
Leveraging Ontologies for
Flexible Access to

Graph-structured Data

DISSERTATION

zur Erlangung des akademischen Grades

Doktorin der Technischen Wissenschaften

eingereicht von

Medina Andreşel, MSc
Matrikelnummer 1428616

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Assistant Prof. Dr.techn. Magdalena Ortiz
Zweitbetreuung: Privatdoz. Dr.techn. Mantas Šimkus

Diese Dissertation haben begutachtet:

Assoc. Prof. Antonella Poggi Assoc. Prof. Martin Homola

Wien, 30. Jänner 2024
Medina Andreşel

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Leveraging Ontologies for
Flexible Access to

Graph-structured Data

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktorin der Technischen Wissenschaften

by

Medina Andreşel, MSc
Registration Number 1428616

to the Faculty of Informatics

at the TU Wien

Advisor: Assistant Prof. Dr.techn. Magdalena Ortiz
Second advisor: Privatdoz. Dr.techn. Mantas Šimkus

The dissertation has been reviewed by:

Assoc. Prof. Antonella Poggi Assoc. Prof. Martin Homola

Vienna, 30th January, 2024
Medina Andreşel

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der Arbeit

Medina Andreşel, MSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten Quel-
len und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – einschließlich
Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder
dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich
gemacht habe.

Wien, 30. Jänner 2024
Medina Andreşel

v

To my family

Acknowledgements

This thesis is the result of many years of hard work and perseverance. Reflecting on this journey,
I have learned so many new things that have shaped the person I am today, the most important
lesson is to keep following my path and my dreams no matter the challenge. I would like to take
the opportunity to thank the people that inspired and helped me in reaching the finish line.
First and foremost, I would like to thank my PhD adviser Magdalena Ortiz for her guidance,
patience and support. Her feedback and advice have been instrumental in shaping my scientific
growth and I could not have asked for a better mentor and role model. My gratitude also goes to
my co-adviser Mantas Šimkus for his support and always having that insightful idea or comment
which turned out to be most of the times crucial. I would also like to thank Yazmín Ibáñez-García
for her invaluable support and guidance. I am also very grateful to Daria Stepanova and Trung-
Kien Tran for the opportunity to do a PhD Sabattical at Bosch Research Center for AI which
has been a transformative experience for my scientific career. This thesis would have not been
possible without any of them and I am profoundly grateful for the immeasurable contributions
they have made to my development.
My sincere gratitude also goes to the PhD thesis committee members - Antonella Poggi and
Martin Homola for their dedication and insightful feedback that has positively impacted the
comprehensibility of this thesis. I would also like to express my sincere gratitude to Juan L.
Reutter for facilitating my research stay at PUC Chile where I had the opportunity to learn about
novel topics, attend workshops and seminars and have so many interesting discussions. Special
thanks also go to my other co-authors Pasquale Minervini, Csaba Domokos, Julien Corman and
Ognjen Savković for the very fruitful collaborations. I would also like to thank my undergraduate
mentor Laura Dioşan who has firstly nurtured my interest in artificial intelligence.
During my PhD studies I had the pleasure to work with so many incredible people who have
inspired me every day. My gratitude also goes to my colleagues from the Institute of Logic and
Computation from TU Wien for providing the necessary environment for my PhD study. Special
thanks to the administrative staff - Beatrix Buhl, Juliane Auerböck and Eva Nedoma for their
assistance in navigating all the bureaucracy.
It was a pleasure to share this experience with my PhD colleagues from the Doctoral Program
Logic in Computer Science (LogiCS) to which I thank for all the interesting discussions, coffee
breaks, culinary experiences and hiking trips. In particular, many thanks to Tobias Kaminski,
Ilina Stoilkovska, Anna Lukina, Emir Demirović, Adrian Rebola-Pardo, Matthias Schleipfer,

ix

Mihaela Rozman, Adrian Haret, Jan Maly, Ana Costa, and Jure Kukovec. This journey would
have been far less enjoyable without all these nice moments together.
I could not thank enough my "Unicorns" friends, Ilina Stoikovska, Tobias Kaminski, Alina
Alexandrova and Serge Stratan for their friendship, kindness and constant support. Our friendship
helped me in navigating the most challenging moments and for that and many more I am forever
grateful. I would also like to thank my dear flatmates Juli and Lena Nemestothy, Alexandra Langer
and Anna Rigoni for all the amazing WG experiences, their kind support and encouragements. I
am also grateful to Camelia Georgiu for her positivity, encouragements and interesting discussions.
To my "Cluj family" - Alina Moldovan, Maria Andrei and Ligia Bildea for always being close
even when far.
To Dominic Staschitz for sailing into my life when unexpected and offering me so many happy
moments together. His encouragements and support have been crucial in finalizing this thesis. I
am also grateful to my AIT colleagues Pietro Saggese, Mina Schütz and Ana Jalali for allowing
our collegiality to turn into a friendship.
Last but not least, to my family without whom any of this would have not been possible. To my
sister Violeta Andreşel for always being my rock, my best friend and my partner in crime for my
whole life, I could not express in words how much that meant for me. To my parents Maria and
Petru Andreşel for their unconditional love, support and all the sacrifices they had to make for me
to be where I am today. To my uncles Marian and Gheorghe Jula, my aunt Viorica Andreşel as
well as to the rest of my family, I am grateful to have them always by my side.
Finally, I would also like to acknowledge the Austrian Science Fund (FWF) for funding the
LogiCS doctoral program I was part of and for directly supporting the research presented in this
thesis through the projects P30360, P30873 and W1255. I do not take this chance for granted.

Kurzfassung

Wissensgraphen (engl. Knowledge Graphs, KGs) sind Datensätze, die aus miteinander verbunde-
nen, gekennzeichneten Entitäten in einem teilbaren Format bestehen und sowohl für Menschen
als auch Maschinen verwendbar gemacht werden sollen. Anwendungen von KGs umfassen unter
anderem Natural Language Question Answering, Web-Suche, Datenanalyse und Expertensysteme.
Eine wichtige Aufgabe bei vielen KG-Anwendungen ist die Beantwortung von Abfragen, d.h. das
Problem, alle möglichen Antworten auf eine bestimmte Abfrage in einer konkreten Abfragespra-
che wie den üblichen konjunktiven Abfragen (engl. conjunctive queries, CQs) zu finden. Obwohl
viel Aufmerksamkeit der effizienten Abrufung von Antworten für verschiedene Abfragesprachen
gewidmet wurde, gehen die meisten Arbeiten davon aus, dass eine ideale Abfrage existiert, die die
Antworten, die der Benutzer im Sinn hat, genau erfasst, und dass der Abfrageformulierungsschritt,
der entscheidend und für Endbenutzer potenziell herausfordernd ist, als selbstverständlich angese-
hen wird. Darüber hinaus wird auch implizit angenommen, dass die Informationsbedürfnisse des
Benutzers klar definiert und statisch sind, was oft nicht der Fall ist, insbesondere wenn auf KGs
zugegriffen wird, die Daten aus umfangreichen und unbekannten Domänen enthalten.
Ontologien sind logische Formalismen, die verwendet werden, um KGs mit menschlicher Ex-
pertise und Allgemeinwissen anzureichern. Sie wurden erfolgreich eingesetzt, um die Abfra-
geformulierung zu unterstützen, mehrere und heterogene Datenquellen zu integrieren und die
Abrufung von vollständigeren und informativeren Antworten auf Anfragen zu ermöglichen. Be-
stehende ontologiebasierte Abfrage-Technologien sind jedoch unzureichend für Szenarien, die
einen inhärent interaktiven Abfrageprozess erfordern, der die Exploration von Daten unterstützt:
Ausgehend von einer anfänglichen Abfrage werden Benutzer dabei unterstützt, diese schrittweise
zu verfeinern, um ihre Informationsbedürfnisse genau zu erfassen. Darüber hinaus muss jede
Reformulierung für die interaktive Abfrage effizient und dynamisch ausgewertet werden. Aktuelle
Abfrageantwortmaschinen unterstützen nur die Auswertung jeweils einer Abfrage gleichzeitig,
und die Abrufung der vollständigen Menge von Antworten auf jede Abfrage ist mit einem hohen
Rechenaufwand verbunden. Um diesen Herausforderungen zu begegnen, konzentriert sich diese
Arbeit auf die Ontologiesprache DL-Lite, die ein gutes Verhältnis zwischen der Komplexität
der Schlussfolgerungen und der Ausdrucksstärke bietet.
Der erste Hauptbeitrag dieser Arbeit besteht darin, einen explorativen Rahmen vorzuschlagen,
der Ontologien nutzt, um die folgenden Fähigkeiten zu unterstützen: a) die Formulierung von
Abfragen, die es dem Benutzer ermöglicht, die Informationsbedürfnisse durch Verfassen einer
Abfragenvorlage zu approximieren, die eine große Menge semantisch verwandter Abfragen

xi

prägnant beschreibt, b) die effiziente Abrufung vollständiger Antworten für die große Menge
verwandter Abfragen, c) die dynamische Abfrageverfeinerung, die die interaktive Exploration
von Daten ermöglicht.
Unsere Techniken für die Ontologie-getriebene Abfrage-Reformulierung erfordern eine Erweite-
rung von DL-Lite um komplexe Rolleneinschlüsse. Als zweiter Hauptbeitrag präsentieren wir
ein vollständiges Komplexitätsbild mehrerer DL-Lite-Erweiterungen, die wir während unserer
Suche identifiziert haben, um dessen positive Berechnungseigenschaften zu erhalten. Wir betrach-
ten auch die sichere Integration von Aggregation in sowohl Ontologie als auch Abfragesprache,
um begrenzte Datenanalyse zu unterstützen.
Um die inhärente Unvollständigkeit von KGs anzugehen, schlagen wir als drittes Hauptergebnis
zwei Techniken vor, um flexible Abfragen von unvollständigen KGs angereichert mit Ontologien
zu unterstützen. Ein erster solcher Ansatz ist die Annahme-basierte Abfragebeantwortung, bei
der Abfragen mit Annahmemustern ausgestattet werden, die dazu dienen, mehrere hypothetische
Erweiterungen des KGs zu beschreiben und informativere Antworten über alle solchen Erweite-
rungen zu konstruieren. Eine Antwort ist in diesem Fall nicht nur ein Kandidaten-Entitäten-Tupel,
sondern stattdessen eine bedingte Antwort, die ein solches Tupel mit den Annahmen paart, die
das Tupel zu einer wahren bestimmten Antwort machen. Wir zeigen, dass die Annahme-basierte
Abfragebeantwortung in der Datenkomplexität berechenbar ist und schlagen ontologiebasierte
Umschreibungstechniken vor, um die bedingten Antworten zu konstruieren, auch in Gegenwart
von geschlossenen Prädikaten, einer Form von Vollständigkeitserklärungen zu bestimmten Bezie-
hungen.
Als letzter Ansatz für flexibles Abfragebeantwortung betrachten wir auch das Embedding-basierte
Ontologie-vermittelte Abfragebeantwortung über unvollständige KGs. Dafür bauen wir auf mod-
ernsten Embedding-Modellen auf, die darauf ausgelegt sind, plausible Antworten auf Abfragen
vorherzusagen, und untersuchen einige Möglichkeiten, Ontologien entweder in den Trainingsdaten
oder in der Trainingsziel-Funktion zu integrieren, um eine hohe Genauigkeit bei der Vorhersage
fehlender Antworten zu erzielen, die im Allgemeinen ontologisches Schlussfolgern erfordern, um
auf vorhergesagten Fakten durchgeführt zu werden.

Abstract

Knowledge Graphs (KGs), understood broadly as datasets consisting of interconnected labeled
entities in a sharable format, have emerged as means to make different kinds of knowledge
available to both humans and machines. Applications of KGs include, but are not limited to,
natural question answering, web search, data analytics and expert systems. A crucial task in many
KG applications is that of query answering, that is, the problem of finding all possible answers
to a given query in a concrete query language, such as the common conjunctive queries (CQs).
While much attention has been devoted to the efficient retrieval of answers for various query
languages, most of the works assume an ideal query which accurately captures the answers the
user has in mind, and take for granted the query formulation step, which is critical and potentially
challenging for end-users. Furthermore, it is also implicitly assumed that the user’s information
needs are well-defined and static, which is often not the case, especially when accessing KGs that
include data from vast and unfamiliar domains.
Ontologies are logical formalisms used to enrich KGs with human expertise and common-sense
knowledge. They have been successfully deployed to support query formulation, for integrating
multiple and heterogeneous data sources, and to enable the retrieval of more complete and
informative answers to queries. However, existing ontology-based querying technologies are
insufficient for scenarios that call for an inherently interactive querying process that supports
the exploration of data: starting from an initial query, users are guided in gradually refining it to
accurately capture their information needs. Moreover, for interactive querying, each reformulation
must be efficiently evaluated on-the-fly. Current query answering engines only support the
evaluation of one query at a time, and retrieving the complete set of answers to each query is
computationally costly. In order to cope with these challenges, in this thesis we focus on the
ontology language DL-Lite which offers a good trade-off between complexity of reasoning and
expressiveness.
The first main contribution of this thesis is to propose an exploratory framework which leverages
ontologies to support: a) query formulation, allowing the user to approximate the information
needs by writing a query template that succinctly describes a large set of semantically related
queries, b) efficient retrieval of complete answers for the large set of related queries, c) on-the-fly
query refinement, which enables the interactive exploration of data.
Our techniques for ontology-driven query reformulation call for extending DL-Lite with complex
role inclusions. As a second main contribution, we present a complete complexity picture of
several DL-Lite extensions which we identified along our quest to preserve its nice computational

xiii

properties. We also consider the safe integration of aggregation into both the ontology and query
language to support limited data analytics.
To address the intrinsic incompleteness of KGs, as a third main contribution we propose two
techniques to support flexible querying of incomplete KGs enriched with ontologies. A first such
proposal is assumption-based query answering, in which queries are equipped with assumption
patterns meant for describing multiple hypothetical extensions of the KG, and construct more
informative answers over all such extensions. An answer in this case is not only a candidate entity
tuple, but instead a conditional answer that pairs such a tuple with the assumptions that make the
tuple a true certain answer. We show that assumption-based query answering is tractable in data
complexity and propose ontology-based rewriting techniques for constructing the conditional
answers, also in the presence of closed predicates, a form of completeness statements about
particular relations.
As a final proposal for flexible query answering, we also consider embedding-based ontology-
mediated query answering over incomplete KGs. For that we build on state-of-the-art embedding
models, tailored for predicting plausible answers queries, and explore some means to incorporate
ontologies, either in the training data or in the training objective function, in order to obtain
high accuracy for predicting missing answers that in general require ontological reasoning to be
performed on-top of predicted facts.

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 3
1.2 Problem Formulation and State-of-the-art 6
1.3 Research Challenges and Methodology . 8
1.4 Contributions . 10
1.5 Thesis Structure . 12

2 Ontology-mediated Query Answering 15
2.1 Description Logics Ontologies . 15
2.2 Ontology-mediated Query Answering . 27
2.3 Techniques for Answering DL OMQs . 32
2.4 Complexity of Reasoning . 40

I Interactive Ontology-mediated Query Answering 43

3 Taming Complex Role Inclusions for DL-Lite 45
3.1 Extending DL-Lite with Complex Relation Inclusions 46
3.2 FO-rewritable Fragments of DL-Lite++ . 55
3.3 Related Work and Discussion . 69

4 Ontology-enhanced Exploratory Framework 71
4.1 Abstract Exploratory Framework . 72
4.2 Generating Meaningful Query Spaces . 79
4.3 Generating Query Spaces with Datalog . 82
4.4 Implementation and Evaluation . 90
4.5 Related Work and Discussion . 92

xv

II Data Incompleteness 95

5 Ontology-mediated Conditional Answers 97
5.1 ABox Completion and Extension . 98
5.2 Assumption-based Ontology-mediated Query Answering 100
5.3 Rewriting AOMQs . 104
5.4 AOMQs with Closed Predicates . 109
5.5 Incorporating Disjointness and Functionality Axioms 115
5.6 Empirical Evaluation . 117
5.7 Related Work and Discussion . 119

6 Neural-Symbolic Ontology-mediated Query Answering 121
6.1 Query Answering over Knowledge Graph Embeddings 123
6.2 Embedding-based Ontology-mediated Query Answering 127
6.3 Ontology-driven Data Sampling . 129
6.4 Ontology-Aware Models . 131
6.5 Evaluation . 133
6.6 Related Work and Discussion . 140

7 Summary and Conclusions 143

List of Figures 147

List of Tables 149

List of Algorithms 151

Bibliography 153

CHAPTER 1
Introduction

Knowledge and information derived from the rapidly increasing amounts of available data are
important to create innovative solutions that contribute to the advancement of several diverse
domains such as science, technology and business. Graph-structured models have emerged as
a leading data representation model to make (expert) knowledge and information available to
data-driven applications. By means of graphs we can encode various kinds of knowledge: from
relatively simple knowledge such as how computers interact in a network to more complex ones
such as protein interaction and social networks. Whenever the graph has several types of relations
between the existing nodes, it is often referred to as a knowledge graph.
Knowledge Graphs (KGs), understood broadly as datasets consisting of interconnected labeled
entities in a sharable format, have emerged as means to make different kinds of knowledge
available to both humans and machines. Applications of KGs include, but are not limited to,
natural question answering, web search, data analytics and expert systems. A KG typically
encompasses a representation of the underlying domain, called ontology, which is used to encode
human expertise or common-sense knowledge. An ontology encodes information about key
domain concepts and their inter-dependencies, by means of multiple relations.
The idea of enriching data with expert knowledge is not new and it has been extensively investigated
in the Knowledge Representation and Reasoning area, where first-order logic is used as a suitable
formalism for representing the domain knowledge given its well-defined semantics. Description
Logics have emerged as suitable languages to encode ontologies since they represent decidable
fragments of first-order logic, given that full first-order logic is undecidable. DLs have become
the most popular ontology formalism insofar-as the W3C ontology standards are based on existing
and well-studied description logics. In DLs, a KG is called a knowledge base and there is a
clear separation between intentional knowledge, often denoted as TBox, which represents the
knowledge encoded in an ontology, and the extensional knowledge, denoted as ABox, which
simply encodes all existing facts about concrete individuals or data values.

1

1. INTRODUCTION

Ontologies are not only used to structure the existing information in a KG, but also they are being
used for integrating multiple heterogeneous data sources by linking the underlying data to the
ontology, via mappings, thus creating a large virtual KG. In this paradigm, called Ontology-based
Data Access (OBDA), the ontology becomes the common entry point to all disparate data sources.
OBDA is also relevant to the Semantic Web, where the main goal is to interconnect information
on the web for effective use by both humans and machines. To facilitate this purpose the particular
Semantic Web standards such as RDFS and OWL are based on well-studied DLs.
A crucial task in many KG applications is that of query answering, that is, the problem of finding
all possible answers to a given query in a concrete query language, such as the commonly used
conjunctive queries (CQs). A conjunctive query is a formula in first-order logic composed using
only conjunction and existential quantification. In the context of DLs, the corresponding problem
of querying ontology-mediated data has received a lot of attention.
In this thesis we focus on the problem of querying graph-structured data enriched with ontologies,
thus we will employ the DL formalization and make a clear distinction between the intensional
and extensional parts of a KG, and in particular consider that a KG consists only of extensional
knowledge. This formalization allows more generality as the same data can be queried using
different ontologies since the ontology is more dependent on the application domain. Moreover,
most of the available KGs do not include ontological knowledge and have almost the same
expressiveness as an ABox. Therefore we will refer to a KG as an ABox and sometimes use such
notions interchangeably.
In general the expressiveness of the ontology language influences the complexity of evaluating
queries, with more expressive languages having higher complexity. There are however also
tractable languages that offer a good trade-off between expressive power and efficient query
evaluation. One such family of DLs is the so-called DL-Lite family among which the most
popular fragments are DL-Lite and its extension DL-Lite with allows in addition data values
and functionality restrictions. Compared to other DLs, such as the super-languages of the well-
known , the DL-Lite family of languages seem rather simple, however they are sufficient
to encode knowledge usually represented in class and entity-relationship diagrams, and due to
their nice computational properties, DL-Lite is employed as the main ontology language for
integrating and accessing relational data (i.e., via OBDA) while DL-Lite is used as basis for the
OWL QL profile recommended by W3C.
Another important aspect of querying data in presence of ontologies is the assumption that we
only have a partial view over the data, thus the existing information is by default incomplete.
The existing information in the data may not represent the ground truth, thus there could be in
principle additional facts which may not be directly accessible. Among such facts are the implicit
facts which can be derived by applying the ontology axioms over existing facts, a process called
deductive reasoning. However, they fall short in identifying missing facts beyond those that can
be inferred from existing information.
Since most of the publicly available KGs are semi-automatically constructed from textual data,
they are notoriously incomplete. Predicting missing edges in a KG has received a lot of attention
and recently statistical methods based on embedding nodes and edges into low-dimensional

2

1.1. Motivation

vector space are becoming popular tools for KGs completion. The embedding-based methods
aim at learning a representation of the graph by means of inductive reasoning. This means that
if enough examples are given, the embedding model is able to learn certain inference patterns
that are then being used to predict missing links between entities in the graph. More recent,
embedding-based techniques for answering logical queries have been proposed as means for
predicting missing answers to queries, however they have not been tailored for answering queries
mediated by ontologies.

