ�, f (q)) exhibits the
cyclic sieving phenomenon if and only if for every k | n,

∑
d|k

µ(k/d) f (ξd) ≥ 0,

where µ is the number-theoretic Möbius function.

Remark I.4. Except for its size, the nature of the set X is irrelevant in this theorem.

Remark I.5. If (X, �ρ�, f (q)) exhibits the cyclic sieving phenomenon, the expression

1
k ∑

d|k
µ(k/d) f (ξd)

is the number of orbits of size k of the group action. Therefore, the sum

∑
d|k

µ(k/d) f (ξd)

must be nonnegative and divisible by k. The condition that the sum is divisible by k
follows from the hypothesis that f (q) ∈ N0[q] and f (ξd) ∈ N0 for all d ∈ {1, . . . , n},
see [1, Lem. 2.5].

Remark I.6. It may be the case that f (q) ∈ N0[q] evaluates to nonnegative integers
at nth roots of unity, but is not a cyclic sieving polynomial. As an example (see [1,
Ex. 2.10]), take f (q) = q5 + 3q3 + q + 10. At 6th roots of unity, f (ξ j) takes nonnegative
integer values. However, for k = 3 we have ∑d|k µ(k/d) f (ξd) = −3.

We conclude this section by recalling a fact that makes cyclic groups special. In
general, two non-isomorphic group actions may have the same linear character. This
is not the case for group actions of a cyclic group, as R. Brauer’s permutation lemma
shows:

Theorem I.7 ([6, 11]). Two cyclic group actions are isomorphic if and only if they are isomor-
phic as linear representation, that is, their characters coincide.
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i.3 some properties of skew schur functions

In this section we recall some basic properties of skew Schur functions, the Littlewood–
Richardson coefficients and fake degree polynomials. We refer to the books by I. G. Mac-
donald [14] and R. Stanley [28] for definitions. We use English notation for tableaux in
all our figures.

Let SYT(λ/µ) and SSYT(λ/µ) be the set of standard and semi-standard Young
tableaux of skew shape λ/µ, respectively. Given a skew shape λ/µ with n cells, the
associated skew Schur function sλ/µ is defined as

sλ/µ(x) := ∑
T∈SSYT(λ/µ)

∏
�∈λ/µ

xT(�).

This generalizes the ordinary Schur function sλ := sλ/∅. It is well-known that {sλ}λ,
where λ runs over all partitions, is a basis for the ring of symmetric functions. Another
basis is given by the set of power sum symmetric functions indexed by partitions. These
are defined as

pν(x) := pν1(x)pν2(x) · · ·pν�(x), pj(x) := xj
1 + xj

2 + · · · .

The skew characters χλ/µ(ν) of the symmetric group Sn are then defined implicitly via

sλ/µ(x) = ∑
ν

χλ/µ(ν)
pν(x)

zν
, (5)

where the sum is over all partitions ν of the same size as λ/µ, zν = ∏j mj!jmj and mj is
the number of parts in λ equal to j.

We define the Littlewood–Richardson coefficients cλ
µν ∈ N0 via the expansion of the

skew Schur function sλ/µ in the basis of the ordinary Schur functions,

sλ/µ(x) = ∑
ν

cλ
µ,νsν(x). (6)

Note that cλ
µν = 0 if ν and λ/µ are not of the same size. Combining Equations (5)

and (6) we obtain an equivalent expansion for the skew characters,

χλ/µ = ∑
ν

cλ
µ,νχν. (7)

Although it is very difficult to determine whether a given Littlewood–Richardson
coefficient vanishes, the following particular case is straightforward.

Lemma I.8. Let λ/µ be a skew shape with n cells. Then cλ
µ,(n) = 0 if and only if λ/µ has a

column with at least two cells. Similarly, cλ
µ,(1n)

= 0 if and only if λ/µ has a row with at least
two cells.

Proof. We shall first prove the statement

cλ
µ,(n) = 0 ⇐⇒ λ/µ has a column with at least two cells.
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We expand both sides of Equation (6) in the monomial basis. The left hand side
contains the monomial xn

1 if and only if there is no column of λ/µ with at least two
cells. Since the only semi-standard Young tableau of straight shape that contains
precisely n times the letter 1 has shape (n), the monomial xn

1 appears in the right hand
side if and only if cλ

µ,(n) &= 0.

The statement concerning cλ
µ,(1n)

follows by applying the involution ω, with the
property that ω(sλ/µ) = sλ*/µ* , on both sides of Equation (6). This yields

sλ*/µ*(x) = ∑
ν

cλ
µ,νsν*(x).

A similar argument as in the previous paragraph now finishes the proof.

Definition I.9. Given a skew standard Young tableau T with n cells, a label j with
1 ≤ j < n is a descent of T, if the label j + 1 appears in a row strictly below that
of j. The major index of T, denoted maj(T), is the sum of the descents of T. The fake-
degree polynomial f λ/µ(q) associated with a skew Young diagram λ/µ is the generating
function for the major index:

f λ/µ(q) := ∑
T∈SYT(λ/µ)

qmaj(T).

The following lemma relates skew Schur functions and fake-degree polynomials.

Lemma I.10 ([28, Prop. 7.19.11]). Let λ/µ be a skew shape with n cells. Then

sλ/µ(1, q, q2, . . . ) =
f λ/µ(q)

(1 − q)(1 − q2) · · · (1 − qn)
.

i.4 skew characters and their fake degrees

A result by T. Springer [27] gives an expression for the evaluation of an irreducible
character of the symmetric group at a power of the long cycle (1, . . . , n) ∈ Sn. In this
section, we extend this result to skew characters.

Proposition I.11. Let λ/µ be a skew shape with n cells and let ξ be a primitive nth root of
unity. Then, for n = dm,

χλ/µ((md)) = f λ/µ(ξd).

We shall deduce this from the following, more general result. This was first proved
explicitly by B. Sagan, J. Shareshian and M. Wachs [25, Prop. 3.1], but, as they note, is
already implicit in work of J. Désarménien [7]. We include yet another, different, proof.

Proposition I.12. Let F(x) be a homogeneous symmetric function of degree n, such that

F(x) = ∑
ν0n

χF(ν)
pν(x)

zν
.

39



Furthermore let f F(q) be the following variation of the principal specialization of F(x):

f F(q) :=

�
n

∏
j=1

(1 − qj)

�
F(1, q, q2, . . . ).

Then, for a primitive nth root of unity ξ and n = dm, we have χF((md)) = f F(ξd).

Proof. Substituting pk(1, q, q2, . . . ) = (1 − qk)−1 in F(x) we obtain

f F(q) =

�
n

∏
j=1

(1 − qj)

�
∑
ν0n

χF(ν)

zν

�(ν)

∏
k=1

1
1 − qνk

.

Each summand on the right hand side approaches 0 as q → ξd, unless ν = (md),
because the first product has a zero with multiplicity d at q = ξd. Taking the limit,
removing all summands other than the one corresponding to ν = (md) and rearranging
the expression slightly, we find

lim
q→ξd

f F(q) = lim
q→ξd

�
d

∏
k=1

1
1 − qkm

n

∏
j=1

(1 − qj)

�
χF((md))

z(md)

d

∏
k=1

1 − qkm

1 − qm .

The last product approaches d! by l’Hospital’s rule, and z(md) = d!md. Since n = dm,
we have that the first two products are expressible as

d

∏
k=1

1
1 − qkm

n

∏
j=1

�
1 − qj

�
=

d−1

∏
k=0

m−1

∏
j=1

�
1 − qj+km

�
.

Now, since ξmd = 1, we obtain that

f F(ξd) =

�
m−1

∏
j=1

(1 − ξ jd)

�d
χF((md))

md =

�
1
m

m−1

∏
j=1

(1 − ξ jd)

�d

χF((md)). (8)

Because ξd is a primitive mth root of unity, xm − 1 = ∏m−1
j=0 (x − ξ jd). Dividing both

sides by x − 1 gives the identity

(xm−1 + xm−2 + · · ·+ x + 1) =
m−1

∏
j=1

(x − ξ jd).

Setting x = 1 here shows that ∏m−1
j=1 (1 − ξ jd) = m, and this final observation shows

that the right hand side of (8) equals χF((md)).

Proof of Proposition I.11. By Lemma I.10, this is the special case of Proposition I.12 with
F(x) = sλ/µ(x).
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Figure 2: A border-strip of height 3.

i.5 skew border-strip tableaux and the abacus

In this section, we recall the definition of border-strip tableaux, abaci and the Littlewood
map. We end with a generalization of a theorem of G. James and A. Kerber.

A border-strip (or ribbon or skew hook) is a connected non-empty skew Young diagram
containing no 2 × 2-square of cells, as in Figure 2. The height of a border-strip is one
less than the number of rows it spans.

Let λ/µ be a skew shape. The size of λ/µ is its number of cells, denoted |λ/µ|.
Suppose that ν = (ν1, . . . , ν�) is a partition of |λ/µ|. A border-strip tableau of shape λ/µ

and type ν is a tiling of the Young diagram of λ/µ with labeled border-strips B1, . . . , B�

with the following properties:

• the border-strip Bj has label j and size νj,

• labeling all cells in Bj with j results in a labeling of the diagram λ/µ where labels
in every row and every column are weakly increasing.

We let BST(λ/µ, ν) denote the set of all such border-strip tableaux. In particular,
BST(λ/µ, 1n) may be identified with the set of standard Young tableaux of shape
λ/µ. In the remainder of the paper, we shall only concern ourselves with border-strip
tableaux where all strips have the same size d, which we denote by BST(λ/µ, d).

The height of a border-strip tableau T, or any tiling of a tableau with border-strips,
is the sum of the heights of the border-strips in the partition. The content of a cell is
given by its column index minus its row index. Observe that within a border-strip,
the lowest leftmost cell has the smallest content. By convention, the label of a strip is
placed in the unique cell with minimal content in the strip, as done in Figure 3.

1

2 3
4
5 6

7
8

9 10
11

12

1

2 3
4
5

6

7

8

9
10

11

12

Figure 3: Two border-strip tableaux in BST((92,63,4,1)/(2,13), 3) of height 13 and 9 respectively.
In each strip, the label has been placed in the cell with minimal content.

In Equation (5), the skew characters χλ/µ were defined. The skew Murnaghan–
Nakayama rule describes a way to compute these skew characters.

Theorem I.13 (Murnaghan–Nakayama, see [28, Cor. 7.17.5]). The skew characters are
given by the signed sum

χλ/µ(ν) = ∑
B∈BST(λ/µ,ν)

(−1)height(B).
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We will use the abacus model introduced by G. James & A. Kerber [10, Ch. 2.7] to
encode partitions and their quotients.

Definition I.14. A bead sequence is an infinite binary word w = (wi)i∈N≥1 , such that
only a finite number of letters, the beads, are equal to 1.

Recording for each 1 in w the total number of 0’s preceding it, yields, apart from
some leading zeros, the sequence of parts of an integer partition λ, ordered from the
smallest part to the largest. In this case, w is a bead sequence for λ.

The d-abacus on w is the d-tuple of runners (w1, . . . , wd), with ws = (wid+s)i∈N0 for
1 ≤ s ≤ d.

The partition corresponding to a bead sequence can alternatively be obtained by
interpreting each 0 as a horizontal unit step and each 1 as a vertical unit step. This
yields, apart from some leading vertical steps, the path tracing the south-east border of
the Young diagram in English notation.

Thus, prepending a 1 to a bead sequence we obtain another bead sequence for the
same partition. The d-abacus on the modified bead sequence is obtained from the
d-abacus on the original bead sequence by prepending a bead to the dth runner and
then cyclically shifting the runners.

We visualize a d-abacus, as in Figure 4 on the right, by drawing d runners as
vertical lines. Each runner consists of equally spaced spots. Beginning with the
top row, processing each row from left to right, a bead is placed if and only if the
corresponding letter of the binary word is 1. It will be convenient to color beads before
the first empty spot black, and label the remaining positions beginning with 0. The
labels of the beads are then the hook lengths of the cells in the first column of the
associated partition.

11
6
4
2
1

1

5

9

2

6

10

3

7

11

0

4

8

12

ν1=∅ ν2=∅ ν3=(2) ν3=(1)

Figure 4: The 4-abacus 1110 1101 0100 0010 . . . for the partition (7, 3, 2, 1, 1), together with its
4-quotient.

We can now define the core and the quotient of a partition.

Definition I.15. Let λ be a partition and let d ≥ 1 be an integer. Then the d-core of λ is
the partition associated with the d-abacus which is obtained from the d-abacus on any
bead sequence for λ by moving up all beads as far as possible.

Given a bead sequence w for λ, the d-quotient of λ is the d-tuple of partitions
obtained by regarding each runner of the d-abacus on w as a bead sequence.

Strictly speaking, the d-quotient of λ depends on the chosen bead sequence, or more
precisely, on its number of beads modulo d. However, as indicated before, choosing a
different bead sequence corresponds to a cyclic permutation of the d-tuple of partitions
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in the d-quotient. Therefore, if the ordering of the partitions in the quotient is irrelevant,
it is not necessary to explicitly fix a bead sequence.

By contrast, the d-core is independent of the chosen bead sequence. For example,
the 4-core of the partition (7, 3, 2, 1, 1) is (2), as can be seen by moving the beads in
positions 4 and 11 up in Figure 4, obtaining the bead sequence 1111 1110 0100 . . . .

The following observation is fundamental to the utility of the abacus.

Lemma I.16. Suppose that the partition λ is obtained from the partition µ by adding a
border-strip of size d, whose cell of minimal content has content c in λ.

Then a d-abacus for µ is obtained from a d-abacus for λ by moving a bead on the jth runner
up by one position. Provided that d divides the total number of beads on the abacus, we have
j ≡ c (mod d).

Proof. Let (wλ
i )i∈N≥1 be a bead sequence for λ, and let x and y be the column and the

row, respectively, of the cell of minimal content of the border-strip which was added to
µ to obtain λ.

Let j be the index of the xth zero in (wλ
i )i∈N≥1 . Thus, wλ

j , wλ
j+1, . . . , wλ

j+d encodes
the path tracing the south-east border of the Young diagram of λ/µ. In particular,
since λ/µ is a border-strip, wλ

j+d = 1. Let

wµ
i =

��
1 if i = j
0 if i = j + d
wλ

i otherwise.

Equivalently, this is the bead sequence for the d-abacus obtained by moving a bead up
on the j̄th runner, with j̄ ≡ j (mod d). Moreover, wµ

j , wµ
j+1, . . . , wµ

j+d encodes the path

tracing the north-west border of the Young diagram of λ/µ, so (wµ
i )i∈N≥1 is indeed a

bead sequence for µ.
Let � be the total number of ones in (wλ

i )i∈N≥1 . Then there are x − 1 zeros in
wλ

1 , . . . , wλ
j−1, and �− y ones. Thus, provided that � = dk, we have j = x − 1 + dk − y +

1 ≡ x − y (mod d).

Definition I.17. Let λ/µ be a skew shape. Then w = (wλ
i , wµ

i )i∈N≥1 is a (skew) bead
sequence for λ/µ if (wλ

i )i∈N≥1 and (wµ
i )i∈N≥1 are bead sequences for λ and µ respectively,

and the number of beads in these two bead sequences are the same.
The (skew) d-abacus on w is the pair of d-abaci for (wλ

i )i∈N≥1 and (wµ
i )i∈N≥1 .

Suppose that there is a (skew) bead sequence w for λ/µ, such that for all 1 ≤ i ≤ d,
the ith pair of runners in the d-abacus on w is a bead sequence for a skew shape νi/κi.
Then the corresponding d-quotient of λ/µ is the d-tuple (ν1/κ1, . . . , νd/κd). If there is
no such bead sequence, the d-quotient of λ/µ does not exist.

We visualize a d-abacus for λ/µ by drawing the d-abacus for µ above the d-abacus
for λ, as on the right hand side of Figure 5.

Lemma I.18. Let λ/µ be a skew shape. Then the d-quotient of λ/µ exists if and only if
BST(λ/µ, d) is non-empty.
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ν3/κ3=(4,3)/(1)

Figure 5: The hook lengths of the first column of the inner and the outer shape of the diagram
in Figure 3, and the pair of 3-abaci corresponding to the shape.

Proof. It is an immediate consequence of Lemma I.16 that BST(λ/µ, d) is non-empty if
and only if a d-abacus for µ can be obtained from the d-abacus for λ by moving up
beads along their runners. Put differently, each pair of runners in a d-abacus for λ/µ

is a bead sequence for some skew shape.

Remark I.19. Note that in this case the d-cores of λ and µ coincide. In fact, a d-quotient
of a partition λ with core µ is precisely a d-quotient of λ/µ.

We now recall the Littlewood map as described by, for example, G. James &
A. Kerber [10, Ch. 2.7] or I. Pak [16, fig. 2.6], where it is called the rim hook bijection.

Suppose that BST(λ/µ, d) is non-empty. Then, given a bead sequence for λ/µ, let
the set of standard Young tableaux tuples, denoted by SYT-tuples(λ/µ, d), be the set of
d-tuples (T1, T2, . . . , Td) of skew tableaux with the following properties:

• the shape of T j is λj/µj, the jth entry of the d-quotient of λ/µ,

• for each tableau T j, the cell labels in rows and columns increase,

• each of the numbers {1, 2, . . . , n/d} appears in precisely one tableau.

The Littlewood map is a bijection between BST(λ/µ, d) and SYT-tuples(λ/µ, d),
which we now describe. Fix a bead sequence for λ/µ and let (λ1/µ1, . . . , λd/µd) be
the corresponding d-quotient of λ/µ. Let B ∈ BST(λ/µ, d).

We define (T1, T2, . . . , Td) inductively: if λ/µ is the empty partition, then Ti is the
empty partition for 1 ≤ i ≤ d. Otherwise let B̄ be the border-strip tableau obtained
from B by deleting the strip with the largest label n/d, and let λ̄/µ be its shape.
Let (λ̄1/µ1, . . . , λ̄d/µd) be the d-quotient of λ̄/µ corresponding to the bead sequence
which has as many beads as the chosen bead sequence for λ/µ. Let (T̄1, T̄2, . . . , T̄d) be
the standard Young tableau tuple corresponding to B̄.

Then there is a unique index 1 ≤ j ≤ d with λ̄j/µj &= λj/µj. Moreover, λj/µj

is obtained from λ̄j/µj by adding a single cell. The standard Young tableaux tuple
(T1, T2, . . . , Td) is thus obtained from (T̄1, T̄2, . . . , T̄d) by placing n/d into this cell of T j.
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Remark I.20. Suppose that the number of beads in the chosen bead sequence for λ/µ

is divisible by d. Let c(x) denote the content of the unique cell with minimal content
in the d-strip labeled x in B, as shown in Figure 3.

Then it follows immediately from Lemma I.16 that any label x appearing in T j

satisfies c ≡ j (mod d).
Furthermore, two labeled cells in T j differ in content by k if and only if the two

cells with these labels in B differ in content by dk.

The image of the two border-strip tableaux in Figure 3 are given by the triples in
(9) and (10), respectively.

Example I.21. The 3-cores of λ = (92,63,4,1) and µ = (2,13) are both given by the
partition (2). Provided we choose bead sequences such that the number of beads is
divisible by 3, the 3-quotient of λ is (2), (2,12), (4,3) and the 3-quotient of µ is ∅, ∅, (1).
Thus, the 3-quotient of λ/µ is (2), (2,12), (4,3)/(1) and the two tuples

5 6
3 8
4
9

2 7 12
1 1011 (9)

5 7
3 8
4

10

2 6 12
1 9 11 (10)

are elements in SYT-tuples(λ/µ, 3), corresponding to the two tableaux in Figure 3.

Theorem I.22. Let λ/µ be a skew shape of size n and let k and d be positive integers with
dk | n. Fix a skew bead sequence for λ/µ.

Then BST(λ/µ, dk) is non-empty if and only if BST(λ/µ, k) is non-empty and, for the
k-quotient (ν1/κ1, . . . , νk/κk) of λ/µ, each set BST(νi/κi, d) is non-empty for 1 ≤ i ≤ k.

In this case d | gcd(|ν1/κ1|, . . . , |νk/κk|) and

|BST(λ/µ, dk)| =
�

∑i |νi/κi|/d
|ν1/κ1|/d, . . . , |νk/κk|/d

� k

∏
i=1

|BST(νi/κi, d)|. (11)

Remark I.23. The case d = 1 for straight shapes is classical and can be found in [10,
eq. (2.7.32)] or [8].

Proof. Let us first prove the special case d = 1. Since the Littlewood map is bijective, it
suffices to count the number of standard Young tableaux tuples (T1, T2, . . . , Td) with
shapes (ν1/κ1, . . . , νk/κk). This number is

|BST(λ/µ, k)| = |SYT-tuples(λ/µ, k)| =
�

∑i |νi/κi|
|ν1/κ1|, . . . , |νk/κk|

� k

∏
i=1

|SYT(νi/κi)|,

where the multinomial coefficient counts the number of ways to distribute the labels
among the skew shapes.

Now we reduce the general statement to the case d = 1. First notice, that
|BST(λ/µ, dk)| ≤ |BST(λ/µ, k)|, because there exists a natural injection which splits
each strip of length dk into d strips of length k.
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Let w = (wλ
i , wµ

i )i∈N≥1 be a bead sequence for λ/µ. For simplicity we write
wi := (wλ

i , wµ
i ). For 1 ≤ s ≤ k let ws = (wik+s)i∈N0 be the sth runner in the k-abacus

on w.

By Lemma I.18 it suffices to prove that all runners in the dk-abacus on w are bead
sequences for skew shapes if and only if all runners in the d-abacus on ws are bead
sequences for skew shapes for all 1 ≤ s ≤ k. For 1 ≤ t ≤ d, the tth runner in the
d-abacus on ws is

ws,t = (w(j·d+t−1)·k+s)j∈N0 = (w(j·(dk)+(t−1)k+s)j∈N0 .

Because 1 ≤ (t − 1)k + s < dk, this is precisely the ((t − 1)k + s)th runner in the
dk-abacus on w, giving the equivalence.

Suppose now that |BST(λ/µ, dk)| is non-empty and let (νs,1/κs,1, . . . , νs,d/κs,d) be
the d-quotient of νs/κs. The above equation on runners shows that the collection of
skew shapes νs,t/κs,t for 1 ≤ s ≤ k and 1 ≤ t ≤ d coincides with the collection of skew
shapes in the dk-quotient for λ/µ.

To conclude the argument, we compute

� |λ/µ|/dk
|ν1/κ1|/d, . . . , |νk/κk|/d

� k

∏
i=1

|BST(νi/κi, d)|

=

� |λ/µ|/dk
|ν1/κ1|/d, . . . , |νk/κk|/d

� k

∏
i=1

� |νi/κi|/d
|νi,1/κi,1|, . . . , |νi,d/κi,d|

� d

∏
j=1

|SYT(νi,j/κi,j)|

=

� |λ/µ|/dk
|ν1,1/κ1,1|, . . . , |νk,d/κk,d|

� k

∏
i=1

d

∏
j=1

|SYT(νi,j/κi,j)|

= |BST(λ/µ, dk)|.

Example I.24. Consider the skew shape λ/µ = (9,7,42,32,1)/(3,2,12) of 24. A corre-
sponding skew 6-abacus is as follows. Note that the lower abacus, corresponding
to the outer shape λ, can be obtained from the upper abacus, corresponding to the
inner shape µ, by moving down beads along a runner. Following Lemma I.16, this
corresponds to the fact that BST(λ/µ, 6) is non-empty.

3 4 5
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1

7

2

8

0

6

12
(2)

1

7
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∅
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(2)/(1)
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∅
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∅
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On the other hand, the skew 3-abacus with the same number of beads is the following:

0

3

6

1

4

7

2

5

8

0

3

6

9

12

15

ν1/κ1=(42)/(2)

1

4

7

10

13

16

ν2/κ2=∅

2

5

8

11

14

17

ν3/κ3=(12)

Finally, as illustration of the proof, consider the skew 2-abacus for ν1/κ1, corresponding
to the first runner in the skew 3-abacus above, and having the same number of beads
as this abacus. Observe that the (skew) bead sequences, and therefore also the
corresponding skew shapes, are the same as on the first and the fourth runner of the
6-abacus:

1

0

2

0

2

4

ν1,1/κ1,1=(2)

1

3

5

ν1,2/κ1,2=(2)/(1)

As a corollary we obtain a useful characterization of shapes with precisely one
border-strip tableau.

Corollary I.25. Let λ/µ be a skew shape of size n ∈ N≥1 and let k be a positive integer with
k | n. Suppose that BST(λ/µ, k) is non-empty.

Then BST(λ/µ, k) contains precisely one element if and only if all skew shapes in the skew
k-quotient of λ/µ are empty, with exactly one exception, which is either a single row (n/k) or
a single column (1n/k).

In this case λ/µ is a border-strip and BST(λ/µ, dk) contains precisely one element for all
d | n

k .

Proof. Let (ν1/κ1, . . . , νk/κk) be the skew k-quotient of λ/µ. Applying Theorem I.22
with d = 1 we obtain that |BST(λ/µ, k)| = 1 if and only if |BST(νi/κi, 1)| = 1 for all i
and the multinomial coefficient in Equation (11) evaluates to 1.

Since BST(νi/κi, 1) is the set of standard Young tableaux of shape νi/κi, we have that
|BST(νi/κi, 1)| = 1 if and only νi/κi is a single row or a single column. Furthermore,
the multinomial coefficient equals 1 if |νi/κi| = 0 for all but one i.