1.1 Motivation
While much attention has been devoted to the efficient retrieval of answers for various query
and ontology languages, most of the works assume an ideal query which accurately captures
the answers the user has in mind. They take for granted the query formulation step, which is
critical and potentially challenging for end-users. Furthermore, it is also implicitly assumed that
the user’s information needs are well-defined and static, which is often not the case, especially
when accessing vast data sources that include data from different and unfamiliar domains. This
problem is referred in the literature as the information mismatch: users that do not have technical
background or that are not domain experts cannot express their information needs by means of a
formal query. Ontologies can support the query formulation step, however no generic solutions
for exploration and analysis of ontology-mediated data have been proposed so far.
In order to explore the underlying data for different purposes, the querying process must be
inherently interactive. An interactive query-answering system would then facilitate the following
functionality: starting from an initial query, users are guided in gradually refining it, by taking
into account the available facts, to accurately capture their information needs. This means that
the query answering system should suggest relevant query reformulations and be able to answer
them efficiently. All the queries created in this process are similar with respect to their syntax
and meaning, thus a large set of related queries emerges with each querying scenario. From the
technical perspective, each query that might be relevant to the query scenario should be efficiently
answered and meaningful related queries should be easily constructed. Such services are currently
not supported by the existing ontology-mediated query answering systems since they evaluate
queries one-at-a-time, thus computing the answers from scratch when some of the answers can be
preserved if the query is slightly modified.
One of the most successful paradigms for data analysis is Online Analytical Processing (OLAP) in
which the data (containing mostly historical information) is analyzed from different perspectives
(such as time and location) and on multiple granularity levels (such as month, trimester, year
for time dimension, and city, region, country for the location dimension). Another important
functionality in OLAP is the use of aggregation to define various measures which can then be
automatically computed for each level in the dimensional hierarchy. Thus, OLAP relies on a
multi-dimensional data model for querying similarly as the OBDA paradigm relies on an ontology.
Drawing a comparison between OLAP and OBDA, the ontology naturally captures hierarchy of
concepts and roles which can also be used for exploratory purposes. Moreover, OBDA offers
some advantages over OLAP since the expensive pre-processing steps needed to create the multi-

3

1. INTRODUCTION

- publicTransAccess: Boolean
- hospitalAccess: Boolean

Location
- publicTransAccess: Boolean
- hospitalAccess: Boolean

Location
-date: Date
-fatalities: Int
-injured: Int

MCI
-date: Date
-fatalities: Int
-injured: Int

MCI

- sum casualties ≥ 100

SevereMCI

- sum casualties ≥ 100

SevereMCI

- type: String
- effectiveness: [0..1]

Intervention
- type: String
- effectiveness: [0..1]

Intervention

- avg. effectiveness ≥ 0.8

EfficientInt

- avg. effectiveness ≥ 0.8

EfficientIntpartOf

partOf

connectedTo

hasLocation

isRequiredBy

requiresInt

District

City

Country

HumanCausedMCI NaturalCausedMCI

Fire Explosion Flood Earthquake

Figure 1.1: Ontology for risk assessment in the disaster management domain.

dimensional data structure are not needed. Therefore, creating for OBDA the type of functionalities
that OLAP supports would enable on-the-fly analysis of disperse and heterogeneous data.
In order to facilitate OLAP functionalities for OBDA, it is important to model in the ontology
additionally to concept and role hierarchies also part-of hierarchies. Encoding multi-dimensional
models in DLs requires the use of an ontology language that is more expressive than DL-Lite
[FS99]. Therefore, we aim at investigating tractable extensions of DL-Lite which allow the
encoding of part-of hierarchies.
In the following example, which focuses on the risk management domain, we present some
concrete use-cases to demonstrate the need for interactive query answering as well as for data
exploration and analysis tools.
Example 1.1 (MCI management). A mass casualty incident (MCI) is an event which requires an
immediate intervention and in which emergency resources, such as personnel and equipment, are
overwhelmed by the number or severity of casualties. The main concerns regarding MCIs are
mitigation and prevention, therefore a risk assessment analyst is in general concerned with:

a) early identification of severe MCIs (events that have a higher potential to cause harm),
b) analysis and evaluation of the risk associated with such hazards (e.g., areas affected, population

at risk etc.), and ultimately
c) evaluation of the response measures in order to assess the effectiveness of various mitigating

interventions.

Consider the graphical representation of an ontology in Figure 1.1 which models the information
needed for reporting an MCI. The actual definition will be given in Chapter 2 once the necessary
DL notions are introduced. Intuitively, the graphical representation captures the following
knowledge:

• An MCI has a starting date, and a possible number of (estimated) casualties which are
partitioned into fatalities and injured cases. If the total number of casualties is greater than
100, then the MCI is considered to be severe. The particular types of events considered are
classified based on their origin: they are either caused by humans or caused by nature. The

4

1.1. Motivation

most specific categories of the considered MCIs are fires, explosions, floods and earthquakes.
When reporting an MCI, requests for various types of interventions can be done.

• The concept Intervention denotes an intervention request which is typically associated to a
reported MCI. The type of the intervention, such as request for an emergency service or an
evacuation, must also be included in the request, while the effectiveness of the intervention
is assessed at a later stage depending on the type of the intervention. For example, an
effectiveness measure for a medical intervention can be the percentage of cases that were
covered in a particular time interval.

• When reporting an MCI, its location must be specified. The more general concept Location
captures any type of location, with focus on districts, cities and countries. Additional useful
information regarding the access to the location include information such as if is reachable
via public transport and if a hospital is located in the proximity.

A first observation is that in order to capture such domain, the chosen ontology language should
allow analytic-aware concept definitions such is the case for concepts SevereMCI andEff icientInt,
and to model part-of hierarchies for analyzing the data at various granularity levels. Moreover, to
support decision making, the system should allow interactive querying and the use of aggregation
at query time.
In general the ontology is useful for: (i) offering a conceptual overview over the data as illustrated
in Figure 1.1, (ii) obtaining more complete answers to queries by applying the domain knowledge,
and (iii) supporting the query formulation process. For task b in Example 1.1 having complete
answers is crucial. For example, when querying all areas affected by severe MCIs the expert
system should automatically return all locations points of all MCIs, such as floods, fires etc., for
which the total number of casualties exceeds 100. If the number of retrieved locations is too large,
meaningful ways to specialize the query can be suggested. For instance one way to specialize the
query is by zooming in only on the MCIs that have either a human or a natural cause. Similarly,
ways to generalize the query are needed when not enough information is retrieved.
A third observation is that, while adding a lot of value to data, ontologies cannot directly help
with missing facts beyond those that can be inferred from existing information and, in practice,
the data might be only partially available at query time. For example if the number of casualties
is not provided, one cannot infer that the reported MCI is severe or not. This is also the case with
KGs that are automatically constructed, queries might fail due to lack of available information.
Therefore techniques tailored towards coping with incomplete data are needed for evaluating
queries mediated by ontologies.
Towards that, querying the data based on relevant assumptions that model various data completion
scenarios can be useful. For example in task c of Example 1.1, to make sure an evacuation is
efficient, one has to verify various possible scenarios regarding the location accessibility. For
instance, assuming that a person is located in the proximity of some metro station, can that person
reach a hospital? Answering such question is relevant for identifying possible vulnerable locations
and improving the efficacy of interventions.
Another, interesting direction in coping with incompleteness is to rely on embedding-based
models for answering ontology-mediated queries. For example, task a of Example 1.1 requires

5

1. INTRODUCTION

the prediction of additional answers, such as predicting potential human-caused MCIs. Current
KG embedding models are able to predict plausible answers to queries, however when taking
into account the ontology, in order to obtain accurate predictions, the embedding model would
have to learn to apply also the ontology knowledge. Thus, for such task the model should be
ontology-aware thus be capable of performing both inductive and deductive reasoning.

1.2 Problem Formulation and State-of-the-art
The main goal of the thesis is to formalize and implement techniques that allow flexible access to
graph-structured data enriched with ontologies. Concretely, we want to provide the basis for the
following services:

1. Query formulation: support the user’s attempts to formulate their information needs, by
developing a suitable specification language for sets of queries to enable exploration of the
targeted data;

2. Interactive ontology-mediated query answering for data exploration: based on the specified
information need, efficiently compute answers to a large set of related queries, and describe
them in an understandable and informative way. In addition, suggest meaningful query
reformulations (i.e., specializations or generalizations) for gradual exploration of answers;

3. Support for data analysis: automatize operations that facilitate analysis of data enriched
with domain knowledge. The focus is on incorporating aggregation and part-of hierarchies
that resemble OLAP capabilities;

4. Incompleteness tolerance: alternative techniques for answering ontology-mediated queries
even when the data is partially unattainable. In particular we focus on querying hypothetical
data completions, and on neuro-symbolic approaches to predict missing answers.

1.2.1 State-of-the-art
In this section we present the state-of-the-art regarding the problems which the thesis is addressing.
To the best of our knowledge, there is no approach that can support all enumerated services,
therefore we categorize the related work as follows.

Query Reformulation. There are several interface systems that help the user in formulating
queries which differ based on the underlying supported query language and on the use of reasoning
to suggest possible query reformulation. The main motivation is the need for end-users to access
disparate data sources and the limitations imposed by the machine-oriented query languages
used to access data. To cope with such issues, visual query systems (VQSs) such as SemFacet
[ACGK+14], Quelo [FGTT11], Optique VQS [SKZ+14], focus on bridging the gap between
user’s information needs and query formulation. They support limited exploration functionalities
since, in general, they support mainly ways to specialize queries. SemFacet takes also into
account the underlying data, by discarding options that would not change the set of answers.
The expressivity of the supported query language is also limited as they do not capture arbitrary
conjunctive queries. More recently, Vargas et al. [VAHL19] supports the formulation of more
complex queries, namely SPARQL queries, however it does not consider ontological reasoning

6

1.2. Problem Formulation and State-of-the-art

to answer such queries. In the work by Nutakki et al. [Nut11] the authors present solutions for
specializing queries over  ontologies [BBL05], to avoid information overload. The presented
approach computes minimal specializations which are then clustered for reducing information
load by a significant amount. The approach is evaluated over synthetic data, which is uniformly
generated, and contains small number of individuals, so it is not clear how such solution behaves
over real data sources with millions of instances. In addition, the converse problem of identifying
minimal generalizations, useful for exploration purposes, was not considered.

Explorative and Analytical Querying. Existing solutions enhance query navigation, by com-
puting ways to specialize or generalize the query based on terminological support for a given
application domain. The idea of navigating from one query to another as means to explore the
data has been investigated mostly in the context of web search, to improve the quality of the
search engines. The authors of [HYY05] use a particular concept terminology to generate a
query space that creates relations among the terms, i.e., words in natural language, and provide
visual tools that help the user in refining the query to correspond the intended information need.
Another approach is to translate queries, expressed in natural language, into suitable conceptual
graphs, which represent concept specializations or generalizations of the initial query, which are
then matched over annotated documents [CHH10]. This work has been extended in [PHH11] to
include a pivot language in which the user can express relations among query terms. However,
all such approaches are designed for hiding the complexity of formulating queries and focus
mostly on improving natural language search over domain specific documents on the Web. The
actual query matching process is almost syntactical (e.g., terms can be directly matched or via
synonyms), since the the terminological support represents simple taxonomies, therefore it is not
clear how such solutions can be used if DL ontologies are used as knowledge support, in which
case more complex reasoning services would be required.
There are several engines that support ontological reasoning to compute complete answers to
queries, most noteworthy Pellet [SPG+07], HermiT [GHM+14] and PAGOdA [ZGN+15], which
work for evaluating queries over graph-structured data, and Ontop [RKZ13] which implements
an OBDA service over databases. However, such systems do not support interactive querying,
meaning that answering a sequence of related queries can be done only by evaluating queries
one-at-a-time, answers are built from scratch in each evaluation, and this is rather inefficient
considering that some answers might be preserved from one evaluation to the other. Computing
meaningful specializations or generalizations for a given query can be done using such engines
only in a naive manner, by means of brute-force evaluation of queries and comparison on answers.
Moreover, traditional solutions do not support aggregation in the ontology, and this lead to the
extension of DL-Lite to incorporate a safe form of aggregation [KKM+16].
The need of aggregation in the query has already been acknowledged in the case of OBDA,
however, due to the open-world semantics, such queries have to be carefully handled to avoid
undecidability [KR13] and in [CKNT08] an epistemic semantics for evaluating queries with
aggregation was introduced. The combination of DL-Lite𝖺𝗀𝗀 and aggregating queries is very
important towards having analytics-aware OBDA services however all such formalism are not
enough for supporting OLAP-like operations. In the case of RDF data, there have been approaches

7

1. INTRODUCTION

in building data structures suitable for data analytics [CGMR14], and to develop efficient OLAP
operations over such analytical schemas [AGMR15]. From this perspective, ontologies have been
leveraged only for designing extract-transform-load (ETL) processes to clean and integrate the
data [SSS09], or for defining new granularity levels for analytical queries ([NAS12], [ANS12],
[GGR+18]). More recently, the work by Schütz et al. [SBN+21] studies the adaptation of OLAP
paradigm to KGs.

Querying Incomplete Data Sources. This problem has been addressed in the setting of rela-
tional data in which techniques for querying hypothetical extended versions of the database have
been proposed in [GGMO95, CA98]. Among the proposed formalism over disjunctive databases
is conditional query answering [Dem92] in which tuples are coupled with the assumptions needed
in order to become answers to queries. In the work by Griffin and Hull [GH97] hypothetical queries
are rewritten into equivalent traditional queries which are evaluated using standard techniques.
In the case of ontology-mediated data, ten Cate et al. [tCCST15] define so-called why-not queries,
where an ontology is leveraged to obtain explanations of why tuples are not an answer, and study
the complexity of obtaining most general explanations. Another similar formalism based on ABox
abduction is proposed by Calvanese et al. [COvS13] where negative answers are employed for
describing a tuple of individuals and an associated explanation, which is represented by a small
ABox, to why it is not an answer to the given query.
Knowledge graph completion has received also a lot of attention. Recently, statistical methods to
compute plausible facts in a KG have been proposed [NMTG16, WMWG17]. The general idea is
that the statistical model is able to learn some form graph similarity which is then used to predict
missing edges between existing nodes. All such models are based on the idea of embedding nodes
and relations into a low-dimensional vector space. Building on their success, methods that can
perform so-called multi-hop querying in the embedding space have been successfully applied
to predict answers to queries of limited expresivity. The existing proposals can be divided into
query-based [RHL20, RL20, LDJ+21, CRK+21, KLN21, SAB+20] and atom-based [ADMC21].
Friedman et al. [FdB20] and Bogwardt et al. [BCL19] study the relation between the problem
of conjunctive query answering in the embedding space and over probabilistic databases. None
of the embedding-based models are designed for querying in presence of ontologies, thus the
question if they can be used or adapted for such case is natural and not answered by the existing
body of work.

1.3 Research Challenges and Methodology
The first step towards achieving the goal of the thesis is to formalize a framework that takes as
input an ontology and a dataset and firstly allows the user to succinctly define a set of related
queries. Then, based on the query specification, it constructs a compilation to support interactive
query answering and data analysis operations. Furthermore, in case the queries of interest do not
produce the desired output, we can employ the functionalities of answering queries considering
relevant completions of the data or predict missing answers with the associated score. In order
to achieve all the envisioned services, we have to provide a theoretical framework. For that we

8

1.3. Research Challenges and Methodology

identify the following research challenges associated to each particular problem that the thesis is
addressing.

RC1 Find tractable extensions of ontology language DL-Lite to facilitate operations similar
to OLAP roll-up, drill-down and query rewriting operations to specialize and generalize
queries that help the user in gradually explore the data.

RC2 Provide means to the user to write an expression that succinctly describes sets of related
(i.e., semantically similar) conjunctive queries. In particular, the expression should define
a core conjunctive query, which represents the user’s basic information need, and create
techniques to automatically derive various modifications of the query that the user deems
interesting.

RC3 Given the user’s query specification, provide solutions to compile the relevant fragments of
the ontology and the data to answer any query that matches the specification. Constructing
such compilation is important in order to efficiently navigate from one query to another.
Such task requires reasoning to identifying explicit and implicit objects matching some
query of the family.

RC4 Define reasoning services over the compilation, that are geared towards supporting interac-
tive exploration of answers for queries that target user’s information needs. This challenge
is relevant for identifying meaningful specializations and generalizations, considering that
there can be such modifications which are redundant for navigation, i.e., specializations
that produce the same set of answers.

RC5 Formalize and provide effective solutions for answering queries over incomplete data
mediated by ontologies. In particular provide reasoning services to support assumption-
based query answering, and adapt existing KG embedding techniques for predicting answers
to ontology-mediated queries.

For addressing RC1, we firstly point out that the concept taxonomy which is usually present
in an ontology, which are related via is-a relation, is a natural way to modify queries for data
exploration. However, this is different than the dimension hierarchy typically used in OLAP
which contains concepts that are related via part-of relation (such as city is part of a country and
country part of a political or geographical group). This type of relation can be encoded in an
DL ontology by means of complex role inclusions, however this can significantly increase the
complexity of reasoning and we need to identify in which conditions they can be incorporated
into DL-Lite such that the tractability of the ontology language is preserved.
For addressing RC2, we aim at having a query template language whose syntax allows flexible
query constructs while the semantics uses the derivation-based order to create a large collection
of semantically related queries, which we denote as a query space. This leads us to address
RC3 for which we first define rules to derive concrete queries from the query template and given
ontology we can apply the ontology axioms on the template atoms in a specializing or generalizing
fashion. This idea is inspired by the query rewriting approach for DL-Lite [CDL+07], however

9

1. INTRODUCTION

we want to identify other rewriting rules to obtain more meaningful reformulations and to support
navigation along both is-a and part-of hierarchies. Furthermore, we aim at having a Datalog
translation of the query generation process which is then evaluated over the data alone to create
the compilation.
In order to address RC4, we want to support query navigation by means of identifying, for any
given query, all specializations and generalizations that minimally change the set of answers. Next,
we rely once more on Datalog rules to identify and answer such reformulations. Thus by combining
both the query generation and navigation Datalog programs we obtain the implementation of
a fully-fledged exploratory framework. Moreover, we also aim at evaluating the framework in
practice using existing Datalog engines.
Regarding RC5 to address the problem of evaluating queries in possible extensions of the data
enriched with ontologies, we formalize the problem of assumption-based ontology-mediated
query answering and provide efficient techniques to compute informative answers. We also are
interested in possible extensions of this formalism to partially incorporate closed-world semantics.
We also want to combine ontological reasoning and existing KG embedding models that support
query answering, to compute plausible answers to queries over incomplete KGs.

1.4 Contributions
The first main contribution of this thesis is to propose an exploratory framework which leverages
ontologies to support:

• Query formulation, allowing the user to approximate the information needs by writing a
query template that succinctly describes a large set of related queries.

• Efficient retrieval of answers for the large set of related queries.
• On-the-fly query refinement, which enables the interactive exploration of data.

Our techniques for ontology-driven query reformulation call for extending DL-Lite with complex
role inclusions. As a second main contribution, we present a detailed complexity picture of several
DL-Lite extensions which we identified along our quest to preserve its nice computational
properties. We also consider the safe integration of aggregation into both the ontology and query
language to support limited data analytics.
To address the intrinsic incompleteness of data, as a third main contribution we propose two
techniques to support flexible querying of incomplete data enriched with ontologies. A first
such proposal is assumption-based ontology-mediated query answering, in which queries are
equipped with assumption patterns meant for creating multiple hypothetical extensions of the
data, and construct more informative answers. An answer in this case is not only a candidate
answer tuple, but instead a conditional answer that pairs such a tuple with the assumptions that
make the tuple a true answer. We show that assumption-based query answering is tractable and
propose ontology-based rewriting techniques for constructing the conditional answers, also in the
presence of closed predicates, which enables completeness statements about particular concepts
and relations.

10

1.4. Contributions

As a final proposal for flexible query answering, we also define the task of embedding-based
ontology-mediated query answering. As concrete approaches to such problem, we build on two
state-of-the-art embedding models as representative of query-based and atom-based models. Such
models are tailored for predicting plausible answers to a restricted form of positive existential
queries, however they do not take into account any ontological knowledge. Therefore, we explore
some means to incorporate ontologies, either in the training data or into the training objective
function, in order to obtain high accuracy in predicting answers that require the application of
both inductive and deductive reasoning.
The enumerated contributions regarding the extension of DL-Lite with complex role inclusions
and the proposed exploratory framework have been published in the following peer-reviewed
venues:

• Medina Andresel, Yazmín Angélica Ibáñez-García, Magdalena Ortiz, and Mantas Simkus.
Taming complex role inclusions for DL-Lite. In Proceedings of the 31st International Work-
shop on Description Logics co-located with 16th International Conference on Principles of
Knowledge Representation and Reasoning (KR 2018), Tempe, Arizona, US, October 27th -
to - 29th, 2018, volume 2211 of CEUR Workshop Proceedings. CEUR-WS.org, 2018.

• Medina Andresel, Yazmín Ibáñez-García, Magdalena Ortiz, and Mantas Simkus. Relaxing
and restraining queries for OBDA. In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages
2654–2661. AAAI Press, 2019.

• Medina Andresel, Yazmín Ibáñez-García, and Magdalena Ortiz. A framework for ex-
ploratory query answering with ontologies. In Proceedings of the 33rd International
Workshop on Description Logics (DL 2020) co-located with the 17th International Con-
ference on Principles of Knowledge Representation and Reasoning (KR 2020), Online
Event [Rhodes, Greece], September 12th to 14th, 2020, volume 2663 of CEUR Workshop
Proceedings. CEUR-WS.org, 2020.

The contributions regarding assumption-based querying have been presented in the following
peer-reviewed publication:

• Medina Andresel, Magdalena Ortiz, and Mantas Simkus. Query rewriting for ontology-
mediated conditional answers. In The Thirty-Fourth AAAI Conference on Artificial Intel-
ligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 2734–2741.
AAAI Press, 2020.

11

1. INTRODUCTION

Regarding the latest work of embedding-based ontology-mediated query answering, the results
presented in this thesis are collected into a publication published in a top-tier peer-reviewed
conference:

• Medina Andresel, Trung-Kien Tran, Csaba Domokos, Pasquale Minervini, and Daria
Stepanova. Combining inductive and deductive reasoning for query answering over in-
complete knowledge graphs. In Ingo Frommholz, Frank Hopfgartner, Mark Lee, Michael
Oakes, Mounia Lalmas, Min Zhang, and Rodrygo L. T. Santos, editors, Proceedings of the
32nd ACM International Conference on Information and Knowledge Management, CIKM
2023, Birmingham, United Kingdom, October 21-25, 2023, pages 15–24. ACM, 2023.

1.5 Thesis Structure
This thesis is structured into seven chapters. In Chapter 1 (this chapter) we present the main
motivation of this work, goals, research challenges and contributions. The next chapter Chapter 2
presents a more in-depth introduction of the problem of ontology-mediated query answering with
particular focus on DL-Lite and its analytic-aware extension DL-Lite𝖺𝗀𝗀 , and on the evaluation
of conjunctive queries which may contain aggregating functions. We also present the main
techniques for answering ontology-mediated queries in DL-Lite𝖺𝗀𝗀 and the notions required to
study the complexity of relevant reasoning tasks. The following Chapters 3–6 present the main
contributions of the thesis:

• In Chapter 3 we address RC1 and we extend DL-Lite with complex role inclusions,
denoted as DL-Lite++ . We show that such language is undecidable and then investigate
sub-languages that preserve decidability and study the complexity of reasoning tasks such
as consistency testing and computing certain answer. We show that restricting the language
so that only regular complex role inclusions are allowed is enough for ensuring decidability,
however the complexity remains high, namely exponential. In order to obtain tractable
sub-languages we propose to either disallow recursion involving relations appearing in any
complex role inclusion axiom, or to limit the recursion to have only paths of fixed length
over which complex role inclusions are triggered.

• In Chapter 4 we address RC2, RC3 and RC4, and propose a query template language that
allows the marking of query atoms with the purpose of specialization or generalization.
Further, we present rules to derive a query space which is then used for query navigation
by leveraging a derivation-based order between queries. We also define means to identify
meaningful reformulations to queries and finally present a Datalog-based translation to
realize such framework which we evaluate using existing Datalog engines.

• In Chapter 5 we address RC5 and define the problem of computing conditional answers to
queries in the presence of ontologies. A conditional answer includes facts which are not
implied and if added to the data would produce additional answers. To obtain interesting
conditional answers, we propose to pair a given ontology-mediated query with assumption
patterns in the form of  atoms which can be applied to concrete atoms in the query.
We show that such novel formalism is first-order rewritable, meaning that we can construct
the conditional answers in a data-independent fashion by rewriting the query w.r.t. the

12

1.5. Thesis Structure

ontology and the set of assumption patterns. We also consider a more involved case in
which closed predicates are allowed in the assumption patterns and show that our formalism
is both useful to model interesting domains that require the use of closed predicates, while
not increasing the complexity. This is remarkable since the presence of closed predicates is
known to significantly increase the complexity of query answering [LSW15].

• In Chapter 6 we also address RC5 and investigate a different approach to tackle data incom-
pleteness. In this chapter we focus on embedding-based approaches for answering queries
and investigate their capabilities in performing both deductive and inductive reasoning. We
investigate how to use and adapt such models for predicting answers to ontology-mediated
queries and propose ontology-driven training strategies to incorporate the ontology axiom
into the training data, and novel ways to enforce the rules in the vector space. We note
that such technique is different in coping with missing facts than the assumption-based
approach.

In the last chapter, namely Chapter 7 we present an overview of the thesis together with final
remarks and a discussion regarding future research directions.

13

CHAPTER 2
Ontology-mediated Query Answering

In this chapter we provide the basic knowledge regarding the problems studied in this thesis.
We introduce the syntax and semantics of lightweight ontology languages and also define the
query languages that we consider. Based on these two notions we define ontology-mediated
queries, their semantics and existing techniques for evaluating them over given datasets. We
define the decision problems associated to the reasoning tasks of interest and describe the standard
complexity measurements together with the relevant complexity classes.

2.1 Description Logics Ontologies
Description logics (DLs) [BCM+03, BHLS17] are a family of knowledge representation and
reasoning languages used to formalize domain knowledge for various knowledge-driven appli-
cations. The domain is usually described by means of an ontology, therefore it is common to
refer to DLs as ontology languages. DLs in fact are nothing but decidable fragments of first-order
logic, thus their main advantages include the well-understood semantics and automated reasoning
capabilities, useful to infer new knowledge.
The general modeling principle in DLs is to structure the domain of interest into concepts (i.e.,
classes), which describe similar objects, and roles (i.e., properties), which denote relations between
objects. The usual DL constructs are suitable to express constrains for concepts and roles. Among
the basic constraints that each DL allows are concept and role inclusions and, depending on the DL
expressivity, more involved constraints are supported. The constrains are then collected into what
we call a DL ontology, typically denoted as a TBox since it encodes the relevant terminological
knowledge about the domain.
In this thesis our main focus is on the lightweight families of DLs called DL-Lite [CGL+05,
CGL+07, ACKZ09] and  [BBL05, BLB08] which offer limited expressive power in exchange
for good computational properties, important for scalability of data-driven applications.

15

2. ONTOLOGY-MEDIATED QUERY ANSWERING

In the remaining of this section, we first present the syntax and semantics of the considered
languages, illustrate using examples what type of knowledge they are able to capture and present
the classical reasoning tasks.

2.1.1 Terminology, Data-value Domains, Interpretations
In DLs, concepts and roles are encoded using first-order logic predicates. We start with defining
the notion of a DL vocabulary consisting of atomic predicates distinguished into: a set of unary
predicates called concept names, two sets of binary predicates denoting role names and feature
names, and lastly a set of predicates of arity 0 denoting constant symbols that is partitioned into
two disjoint sets denoting object constants (or individuals) and value constants.
Definition 2.1 (Vocabulary). A DL vocabulary consists of quadruple (𝐂,𝐑,𝐅,𝐊) of countable
infinite, pairwise disjoint sets such that 𝐂 denotes the set of concept names, 𝐑 denotes the set of
role names, 𝐅 denotes the set of feature names and 𝐊 denotes the set of constants. We further
consider that 𝐊 is partitioned in two infinite disjoint sets, namely 𝐊𝐎 denoting constant symbols
for objects and 𝐊𝐕 denoting constant symbols for data values.

Example 2.1. Recall the mass casualty incident (MCI) ontology presented in the previous chapter.
For such domain, the vocabulary consists of all the terms that appear in the ontology. In particular,
we have the following:

• concept names: MCI, Location, Intervention, City . . .
• role names: hasLocation, connectedTo, partOf , . . .
• feature names: date, injured, interventionType, effectiveness, . . .
• object constants: 𝖵𝗂𝖾𝗇𝗇𝖺, 𝖠𝗎𝗌𝗍𝗋𝗂𝖺, 𝖽𝗂𝗌𝗍𝗋𝟣, . . .
• value constants: “𝟢𝟤∕𝟣𝟢∕𝟤𝟢𝟣𝟧”, “𝟧𝟢”,“𝗆𝖾𝖽𝗂𝖼𝖺𝗅 𝗂𝗇𝗍𝖾𝗋𝗏𝖾𝗇𝗍𝗂𝗈𝗇”, “𝟩.𝟪”, . . .

By convention, concept names start with uppercase, role and feature names start with lowercase
and are written in Roman font. Constants start with either lower or uppercase and are written in
𝖲𝖺𝗇𝗌 𝖲𝖾𝗋𝗂𝖿 font.

In this thesis we assume an arbitrary but fixed DL vocabulary (𝐂,𝐑,𝐅,𝐊) that is not referring to
one particular application domain. We use the following naming notation: (possibly sub-indexed)
𝐴, 𝐴′ for concept names, 𝑟, 𝑠 for role names, 𝑓 for feature names, 𝑝 for either a role or feature
name, 𝑎, 𝑏 for objects, 𝑣 for values and 𝑐 for any constant symbol.

Data domains. The constant symbols denoting data-values correspond to data types such as
String, Integer, Real and others. In order for such sets of elements to construct an abstract data-
value domain, they are typically equipped with binary predicates for comparisons and potentially
with aggregating functions mapping multi-sets of elements to elements in the domain. We recall
that a multi-set is a collection of elements, which unlike a set, allows for multiple occurrences of
the same element.
Definition 2.2 (Data domain). A data-value domain  is a triple (Δ,Φ,Λ), where Δ is a set
of elements called the domain of, Φ is a set of comparison predicates<,≤,=,≥, >,≠,

16

2.1. Description Logics Ontologies

and Λ contains some of the following aggregating functions 𝗆𝗂𝗇, 𝗆𝖺𝗑, 𝖺𝗏𝗀, 𝗌𝗎𝗆, 𝖼𝗇𝗍,
𝖼𝗇𝗍𝖽 such that each 𝖺𝗀𝗀 ∈ Λ is a function that maps any multi-set of elements to an element in
Δ.

Given a data-value domain  and a multi-set 𝑀 ⊆ Δ, functions 𝗆𝗂𝗇, 𝗆𝖺𝗑, are always defined
for 𝑀 since they output the minimal, respectively maximal, element in 𝑀 with respect to the
ordered imposed by the comparison predicates. Similarly, the functions 𝖼𝗇𝗍, 𝖼𝗇𝗍𝖽 are used to
count the number of (distinct) elements in 𝑀 . However for 𝗌𝗎𝗆 and 𝖺𝗏𝗀, which output the
sum, respectively the arithmetic mean of the elements in 𝑀 , we consider them to be defined only
for numerical domains like ℕ, ℤ or ℝ.
To exemplify, the Real data-value domain can be represented as follows: ℝ is the set of all
elements, the comparison predicates are defined as usual and each aggregating function computes
the expected output over any multi-set of real numbers. Similarly, the String data-value domain
contains as elements set any possible word over some given alphabet, and the comparison operators
defined according to the lexicographical ordering of strings.
Let 1,… ,𝑛 denote all the considered data-value domains. Based on all the considered domains,
we assume that 𝐊𝐕 is further partitioned into 𝑛 sets 𝐊𝐕1

,… ,𝐊𝐕𝑛
such that each 𝐊𝐕𝑖

= Δ𝑖
is

the set of constant symbols for 𝑖.
The semantic of DLs languages is given in terms of first-order logic interpretations which,
intuitively, give meaning to each element in the vocabulary.
Definition 2.3 (Interpretation). An interpretation  consists of a pair (Δ , ⋅), where Δ is a
non-empty (possibly) infinite set of elements called the domain of . We assume that Δ consists
of two pairwise disjoint sets Δ

𝐎 and Δ
𝐕 = Δ1

∪⋯ ∪ Δ𝑛
. Function ⋅ is called the valuation

of  which maps vocabulary terms as follows:

• for each 𝑎 ∈ 𝐊𝐎 we have 𝑎 ∈ Δ
𝐎,

• for each 𝑣 ∈ 𝐊𝐕, we have 𝑣 ∈ Δ
𝐕,

• for each 𝐴 ∈ 𝐂, 𝐴 ⊆ Δ ,
• for each data-value domain , we have  = Δ,
• for each 𝑟 ∈ 𝐑, 𝑟 ⊆ Δ

𝐎 × Δ
𝐎,

• for each 𝑓 ∈ 𝐅, 𝑓 ⊆ Δ
𝐎 × Δ

𝐕.

We say that  adopts the unique name assumption (UNA) if for each 𝑐1, 𝑐2 ∈ 𝐊 if 𝑐1 ≠ 𝑐2 then
𝑐1 ≠ 𝑐2 . Similarly,  adopts the standard name assumption (SNA) if 𝐊 ⊆ Δ and for each 𝑐 ∈ 𝐊
we have that 𝑐 = 𝑐.

Under the UNA, different individuals must be mapped to different elements, while under the
stronger SNA (which implies the UNA) individuals must be mapped to themselves. The UNA is
useful whenever different objects must refer to different things in the world. The SNA, adopted by
default in relational databases, is typically used when the information is assumed to be complete
(i.e., closed), or when data-value domains are being considered.
A homomorphism between interpretations is a structure-preserving mapping.

17

2. ONTOLOGY-MEDIATED QUERY ANSWERING

Definition 2.4 (Homomorphism). Let  and  be two interpretations. A homomorphism from 
to  is a function ℎ ∶ Δ ↦ Δ such that:

a) for each 𝑐 ∈ 𝐴 there exists 𝑐′ ∈ 𝐴 such that ℎ(𝑐) = 𝑐′, and
b) for each (𝑐1, 𝑐2) ∈ 𝑝 there exists (𝑐′1, 𝑐

′
2) ∈ 𝑝 such that ℎ(𝑐1) = 𝑐′1 and ℎ(𝑐2) = 𝑐′2,

where 𝐴 ∈ 𝐂, 𝑝 ∈ 𝐑 ∪ 𝐅 and 𝑐, 𝑐′, 𝑐1, 𝑐2, 𝑐′1, 𝑐
′
2 ∈ 𝐊. If such homomorphism exists, we say that 

is homomorphically embedded into  and write  ⊳  .

If there exists a homomorphism ℎ that is bijective (i.e., its inverse is also a homomorphism), then
we say that  and  are isomorphic.

2.1.2 Lightweight DLs
In this section, we present the main DL languages which are being studied in this thesis and their
semantics in terms of interpretations.

DL-Lite Family. Some of the most popular ontology languages are part of the DL-Lite family of
DLs, since on the one hand they can represent data models such as entity-relation and UML class
diagrams, and on the other they enjoy low computational complexity of inference. In particular
we focus on DL-Lite [ACKZ09], a language especially tailored for the ontology-based data
access (OBDA) paradigm [PLC+08]. In DL-Lite, data-value domains play an important role
and allow the declaration of ranges for feature roles. The interpretations in this case adopt the
SNA for all constants1.
Definition 2.5 (DL-Lite syntax, semantics). DL-Lite expressions are constructed according
to the following grammar:

𝐵 ∶= ⊤ ∣ 𝐴 ∣ ∃𝑠.⊤ ∣ ∃𝑓 𝑠 ∶= 𝑟 ∣ 𝑟−,
𝐹 ∶= ∃𝑓− 𝐸 ∶= 1 ∣ ⋯ ∣ 𝑛

where ⊤ is called top concept 𝐴 ∈ 𝐂, 𝑟 ∈ 𝐑 and 𝑓 ∈ 𝐅. Concepts of the form 𝐵, 𝐹 are called
general concepts and 𝐸 denotes any of the considered value-domains 1,… ,𝑛. Roles the form
𝑟− are called inverse roles, features of form 𝑓− are called inverse features.

A DL-Lite axiom has any of the following shapes:

𝐵1 ⊑ 𝐵2 𝑠1 ⊑ 𝑠2 𝐵 ⊑ ∃𝑠.𝐴 𝖽𝗂𝗌𝗃(𝐵1, 𝐵2) 𝖽𝗂𝗌𝗃(𝑠1, 𝑠2) 𝖽𝗂𝗌𝗃(𝑓1, 𝑓2)
𝐹 ⊑ 𝐸 𝑓1 ⊑ 𝑓2 𝐵 ⊑ ∃𝑠.⊤ (𝖿𝗎𝗇𝖼𝗍 𝑠) (𝖿𝗎𝗇𝖼𝗍 𝑓).

Example 2.2. Some of the constraints ilustrated in the MCI reporting ontology can be written
into DL-Lite as follows. For instance, we encode the inheritance relations using the following

1For DL-Lite, UNA is sufficient, however, we adopt the SNA as aggregation in the DL expressions, which is
considered later on, requires it.

18

2.1. Description Logics Ontologies

axioms:

SevereMCI ⊑ MCI Eff icientInt ⊑ Intervention
Fire ⊑ HumanCausedMCI Explosion ⊑ HumanCausedMCI

Flood ⊑ NaturalCausedMCI Earthquake ⊑ NaturalCausedMCI
HumanCausedMCI ⊑ MCI NaturalCausedMCI ⊑ MCI

District ⊑ Location City ⊑ Location
Country ⊑ Location.

Such axioms enforce for example that each instance of Firemust be an instance of HumanCausedMCI
and implicitly also of MCI. We can also encode other constraints, such as each MCI must have a
location and a date, and the domain and range constraints can be encoded as follows.

MCI ⊑ ∃hasLocation ∃hasLocation− ⊑ Location
MCI ⊑ ∃date Intervention ⊑ ∃type

∃fatalities ⊑ MCI ∃injured ⊑ MCI
∃requiresInt ⊑ MCI ∃requiresInt− ⊑ Intervention

∃connectedTo ⊑ Location ∃connectedTo− ⊑ Location
∃date− ⊑ String ∃fatalities− ⊑ Integer

∃injured− ⊑ Integer ∃casualties− ⊑ Integer
∃type− ⊑ String ∃effectiveness− ⊑ Real.

The next block of axioms involve roles and features. For example we can encode that fatalities and
injured are sub-relations of casualties and that role isRequiredBy is the inverse of requiresInt.

fatalities ⊑ casualties injured ⊑ casualties
requiresInt− ⊑ isRequiredBy.

Note that domain and range constraints for requiresInt become applicable also for isRequiredBy
(the domain of requiresInt becomes the range of isRequiredBy, and the range becomes the
domain). Lastly, to encode the mandatory participation constraints, such as each district is part
of a city or that whenever there exists an incident with fatalities it automatically requires some
intervention, we resort to the following set of axioms:

District ⊑ ∃partOf .City City ⊑ ∃partOf .Country
∃fatalities ⊑ ∃requiresInt.

We collect all the axioms above into a DL ontology which we denote as MCI and use as a running
example in the following chapters as well.

19

2. ONTOLOGY-MEDIATED QUERY ANSWERING

A DL-Lite ontology is a finite set of axioms in which the interaction between role or feature
inclusions and functionality axioms is not allowed. The restriction on functional roles and features
is to ensure the same computational properties that the languages DL-Lite 𝑐𝑜𝑟𝑒, DL-Lite and
DL-Lite enjoy [CGL+07]. For simplicity, let 𝐑± be the extension of 𝐑 containing additionally
𝑟− for each 𝑟 ∈ 𝐑 and similarly let 𝐅± be the extension of 𝐅 that adds 𝑓− for each 𝑓 ∈ 𝐅.
Definition 2.6 (DL-Lite ontology). A DL-Lite ontology (or TBox)  is a finite set of DL-Lite
axioms which respects the following condition: for each 𝑝 ∈ 𝐑± ∪𝐅± such that (𝖿𝗎𝗇𝖼𝗍 𝑝),  does
not contain any axiom of the form 𝑝′ ⊑ 𝑝.

Incorporating aggregating concepts. In order to enable reasoning about data values we con-
sider DL-Lite𝖺𝗀𝗀 [KKM+16] which is an extension of DL-Lite that allows aggregating functions
(such as 𝗌𝗎𝗆,𝗆𝗂𝗇, 𝖺𝗏𝗀) and value comparisons in concept expressions. Note that the concept
SevereMCI is not expressible in DL-Lite since it requires any of its instances to have a total
number of casualties greater or equal than 100, and similarly for the concept Eff icientInt. There-
fore, to model our running example we must resort to additional concept constructs that allow
aggregation over features. The concrete syntax of DL-Lite with aggregating concepts is defined
as follows:
Definition 2.7 (DL-Lite𝖺𝗀𝗀 syntax, semantics). Let  be a data-value domain. An aggregating
concept w.r.t.  is of form

𝐶 ∶= ⊙𝑑(𝖺𝗀𝗀 𝑓),

where ⊙ is one of <, >,≤,≥,=,≠, 𝑑 ∈ Δ, 𝑓 ∈ 𝐅 and 𝖺𝗀𝗀 is one of the defined
aggregating functions in . Semantics of such expression are presented in Table 2.1, where ⦃⋅⦄
denotes a multi-set.

A DL-Lite𝖺𝗀𝗀 axiom is either a DL-Lite axiom or has the following form 𝐶 ⊑ 𝐵 where 𝐵 is a
DL-Lite concept (as in Definition 2.5).

A DL-Lite𝖺𝗀𝗀 ontology is a finite set of such axioms, but with an additional syntactic restriction.
Definition 2.8 (DL-Lite𝖺𝗀𝗀 ontology). A DL-Lite𝖺𝗀𝗀 ontology (or TBox)  is a finite set of
DL-Lite𝖺𝗀𝗀 axioms such that (i) for each 𝑝 ∈ 𝐑± ∪ 𝐅 such that (𝖿𝗎𝗇𝖼𝗍 𝑝),  does not con-
tain any axiom 𝑝′ ⊑ 𝑝, and (ii) for each 𝑓 ∈ 𝐅±,  does not contain any axiom having ∃𝑓 on the
right-hand side.

The first condition is inherited from DL-Lite, while the second is required due to the interpreta-
tion of features as closed predicates (condition imposed for evaluating queries in the presence
of aggregates to avoid empty answers [CKNT08]) and the fact that unrestricted use of closed
predicates leads to intractability [LSW19].
Whenever the data-value domain is clear from the context we omit the subscript . Using concept
inclusion axioms expressible in DL-Lite𝖺𝗀𝗀 , we can encode what is an instance of SevereMCI or
an instance of Eff icientIntervention, according to the MCI reporting ontology. If such concept

20

2.1. Description Logics Ontologies

inclusion axioms are added to MCI, then we have to discard concept inclusions axioms in which
features are existentially implied. For example, MCI ⊑ ∃date is no longer allowed, since all
possible dates must be known in order to apply aggregating functions. However, this restriction
could be eased for features which do not participate in aggregating concepts.
Example 2.3. In our running example, a severe incident is defined as having the total number
of casualties greater or equal to 100. We can express such property using aggregating concept≥100 (𝗌𝗎𝗆 casualties). Likewise, the concept ≥0.8 (𝖺𝗏𝗀 effectiveness) captures each instance for
which the average effectiveness measurements are greater or equal to 0.8. To encode the fact that
each such instance must be labeled with concept name SevereMCI, respectively with Eff icientInt,
we consider 𝖺𝗀𝗀

MCI which

• extends MCI with the following axioms:

≥100 (𝗌𝗎𝗆 casualties) ⊑ SevereMCI ≥0.8 (𝖺𝗏𝗀 effectiveness) ⊑ Eff icientInt,

• and also drops the following axioms:

MCI ⊑ ∃date Intervention ⊑ ∃type.

 ontologies. A different family of DLs is the  family [BBL05] tailored for capturing life
science domains, among others. In addition to DL-Lite, they allow conjunction and existential
restrictions on the left-hand-side of concept inclusions. We recall the syntax and semantics of
language  and its extension ⊥.
Definition 2.9 (, ⊥ syntax, semantics). A  concept expression is defined as
follows:

𝐵 ∶= ⊤ ∣ 𝐴 ∣ ∃𝑟.𝐵 ∣ 𝐵1 ⊓ 𝐵2 𝑟 ∶= 𝑝 ∣ 𝑝−

where 𝐴 ∈ 𝐂, 𝑝 ∈ 𝐑. Concepts of shape 𝐵 are called basic concepts, with 𝐵1, 𝐵2 denoting as
well basic concepts. The semantics of such expressions is also captured in Table 2.1.