Suppose now that |BST(λ/µ, k)| = 1. Let νj/κ j be the unique non-empty element
in the quotient, which therefore has size n/k. Because νj/κ j is a single row or a single

47



column, |BST(νj/κ j, n/k)| = 1. For i &= j we trivially have |BST(νi/κi, n/k)| = 1. Thus,
by Theorem I.22 with d = n/k, we have |BST(λ/µ, n)| = |BST(λ/µ, n

k · k)| = 1, which
implies that λ/µ is a border-strip.

Finally, recall that |BST(λ/µ, dk)| ≤ |BST(λ/µ, k)|, because there is a natural injec-
tion which splits each strip of length dk into d strips of length k. Therefore, provided
that d | n

k ,

1 = |BST(λ/µ, n)| ≤ |BST(λ/µ, dk)| ≤ |BST(λ/µ, k)| = 1.

i.6 skew characters and border-strip tableaux

In this section we show that, up to sign, the evaluation of a skew character at a dth

power of a cycle equals the number of border-strip tableaux with all strips having
size d. The non-skew case follows from a result by D. White [33] and via a different
technique by G. James and A. Kerber [10, Eq. 2.7.26]. Our proof is slightly different
and uses the techniques by I. Pak [16]. The fact that the Murnaghan–Nakayama rule is
cancellation-free in the skew case is also briefly stated in [13, p.1047], and is implicit in
[26].

We include a straightforward proof here for convenience, as we have found no
singe reference which connects all three quantities; evaluations at roots of unity of fake-
degree polynomials, skew characters, and the number of skew border-strip tableaux.

Definition I.26. Let T = (T1, . . . , Td) ∈ SYT-tuples(λ/µ, d). Suppose that, after swap-
ping labels i and i+ 1 in T, the resulting tuple T* is still an element of SYT-tuples(λ/µ, d).
Then this transposition is a flip on T.

The result of a flip on the border-strip tableau corresponding to T under the
Littlewood map is the image of T* under the Littlewood map.

Example I.27. The two flips (6, 7) and (9, 10) send the tableau tuple (9) to the tableau
tuple (10). These correspond to the border-strip tableaux in Figure 3.

Lemma I.28. All elements of SYT-tuples(λ/µ, d) are connected via a sequence of flips.

This lemma is essentially [16, Thm. 3.2]. For convenience, we include a proof using
our framework.

Proof. Fix a bead sequence for λ/µ and let (λ1/µ1, . . . , λd/µd) be the corresponding
d-quotient of λ/µ. Let us first describe the superstandard filling S := (S1, . . . , Sd) ∈
SYT-tuples(λ/µ, d). We will then show that S can be obtained from any other tableau
by a sequence of flips.

The cells in S1 are labeled with the numbers 1, . . . , |λ1/µ1|, the cells in S2 are
labeled with numbers |λ1/µ1|+ 1, . . . , |λ1/µ1|+ |λ2/µ2|, and so forth. The labels in
each tableau Si are then distributed in the lexicographically smallest fashion, when
reading row by row from top to bottom.

It now suffices to prove that for arbitrary T ∈ SYT-tuples(λ/µ, d), we can obtain S
from T by a sequence of flips. We describe a sorting algorithm which rearranges the
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labels, starting with 1 and then continuing with 2, 3, . . . so that these labels agree with
the corresponding labels in S.

Suppose that, at some point during the procedure, all cells in T with labels at most
i − 1 agree with S, but the cell labeled i in S is labeled j > i in T. We then first flip
j and j − 1, then j − 1 and j − 2, etc. until i + 1 and i are flipped, at which point i is
in the correct spot. We show inductively that all these flips are possible to perform:
by construction, the cells above and to the left of the cell labeled with j in T must
have labels smaller than i < j − 1. Because all tableaux in T are standard, the cells
below and to the right of the cell labeled with j − 1 contain labels strictly larger than j.
Performing this algorithm in order for all i = 1, 2, . . . ensures that we eventually reach
S from T.

By analyzing the effect of flipping i and i + 1 on the corresponding border-strip
tableau, we now show that the height of the latter remains invariant.

Lemma I.29 ([16, Lem. 4.1]). Suppose that B and B* in BST(λ/µ, d) are related by a flip.
Then (−1)height(B) = (−1)height(B*).

Proof. Let T and T* be the standard Young tableau tuples corresponding to B and B*
respectively, and let T* be obtained from T by flipping i and i + 1.

Since the tuples of shapes of T and T* restricted to the labels {1, . . . , j} coincide for
j /∈ {i, i + 1}, the border-strip tableaux B and B* only differ in the two border-strips
labeled i and i + 1.

If these are disconnected, that is, no cell in the first strip is horizontally or vertically
adjacent to a cell in the second, only the labels i and i + 1 are interchanged in B and B*.

Otherwise, the two border-strips must form a skew shape, since labels are increasing
in every row and every column of a border-strip tableau. Because this skew shape is a
union of two border-strips, it can be partitioned into three parts: a (non-empty) middle
part which consists of all pairs of cells (b1, b2) whose contents are equal, a part to the
left of this middle part and a part to the right of this middle part.

A flip necessarily fixes the left and right part, while it swaps the cells in the middle
part. Hence, the strips either both increase or both decrease in height by 1, as illustrated
in the following example:

1 2

flip←→
1

2

Together with Proposition I.11 we can now conclude the main result of this section.

Corollary I.30. Let λ/µ be a skew shape of size n = dm. Then the signed sum

χλ/µ((md)) = ∑
B∈BST(λ/µ,m)

(−1)height(B)

in the Murnaghan–Nakayama rule, Theorem I.13, is cancellation-free. In particular,

f λ/µ(ξd) = χλ/µ((md)) = ε|BST(λ/µ, m)|,
where ξ is a primitive nth root of unity and ε = (−1)height(B) for any B ∈ BST (λ/µ, m).
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i.7 bounds on the number of border-strip tableaux

The goal of this section is to prove the following theorem.

Theorem I.31. Let λ/µ be a skew shape with n cells and let k be a positive integer with k | n.
Suppose that |BST(λ/µ, k)| ≥ 2. Then

|BST(λ/µ, k)| ≥ ∑
d| n

k ,d>1
|BST(λ/µ, dk)|.

Additionally, the inequality holds if n/k is a prime number.

Example I.32. For λ = (10,12) 0 12 we have |BST(λ, 3)| = 1 and |BST(λ, 6)| +
|BST(λ, 12)| = 2. By contrast, for λ = (9,13) 0 12, we have |BST(λ, 1)| = 165,
|BST(λ, 2)| = 5, |BST(λ, 3)| = 3 and |BST(λ, 4)| = |BST(λ, 6)| = |BST(λ, 12)| = 1, and
therefore

|BST(λ, k)| ≥ ∑
d| n

k ,d>1
|BST(λ, dk)|

for all k.

Remark I.33. For k = 1, apart from the single row and single column partitions, there
are only three shapes λ/µ where equality is attained: (22), (32) and (23). Other than
that, the minimal difference between the two sides of the inequality is attained for
hooks of the form (n − 1,1). In this case it equals n − τ(n), where τ(n) is the number
of divisors of n.

Our strategy is to reduce the theorem to the case of straight shapes and k = 1,
which we prove in Section I.7.2, employing a bound due to S. Fomin & N. Lulov.

In Section I.7.3 we extend this to the case of skew shapes and k = 1, essentially
using the expansion of a skew character into irreducible characters.

Finally, in Section I.7.4 we deduce the general case from the inequality with k = 1,
using a bound on the quotient of a multinomial coefficient and a multinomial coefficient
with stretched entries proved in Section I.7.1 and Theorem I.22 and Corollary I.25.

i.7.1 Bounds on multinomial coefficients

We first prove two inequalities related to multinomial coefficients. For this we use the
approximation due to H. Robbins.

Proposition I.34 ([23]). For any positive integer n,

n! =
√

2πnn+1/2e−n+rn for some
1

12n + 1
< rn <

1
12n

.

Lemma I.35. For any positive integer d and positive integers m1, . . . , mk summing to m,

( dm
dm1,...,dmk

)

( m
m1,...,mk

)
≥ 1

d(k−1)/2

 mm

∏k
j=1 m

mj
j

d−1

. (12)
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Proof. For d = 1 or k = 1 the statement is trivial, so we assume d > 1 and k > 1.
The left hand side of (12) is equal to

(dm)!
∏j(dmj)!

∏j(mj)!
m!

,

which by Proposition I.34 is larger than or equal to

m(d−1)m

d(k−1)/2 ∏i m(d−1)mi
i

exp

�
1

12dm + 1
− 1

12m
+ ∑

j

1
12mj + 1

− 1
12dmj

�
.

It remains to show that, for ε = 1/12,

1
dm + ε

+ ∑
j

1
mj + ε

≥ 1
m

+ ∑
j

1
dmj

,

provided k > 1 and d > 1. Set M = m ∑j
1

mj
and notice that M ≥ k ≥ 2. Furthermore,

m ∑j
1

mj+ε ≥ m
1+ε ∑j

1
mj

= 1
1+ε M and dm

dm+ε ≥ 1
1+ε . Thus, it suffices to prove that, for

d ≥ 2, M ≥ 2 and ε = 1/12,

1
1 + ε

(1 + dM) ≥ d + M.

This can be seen, for example, by replacing d with 2 + d̃ and M with 2 + M̃.

Corollary I.36. For any integer d > 1 and k > 1 positive integers m1, . . . , mk summing to m,

( dm
dm1,...,dmk

)

( m
m1,...,mk

)
≥

k

∏
j=1

(τ(dmj)− 1),

where τ(n) is the number of divisors of n.

Proof. We use the inequality n/2 ≥ τ(n)− 1, valid for n ≥ 1. By Lemma I.35 it is then
sufficient to show that

1
d(k−1)/2

 mm

∏k
j=1 m

mj
j

d−1

>

�
d
2

�k k

∏
j=1

mj,

or, equivalently, �
k

∏
j=1

1
mj

� mm

∏k
j=1 m

mj
j

d−1

>
1√
d

�
d
2

�k
dk/2.

We will show the stronger inequality mm

∏k
j=1 m

mj+1
j

 1
k

>

�
d
√

d
2

� 1
d−1

. (13)
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It is not hard to see that the right hand side of this inequality, as a real function of
d > 1, attains its maximum between 3 and 4 and is unimodal. By direct inspection we
see that for integral d the maximum of the right hand side is attained at d = 3, where

it is
�27

4

� 1
4 ≈ 1.61.

To find the minimum of the left hand side of inequality (13), we consider the
function

h(z) =
(z + m̌)z+m̌

zz+1 , where z ≥ 1.

For m̌ = 1 we have h(z) = (1 + 1/z)z+1, which is strictly decreasing towards Euler’s
number e as z increases. For m̌ ≥ 2 we show that h is strictly increasing. Indeed, the
derivative of ln h(z) equals

ln
�

1 +
m̌
z

�
− 1

z
.

This expression is positive for m̌ ≥ 2 and z ≥ 1, since we have

exp
�

1
z

�
= 1 +

1
z

�
1 + ∑

k≥2

1
k!zk−1

�

≤ 1 +
1
z

�
1 + ∑

k≥2

1
k!

�
= 1 +

e − 1
z

< 1 +
m̌
z

.

For k = 2 and m2 = 1, the left hand side of (13) equals
"

h(m1) with m̌ = 1.
It is thus strictly larger than

√
e ≈ 1.64, which in turn is larger than (27/4)1/4, the

maximum of the right hand side of (13).
For k = 2 and m2 > 1 and for k ≥ 3 the analysis of h implies that the left hand side

of (13) is strictly increasing in each of the variables mi, 1 ≤ i ≤ k, because it equals h(mi)

∏j &=i m
mj+1
j

1/k

,

with m̌ = ∑j &=i mj. For k = 2 and m2 > 1, this expression is minimized at m1 = 1,
where it is larger than

√
e as shown above. For k > 2 the minimum is attained at

m1 = · · · = mk = 1, and is equal to k.

i.7.2 The bound for standard Young tableaux of straight shape

The goal of this subsection is to prove the special case of Theorem I.31 where µ = ∅
and k = 1. Note that we have the equivalence

|BST(λ, 1)| ≥ ∑
d|n,d>1

|BST(λ, d)| ⇐⇒ ∑d|n |BST(λ, d)|
|BST(λ, 1)| ≤ 2. (14)

For the remainder of this subsection we focus on proving the latter inequality for
λ /∈ {(n), (1n)}. We shall first make use the following theorem by S. Fomin and
N. Lulov.
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Theorem I.37 ([8]). For any partition λ 0 n, we have

|BST(λ, d)| ≤ Q(n, d) · |BST(λ, 1)|1/d where Q(n, d) := d

!
dn

( n
n/d,...,n/d)

. (15)

We introduce the auxiliary function Bn(x) as

Bn(x) := ∑
d|n

Q(n, d)x
1
d−1. (16)

By plugging x = |BST(λ, 1)| into (16), and using (15), we have that

Bn(|BST(λ, 1)|) = ∑
d|n

Q(n, d)|BST(λ, 1)| 1
d−1

=
∑d|n Q(n, d)|BST(λ, 1)|1/d

|BST(λ, 1)|
≥ ∑d|n |BST(λ, d)|

|BST(λ, 1)| .

Hence, if we can show that Bn(x) ≤ 2 for suitable values of x and n we obtain the
second inequality in (14).

Lemma I.38. The inequality
∑d|n |BST(λ, d)|

|BST(λ, 1)| ≤ 2

holds for all partitions λ 0 n other than (n) and (1n) with n composite.

Proof. When n is a prime number the statement is trivial. Otherwise, we distinguish
between several cases.

Case λ = (n − 1, 1) or λ = (2, 1n−2). In this case,

|BST(λ, d)| =
�

n − 1 if d = 1
1 otherwise,

and we observe that n − 1 ≥ τ(n)− 1, where τ(n) is the number of divisors of n.
Case |λ| ≤ 8. The remaining 14 partitions (and their conjugates) not covered

previously can be verified by hand.
Case |λ| ≥ 9. As we noted before, it suffices to show that Bn (|BST(λ, 1)|) ≤ 2. To

do so it suffices to prove the following three properties, whenever n ≥ 9:

• the function x #→ Bn(x) is strictly decreasing for fixed n

• Bn

�
n2

3

�
≤ 2 and

• |BST(λ, 1)| ≥ n2

3 for λ /∈ {(n), (1n), (n − 1, 1), (2, 1n−2)}.
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The first item is obvious from the definition of Bn(x), as all exponents of x are negative.
The second item is proved later in Lemma I.40. We proceed by verifying the third item.

Suppose that |λ| ≥ 9 and that λ is not one of the excluded shapes. We will prove
the statement by induction on the size of λ. To be able to perform the inductive step we
first consider the following four exceptional shapes. If λ is a hook of the form (n − 2, 12)
or its conjugate, then |BST(λ, 1)| = (n−1

2 ). Moreover, if λ = (n − 2, 2) or its conjugate,
then |BST(λ, 1)| = n(n−3)

2 . In both cases the inequality is true for n ≥ 9.
The base cases of the induction, |λ| ∈ {9, 10}, can be verified using a computer, so

we proceed to do the inductive step.
If λ is a rectangle and n ≥ 11, we can either remove two cells from the last row, or

the last column, to obtain two new partitions µ and ν of size n − 2, respectively. A
simple bijective argument shows that

|BST(λ, 1)| = |BST(µ, 1)|+ |BST(ν, 1)|.
By induction, |BST(λ, 1)| ≥ 2(n − 2)2/3 ≥ n2/3, where the last inequality is true for
n ≥ 7. Note that µ and ν are not among the excluded shapes.

If λ is not a rectangle, and λ is not an exceptional shape, we obtain two partitions µ and
ν of size n − 1 by removing two distinct corners of λ. This is possible because λ is not
a rectangle.

These partitions µ and ν are not among the excluded shapes, because λ is not one
of the exceptional shapes. Therefore we have

|BST(λ, 1)| ≥ |BST(µ, 1)|+ |BST(ν, 1)|.
The inequality follows as above by induction.

Lemma I.39. For positive integers d | n, we have

Q(n, d) ≤ √
n, (17)

where Q(n, d) =
�

dn

n!/((n/d)!)d

�1/d
is as in (15).

Proof. First we prove (17) for n ∈ {1, 2} by direct inspection. For n ≥ 3 we use again
Robbins’ approximation, Proposition I.34. We have that

Q(n, d) =
�

dn

n!/((n/d)!)d

� 1
d
=

dn/d(n/d)!
(n!)1/d

= (2πn)−
1

2d

�
2π

n
d

� 1
2 exp

�
rn/d − rn

d

�
.

By plugging this into (17) and simplifying the expressions it suffices to show that

exp(2ndrn/d − 2nrn) ≤ (2πnMd)
n , (18)

where Md :=
�

d
2π

�d
. By now using the approximations rn/d < d

12n and rn > 0 we have

2ndrn/d − 2nrn ≤ 2ndrn/d ≤ 2nd2

12n
=

d2

6
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and thus the left hand side of (18) can be bound with exp( d2

6 ).
Claim: For positive integers, n ≥ 3, n ≥ d, we have

exp
�

d2

6

�
≤ (2πnMd)

n . (19)

Case d ≥ 8. In this case we have exp(1/6) < d
2π , and therefore exp( d2

6 ) < Md
d ≤

Mn
d ≤ (2πnMd)

d. This proves (19).
Case 1 ≤ d ≤ 7. Direct inspection shows that 2πMd ≥ 2πM2 = 2/π, so for n ≥ 2

we have 2πnMd > 1 and therefore (2πnMd)
n is strictly increasing in n.

Finally, direct inspection now verifies that (19) is already satisfied for n = 3 and
each d ∈ {1, . . . , 7}. This proves the claim and concludes the proof.

Lemma I.40. For integers n ≥ 9 we have Bn

�
n2

3

�
≤ 2.

Proof. We first verify the inequality for all n in the range 9 ≤ n ≤ 120. This can be done
using a computer. For n ≥ 121, we shall bound Bn(x) from above by gn(x), defined as

gn(x) = 1 +
√

nx−
1
2 + 2nx−

2
3 .

A simple computation shows that for n = 121, we have that gn

�
n2

3

�
≈ 1.999.

Hence, if we can show that

• Bn(x) ≤ gn(x) for all x ≥ 1 and

• n #→ gn

�
n2

3

�
is strictly decreasing,

then we are done. We proceed with the first point. Recall that the number of divisors
of n is at most 2

√
n for n ≥ 1. We thus obtain

Bn(x) = ∑
d|n

Q(n, d)x
1
d−1

= 1 + ∑
d|n,d>1

Q(n, d)x
1
d−1

{by Lemma I.39} ≤ 1 + ∑
d|n,d>1

√
nx

1
d−1

≤ 1 +
√

nx−
1
2 +

√
n ∑

d|n,d>1
x

1
3−1

≤ 1 +
√

nx−
1
2 + 2nx−

2
3

= gn(x).

For the second point, it is enough to note that

gn(n2/3) = 1 +

√
3√
n
+

2 × 91/3

3
√

n

which is obviously decreasing in n.
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i.7.3 The bound for skew standard Young tableaux

We now extend the result of the previous section to skew shapes.

Lemma I.41. Let λ/µ be a skew shape with n cells. Then

|BST(λ/µ, 1)| ≥ ∑
d|n,d>1

|BST(λ/µ, d)|.

if and only if λ/µ is neither the partition (n) nor the partition (1n).

Proof. We distinguish two cases:
Case 1: λ/µ has at least two cells in some row and in some column.
We prove the following sequence of inequalities:

|BST(λ/µ, 1)| = ∑
ν0n

cλ
µ,ν|BST(ν, 1)|

≥ ∑
ν0n

cλ
µ,ν ∑

d|n,d>1
|BST(ν, d)| (20)

≥ ∑
d|n,d>1

|BST(λ/µ, d)|. (21)

We first prove inequality (20), for each summand separately. That is, we show that
for all partitions ν 0 n,

cλ
µ,ν|BST(ν, 1)| ≥ cλ

µ,ν ∑
d|n,d>1

|BST(ν, d)|.

Since λ/µ has at least two cells in the same row and two cells in the same column,
we can apply Lemma I.8. It follows that cλ

µ,(1n)
= cλ

µ,(n) = 0. Thus, the inequality
holds for ν = (1n) and (n). For all other partitions ν 0 n, the inequality follows from
Lemma I.38.

We now change the order of summation and prove inequality (21), again separately
for each summand. That is, for fixed d > 1 with dm = n, we show

∑
ν0n

cλ
µ,ν|BST(ν, d)| ≥ |BST(λ/µ, d)|.

Indeed, we have

∑
ν0n

cλ
µ,ν |BST(ν, d)| = ∑

ν0n
cλ

µ,ν |χν((dm))|

≥
&&&χλ/µ((dm))

&&&
= |BST(λ/µ, d)| .

The two equalities follow from Corollary I.30, whereas the inequality is obtained
by taking absolute values on both sides of the expansion of the skew character into
irreducible characters, Equation (7), evaluated at (dm) and applying the triangle
inequality.

Case 2: all columns or all rows of λ/µ contain at most one cell.
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By symmetry we may assume that every connected component of λ/µ is a single
row. Let the lengths of these rows be n1, n2, . . . , nr. We have BST(λ/µ, d) = ∅ unless
all ni are multiples of d. In this case we find by explicit enumeration that

|BST(λ/µ, d)| =
�

n/d
n1/d, n2/d, . . . , nr/d

�
.

It then suffices to prove that�
n

n1, n2, . . . , nr

�
≥ ∑

d>1,d|gcd(n1,n2,...,nr)

�
n/d

n1/d, n2/d, . . . , nr/d

�
.

This inequality is an easy consequence of Corollary I.36.

i.7.4 The general case

We are now ready to prove Theorem I.31 itself.

Proof of Theorem I.31. Let (ν1/κ1, . . . , νk/κk) be the skew k-quotient of λ/µ. We first
establish, for 1 ≤ i ≤ k, the inequality

(τ(|νi/κi|)− 1)|BST(νi/κi, 1)| ≥ ∑
d | |νi/κi|

d>1

|BST(νi/κi, d)|.

If νi/κi is neither the single row nor the single column partition, the bound for skew
standard Young tableaux, Lemma I.41, applies. Moreover, in this case |νi/κi| ≥ 3 and
therefore τ(|νi/κi|)− 1 ≥ 1. Otherwise, |BST(νi/κi, d)| = 1 for all d | |νi/κi|, and the
inequality holds trivially.

Thus, setting g = gcd(|ν1/κ1|, . . . , |νk/κk|),
k

∏
i=1

νi/κi &=∅

�
τ(|νi/κi|)− 1

�
|BST(νi/κi, 1)| ≥

k

∏
i=1

νi/κi &=∅

∑
d | |νi/κi|

d>1

|BST(νi/κi, d)|

≥ ∑
d|g
d>1

k

∏
i=1

νi/κi &=∅

|BST(νi/κi, d)|

= ∑
d|g
d>1

k

∏
i=1

|BST(νi/κi, d)|

{By Theorem I.22 } = ∑
d|g
d>1

|BST(λ/µ, dk)|
( ∑i |νi/κi|/d
|ν1/κ1|/d,...,|νk/κk|/d)

.

Note that, for any d ≥ 1, there is exactly one border-strip tableaux having empty shape:
|BST(∅, k)| = 1. Suppose that g = gcd(|ν1/κ1|, . . . , |νk/κk|) > 1 and there are at least
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two non-empty skew shapes among ν1/κ1, . . . , νk/κk. Then we can apply the above
inequality and Corollary I.36 and obtain

|BST(λ/µ, k)| =
�

∑i |νi/κi|
|ν1/κ1|, . . . , |νk/κk|

� k

∏
i=1

|BST(νi/κi, 1)|

≥
�

∑i |νi/κi|
|ν1/κ1|, . . . , |νk/κk|

� k

∏
i=1

νi/κi &=∅

�
τ(|νi/κi|)− 1

�−1

∑
d|g,d>1

|BST(λ/µ, dk)|
�

∑i |νi/κi|/d
|ν1/κ1|/d, . . . , |νk/κk|/d

�−1

≥ ∑
d|g,d>1

|BST(λ/µ, dk)|

= ∑
d>1

|BST(λ/µ, dk)|.

If g = gcd(|ν1/κ1|, . . . , |νk/κk|) = 1, the inequality is trivially true.
If there is precisely one non-empty skew shape ν/κ among ν1/κ1, . . . , νk/κk, we

have |BST(λ/µ, dk)| = |BST(ν/κ, d)| for all d by Theorem I.22.
If ν/κ is neither (n/k) nor (1n/k), Lemma I.41 applies and we have

|BST(λ/µ, k)| = |BST(ν/κ, 1)| ≥ ∑
d| n

k ,d>1
|BST(ν/κ, d)| = ∑

d| n
k ,d>1

|BST(λ/µ, dk)|.

Otherwise, if ν/κ is either (n/k) or (1n/k), Corollary I.25 implies that there is only one
element in BST(λ/µ, k).

i.8 cyclic sieving for skew standard tableaux

In this section we apply the bounds established in the previous section and Theorem I.3
to prove the existence of several cyclic sieving phenomena for various families of skew
standard Young tableaux.

Let us first put the bound from Theorem I.31 into the form required to apply
Theorem I.3.

Proposition I.42. Let λ/µ be a non-empty skew shape with n cells, let m ∈ N0 and let k be a
positive integer with k | n. Then

∑
d| n

k

µ(d)|BST(λ/µ, dk)|m ≥ 0,

or, equivalently,
∑
d|k

µ(k/d)| f λ/µ(ξd)|m ≥ 0,

for a primitive nth root of unity ξ.