An  axiom is any axiom of the form 𝐵1 ⊑ 𝐵2, where 𝐵1 and 𝐵2 are basic concepts. An⊥ axiom is any  axiom or an axiom in one of the following forms:

𝑟1 ⊑ 𝑟2, 𝖽𝗂𝗌𝗃(𝐵1, 𝐵2), 𝖽𝗂𝗌𝗃(𝑟1, 𝑟2),

where 𝑟1, 𝑟2 ∈ 𝐑±, and 𝐵1, 𝐵2 are basic concepts.

Concept expressions in  are strictly more expressive than in DL-Lite. For example, we can
encode that in the case of a severe fire, an intervention must be requested: SevereMCI ⊓ Fire ⊑
∃requiresInt.

21

2. ONTOLOGY-MEDIATED QUERY ANSWERING

Semantics of DL-Lite(𝖺𝗀𝗀) and  concepts under 
Top concept ⊤ = Δ

𝐎Data-value domain  = ΔConcept name 𝐴 ⊆ Δ
𝐎Role 𝑟 ⊆ Δ
𝐎 × Δ

𝐎Feature 𝑓 ⊆ Δ
𝐎 × Δ

𝐕

Inverse relation (𝑝−) = {(𝑐, 𝑐′) ∣ (𝑐′, 𝑐) ∈ 𝑝}
Role existential restriction (∃𝑠.⊤) = {𝑑 ∈ Δ ∣ ∃𝑑′.(𝑑, 𝑑′) ∈ 𝑠 and 𝑑 ∈ Δ

𝐎}Full role existential restriction (∃𝑟.𝐴) = {𝑑 ∈ Δ ∣ ∃𝑑′.(𝑑, 𝑑′) ∈ 𝑟 and 𝑑 ∈ 𝐴}
Feature existential restriction (∃𝑓) = {𝑑 ∈ Δ ∣ ∃𝑣.(𝑑, 𝑣) ∈ 𝑓 and 𝑣 ∈ Δ

𝐕}Aggregate concept (⊙𝑑𝖺𝗀𝗀 𝑓) = {𝑜 ∈ Δ ∣ 𝖺𝗀𝗀(⦃𝑣 ∈ Δ ∣ (𝑜, 𝑣) ∈ 𝑓⦄) ⊙ 𝑑}
Conjunction (𝐵1 ⊓ 𝐵2) = 𝐵

1 ∩ 𝐵
2

Table 2.1: Semantics of the considered DLs concept and role expressions. We use 𝑝 to denote
either a role or a feature, 𝑠 denotes a possibly inverse role or feature name.

2.1.3 Semantics of DL Ontologies
The semantics of DL-Lite, DL-Lite𝖺𝗀𝗀 and  expressions are defined in Table 2.1. We
consider that interpretations adopt the SNA. A model of a DL ontology is an interpretation that
satisfies each axiom.
Definition 2.10 (Modelhood). Let  be an interpretation. For a DL language , let 𝛼 be an
axiom in . We say that  satisfies 𝛼, written  ⊨ 𝛼, when one of the following cases apply:

- If 𝛼 is of form 𝐶1 ⊑ 𝐶2, then 𝐶
1 ⊆ 𝐶

2 ,
- If 𝛼 is of form 𝑝1 ⊑ 𝑝2, then 𝑝1 ⊆ 𝑝2 ,
- If 𝛼 is of form (𝖿𝗎𝗇𝖼𝗍 𝑝) then whenever (𝑐, 𝑐1) ∈ 𝑝 and (𝑐, 𝑐2) ∈ 𝑝 , then 𝑐1 = 𝑐2,
- If 𝛼 is of form 𝖽𝗂𝗌𝗃(𝐶1, 𝐶2), then 𝐶

1 ∩ 𝐶
2 = ∅,

- If 𝛼 is of form 𝖽𝗂𝗌𝗃(𝑝1, 𝑝2), then 𝑝1 ∩ 𝑝2 = ∅,

where 𝐶1, 𝐶2 are concepts expressions in  and 𝑝, 𝑝1, 𝑝2 are role or feature expressions in .

For a given DL ontology  in , we say that an interpretation  models , written  ⊨ , if 
satisfies each 𝛼 ∈ .

The classical reasoning problems with respect to a DL ontology are as follows. Let  be a given
DL ontology in language . For , the following decision problems are of interest:

1. Ontology satisfiability: Test whether  has a model. In this case we say that  is satisfiable,
otherwise we say that  is unsatisfiable.

2. Concept satisfiability w.r.t. : For a given DL concept 𝐶 , test if 𝐶 ≠ ∅, for some  ⊨ .
3. Subsumption testing w.r.t : For a given axiom 𝐶1 ⊑ 𝐶2, test if 𝐶

1 ⊆ 𝐶
2 , for each  ⊨ .

In this case we write  ⊨ 𝐶1 ⊑ 𝐶2, otherwise we write  ̸⊨ 𝐶1 ⊑ 𝐶2.

22

2.1. Description Logics Ontologies

In this thesis we do not focus on concept satisfiabiliy or subsumption testing as they can be reduced
to ontology unsatisfiability.

2.1.4 Normal Form
We use notation DL-Lite(𝖺𝗀𝗀) for an ontology that is in either DL-Lite or DL-Lite𝖺𝗀𝗀 . We will
further consider that DL-Lite(𝖺𝗀𝗀) and ⊥ ontologies are given in the following restricted
syntactical form, called normal form which ensures that in each axiom must always be a primitive
symbol (i.e., concept, role or feature name).

Normal Form DL-Lite(𝖺𝗀𝗀) . Formally, we say that a DL-Lite(𝖺𝗀𝗀) ontology is in normal form
whenever each axiom is in one of the forms:

𝐴 ⊑ ∃𝑝 ∃𝑝 ⊑ 𝐴 𝑟− ⊑ 𝑟′ 𝖽𝗂𝗌𝗃(𝐴,𝐴′) (𝖿𝗎𝗇𝖼𝗍 𝑝)
⊙𝑑𝖺𝗀𝗀 ⊑ 𝐴 ∃𝑓− ⊑  𝑝1 ⊑ 𝑝2 𝖽𝗂𝗌𝗃(𝑝1, 𝑝2)

where 𝐴,𝐴′ ∈ 𝐂, 𝑟, 𝑟′ ∈ 𝐑, 𝑓 ∈ 𝐅, 𝑝, 𝑝1, 𝑝2 ∈ 𝐑 ∪ 𝐅 and  is a data-value domain.
We can transform every DL-Lite(𝖺𝗀𝗀) ontology into an equivalent one that respects the normal
form by doing the following transformations: (i) for each full existential restriction axiom of the
form 𝐵 ⊑ ∃𝑠.𝐴 we replace it with the following axioms 𝐵 ⊑ ∃𝑠𝑎𝑢𝑥, ∃𝑠−𝑎𝑢𝑥 ⊑ 𝐴 and 𝑠𝑎𝑢𝑥 ⊑ 𝑠,
where 𝑠𝑎𝑢𝑥 is a fresh role name, and (ii) for each general or aggregating concept 𝐶 we use a fresh
concept name 𝐴𝐶 adding an axiom 𝐶 ⊑ 𝐴𝐶 if 𝐶 appears on the left-hand-side of an axiom or
𝐴𝐶 ⊑ 𝐶 otherwise, and then replacing 𝐶 by 𝐴𝐶 in all other axioms.
Such transformation uses polynomially many fresh symbols.

Normal Form ⊥. Similarly, an ⊥ ontology is in normal form if it only contains
inclusions of the following form:
𝐴 ⊑ 𝐴′, 𝐴1 ⊓ 𝐴2 ⊑ 𝐴, 𝐴 ⊑ ∃𝑟.𝐴′, ∃𝑟.𝐴 ⊑ 𝐴′, 𝑟− ⊑ 𝑟′, 𝖽𝗂𝗌𝗃(𝐴,𝐴′), or 𝖽𝗂𝗌𝗃(𝑟, 𝑟′),
where 𝐴,𝐴′, 𝐴1, 𝐴2 ∈ 𝐂, 𝑟, 𝑟′ ∈ 𝐑. The normalization rules use the same “naming principle”
as before which is now applied also to conjunction of complex concepts and nested existential
restrictions [BHLS17].
Let 𝗌𝗂𝗀() denote the signature of any given ontology , consisting of all concept, role and feature
names appearing in .
Proposition 2.1. For any arbitrary ontology  in DL-Lite(𝖺𝗀𝗀) or ⊥ there exists an ontology′ in normal form of the same DL language such that:

a) 𝗌𝗂𝗀() ⊆ 𝗌𝗂𝗀(′),
b) each ′ model of ′ restricted to 𝗌𝗂𝗀() is also a model of , and
c) each  model of  can be extended over 𝗌𝗂𝗀(′) into ′ such that ′ is a model of ′.

23

2. ONTOLOGY-MEDIATED QUERY ANSWERING

2.1.5 Reasoning with ABoxes
A DL dataset, or ABox in DL jargon, consists of a set of facts encoding concept instance declara-
tions and explicit relations between constants, which are part of the assertional knowledge in the
domain of interest. The semantics of ABoxs are also given in terms of interpretations.
In this thesis, from now on, we assume that interpretations use the SNA, which is important in
the presence of aggregation and functional constraints as argued in [KKM+16]: for DL-Lite the
complexity of reasoning increases when the UNA is dropped [CGL+09b], while for DL-Lite𝖺𝗀𝗀the dropping of the SNA can lead to empty answer when evaluating queries [CKNT08].
Definition 2.11 (ABox). An ABox (or dataset)  is a finite set of concept assertions of the form
𝐴(𝑎), role assertions of the form 𝑟(𝑎, 𝑏), or feature assertions of the form 𝑓 (𝑎, 𝑣), where 𝐴 ∈ 𝐂,
𝑟 ∈ 𝐑, 𝑓 ∈ 𝐅, 𝑎, 𝑏 ∈ 𝐊𝐎 and 𝑣 ∈ 𝐊𝐕. The set of constants occurring in  is denoted by cst(),
among which we distinguish ind() = cst() ∩ 𝐊𝐎 as the set of objects (or individuals) and
val() = cst() ∩𝐊𝐕 as the set of data values.

An interpretation  satisfies an assertion 𝛼, written  ⊨ 𝛼 if (i) 𝛼 = 𝐴(𝑎) and 𝑎 ∈ 𝐴 , or
(ii) 𝛼 = 𝑝(𝑐1, 𝑐2) and (𝑐1, 𝑐2) ∈ 𝑝 . We say that  satisfies a dataset , written  ⊨ , if 
satisfies each assertion in .

Note that a dataset is always satisfiable. In fact, any dataset can be viewed as an interpretation,
which is sometimes convenient to do. In the same way, an interpretation can be viewed as a
(possibly infinite) dataset. Therefore, given a dataset , the interpretation  corresponding to is defined as follows:
Δ
𝐎 = ind() Δ

𝐕 = val()
𝐴 = {𝑎 ∣ 𝐴(𝑎) ∈ } 𝑝 = {(𝑐1, 𝑐2) ∣ 𝑝(𝑐1, 𝑐2) ∈ },
for each 𝐴 ∈ 𝐂 and 𝑝 ∈ 𝐑 ∪ 𝐅. Conversely, for an interpretation , the (possible infinite) dataset corresponding to  contains for each 𝑎 ∈ 𝐴 an assertion 𝐴(𝑎), and for each (𝑐1, 𝑐2) ∈ 𝑝 an
assertion 𝑝(𝑐1, 𝑐2) .
A standard reasoning problem in DLs is to test if a given ABox is consistent with respect to a
DL ontology. In general, this means that one has to check if there exists an interpretation that
satisfies each assertion in the data and which models the ontology. However, in some cases, the
notion of modelhood for a dataset and an ontology can be strictly more restrictive, as it is the
case for DL-Lite𝖺𝗀𝗀 . We define below the dataset semantics with respect to each of the previously
introduced ontology languages.
The semantics of a KB (,) is defined in terms of interpretations that model both  and .
When  contains aggregating concepts, it is convenient to restrict the models to those that do not
allow other feature assertions than those that follow directly from the data and the ontology.
Definition 2.12 (Knowledge Base). Let  be an ABox and  a DL ontology. The pair (,) is
called a knowledge base (KB).
An interpretation  is feature closed for (,) if for each 𝑓 ∈ 𝐅, 𝑓 = {(𝑎, 𝑣) ∣ 𝑓 ′(𝑎, 𝑣) ∈ and 𝑓 ′ ⊑∗ 𝑓}, where ⊑∗ denotes the reflexive and transitive closure of ⊑ in .

24

2.1. Description Logics Ontologies

e1

Fire
HumanCausedMCI SevereMCI

MCI
disrt1

District
Location

Vienna

City
Location

Austria

Country
Location

90 15date1

distr2
Location

yesno

hasLocation partOf partOf

partOf

injured fatalities
date connectedTo

partOf

pubTrAccess

hospAccess

pubTrAccess

hospAccess

casualties
casualties

Figure 2.1: Example of the semantics of a dataset  w.r.t. MCI in terms of a model .

An interpretation  is a model of  w.r.t. , written  ⊨ (,), if  satisfies  and models .
If  is in DL-Lite𝖺𝗀𝗀 then  must additionally be feature closed for (,).

As argued by Kharlamov et al. [KKM+16], the restriction for DL-Lite𝖺𝗀𝗀 to models that are
feature closed does not increase the complexity of reasoning. This is due to the fact that existential
restrictions concerning features do not occur on the right-hand-side of inclusion axioms.
The following example illustrates an interpretation is a model of a dataset with respect to theMCI ontology.

Example 2.4. Consider the following ABox  which encodes facts such as 𝖾𝟣 is a fire incident,
with multiple reported casualties and it occurs in the first district of Vienna. In addition to the
previously introduced vocabulary, the ABox contains as features: hosAccess to denote whether a
hospital is accessible from some location, and pubTrAccess to denote if some public transport is
available on locations.

 = {Fire(𝖾𝟣), hasLocation(𝖾𝟣, 𝖽𝗂𝗌𝗍𝗋𝟣),District(𝖽𝗂𝗌𝗍𝗋𝟣), partOf(𝖽𝗂𝗌𝗍𝗋𝟣,𝖵𝗂𝖾𝗇𝗇𝖺),
partOf(𝖵𝗂𝖾𝗇𝗇𝖺,𝖠𝗎𝗌𝗍𝗋𝗂𝖺), partOf(𝖽𝗂𝗌𝗍𝗋𝟣,𝖠𝗎𝗌𝗍𝗋𝗂𝖺), injured(𝖾𝟣, 𝟫𝟢), fatalities(𝖾𝟣, 𝟣𝟧),
hospAccess(𝖽𝗂𝗌𝗍𝗋𝟣, 𝗇𝗈), pubTrAccess(𝖽𝗂𝗌𝗍𝗋𝟣, 𝗒𝖾𝗌)}.

We consider interpretation  with domain:

Δ = {𝖾𝟣, 𝖽𝗂𝗌𝗍𝗋𝟣,𝖵𝗂𝖾𝗇𝗇𝖺,𝖠𝗎𝗌𝗍𝗋𝗂𝖺, 𝟫𝟢, 𝟣𝟧, 𝗇𝗈, 𝗒𝖾𝗌, 𝖽𝗂𝗌𝗍𝗋𝟤, 𝖽𝖺𝗍𝖾𝟣},

25

2. ONTOLOGY-MEDIATED QUERY ANSWERING

and which interprets each symbol in the vocabulary of MCI (from Example 2.2) as follows:

Fire = HumanCausedMCI = SevereMCI = MCI = {𝖾𝟣},
District ={𝖽𝗂𝗌𝗍𝗋𝟣}, City = {𝖵𝗂𝖾𝗇𝗇𝖺},
Country ={𝖠𝗎𝗌𝗍𝗋𝗂𝖺}, Location = {𝖽𝗂𝗌𝗍𝗋𝟣, 𝖽𝗂𝗌𝗍𝗋𝟤,𝖵𝗂𝖾𝗇𝗇𝖺,𝖠𝖳},

date ={(𝖾𝟣, 𝖽𝖺𝗍𝖾𝟣)}, hasLocation = {(𝖾𝟣, 𝖽𝗂𝗌𝗍𝗋𝟣)},
injured ={(𝖾𝟣, 𝟫𝟢)}, fatalities = {(𝖾𝟣, 𝟣𝟧)},

hospAccess ={(𝖽𝗂𝗌𝗍𝗋𝟣, 𝗇𝗈), (𝖽𝗂𝗌𝗍𝗋𝟤, 𝗒𝖾𝗌)} pubTrAccess = {(𝖽𝗂𝗌𝗍𝗋𝟣, 𝗒𝖾𝗌), (𝖽𝗂𝗌𝗍𝗋𝟤, 𝗒𝖾𝗌)},
partOf ={(𝖽𝗂𝗌𝗍𝗋𝟣,𝖵𝗂𝖾𝗇𝗇𝖺), (𝖽𝗂𝗌𝗍𝗋𝟤,𝖵𝗂𝖾𝗇𝗇𝖺),

(𝖵𝗂𝖾𝗇𝗇𝖺,𝖠𝗎𝗌𝗍𝗋𝗂𝖺)}, connectedTo = {(𝖽𝗂𝗌𝗍𝗋𝟣, 𝖽𝗂𝗌𝗍𝗋𝟤)}.

All other symbols are interpreted as ∅. Note that each fact in  is satisfied by , and in addition contains some constants not in : 𝖽𝖺𝗍𝖾𝟣 which denotes the date of the incident 𝖾𝟣, and an
additional location 𝖽𝗂𝗌𝗍𝗋𝟤 which is also part of Vienna. Given that  satisfies each axiom in MCI,
it is also a model of MCI.

Figure 2.1 illustrates why  is a model of  w.r.t. MCI. In the figure, boxed nodes denote object
constants, while dot nodes denote value constants. Node labels denote concept assertions while
edge labels denote role or feature assertions. In order to model  and MCI there are implicit facts,
inferred from existing ABox assertions and ontology axioms, which must be satisfied. Moreover, 
can also include other additional facts which are not necessarily derived from existing knowledge.
All implicit and additional facts in  are colored in blue.

Let us now focus on 𝖺𝗀𝗀
MCI previously defined in Example 2.3. In this case,  is no longer a model

given that for feature date, there exists pair (𝖾𝟣, 𝖽𝖺𝗍𝖾𝟣) which is not present nor derivable from the
data (using the reflexive and transitive closure of ⊑ in 𝖺𝗀𝗀

MCI). However, by dropping such pair
from date , all axioms in 𝖺𝗀𝗀

MCI are still satisfied. Hence, for ′ which agrees with  except for
date′ = ∅ and for hospAccess = {(𝖽𝗂𝗌𝗍𝗋𝟣, 𝗇𝗈)} and pubTrAccess = {(𝖽𝗂𝗌𝗍𝗋𝟣, 𝗒𝖾𝗌)}, we have
that ′ is a model of  w.r.t. 𝖺𝗀𝗀

MCI.

Whenever for a given KB (,) a model exists, we say that  is consistent w.r.t. . ABox
consistency is an important prerequisite for various reasoning tasks. A given ABox is trivially
consistent whenever the ontology does not contain negative constraints (i.e., disjointness or
functionality axioms). In the presence of negative axioms, the existence of a model is no longer
guaranteed since there can be that no interpretation that models the ABox and that satisfies all
inclusion axioms without violating a negative axiom.

Definition 2.13 (ABox consistency). Let  be an ABox and  an ontology. We say that  is
consistent w.r.t.  if and only if there exists an interpretation  that is a model of  w.r.t. .
Whenever  is consistent w.r.t.  we say that the KB (,) is satisfiable.

26

2.2. Ontology-mediated Query Answering

Ensuring consistency is important since otherwise ex falso quodlibet—the principle in classical
logic meaning "from falsehood everything follows"— becomes applicable when testing logical
entailment. Therefore, a central decision problem for any given KB is:

-ABOX CONSISTENCY
Input: An ontology  in  and an ABox .
Question: Is  consistent w.r.t. ?

2.2 Ontology-mediated Query Answering
Query answering is one of the most fundamental tasks in data management. However, in presence
of ontologies evaluating queries is more challenging compared to querying plain data, since the
main goal is to leverage the domain knowledge for complete answers, a task that boils down
to logical entailment. In spite of the fact that testing logical entailment in first-order logic is in
general undecidable, the expressivity of the ontology and query languages does play a role in
ensuring decidability and in designing efficient answering techniques.

2.2.1 Query Languages
In this thesis, we consider queries that can be formulated in first-order logic (FOL). Our focus
is mainly on so-called conjunctive queries (CQs), which are FOL expressions composed using
conjunction and existential quantification only. CQs are of interest considering that they capture
the majority of queries that occur in practical settings. Moreover, it is also a well-studied query
language in relational databases since it has the same expressive power as the select-project-join
fragment of the SQL query language.

Query atoms. Let 𝐕 be a countable infinite set of variables. A term 𝑡 is either a variable or
an element in 𝐊. A query atom has one of the following forms: 𝐴(𝑥), 𝑝(𝑥, 𝑦) or 𝑡1 = 𝑡2, where
𝑥, 𝑦 ∈ 𝐕, 𝐴 ∈ 𝐂, 𝑝 ∈ 𝐑 ∪ 𝐅 and 𝑡1, 𝑡2 are terms. An aggregating query atom is an atom of form
𝐶(𝑥), where 𝐶 is a DL-Lite𝖺𝗀𝗀 aggregating concept.

First-order query language. We use query atoms as primitive FOL formulas and we recall
that FOL formulas are constructed inductively as follows: a) a query atom is a formula, b) if 𝜙 is
a formula then ¬𝜙, ∃𝑥.𝜙, ∀𝑥.𝜙 are formulas, and c) if 𝜙1, 𝜙2 are formulas, then 𝜙1 ∧ 𝜙2, 𝜙1 ∨ 𝜙2
and 𝜙1 → 𝜙2 are also formulas.
For a FOL formula 𝜙, we denote by term(𝜙) the set of terms in 𝜙 among which we distinguish :
vars(𝜙)— the set of variables in 𝜙, and free(𝜙)— the set of variables that are not in the scope of
any of the quantifiers ∃ or ∀ (i.e., they occur freely). For a FOL formula 𝜙, we sometimes write
𝜙(𝑥1,… , 𝑥𝑛) to denote that tuple (𝑥1,… , 𝑥𝑛) are the free variables in 𝜙. If a variable occurs in
the scope of a quantifier (i.e, is not free), then it is called bound. A first-order query (FO-query)
is a FOL formula 𝜙(𝑥⃗) and, in this context, 𝑥⃗ are called answer variables.

27

2. ONTOLOGY-MEDIATED QUERY ANSWERING

(Union of) conjunctive queries. FO queries that are formulated using only conjunction and
existential quantification are called conjunctive queries (CQ). A generalization of such language
is to take the disjunction of a set of CQs.
Definition 2.14 ((Union of) CQs). A conjunctive query 𝑞(𝑥⃗) is a FOL query of the form ∃𝑦.𝜙(𝑥⃗, 𝑦),
such that 𝜙 is a FOL formula constructed using only ∧, and 𝑦 denote all the bound variables in 𝑞.

A union of conjunctive queries (UCQ) 𝑄(𝑥⃗) is a FOL query of the form ∃𝑦.(𝜙1(𝑥⃗, 𝑦1) ∨ ⋯ ∨
𝜙𝑛(𝑥⃗, 𝑦𝑛)), such that, for 1 ≤ 𝑖 ≤ 𝑛, each 𝜙𝑖(𝑥⃗, 𝑦𝑖) is a FOL query constructed using only ∧, and
𝑦 =

⋃𝑛
𝑖=1 𝑦𝑖 denotes all the bound variables in 𝑄.

Example 2.5. Given the MCI ontology, we can express using a CQ, the following information
request: find all severe human-caused incidents that have occurred in Austria:

𝑞(𝑥) ← ∃𝑦𝑧HumanCausedMCI(𝑥)∧SevereMCI(𝑥)∧hasLocation(𝑥, 𝑦)∧partOf(𝑦, 𝑧)∧𝑧 = 𝖠𝗎𝗌𝗍𝗋𝗂𝖺.

Query languages with aggregation. We consider a first extension of (U)CQs that allow for
aggregating query atoms in the query expressions. Such query language is useful to exploit
DL-Lite𝖺𝗀𝗀 ontologies when querying.
Definition 2.15 ((U)CQs with aggregating atoms). A CQ with aggregating query atoms (CQA)
𝑞(𝑥⃗) is an expression of the form ∃𝑦.𝜙𝖺𝗀𝗀(𝑥⃗, 𝑦) such that 𝜙𝖺𝗀𝗀 denotes a conjunction of (possible
aggregating) query atoms, and 𝑦 denote all the bound variables in 𝑞.

Similarly, a UCQ with aggregating query atoms (UCQA) 𝑄(𝑥⃗) is an expression of the form
∃𝑦.(𝑞1(𝑥⃗, 𝑦1) ∨ ⋯ ∨ 𝑞𝑛(𝑥⃗, 𝑦𝑛)) where for 1 ≤ 𝑖 ≤ 𝑛, each 𝑞𝑖(𝑥⃗, 𝑦) is a CQA and 𝑦 =

⋃𝑛
𝑖=1 𝑦𝑖

denotes all the bound variables in 𝑄.

Each (U)CQ is implicitly a (U)CQA. In addition, using a (U)CQA we can capture objects having
a certain aggregated value on some particular feature. A concrete example is to consider a
query that captures non-severe fires located in Austria. For that, the aggregating concept <100
(𝗌𝗎𝗆 casualties) is used to identify such incidents.

𝑞(𝑥) ← ∃𝑦 Fire(𝑥)∧ <100 (𝗌𝗎𝗆 casualties)(𝑥) ∧ hasLocation(𝑥, 𝑦), 𝑦 = 𝖠𝗎𝗌𝗍𝗋𝗂𝖺.

Having aggregating concepts in the query does not support some of the basic analytical needs,
such as retrieving the output of the aggregating function. Consider for instance, the task to analyze
vulnerable locations that are prone to human-caused MCIs. For that, one has to identify locations
and the number of MCIs that have occurred in each location. Hence, we expand (U)CQAs such
that the aggregating functions can be applied to query terms in order to retrieve the aggregating
outcome as part of the answer. Such query language is similar to CQs with aggregating functions,
previously introduced in [CKNT08]. We call an aggregating term any expression of the form
𝖺𝗀𝗀(𝑧), where 𝖺𝗀𝗀 is an aggregating function over some data-value domain , and 𝑧 is called an
aggregating variable.

28

2.2. Ontology-mediated Query Answering

Definition 2.16 (Analytical queries). An analytical CQA 𝑞(𝑥⃗, 𝖺𝗀𝗀(𝑧)) consists of a CQA 𝑞(𝑥⃗) and
an aggregating term 𝖺𝗀𝗀(𝑧) such that 𝑧 is a variable in 𝑞 not from 𝑥⃗.

Similarly, an analytical UCQA 𝑄(𝑥⃗, 𝖺𝗀𝗀(𝑧)) consists of UCQA 𝑄(𝑥⃗) and an aggregating term
𝖺𝗀𝗀(𝑧) such that 𝑧 is a variable in 𝑄 not from 𝑥⃗.

For an analytical query, 𝑥⃗ is called the grouping variables, the expression denoted by (U)CQA is
called the condition for 𝑥⃗ and 𝖺𝗀𝗀(𝑧) is called the the measurement for 𝑥⃗.

Analytical queries and queries with aggregating concepts complement each other in the sense that
each query language can express some information needs that the other cannot.
Example 2.6. In order to obtain the total number of casualties of MCIs per location where an
intervention was required, we can use the following analytical CQ:

𝑞1(𝑧, 𝗌𝗎𝗆(𝑦)) ← ∃𝑥𝑢MCI(𝑥) ∧ casualties(𝑥, 𝑦) ∧ requiresInt(𝑥, 𝑢) ∧ hasLocation(𝑥, 𝑧).

Using an aggregating concept atom in the query we can focus only on incidents with more than
100 casualties:

𝑞2(𝑧, 𝗌𝗎𝗆(𝑦)) ←∃𝑥𝑢MCI(𝑥) ∧ casualties(𝑥, 𝑦) ∧ requiresInt(𝑥, 𝑢) ∧ hasLocation(𝑥, 𝑧)
∧ ≥100 (𝗌𝗎𝗆 casualties)(𝑥).

The answers to 𝑞2 will be tuples of the form (𝓁, 𝑘) where 𝓁 is a location where an MCI which
required some intervention and had more than 100 casualties, and 𝑘 is the total number of
casualties at location 𝓁.

For each introduced query language, whenever a given query has no answer variables it is called
a Boolean query.

2.2.2 Ontology-mediated Queries
Ontology-mediated queries (OMQs) are pairs consisting of a query, of some concrete query
language, and an ontology in a particular DL dialect. In this thesis, we focus on OMQs where the
ontology is in DL-Lite(𝖺𝗀𝗀) and queries are CQs which may contain some form of aggregation. For
an overview of other existing OMQ classes, we refer the reader to the in-dept overview [BO15].
Definition 2.17 (Ontology-mediated Queries). Let  be a DL ontology. An ontology-mediated
query (OMQ)  is a pair (, 𝑞(𝑥⃗)) where 𝑞(𝑥⃗) is a CQA. An analytical OMQ (OMQ𝖺𝗀𝗀)  is a
pair (, (𝑞(𝑥⃗, 𝖺𝗀𝗀(𝑧))) where 𝑞(𝑥⃗, 𝖺𝗀𝗀(𝑧) is an analytical CQA.

Answering OMQs. Finding answers to a query implies finding all variables assignments that
make the query true in a given interpretation. For an OMQ, we need to find all such assignments
that hold in every model of the ABox w.r.t. the ontology. Each answer to an (ontology-mediated)
query is witnessed by a variable assignment, called query match.

29

2. ONTOLOGY-MEDIATED QUERY ANSWERING

Query q(x)

e1

Fire
HumanCausedMCI SevereMCI

MCI disrt1

District
Location

Vienna

City
Location

AT

Country
Location

90 15date1

distr2
Location

yesno

hasLocation partOf partOf

partOf

injured
casualties

fatalities
casualties

date connectedTo

partOf

pubTrAccess

hospAccess

pubTrAccess

hospAccess

x

HumanCausedMCI
SevereMCI

y
Location

AT
hasLocation partOf

Figure 2.2: Example of matching a query over an interpretation.

Definition 2.18 (Query match). Let 𝜑(𝑥⃗) be a either a FO-query or a UCQA such that 𝑥⃗ =
(𝑥1,… , 𝑥𝑛). For an interpretation , let 𝑎 = (𝑎1,… , 𝑎𝑛) be a tuple of elements in Δ of same
arity as 𝑥⃗. We say that 𝑎 is an answer of 𝜑(𝑥⃗) in  if there exists a mapping 𝜋 ∶ term(𝜑) ↦ Δ
such that:

(i) 𝜋(𝑥𝑖) = 𝑎𝑖,
(ii) 𝜋(𝑐) = 𝑐 , for each 𝑐 ∈ cst(𝜑), and

(iii)  satisfies 𝜑𝜋.

In this case we call 𝜋 a match for 𝜑 in . We use ans(𝜑(𝑥⃗),) to denote the set of all answers to
𝜑(𝑥⃗) in .

Example 2.7. Recall the query in Example 2.5 and the interpretation in Example 2.4. Figure
2.2 illustrates the fact that for 𝑞(𝑥) there exists a query match over  such that 𝖾𝟣 is an answer of
𝑞(𝑥) in . Faded nodes, edges and labels denote facts in  that are not relevant for mapping 𝑞.

Without an ontology, the answers to a query over an ABox  are computed by finding all query
mappings over . The semantics of answering OMQs is to find all sets of answers in every
model and then taking their intersection.
Definition 2.19 (OMQ certain answers). Let  be an ABox and  = (, 𝑞(𝑥⃗)) an OMQ, with
𝑥⃗ = (𝑥1,… , 𝑥𝑛). A tuple 𝑎 = (𝑎1,… , 𝑎𝑛) of constants from , of same arity as 𝑥⃗ is called a
certain answer of  over  if 𝑎 is an answer in every model  of  w.r.t. .

We denote by 𝑐𝑒𝑟𝑡(𝑞(𝑥⃗),,) the set of certain answers of (, 𝑞(𝑥⃗)) over .

30

2.2. Ontology-mediated Query Answering

Example 2.8 (Continued). Resuming the Example 2.7, when evaluating (MCI, 𝑞(𝑥)) over the ABox from Example 2.4, we have that 𝑐𝑒𝑟𝑡(𝑞(𝑥),MCI,) = ∅, since no instances of SevereMCIs
can be deduced. However, in the case of the OMQ (𝖺𝗀𝗀

MCI, 𝑞(𝑥)), 𝖾𝗏𝟣 is a certain answer since
from the axiom ≥100 (𝗌𝗎𝗆 casualties) ⊑ SevereMCI, we obtain that in each feature closed model
of  w.r.t. 𝖺𝗀𝗀

MCI, constant 𝖾𝗏𝟣 is an answer to 𝑞(𝑥).

Answering OMQ𝖺𝗀𝗀. Intuitively an answer to an analytical query 𝑞(𝑥⃗, 𝖺𝗀𝗀(𝑧)) over an interpreta-
tion  consists of a tuple 𝑎 such that 𝑎 is an answer to the CQ 𝑞(𝑥⃗) in , and a numeric value 𝑛which
is the output value of 𝖺𝗀𝗀 over the multi-set𝑉 = ⦃𝑐 ∣ there is 𝜋 a match of 𝑞 in  such that 𝜋(𝑧) =
𝑐 and 𝜋(𝑥⃗) = 𝑎⦄. Since the output of the aggregating function is not the same in each model ,
the set of certain answers is in general empty for OMQ𝖺𝗀𝗀.
For this reason, a new semantics for evaluating OMQ𝖺𝗀𝗀, proposed in [CKNT08], is to apply the
aggregating function only to sets 𝑉 that consist of "known values", i.e., constants in the data.
Such semantics is denoted as epistemic certain answer semantics. We can construct such answers
in a natural way by computing the certain answers to the OMQ in which the aggregating variables
become answer variables.
Definition 2.20 (OMQ𝖺𝗀𝗀 certain answer). Let (, 𝑞(𝑥⃗, 𝖺𝗀𝗀(𝑧))) be an OMQ𝖺𝗀𝗀 and  an ABox.
A tuple (𝑎, 𝑛), such that 𝑎 is a tuple of constants from  of the same arity as 𝑥⃗ and 𝑛 is an element
in some data-value domain , is called a certain answer of (, (𝑞(𝑥⃗, 𝖺𝗀𝗀(𝑧))) over  if for

𝐺𝑎 = ⦃𝑑 ∣ (𝑎, 𝑑) ∈ 𝑐𝑒𝑟𝑡(𝑞(𝑥⃗, 𝑧),,))⦄
we have that 𝖺𝗀𝗀(𝐺𝑎) = 𝑛.

Example 2.9. Recall query 𝑞1(𝑧, 𝗌𝗎𝗆(𝑦)) in Example 2.6. Evaluating (MCI, 𝑞1(𝑧, 𝗌𝗎𝗆(𝑦)))
over  we obtain that tuple (𝖽𝗂𝗌𝗍𝗋𝟣, 105) is a certain answer since 𝖾𝟣 is a HumanCausedMCI,
therefore implicitly an MCI, that occurs at that particular location, and since fatalities(𝑒1, 15),
by axiom ∃fatalities ⊑ ∃requiresInt it implicitly required some intervention. The total number of
casualties 105 is obtained by reasoning over existing facts using axioms injured ⊑ casualties and
fatalities ⊑ casualties and taking the sum of both injured and fatalities.

Since evaluating OMQs𝖺𝗀𝗀 in an ontology language  relies on evaluating an OMQs in , we
focus on defining the relevant decision problems, which are central in this thesis, only for OMQs.

-INSTANCE CHECKING
Input: A DL ontology  in , a dataset  and an assertion 𝛼.
Question: For each  model of  w.r.t. , does  satisfy 𝛼?

-CERTAIN ANSWERS
Input: An OMQ  in , an ABox  and a tuple 𝑎.
Question: Is 𝑎 a certain answer of  over ?

31

2. ONTOLOGY-MEDIATED QUERY ANSWERING

It is often the case that the ontology and the query is comparably smaller than the data, therefore
it is reasonable to assume that the only parameter that is most influential in having efficient query
answering techniques is the size of the data. This is a standard assumption in the database setting
[Var82], and it has also been considered in the case of DLs [CGL+07]. Formally, let  be a DL
ontology language,  an ontology in  and 𝑞(𝑥⃗) a CQ. We are then also interested in the following
decision problem.

-CERTAIN ANSWERS(, 𝑞)
Input: An ABox  and a tuple 𝑎.
Question: Is 𝑎 a certain answer of (, 𝑞) over ?

Containment of OMQs. In relational databases, query containment is the problem of deciding
whether the answers of a query are contained in the answers of another query for any dataset
and sometimes the dataset may be required to satisfy particular contraints, such as the case of
integrity constraints, problem known as query containment under constraints. In our setting, the
constraints are encoded in the ontology. The definition can be easily lifted to the OMQ case.
Definition 2.21 (OMQ containment). Let (, 𝑞1(𝑥⃗)) and (, 𝑞2(𝑥⃗)) be two OMQs defined over
the same ontology . We say that query 𝑞1 is contained in 𝑞2 w.r.t. , written 𝑞1 ⊆ 𝑞2, if for
each ABox  consistent w.r.t.  we have that 𝑐𝑒𝑟𝑡((, 𝑞1(𝑥⃗)),) ⊆ 𝑐𝑒𝑟𝑡((, 𝑞2(𝑥⃗)),).

It is convenient to identify pairs of queries for which containment holds only for a particular
dataset. This enables query answering optimizations and designing ontology-mediated techniques
to support data exploration, which we discuss in this thesis.
Definition 2.22 (OMQ containment w.r.t ABoxes). Let (, 𝑞1(𝑥⃗)) and (, 𝑞2(𝑥⃗)) be two OMQs
defined over the same ontology  and let  be an ABox consistent w.r.t. . We say that 𝑞1 is
contained in 𝑞2 w.r.t. (,), written 𝑞1 ⊆(,) 𝑞2, if 𝑐𝑒𝑟𝑡((, 𝑞1),) ⊆ 𝑐𝑒𝑟𝑡((, 𝑞2),).

Note that containment w.r.t. ABoxes can also be reduced to OMQ answering as by evaluating
each OMQ over the given dataset, we can establish the containment relation. However, to decide
containment w.r.t. the ontology alone would require more sophisticated techniques, as the answer
containment needs to hold for all possible ABoxes.

2.3 Techniques for Answering DL OMQs
For DL-Lite family of languages, the main techniques for answering OMQs are based on query
rewriting and saturation. The general idea of the rewriting-based approach is to embed the
ontology into the query thus creating a more complex FO-query which is then evaluated over the
data alone. Such approach is desirable considering that the certain answers can be computed in a
data-independent fashion. Saturation-based techniques enrich the data with additional information,
implied by existing facts and the ontology, which is then made available for query answering. We

32

2.3. Techniques for Answering DL OMQs

extend the saturation and rewriting approaches for DL-Lite to capture also DL-Lite𝖺𝗀𝗀 ontologies.
Afterwards, we show that we can focus solely on DL-Lite OMQs since answering DL-Lite𝖺𝗀𝗀OMQs can be polynomially reduced to answering DL-Lite OMQs.

2.3.1 Chase Procedure and Construction of the Canonical Model
A KB can have infinitely many models, however to compute certain answers to CQs it is sufficient
to evaluate a query over some canonical model, which is a model that is universal in the sense
that it can be homomorphically mapped into any other model. This also means that a canonical
model is in a sense minimal, since it satisfies only facts that are required by the ontology.
Definition 2.23 (Canonical model). Given an ABox  and an ontology , a canonical model of w.r.t.  is a model  of  w.r.t.  such that  ⊳  , for each  model of  w.r.t. .

Intuitively, given an answer 𝑎 to a CQ 𝑞(𝑥⃗) in some canonical model , there exists a match 𝜋 of
𝑞 in  such that 𝜋(𝑥⃗) = 𝑎. Since there exists a homomorphism ℎ from  into each model  of w.r.t. , we obtain that the composition of 𝜋 and ℎ yields a match of 𝑞(𝑥⃗) in  , hence 𝑎 is a
certain answer.
For a given ontology we say that  satisfies the canonical model property if for each ABox  a
canonical model of  w.r.t.  exists.
Proposition 2.2. Let  be a DL ontology that satisfies the canonical model property. For any
OMQ (, 𝑞(𝑥⃗)) and any ABox  consistent w.r.t. , we have that

𝑐𝑒𝑟𝑡(𝑞(𝑥⃗),,) = ans(𝑞(𝑥⃗),,)
where , is a canonical model of  w.r.t. .

It is known that Horn-DLs, such as DL-Lite and , enjoy the canonical model property. In the
case of DL-Lite(𝖺𝗀𝗀) , one of the core techniques to construct the canonical model is to extend
the ABox with facts that are entailed by the data together with the ontology, procedure which
is sometimes referred as the chase. We extend the standard definition of the chase procedure of
[CGL+07] to capture also axioms specific to DL-Lite𝖺𝗀𝗀 .
Definition 2.24 (Chase procedure). Let  be a DL-Lite(𝖺𝗀𝗀) ontology and  an ABox. We consider
a function 𝑔 that takes as input a multi-set of assertions  and an axiom 𝛼, and outputs the effect
of applying 𝛼 to . We assume that  is normalized. We define

𝑐ℎ𝑎𝑠𝑒() =
⋃
𝑗∈ℕ

𝑗 ,

with 0 = , and 𝑗+1 = 𝑗 ∪ 𝑔𝛼(′), where ′ ⊆ 𝑗 , 𝛼 ∈  and 𝑔𝛼(′) are in one of the
cases below:

• If ′ = {𝐴1(𝑎)}, and 𝐴2(𝑎) ∉ 𝑗 , then 𝑔𝐴1⊑𝐴2
(′) = {𝐴2(𝑎)}.

33

2. ONTOLOGY-MEDIATED QUERY ANSWERING

• If ′ = {𝐴(𝑎)}, and there is no constant 𝑐 such that 𝑝(𝑎, 𝑐) ∈ 𝑗 , then 𝑔𝐴⊑∃𝑝(′) =
{𝑝(𝑎, 𝑐𝑛𝑒𝑤)}, where 𝑐𝑛𝑒𝑤 is a fresh constant not appearing in 𝑗 .

• If ′ = 𝑝(𝑎, 𝑐), and 𝐴(𝑎) ∉ 𝑗 then 𝑔∃𝑝⊑𝐴(′) = {𝐴(𝑎)}.
• If ′ = {𝑝(𝑐1, 𝑐2)}, and 𝑝′(𝑐1, 𝑐2) ∉ 𝑗 , then 𝑔𝑝⊑𝑝′(′) = {𝑝′(𝑐1, 𝑐2)}.
• If ′ = {𝑝(𝑐1, 𝑐2)}, and 𝑝′(𝑐2, 𝑐1) ∉ 𝑗 , then 𝑔𝑝−⊑𝑝′(′) = {𝑝′(𝑐2, 𝑐1)}.
• If′ = ⦃𝑓 (𝑐, 𝑣1),… , 𝑓 (𝑐, 𝑣𝑛)⦄, 𝖺𝗀𝗀(⦃𝑣1,… , 𝑣𝑛⦄)⊙𝑛, and𝐴(𝑐) ∉ 𝑗 , then 𝑔⊙𝑛(𝖺𝗀𝗀 𝑓)⊑𝐴 =

{𝐴(𝑐)}

where 𝐴,𝐴1, 𝐴2 ∈ 𝐂, 𝑝, 𝑝′ ∈ 𝐑 ∪ 𝐅, 𝑓 ∈ 𝐅. We denote 𝑐ℎ𝑎𝑠𝑒𝑖() =
⋃

0≤𝑗≤𝑖𝑗 to be the chase

obtained after 𝑖 applications of the rules above. We use 𝑐ℎ𝑎𝑠𝑒, to denote the interpretation
corresponding to 𝑐ℎ𝑎𝑠𝑒().