Proof. The equivalence follows from Corollary I.30 and replacing d with n
dk and k with

n
k . We prove the first inequality.
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If |BST(λ/µ, k)| = 1, we also have |BST(λ/µ, dk)| = 1 for any d | n
k by Corollary I.25.

Therefore,

∑
d| n

k

µ(d)|BST(λ/µ, dk)|m = ∑
d| n

k

µ(d) =

�
1 if n = k
0 if n &= k

≥ 0.

This reasoning also covers the case m = 0.
Otherwise, since µ(1) = 1 and µ(d) ≥ −1, we have

∑
d| n

k

µ(d)|BST(λ/µ, dk)|m ≥ |BST(λ/µ, k)|m − ∑
d| n

k ,d>1
|BST(λ/µ, dk)|m ≥ 0,

where the final inequality follows from Theorem I.31.

Remark I.43. One might think that | f λ/µ(ξd)| could be the number of fixed points of
a group action, despite the fact that | f λ/µ(q)| is not a polynomial. However, this is not
the case.

For example, consider λ = (2, 1). Then f λ(q) = q + q2 and, for a 3rd root of unity ξ,
we have | f λ(ξ3)| = |BST(λ, 1)| = 2 and | f λ(ξ)| = |BST(λ, 3)| = 1. This is incompatible
with the possible orbit sizes of a group action on a set with two elements. Indeed, for
k = 3 we obtain

1
k ∑

d|k
µ(k/d)| f λ(ξd)| = 1

3
(−1 + 2),

which, by Remark I.5, would have to be an integer.

Taking into account the previous remark, it makes sense to look for shapes λ/µ

such that the character f λ/µ evaluated at roots of unity is nonnegative.

Theorem I.44. Let λ/µ be a skew shape with n cells and let m be a positive integer. Then
there is a cyclic group action ρ of order n such thatSYT(λ/µ)× · · · × SYT(λ/µ)� �� �

m

, �ρ�, f λ/µ(q)m


exhibits the cyclic sieving phenomenon if and only if m is even, or m is odd and for each positive
integer k with k | n there is a tiling of λ/µ of even height with strips of size k.

Remark I.45. The case m = 2 of this proposition does not extend to squares of arbitrary
representations of the symmetric group. For example, consider the representation with
character χ(4) + χ(2,12). Its fake degree polynomial is f (q) = 1 + q3 + q4 + q5. Then
we obtain, for a primitive fourth root of unity ξ, that f (ξ)2 = 4 and f (ξ2)2 = 0. This
violates the condition in Theorem I.3 for k = 2, because µ(2) f (ξ)2 + µ(1) f (ξ2)2 = −4.

Proof. Let ξ be an nth primitive root of unity. Then Proposition I.42 together with
Theorem I.3 ensures the existence of ρ, provided f λ/µ(ξd)m is nonnegative for all d | n.
Conversely, nonnegativity is a necessary condition because, given a cyclic group action
ρ, the number of fixed points of ρd equals f λ/µ(ξd)m.

It remains to consider the case of odd m. By Corollary I.30 f λ/µ(ξd), with d = n
k ,

is nonnegative if and only if there is a tiling of λ/µ of even height with strips of
size k.
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Corollary I.46. Let λ = (a, 1n−a) be a hook-shaped partition of n. Then there is a cyclic group
action ρ such that

�
SYT(λ), �ρ�, f λ(q)

�
exhibits the cyclic sieving phenomenon if and only if

n and a are odd and a − 1 mod m is even for m | n, 1 ≤ m < a.

Proof. Suppose that n, and a are odd, and m | n. In particular, m is odd, too. Note that
there is a unique tiling of a hook with border-strips of size m. We have to show that
the height of this tiling is even if and only if a − 1 mod m is even.

Recall that the height of a tile is one less than the number of rows it spans. If, and
only if a − 1 mod m is even, the height of the tile covering the top left corner of the
shape must be even: this tile must cover an odd number of cells in the first row and,
since its size m is odd, an even number of cells in the first column. Since the height of
all other tiles is evidently even, too, so is the total height.

If the parity of n and a is different, then the tiling with a single strip of size n
has height n − a, which is odd. If both n and a are even, the tiling with two strips of
size n/2 has odd height: if a ≤ n/2, the height is n − a − 1, otherwise the height is
n − 1.

Remark I.47. According to the previous theorem, for λ = (3, 1n−3) a cyclic group

action of order n with character f λ(q) = q(n−2)(n−3)/2 [n−1]q[n−2]q
[2]q

exists for all odd

n > 3. In this case, there should be one singleton orbit and (n − 3)/2 orbits of size n.
Indeed, an appropriate group action can be constructed as follows:

Identify a tableau with the two labels x < y different from 1 in the first row. Note
that y − x ∈ {1, 2, . . . , n − 2}, and only the pair (2, n) has difference n − 2. We let the
generator of the group action η act as follows:

η(x, y) :=

��������
(2, n) if x = 2, y = n,
(x + 2, y + 2) if 2 ≤ x < y ≤ n − 2,
(2, x + 1) if y = n − 1,
(3, x + 1) if x > 2, y = n.

We then note that if (u, v) = η(x, y), then v − u ∈ {y − x, (n − 2) − (y − x)}. This
explains why there are (n − 3)/2 orbits of length n. We leave the remaining details to
the reader.

Remark I.48. It turns out that one can determine the number of border-strips λ/µ of
size n which carry a cyclic group action of order n and character f λ/µ(q).

A different way to ensure positivity of the character f λ/µ is to decrease the order of
the cyclic group as in Remark I.2.

Theorem I.49. Let λ/µ be a skew shape such that every row contains a multiple of m cells.
Then there is a cyclic group action ρ of order m such that�

SYT(λ/µ), �ρ�, f λ/µ(q)
�

exhibits the cyclic sieving phenomenon.
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Proof. By Theorem I.3 it suffices to show that for a primitive mth root of unity ζ and
every k | m

∑
d|k

µ(k/d) f λ/µ(ζd) ≥ 0.

Let |λ/µ| = dm. By Proposition I.42, we have

∑
d|k

µ(k/d)| f λ/µ(ξd)| ≥ 0

for an nth root of unity ξ and every k | dm. Let ζ = ξ
n
m . Then, by Corollary I.30,

f λ/µ(ζd) = f λ/µ(ξd n
m ) = (−1)height(B)|BST

�
λ/µ,

m
d

�
|.

Since the length of every row of λ/µ is a multiple of m, there is a filling with border-
strips of size m

d | m, where every strip has height 0.

We remark that stretching shapes seems to be a fruitful way to construct cyclic
sieving phenomena, as was previously shown with fillings related to Macdonald
polynomials by P. Alexandersson & J. Uhlin [3]. We also mention the following
conjecture, which has recently been proved in the non-skew case in [15, Cor. 3.3].

Conjecture I.50 ([1, Conj. 3.4]). There is an action β on the set of semi-standard Young
tableaux SSYT(mλ/mµ, k) of order m such that�

SSYT(mλ/mµ, k), �β�, smλ/mµ(1, q, q2, . . . , qk−1)
�

exhibits the cyclic sieving phenomenon.

For some shapes λ/µ, the tiling may have odd height, but one can multiply f λ/µ(q)
with qn/2, provided that the size n of λ/µ is even, to obtain positivity at roots of unity.
An important example is the case of rectangular shapes. In this case, B. Rhoades
proved that promotion, together with a natural q-analogue of the hook length formula
exhibits the cyclic sieving phenomenon. The following result is much weaker, because
it only establishes the existence of a group action, but it is also much easier to prove,
and illustrates the method.

Theorem I.51 ([21]). Let λ = ab be a rectangular diagram with n = ab cells, and set
κ(λ) := ∑j (

λ*
j

2
). Then there is a cyclic group action ∂ of order n such that�

SYT(λ), �∂�, q−κ(λ) f λ(q)
�

exhibits the cyclic sieving phenomenon.

Proof. It is a well-known result by R. Stanley [28, Cor. 7.21.5], that

q−κ(λ) f λ(q) =
[n]q!

∏�∈λ[h(�)]q

where h(�) is the hook-value of �. In particular, q−κ(λ) f λ(q) is a polynomial. We
must check that this is nonnegative whenever q is an nth root of unity. Suppose that
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m | n, n = dm and let ξ be a primitive nth root of unity. Corollary I.30 implies that
f λ(ξd) is non-zero only if and only if BST(ab, m) is non-empty. Using the abacus, one
can show that m | a or m | b if and only if the m-core is empty, which, for straight
shapes, is equivalent to |BST(ab, m)| > 0. From here, it is a straightforward exercise to
show that κ(λ) = ba(a − 1)/2 and that ξ−d·ba(a−1)/2 f λ(ξd) is nonnegative for all d | n.

Finally, Proposition I.42 and Theorem I.3 gives the result.

i.9 permutations and invariants of the adjoint representation of
GLn

In this section we apply our results to study the space of invariants of tensor powers
of the adjoint representation glr of the general linear group GLr.

Definition I.52. The rotation rot σ of a permutation σ ∈ Sn is the permutation obtained
by conjugating with the long cycle (1, . . . , n).

Remark I.53. Equivalently, if Mσ is the permutation matrix corresponding to σ, then
Mrot σ is obtained by removing the first column of Mσ and appending it on the right,
and then removing the first row and appending it at the bottom.

Yet equivalently, let Dσ be the chord diagram associated with σ, that is, the directed
graph with vertices {1, . . . , n} arranged counterclockwise on a circle, and arcs (i, σ(i)).
Then Drot σ is the chord diagram obtained by rotating the graph clockwise. See Figure 6
for an illustration.

[5,4,1,2,3] [3,5,1,2,4]

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
1 0 0 0 0

������

������
rot#→

0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0

������

������
1

2

3 4

5

1

2

3 4

5

Figure 6: Rotation of π = [5,4,1,2,3] as conjugation by the long cycle (1, 2, 3, 4, 5), cyclic shift of
the permutation matrix and rotation of the chord diagram. Note that sh([5,4,1,2,3]) = (3, 12)

and sh([3,5,1,2,4]) = (3, 2)

The following theorem makes the character of rotation explicit.

Theorem I.54 ([4, 22, 24]). �
Sn, �rot�, ∑

λ0n
f λ(q)2

�
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exhibits the cyclic sieving phenomenon.

Proof. Consider the adjoint representation of Sn, that is, Sn acting on itself by conjuga-
tion, or relabelling. It is well-known (see, e.g., [28, Ex. 7.71a]) that the character of this
representation equals ∑λ0n χλχ̄λ. Since the restriction of the adjoint representation to
the cyclic group generated by the long cycle (1, . . . , n) is precisely the action rot, the
result follows from Proposition I.11.

Definition I.55. Recall that the Robinson–Schensted correspondence provides a bijection

Sn ↔ {(P, Q) ∈ SYT(λ)× SYT(λ) : λ 0 n}.

The shape sh(σ) of a permutation σ is the common shape of the standard Young
tableaux P and Q corresponding to σ under the Robinson–Schensted correspondence.
We let Rλ denote the set of permutations of shape λ.

We are now ready to prove the first major result of this section.

Corollary I.56. Let Pn be the set of partitions of n. Then there exists a map st : Sn → Pn
which is invariant under rotation and equidistributed with the Robinson–Schensted shape. That
is,

st ◦ rot = st and ∑
σ∈Sn

sst(σ)(x) = ∑
σ∈Sn

ssh(σ)(x).

Moreover, with Sλ
n := {π ∈ Sn : st(σ) = λ}, the triple

(Sλ
n , �rot�, f λ(q)2)

exhibits the cyclic sieving phenomenon.

We stress that we are unable to present such a statistic explicitly.

Remark I.57. Let us remark that the distribution of the shape of a permutation is well
studied. Writing f λ for the number of standard Young tableaux of shape λ, we have

∑σ∈Sn ssh(σ)(x) = ∑λ0n
�

f λ
�2 sλ(x). This is closely related to the Plancherel measure,

which assigns to each partition λ of size n the probability ( f λ)2/n! that a permutation
of size n, chosen uniformly at random, has shape λ.

Proof. By Theorem I.44 there exists an action of the cyclic group of order n on Rλ with
character ( f λ(q))2. Let ρ be the direct sum over all λ ∈ Pn of these group actions. Thus,�
Sn, �ρ�, ∑λ0n f λ(q)2� exhibits the cyclic sieving phenomenon. Since ρ acts on each Rλ

separately, we have
sh(ρ · σ) = sh(σ). (22)

By Theorem I.7 and Theorem I.54 the action of ρ and rotation are isomorphic. Therefore
we have a bijection φ : Sn → Sn with

φ(rot σ) = ρ · φ(σ). (23)

Defining st(σ) := sh(φ(σ)), we obtain

st(rot σ) = sh(φ(rot σ))
(23)
= sh(ρ · φ(σ))

(22)
= sh(φ(σ)) = st(σ).

Finally we have
Sλ

n = φ−1(Rλ),

yielding the last statement.
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Remark I.58. It is natural to ask whether for λ 0 n we have

#{σ ∈ Rλ : rotd(σ) = σ} = f λ(ξd)2,

for a positive integer d and a primitive nth root of unity ξ. In this case, the subset cyclic
sieving technique of P. Alexandersson, S. Linusson & S. Potka [2, Prop. 29] would imply
the non-skew, m = 2 case of Theorem I.44. However, this fails already for λ = (2, 1); we
have that Rλ = {132, 213, 231, 312} and rot fixes 231 and 312, but f λ(q)2 = q2(1 + q)2

evaluates to 1 at q = exp(2πi/3).

We now turn to the connection with the invariants of tensor powers of the adjoint
representation of GLr, which is the original motivation for this article.

Let V be an r-dimensional complex vector space and let glr = End(V) be the adjoint
representation GLr → End(glr), A #→ TAT−1.

The space of GLr-invariants of the nth tensor power of glr is�
gl⊗n

r
�GLr = HomGLr

�
gl⊗n

r , C
�

.

A basis for this space can be indexed by J. Stembridge’s alternating tableaux:

Definition I.59 ([29]). A staircase is a dominant weight of GLr, that is, a vector in Zr

with weakly decreasing entries. A glr-alternating tableau A of length n (and weight
zero) is a sequence of staircases

A = (∅=µ0, µ1, . . . , µ2n=∅)

such that

for even i, µi+1 is obtained from µi by adding 1 to an entry, and

for odd i, µi+1 is obtained from µi by subtracting 1 from an entry.

The set of glr-alternating tableaux of length n is denoted by A(r)
n .

B. Westbury defined a natural action, promotion, of the cyclic group of order n on the
set of so called invariant words of any finite crystal, in particular alternating tableaux
of length n, generalizing Schützenberger’s promotion on rectangular standard Young
tableaux. We refrain from giving a definition here and refer to S. Pfannerer, M. Rubey
& B. Westbury [17] instead.

For our purposes, it is enough to relate promotion to an action on the GLr-invariants
of the nth tensor power of glr. To do so, note that the symmetric group Sn acts on gl⊗n

r
by permuting tensor positions, and therefore also on the space of invariants. It turns
out that the action of the long cycle (1, . . . , n) ∈ Sn plays a special role:

Theorem I.60 ([31, Sec. 6.3]). There is a basis of
�
gl⊗n

r
�GLr which is preserved by the action

of the long cycle. Moreover, this action is isomorphic to the action of promotion on the set of
alternating tableaux.

Note that B. Westbury’s theorem only asserts the existence of the basis, no explicit
construction is known. The main result of this section is the following refinement of
his assertion.
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Theorem I.61. Let S
(r)
n := {π ∈ Sn : �(st(π)) ≤ r} =

%
λ0n

�(λ)≤r

Sλ
n . Then there exists a

bijection

P (r) : A(r)
n → S

(r)
n with P (r) ◦ pr = rot ◦P (r).

for 1 ≤ r ≤ n.
Equivalently, the action of promotion on the set of glr-alternating tableaux of length n, and

the action of rotation on the set of permutations S(r)
n are isomorphic:

(pr,A(r)
n ) ∼= (rot,S(r)

n ).

Remark I.62. Let us remark that for large dimension, that is, r ≥ n, such a bijection
was provided by S. Pfannerer, M. Rubey & B. Westbury [17].

Moreover, using the natural injection i : S
(r)
n → S

(r+1)
n and the bijections P (r)

and P (r+1) we define ι := P (r+1)−1 ◦ i ◦ P (r) and obtain the following commutative
diagram:

(pr,A(r)
n ) (rot,S(r)

n )

(pr,A(r+1)
n ) (rot,S(r+1)

n ).

P (r)

ι i

P (r+1)

In particular, this is an injection ι : A(r)
n → A(r+1)

n such that pr ι(A) = ι(prA), which
answers the question in [17, rmk. 3.9].

To prove Theorem I.61, we first compute a decomposition of the space of invariants
as a direct sum of tensor squares of Specht modules.

Lemma I.63 ([24]). Let glr be the adjoint representation of GLr, and, given a partition λ 0 n,
let Sλ be the corresponding irreducible representation of the symmetric group. Then there is an
isomorphism of Sn-representations

�
gl⊗n

r
�GLr ∼=

�
λ0n

�(λ)≤r

Sλ ⊗ Sλ.

Proof. Let V be the vector representation of GLr. Schur–Weyl duality asserts that there
is an isomorphism of (GLr ×Sn)-representations

V⊗r ∼=
�
λ0n

�(λ)≤r

Vλ ⊗ Sλ,

where Vλ is an irreducible representation of GLr.

65



Recall that, by Schur’s lemma, HomGLr(Vλ, Vµ) contains only the zero map if λ &= µ,
and all scalar multiples of the identity otherwise. Thus,�

gl⊗n
r

�GLr ∼= HomGLr

�
(V ⊗ V∗)⊗n , C

�
∼= EndGLr(V

⊗n)

∼= EndGLr(
�
λ0n

�(λ)≤r

Vλ ⊗ Sλ)

{by Schur’s Lemma} ∼=
�
λ0n

�(λ)≤r

End(Sλ)

∼=
�
λ0n

�(λ)≤r

Sλ ⊗ Sλ.

Proof of Theorem I.61. By Proposition I.11 and Corollary I.56 we obtain that the character
of Sλ

n equals the character of
�

λ0n
�(λ)≤r

Sλ ⊗ Sλ ↓�(1,...,n)�. Summing over all partitions λ

of length at most r, we obtain the character of�
gl⊗n

r
�GLr ↓�(1,...,n)�∼=

�
λ0n

�(λ)≤r

Sλ ⊗ Sλ ↓�(1,...,n)�,

by Lemma I.63. Therefore, by Brauer’s permutation lemma (Theorem I.7) and West-
bury’s Theorem I.60, the cyclic group actions

(pr,A(r)
n ) ∼= (rot,S(r)

n )

are isomorphic.
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abstract

Lusztig’s fake degree is the generating polynomial for the major index of standard
Young tableaux of a given shape. Results of Springer (1974) and James & Kerber (1984)
imply that, mysteriously, its evaluation at a k-th primitive root of unity yields the
number of border strip tableaux with all strips of size k, up to sign. This is essentially
the special case of the Murnaghan–Nakayama rule for evaluating an irreducible
character of the symmetric group at a rectangular partition.

We refine this result to standard Young tableaux and border strip tableaux with
a given number of descents. To do so, we introduce a new statistic for border strip
tableaux, extending the classical definition of descents in standard Young tableaux.
Curiously, it turns out that our new statistic is very closely related to a descent set for
tuples of standard Young tableaux appearing in the quasisymmetric expansion of LLT
polynomials given by Haglund, Haiman and Loehr (2005).
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Figure 7: A border strip tableau of height 7.

ii.1 introduction

Let SYT(λ) denote the set of all standard Young tableaux of shape λ and size n. An entry
i of a standard Young tableau T is a descent of T, if i + 1 appears in a strictly lower row
in T in English notation. Let DES(T) denote the set of descents of T and denote with
maj(T), the major index of T, the sum of all descents of T.

Our main result, Theorem II.8, provides a natural combinatorial interpretation of

f λ(q, t) := ∑
T∈SYT(λ)

qmaj(T)t|DES(T)|

when q is a root of unity. This refines the classical interpretation of the evaluation of
Lusztig’s fake degree polynomial f λ(q) := f λ(q, 1), as we show below. The bivariate
generating function itself was already considered by R. Stanley [12, Proposition 8.13]
in the more general setting of (P, ω) partitions.

By a result of T. Springer [11, Proposition 4.5], f λ(q) coincides with the restriction
of the irreducible Sn-character χλ to the cyclic subgroup generated by the long cycle,
represented as the group of complex roots of unity. More precisely, for k | n, let ξ be a
primitive k-th root of unity and let ρ = (kn/k) be a rectangular partition, then we have
f λ(ξ) = χλ(ρ). In general, a practical way to compute the character value χλ(ρ) for an
arbitrary partition ρ is the Murnaghan–Nakayama rule [13, Theorem 7.17.3].

Let ρ = (ρ1, . . . , ρ�) be a composition of n and, for a filling B of a Young diagram
λ with weakly increasing rows and columns, let Bi be the collection of cells in B
containing i. We say that B is a border strip tableau of type ρ if, for all 1 ≤ i ≤ �, the
cells Bi form a connected skew shape of size ρi that does not contain a 2 × 2 rectangle.
In this case we call Bi a border strip of size ρi and define the height height(Bi) to be the
number of rows it spans minus 1. Furthermore, we define the height of B to be the
sum of the heights of its strips. See Figure 7 for an example of a border strip tableau
of height 7.

The Murnaghan–Nakayama rule states that

χλ(ρ) = ∑
B
(−1)height(B),

where the sum is taken over all border strip tableaux of shape λ and type ρ. In the
special case where ρ is a rectangular partition (kn/k) and all strips in B have the same
size k, this rule is cancellation free, due to a theorem by G. James and A. Kerber [4,
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Theorem 2.7.27]. This means that the parity of height(B) only depends on λ and the
strip size k. Thus we obtain

f λ(ξ) = �λ,k · |BST(λ, k)|, (24)

where BST(λ, k) is the set of all border strip tableaux of shape λ and type (kn/k), and
�λ,k = (−1)height(B) for any border strip tableau B ∈ BST(λ, k).

Our main result, Theorem II.8, refines this special case of the Murnaghan–Nakayama
rule as follows. Provided that the set BST(λ, k) is not empty, it turns out that f λ(ξ, t)
is, up to sign, a generating function for a very natural statistic on this set. That is,

f λ(ξ, t) = �λ,k · ∑
B∈BST(λ,k)

tdes+(B).

The statistic des+ (see Definition II.7) extends the classical definition of descents for
standard Young tableaux. The notion of DES(B) underlying our new statistic des+(B)
coincides with a certain definition of descents under the Littlewood quotient map
which arose in the context of LLT polynomials, see Corollary II.20 and Remark II.21.

The motivation to study f λ(ξ, t) comes from the desire to refine recent results by
P. Alexandersson, S. Pfannerer, M. Rubey, and J. Uhlin [1]. They used (24) to show
that (χλ)2 carries the action of a permutation representation of the cyclic group of
order n. Equivalently, there exists a cyclic group action τ of order n such that the triple
(SYT(λ)× SYT(λ), τ, ( f λ)2) exhibits the cyclic sieving phenomenon introduced by V.
Reiner, D. Stanton and D. White [9]. Note that the action τ remains unknown. Refining
their work may eventually lead to an explicit description of τ. See B. Sagan’s survey
article [10] for more background on the cyclic sieving phenomenon.

The structure of the paper is as follows: in Section II.2 we introduce relevant
definitions, fix notation and state our main theorem. The rest of the sections is
dedicated for the proof, which is split up into three important steps. In Section II.3 we
introduce the Littlewood quotient map and in Section II.4 we relate our problem to
Schur functions. Finally, in Section II.5 we conclude the main result with a bijection.

ii.2 definitions and main theorem

We begin by introducing relevant definitions and notation; for more details we refer
to the books by I. Macdonald [6] and R. Stanley [13]. A partition λ = (λ1, . . . , λ�) of n,
written as λ 0 n, is a weakly decreasing sequence of positive integers that sum up to
n =: |λ|. The Young diagram of shape λ in English notation is the collection of n cells,
arranged in � left-justified rows of lengths λ1, . . . , λ�. The rows of a Young diagram
are indexed from top to bottom starting with one, and the columns are indexed from
left to right starting with one. To each cell x we associate its content, c(x), which is its
column index minus its row index. Finally, we associate to each cell x its hook value,
h(x), which is the number of cells (strictly) to the right of x plus the number of cells
(strictly) below x plus one.

Let (λ, µ) be a pair of partitions such that the Young diagram µ is completely
contained in the Young diagram λ. The cells that are in λ but not in µ form the skew
shape λ/µ.
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0 1 2 3 4 5
-1 0 1 2 3
-2 -1 0 1
-3 -2
-4 -3
-5 -4

11 10 6 5 3 1
9 8 4 3 1
7 6 2 1
4 3
3 2
2 1 •

Figure 8: On the left is the Young diagram of the partition 654222, where each cell is filled with
its content. In the middle is the same diagram where each cell is filled with its hook value. On
the right is a border strip, where its tail is decorated with a bullet.

A border strip (or ribbon or rim hook) is a connected skew shape that does not
contain a 2 × 2 square. The tail of a border strip is its unique cell with smallest content.
The height height(S) of a border strip S is the number of rows it spans minus one.

Definition II.1. A border strip tableau of shape λ 0 n with strip size k | n is a Young
diagram filled with the integers {1, . . . , n/k} such that

• the values in each row from left to right and each column from top to bottom are
weakly increasing and

• the cells containing the value i form a border strip of size k for all 1 ≤ i ≤ n/k.

The set of all such tableaux is denoted with BST(λ, k). The height height(B) of a
border strip tableau B is the sum of the heights of its border strips.

Example II.2. The Young diagram of shape 654222 is given in Figure 8 on the left.
In the same Figure on the right we see the skew shape 654222/43111. It is a border
strip of size 11 and height 5. The tableau B in Figure 7 is a border strip tableau in
BST(654222, 3) of height 7.

Remark II.3. A border strip tableau with all strips having size 1 corresponds to a
standard Young tableau. We also write SYT(λ) for BST(λ, 1).

One may also think of a border strip tableau B ∈ BST(λ, k) as a flag of partitions
∅ = ν0 ⊂ ν1 ⊂ · · · ⊂ νn/k = λ such that Bi := νi/νi−1 is a border strip of size k for all
1 ≤ i ≤ n/k. The cells in Bi are precisely the cells in B with label i.

More generally, we say that a partition ν is obtained from λ by removing a border
strip of size k, if λ/ν is a border strip of size k. Successively removing border strips of
size k from λ as long as possible gives a partition ν0 which turns out to be independent
from the order in which the strips are removed. Hence, ν0 is well defined and called
the k-core of λ. See also G. James and A. Kerber [4, Chapter 2.7] for further details.

Proposition II.4. BST(λ, k) is not empty, if and only if λ has empty k-core.

From now on, we remove all labels in the graphical representation of a border strip
tableau that are not in the tail of a strip. We now define the descent set of a border
strip tableau, extending the classical definition for standard Young tableaux.
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Figure 9: The border strip tableau B with the labels in the tails of the strips. The descents of B
are underscored. We have DES(B) = {2, 4, 5}.

Definition II.5. Let xi be the unique cell with smallest content in a border strip tableau
B that contains i. We call i a descent of B if xi+1 appears in a strictly lower row in B
than xi. DES(B) denotes the set of all descents of B.

For example, let B be the border strip tableau in Figure 7. Following our new
convention, B is depicted again in Figure 9. Hence DES(B) = {2, 4, 5}.

Definition II.6. The major index maj(T) of a standard Young diagram T is the sum of
its descents. We define the generating function

f λ(q, t) := ∑
T∈SYT(λ)

qmaj(T)t|DES(T)|.

Note that f λ(q, 1) is also known as Lusztig’s fake degree polynomial. Also note
that f λ(1, t) is the generating function for the number of descents on SYT(λ).

Coming to our main definition, we introduce a new statistic on BST(λ, k).

Definition II.7. Let B ∈ BST(λ, k), let B1 be the strip in B containing 1 and define

des+(B) := k · |DES(B)|+ height(B1).

Observe that for T ∈ SYT(λ) = BST(λ, 1) this statistic equals the number of
descents, that is des+(T) = |DES(T)|. For example, the tableau B in Figure 7 has
des+(B) = 10.

We can now state our main theorem.

Theorem II.8. Let λ be a partition of n with empty k-core and let ξ be a primitive k-th root of
unity. Then, for some �λ,k ∈ {±1},

f λ(ξ, t) = �λ,k · ∑
B∈BST(λ,k)

tdes+(B). (25)

Furthermore, the sign �λ,k can be made explicit.

Proposition II.9. Under the same assumptions as in Theorem II.8, the map

sgn : BST(λ, k) → {±1}
B #→ (−1)height(B)

is constant, and �λ,k = sgn(B0), where B0 is any border strip tableau in BST(λ, k).
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Remark II.10. Let χλ be the irreducible character of the symmetric group correspond-
ing to λ and let ρ = (kn/k) be the rectangular partition of n with all parts equal to k.
Then �λ,k is the sign of the character value χλ(ρ).

Example II.11. To illustrate Theorem II.8 let us consider the partition λ = 222. There
are five standard Young tableaux, as depicted below. For each tableau we underscore
the descents and calculate its weight in f 222(q, t).

1 4
2 5
3 6

1 3
2 5
4 6

1 2
3 5
4 6

1 3
2 4
5 6

1 2
3 4
5 6

q12t4 + q9t3 + q10t3 + q8t3 + q6t2

We obtain
f 222(q, t) = q12t4 + (q10 + q9 + q8)t3 + q6t2.

Substituting primitive roots of unity for q we obtain the following polynomials

primitive root 1st = 1 2nd = −1 3rd 6th

f 222(·, t) t4 + 3t3 + t2 t4 + t3 + t2 t4 + t2 t4 − 2t3 + t2� �� �
6-core not empty

.

For q = 1 we get the generating function for the number of descents on SYT(λ) =
BST(λ, 1). For q being a second or third root of unity we obtain the generating functions
for des+ on BST(λ, 2) and BST(λ, 3) respectively:

BST(λ, 2) : 3
2
1

32

1

3
21

t2·2+0 t2·1+0 t2·1+1

BST(λ, 3) : 21 2
1

t3·0+2 t3·1+1

The signs �λ,2 and �λ,3 are positive, as all border strip tableaux in this example have
even height. For a primitive sixth root of unity we obtain a polynomial in which the
signs of the nonzero coefficients do not coincide. Since the 6-core of λ = 222 is not
empty, we do not have a combinatorial interpretation of f λ(ξ, t) in this case.

Remark II.12. We do not know what is happening in the case where the k-core is
not empty, not even in the case where k | n. For instance let λ = 82 0 10 and let
ξ = exp(2iπ

5 ) be a fifth primitive root of unity, then we get

f 82(ξ, t) =
1 +

√
5

2
t2 − 1 +

√
5

2
t.

Thus, even non-integer coefficients may occur.

In the following sections we present the proof of Theorem II.8. The crucial steps
are as follows: first, we use the Littlewood quotient map to bijectively map border
strip tableaux to standard Young tableau tuples, and apply this to the right hand side
of Equation (25). Next we express f λ(q, t) in terms of principal specialisations of the
Schur function sλ. For a primitive root of unity ξ, a generalisation of a theorem by V.
Reiner, D. Stanton and D. White allows us to regard f λ(ξ, t) as generating function
over the set of tuples of semistandard Young tableaux. Finally, a bijection links the two
resulting expressions.
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ii.3 the littlewood quotient map

We start this section by introducing the k-quotient of a partition λ using a graphical
description.

Interpret the lower-right contour of the Young diagram λ as a path with vertical and
horizontal steps and append empty rows (vertical steps) to the bottom, such that the
total number of rows is divisible by k. Starting with the leftmost step in the lowest row,
we label each step of the path in incremental order, starting with 0. For 0 ≤ s ≤ k − 1
let λs be the partition one obtains from the steps whose label is congruent to s modulo
k. The tuple (λ0, λ1, . . . , λk−1) is called the k-quotient of λ.

Example II.13. We construct the 3-quotient of λ = 654222. For a nicer display we put
the labels for the horizontal steps on top of each step and the labels for each vertical
step to its right. As the number of rows is already divisible by 3, we do not append
empty rows.

0 1 2
3
4
5 6 7

8 9
10 11

#→
0 3

6 9
1 4

7
10

2
5 8 11

We obtain the 3-quotient (21, 11, 2).

Some fundamental properties of the quotient are the following.

Proposition II.14 (G. James & A. Kerber [4, Chapter 2.7]). (i) The function that maps
a partition λ 0 n to its k-quotient is a bijection between the set of partitions with empty
k-core and the set of k-tuples of partitions (λ0, λ1, . . . , λk−1) with |λ0|+ |λ1|+ · · ·+
|λk−1| = n

k .

(ii) Let λ and µ be two partitions with empty k-core such that λ/µ is a border strip of size
k. Let (λ0, . . . , λk−1) and (µ0, . . . , µk−1) be the corresponding k-quotients for λ and
µ, respectively. Then there exists an index 0 ≤ s ≤ k − 1 such that |λs/µs| = 1 and
λt = µt for all t &= s.

Alternatively, the k-quotient of λ can be obtained from the k-quotient of µ by adding a
single cell to one of the partitions.

In the following we denote multi-sets with two curly brackets, e.g. {{a, a, b}}, and
for a multi-set X and a real number k we use the notions X + k = {{x + k : x ∈ X}}
and kX = {{k · x : x ∈ X}}.

Proposition II.15 (I. Macdonald [6, Example I.1.8(d)]). Let λ be a partition with empty k-
core and let (λ0, . . . , λk−1) be its k-quotient. Denote with h(λ) := {{h(x) : x ∈ λ}} the multi-
set of the hook values of all cells of a partition λ and denote with
h0,k(λ) := {{h(x) : x ∈ λ, k | h(x)}} the multi-set of hook values, that are divisible by
k, then

1
k

h0,k(λ) =
$

0≤i<k

h(λi).
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Proposition II.16. Denote with c(λ) := {{c(x) : x ∈ λ}} the multi-set of the contents of all
cells of a partition λ. For 0 ≤ r < k denote with cr,k(λ) := {{c(x) : x ∈ λ, k | (c(x) + r)}}
the multi-set of contents, that are congruent to −r modulo k.

Let λ be a partition with empty k-core and (λ0, . . . , λk−1) its k-quotient, then for 0 ≤ r < k,

1
k
(cr,k(λ) + r) =

$
0≤i<k−r

c(λi) ∪ $
k−r≤i<k

(c(λi) + 1).

Proof. For r = 0 this result is known, see [6, Example I.1.8(d)]. Let λ = (λ1, . . . , λ�) be
the partition with as many zero parts appended, such that k | � and let �/k = �̂.

To deduce the general case we “glue” a rectangular partition with r columns to the
left of λ, which will shift all the contents by r. More formally, let µ = (r�) the partition
consisting of � parts equal to r and let λ + µ be the partition obtained from λ and µ by
pairwise addition of the parts. Using this notion we have

cr,k(λ) + r = c0,k(µ + λ) \ c0,k(µ). (26)

To apply the results for r = 0, we also need the k-quotient of λ + µ, which we
denote with (κ0, . . . , κk−1). Note that the path for λ + µ is obtained from the path for λ

by prepending r horizontal steps to it. Thus directly form the construction we obtain

κi =

�
λi−r if i ≥ r,
λk+i−r + (1�̂) if i < r.

(27)

The general case can now be concluded from the case r = 0 using equations (26)
and (27).

Let Λ = (λ0, . . . , λk−1) be a tuple of Young diagrams and let |Λ| be the total number
of cells in Λ. A standard Young tableau tuple of shapes Λ is a bijective filling of the cells
of Λ with the values {1, . . . , |Λ|} such that entries in each diagram strictly increase
along rows from left to right and along columns from top to bottom. We denote the
set of all such fillings with SYT-tuples(Λ).

There exists a bijection between BST(λ, k) and SYT-tuples(Λ), where Λ is the
k-quotient of λ.

Definition II.17 (Littlewood quotient map). Fix a border strip tableau B of shape λ.
Regarding B as a flag of partitions ∅ = ν0 ⊂ ν1 ⊂ · · · ⊂ νn/k = λ, we denote with Λi
the k-quotient of νi. By Proposition II.14 (∅, . . . , ∅) = Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λn/k = Λ is a
flag of tuples of Young diagrams, such that two consecutive tuples differ by precisely
one cell.

For 1 ≤ i ≤ n/k denote with xi the unique cell in Λ which is contained in Λi but
not Λi−1. By filling xi with i, we obtain a standard Young tableau tuple of shapes Λ.

This bijection is called Littlewood quotient map by J. Haglund [2] or rim hook bijection
by I. Pak [8]. An example is given in Figure 10.

We now describe how descents are transported via this bijection.

Definition II.18. Let T = (T0, . . . , Tk−1) be a standard Young tableau tuple and let
c(x) be the content of an entry x within its Young diagram. Assume now that i ∈ Ts

and (i + 1) ∈ Tt. Then i is a descent of T , if either s ≤ t and c(i) > c(i + 1), or s > t
and c(i) ≥ c(i + 1). DES(T ) denotes the set of all descents of T .

76



B =

7

6
5

43
21

↔ 3 4
6

1
5

2 7 = T

B as flag: ∅ ⊂ 21 ⊂ 33 ⊂ 333 ⊂ 444 ⊂ 44421 ⊂ 444222 ⊂ 654222
� � � � � � � �

T as flag: (∅, ∅, ∅) ⊂ (∅, 1, ∅) ⊂ (∅, 1, 1) ⊂ (1, 1, 1) ⊂ (2, 1, 1) ⊂ (2, 11, 1) ⊂ (21, 11, 1) ⊂ (21, 11, 2)

Figure 10: The Littlewood quotient map applied to B. The descents of B and T are highlighted.
We have DES(B) = DES(T ) = {2, 4, 5}.

Lemma II.19. For i ∈ Ts let cT (i) be the content of i and let cB(i) the content of the tail of
the strip containing i in B, then (cB(i)− 1) = k · (cT (i)− 1) + s.

Proof. Recall that we obtain the k-quotient of a partition by first adding 0 parts, such
that the total number of rows � is divisible by k and then following the path of the
lower-right contour of the Young diagram. We denote such a path with a finite binary
sequence w = (w0, w1, . . . ) where a 0 is a north step and a 1 is an east step. Then the
partitions in the k-quotient are given by the binary sequences ws := (wi·k+s)i≥0 for
0 ≤ s < k.

Let νi and νi−1 be the partitions with � (possibly zero) parts obtained from B from
all strips with labels at most i and i − 1 respectively. Denote the path of νi with
(w0, w1, . . . ) and the path of νi−1 with (w*

0, w*
1, . . . ). As νi/νi−1 is the border strip

containing i, we have

wi =

��
1 − w*

i = 0 if i = �+ cB(i)− 1,
1 − w*

i = 1 if i = �+ cB(i)− 1 + k,
w*

i else

.

Let cB(i) − 1 = k · q + r with integers q and 0 ≤ r < k and let � = k · �̂. Thus
w�+cB(i)−1 = wk·(�̂+q)+r is the (�̂+ q)-th step in the path of the r-th partition in the

k-quotient of νi. Similarly w�+cB(i)−1+k is the (�̂ + q + 1)-th step in the path of the
same partition. The same holds for w*

�+cB(i)−1 and w*
�+cB(i)−1+k with respect to the r-th

partition of the k-quotient of vi−1. Therefore r = s and q = cT (i)− 1.

Corollary II.20. Let B ∈ BST(λ, k) be a border strip tableau and let T = (T0, . . . , Tk−1) be
the standard Young tableau tuple corresponding to B via the Littlewood quotient map. Then
DES(B) = DES(T ).

Furthermore, let s be the index of the unique Young diagram in T containing 1 and let B1

be the strip in B containing 1. Then height(B1) = k − 1 − s =: idx1(T ).

Proof. Observe that i is a descent in B, if and only if cB(i) > cB(i + 1). Moreover,
let i ∈ Ts and (i + 1) ∈ Tt, then by Lemma II.19 i is a descent in T if and only
if k · cT (i) + s > k · cT (i + 1) + t. As (cB(i) − 1) = k · (cT (i) − 1) + s, we obtain
DES(B) = DES(T ).
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Figure 11: The standard Young tableau tuple in “Austrian notation”. On each dotted horizontal
line are cells with the same content.

For the second part of the theorem, note that

cB(1)− 1 = −1 − height(B1) ≡ k − 1 − height(B1) (mod k).

Thus height(B1) = k − 1 − s.

The following graphical description may be helpful for understanding Defini-
tion II.18: Tilt the Young diagrams in T by 45 degrees in counter-clockwise direction
and align them such that cells with the same content lay on a horizontal line. We call
this the “Austrian notation”. Then i is a descent in T if and only if (i + 1) is

• in a tableau to the left and weakly below i, or

• in the same tableau or a tableau to the right and strictly below i.

An example of the graphical description is given in Figure 11.

Remark II.21. Definition II.18 agrees with the definition of descents using the content
reading order in the Bylund–Haiman model [3, Equations (77) and (80)], which is used
in the quasisymmetric expansion of LLT-polynomials. B. Westbury made us aware of
this relation when we first presented our results to a broader audience.

We conclude this section by applying the Littlewood quotient map to the right hand
side of Equation (25).

Lemma II.22. Let λ be a partition with empty k-core and let Λ = (λ0, . . . , λk−1) be its
k-quotient, then

∑
B∈BST(λ,k)

tk·|DES(B)|+height(B1) = ∑
T ∈SYT-tuples(Λ)

tk·|DES(T )|+idx1(T ). (28)

Proof. This is a direct consequence of Corollary II.20.

ii.4 schur functions

In this section we express f λ(q, t) in terms of Schur functions and evaluate it at roots
of unity.

Definition II.23. A semistandard Young tableau of shape λ is a filling of the Young
diagram with positive integers such that the rows are weakly increasing from left to
right and the columns are strictly increasing from top to bottom. Let SSYT(λ) be the
set of all semistandard Young tableaux of shape λ.
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For a semistandard Young tableau T we associate the monomial xT = ∏i≥1 xti
i

where ti is the number of occurrences of the number i in T. The Schur function sλ

associated with λ is the generating function

sλ(x1, x2, x3, . . . ) = ∑
T∈SSYT(λ)

xT.

When specialising precisely m variables with 1 and the rest with zero, one obtains
the number of semistandard Young tableaux of shape λ with entries bounded from
above by m. We also denote this with

sλ(1, . . . , 1� �� �
m

, 0, 0, . . . ) = sλ(1m) = #SSYT of shape λ with all entries ≤ m.

The following identity relates f λ(q, t) to the principal specialisations of the the
Schur function sλ.

Theorem II.24 (R. Stanley [12, Proposition 8.3]). Let λ 0 n and let (t; q)n+1 = (1 −
t)(1 − tq) . . . (1 − tqn) be the q-Pochhammer-symbol, then

f λ(q, t)
(t; q)n+1

=
∞

∑
m=0

tmsλ(1, q, . . . , qm).

This identity is particularly useful for us because the q-Pochhammer-symbol, as
well as the principal specialisations of the Schur functions, can be easily evaluated at
roots of unity.

Proposition II.25. Given k | n and a primitive k-th root of unity ξ, we have that

(t; ξ)n+1 = (1 − t)(1 − tk)n/k.

Proof. Because ξ is a k-th primitive root of unity we have ξ�k+r = ξr for integers � and
r and xk − 1 = ∏k−1

i=0 (x − ξ i). We obtain:

(t; ξ)n+1 = (1 − t)(1 − tξ) . . . (1 − tξn) = (1 − t)

�
k−1

∏
i=0

(1 − tξ i)

�n/k

= (1 − t)

�
tk

k−1

∏
i=0

(1/t − ξ i)

�n/k

= (1 − t)
�

tk(1/tk − 1)
�n/k

= (1 − t)(1 − tk)n/k.

Theorem II.26. Let λ 0 n be a partition with empty k-core and with k-quotient (λ0, . . . , λk−1),
and let ξ be a primitive k-th root of unity. If m = � · k + r for 0 ≤ r < k, then

sλ(1, ξ, . . . , ξm−1) = �λ,k · sλ0(1�) · · · sλk−r−1(1�) · sλk−r(1�+1) · · · sλk−1(1�+1), (29)

where �λ,k is the sign from Proposition II.9.
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Remark II.27. The case r = 0 in Theorem II.26 is a theorem due to V. Reiner, D. Stanton
and D. White [9, Theorem 4.3].

Proof of Theorem II.26. Let b(λ) = ∑(i − 1)λi and Rλ,k = ξb(λ) ∏x∈λ,k�m+c(x)(1−ξm+c(x))

∏x∈λ,k�h(x)(1−ξh(x))
, then

by Proposition II.15, Proposition II.16 and the hook-content formula [13, Theorem
7.21.2] we get:

sλ(1, ξ, . . ., ξm−1) = ξb(λ) ∏
x∈λ

1 − ξm+c(x)

1 − ξh(x)
= Rλ,k ·

∏x∈λ,k|m+c(x)(1 − ξm+c(x))

∏x∈λ,k|h(x)(1 − ξh(x))

= Rλ,k ·
∏x∈λ,k|m+c(x)(m + c(x))

∏x∈λ,k|h(x) h(x)
= Rλ,k ·

∏x∈λ,k|r+c(x)(�+ (r + c(x))/k)

∏x∈λ,k|h(x) h(x)/k

= Rλ,k ·
∏u∈ 1

k (cr,k(λ)+r)(�+ u)

∏u∈ 1
k h0,k(λ)

u

= Rλ,k ·
∏u∈%

0≤i<k−r c(λi)∪%
k−r≤i<k(c(λi)+1)(�+ u)

∏u∈%
0≤i<k h(λi) u

= Rλ,k ·
∏u∈%

0≤i<k−r c(λi)(�+ u) · ∏u∈%
k−r≤i<k c(λi)(�+ 1 + u)

∏u∈%
0≤i<k−r h(λi) u · ∏u∈%

k−r≤i<k h(λi) u

= Rλ,k ∏
0≤i<k−r

sλi(1�) · ∏
k−r≤i<k

sλi(1�+1).

As λ has empty k-core each content modulo k appears n/k times. Hence,

Rλ,k = ξb(λ) ∏x∈λ,k�m+c(x)(1 − ξm+c(x))

∏x∈λ,k�h(x)(1 − ξh(x))
= ξb(λ) ∏0<i≤k−1(1 − ξ i)n/k

∏x∈λ,k�h(x)(1 − ξh(x))
,

which does not depend on m.
As the formula (29) is satisfied for r = 0 due to [9, Theorem 4.3] by V. Reiner, D.

Stanton and D. White, we obtain Rλ,k = �λ,k.

For a partition µ we interpret the evaluation of the Schur function sµ(1�+1) as the
number of semistandard Young diagrams with shape µ and entries in {1, . . . , �+ 1}
and sµ(1�) as the number of semistandard Young diagrams with shape µ and entries in
{2, . . . , �+ 1}. Then the difference sµ(1�+1)− sµ(1�) equals the number of semistandard
Young diagrams with shape µ that contain at least one 1 and maximal entry at most
�+ 1.

Keeping the notation of Theorem II.26, this yields:

Lemma II.28. Denote with SSYT-tuples(Λ) the set of all tuples of semistandard Young
tableaux with shapes Λ = (λ0, . . . , λk−1) that contain at least one 1. For such a tuple T, let
max(T) be the maximal entry. Let s be the index of the leftmost tableau containing 1 and set
idx1(T) := k − 1 − s. Then

1
(1 − tk)n/k−1 f λ(ξ, t) =(1 − t)(1 − tk)

∞

∑
m=0

tmsλ(1, ξ, . . . , ξm) =

�λ,k · ∑
T∈SSYT-tuples(Λ)

tk·(max(T)−1)+idx1(T). (30)
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Proof. The first equation is a direct consequence of Theorem II.24 and Proposition II.25.
We abbreviate ŝm

i = |{T ∈ SSYT-tuples(Λ) : idx1(T) = i, max(T) ≤ m}| and
similarly we write sm

i = |{T ∈ SSYT-tuples(Λ) : idx1(T) = i, max(T) = m}|. With this
notion we have

sm
i =

�
ŝm

i − ŝm−1
i if m > 1,

ŝ1
i if m = 1.

By equation Equation (29) and the combinatorial interpretation of the Schur func-
tions we obtain �λ,ksλ(1) = ŝ1

0 for m = 0 = k · 0 + 0 and for m = k · � + r > 0 we
have

�λ,k(sλ(1, ξ, . . . , ξm)− sλ(1, ξ, . . . , ξm−1)) =

∏
0≤i<k−r−1

sλi(1�) ·
�

sλk−r−1(1�+1)− sλk−r−1(1�)
�
· ∏

k−r≤i<k
sλi(1�+1) = ŝ�+1

r .

Thus

�λ,k · (1 − t)(1 − tk)
∞

∑
m=0

tmsλ(1, ξ, . . . , ξm) =

�λ,k(1 − tk)

�
t0sλ(1) +

∞

∑
m=1

tm(sλ(1, ξ, . . . , ξm)− sλ(1, ξ, . . . , ξm−1))

�
=

(1 − tk)
k−1

∑
r=0

∞

∑
�=0

tk·�+rŝ�+1
r =

k−1

∑
r=0

�
tk·0+rŝ1

r +
∞

∑
�=1

tk·�+r(ŝ�+1
r − ŝ�r)

�
=

k−1

∑
r=0

∞

∑
�=0

tk·�+rs�+1
r = ∑

T∈SSYT-tuples(Λ)

tk·(max(T)−1)+idx1(T).

ii.5 the final bijection

In this section we discus the bijection that links together Equation (28) and Equation (30)
and proves our main result Theorem II.8.

Denote with Cp the set of weak compositions with precisely p parts, that is the set
of p-tuples of non negative integers. Let Λ = (λ0, . . . , λk−1) be a k-tuple of partitions
and let � = |λ0|+ · · ·+ |λk−1|. We now present a bijection

φ : C�−1 × SYT-tuples(Λ) → SSYT-tuples(Λ).

Definition II.29. Fix α = (α1, . . . , α�−1) ∈ C�−1 and T ∈ SYT-tuples(Λ). For 1 ≤ s ≤ �,
let xs be the unique cell in T that contains s and let ds be the number of descents in
T that are strictly smaller than s. Let T be the tuple of semistandard Young tableaux
obtained by filling the cell xs with 1 + ds + ∑s−1

i=1 αi and set φ(α, T ) = T.

An example of the map φ is given in Figure 12.
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Figure 12: Bijectively mapping a composition and a standard Young tableau tuple to a tuple of
semistandard Young tableaux.