If  is consistent w.r.t. , then 𝑐ℎ𝑎𝑠𝑒, is a model of  w.r.t. . This holds from the construction of
𝑐ℎ𝑎𝑠𝑒():  is trivially satisfied, and since axioms in  are exhaustively applied in such a way
that functionality and disjointness constraints are not violated, we obtain that the interpretation
corresponding to 𝑐ℎ𝑎𝑠𝑒() models . Moreover, for DL-Lite, it is known that 𝑐ℎ𝑎𝑠𝑒, is a
canonical model [CGL+09b]. It is not difficult to see that this holds also for DL-Lite𝖺𝗀𝗀 .

Lemma 2.1. Let  be a DL-Lite𝖺𝗀𝗀 ontology. For any ABox  consistent w.r.t. , 𝑐ℎ𝑎𝑠𝑒, is a
model of  w.r.t. .

Proof. Let  be an arbitrary ABox that is consistent w.r.t.  and we want to show that 𝑐ℎ𝑎𝑠𝑒, is
a model of  w.r.t. . We proceed with showing the following:
Claim 1. For 0 ≤ 𝑖, if  is a model of 𝑐ℎ𝑎𝑠𝑒𝑖 w.r.t. , then  is also a model of 𝑐ℎ𝑎𝑠𝑒𝑖+1 w.r.t. .

This claim follows almost immediately given that the only additional facts that 𝑐ℎ𝑎𝑠𝑒𝑖+1 contains
follow immediately from some multi-set of facts in 𝑐ℎ𝑎𝑠𝑒𝑖 and some axiom in .
We assume that 𝑐ℎ𝑎𝑠𝑒, is not a model of  w.r.t. , hence there exists the smallest step 𝑘 such
that 𝑐ℎ𝑎𝑠𝑒𝑘 is inconsistent w.r.t. . Using the above claim we obtain that for each 0 < 𝑖 < 𝑘, we
have that 𝑐ℎ𝑎𝑠𝑒𝑖 is inconsistent w.r.t.  and since 𝑐ℎ𝑎𝑠𝑒0 =  we obtain a contradiction with the
fact that  is consistent w.r.t. . Thus our assumption is false and we conclude that 𝑐ℎ𝑎𝑠𝑒, is a
model of  w.r.t. . This concludes the lemma proof.

From the fact that the chase procedure introduces only the necessary new facts and since it uses
fresh constants, it is not difficult to deduce that it is also a canonical model of  w.r.t. .
Proposition 2.3. Let  be a DL-Lite(𝖺𝗀𝗀) ontology. For any ABox  consistent w.r.t. , we have
that 𝑐ℎ𝑎𝑠𝑒, is a canonical model of  w.r.t. .

34

2.3. Techniques for Answering DL OMQs

Proof. Let  be an arbitrary ABox and  = (Δ , ⋅) be an arbitrary model of  w.r.t. . We
want to show that 𝑐ℎ𝑎𝑠𝑒, ⊳ . Since this is known to hold for any DL-Lite ontology, it suffices
to prove that a homomorphism exists whenever axioms of the form ⊙𝑑𝖺𝗀𝗀 ⊑ 𝐴 are applied in
the chase procedure. We show this inductively on the chase procedure.
Basic Step. Since 𝑐ℎ𝑎𝑠𝑒0 =  and  models  w.r.t  it implies that  it is feature closed. Then
by mapping each constant to itself we obtain that a homomorphism exists.
Inductive Step. We assume that 𝑐ℎ𝑎𝑠𝑒𝑖+1 () is obtained from 𝑐ℎ𝑎𝑠𝑒𝑖() by applying an axiom
of the form ⊙𝑑𝖺𝗀𝗀 ⊑ 𝐴. This means that there is some ′ = ⦃𝑓 (𝑐, 𝑣1),… , 𝑓 (𝑐, 𝑣𝑛)⦄, such
that 𝖺𝗀𝗀(⦃𝑣1,… , 𝑣𝑛⦄) ⊙ 𝑛, and 𝐴(𝑐) ∉ 𝑐ℎ𝑎𝑠𝑒𝑖(), and 𝑐ℎ𝑎𝑠𝑒𝑖+1 () = 𝑐ℎ𝑎𝑠𝑒𝑖() ∪ {𝐴(𝑐)}.
By induction hypothesis and the fact that  is feature closed, we obtain that there must be some
𝑐′ ∈ Δ such that  satisfies all 𝑓 (𝑐′, 𝑣1),… , 𝑓 (𝑐′, 𝑣𝑛). Since 𝑣1,… , 𝑣𝑛 are constants from 
and  maps each such constant to itself, we get that 𝖺𝗀𝗀(⦃𝑣1,… , 𝑣𝑛⦄) ⊙ 𝑛 holds also under .
Lastly, since  must satisfy all axioms in  it must be that 𝑐′ ∈ 𝐴 .
Hence a homomorphism exists and we have that 𝑐ℎ𝑎𝑠𝑒, ⊳ , for each model  of  w.r.t. .

Therefore, from the above proposition and Proposition 2.2 follows that we can rely on the chase
procedure to obtain certain answers.
Corollary 1. Let  be a DL-Lite(𝖺𝗀𝗀) ontology. For any ABox  consistent w.r.t.  and any
OMQ (, 𝑞(𝑥⃗)) we have that 𝑐𝑒𝑟𝑡(𝑞(𝑥⃗),,) = ans(𝑞(𝑥⃗),𝑐ℎ𝑎𝑠𝑒,).

The chase procedure does not always terminate since the canonical model can be in general infinite.
Techniques that either limit the number of the chase steps needed to evaluate the query [BOSX13],
or that embed the ontology axioms into the query expression [CGL+07], namely query rewriting,
or a combination of both [KLT+10] represent the existing solutions for the evaluation of DL-Lite
OMQs. We focus next on the query rewriting approach, which we extend to DL-Lite𝖺𝗀𝗀 in a
natural way.

2.3.2 Rewriting DL-Lite(𝖺𝗀𝗀) OMQs
Rewriting an OMQ boils down to finding a query, in a particular target query language, that
produces the same answers as the original OMQ when evaluated over any dataset.
Definition 2.25 (Rewriting of a OMQ). Let (, 𝑞(𝑥⃗)) be an OMQ in 𝑜, and 𝑞 be the target
query language.

A query 𝜑 is called an 𝑞-rewriting of 𝑞 w.r.t.  if 𝜑 is in 𝑞 , and for any ABox  consistent
w.r.t. 

𝑐𝑒𝑟𝑡(𝑞(𝑥⃗),,) = 𝑐𝑒𝑟𝑡(𝜑, ∅,).

We say that 𝑜-OMQs are 𝑞-rewritable if for each OMQ in 𝑜 there exists an 𝑞-rewriting.

35

2. ONTOLOGY-MEDIATED QUERY ANSWERING

In general, the preferred target rewriting language is FOL, since FO-queries can be evaluated
efficiently using off-the-shelves database query answering engines. For DL-Lite OMQs, FO-
rewritability holds.
Proposition 2.4 ([ACKZ09]). DL-Lite-OMQs are 𝑈𝐶𝑄-rewritable.

The existing rewriting algorithm for DL-Lite, denoted as PerfectRef and presented in [CGL+07],
proposes to reformulate query atoms by applying ontology axioms to consider all possible spe-
cializations. The union of all different specializations is then evaluated over the data alone. For
example, recall query 𝑞(𝑥) in Example 2.5. The rewriting of 𝑞 w.r.t. MCI is the UCQ:
𝑞MCI

(𝑥) ←∃𝑦𝑧 (HumanCausedMCI(𝑥) ∧ SevereMCI(𝑥) ∧ hasLocation(𝑥, 𝑦) ∧ partOf(𝑦, 𝑧)
∧ 𝑧 = 𝖠𝗎𝗌𝗍𝗋𝗂𝖺)∨
(Fire(𝑥) ∧ SevereMCI(𝑥) ∧ hasLocation(𝑥, 𝑦) ∧ partOf(𝑦, 𝑧) ∧ 𝑧 = 𝖠𝗎𝗌𝗍𝗋𝗂𝖺)∨
(Explosion(𝑥) ∧ SevereMCI(𝑥) ∧ hasLocation(𝑥, 𝑦) ∧ partOf(𝑦, 𝑧) ∧ 𝑧 = 𝖠𝗎𝗌𝗍𝗋𝗂𝖺).

We present next the rewriting procedure for DL-Lite(𝖺𝗀𝗀) OMQs. In the following, it is convenient
to consider a CQA as a set of query atoms. We recall that two query atoms 𝛼1 and 𝛼2 unify if
and only if there exists a substitution 𝜎 ∶ vars({𝛼1, 𝛼2}) ↦ term({𝛼1, 𝛼2}) such that 𝛼1𝜎 = 𝛼2𝜎.
The most general unifier of 𝛼1 and 𝛼2 is a unifier 𝜎 such that for each unifier 𝜃 there exists a
substitution 𝜃′ such that 𝜃 = 𝜎◦𝜃′. We extend the rewriting rules of DL-Lite from [CGL+09b]
to capture also DL-Lite𝖺𝗀𝗀 OMQs in a natural way.
Definition 2.26 (Rewriting of DL-Lite(𝖺𝗀𝗀) OMQs). Let  be a DL-Lite(𝖺𝗀𝗀) ontology in normal
form and (, 𝑞(𝑥⃗)) an OMQ, with 𝑞 a CQA. A rewriting of 𝑞(𝑥⃗) w.r.t.  is a CQA 𝑞′(𝑥⃗), for which
we write 𝑞 ⇝ 𝑞′, and which is obtained either by means of unification

S1 If atoms 𝛼1 and 𝛼2 unify, apply their most general unifier to 𝑞,

or by applying an atom substitution to 𝑞, as follows:

S2 If 𝐴1 ⊑ 𝐴2 ∈  and 𝐴2(𝑥) ∈ 𝑞, then replace 𝐴2(𝑥) by 𝐴1(𝑥) in 𝑞;

S3 If 𝐴 ⊑ ∃𝑝 ∈  and 𝑝(𝑥, 𝑦) ∈ 𝑞 such that 𝑦 is a non-answer variable occurring only once in
𝑞, then replace 𝑝(𝑥, 𝑦) with 𝐴(𝑥) in 𝑞;

S4 If ∃𝑝 ⊑ 𝐴 ∈  and 𝐴(𝑥) ∈ 𝑞 then replace 𝐴(𝑥) by 𝑝(𝑥, 𝑧) in 𝑞, where 𝑧 is a fresh variable;

S5 If 𝑝 ⊑ 𝑝′ ∈  and 𝑝′(𝑥, 𝑦) ∈ 𝑞 then replace 𝑝′(𝑥, 𝑦) by 𝑝(𝑥, 𝑦) in 𝑞;

S6 If 𝑝− ⊑ 𝑝′ ∈  and 𝑝′(𝑥, 𝑦) ∈ 𝑞 then replace 𝑝′(𝑥, 𝑦) by 𝑝(𝑦, 𝑥) in 𝑞;

S7 If ⊙𝑛(𝖺𝗀𝗀 𝑓) ⊑ 𝐴 ∈  and 𝐴(𝑥) ∈ 𝑞 then replace 𝐴(𝑥) by ⊙𝑛(𝖺𝗀𝗀 𝑓) (𝑥) in 𝑞.

36

2.3. Techniques for Answering DL OMQs

Let ⇝∗ be the reflexive and transitive closure of ⇝. The rewriting of (, 𝑞), denoted as 𝑟𝑒𝑤(𝑞),
is the UCQA obtained by taking as a disjunct each 𝑞′ such that 𝑞 ⇝∗ 𝑞′ that is unique up to
isomorphism.

The rewriting can be exponential in the size of the ontology, however the size of each CQ is
polynomial. In order to show that the rewriting is correct also for DL-Lite𝖺𝗀𝗀 OMQs, an adaptation
of the proof for DL-Lite is needed. We proceed with the following theorem:
Theorem 2.1. Let  be a DL-Lite𝖺𝗀𝗀 OMQ. For each OMQ (, 𝑞) and each ABox  consistent
w.r.t. ,

𝑐𝑒𝑟𝑡(𝑞,,) = 𝑐𝑒𝑟𝑡(𝑟𝑒𝑤(𝑞), ∅,𝑓),

where 𝑓 is the closure of  w.r.t. feature inclusion axioms in .

Proof. Let  be an ABox consistent w.r.t.  and 𝑓 be the closure of  w.r.t. the feature
inclusion axioms in .

Direction "⊇". We have to show that for any two arbitrary CQAs 𝑞1, 𝑞2 such that 𝑞1 is a one-step
rewriting of 𝑞2 w.r.t.  obtained by applying axiom 𝛼 ∈ , we have that each match of 𝑞1 in
𝑐ℎ𝑎𝑠𝑒𝑘(𝑓) is a match of 𝑞2 in 𝑐ℎ𝑎𝑠𝑒𝑘+1 (𝑓), where 𝑐ℎ𝑎𝑠𝑒𝑘+1 (𝑓) is obtained by applying
𝑔𝛼 on 𝑐ℎ𝑎𝑠𝑒𝑘(𝑓), for each 𝑘 ≥ 0. If 𝑞1 is obtained by applying any of the rules S1, S2- S6,
the claim follows from the fact that the rewriting is sound for DL-Lite. Then, suppose 𝑞1 is
obtained from 𝑞2 using rule S7. This means that for some ⊙𝑛(𝖺𝗀𝗀 𝑓) ⊑ 𝐴 ∈ , we have that
⊙𝑛(𝖺𝗀𝗀 𝑓)(𝑥) ∈ 𝑞1 and 𝐴(𝑥) ∈ 𝑞2. Let 𝜋 be an arbitrary match for 𝑞1 in 𝑐ℎ𝑎𝑠𝑒𝑘() such that
𝜋(𝑥) = 𝑐. Then, there exist facts 𝑓 (𝑐, 𝑣1),… 𝑓 (𝑐, 𝑣𝑛) in 𝑐ℎ𝑎𝑠𝑒𝑘 such that 𝖺𝗀𝗀(⦃𝑣1,… , 𝑣𝑛⦄)⊙ 𝑛
which means that 𝐴(𝑐) ∈ 𝑐ℎ𝑎𝑠𝑒𝑘+1 . Since all other atoms of 𝑞1 and 𝑞2 coincide, 𝜋 is also a match
of 𝑞2 in 𝑐ℎ𝑎𝑠𝑒𝑘+1 (). This means that, for any 𝑘 ≥ 0, we have that ans(𝑞1, 𝑐ℎ𝑎𝑠𝑒𝑘(𝑓)) ⊆
ans(𝑞2, 𝑐ℎ𝑎𝑠𝑒𝑘+1 (𝑓))). This implies that:

𝑐𝑒𝑟𝑡(𝑞1, ⧵ {𝛼},𝑓) ⊆ 𝑐𝑒𝑟𝑡(𝑞2,,𝑓). (2.1)

Take any arbitrary query 𝑞 and any arbitrary rewriting 𝑞′ of 𝑞 w.r.t. . From (2.1) it follows
that 𝑐𝑒𝑟𝑡(𝑞′, ∅,𝑓) ⊆ 𝑐𝑒𝑟𝑡(𝑞,,𝑓) and due to the fact that 𝑓 is part of 𝑐ℎ𝑎𝑠𝑒() which
suffices for obtaining certain answers (according to Corollary 1) we obtain that 𝑐𝑒𝑟𝑡(𝑞′, ∅,𝑓) ⊆
ans(𝑞, 𝑐ℎ𝑎𝑠𝑒()) = 𝑐𝑒𝑟𝑡(𝑞,,) .

Direction "⊆". Note that 𝑐ℎ𝑎𝑠𝑒() = 𝑐ℎ𝑎𝑠𝑒(𝑓). We have to show that each certain
answer is covered by some rewriting when evaluated over 𝑓 . For that we first show the following
claim: Let 𝑞1 be an arbitrary CQA. For each answer 𝑎 of 𝑞1 in 𝑐ℎ𝑎𝑠𝑒𝑘(𝑓), there exists a
rewriting 𝑞2 of 𝑞1 such that 𝑎 is an answer of 𝑞2 in 𝑐ℎ𝑎𝑠𝑒𝑘−1 (𝑓), for each 𝑘 ≥ 1. Let 𝛼 be the
axiom such that for some ′ ⊆ 𝑐ℎ𝑎𝑠𝑒𝑘−1 (𝑓), 𝑐ℎ𝑎𝑠𝑒𝑘(𝑓) = 𝑐ℎ𝑎𝑠𝑒𝑘−1 (𝑓) ∪ 𝑔𝛼(′). For
𝛼 in DL-Lite, then this holds from completeness of the rewriting for DL-Lite. Hence, let 𝛼
be of the following form: ⊙𝑛(𝖺𝗀𝗀 𝑓) ⊑ 𝐴. W.l.o.g., assume that 𝑎 is not an answer to 𝑞1 in

37

2. ONTOLOGY-MEDIATED QUERY ANSWERING

𝑐ℎ𝑎𝑠𝑒𝑘−1 (𝑓). Let 𝜋 be the match of 𝑎 in 𝑐ℎ𝑎𝑠𝑒𝑘(𝑓). Then, there is some 𝐴(𝑥) ∈ 𝑞1 such that
𝐴(𝑐) ∈ 𝑐ℎ𝑎𝑠𝑒𝑘 and 𝜋(𝑥) = 𝑐, and 𝐴(𝑐) ∉ 𝑐ℎ𝑎𝑠𝑒𝑘−1 (𝑓). From 𝛼 applicable to ′, there must
be that ′ = ⦃𝑓 (𝑐, 𝑣1),… , 𝑓 (𝑐, 𝑣𝑛)⦄ such that 𝖺𝗀𝗀(⦃𝑣1,… , 𝑣𝑛⦄) ⊙ 𝑛. Clearly, 𝛼 is applicable
to 𝑞1 obtaining some 𝑞2 in which 𝐴(𝑥) is replaced by ⊙𝑛(𝖺𝗀𝗀 𝑓)(𝑥), and all other atoms remain
unchanged. Hence, 𝜋 is also a match of 𝑞2 in 𝑐ℎ𝑎𝑠𝑒𝑘−1 (𝑓).
Let 𝑞(𝑥⃗) be an arbitrary CQ and 𝑎 an arbitrary certain aswer of (, 𝑞(𝑥⃗)) over . Let 𝜋 be the
match of 𝑞 in the 𝑐ℎ𝑎𝑠𝑒𝑘(𝑓) such that 𝜋(𝑥⃗) = 𝑎. From claim above, it follows that for each
𝑖 such that 𝑘 ≤ 𝑖 ≤ 0 a rewriting 𝑞𝑖 of 𝑞 exists such that 𝑎 is an answer of 𝑞𝑖 in 𝑐ℎ𝑎𝑠𝑒𝑖(𝑓).
Therefore, for 𝑞0 we have that 𝑎 is an answer to 𝑞0 over 𝑓 .

Provided that the data is complete w.r.t. the feature inclusion axioms, we have that DL-Lite𝖺𝗀𝗀OMQs are UCQA-rewritable.
Proposition 2.5. DL-Lite𝖺𝗀𝗀 OMQs are UCQA-rewritable when the data is complete w.r.t. the
feature inclusion axioms in the ontology.

In this approach in the case of DL-Lite𝖺𝗀𝗀 OMQs the evaluation of the aggregating function is
done at query time. Another possible approach is to complete the data also with facts that are
implied by aggregating concepts in the ontology. Then, such axioms can be dropped and the
resulting OMQ is in DL-Lite. This translation is presented next.

2.3.3 Applying DL-Lite techniques for DL-Lite𝖺𝗀𝗀 OMQs
Answering DL-Lite𝖺𝗀𝗀 OMQs can be done using the same techniques as for DL-Lite OMQs,
by means of the following translation. Let  be a DL-Lite𝖺𝗀𝗀 OMQ and  an ABox. We denote
by ′ and ′ the DL-Lite translations of  and , obtained as follows: For each aggregating
concept 𝐶 in , take a fresh concept name 𝑈𝐶 and then:

1. ′ is obtained by replacing each 𝐶 by 𝑈𝐶 in .
2. ′ is obtained by extending  with an assertion 𝑈𝐶 (𝑐), for each 𝑐 such that 𝖺𝗀𝗀⦃𝑓 ′(𝑐, 𝑣) ∣

𝑓 ′ ⊑∗ 𝑓⦄⊙ 𝑛, and each 𝐶 of form ⊙𝑛(𝖺𝗀𝗀 𝑓) in .
The translation preserves the structure of the canonical model. In particular, the following claim
states that the canonical models are isomorphic modulo renaming of the aggregating concepts.
Lemma 2.2. For arbitrary DL-Lite𝖺𝗀𝗀 ontology  and ABox , let ′ and ′ denote their
DL-Lite translations. We assume that 𝑐ℎ𝑎𝑠𝑒(𝑓) and 𝑐ℎ𝑎𝑠𝑒′(′) are constructed by applying
the axioms in  and their translations in ′ in the same order.

Let Δ1 be the domain of 𝑐ℎ𝑎𝑠𝑒, and Δ2 be the domain of 𝑐ℎ𝑎𝑠𝑒′,′ . Then, there exists a bijection
ℎ ∶ Δ1 ↦ Δ2 such that

a) ℎ is the identity on cst(),
b) for each 𝐴 ∈ 𝐂, 𝐴(𝑐) ∈ 𝑐ℎ𝑎𝑠𝑒() if and only if 𝐴(ℎ(𝑐)) ∈ 𝑐ℎ𝑎𝑠𝑒′(′),

38

2.3. Techniques for Answering DL OMQs

c) for each 𝑝 ∈ 𝐑 ∪ 𝐅, 𝑝(𝑐1, 𝑐2) ∈ 𝑐ℎ𝑎𝑠𝑒() if and only if 𝑝(ℎ(𝑐1), ℎ(𝑐2)) ∈ 𝑐ℎ𝑎𝑠𝑒′(′), and
d) for each aggregating concept 𝐶 in , 𝐶(𝑐) is satisfied in 𝑐ℎ𝑎𝑠𝑒() if and only if 𝑈𝐶 (ℎ(𝑐)) ∈

𝑐ℎ𝑎𝑠𝑒′(′).

Proof. Let 𝑓 be the closure of  w.r.t. the set of feature inclusions in . The proof is done by
induction on 𝑖 ≥ 0 for 𝑐ℎ𝑎𝑠𝑒𝑖(𝑓) and 𝑐ℎ𝑎𝑠𝑒𝑖′(′). Let Δ𝑖

1 denote the domain of 𝑐ℎ𝑎𝑠𝑒𝑖(𝑓)
and Δ𝑖

2 the domain of 𝑐ℎ𝑎𝑠𝑒𝑖′(′).
For 𝑖 = 0, we have that 𝑐ℎ𝑎𝑠𝑒0(𝑓) = 𝑓 and 𝑐ℎ𝑎𝑠𝑒0(′) = ′. Since their domains coincide,
let ℎ be the identity on Δ0

1. The assertions in  are simply copied into ′, therefore conditions
a)-c) are trivially satisfied. Let 𝐶 be an arbitrary aggregating concept in . Suppose that there
exists some 𝑜 such that 𝐶(𝑜) is satisfied in 𝑓 . By definitions of satisfiability for aggregating
concepts and the translation of , we obtain that 𝑈𝐶 (𝑜) ∈ ′.
Suppose that the claim holds for 𝑖 = 𝑘. This means that there exists a bijection ℎ ∶ Δ𝑘

1 ↦ Δ𝑘
2 such

that conditions a)-d) hold for 𝑐ℎ𝑎𝑠𝑒𝑘(𝑓) and 𝑐ℎ𝑎𝑠𝑒𝑘′(′). Let 𝛼 ∈  be an arbitrary axiom
applicable to 𝑐ℎ𝑎𝑠𝑒𝑘(𝑓) and 𝛼′ be its translation in ′. If 𝛼 = 𝛼′, the claim is straightforward.
Then, suppose that 𝛼 is of form ⊙𝑛(𝖺𝗀𝗀 𝑓) ⊑ 𝐴 and hence its translation 𝛼′ is 𝑈⊙𝑛(𝖺𝗀𝗀 𝑓) ⊑ 𝐴.
We show that 𝛼 is applicable iff 𝛼′ is applicable. If 𝛼 is applicable to 𝑐ℎ𝑎𝑠𝑒𝑘(𝑓), then there
exists some 𝑐 ∈ Δ𝑘

1 such that 𝑓 (𝑐, 𝑣1),… , 𝑓 (𝑐, 𝑣𝑛) ∈ 𝑐ℎ𝑎𝑠𝑒𝑘(𝑓) and 𝖺𝗀𝗀⦃𝑣1,… , 𝑣𝑛⦄ ⊙ 𝑛.
By induction hypothesis and the fact that 𝑣1,… , 𝑣𝑛 ∈ val() (since feature invention is not
allowed in DL-Lite𝖺𝗀𝗀) we obtain that there exists ℎ(𝑐) ∈ Δ𝑘

2 and for each 𝑓 (𝑐, 𝑣𝑖) we have
that 𝑓 (ℎ(𝑐), 𝑣𝑖) ∈ 𝑐ℎ𝑎𝑠𝑒𝑘′(′). From the construction of ′, we obtain that 𝑈⊙𝑛(𝖺𝗀𝗀 𝑓)(ℎ(𝑐)) ∈
𝑐ℎ𝑎𝑠𝑒𝑘′(′). Therefore, 𝛼′ is applicable to 𝑐ℎ𝑎𝑠𝑒𝑘′(′). We obtain that if 𝐴(𝑐) ∈ 𝑐ℎ𝑎𝑠𝑒𝑘+1 (𝑓)
then 𝐴(ℎ(𝑐)) ∈ 𝑐ℎ𝑎𝑠𝑒𝑘+1′ (′). Analogously for the other direction.
By induction base and induction step, we can conclude that there exists a bijection ℎ such that the
conditions a)-d) hold for 𝑐ℎ𝑎𝑠𝑒(𝑓) and 𝑐ℎ𝑎𝑠𝑒′(′). Since 𝑐ℎ𝑎𝑠𝑒(𝑓) = 𝑐ℎ𝑎𝑠𝑒(), we
obtain that the claim holds.

The following result follows immediately from the result above and the semantics of DL-Lite𝖺𝗀𝗀 .
Proposition 2.6. Let  be a DL-Lite𝖺𝗀𝗀 ontology,  be an ABox, and let ′, ′ be their DL-Lite
translations. Then, for each CQ 𝑞 defined over 𝗌𝗂𝗀():

𝑐𝑒𝑟𝑡(𝑞,,) = 𝑐𝑒𝑟𝑡(𝑞,′,′).

Proof. We consider first the case when  is inconsistent w.r.t. . Since the translation does not
affect concepts, roles and features that appear in functionality and disjointness axioms in , which
represent the only cause of inconsistency, it easily follows that ′ is also inconsistent w.r.t. ′,
hence each possible tuple of constants in  is a certain answer of (, 𝑞) over  and as well of
(′, 𝑞) over ′.

39

2. ONTOLOGY-MEDIATED QUERY ANSWERING

Suppose that  is consistent w.r.t. . We have to show that each answer is preserved under
the translation and that each answer over the translation is an answer in the original setting.
Since we can rely on the canonical model to evaluate DL-Lite(𝖺𝗀𝗀) OMQs, and since FOL cannot
distinguish between isomorphic structures, it follows from Lemma 2.2 that for any CQ 𝑞 we have
that ans(𝑞,𝑐ℎ𝑎𝑠𝑒,) = ans(𝑞,𝑐ℎ𝑎𝑠𝑒′,′) and since we can rely on canonical models to evaluate OMQs
we obtain the desired result.

From the theoretical perspective, this result allows us to focus in the next chapters mainly on
DL-Lite OMQs, however via practical examples we advocate for the use of aggregating concepts
and sometimes analytical queries since their addition, as presented in this chapter, is harmless.
Moreover, in practice, allowing aggregation in the query may often be better than pre-processing.

2.4 Complexity of Reasoning
In order to understand for a given decision problem how difficult it is to be solved in practice,
the characterization of the computational complexity in terms of time or space required by some
computational model such as Turing machines is usually studied. This allows us to classify
decision problems into complexity classes. We present only the complexity classes which are
relevant for the decision problems we study and refer the reader to the book by Papadimitriou
[Pap94] for an in-depth introduction to complexity theory.

2.4.1 Complexity Classes
The complexity classes of interest are organized into the following hierarchy:

AC0 ⊊ LogSpace ⊆ NLogSpace ⊆ PTime ⊆ NP ⊆ PSpace ⊆ ExpTime.

The inclusion relationship is not known to be strict except for AC0 ⊊ LogSpace and PTime ⊊
ExpTime.
A problem is said to be hard for a complexity class C if any problem belonging to C can be
reduced to it. If additionally it is also known to belong to C, then it is said to be complete for
class C. This means that C-complete problems are the most difficult problems in C. Proving that
a problem is hard for a class C is usually done by means of a reduction. Formally, a reduction
from a problem 𝑃 to a problem 𝑃 ′ is a mapping 𝑓 from each input word 𝑤 in the language of 𝑃 ,𝑃 , to some word in the language of 𝑃 ′, 𝑃 ′ , such that 𝑤 ∈ 𝑃 if and only if 𝑓 (𝑤) ∈ 𝑃 ′ . A
reduction is said to be polynomial if it can be computed in polynomial time in the size of each
input word. All the reductions presented in this thesis are polynomial.
We now introduce the complexity classes that are relevant to this thesis. A problem belongs to
AC0 if it can be decided using a boolean circuit of polynomial size and constant depth, that uses
unlimited fan-in gates. Intuitively, it can be decided in constant time using a polynomial number

40

2.4. Complexity of Reasoning

of processors, with respect to the input size. An important problem that is relevant to this thesis
and which belongs to this class, is the evaluation of FO-queries (i.e., SQL queries) over relational
databases when the query is considered to be fixed and only the database is considered to be part
of the input [AHV95]. This result in a sense justifies the ability of relational database engines to
handle large amounts of data. Moreover, whenever a problem is known to be at least as hard as
another problem belonging to a class that strictly contains AC0, it cannot be reduced to FO-query
evaluation.
For the remaining complexity classes, the computational model relies on Turing machines (TM). A
(non)deterministic TM consists of two infinite tapes: read and write, a set of states which includes
an input and an accepting state, and a transition function which determines the behavior of the TM
on particular inputs. If for a pair consisting of a state and an input symbol the transition function
uniquely determines the next state, then the TM is said to be deterministic (DTM), otherwise it is
called nondeterministic (NTM). A problem is in LogSpace if it can be decided by a DTM which
uses at most logarithmic number of tape cells, in the size of the input. An example of a notorious
problem that belongs to LogSpace (but not to AC0) is reachability in undirected graphs [LP82].
Similarly, NLogSpace is the class of problems that can be decided using a NTM which uses at
most logarithmic number of tape cells (also measured in the size of the input). Reachability in
directed graphs is a well-known problem that is in NLogSpace [Jon75].
A problem belongs to PTime, respectively NP, if it is solvable by a DTM, respectively a NTM,
using polynomially many steps in the size of the input. We are also interested in the class CoNP,
which contains all the problems for which their complement belongs to NP. Similarly, problems
that are in PSpace are solvable using a DTM in space that is polynomial in the size of the input.
Lastly, a problem belongs to ExpTime if it can be solved using a DTM in time that is exponential in
the size of the input. A decision problem is said to be undecidable if it is provable that an algorithm
that always can output yes or no for any given input does not exists. A famous undecidable problem
is the halting problem: given a TM 𝑇 and an arbitrary input word 𝑤, decide if 𝑇 halts on 𝑤, by
either accepting or rejecting, or if it runs forever. Therefore, a common technique for proving
undecidability is by encoding the halting problem of an arbitrary TM.

Data and Combined Complexity of Answering OMQs. Following the complexity measures
for query evaluation in the database setting, the data and combined complexity are also of interest
in the case of OMQ evaluation over datasets. In the database setting, whenever we want to find the
complexity of evaluating any query over any database, then both have to be considered as input
of the decision problem. The complexity of such problem represents the combined complexity.
However, based on the observation that the size of the query is generally much smaller than the
size of the database, Vardi also identified another variation of the query answering problem in
which the query is considered as fixed (i.e., not part of the input) and only the data is considered
as input [Var82].
In the case of OMQ answering, the data and the combined complexity measurements are defined
similarly:

• the data complexity is measured when the ontology and the query are fixed and only the

41

2. ONTOLOGY-MEDIATED QUERY ANSWERING

ABox is part of the input. The complexity of -CERTAIN ANSWERS(, 𝑞) problem for each
ontology language  denotes the data complexity of answering -OMQs.

• the combined complexity is measured in the size of all, i.e., the ontology, query and the data.
Similarly as before, the complexity of -CERTAIN ANSWERS problem for each ontology
language  denotes the combined complexity of answering -OMQs.

42

Part I

Interactive Ontology-mediated Query
Answering

43

CHAPTER 3
Taming Complex Role Inclusions for

DL-Lite

Among the limits of DL-Lite is that it cannot capture the propagation of properties along
paths, such as is part of or is located in relations, which are fundamental in modeling so-called
aggregating objects [Sat00]. A typical example regarding the usefulness of modeling part-whole
relationships is the representation of geographical locations, since in general a location can
be composed of multiple sub-locations and every property from the lower granularity level is
preserved to the upper levels. For instance, it is natural to infer that whenever an event occurs
in a city, it implicitly occurs also in the country the city is part of. In DLs such knowledge can
be modeled by allowing role composition, which are usually referred as complex role inclusions
[HS04]. While much desired, complex role inclusions are computationally hard. The addition of
transitive roles already means losing FO-rewritability, given that reachability can be encoded by
means of a single transitive role [ACKZ09]. Moreover, if no restrictions are imposed on their
usage, they can easily lead to undecidability [HS04, SS89].
In this chapter, we study in which conditions we can add such axioms to DL-Lite in such a way
that FO-rewritability is preserved. This allows us to capture our motivating example while keeping
the computational cost under control. Our findings show that, like for very expressive DLs, also for
DL-Lite the addition of unrestricted complex role inclusions results in an undecidable logic. For
highly expressive DLs, decidability is restored by restricting complex role inclusions to generate a
regular language when viewed as production rules of context-free grammars. Such complex role
inclusions are therefore called regular. For DL-Lite with regular complex role inclusions we
obtain that ABox consistency is ExpTime-complete, however an additional condition is imposed
to avoid a 2-ExpTime lower-bound inherited from the more expressive  [Kaz08]. As it
turns out, such condition is also useful to avoid an exponential blowup when performing query
rewriting. To remain FO-rewritable, we identified two possibilities: either to disallow recursion
involving complex role inclusions or to ensure that the recursion is bounded. The picture on
combined complexity is then completed with the following results: the non-recursive fragment is

45

3. TAMING COMPLEX ROLE INCLUSIONS FOR DL-Lite

DL-Lite++
A

DL-Lite
++(rec-safe)
A DL-Lite

++(reg)
A

DL-LitetransA

DL-LiteA

DL-Lite++(non-rec)

Figure 3.1: Inclusion relations for DL-Lite++ family of languages.


Complexity

Combined Data
-ABOX CONSIST -CERT ANSW -ABOX CONSIST() and -CERT ANSW(,𝑞)

DL-Lite in PTime a NP-cb AC0 a,b

DL-Lite++(rec-safe) in PTime (Thm. 3.6) NP-c (Thm. 3.7) AC0 (Thm. 3.7)
DL-Lite𝗍𝗋𝖺𝗇𝗌 NLogSpace-cc in PSpace e NLogSpace-cd

DL-Lite++(non-rec) CoNP-c (Thm. 3.5) NP-c (Thm. 3.4) AC0 (Thm. 3.4)
DL-Lite++(reg) ExpTime-c (Thm. 3.2) ExpTime-c (Thm. 3.3) PTime-c (Thm. 3.3)f

DL-Lite++ undecidable (Thm. 3.1) - -
a Theorem 4.22 in [CGL+09b]
b Theorem 5.17 and Theorem 5.18 in [CGL+09b]
c Corollary 5.20 in [ACKZ09]
d Corollary 6.4 in [ACKZ09] (for instance checking)
e Reduction to C2RPQ answering in DL-Lite and Theorem 6.8 in [BOS15]
f Theorem 4 in [ORS10] (for satisfiability)

Table 3.1: Summary of complexity results.

CoNP-complete, and the recursion-safe fragment is in PTime. The expresivity relation between
such languages is presented in Figure 3.1, where DL-Lite𝗍𝗋𝖺𝗇𝗌 denotes the extension of DL-Lite
with transitive roles, previously introduced in [ACKZ09], while all other extensions are new. The
data and combined complexity of testing ABox consistency and OMQ answering are presented
in Table 3.1 where each previously known or straightforward result points to the reference. In
particular we note that for the extension with transitive roles a PSpace upper-bound is directly
obtained from answering conjunctive two-way regular path queries in DL-Lite [BOS15]. All
the other results in Table 3.1, as the references in parenthesis denote, are new and represent the
main contribution of this chapter.

3.1 Extending DL-Lite with Complex Relation Inclusions
In this section we present the syntax and semantics of the extensions of DL-Lite with complex
role inclusions, for which we adopt the following formalization. In order to capture also features,
we use the term relation to denote either a role or a feature. Then, the notion of a complex relation
incusion (CRI) extends the notion of a complex role inclusion to allow composition between roles
and features.

46

3.1. Extending DL-Lite with Complex Relation Inclusions

Let us assume that 𝐑± contains two disjoint subsests that are closed under inverses: 𝐑𝐬 - denotes
the set of simple roles , while 𝐑𝐬 - denotes the set of non-simple roles. Similarly for features, 𝐅±

contains two partitions: 𝐅𝐬 denotes simple features, and 𝐅𝐬 denotes non-simple features.
Definition 3.1 (Complex relation inclusions). A complex relation inclusion (CRI) is an expression
of one of the following forms:

• 𝑟1◦𝑟2 ⊑ 𝑟, where 𝑟1, 𝑟2 ∈ 𝐑± and 𝑟 ∈ 𝐑𝐬, or
• 𝑟1◦𝑓1 ⊑ 𝑓 , where 𝑟1 ∈ 𝐑±, 𝑓1 ∈ 𝐅± and 𝑓 ∈ 𝐅𝐬, or
• 𝑟1 ⊑ 𝑟2, where 𝑟1, 𝑟2 ∈ 𝐑± and if 𝑟1 ∈ 𝐑𝐬 then 𝑟2 ∈ 𝐑𝐬, or
• 𝑓1 ⊑ 𝑓2, where 𝑓1, 𝑓2 ∈ 𝐅± and if 𝑓1 ∈ 𝐅𝐬 then 𝑓2 ∈ 𝐅𝐬.

An interpretation  = (Δ , ⋅) satisfies a CRI 𝑝1◦𝑝2 ⊑ 𝑝 if for all 𝑑1, 𝑑2, 𝑑3 ∈ Δ , (𝑑1, 𝑑2) ∈ 𝑝1
and (𝑑2, 𝑑3) ∈ 𝑝2 imply (𝑑1, 𝑑3) ∈ 𝑝 , where 𝑝, 𝑝1, 𝑝2 are relations.

Intuitively, a relation is non-simple if it occurs on the right-hand-side of a CRI or if it is implied
by such a relation, otherwise it is a simple relation.
Note that the composition between two features is not possible due to the fact that a feature always
connects an object and a data value.
In our running example, we are interested in propagating the occurrence of an event along the
location dimension, composed of district, city and country. For that, we can add the following
CRI to our ontology:

hasLocation◦partOf ⊑ hasLocation (3.1)

Given that the dataset contains the facts: Fire(𝖾𝟣), hasLocation(𝖾𝟣, 𝖽𝗂𝗌𝗍𝗋𝟣) and the following part-
of path: partOf(𝖽𝗂𝗌𝗋𝗍𝟣,𝖵𝗂𝖾𝗇𝗇𝖺), partOf(𝖵𝗂𝖾𝗇𝗇𝖺,𝖠𝗎𝗌𝗍𝗋𝗂𝖺), by applying axiom 3.1 on these facts
we can automatically infer hasLocation(𝖾𝟣,𝖵𝗂𝖾𝗇𝗇𝖺) and hasLocation(𝖾𝟣,𝖠𝗎𝗌𝗍𝗋𝗂𝖺). Moreover, by
allowing features to occur in CRIs, we are able to capture knowledge such as “locations have
hospital access if they are connected to another location which has access to a hospital”. Then,
using the following CRI:

connectedTo◦hospAccess ⊑ hospAccess, (3.2)
where hospAccess is a feature with Boolean range, we can model such knowledge.

3.1.1 Regular and Linear CRIs
There is a tight connection between CRIs and the study of formal languages, since the language
that a role or feature determines given a set of CRIs can be generated using context-free grammars
[SN07]. Recall that in formal language theory, given an alphabet, a grammar defines the rules
used to form words belonging to that language. Such rules are called production rules and in
context-free grammars each production rule is of the form 𝑆 → 𝛼, where 𝑆 is a non-terminal
(i.e., syntactical variable) and 𝛼 is a string of alphabet symbols and/or non-terminals. Naturally

47

3. TAMING COMPLEX ROLE INCLUSIONS FOR DL-Lite

for each relation 𝑝 an associated grammar can be defined based on the CRIs involving 𝑝, thus for
simplicity we view the CRIs as production rules.
Let 𝑅 denote an arbitrary composition chain of (possibly inverse) relations, i.e. 𝑅 is of form
𝑝1◦𝑝2◦… ◦𝑝𝑛, where 𝑝𝑖 ∈ (𝐑 ∪ 𝐅)±. For a given set of CRIs  and arbitrary relation chains
𝑅1, 𝑅2, we write 𝑅1 ⊑ 𝑅2 whenever there exists 𝑅 ⊑ 𝑝 ∈  and either (i) 𝑅1 = 𝑆◦𝑅◦𝑆′ and
𝑅2 = 𝑆◦𝑝◦𝑆′, or (ii) 𝑅1 = 𝑆◦𝑅−◦𝑆′ and 𝑅2 = 𝑆◦𝑝−◦𝑆′.
We denote by ⊑∗ the reflexive and transitive closure of ⊑. Then, for any relation 𝑝, the language
of 𝑝 w.r.t.  is defined as a set of words over sign() such that:

(𝑝) ={𝑝1… 𝑝𝑛 ∣ 𝑝1◦… ◦𝑝𝑛 ⊑
∗ 𝑝}.

A formal language is said to be linear if it can be generated using a linear grammar i.e., a context-
free grammar that has at most one non-terminal symbol on the right-hand side in each production
rule. A context-free grammar is said to be left-linear if each non-terminal symbol that occurs on
the right-hand side of some production rule exists at the leftmost place, i.e., left end. Similarly, a
context-free grammar is said to be right-linear if each non-terminal symbol that occurs on the
right-hand side of some production rule exists at the rightmost place, i.e., right end.
A formal language is said to be regular if it is produced by a context-free grammar that is either
left-linear or right-linear. Note that, in general a linear language is not regular, a typical example
is {𝑠𝑖𝑟𝑠𝑖 ∣ 𝑖 ≥ 0} which can be generated using the following CRIs: 𝑟◦𝑠 ⊑ 𝑟′ and 𝑠◦𝑟′ ⊑ 𝑟.