Remark II.30. It has been brought to our attention by Christian Krattenthaler that this
map has the flavor of the MacMahon Verfahren (see [7] and [5, Chapter 10]) and fits
into the context of P-partitions developed by R. Stanley [12].

Proposition II.31. The function φ : C�−1 × SYT-tuples(Λ) → SSYT-tuples(Λ) is a bijec-
tion and for φ(α, T ) = T, we have

|α|+ |DES(T )|+ 1 = max(T) and idx1(T ) = idx1(T),

where |α| = α1 + · · ·+ α�−1 is the sum of its parts.

Proof. We first show that φ is well defined. Clearly, the tableaux in T are weakly
increasing in the rows and the columns and it suffices to show that the columns are
strictly increasing. Consider two cells xs and xt of T that contain s and t, respectively,
such that the cells are in the same tableau and xt is in a row strictly below xs and in a
column weakly left of xs. It suffices to show that ds < dt.

As T consists of partial standard Young tableaux we have s < t. For a cell containing
u in the j-th tableau of T let β(u) = j

k + c(u). Note that i is a descent in T , if and only
if β(i + 1) < β(i). By definition we have β(s) > β(t). Thus there exists an entry i with
s ≤ i < t and β(i) > β(i + 1). Thus ds ≤ di < di+1 ≤ dt. Therefore φ is well defined.

By construction the leftmost one in T coincides with the one in T , so idx1(T ) =
idx1(T). The maximal entry of T is the filling of x�, which is 1 + d� + ∑�−1

i=1 αi =
|α|+ |DES(T )|+ 1.

It remains to show, that this map is a bijection, by giving the inverse map. To obtain
T follow the entries from T in increasing order and fill the corresponding cells of
T with the smallest positive integer, which is not already used. If some values in T

coincide fill the corresponding cells of T in the unique order, that does not create any
descents. Having now T and T we can again calculate the values ds and obtain the
composition α from the fact that the cell xs is filled with 1 + ds + ∑s−1

i=1 αi in T.

From this proposition we get:

Lemma II.32. Let λ 0 n be a partition with empty k-core and let Λ = (λ0, . . . , λk−1) its
k-quotient. Then

1
(1 − tk)n/k−1 ∑

T ∈SYT-tuples(Λ)

tk·|DES(T )|+idx1(T ) = ∑
T∈SSYT-tuples(Λ)

tk·(max(T)−1)+idx1(T).

Proof. By our bijection φ we have in terms of generating functions

1
(1 − x)n/k−1 ∑

T ∈SYT-tuples(Λ)

x|DES(T )|yidx1(T ) = ∑
T∈SSYT-tuples(Λ)

xmax(T)−1yidx1(T).
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The theorem follows by substituting x = tk and y = t.

Now we can conclude our main theorem.

Proof of Theorem II.8. Combining Lemma II.22, Lemma II.28 and Lemma II.32 yields
the desired identity.
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abstract

We construct an injection from the set of r-fans of Dyck paths (resp. vacillating
tableaux) of length n into the set of chord diagrams on [n] that intertwines promotion
and rotation. This is done in two different ways, namely as fillings of promotion
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matrices and in terms of Fomin growth diagrams. Our analysis uses the fact that r-fans
of Dyck paths and vacillating tableaux can be viewed as highest weight elements of
weight zero in crystals of type Br and Cr, respectively, which in turn can be analyzed
using virtual crystals. On the level of Fomin growth diagrams, the virtualization
process corresponds to the Roby–Krattenthaler blow up construction. One of the
motivations for finding rotation invariant diagrammatic bases such as chord diagrams
is the cyclic sieving phenomenon. Indeed, we give a cyclic sieving phenomenon on
r-fans of Dyck paths and vacillating tableaux using the promotion action.

iii.1 introduction

Interest in invariant subspaces goes back to Rumer, Teller and Weyl [34], who studied
the quantum mechanical description of molecules. In particular, they devised dia-
grammatic bases for the invariant spaces. For SL(n), a set of diagrams spanning the
invariant space was constructed by Cautis, Kamnitzer and Morrison [5], generalizing
Kuperberg’s webs [22] for SL(2) and SL(3).

The dimension of the invariant subspace of a tensor product V⊗N of an irreducible
representation V of a Lie algebra g is equal to the number of highest weight elements of
weight zero in B⊗N , where B is the crystal basis associated to V [43, 30]. The symmetric
group acts on V⊗N by permuting tensor positions. By Schur–Weyl duality, this action
commutes with the action of the Lie group. In particular, the symmetric group acts on
the invariant space of V⊗N. It was shown by Westbury [43] that the action of the long
cycle corresponds to the action of promotion on highest weight elements of weight
zero in B⊗N. In this setting promotion is defined using Henriques’ and Kamnitzer’s
commutor [12], see [8, 43, 44]. Note that the full action of the symmetric group on
invariant tensors is not yet known in general.

In general, it is desirable to have a correspondence between highest weight elements
of weight zero in B⊗N and diagram bases, such as chord diagrams, which intertwine
promotion and rotation. For Kuperberg’s webs [22], this was achieved by Petersen,
Pylyavskyy and Rhoades [29], Russell [35] and Patrias [28] by showing that the growth
algorithm of Khovanov and Kuperberg [19] intertwines promotion with rotation. For
the vector representation of the symplectic group and the adjoint representation of
the general linear group, such a correspondence between highest weight elements of
weight zero and chord diagrams which intertwines promotion and rotation was given
in [30].

In this paper, we construct an injection from the set of r-fans of Dyck paths (resp.
vacillating tableaux) of length n into the set of chord diagrams on [n] that intertwines
promotion and rotation. There is a natural correspondence between r-fans of Dyck
paths (resp. vacillating tableaux) and highest weight elements in the tensor product of
the spin crystal (resp. vector representation) of type Br. We present this injection in
two different ways:

1. as fillings of promotion matrices [23] (see Section III.3.1);

2. in terms of Fomin growth diagrams [7, 33, 21] (see Sections III.3.2-III.3.4).
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Theorem III.51

Theorem III.50

Figure 13: Overview of strategy and results for r-fans of Dyck paths

While the first description shows that the map intertwines promotion and rotation,
the second description shows injectivity. Our proof strategy uses virtualization of
crystals (see for example [4]) and results of [30] for oscillating tableaux of weight zero
(or equivalently highest weight words of weight zero for the vector representation type
Cr):

1. Find a virtual crystal morphism for the spin crystals (resp. crystals for the vector
representation) of type Br into the r-th (resp. second) tensor power of the crystal
of the vector representation of type Cr (see Section III.2.2).

2. Use this virtualization to map an r-fan of Dyck paths (resp. vacillating tableau)
to an oscillating tableau (see Section III.2.3).

3. Show that this virtualization commutes with promotion and the filling rules.

4. Show that blowing up the filling of the growth diagram corresponds to the filling
of the oscillating tableau. In this sense, the blow up on growth diagrams is the
analogue of the virtualization on crystals.

An overview of our strategy is shown in Figures 13 and 14.
Having the injective map to chord diagrams gives a first step towards a diagram-

matic basis for the invariant subspaces. In addition, Fontaine and Kamnitzer [8] as
well as Westbury [43] tied the promotion action on highest weight elements of weight
zero to the cyclic sieving phenomenon introduced by Reiner, Stanton and White [31].
In Section III.4.4, we make this cyclic sieving phenomenon more concrete by providing
the polynomial in terms of the energy function. For r-fans of Dyck paths, we conjecture
another polynomial, which is the q-deformation of the number of r-fans of Dyck paths,
to give a cyclic sieving phenomenon. For vacillating tableaux, we give a polynomial
inspired by work of Jagenteufel [16] for a cyclic sieving phenomenon.

The paper is organized as follows. In Section III.2, we give a brief review of
crystal bases and virtual crystals and provide the virtual crystals for spin and vector
representation of type Br into type Cr. We also define promotion on crystals via the
crystal commutor. In Section III.3, we give the various filling rules to construct the
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Figure 14: Overview of strategy and results for vacillating tableaux

map to chord diagrams. Section III.4 is reserved for the statements and proofs of our
main results.

iii.2 crystal bases

iii.2.1 Background on crystals

Crystal bases form a combinatorial skeleton of representations of quantum groups as-
sociated to Lie algebras. They were first introduced by Kashiwara [17] and Lusztig [24].

Axiomatically, for a given root system Φ with index set I and weight lattice Λ, a
crystal is a nonempty set B together with maps

ei, fi : B → B 2 {∅}
εi, ϕi : B → Z

wt : B → Λ
(31)

for i ∈ I, satisfying certain conditions (see for example [4, Definition 2.13]). The
operators ei and fi are called raising and lowering operators. The map wt is the weight
map. The map εi (resp. ϕi) measures how often ei (resp. fi) can be applied to the given
crystal element. For all crystals considered in this paper, we have for b ∈ B

εi(b) = max{k � 0 | ek
i (b) &= ∅} and ϕi(b) = max{k � 0 | f k

i (b) &= ∅}. (32)

An element b ∈ B is called highest weight if ei(b) = ∅ for all i ∈ I.
Here we define certain crystals for the root systems Br and Cr explicitly. Let ei ∈ Zr

be the i-th unit vector with 1 in position i and 0 everywhere else.
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Figure 15: Left: One component of the crystal �V = C⊗3
� of type C3. Middle: The virtual crystal

V inside �V of type B3. Right: The spin crystal Bspin of type B3.

Definition III.1. The spin crystal of type Br, denoted by Bspin, consists of all r-tuples
� = (�1, �2, . . . , �r), where �i ∈ {±}. The weight of � is

wt(�) =
1
2

r

∑
i=1

�iei.

The crystal operator fr annihilates � unless �r = +. If �r = +, fr acts on � by changing
�r from + to − and leaving all other entries unchanged. The crystal operator fi for
1 � i < r annihilates � unless �i = + and �i+1 = −. In the latter case, fi acts on � by
changing �i to − and �i+1 to +. Similarly, the crystal operator er annihilates � unless
�r = −. If �r = −, er acts on � by changing �r from − to +. The crystal operator ei for
1 � i < r annihilates � unless �i = − and �i+1 = +. In the latter case, ei acts on � by
changing �i to + and �i+1 to −.

The crystal Bspin of type B3 is depicted in Figure 15.

Definition III.2. Here we define the crystals for the vector representation of type Br and
Cr.

1. The crystal C� of type Cr consists of the elements {1, 2, . . . , r, r, . . . , 2, 1}. The
crystal operator fi for 1 � i < r maps i to i + 1, maps i + 1 to i and annihilates
all other elements. The crystal operator fr maps r to r and annihilates all other
elements. Similarly, the crystal operator ei for 1 � i < r maps i + 1 to i, maps i to
i + 1 and annihilates all other elements. The crystal operator er maps r to r and
annihilates all other elements. Furthermore, wt(i) = ei and wt(i) = −ei.

2. The crystal B� of type Br consists of the elements {1, 2, . . . , r, 0, r, . . . , 2, 1}. The
crystal operator fi for 1 � i < r maps i to i + 1, maps i + 1 to i and annihilates
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Figure 16: Left: The crystal C� of type C2. Right: The crystal B� of type B2.

all other elements. The crystal operator fr maps r to 0, 0 to r and annihilates all
other elements. Similarly, the crystal operator ei for 1 � i < r maps i + 1 to i,
maps i to i + 1 and annihilates all other elements. The crystal operator er maps
r to 0, 0 to r and annihilates all other elements. Furthermore, wt(i) = ei and
wt(i) = −ei for i &= 0 and wt(0) = 0.

The crystals C� for type C2 and B� for type B2 are depicted in Figure 16.
A remarkable property of crystals is that they respect tensor products. Given two

crystals B and C associated to the same root system Φ, the tensor product B ⊗ C as
a set is the Cartesian product B × C. The weight of b ⊗ c ∈ B ⊗ C is the sum of the
weights wt(b ⊗ c) = wt(b) + wt(c). Furthermore

fi(b ⊗ c) =

�
fi(b)⊗ c if ϕi(c) � εi(b),
b ⊗ fi(c) if ϕi(c) > εi(b),

and

ei(b ⊗ c) =

�
ei(b)⊗ c if ϕi(c) < εi(b),
b ⊗ ei(c) if ϕi(c) � εi(b).

iii.2.2 Virtual crystals

Stembridge [39] characterized crystals which are associated with quantum group
representations for simply-laced root systems in terms of local rules on the crystal
graph. Crystals for non-simply-laced root systems can be constructed using virtual
crystals, see [4, Chapter 5].

In this paper, we utilize virtual crystals to construct Fomin growth diagrams and
the promotion operators for type Br using results for type Cr. Hence let us briefly
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review the set-up for virtual crystals. Let X �→ Y be an embedding of Lie algebras
such that the fundamental weights ωi and simple roots αi map as follows

ωX
i #→ γi ∑

j∈σ(i)
ωY

j ,

αX
i #→ γi ∑

j∈σ(i)
αY

j .

Here γi is a multiplication factor, σ : IX → IY/ aut is a bijection and aut is an automor-
phism on the Dynkin diagram for Y.

Let �V be an ambient crystal associated to the Lie algebra Y. In [4, Chapter 5] it
is assumed that �V is a crystal for a simply-laced root system. However, in general it
may be assumed that �V is a crystal corresponding to a quantum group representation
(which is the case in our setting).

Definition III.3. If there is an embedding of Lie algebras X �→ Y, then V ⊆ �V is a
virtual crystal for the root system ΦX if

V1. The ambient crystal �V is a Stembridge crystal or a crystal associated to a repre-
sentation for the root system ΦY with crystal operators �ei, �fi, �εi, �ϕi for i ∈ IY and
weight function �wt.

V2. If b ∈ V and i ∈ IX, then �ε j(b) has the same value for all j ∈ σ(i) and that value
is a multiple of γi. The same is true for �ϕj(b).

V3. The subset V 2 {∅} ⊆ �V 2 {∅} is closed under the virtual crystal operators

ei := ∏
j∈σ(i)

�eγi
j and fi := ∏

j∈σ(i)

�f γi
j .

Furthermore, for all b ∈ V

εi(b) = max{k � 0 | ek
i (b) &= ∅} and ϕi(b) = max{k � 0 | f k

i (b) &= ∅}.

The tensor product of two virtual crystals for the same embedding X �→ Y is again
a virtual crystal (see for example [4, Theorem 5.8]).

Virtual crystal Br �→ Cr spin to vector

We will now apply the theory of virtual crystals to the embedding Br �→ Cr. In this
setting ICr = IBr = {1, 2, . . . , r}, σ(i) = {i}, γi = 2 for 1 � i < r and γr = 1. We
consider as the ambient crystal �V = C⊗r

� .

Define an ordering < on the set [r] ∪ [r̄] as follows:

1 < 2 < · · · < r < r̄ < · · · < 1̄.

Denote by | · | the map from [r] ∪ [r̄] to [r] that sends letters to their corresponding
unbarred values.
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Definition III.4. Let V ⊆ �V be given by

V := {vr ⊗ vr−1 ⊗ · · · ⊗ v1 ∈ �V | vi > vj and |vi| &= |vj| for all i > j}.

Let fi = �f 2
i , ei = �e2

i for 1 � i < r and fr = �fr, er = �er.

Lemma III.5. V 2 {∅} is closed under the operators fi and ei for 1 � i � r.

Proof. Let v = vr ⊗ vr−1 ⊗ · · · ⊗ v1 ∈ V . We break into cases depending on the value
of i.

Assume that i = r. By the definition of V , v must either contain an r or r̄, but not
both. If v contains an r, then this r must be to the left of all other unbarred letters
and to the right of all barred letters. As fr changes the r to a r̄, fr(v) is still in V . If v
contains an r̄, then fr(v) = ∅ ∈ V 2 {∅}.

Assume that i &= r. Note that the conditions imposed on v imply that there exists
exactly two indices j and k such that |vj| = i and |vk| = i + 1. By the ordering imposed
on v, v can only be in the following forms:

• · · · ⊗ i + 1 ⊗ i ⊗ · · ·

• · · · ⊗ ī ⊗ i + 1 ⊗ · · ·

• · · · ⊗ ī ⊗ · · · ⊗ i + 1 ⊗ · · ·

• · · · ⊗ i + 1 ⊗ · · · ⊗ i ⊗ · · ·

For the first three cases, fi(v) = ∅. When v is of the form · · · ⊗ i + 1 ⊗ · · · ⊗ i ⊗ · · · , fi
replaces the i + 1 with ī and the i with i + 1. Since v does not contain an ī nor an i + 1,
fi(v) is an element of V .

The fact that ei(v) ∈ V for all i ∈ 1 � i � r follows similarly. Thus, V is closed
under the operators fi and ei.

Lemma III.6. All elements of V are in the connected component of �V with highest weight
element r ⊗ r − 1 ⊗ · · · ⊗ 1.

Proof. Clearly r ⊗ r − 1⊗ · · · ⊗ 1 is a highest weight element of �V and the only element
in V without any barred letters.

Consider v = vr ⊗ · · · ⊗ v1 ∈ V containing a barred letter. Observe that the number
of barred letters in ei(v) is at most the number of barred letters in v whenever ei(v) &= ∅.
Since �V is finite and V is closed under ei, it suffices to show that ei(v) &= ∅ for some i.
Let vj denote the rightmost tensor factor in v that is a barred letter, and let i = |vj|. We
break into cases depending on the value of i.

If i = r, then vj = r̄ and v cannot contain an r. This implies that er(v) &= ∅ as it acts
on v by replacing vj by r. The number of barred letters has decreased by one.

If i &= r, then vj = ī. As vj is the rightmost barred letter in v, v must be of the form
· · · ⊗ ī ⊗ · · · ⊗ i + 1 ⊗ · · · . Thus, ei acts by changing ī to i + 1 and i + 1 to i. Note that
the rightmost barred letter is closer to r̄.
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Definition III.7. Let Ψ : Bspin → V be the map

Ψ(�1�2 · · · �r) = vr ⊗ vr−1 ⊗ · · · ⊗ v1,

where vr > vr−1 > · · · > v1 such that if �i = + then v contains an i and if �i = − then
v contains an ī for all 1 � i � r.

Lemma III.8. The map Ψ is a bijective map that intertwines the crystal operators on Bspin

and V .

Proof. From the definition of Ψ, it is clearly bijective. Let � = �1�2 · · · �r ∈ Bspin.
Since the raising and lowering operators of a crystal are partial inverses, it suffices to
prove that fi(�) &= ∅ if and only if fi(Ψ(�)) &= ∅ and Ψ( fi(�)) = fi(Ψ(�)) whenever
fi(�) &= ∅.

Assume that fi(Ψ(�)) &= ∅. If i = r, then Ψ(�) contains an r implying �r = +.
Therefore fr(�) &= ∅. If i &= r, then � contains both an i and an i + 1. Thus, �i = + and
�i+1 = − implying fi(�) &= ∅.

Assume that fi(�) &= ∅. If i = r, then �r = + and fr acts on � by replacing �r with a
−. This implies that Ψ( fr(�)) can be obtained from Ψ(�) by changing the r to r̄, which
agrees with the action of fr. Therefore Ψ( fr(�)) = fr(Ψ(�)). If i &= r, then �i must
be a + and �i+1 must be a −. Thus, fi swaps the signs of �i and �i+1. Since �i = +
and �i+1 = −, Ψ(�) must contain both an i + 1 and an i. This implies Ψ( fi(�)) can be
obtained from Ψ(�) by replacing the i + 1 with ī and the i with i + 1. Observe that fi
acts on Ψ(�) in exactly the same manner. Hence, Ψ( fi(�)) = fi(Ψ(�)).

Proposition III.9. V is a virtual crystal for the embedding of Lie algebras Br �→ Cr.

Proof. The ambient crystal �V is a crystal coming from a representation (see for exam-
ple [4]), ensuring V1. Using Lemmas III.5 and III.8, we have Ψ(Bspin) = V is closed
under the crystal operators fi and ei. Since the elements in both Bspin and �V satisfy (32),
the string lengths of Bspin are the same as the string lengths in V , showing V3. It is also
not hard to see from Definition III.4, that �ϕi(v),�εi(v) ∈ 2Z for v ∈ V and 1 � i < r,
proving V2.

An example of the virtual crystal construction for Bspin is given in Figure 15. The
virtual crystal of this section also follows from [18]. An affine version of this virtual
crystal construction (which implies the one in this section) has appeared in [10, Lemma
4.2].

Virtual crystal Br �→ Cr vector to vector

The crystal B� of Definition III.2 can be realized as a virtual crystal inside the ambient
crystal �V = C⊗2

� .

Definition III.10. Define V ⊆ �V = C⊗2
� of type Cr as

V = {a ⊗ a | 1 � a � r} ∪ {a ⊗ a | 1 � a � r} ∪ {r ⊗ r}

with fi = �f 2
i , ei = �e2

i for 1 � i < r and fr = �fr, er = �er.
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Figure 17: Far Left: One connected component �S of the crystal �V⊗2 = (C⊗2
� )⊗2 of type C2.

Middle Left: The connected component S of the virtual crystal V⊗2 inside S induced by
Definition III.10. Middle Right: The corresponding connected component T of the crystal
B⊗2
� of type B2 that corresponds to S under the embedding given in Definition III.12. Far

Right: The connected component U of (Bspin ⊗Bspin)⊗2 of type B2 corresponding to T under
the isomorphism given in Figure 18.

Lemma III.11. V 2 {∅} of Definition III.10 is closed under the operators fi and ei for
1 � i � r and all elements in V are in the connected component of �V with highest weight
1 ⊗ 1.

Proof. We leave this to the reader to check.

Definition III.12. Let Ψ : B� → V be the map Ψ(a) = a ⊗ a and Ψ(a) = a ⊗ a for
1 � a � r and Ψ(0) = r ⊗ r.

Lemma III.13. The map Ψ of Definition III.12 is a bijective map that intertwines the crystal
operators on B� and V .

Proof. We leave this to the reader to check.

Proposition III.14. V of Definition III.10 is a virtual crystal for the embedding of Lie algebras
Br �→ Cr.

Proof. We leave this to the reader to check.

An example of the virtual crystal construction for B� is given in Figure 17. The
virtual crystal of this section also follows from [18]. An affine version of this vir-
tual crystal construction (which implies the one in this section) has appeared in [10,
Theorem 4.8].
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iii.2.3 Highest weights of weight zero

A weight λ ∈ Λ is called minuscule if �λ, α∨� ∈ {0,±1} for all coroots α∨. A crystal B
is called minuscule if wt(b) is minuscule for all b ∈ B. Note that Bspin is a minuscule
crystal (see for example [4, Chapter 5.4]).

A weight λ is called dominant if �λ, α∨i � � 0 for all i ∈ I. Let Λ+ ⊆ Λ denote
the set of all dominant weights. Except for spin weights, dominant weights can be
identified with partitions, where the fundamental weight ωh corresponds to a column
of height h in the partition. A partition λ is a sequence λ = (λ1, λ2, . . . , λ�) such that
λ1 � λ2 � · · · � λ� � 0. We identify partitions that differ by trailing zeroes. That is,
(3, 2, 0, 0) is identified with the partition (3, 2).

Let B1,B2, . . . ,Bn be minuscule crystals. For any highest weight element

u = un ⊗ · · · ⊗ u1 ∈ Bn ⊗ · · · ⊗ B1

we may bijectively associate a sequence of dominant weights ∅ = µ0, µ1, . . . , µn, where
µq := ∑

q
i=1 wt(ui). The final weight µ := µn of such a sequence is also the weight of

the crystal element u. If µ is zero, u is a highest weight element of weight zero.
Note that the number of highest weight elements of weight zero in a tensor product

of crystals is equal to the dimension of the invariant subspace, see for example [43, 30].

Oscillating tableaux

Oscillating tableaux were introduced by Sundaram [40].

Definition III.15 (Sundaram [40]). An r-symplectic oscillating tableau O of length n and
shape µ is a sequence of partitions

O = (∅ = µ0, µ1, . . . , µn = µ)

such that the Ferrers diagrams of two consecutive partitions differ by exactly one cell,
and each partition µi has at most r nonzero parts.

The r-symplectic oscillating tableaux of length n and shape µ are in bijection with
highest weight elements in C⊗n

� of type Cr and weight µ. This can be seen by induction
on n. For n = 1, the only highest weight element is 1 and the only oscillating tableau
is (∅,�). Suppose the claim is true for n − 1. If u = b ⊗ u0 ∈ C⊗n

� is highest weight,

then u0 ∈ C⊗(n−1)
� must be highest weight and hence by induction corresponds to

an oscillating tableau (∅ = µ0, µ1, . . . , µn−1). The element b is either an unbarred or
barred letter. If b is the unbarred letter a, µn differs from µn−1 by a box in row a. If
b is the barred letter a, µn has one less box in row a than µn−1. More precisely, for
a highest weight element bn ⊗ · · · ⊗ b1 ∈ C⊗n

� , the corresponding oscillating tableau
satisfies µq = ∑

q
i=1 wt(bi). This map can be reversed and it is not hard to see that the

result is a highest weight element using the tensor product rule.

r-fans of Dyck paths

Next we relate highest weight elements of weight zero in B⊗n
spin of type Br and r-fans of

Dyck paths. A Dyck path of length n is a path from (0, 0) to (n, 0) consisting of up-steps
(1, 1) and down-steps (1,−1) which never crosses the line y = 0.
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Definition III.16. An r-fan of Dyck paths F of length n is a sequence

F = (∅ = µ0, µ1, . . . , µn = ∅)

of partitions µi with at most r parts such that the Ferrers diagram of two consecutive
partitions differs by exactly one cell in each part. In other words, µi differs from µi+1

by (±1,±1, . . . ,±1) for 0 � i < n.

Example III.17. For r = 3 and n = 4, the following is a 3-fan of Dyck paths

F = ((000), (111), (220), (111), (000)).

Since Bspin of type Br is minuscule, by the above discussion � = �n ⊗ · · · ⊗ �1 ∈ B⊗n
spin

is highest weight if and only if ∑
q
i=1 wt(�i) is dominant for all 1 � q � n. Hence highest

weight elements of weight zero can be identified with an r-fan of Dyck paths of length
n: the j-th entry of �i is + if and only if the j-th Dyck path has an up-step at position i.
In particular, for a highest weight element � of weight zero, the sequence of dominant
weights µq := ∑

q
i=1 2wt(�i) for 0 � q � n defines an r-fan of Dyck paths consistent

with Definition III.16.
A similar bijection was given in [25].

Example III.18. The 3-fan of Dyck paths of Example III.17 corresponds to the element

� = (−,−,−)⊗ (−,−,+)⊗ (+,+,−)⊗ (+,+,+) ∈ B⊗4
spin.

Following Definition III.7, we obtain an embedding from the set of r-fans of Dyck
paths into the set of oscillating tableaux.

Definition III.19. For an r-fan of Dyck paths F = (∅ = λ0, λ1, . . . , λn = ∅) we
define the oscillating tableau ιF→O(F) = (∅ = µ0, . . . , µrn = ∅) as follows. Let
vt = Ψ(λt − λt−1) for 1 � t � n with Ψ as in Definition III.7. Then

µtr+s = λt +
s

∑
i=1

wt(vt+1
i ) for 0 � t < n, 0 � s < r.

Vacillating tableaux

Next we define vacillating tableaux which correspond to highest weight elements in
B⊗n
� of type Br.

Definition III.20. A (2r + 1)-orthogonal vacillating tableau of length n is a sequence of
partitions V = (∅ = λ0, . . . , λn) such that:

(i) λi has at most r parts.

(ii) Two consecutive partitions either differ by a box or are equal.

(iii) If two consecutive partitions are equal, then all their r parts are greater than 0.

We call λn the weight of V.
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Figure 18: Left: B� of type B3, Right: The component in Bspin ⊗Bspin of type B3 isomorphic to
B�.

A highest weight element u = un ⊗ · · · ⊗ u1 ∈ B⊗n
� of type Br corresponds to the

(2r + 1)-vacillating tableau (∅ = λ0, λ1, . . . , λn), where λq = ∑
q
i=1 wt(ui).

Note that B� is not minuscule. The crystal B� is isomorphic to the component
with highest weight element (+,−, . . . ,−)⊗ (+, . . . ,+) in Bspin ⊗Bspin, see Figure 18.
From this we obtain a map from the set of vacillating tableaux of weight zero and
length n into the set of fans of Dyck paths of length 2n that we now explain. Denote
by 1 the vector e1 + e2 + · · ·+ er and write ρ < ν if ν = ρ + ei for some i.

Definition III.21. For a vacillating tableau of weight zero V = (∅ = λ0, . . . , λn = ∅)
we define the fan of Dyck paths ιV→F(V) = (∅ = µ0, . . . , µ2n = ∅) as follows:

µ2i = 2 · λi

µ2i−1 =

��
2 · λi−1 + 1 if λi−1 < λi,
2 · λi + 1 if λi−1 > λi,
2 · λi−1 + 1 − 2er if λi−1 = λi.

Similarly, following Definition III.12, we obtain an embedding from the set of
vacillating tableaux of weight zero into the set of oscillating tableaux.
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Definition III.22. For a vacillating tableau of weight zero V = (∅ = λ0, . . . , λn = ∅)
we define the oscillating tableau ιV→O(V) = (∅ = µ0, . . . , µ2n = ∅) as follows:

µ2i = 2 · λi

µ2i−1 = λi−1 + λi +

�
0 if λi−1 &= λi,
−er if λi−1 = λi.

iii.2.4 Promotion via crystal commutor

For finite crystals Bλ of classical type of highest weight λ, Henriques and Kam-
nitzer [12] introduced the crystal commutor as follows. Let ηBλ

: Bλ → Bλ be the
Lusztig involution, which maps the highest weight vector to the lowest weight vector
and interchanges the crystal operators fi with ei* , where w0(αi) = −αi* under the
longest element w0. This can be extended to tensor products of such crystals by map-
ping each connected component to itself using the above. Then the crystal commutor is
defined as

σ : Bλ ⊗ Bµ → Bµ ⊗ Bλ

b ⊗ c #→ ηBµ⊗Bλ
(ηBµ(c)⊗ ηBλ

(b)).

If we want to emphasize the crystals involved, we write σA,B : A ⊗ B → B ⊗ A.
Following [8, 43, 44], we define the promotion operator using the crystal commutor.

Definition III.23. Let C be a crystal and u ∈ C⊗n a highest weight element. Then
promotion pr on u is defined as σC⊗n−1,C(u).

Remark III.24. Note that inverse promotion is given by σC,C⊗n−1(u). The conventions
in the literature about what is called promotion and what is called inverse promotion
are not always consistent. Our convention here agrees with the definition of promotion
on posets that removes the letters 1 and slides letters (see for example [38, 2]). The
convention here is the opposite of the convention on tableaux which removes the
largest letter and uses jeu de taquin slides (see for example [32, 3]).

Example III.25. Consider the crystal C = B� of type A2 (see [4]). Then

u = 1 ⊗ 3 ⊗ 2 ⊗ 2 ⊗ 1 ⊗ 1 ∈ C⊗6

is highest weight and
σC⊗5,C(u) = 2 ⊗ 1 ⊗ 3 ⊗ 1 ⊗ 2 ⊗ 1.

The recording tableaux for the RSK insertion of the words 132211 and 213121 (from
right to left) are

1 2 6
3 4
5 and

1 3 5
2 6
4

which are related by the usual (inverse) promotion operator (removing the letter 1,
doing jeu-de-taquin slides, filling the empty cell with the largest letter plus one and
subtracting 1 from all entries) on standard tableaux.
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Example III.26. Promotion on the element � in Example III.18 is

σB⊗3
spin,Bspin

(�) = (−,−,−)⊗ (−,+,+)⊗ (+,−,−)⊗ (+,+,+).

Note that if Ψ : C → V ⊆ �V is a virtual embedding, then virtualization intertwines
with promotion

Ψ ◦ σC⊗n−1,C = σ�V⊗n−1,�V ◦ Ψ (33)

by Axioms V2 and V3 in Definition III.3 as long as the folding σ and the multiplication
factors γi respect the map w0(αi) = −αi* . This is the case for the virtualizations in this
paper.

iii.2.5 Promotion via local rules

Adapting local rules of van Leeuwen [41], Lenart [23] gave a combinatorial realization
of the crystal commutor σA,B by constructing an equivalent bijection between the
highest weight elements of A ⊗ B and B ⊗ A respectively. The local rules of Lenart [23]
can be stated as follows: four weight vectors λ, µ, κ, ν ∈ Λ depicted in a square diagram

λ ν

κ µ
satisfy the local rule, if µ = domW(κ + ν − λ), where W is the Weyl group

of the root system Φ underlying A and B. Furthermore, domW(ρ) is the dominant
weight in the Weyl orbit of ρ.

Theorem III.27 ([23, Theorem 4.4]). Let A and B be crystals embedded into tensor products
A� ⊗ · · · ⊗ A1 and Bk ⊗ · · · ⊗ B1 of crystals of minuscule representations, respectively. Let
w = wk+� ⊗ · · · ⊗ w1 be a highest weight element in A ⊗ B with corresponding tableau
(∅ = µ0, µ1, . . . , µk+� = µ) Then σA,B(w) can be computed as follows. Create a k × � grid of
squares as in (34), labelling the edges along the left border with w1, . . . , wk and the edges along
the top border with wk+1, . . . , wk+�:

µ0

µ1

µk−1

µk

µ̂1 µ̂�−1 µ̂�

µk+�

w1

wk

ŵ1+�

ŵk+�

wk+1 wk+�

ŵ1 ŵ�

(34)

For each square use the local rule to compute the weight vectors on the square’s corners.
Given a horizontal edge from κ to µ in the jth column, label the edge by the element in
Aj with weight µ − κ. Similarly, given a vertical edge from µ to ν in the ith row, label
the edge by the element in Bi with weight ν − µ. The labels ŵk+� . . . ŵ1 of the edges along
the right and the bottom border of the grid then form σA,B(w) with corresponding tableau
(∅ = µ0, µ̂1, . . . , µ̂k+�−1, µk+� = µ).

99



1. Calculate promo-
tion over and over
again using a calcu-
lation schema

2. Cut and glue
the schema to
obtain a square

3. Fill all cells
according to a
function Φ with
integers

4. Interpret
the filled square
as adjacency ma-
trix of a graph

5. Read the
chord diagram
from the adja-
cency matrix.

λ ν

κ µ
Φ(λ, κ, ν, µ)

������

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

������
◦

◦
◦

◦

◦
◦

◦

◦

Figure 19: Overview of the steps in our map

Example III.28. Performing Lenart’s local rules on the elements in Example III.25 gives

(0, 0, 0) (1, 0, 0) (1, 1, 0) (2, 1, 0) (2, 1, 1) (3, 1, 1)

(1, 0, 0) (2, 0, 0) (2, 1, 0) (2, 2, 0) (2, 2, 1) (3, 2, 1)
1 1 1 2 2 2

1 2 1 3 1

1 2 2 3 1

which recovers σC⊗5,C(1 ⊗ 3 ⊗ 2 ⊗ 2 ⊗ 1 ⊗ 1) = 2 ⊗ 1 ⊗ 3 ⊗ 1 ⊗ 2 ⊗ 1.

iii.3 chord diagrams

iii.3.1 Promotion matrices

In this section we describe a map from highest weight words of weight zero to chord
diagrams that intertwines promotion and rotation.

We start with the definition of chord diagrams and their rotation.

Definition III.29. A chord diagram of size n is a graph with n vertices depicted on a
circle which are labelled 1, . . . , n in counter-clockwise orientation.

The rotation of a chord diagram is obtained by rotating all edges clockwise by 2π
n

around the center of the diagram.

In our setting all chord diagrams are undirected graphs with possibly multiple
edges between the same two vertices. We can therefore identify chord diagrams
with their adjacency matrix. The adjacency matrix is a symmetric n × n matrix M =
(mij)1�i,j�n with non-negative integer entries and mij denotes the number of edges
between vertex i and vertex j.

Proposition III.30. Let M be the adjacency matrix of a chord diagram G. Denote by rot M
the toroidal shift of M, that is, the matrix obtained from M by first cutting the top row and
pasting it to the bottom and then cutting the leftmost column and pasting it to the right.

Then rot M is the adjacency matrix corresponding to the rotation of G.
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The proof of this proposition is easy and left to the reader as an exercise.
Let us now outline the idea to construct such a rotation and promotion intertwining

map and then provide the details on the individual steps on the examples of oscillating
tableaux, r-fans of Dyck paths and vacillating tableaux. A visual guideline can be seen
in Figure 19.

Construction III.31. The construction is given as follows:

step 1 Iteratively calculate promotion of a highest weight word of weight zero and
length n using Lenart’s schema (34) a total of n times.

step 2 Group the results into a square grid, called the promotion matrix.

step 3 Fill the cells of the square grid with certain non-negative integers according to
a filling rule Φ that only depends on the four corners of the cells in the schema
(34).

step 4 Regard the filling as the adjacency matrix of a graph, which is the chord
diagram.

We now discuss the filling rules in the various cases. Note that the filling rules are
new even in the case of oscillating tableaux as the proofs in [30] did not follow this
construction.

Chord diagrams for oscillating tableaux

Recall that the Weyl group of type Cr is the hyperoctahedral group Hr of signed per-
mutations of {±1,±2, . . . ,±r}. Weights are elements in Zr and dominant weights are
weakly decreasing integer vectors with non-negative entries (or equivalently partitions).
Thus, the dominant representative domHr(λ) of a weight λ is obtained by sorting the
absolute values of its entries into weakly decreasing order.

We slightly modify Lenart’s schema for the crystal commutor (34) by omitting
edge labels as only the weights on the corners are needed. Additionally, given an
oscillating tableau O = (∅ = µ0, µ1, . . . , µn = µ), we start each row with the zero
weight ∅ and end each row with the weight µ, which makes it easier to iteratively use
this schema to calculate promotion. This way the promotion of the oscillating tableau
O = (∅ = µ0, µ1, . . . , µn = µ) is the unique sequence (∅ = µ̂0, µ̂1, . . . , µ̂n = µ), such
that all squares in the diagram

µ0 µ1 µ2 µn−1 µn

µ̂0 µ̂1 µ̂n−2 µ̂n−1 µ̂n

satisfy the local rule of Section III.2.5.
Using this schema we iteratively calculate promotion a total of n times and depict

the results in a diagram as seen in Figure 20 on the left. This diagram consists of n
promotion schemas glued together. As prn = id, the labels on the top and the bottom
row must be equal to µ0, . . . , µn.
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Figure 20: The transformation into a promotion matrix. The highlighted part is cut away and
glued on the left.

We now transform this diagram by copying everything to the right of the n-th
column into the triangular empty space on the left, see Figure 20. In this way the labels
on the right corners of the n-th column are duplicated. We obtain an n × n grid, where
each corner of a cell is labelled with a dominant weight and the labels on the top and
bottom border are equal and the labels on the left and right border are equal. This grid
is called the promotion matrix of O.

To obtain an adjacency matrix, we fill the cells of this diagram with non-negative
integers according to the following rule.

Definition III.32. The filling rule for oscillating tableaux is

Φ(λ, κ, ν, µ) =

�
1 if κ + ν − λ contains a negative entry,
0 else,

(35)

where the cells are labelled as depicted below:

λ ν

κ µ
Φ(λ, κ, ν, µ)

. (36)

Definition III.33. Denote by MO the function that maps an r-symplectic oscillating
tableau of length n to an n × n adjacency matrix using Construction III.31 and the
filling rule (35).

Next, we generalize the above construction for r-fans of Dyck paths and vacillating
tableaux.

Chord diagrams for r-fans of Dyck paths

Given an r-fan of Dyck paths F = (∅ = µ0, µ1, . . . , µn = ∅), we construct an adjacency
matrix via Construction III.31 using the following filling rule:

Definition III.34. The filling rule for fans of Dyck paths is

Φ(λ, κ, ν, µ) = number of negative entries in κ + ν − λ, (37)

where the cells are labelled as in (36).
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Remark III.35. Note that for oscillating tableaux at most one negative entry can occur.
Thus the filling rule (37) for fans of Dyck paths is a natural generalization of the
rule (35).

Definition III.36. Denote by MF the function that maps an r-fan of Dyck paths of
length n to an n × n adjacency matrix using Construction III.31 and the filling rule (37).

Example III.37. Consider the following fan corresponding to the sequence of vectors
F = (000, 111, 222, 311, 422, 331, 222, 111, 000).

1. We apply promotion a total of n = 8 times, to obtain the full orbit.

000 111 222 311 422 331 222 111 000
000 111 200 311 220 111 000 111 000

000 111 222 311 220 111 222 111 000
000 111 200 111 200 311 200 111 000

000 111 220 311 422 311 222 111 000
000 111 220 331 220 311 200 111 000

000 111 222 111 220 111 220 111 000
000 111 000 111 200 311 220 111 000

000 111 222 311 422 331 222 111 000 .

2. We group the results into the promotion matrix and fill the cells of the square
grid according to Φ. For better readability we omitted zeros.

000 111 222 311 422 331 222 111 000

111 000 111 200 311 220 111 000 111

222 111 000 111 222 311 220 111 222

311 200 111 000 111 200 111 200 311

422 311 222 111 000 111 220 311 422

331 220 311 200 111 000 111 220 331

222 111 220 111 220 111 000 111 222

111 000 111 200 311 220 111 000 111

000 111 222 311 422 331 222 111 000

3

2 1

2 1

2 1

2 1

1 1 1

1 1 1

3

3. Regard the filling as the adjacency matrix of a graph, the chord diagram.

MF(F) =

�����������

0 0 0 0 0 0 0 3
0 0 2 0 0 0 1 0
0 2 0 0 0 1 0 0
0 0 0 0 2 0 1 0
0 0 0 2 0 1 0 0
0 0 1 0 1 0 1 0
0 1 0 1 0 1 0 0
3 0 0 0 0 0 0 0

�����������

12

3

4

5 6

7

8
3

1

2

1 1
2

1
1
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Chord diagrams for vacillating tableaux

Note that B� is not minuscule and thus Theorem III.27 is not directly applicable. Using
Definition III.12 we can embed B� in C⊗2

� which gives a map ιV→O from vacillating
tableaux to oscillating tableaux of twice the length which commutes with the crystal
commutor. That is

ιV→O ◦ prB� = ιV→O ◦ σB⊗n−1
� ,B�

= σ(C⊗2
� )⊗n−1,C⊗2

�
◦ ιV→O. (38)

This follows directly from the properties of virtualization.
Let V be a vacillating tableau of length n and weight zero. Let O = (∅ =

µ0, µ1, . . . , µ2n = ∅) be the corresponding oscillating tableau using ιV→O. Then we
obtain the promotion of V using the following schema

µ0 µ1 µ2 µ3 µ2n−1 µ2n

µ1 µ̂2n−1

µ̂0 µ̂1 µ̂2n−3 µ̂2n−2 µ̂2n−1 µ̂2n.

(39)

Following Construction III.31, we apply promotion a total of n times and use the
cut-and-glue procedure to obtain a 2n × 2n square. We fill the squares using the filling
rule for oscillating tableaux as given by (35).

To obtain an n × n adjacency matrix, we subdivide the 2n × 2n matrix into 2 × 2
blocks and take the sum of each block.

Definition III.38. Denote by MV→O the function that maps a vacillating tableau V

of weight zero of length n to an n × n adjacency matrix using ιV→O, Schema (39),
Construction III.31, filling rule (35), and block sums.

Example III.39. Consider the vacillating tableau of length 9

V = (000, 100, 200, 210, 211, 111, 111, 110, 100, 000).

We first embed V into an oscillating tableau using the bijection Ψ from B� to V given
in Definition III.12. Specifically, we use Ψ to establish a correspondence between the
highest weight element in B⊗9

� associated to V and a highest weight element in (C⊗2
� )⊗9,

from which we obtain ιV→O(V) as

ιV→O(V) = (000, 100, 200, 300, 400, 410, 420, 421, 422, 322, 222, 221,
222, 221, 220, 210, 200, 100, 000).

1. We apply promotion a total of n = 9 times on the above schema (2n = 18 times on
the oscillating tableau ιV→O(V)), to obtain the full orbit. Below the first iteration
of promotion, we show all 9 applications of promotion.

000 100 200 300 400 410 420 421 422 322 222 221 222 221 220 210 200 100 000
100 200 300 310 320 321 322 222 221 220 221 220 221 211 210 110 100
000 100 200 210 220 221 222 221 220 221 222 221 222 221 220 210 200 100 000
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000 100 200 300 400 410 420 421 422 322 222 221 222 221 220 210 200 100 000

000 100 200 210 220 221 222 221 220 221 222 221 222 221 220 210 200 100 000

000 100 200 210 220 221 222 322 422 421 422 421 420 410 400 300 200 100 000

000 100 200 210 220 320 420 421 422 421 422 421 420 320 220 210 200 100 000

000 100 200 300 400 410 420 421 422 421 422 322 222 221 220 210 200 100 000

000 100 200 210 220 221 222 221 222 221 220 221 222 221 220 210 200 100 000

000 100 200 210 220 221 222 221 222 322 422 421 420 410 400 300 200 100 000

000 100 200 210 220 221 222 322 422 421 422 421 420 320 220 210 200 100 000

000 100 200 210 220 320 420 421 422 421 422 322 222 221 220 210 200 100 000

000 100 200 300 400 410 420 421 422 322 222 221 222 221 220 210 200 100 000

100 200 300 310 320 321 322 222 221 220 221 220 221 211 210 110 100

100 110 210 211 221 220 221 222 322 321 322 321 320 310 300 200 100

100 110 210 211 221 321 421 420 421 420 421 411 410 310 210 110 100

100 110 210 310 410 411 421 420 421 420 421 321 221 211 210 110 100

100 200 300 310 320 321 322 321 322 222 221 220 221 211 210 110 100

100 110 210 211 221 220 221 220 221 222 322 321 320 310 300 200 100

100 110 210 211 221 220 221 321 421 420 421 411 410 310 210 110 100

100 110 210 211 221 321 421 420 421 420 421 321 221 211 210 110 100

100 110 210 310 410 411 421 420 421 321 221 220 221 211 210 110 100

(2) We group the results into the promotion matrix and fill the cells of the square grid
according to Φ in (35). For better readability, we subdivided the diagram into 2 × 2
blocks and took the sum of the entries in each block, as well as omitted the zeros.

000 200 400 420 422 222 222 220 200 000

200 000 200 220 222 220 222 222 220 200

400 200 000 200 220 222 422 422 420 400

420 220 200 000 200 220 420 422 422 420

422 222 220 200 000 200 400 420 422 422

222 220 222 220 200 000 200 220 222 222

222 222 422 420 400 200 000 200 220 222

220 222 422 422 420 220 200 000 200 220

200 220 420 422 422 222 220 200 000 200

000 200 400 420 422 222 222 220 200 000

1 1

2

1 1

1 1

2

1 1

1 1

1 1

1 1

(2) Regard the filling as the adjacency matrix of a graph, the chord diagram.

MV→O(V) =

�������������

0 0 0 0 0 1 1 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1
0 2 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 1 0 1 0 0 0

�������������

1
2

3

4

5 6

7

8

9

1
1

2 1

1

1
1

1

Alternatively, we may obtain an adjacency matrix by embedding B� as a connected
component of B⊗2

spin (see Section III.2.3). As discussed in Definition III.21, this embed-
ding gives rise to the map ιV→F from vacillating tableaux to r-fans of Dyck paths of
twice the length. From the r-fans of Dyck paths, we apply MF to obtain a 2n × 2n
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matrix. Subdividing this matrix into 2 × 2 blocks and taking block sums produces an
n × n adjacency matrix for vacillating tableaux.

Definition III.40. Denote by MV→F the function that maps a vacillating tableau V of
weight zero and length n to an n × n adjacency matrix using ιV→F, Construction III.31,
filling rule (37), and block sums.

Promotion and rotation

For the various maps MX with X ∈ {O, F, V → O, V → F} constructed in this section,
we obtain the following main result.

Proposition III.41. The map MX for X ∈ {O, F, V → O, V → F} intertwines promotion
and rotation, that is

MX ◦ pr = rot ◦MX.

Proof. Let T be either a fan of Dyck paths, an oscillating tableau of weight zero or a
vacillating tableau of weight zero of length n and denote by �T its promotion.

For 0 � i, j < n let µi,j be the (j − i)-th entry of pri(T), where indexing starts with
zero and is understood modulo n. For 1 � i, j � n denote by mi,j the entry in the i-th
row and j-th column of MX(T). Similarly, denote by �µi,j the (j − i)-th entry of pri(�T)
and by �mi,j the i-th row and j-th column of MX(�T).

In all of our constructions mi,j depends on the four partitions µi−1,j−1, µi,j−1, µi−1,j

and µi,j via some function mi,j = #Φ(µi−1,j−1, µi,j−1, µi−1,j, µi,j). Analogously we have�mi,j = #Φ(�µi−1,j−1, �µi,j−1, �µi−1,j, �µi,j).
A simple calculation gives

�mi,j = #Φ(�µi−1,j−1, �µi,j−1, �µi−1,j, �µi,j)

= #Φ(µi,j, µi+1,j, µi,j+1, µi+1,j+1) = mi+1,j+1,

where indices are understood modulo n. Thus, MX(�T) = rot(MX(T)).

Note that the promotion matrix MX(T) is sometimes referred to as the promotion-
evacuation diagram of T as it also encodes information about the evacuation of T.
Following [30], a generalization of Schützenberger’s evacuation operator can be defined
on crystals as follows.

Definition III.42. Let C be a crystal and u ∈ C⊗n a highest weight element. Then
evacuation evac on u is defined as

(1C⊗n−2 ⊗ pr) ◦ · · · ◦ (1C ⊗ pr) ◦ pr(u),
where (1C⊗n−m ⊗ pr)(wn ⊗ · · · ⊗ w2 ⊗ w1) = wn ⊗ · · · ⊗ wm+1 ⊗ pr(wm ⊗ · · · ⊗ w1).

Given a tableau T corresponding to a highest weight element u, we denote by
evac(T) the tableau associated to the highest weight element evac(u).

Proposition III.43. The map MX for X ∈ {O, F, V → O, V → F} intertwines evacuation
and the anti-transpose, that is

MX ◦ evac = antr ◦MX,

where the anti-transpose antr of a matrix is its transpose over its anti-diagonal.
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α β

γ δ

m

Figure 21: A cell of a growth diagram filled with a non-negative integer m

Proof. Let T be either a fan of Dyck paths, an oscillating tableau of weight zero, or
a vacillating tableau of weight zero of length n. From the definition of evac and the
construction of MX, we have that evac(T) is precisely the tableau obtained by reading
the right border of MX from bottom to top. Note that in order to prove the statement
for MV→O it suffices to show it for MO as Ψ intertwines σB⊗m

� ,B�
and σ(C⊗2

� )⊗m,C⊗2
�

for all
m � 1 by Equation (33), where Ψ is the virtualization map given in Definition III.12.
Similarly, in order to prove the statement for MV→F it suffices to prove it for MF.

Consider partitions λ, κ, ν, µ labelling the corner of a cell in MX as in (36), where
X ∈ {O, F}. By [41, Lemma 4.1.2], we have µ = domW(κ + ν − λ) if and only if
λ = domW(κ + ν − µ) as Bspin and C� are minuscule. This implies that partitions
labelling the corners of every cell in MX ◦ evac and antr ◦MX are equal.

To complete the proof we show that filling rules Φ(λ, κ, ν, µ) given in (35) and (37)
satisfy Φ(λ, κ, ν, µ) = Φ(µ, κ, ν, λ). As partitions connected by a vertical or horizontal
edge in MO differ by exactly one box, we have that Φ(λ, κ, ν, µ) = 1 if and only if
λ = µ = (λ1, . . . , λi, 0, . . . , 0), λi = 1 for some i, and κ = ν = (λ1, . . . , λi−1, 0, 0, . . . , 0).
Thus, the filling rule for oscillating tableaux satisfies Φ(λ, κ, ν, µ) = Φ(µ, κ, ν, λ). By
a similar argument the filling rule for fans of Dyck paths also satisfies the desired
symmetry.

iii.3.2 Fomin growth diagrams

Generally speaking, a Fomin growth diagram is a means to bijectively map sequences of
partitions satisfying certain constraints to fillings of a Ferrers shape with non-negative
integers [7, 33, 42, 21]. In this setting, we draw the Ferrers shape in French notation (to
fix how the growth diagrams are arranged).

To map a filling of a Ferrers shape to a sequence of partitions we iteratively label all
corners of cells of the shape with partitions by certain local rules. Given a cell, where
already all three partitions on the left and bottom corners are known, the forward
rules determine the fourth partition on the top right corner based on the filling of the
cell. Conversely, given the three partitions on the top and right corners of a cell, the
backwards rules determine the last partition and the filling of the cell. When defining
the local rules we label the cells as seen in Figure 21.

For partitions δ and α, we define their union δ ∪ α to be the partition containing
δi + αi cells in row i, where δi and αi denote the number of cells in row i of δ and α

respectively. Recall that we pad partitions with 0’s if necessary. We denote δ ∪ δ by
2δ. We define the intersection of two partitions δ ∩ α to be the partition containing
min{δi, αi} cells in row i.
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We begin by describing the local rules for a filling of a Ferrers shape with at most
one 1 in each row and in each column and 0’s everywhere else (omitted for readability).
Moreover, we require that any two adjacent partitions in the labelling of our growth
diagram (for example, γ → α and γ → δ in Figure 21) must either coincide or the one
at the head of the arrow is obtained from the other by adding a unit vector. We record
the local forward rules and local backward rules for this case of 0/1 filling, which are
stated explicitly in [21, p. 4-5].

Given a 0/1 filling of a Ferrers shape and partitions labelling the bottom and left
side of the Ferrers shape, we apply the following local forward rules to complete the
labelling.

(F1) If γ = δ = α, and there is no 1 in the cell, then β = γ.

(F2) If γ = δ &= α, then β = α.

(F3) If γ = α &= δ, then β = δ.

(F4) If γ, δ, α are pairwise different, then β = δ ∪ α.

(F5) If γ &= δ = α, then β is formed by adding a square to the (k + 1)-st row of δ = α,
given that δ = α and γ differ in the k-th row.

(F6) If γ = δ = α, and if there is a 1 in the cell, then β is formed by adding a square
to the first row of γ = δ = α.

Given a Ferrers shape and partitions labelling the top and right side, we apply the
following local backward rules to complete the labelling and recover the filling.

(B1) If β = δ = α, then γ = β.

(B2) If β = δ &= α, then γ = α.

(B3) If β = α &= δ, then γ = δ.

(B4) If β, δ, α are pairwise different, then γ = δ ∩ α.

(B5) If β &= δ = α, then γ is formed by deleting a square from the (k − 1)-st row of
δ = α, given that δ = α and β differ in the k-th row with k � 2.

(B6) If β &= δ = α, and if β and δ = α differ in the first row, then γ = δ = α and the
cell is filled with a 1.

Construction III.44 ([30]). Let O = (∅ = µ0, µ1, . . . , µn = ∅) be an oscillating tableau.
The associated triangular growth diagram is the Ferrers shape (n − 1, n − 2, . . . , 2, 1, 0).
Label the cells according to the following specification:

1. Label the north-east corners of the cells on the main diagonal from the top-left to
the bottom-right with the partitions in O.

2. For each i ∈ {0, . . . , n − 1} label the corner on the first subdiagonal adjacent to
the labels µi and µi+1 with the partition µi ∩ µi+1.
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3. Use the backwards rules B1-B6 to obtain all other labels and the fillings of the
cells.

We denote by GO(O) the symmetric n × n matrix one obtains from the filling of the
growth diagram by putting zeros in the unfilled cells and along the diagonal and
completing this to a symmetric matrix.

Starting from a filling of a growth diagram one obtains the oscillating tableau by
setting all vectors on corners on the bottom and left border of the diagram to be the
empty partition and applying the forwards growth rules F1-F6.

Next, we will extend these local rules to any filling of a Ferrers shape with non-
negative integers.

iii.3.3 Fomin growth diagrams: Rule Burge

Given a filling of a Ferrers shape (λ1, . . . , λ�) with non-negative integers, we produce
a “blow up” construction of the original shape for the Burge variant which contains
south-east chains of 1’s, as done by [21]. We begin by separating entries. If a cell is
filled with a positive entry m, we replace the cell with an m × m grid of cells with 1’s
along the diagonal (from top-left to bottom-right). If there exist several nonzero entries
in one column, we arrange the grids of cells also from top-left to bottom-right, so
that the 1’s form a south-east chain in each column. We make the same arrangements
for the rows, also establishing a south-east chain in each row. The resulting blow up
Ferrers diagram then contains cj columns in the original j-th column, where cj is equal
to the sum of the entries in column j or 1 if the j-th column contains only 0’s, and ri
rows in the original i-th row, where ri is equal to the sum of the entries in row i or 1 if
the i-th row contains only 0’s. See Figure 22.

Since the filling of the blow up growth diagram consists of 1’s and 0’s, we now
apply the forward local rules. To start, we label all of the corners of the cells on the
left side and the bottom side of the blow up growth diagram by ∅. Then we apply
the forward local rules to determine the partition labels of the other corners, using
the 0/1 filling and partitions defined in previous iterations of the forward local rule.
Finally, we “shrink back” the labelled blow up growth diagram to obtain a labelling
of the original Ferrers diagram by only considering the partitions labelling positions
{(c1 + · · ·+ cj, ri + · · ·+ r�) | 1 � i � �, 1 � j � λ�−i+1}. These positions are precisely
the intersections of the bolded black lines in Figure 22. To shrink back, we ignore the
labels on intersections involving any blue lines in the blow up growth diagram and
assign the partition labelling (c1 + · · ·+ cj, ri + · · ·+ r�) to the position (j, �− i + 1) in
the original Ferrers diagram. The resulting labelling has the property that partitions
on adjacent corners differ by a vertical strip [21, Theorem 11].

We now describe the direct Burge forward and backwards rules [21, Section 4.4].
Consider a cell filled by a non-negative integer m, and labelled by the partitions γ, δ, α,
where γ ⊂ δ and γ ⊂ α, α/γ and δ/γ are vertical strips. Moreover, denote by ✶A the
truth function

✶A =

�
1 if A is true,
0 otherwise.

Then β is determined by the following procedure:
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1 1 2

blow up−−−−→

1

1

1

1

1

1

Figure 22: An example of the blow up construction for Burge rules replacing positive integer
entries with south-east chains of 1’s in each column and row.

burge f0 Set CARRY := m and i := 1.

burge f1 Set βi := max{δi, αi}+ min{✶γi=δi=αi , CARRY}
burge f2 If βi = 0, then stop and return β = (β1, β2, . . . , βi−1). If not, then set

CARRY := CARRY−min{✶γi=δi=αi , CARRY} + min{δi, αi} − γi and i := i + 1
and go to F1.

Note that this algorithm is reversible. Given β, δ, α such that β/δ and β/α are
vertical strips, the backwards algorithm is defined by the following rules:

burge b0 Set i := max{j | β j is positive} and CARRY := 0.

burge b1 Set γi := min{δi, αi} − min{✶γi=αi=βi , CARRY}.

burge b2 Set CARRY := CARRY−min{✶βi=δi=αi , CARRY} + βi − max{δi, αi} and
i := i − 1. If i = 0, then stop and return γ = (γ1, γ2, . . . ) and m = CARRY. If
not, got to B1.

Construction III.45. Let F = (∅ = µ0, µ1, . . . , µn = ∅) be an r-fan of Dyck paths. The
associated triangular growth diagram is the Ferrers shape (n − 1, n − 2, . . . , 2, 1, 0).
Label the cells according to the following specification:

1. Label the north-east corners of the cells on the main diagonal from the top-left to
the bottom-right with the partitions in F.

2. For each i ∈ {0, . . . , n − 1} label the corner on the first subdiagonal adjacent to
the labels µi and µi+1 with the partition µi ∩ µi+1.

3. Use the backwards rules Burge B0, B1 and B2 to obtain all other labels and the
fillings of the cells.

We denote by GF(F) the symmetric n × n matrix one obtains from the filling of
the growth diagram by putting zeros in the unfilled cells and along the diagonal and
completing this to a symmetric matrix.
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000 111 222 311 422 331 222 111 000

111 000 111 200 311 220 111 000 111

222 111 000 111 222 311 220 111 222

311 200 111 000 111 200 111 200 311

422 311 222 111 000 111 220 311 422

331 220 311 200 111 000 111 220 331

222 111 220 111 220 111 000 111 222

111 000 111 200 311 220 111 000 111

000 111 222 311 422 331 222 111 000

3

2 1

2 1

2 1

2 1

1 1 1

1 1 1

3
000

000

000

000

111

000

000

111

111

000

000

111

211

111

000

000

111

211

211

111

000

000

111

211

311

221

111

000

000

111

211

311

321

221

111

000

000

111

222

311

422

331

222

111

000

2

2

1 1

1 1 1

3

Figure 23: On the left the filled promotion matrix of F =

(000, 111, 222, 311, 422, 331, 222, 111, 000). On the right the triangular growth diagram
for the same fan.

Starting from a filling of a growth diagram one obtains the r-fan by filling the cells
of a growth diagram, setting all vectors on corners on the bottom and left border of
the diagram to be the empty partition and applying the forwards growth rules Burge
F0-F2.

An example is given in Figure 23.

iii.3.4 Fomin growth diagrams: Rule RSK

Given a filling of a Ferrers shape (λ1, . . . , λ�) with non-negative integers, we produce
a “blow up” construction of the original shape for the RSK variant which contains
north-east chains of 1’s, as done by [21]. We begin by separating entries. If a cell is filled
with positive entry m, we replace the cell with an m × m grid of cells with 1’s along
the off-diagonal (from bottom-left to top-right). If there exist several nonzero entries in
one column, we arrange the grids of cells also from bottom-left to top-right, so that the
1’s form a north-east chain in each column. We make the same arrangements for the
rows, also establishing a north-east chain in each row. The resulting blow up Ferrers
diagram then contains cj columns in the original j-th column, where cj is equal to the
sum of the entries in column j or 1 if the j-th column contains only 0’s, and ri rows in
the original i-th row, where ri is equal to the sum of the entries in row i or 1 if the i-th
row contains only 0’s.

Since the filling of the blow up growth diagram consists of 1’s and 0’s, we now
apply the forward local rules. To start, we label all of the corners of the cells on the
left side and the bottom side of the blow up growth diagram by ∅. Then, we apply
the forward local rules to determine the partition labels of the other corners, using
the 0/1 filling and partitions defined in previous iterations of the forward local rule.
Finally, we “shrink back” the labelled blow up growth diagram to obtain a labelling of
the original Ferrers diagram by only partitions labelling positions {(c1 + · · ·+ cj, ri +
· · ·+ r�) | 1 � i � �, 1 � j � λ�−i+1}. To shrink back, we assign the partition labelling
(c1 + · · ·+ cj, ri + · · ·+ r�) in the blow up growth diagram to the position (j, �− i + 1)
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in the original Ferrers diagram. The resulting labelling has the property that partitions
on adjacent corners differ by a horizontal strip [21, Theorem 7].

The direct RSK forward rules are as follows [21, Section 4.1]: Consider a cell as
in Figure 21 filled by a non-negative integer m, and labelled by the partitions γ, δ, α,
where γ ⊂ δ and γ ⊂ α, α/γ and δ/γ are horizontal strips. Then β is determined by
the following procedure:

rsk f0 Set CARRY := m and i := 1.

rsk f1 Set βi := max{δi, αi}+ CARRY

rsk f2 If βi = 0, then stop and return β = (β1, β2, . . . , βi−1). If not, then set
CARRY := min{δi, αi} − γi and i := i + 1 and go to F1.

Note that this algorithm is reversible. Given β, δ, α such that β/δ and β/α are
horizontal strips, the backwards algorithm is defined by the following rules:

rsk b0 Set i := max{j | β j is positive} and CARRY := 0.

rsk b1 Set γi := min{δi, αi} − CARRY.

rsk b2 Set CARRY := βi − max{δi, αi} and i := i − 1. If i = 0, then stop and return
γ = (γ1, γ2, . . . ) and m = CARRY. If not, got to B1.

Construction III.46. Let V = (∅ = µ0, µ1, . . . , µn = ∅) be a vacillating tableau of
weight zero. The associated triangular growth diagram is the Ferrers shape (n − 1, n −
2, . . . , 2, 1, 0). Label the cells according to the following specification:

1. Label the north-east corners of the cells on the main diagonal from the top-left to
the bottom-right with the partitions 2µi.

2. For each i ∈ {0, . . . , n − 1} label the corner on the first subdiagonal adjacent to
the labels 2µi and 2µi+1 with the partition 2(µi ∩ µi+1) when µi &= µi+1 and the
partition obtained by removing a cell from the final row of 2µi when µi = µi+1.

3. Use the backwards rules RSK B0, B1 and B2 to obtain all other labels and the
fillings of the cells.

We denote by GV(V) the symmetric n × n matrix one obtains from the filling of
the growth diagram by putting zeros in the unfilled cells and along the diagonal and
completing this to a symmetric matrix.

Starting from a filling of a growth diagram one obtains the vacillating tableau by
setting all vectors on corners on the bottom and left border of the diagram to be the
empty partition and applying the forwards growth rules RSK F0-F2.

The triangular growth diagram of the vacillating tableau from Example III.39 is
depicted in Figure 24.
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1
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Figure 24: The triangular growth diagram for the vacillating tableau V =

(000, 100, 200, 210, 211, 111, 111, 110, 100, 000).

iii.4 main results

In this section, we state and prove our main results for oscillating tableaux, fans of
Dyck paths, and vacillating tableaux. In particular, we show in Theorems III.50, III.51
and III.57 that the fillings of the growth diagrams coincide with the fillings of the
promotion–evacuation diagrams. This in turn shows that the maps MF, MV→O and
MV→F are injective. Having these injective maps to chord diagrams gives a first step
towards a diagrammatic basis for the invariant subspaces. In Section III.4.4, we give
various new cyclic sieving phenomena associate to the promotion action.

We begin by defining the following notation used later in this section. Let M =
(ai,j)

kn
i,j=1 be a kn × kn matrix. It will often be convenient to consider M as the block

matrix (B(k)
i,j )

n
i,j=1, where B(k)

i,j is the k × k matrix given by (ap,q)
ki,kj
p=k(i−1)+1,q=k(j−1)+1.

We also follow the convention that for all p, q > n we have B(k)
p,q := B(k)

i,j , where p ≡ i
mod n and q ≡ j mod n.

Definition III.47. For a kn × kn matrix M with block matrix decomposition given by
(B(k)

i,j )
n
i,j=1, denote by blocksumk(M) the n × n matrix (bi,j)

n
i,j=1, where bi,j is equal to the

sum of all entries in B(k)
i,j .

Given an n × n matrix M = (ai,j)
n
i,j=1, we recursively define its skewed partial

row sums ri,j by setting ri,i = 0 for all 1 � i � n and letting ri,j+1 = ri,j + ai,j for
1 � j � n − 1. Note that as before, we use the convention that ap,q = ai,j whenever
p ≡ i mod n and q ≡ j mod n. Similarly, the skewed partial column sums ci,j can be
defined. Partial inverses to blocksumk are given by blowupSEk and blowupNEk which we
presently define.

Definition III.48. Let M = (ai,j)
n
i,j=1 be a matrix with non-negative integer entries such

that for each row and for each column the sum of the entries is k. Let ri,j and ci,j be its
skewed partial row and column sums respectively. Let BSE

i,j be the k × k matrix, where
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BSE
i,j is the zero-matrix if ai,j = 0 and a zero-one-matrix if ai,j &= 0 consisting of 1’s

in positions (ri,j + 1, ci,j + 1), . . . , (ri,j + ai,j, ci,j + ai,j) and zeros elsewhere. We define
blowupSE(M) to be the block matrix (BSE

i,j )
n
i,j=1.

Similarly, let BNE
i,j be the k × k matrix, where BBE

i,j is the zero-matrix if ai,j = 0
and a zero-one-matrix if ai,j &= 0 consisting of 1’s in positions (k − ri,j, k − ci,j − ai,j +

1), . . . , (k − ri,j − (ai,j − 1), k − ci,j) and zeros elsewhere. We define blowupNE(M) to be
the block matrix (BNE

i,j )n
i,j=1.

Remark III.49. Note that blowupSE(M) and blowupNE(M) are the unique kn × kn zero-
one-matrices whose blocksumk equals M and for all 1 � i � n, the nonzero entries in
the matrices

[Bi,i, Bi,i+1, Bi,i+2, . . . , Bi,i+n−1] and
[Bi,i, Bi+1,i, Bi+2,i, . . . , Bi+n−1,i]

form a south-east chain or a north-east chain, respectively.

iii.4.1 Results for oscillating tableaux

The next result was not stated explicitly in [30], but can be deduced from the proof in
the paper.

Theorem III.50. For an oscillating tableau of weight zero O the fillings of the growth diagram
(Construction III.44) and the fillings of the promotion-evacuation (Construction III.31) diagram
coincide, that is

GO(O) = MO(O).

Proof. This follows from the proof of [30, Corollary 6.17, Lemma 6.26].

iii.4.2 Results for r-fans of Dyck paths

We state our main results.

Theorem III.51. For an r-fan of Dyck paths F

GF(F) = MF(F).

In other words, the fillings of its growths diagram (Construction III.45) and the fillings of the
promotion-evacuation diagram coincide.

In particular we obtain the corollary:

Corollary III.52. The map MF is injective.

We now state and prove some results which are needed for the proof of Theo-
rem III.51.

Lemma III.53. Let F be an r-fan of Dyck paths of length n. Then

ιF→O ◦ prBspin
(F) = prrC� ◦ ιF→O(F).
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Proof. Let ιF→O(F) = µ = (∅ = µ(0,0), . . . , µ(0,rn) = ∅). We first prove that prrC�(µ) =
prC⊗r

�
(µ). Let priC�(µ) = (∅ = µ(i,0), . . . , µ(i,rn) = ∅). From the definition of ιF→O, we

have µ(0,k) = (1k) for all 0 � k � r where (10) denotes the empty partition ∅. Using
the local rules for promotion and induction, we see that the sequence of partitions
(µ(k,0), . . . , µ(k,r−k)) is equal to ((10), . . . , (1r−k)) for all 0 � k � r. This implies the
following equality

µ = ((10), (11), . . . , (1r), µ(0,r+1), . . . , µ(0,rn))

= (µ(r,0), µ(r−1,1), . . . , µ(0,r), µ(0,r+1), . . . , µ(0,rn)).

By a similar argument, the sequence of partitions (µ(k,rn−k), . . . , µ(k,rn)) is equal to
((1k), . . . , (10)) for all 1 � k � r implying

prrC�(µ) = (µ(r,0), µ(r,1), . . . , µ(r,r(n−1)−1), (1r), (1r − 1), . . . , (10))

= (µ(r,0), µ(r,1), . . . , µ(r,rn−r−1), µ(r,rn−r), µ(r−1,rn−r−1), . . . , µ(0,r)).

By Theorem III.27, we obtain the desired equality

prC⊗r
�
(µ) = prC⊗r

�
(µ(r,0), µ(r−1,1), . . . , µ(0,r), µ(0,r+1), . . . , µ(0,rn))

= (µ(r,0), µ(r,1), . . . , µ(r,r(n−1)), µ(r−1,r(n−1)+1), . . . , µ(0,rn)) = prrC�(µ).

Let w = wn ⊗ wn−1 ⊗ · · · ⊗ w1 ∈ B⊗n
spin and v = vrn ⊗ vrn−1 ⊗ · · · ⊗ v1 ∈ (C⊗r

� )⊗n

be the highest weight crystal elements associated to F and µ, respectively. In order
to show ιF→O ◦ prBspin

(F) = prC⊗r
�
(µ), it suffices to show that Ψ(prBspin

(w)) = prC⊗r
�
(v),

where Ψ is the crystal isomorphism defined in Definition III.7. Let V ⊆ C⊗r
� be the

virtual crystal defined in Definition III.4. As Ψ is a crystal isomorphism, we have
Ψ(prBspin

(w)) = prV (Ψ(w)) = prV (v). As Lusztig’s involution for crystals of type Br
and Cr interchanges the crystal operators fi and ei, the virtualization induced by the
embedding Br �→ Cr commutes with Lusztig’s involution. In addition virtualization is
preserved under tensor products (see for example [4, Theorem 5.8]). Thus, we have
prV (v) = prC⊗r

�
(v).

Lemma III.54. Let F be an r-fan of Dyck paths with length n, and let (B(r)
i,j )

n
i,j=1 be the block

matrix decomposition of the rn × rn adjacency matrix MO(ιF→OF). Then for all 1 � i � n,
the nonzero entries in the matrices

[B(r)
i,i+1, B(r)

i,i+2, . . . , B(r)
i,i+n−1] and

[B(r)
i+1,i, B(r)

i+2,i, . . . , B(r)
i+n−1,i]

form a south-east chain of r 1’s.

Proof. By the definition of oscillating tableaux and the local rules for promotion, MO is
a zero-one matrix. From Lemma III.53, Proposition III.30, and Proposition III.41, it suf-
fices to prove that the nonzero entries in [B(r)

n,n+1, B(r)
n,n+2, . . . , B(r)

n,2n−1] and [B(r)
2,1 , B(r)

3,1 , . . . ,

B(r)
n,1]

T form a south-east chain. Recall that by construction, the Fomin growth diagram
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of ιF→O(F) is a triangle diagram with the entries of ιF→O(F) labelling its diagonal.
As F is an r-fan of Dyck paths, the partition (1r) sits at the corners (r, r(n − 1)) and
(r(n − 1), r) in the Fomin growth diagram of ιF→O(F). By Theorem III.50, we have
MO(ιF→O(F)) = GO(ιF→O(F)). This implies that the filling of the leftmost r columns
and bottommost r rows match MO(ιF→O(F)). As all the entries of MO(ιF→O(F)) are ei-
ther 0 or 1, we have by [21, Theorem 2] that there are exactly r 1’s forming a south-east
chain in the leftmost r columns and in the bottommost r rows.

Remark III.55. The proof of Lemma III.54 implies that the diagonal block matrices
B(r)

i,i of MO(ιF→OF) are all zero matrices.

Proposition III.56. Let F be an r-fan of Dyck paths of length n. Then

MF(F) = blocksumr(MO(ιF→O(F))).

Moreover,
blowupSEr (MF(F )) = MO(ιF→O(F )).

Proof. By Remark III.55, the diagonal entries of MF(F) and blocksumr(MO(ιF→O(F)))
are all zero. Let ai,j with i &= j be the entry in MF(F) that is the filling of the cell

labelled by

λ ν

κ µ
in the promotion matrix of F. To show that the number of 1’s

appearing in B(r)
i,j of MO(ιF→O(F)) is also equal to ai,j, we first compute ai,j for i &= j. By

Definition 37, ai,j is the number of negative entries in κ + ν − λ. Since λ, ν and κ, µ are
consecutive partitions in an r-fan of Dyck paths, we know that they differ by a vector
of the form (±1, . . . ,±1). We may write ν − λ and µ − κ as

ν − λ = ei1 + · · ·+ eik − eik+1 − · · · − eir ,

µ − κ = ej1 + · · ·+ ejm − ejm+1 − · · · − ejr ,

where

{i1, . . . , ir} = [r] = {j1, . . . , jr},
i1 < · · · < ik and ik+1 > · · · > ir,
j1 < · · · < jm and jm+1 > · · · > jr.

By the definition of µ from the local rules of Lenart [23] (see Section III.2.5), we have

µ = domHr(κ + ν − λ)

= domHr(κ + ei1 + · · ·+ eik − eik+1 − · · · − eir).

Recall that domHr applied to a weight sorts the absolute values of the entries of the
weight into weakly decreasing order. In particular, domHr(κ + ei1 + · · ·+ eik − eik+1 −
· · · − eir) will change all of the −1 entries of κ + ei1 + · · ·+ eik − eik+1 − · · · − eir to +1
and then sort all entries into weakly decreasing order (note that sorting will not change
the number of cells). We thus have two equations for µ:

µ = domHr(κ + ei1 + · · ·+ eik − eik+1 − · · · − eir)

= κ + ej1 + · · ·+ ejm − ejm+1 − · · · − ejr .
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Therefore, domHr changed m − k negative entries in κ + ν − λ to +1 in µ, showing that
ai,j = m − k.

From the virtualization given in Definition III.7, the partitions labelling the top
of the first row of cells in B(r)

i,j are λ, λ(1), . . . , λ(r−1), ν, where λ(�) = λ + ei1 + · · · ±
ei� . Similarly, the partitions labelling the bottom of the r-th row of cells in B(r)

i,j are

κ, κ(1), . . . , κ(r−1), µ, where κ(�) = κ + ej1 + · · · ± ej� . In particular, we have

λ ⊂ λ(1) ⊂ · · · ⊂ λ(k−1) ⊂ λ(k) ⊃ λ(k+1) ⊃ · · · ⊃ λ(r−1) ⊃ ν,

κ ⊂ κ(1) ⊂ · · · ⊂ κ(m−1) ⊂ κ(m) ⊃ κ(m+1) ⊃ · · · ⊃ κ(r−1) ⊃ µ.

Let

λ* ν*

κ* µ*
label a cell in the first row of B(r)

i,j , and note that the pairs λ*, ν* and
κ*, µ* differ by a unit vector since they are adjacent partitions in an oscillating tableau.

It is impossible for the inclusions

λ* ⊂ ν*

κ* ⊃ µ*
since λ* ⊂ ν* implies κ* + ν* − λ* =

κ* + ei for some i, and by definition µ* = domHr(κ
* + ei) = κ* + ei which contradicts

µ* ⊂ κ*. When

λ* ⊃ ν*

κ* ⊂ µ*
occurs, we know that κ* + ν* − λ* = κ* − ei for some i since

ν* ⊂ λ*. Since κ* ⊂ µ* = domHr(κ
* − ei), it must be that µ* = κ* + ei and therefore

κ* − ei contained a negative entry. Therefore, when λ* ⊃ ν* and κ* ⊂ µ* there is a 1

filling the cell. Conversely, when there is a 1 filling a cell labelled

λ* ν*

κ* µ*
, then

there is a negative in κ* + ν* − λ* = κ* ± ei for some i, which is only possible when
κ* + ν* − λ* = κ* − ei. As a result, κ* ⊂ µ* and λ* ⊃ ν*.

By Theorem III.50, each row and each column in MO(ιF→O(F)) contains exactly one
1. Therefore there is at most one cell in the first row of B(r)

i,j where the containment
between the top and bottom pairs of partitions is flipped. By the cases described above,
containment between pairs of partitions labelling the bottom of the first row of cells in
B(r)

i,j either exactly matches the containment between pairs of partitions labelling the
top of the first row or the switch in containment in the bottom occurs immediately
to the right of the switch in containment in the top. The same outcome is observed
recursively in the remaining rows of cells in B(r)

i,j . Since we already knew the labels of

the bottom of the r-th row to be increasing up to κ(m), we conclude that the number of
1’s appearing in B(r)

i,j is equal to m− k, which we showed above is equal to ai,j. Therefore,
MF(F) = blocksumr(MO(ιF→O(F))). Further, since the 1’s in MO(ιF→O(F)) form a south-
east chain, by Remark III.49 we have blowupSEr (MF(F)) = MO(ιF→O(F)).

We can now prove Theorem III.51.

117



Proof. Let F = (µ0, . . . , µn) be an r-fan of Dyck paths of length n. We have

MF(F) = blocksumr(MO(ιF→O(F))) by Proposition III.56
= blocksumr(GO(ιF→O(F))) by Theorem III.50.

It remains to show that blocksumr(GO(ιF→O(F))) = GF(F). The diagonal entries of
blocksumr(GO(ιF→O(F))) and GF(F) are all zero by Remark III.55 and by definition of
GF respectively. As GO and GF are symmetric matrices, it suffices to show that the
lower triangular entries of blocksumr(GO(ιF→O(F))) and GF(F) agree. Let G denote
the triangular growth diagram associated with ιF→O(F). By the definition of ιF→O
and Construction III.44, the coordinate (kr, (n − k)r) is labelled with partition µk for
0 � k � n. As G has a 0/1 filling, the local rules guarantee that the partition νk labelling
the coordinate (kr, (n − k − 1)r) of G is contained within the partition µk ∩ µk+1 for
0 � k � n − 1. Moreover, |µk/νk|+ |µk+1/νk| is equal to the total number of 1’s lying
in either a column from kr + 1 to (k + 1)r or in a row from (n − k − 1)r + 1 to (n − k)r.
From Lemma III.54 and the fact that GO is symmetric, there exist exactly r such 1’s
which implies |µk/νk|+ |µk+1/νk| = r. Since µk and µk+1 differ by exactly k boxes,
νk = µk ∩ µk+1 for all 0 � k � n − 1.

Let H denote the triangular growth diagram with filling given by the lower tri-
angular entries of blocksumr(GO(ιF→O(F))) and local rules given by the Burge rules.
From Lemma III.54, blowupSE(blocksumr(GO(ιF→O(F)))) = GO(ιF→O(F)). A result
by Krattenthaler [21] implies that the labellings of the hypotenuse of H are given
by (µ0, ν0, µ1, . . . , νn−1, µn). As the Burge rules are injective and the growth dia-
gram associated to F under Construction III.45 has hypotenuse labelled by (µ0, µ0 ∩
µ1, µ1, . . . , µn−1 ∩ µn, µn), the lower triangular entries of blocksumr(GO(ιF→O(F))) and
GF(F) are equal.

iii.4.3 Results for vacillating tableaux

We state our main results.

Theorem III.57. For a vacillating tableau V

GV(V) = MV→O(V) = MV→F(V).

In other words, the filling of the growth diagram (see Construction III.46), the filling of the
promotion matrix MV→O(V), and the filling of the promotion matrix MV→F(V) coincide.

In particular we obtain the corollary:

Corollary III.58. The maps MV→O and MV→F are injective.

We will first prove the second equality in Theorem III.57. To do so, we need the
following lemma.

Lemma III.59. We have the following:

(i) MV→O = blocksum2 ◦MO ◦ ιV→O.
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(ii) Denote by E the r × r identity matrix, then

MV→F + 2(r − 1)E = blocksum2 ◦MF ◦ ιV→F.

Proof. Let V be a vacillating tableau of length n and weight zero and let X ∈ {O, F}.
Denote by T = (∅ = µ0, µ1, . . . , µ2n = ∅) the corresponding oscillating tableau (resp.
r-fan of Dyck path) to V using ιV→X.

Recall that MV→X is defined using the Schema (39) to calculate promotion. Let
ˆ̂µ1, . . . , ˆ̂µ2n−1 be the partitions in the middle row in of this schema.

Note that we have µ2 = µ̂2n−2 = 2e1 and

µ1 = ˆ̂µ1 = ˆ̂µ2n−1 = µ̂2n−1 =

�
e1 if X = O,
1 if X = F.

It is easy to see that the squares

µ1 µ2

∅ ˆ̂µ1 and

ˆ̂µ2n−1
∅

µ̂2n−2 µ̂2n−1

satisfy the local rule and

Φ(µ1, ∅, µ2, ˆ̂µ1) = Φ( ˆ̂µ2n−1, µ̂2n−2, ∅, µ̂2n−1) =

�
0 if X = O,
r − 1 if X = F.

Thus we have
prX(ιV→X(V)) = (∅, ˆ̂µ1, . . . , ˆ̂µ2n−1, ∅)

and obtain MV→X + ✶X=F · 2(r − 1)E = blocksum2 ◦MX ◦ ιV→X.

The following relates the growth diagrams for ιV→O(V) and ιV→F(V).

Lemma III.60. Denote by S the 2r × 2r block diagonal matrix consisting of r copies of the

block



0 1
1 0

�
along the diagonal and zeros everywhere else. Then

GF ◦ ιV→F = GO ◦ ιV→O + (r − 1)S.

Proof. Let V = (λ0, . . . , λn) be a vacillating tableau of weight zero. Denote with
O = (µ0, . . . , µ2n) = ιV→O(V) the corresponding oscillating tableaux and denote with
F = (ν0, . . . , ν2n) = ιV→O(F) the r-fan of Dyck paths.

Consider the portion of the growth diagram for the oscillating tableau involving
only (µ2i−2, µ2i−1, µ2i) and the portion of the growth diagram for the fan of Dyck paths
involving only (ν2i−2, ν2i−1, ν2i) . We label the partitions as follows.

γ

α

δ

µ2i−2

µ2i−1

µ2i
m

γ̂

α̂

δ̂

ν2i−2

ν2i−1

ν2i
n

(40)
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claim: We have µ2i−2 = ν2i−2, µ2i = ν2i, α = α̂, γ = γ̂, δ = δ̂, m = 0 and n = r − 1.
Moreover all partitions on consecutive corners on the lower left border of the diagrams
in (40) differ by at most one cell.

We consider the three cases λi−1 = λi, λi−1 ⊂ λi and λi−1 ⊃ λi.
By Definition III.21, Construction III.44, Definition III.22 and Construction III.45 we

have

µ2i−2 = ν2i−2 = 2λi−1, µ2i = ν2i = 2λi,

α = µ2i−2 ∩ µ2i−1, δ = µ2i−1 ∩ µ2i,

α̂ = ν2i−2 ∩ ν2i−1, δ̂ = ν2i−1 ∩ ν2i.

case i Assume λi−1 = λi. In this case we have µ2i−1 = 2λi − er and ν2i−1 =
2λi + 1 − 2er and get

α = δ = (2λi) ∩ (2λi − er) = 2λi − er,

α̂ = δ̂ = (2λi) ∩ (2λi + 1 − 2er) = 2λi − er.

Using the backwards rules for growth diagrams we obtain

γ = γ̂ = 2λi − er, m = 0 and n = r − 1.

case ii Assume λi−1 ⊂ λi. In this case we have µ2i−1 = λi−1 + λi and ν2i−1 =
2λi−1 + 1. Furthermore we obtain

α = (2λi−1) ∩ (λi−1 + λi) = 2λi−1,

α̂ = (2λi−1) ∩ (2λi−1 + 1) = 2λi−1,

δ = (λi−1 + λi) ∩ (2λi) = λi−1 + λi,

δ̂ = (2λi−1 + 1) ∩ (2λi) = λi−1 + λi.

Using the backwards rules for growth diagrams we obtain

γ = γ̂ = 2λi−1, m = 0 and n = r − 1.

case iii Assume λi−1 ⊃ λi. This case is symmetric to Case II.
This proves the claim.
The rest of the growth diagrams must agree, as the Burge growth rules and Fomin

growth rules agree in the case where labels on consecutive corners differ by at most
one cell.

Note that Lemma III.60 implies

blocksum2 ◦ GF ◦ ιV→F = blocksum2 ◦ GO ◦ ιV→O + 2(r − 1)E. (41)

Now we can prove the second identity of Theorem III.57.

120



Proof. We have

MV→O = blocksum2 ◦MO ◦ ιV→O by Lemma III.59 (i)
= blocksum2 ◦ GO ◦ ιV→O by Theorem III.50
= blocksum2 ◦ GF ◦ ιV→F − 2(r − 1)E by Equation (41)
= blocksum2 ◦MF ◦ ιV→F − 2(r − 1)E by Theorem III.51
= MV→F by Lemma III.59 (ii).

It is possible to invert Lemma III.59 (i) as follows.

Lemma III.61. Let V be a vacillating tableau of weight zero with length n, and let (B(2)
i,j )

n
i,j=1

be the block matrix decomposition of the 2n × 2n adjacency matrix MO(ιV→OV). Then for all
1 � i � n, the nonzero entries in the matrices

[B(2)
i,i+1, B(2)

i,i+2, . . . , B(2)
i,i+n−1] and

[B(2)
i+1,i, B(2)

i+2,i, . . . , B(2)
i+n−1,i]

form a north-east chain. In particular, we have

blowupNE2 ◦MV→O = MO ◦ ιV→O.

Proof. From Propositions III.30 and III.41, it suffices to prove that the nonzero entries
in [B(2)

n,n+1, B(2)
n,n+2, . . . , B(2)

n,2n−1] and [B(2)
2,1 , B(2)

3,1 , . . . , B(2)
n,1 ]

T form a south-east chain. Recall
that by construction, the Fomin growth diagram of ιV→O(V) is a triangle diagram with
the entries of ιV→O(V) labelling its diagonal. As V is a vacillating tableau of weight zero,
the partition (2) sits at the corners (2, 2(n − 1)) and (2(n − 1), 2) in the Fomin growth
diagram of ιV→O(V). By Theorem III.50, we have MO(ιV→O(V)) = GO(ιV→O(V)). This
implies that the filling of the first 2 columns and first 2 rows match MO(ιV→O(V)). As
all the entries of MO(ιV→O(V)) are either 0 or 1, we have that all the nonzero entries in
the first 2 rows and the first 2 rows form a north-east chain by [21, Theorem 2].

We can now prove the first part of Theorem III.57.

Proof. Putting together the current results we obtain:

blowupNE2 ◦MV→O = MO ◦ ιV→O by Lemma III.61
= GO ◦ ιV→O by Theorem III.50.

It thus remains to show: GV = blocksum2 ◦ GO ◦ ιV→O. Let V be a fixed vacillating
tableau of weight zero and length n. Let O = ιV→O(V). Let M = (mi,j)1�i,j�2n = GO(O)

and let B(2)
i,j be its block matrix decomposition. Let αi,j for 0 � j � i � 2n be

the partition in the i-th row and j-th column in the growth diagram of O. Above
calculation shows that the nonzero entries in the matrices

[B(2)
i,i+1, B(2)

i,i+2, . . . , B(2)
i,i+n−1] and

[B(2)
i+1,i, B(2)

i+2,i, . . . , B(2)
i+n−1,i]
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form north-east chains.
Thus the squares

α2i,2j α2i,2(j+1)

α2(i+1),2j α2(i+1),2(j+1)

with entry m2i,2j + m2i+1,2j + m2i,2j+1 + m2i+1,2j+1 satisfy the rules RSK F0-F2 and RSK
B0-B2. As in proof of Lemma III.60, the entries of the first subdiagonal of M are zero.
Hence M is uniquely determined by the labels α2i, 2i and α2i,2i+1. Again by proof of
Lemma III.60 we have α2i,2i = 2λi and α2i,2i+1 = (2λi) ∪ (2λi+1). As these partitions
agree with the labels in Construction III.46, we get GV(V) = blocksum2(GO(O)).

Problem III.62. Find a characterization of the image of the injective maps MF, MV→O and
MV→F.

Remark III.63. For MO the solution to the above problem is known (see [30]). The
set of r-symplectic oscillating tableaux of weight zero are in bijection with the set of
(r + 1)-noncrossing perfect matchings of {1, 2, . . . , n}.

iii.4.4 Cyclic sieving

The cyclic sieving phenomenon was introduced by Reiner, Stanton and White [31] as a
generalization of Stembridge’s q = −1 phenomenon.

Definition III.64. Let X be a finite set and C be a cyclic group generated by c acting
on X. Let ζ ∈ C be a |C|th primitive root of unity and f (q) ∈ Z[q] be a polynomial in
q. Then the triple (X, C, f ) exhibits the cyclic sieving phenomenon if for all d � 0 we have
that the size of the fixed point set of cd (denoted Xcd

) satisfies |Xcd | = f (ζd).

In this section, we will state cyclic sieving phenomena for the promotion action
on oscillating tableaux, fans of Dyck paths, and vacillating tableaux. In Section III.4.4
we review an approach using the energy function. In Sections III.4.4 and III.4.4 we
give new cyclic sieving phenomena for fans of Dyck paths and vacillating tableaux,
respectively.

Cyclic sieving using the energy function

We first introduce the energy function on tensor products of crystals. The energy
function is defined on affine crystals, meaning that the crystal C� needs to be upgraded
to a crystal of affine Kac–Moody type C(1)

r and the crystals B� and Bspin need to
be upgraded to crystals of affine Kac–Moody type B(1)

r . In particular, these affine
crystals have additional crystals operators f0 and e0. For further details, see for
example [27, 26, 10].

For an affine crystal B, the local energy function

H : B ⊗ B → Z
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Figure 25: Left: Affine crystal Caf
� of type C(1)

2 . Middle: Affine crystal Baf
� of type B(1)

2 . Right:
Affine crystal Baf

spin of type B(1)
2 .

is defined recursively (up to an overall constant) by

H(ei(b1 ⊗ b2)) = H(b1 ⊗ b2) +

��
+1 if i = 0 and ε0(b1) > ϕ0(b2),
−1 if i = 0 and ε0(b1) � ϕ0(b2),
0 otherwise.

The crystals we consider here are simple, meaning that there exists a dominant weight
λ such that B contains a unique element, denoted u(B), of weight λ such that every
extremal vector of B is contained in the Weyl group orbit of λ. We normalize H such
that

H(u(B)⊗ u(B)) = 0.

Example III.65. The affine crystal Caf
� of type C(1)

r is, for example, constructed in [10,

Theorem 5.7]. The case of type C(1)
2 is depicted in Figure 25. Using the ordering

1 < 2 < · · · < r < r < · · · < 2 < 1, we have that H(a ⊗ b) = 0 if a � b and
H(a ⊗ b) = 1 if a > b.

Example III.66. The affine crystal Baf
� of type B(1)

r is, for example, constructed in [10,

Theorem 5.1]. The case B(1)
2 is depicted in Figure 25. Using the ordering 1 < 2 <

· · · < r < 0 < r < · · · < 2 < 1, we have that H(a ⊗ b) = 0 if a � b and a ⊗ b &= 0 ⊗ 0,
H(1 ⊗ 1) = 2, and H(a ⊗ b) = 1 otherwise.

Example III.67. The affine crystal Baf
spin of type B(1)

r is constructed in [10, Theorem

5.3]. The case B(1)
2 is depicted in Figure 25. The classical highest weight elements in

Baf
spin ⊗ Baf

spin are (�1, . . . , �r)⊗ (+,+, . . . ,+) with �i = + for 1 � i � k and �i = − for
k < i � r for some 0 � k � r. Denoting by m(�1, . . . , �r) the number of − in the �i, we
have

H((�1, . . . , �r)⊗ (+, . . . ,+)) =
�m(�1, . . . , �r) + 1

2

�
.
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By definition, the local energy is constant on classical components.

The energy function
E : B⊗n → Z

is defined as follows for b1 ⊗ · · · ⊗ bn ∈ B⊗n

E(b1 ⊗ · · · ⊗ bn) =
n−1

∑
i=1

iH(bi ⊗ bi+1).

Let us now define a polynomial in q using the energy function for highest weight
elements in B⊗n of weight zero

fn,r(q) = qcn,r ∑
b∈B⊗n

wt(b)=0
ei(b)=0 for 1�i�r

qE(b),

where r is the rank of the type of the underlying root system and cn,r is a constant
depending on the type. Namely,

cn,r =

�
0 for B� all r and Bspin for r ≡ 0, 3 (mod 4),
q

n
2 for C� all r and Bspin for r ≡ 1, 2 (mod 4).

The following theorem clarifies statements in [43].

Theorem III.68. Let X be the set of highest weight elements in B⊗n of weight zero, where the
Kirillov–Reshetikhin crystal corresponding to B is classically irreducible. Then (X, Cn, fn,r(q))
exhibits the cyclic sieving phenomenon, where Cn is the cyclic group of order n on n tensor
factors inherited from the evaluation modules as in [8, Theorem 4.2].

Proof. In [8, Proof of Theorem 4.2], Fontaine and Kamnitzer proved that (X, Cn, #fn,r(q))
exhibits the cyclic sieving phenomenon, where #fn,r(q) is a polynomial defined in
terms of current algebra actions on Weyl modules of Fourier and Littelmann [9].
These arguments use that the fusion product is independent of the parameters, which
was proven by Ardonne and Kedem [1]. When the Kirillov–Reshetikhin crystals are
classically irreducible, the cyclic vectors for the evaluation representations are uniquely
determined as the tensor product of classically highest weight elements. By [11],
this polynomial is equal to the energy function polynomial up to an overall constant,
proving the claim.

When the crystal B is minuscule, it was shown by Fontaine and Kamnitzer [8]
that the cyclic action on B⊗n is given by promotion. In particular, for oscillating
tableaux and fans of Dyck paths Theorem III.68 gives a cyclic sieving phenomenon
with the promotion action since the corresponding crystals are minuscule. The crystals
corresponding to vacillating tableaux are not minuscule.

For the vector representation of type A, highest weight elements in the tensor
product of weight zero under RSK are in correspondence with standard tableaux of
rectangular shape. The energy function relates to the major index under correspon-
dence. Hence in this case, Theorem III.68 relates to results in [32].

Note that the Kirillov–Reshetikhin crystals corresponding to C�, Bspin, and B� are
classically irreducible, and hence Theorem III.68 gives a cyclic sieving phenomenon for
oscillating tableaux, fans of Dyck paths, and vacillating tableaux.
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Cyclic sieving for fans of Dyck paths

Recall from Section III.2.3 that highest weight elements of weight zero in B⊗2n
spin of

type Br are in bijection with r-fans of Dyck paths of length 2n. Denote by D(r)
n the

set of all r-fans of Dyck paths of length 2n. The cardinality of this set is given by
∏1�i�j�n−1

i+j+2r
i+j , see [6, 20]. Define the q-analogue of this formula as

gn,r(q) = ∏
1�i�j�n−1

[i + j + 2r]q
[i + j]q

, (42)

where [m]q = 1 + q + q2 + · · ·+ qm−1.

Conjecture III.69. The triple (D(r)
n , C2n, gn,r(q)) exhibits the cyclic sieving phenomenon,

where C2n is the cyclic group of order 2n that acts on D(r)
n by applying promotion.

Example III.70. We have

q−4 f4,2(q) = g2,2(q) = q4 + q2 + 1

and

g3,2(q) = q12 + q10 + q9 + 2q8 + q7 + 2q6 + q5 + 2q4 + q3 + q2 + 1,

q−6 f6,2(q) = q10 + q9 + 2q8 + q7 + 3q6 + q5 + 2q4 + q3 + q2 + 1.

Note that g3,2(q) = f6,2(q) (mod q6 − 1).

In general, we conjecture that gn,r(q) = f2n,r(q) (mod q2n − 1) which has been
verified for all n + r � 10.

Note that by [20, Theorem 10]

gn,r(q) = ∏
1�i�j�n−1

[i + j + 2r]q
[i + j]q

= ∑
λ

λ1�r

s2λ(q, q2, . . . , qn−1).

Remark III.71. Conjecture III.69 is equivalent to [13, Conjecture 5.2], [15, Conjecture
4.28], and [14, Conjecture 5.9] on plane partitions and root posets.

Remark III.72. There is a bijection between r-fans of Dyck paths of length 2(n− 2r) and
r-triangulations of n-gons. A cyclic sieving phenomenon in this setting was conjectured
by Serrano and Stump [36]. Even though the polynomial in this conjectured cyclic
sieving phenomenon is gn−2r,r, the cyclic group acting is C2n, which is different from
our setting.

Cyclic sieving for vacillating tableaux

Before giving our cyclic sieving phenomenon result for vacillating tableaux, we review
Jagenteufel’s major statistic for vacillating tableaux [16]. As vacillating tableaux are in
bijection with highest weight elements of B⊗n

� , it suffices to define the major statistic
on highest weight elements of B⊗n

� .
Let u = un ⊗ · · · ⊗ u2 ⊗ u1 be a highest weight element in B⊗n

� of type Br. As before
let < denote the ordering 1 < 2 < · · · < r < 0 < r̄ < · · · < 2̄ < 1̄ on the elements of
B�. We say that position i is a descent for u if
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1. ui+1 > ui, and

2. if the suffix ui−1 ⊗ · · · ⊗ u2 ⊗ u1 has an equal number of j’s and j̄’s, then ui+1 ⊗
ui &= j̄ ⊗ j.

Denote the set of descents of u by Des(u). Define the major index of u, denoted by
maj(u), as the sum of its descents ∑i∈Des(u) i. Let hn,r(q) denote the polynomial in q
given by

hn,r(q) = ∑
u∈V(r)

n

qmaj(u)

where V(r)
n denotes the set of all highest weight elements of weight zero in B⊗n

� of type
Br.

From [16, Theorem 2.1] and [43, Theorem 6.8], we obtain the following result.

Theorem III.73. The triple (V(r)
n , Cn, hn,r(q)) exhibits the cyclic sieving phenomenon, where

the cyclic group on n elements, Cn, acts on V(r)
n by applying promotion.

Using the descent-preserving bijection in [16], we obtain another interpretation of
hn,r(q) in terms of standard Young tableaux. Adopting the notation and terminology
of [37] for standard Young tableaux, we say that i is a descent for the standard Young
tableau T if i + 1 sits in a lower row than i in T in English notation. Given this,
we analogously define maj(T) to be the sum of the descents of T. Letting SYT(λ)
denote the set of all standard Young tableaux of shape λ, the polynomial hn,r(q) can
be reinterpreted as follows.

Theorem III.74. [16] Let n, r � 1. Then

hn,r(q) = ∑
T∈SYT(λ)

qmaj(T),

where λ ranges over all partitions of n with only even parts and length at most 2r + 1 when
n is even and λ ranges over all partitions of n with only odd parts and length exactly 2r + 1
when n is odd.

Example III.75. We have

f7,2(q) = q22 + q21 + q20 + q19 + 2q18 + 2q17 + 2q16 + q15 + 2q14 + q13 + q12

h7,2(q) = q18 + q17 + 2q16 + 2q15 + 3q14 + 2q13 + 2q12 + q11 + q10

Note that f7,2(q) = h7,2(q) (mod q7 − 1).
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