The connection to context-free grammars allows us to identify whenever a set of CRIs induces
a language that is either linear, regular or both. Such classification on CRIs is not novel, for
instance, regularity restrictions have been imposed in more expressive DLs. For example to, the language that extends  [SS91] with role inverses, qualifying number restrictions
and regular CRIs, and  which further extends  with nominals, (a)symmetric and
(ir)reflexive role axioms.
However, for such DLs testing ABox consistency is 2-ExpTime-complete even when CRIs are
only of the form 𝑝1◦𝑝2 ⊑ 𝑝1 or 𝑝2◦𝑝1 ⊑ 𝑝1 [Kaz08]. In order to avoid such exponential blow-up
we opt for a different (more restrictive) syntactic characterization: for a set of CRIs, the production
rule denoted by each CRI has at most one non-terminal symbol, meaning that for each 𝑝1◦𝑝2 ⊑ 𝑝,
at most one of 𝑝1 and 𝑝2 can occur on the right-hand-side of another CRI. This restriction ensures
that each word in the language of a set of CRIs is polynomially bounded.
We proceed with the syntactic restrictions on CRIs to ensure such properties.
Definition 3.2. For a given set of CRIs , we say that  is

a) linear if for each 𝑝1◦𝑠 ⊑ 𝑝2 ∈  we have that 𝑠 ∈ 𝐑𝐬 ∪ 𝐅𝐬 is a simple relation.

b) regular if there exists a strict partial order ≺ on 𝐑∪𝐅 such that for each CRI 𝑝1◦𝑝2 ⊑ 𝑝 ∈ 
and for each 𝑖 ∈ {1, 2} we have either (i) 𝑝𝑖 = 𝑝, (ii) 𝑝𝑖 is the inverse of 𝑝, or (iii) 𝑝𝑖 ≺ 𝑝.

48

3.1. Extending DL-Lite with Complex Relation Inclusions

Linearity is then imposed by allowing at most one non-simple relation on the left-hand-side of
a CRI. Note that such restriction does not capture regularity since using inverses, we can still
generate 𝑠𝑖𝑟𝑠𝑖 using 𝑟◦𝑠 ⊑ 𝑟′ and 𝑟′−◦𝑠− ⊑ 𝑟−, where 𝑠 is simple.
For the regular case, we use an adaptation of the standard syntactical restriction from [HS04,
HKS06]. Such characterization does not capture all regular languages, however it is easy to grasp
and captures most of the examples that motivate the need for CRIs. For capturing all regular
languages, we refer to [Kaz10].
The following proposition bridges the gap between the restrictions on CRIs and the languages
they generate.
Proposition 3.1. Let  be a set of CRIs. We have that

1. If  is linear, then (𝑝) is a linear language for each 𝑝 in the signature of .
2. If  is regular, then (𝑝) is a regular language for each 𝑝 in the signature of .

It is known that any regular language can be characterized by means of a regular expression. We
show next that for regular CRIs that are also linear, the size of the regular expression is polynomial
in the size of .
Lemma 3.1. Let  be a set of regular CRIs. Then, for every relation 𝑝 ∈ sign() there exists a
regular expression that generates (𝑝). If in addition  is linear, then each regular expression
is of size that is polynomial in ||.
Proof. Let  be a set of regular CRIs. W.l.o.g., we assume that  contains 𝑝1◦𝑝2 ⊑ 𝑝 iff
𝑝−2 ◦𝑝

−
1 ⊑ 𝑝− and 𝑟1 ⊑ 𝑟2 iff 𝑟−1 ⊑ 𝑟−2 , with (𝑝−)− = 𝑝. Then, for each relation 𝑝 we define:

𝜌𝑝 ∶= (
⋃

𝑠◦𝑝⊑𝑝∈,
𝑠≠𝑝

𝑠)∗(𝑝 ∪
⋃

𝑟◦𝑠⊑𝑝∈,
𝑟,𝑠≠𝑝

𝑟𝑠)(
⋃

𝑝◦𝑠⊑𝑝∈,
𝑠≠𝑝

𝑠)∗

𝜏𝑝 ∶= 𝑝 ∪
⋃
𝑝′⊑∗𝑝
𝑝′≠𝑝

𝑝′.

Then, for each relation 𝑝, the resulting regular expression is obtained as follows: if 𝑝 is simple
then rex𝑝 ∶= 𝜏𝑝, otherwise:

1. rex𝑝 ∶= (𝜌𝑝 with p replaced by 𝜏𝑝) and 𝑉𝑝 = ∅
2. for each 𝑝′ ≠ 𝑝 occurring in rex𝑝 such that 𝑝′ ∉ 𝑉𝑝 do rex𝑝 ∶= (rex𝑝 with 𝑝′ replaced by rex𝑝′)

and 𝑉𝑝 ∶= 𝑉𝑝 ∪ {𝑝′}.
This procedure to construct a regular expression of each 𝑝 ∈ sign() terminates since cycles in can occur only between simple relations (given the imposed ≺), for which we keep track of the
replaced relations (using 𝑉𝑝).
For each 𝑝 ∈ sign(), let 𝐿(rex𝑝) denote the language described by the regular expression 𝑟𝑒𝑥𝑝.
We first show the following claim:

49

3. TAMING COMPLEX ROLE INCLUSIONS FOR DL-Lite

Claim 2. (i) For each 𝑝 ∈ sign() we have that 𝑝 ∈ 𝐿(𝑟𝑒𝑥𝑝).
(ii) If 𝑝1◦𝑝2 ⊑ 𝑝 ∈  then 𝑝1𝑝2 ∈ 𝐿(𝑟𝑒𝑥𝑝′) for all 𝑝 ⊑∗ 𝑝′.

(iii) If  is linear, then for each 𝑝 ∈ sign() the size of 𝑟𝑒𝑥𝑝 is polinomially bounded in the size
of .

Proof. Let 𝑝 ∈ sign() be arbitrarily chosen. Claim (i) is obvious since rex𝑝 is of the form:
(...)∗(... ∪ 𝑝 ∪ ...)(...)∗, thus clearly 𝑝 ∈ 𝐿(rex𝑝). For (ii), let 𝑝1◦𝑝2 ⊑ 𝑝 ∈  and let 𝑝 ⊑∗ 𝑝′. In
the first step, we get that 𝜏𝑝′ = 𝑝′ ∪⋯ ∪ 𝑝 ∪… and
𝜌𝑝 is of the form:

• (…)∗(𝑝 ∪⋯ ∪ 𝑝1𝑝2 ∪…)(…)∗, if 𝑝1, 𝑝2 ≠ 𝑝;
• (…)∗(𝑝 ∪…)∗(⋯ ∪ 𝑝2 ∪…)∗, if 𝑝1 = 𝑝;
• (⋯ ∪ 𝑝1 ∪…)∗(𝑝 ∪…)(…)∗, if 𝑝2 = 𝑝.

From the replacement steps, we get that rex𝑝′ is of the form (𝑝′ ∪⋯ ∪ rex𝑝 ∪…). From (i) we
get that for 𝑖 ∈ {1, 2} we have 𝑝𝑖 ∈ 𝐿(rex𝑝𝑖), hence 𝑝1𝑝2 ∈ 𝐿(rex𝑝). Since rex𝑝′ results from
replacing 𝑝 with rex𝑝 we also get that 𝑝1𝑝2 ∈ 𝐿(rex𝑝′).
We now argue that (iii) holds. Suppose that  is linear, then when replacing a simple role the
size of the regular expression grows linearly in the size of  and all freshly introduced symbols
are simple. Since in each CRI at least one of the involved relations is simple, we obtain that the
size of any regular expression is at most polynomial in the size of .

Lastly, from the above claim and the definition of (𝑝) we obtain that 𝐿(rex𝑝) contains (𝑝),
for each 𝑝 ∈ sign().

3.1.2 DL-Lite++ and DL-Lite++(reg)
We consider the following extensions of DL-Lite: DL-Lite++ is the extension with linear CRIs,
and DL-Lite++(reg) is the extension with CRIs that are both linear and regular.
Definition 3.3 (DL-Lite++ , DL-Lite++(reg)). A DL-Lite++ ontology  is a DL-Lite ontology that
may also contain linear CRIs such that for each 𝑝1◦𝑝2 ⊑ 𝑝, there is no axiom (𝖿𝗎𝗇𝖼𝗍 𝑝) ∈ .

A DL-Lite++(reg) ontology  is a DL-Lite++ ontology such that the set of CRIs is in addition
regular.

For DL-Lite++ , as for DL-Lite, we disallow functional roles or features to be specialized. In the
remaining of this chapter we focus only on linear CRIs, therefore we may omit calling them linear.
The chase procedure in Definition 2.24 can be extended for DL-Lite++ by considering the following
additional case:

• If ′ = {𝑝1(𝑐1, 𝑐2), 𝑝2(𝑐2, 𝑐3)} and 𝑝(𝑐1, 𝑐3) ∉ 𝑗 , then 𝑔𝑝1◦𝑝2⊑𝑝(′) = {𝑝(𝑐1, 𝑐3)}.

50

3.1. Extending DL-Lite with Complex Relation Inclusions

Lemma 2.1 can be lifted for DL-Lite++ given that also the additional case preserves satisfiability
and, similarly to DL-Lite, the chase procedure constructs a model that is canonical.
Proposition 3.2. Let  be a DL-Lite++ ontology. For any ABox  consistent w.r.t.  we have
that 𝑐ℎ𝑎𝑠𝑒, is a canonical model of  w.r.t. .

3.1.3 Complexity of Reasoning in DL-Lite++ and DL-Lite++(reg)
As it is the case for more expressive DLs, without regularity, the addition of linear CRIs to
DL-Lite leads to undecidability. The proof is done by encoding the behavior of a deterministic
Turing Machine. Towards that, we show first that using regular CRIs, we can capture the axioms
of . This preliminary result serves us in two ways: we obtain that testing ABox consistency
in DL-Lite++(reg) is ExpTime-hard and also we can rely on  axioms in the reduction.
The translation of normalized  axioms into DL-Lite++(reg) is presented in Table 3.2. Intuitively,
the combination of regular CRIs and inverse roles can be used to capture conjunction and qualified
existential axioms.

 axiom DL-Lite++(reg) translation

𝐴 ⊓ 𝐵 ⊑ 𝐶

𝐴⊑ ∃𝑟𝐴 𝑟−𝐴◦𝑟𝐵 ⊑ 𝑝

𝐵 ⊑ ∃𝑟𝐵 𝑝◦𝑟−𝐵 ⊑ 𝑠𝐴⊓𝐵
∃𝑠−𝐴⊓𝐵 ⊑𝐶

𝐴 ⊑ ∃𝑟.𝐵
𝐴⊑ ∃𝑝𝑟𝐵 𝑝𝑟𝐵 ⊑ 𝑟

∃𝑝−𝑟𝐵 ⊑𝐵

∃𝑟.𝐴 ⊑ 𝐵
𝐴⊑ ∃𝑠𝐴 𝑟◦𝑠𝐴 ⊑ 𝑝𝑟𝐴

∃𝑝𝑟𝐴 ⊑𝐵

Table 3.2: 𝐴,𝐵, 𝐶 ∈ 𝐂, 𝑟 ∈ 𝐑±, and 𝑟𝐴, 𝑟𝐵, 𝑝, 𝑠𝐴⊓𝐵, 𝑝𝑟𝐴 , 𝑝𝑟𝐵 𝑠𝐴, are fresh role names.

We show next that the translation semantically emulates the original ⊥ ontology.
Lemma 3.2. For each ⊥ ontology , there exists a DL-Lite++(reg) ′ such that sign() ⊆
sign(′), and

a) for each ′ such that ′ ⊨ ′, ′ restricted to sign() is a model of , and
b) for each  such that  ⊨ , there exists ′ which coincides with  over sign() such that′ ⊨ .

Proof (sketch). Let  be an arbitrary ⊥ ontology. W.l.o.g. we assume  to be in normal
form. We obtain ′ by copying all axioms which are of DL-Lite form, and using the transforma-
tions in Table 3.2 for the remaining axioms. By construction, it is clear that sign() ⊆ sign(′).

51

3. TAMING COMPLEX ROLE INCLUSIONS FOR DL-Lite

Claim a) also holds from the construction of ′. For b), since in the translation we are using fresh
role names, we can easily extend any model of  over all predicates in sign(′) ⧵ sign() in such
a way that each axiom of ′ is satisfied.

This result allows us to make use of ⊥ axioms in proving the following.
Theorem 3.1. DL-Lite++ -ABOX CONSISTENCY is undecidable.

Proof. Given a deterministic Turing machine (TM) 𝑀 and an input word 𝑤, we can construct a
DL-Lite++ ontology  and ABox  such that  is consistent w.r.t.  if and only if 𝑀 does not
accept input 𝑤. Since we can translate axioms expressible in ⊥ into DL-Lite++ , we make
use of such axioms in our reduction. The reduction is inspired by the undecidability proof for
answering CQs with safe negation in ⊥ [GIKK15].
Let 𝑀 = (Σ, 𝑄, 𝑞0, 𝑞𝑓 , 𝜎) be a deterministic TM, where Σ is the alphabet (including blank
symbol ’␣’), 𝑄 is the set of states, 𝑞0, 𝑞𝑓 ∈ 𝑄 represent the initial, respectively accepting state,
and 𝜎 ∶ (𝑄 × Σ) ↦ (𝑄 × Σ × {𝐿,𝑅}) is the transition function. We encode the sequence of
configurations of 𝑀 using the following concept and role names:

• concept 𝐻𝑞 marks the cell that is under the head of the cursor and the current state is 𝑞;
• concept 𝐻∅ marks all other cells on the tape which are not under the head of the cursor;
• concept 𝐶𝑎, where 𝑎 ∈ Σ encodes the information that symbol 𝑎 is the content of that cell;
• role nconf connects content of a cell in configuration 𝑖 to the content of the same tape cell

in configuration 𝑖 + 1;
• role ncell connects content of two adjacent tape cells in the same configuration;
• concepts 𝐵𝑞

𝜏 , 𝐵𝜏 for 𝑞 ∈ 𝑄 and 𝜏 ∈ {𝐿,𝑅} propagate left and right along the tape the head
and no-head markers, respectively;

• concept 𝐷 encodes the fact that the content of the cell is blank, since in the initial configu-
ration the tape content is empty after the input word.

Let 𝑀 be the following ⊥ ontology:
𝐻𝑞 ⊓ 𝐶𝑎 ⊑ ∃nconf .(𝐶𝑏 ⊓ 𝐵𝑞′

𝜏), 𝜎(𝑞, 𝑎) = (𝑞′, 𝑏, 𝜏), 𝜏 ∈ {𝐿,𝑅} (3.3)
𝐻∅ ⊓ 𝐶𝑎 ⊑ ∃nconf .𝐶𝑎, 𝑎 ∈ Σ. (3.4)

For 𝑞 ∈ 𝑄:
𝐻𝑞 ⊑ 𝐵𝐿 ⊓ 𝐵𝑅, (3.5)

∃ncell.𝐵𝑞
𝐿 ⊑ 𝐻𝑞 ∃ncell−.𝐵𝑞

𝑅 ⊑ 𝐻𝑞. (3.6)
∃ncell.𝐵𝐿 ⊑ 𝐻∅ ⊓ 𝐵𝐿 ∃ncell−.𝐵𝑅 ⊑ 𝐻∅ ⊓ 𝐵𝑅 (3.7)

ncell◦nconf ⊑ 𝑑 nconf−◦𝑑 ⊑ ncell (3.8)
𝐷 ⊑ ∃ncell.(𝐷 ⊓ 𝐶␣) (3.9)

𝐻𝑞𝑓 ⊑ ⊥. (3.10)

52

3.1. Extending DL-Lite with Complex Relation Inclusions

Configuration

Ca1

Hq0 Ca2 Ca3ncell

nconf

d

ncell

nconf

d

nconf

ncell

nconf

d

ncell

nconf

d

nconf

ncell

d

ncell

d

Figure 3.2: Encoding the computations of a Turing Machine.

For every input word 𝑤 = 𝑎1… 𝑎𝑛 over Σ, we take the following ABox 𝑤 with constants
𝑐1,… , 𝑐𝑛, and assertions:

𝐻𝑞0(𝑐1), 𝐶𝑎𝑖(𝑐𝑖), ncell(𝑐𝑖, 𝑐𝑖+1), for 1 ≤ 𝑖 < 𝑛, and 𝐶𝑎𝑛(𝑐𝑛), 𝐷(𝑐𝑛).

We claim that:
Claim 3. 𝑤 is consistent w.r.t. 𝑀 if and only if 𝑀 does not accept 𝑤.

Consider a model  of (𝑀 ,𝑤). Since  ⊨ 𝑤, by (3.9) we obtain that there exists an infinite
sequence of (not necessarily distinct) elements 𝑑1, 𝑑2,… such that 𝑑𝑖 ∈ 𝐶

𝑎𝑖
, for 1 ≤ 𝑖 ≤ 𝑛 and

𝑑𝑖 ∈ 𝐶␣ for 𝑖 > 𝑛. By (3.5) - (3.7), we obtain that 𝑑𝑖 ∈ 𝐻
∅ , for 𝑖 > 1. Using axiom (3.3) and

(3.4), we obtain that there exists elements 𝑑′
1, 𝑑

′
2,… such that (𝑑𝑖, 𝑑′

𝑖) ∈ nconf , which denote
the cells in the next configuration. The content and state are updated according to 𝜎 while for
unaffected cells, the content remains unchanged. Again by (3.5) - (3.7), the head of the cursor is
updated. Using CRIs in (3.8), we obtain that (𝑑′

𝑖 , 𝑑
′
𝑖+1) ∈ ncell . By applying the same reasoning,

we deduce that for each configuration in the computation such sequence of elements exists. Finally,
(3.10) ensures that the accepting state is not reached during computation, that is, 𝑀 does not
accept 𝑤.
Conversely, if 𝑀 does not accept 𝑤, then the computation of 𝑀 can be encoded into an infinite
two-dimensional grid interpretation  that is a model of 𝑀 and satisfies 𝑤. The interpretation is sketched in Figure 3.2 and it clearly satisfies 𝑤 and axioms (3.3)-(3.9). Since 𝑀 does not
accept 𝑤, then the accepting state 𝑞𝑓 is not reached, therefore 𝐻

𝑞𝑓
= ∅, hence  ⊨ (𝑀 ,𝑤).

Lastly, since the problem of deciding whether a given deterministic Turing machine accepts or
rejects a given input is undecidable, it follows that the theorem holds.

53

3. TAMING COMPLEX ROLE INCLUSIONS FOR DL-Lite

If we impose regularity on the CRIs, decidability is preserved. Since testing if a given ABox is
consistent w.r.t. a ⊥ ontology is ExpTime-hard, from Lemma 3.2 we obtain the following
result.
Lemma 3.3. DL-Lite++(reg) -ABOX CONSISTENCY is ExpTime-hard.

Unlike DL-Lite++ , the regular fragment is decidable [HS04]. The ExpTime upper-bound can
be obtained following the same procedure as in Ortiz et al. [Ort10] which is used to show
2-ExpTime upper-bound for , and . In our case, we can translate any
given DL-Lite++(reg) ontology into an equisatisfiable  ontology ( is also known as
𝑏𝖲𝖾𝗅𝖿𝑟𝑒𝑔 which extends the better known  with safe booleans over roles, regular
role expressions and concepts of the form ∃𝑝.𝖲𝖾𝗅𝖿) by replacing each relation 𝑝 with its regular
expression. Unlike for the mentioned sub-languages of , such reduction is polynomial
in the size of the original ontology, given that each regular expression is of polynomial size
(Lemma 3.1). Lastly, since testing ABox consistency in  is in ExpTime (Theorem 3.4.2 in
[Ort10]), from Lemma 3.3 we obtain:
Theorem 3.2. DL-Lite++(reg) -ABOX CONSISTENCY is ExpTime-complete.

Query Answering in DL-Lite++(reg) . The lower-bounds for query answering decision problems
also follow directly from Lemma 3.2 and the fact that the CQ answering in ⊥ is hard for
ExpTime in combined complexity and PTime-hard in data complexity [BLB08].
A 2-ExpTime upper-bound is inherited from answering conjunctive two-way regular path queries
in Horn- [ORS11], however given that our CRIs are more succinct, a tighter upper-bound
can be obtained as follows.
Using the standard automata encoding from [Kaz08] we can encode the set of CRIs into a set of
Horn- axioms. Based on the regular expression for each relation 𝑝, we can construct a
non-deterministic finite automata (NFA) that can recognize each word in the language of 𝑝. Let(𝑝) denote an NFA for (𝑝) with the set of states 𝑄𝑝, starting state 𝑞0 ∈ 𝑄𝑝, accepting states
𝐹 ⊆ 𝑄𝑝, and transition relation 𝛿 ⊆ 𝑄𝑝 × 𝐑 ∪ 𝐅 × 𝑄𝑝. Given (𝑝) we define the following
axioms:

∃𝑟 ⊑ 𝐴𝑝
𝑞0
, for each (𝑞0, 𝑟, 𝑞′) ∈ 𝛿

𝐴𝑝
𝑞 ⊑ ∀𝑟.𝐴𝑝

𝑞′ , for each (𝑞, 𝑟, 𝑞′) ∈ 𝛿,

𝐴𝑝
𝑞 ⊑ 𝐶𝑝, for each 𝑞 ∈ 𝐹 .

Then, given a DL-Lite++(reg) OMQ  we can construct a Horn- OMQ ′ such that for
any ABox the certain answers of  and ′ coincide. We obtain such transformation from  by
adding the above axioms for each non-simple role 𝑝 and then replace each occurrence of ∃𝑝 by
𝐴𝑝
𝑞0 , and similarly, each occurrence of ∃𝑝− by 𝐶𝑝. Then, each 𝑝(𝑥, 𝑦) in the query is replaced with

𝐴𝑝
𝑞0(𝑥) ∧ 𝐶𝑝(𝑦). The correctness of such transformation follows from Proposition 1 in [ORS11],

54

3.2. FO-rewritable Fragments of DL-Lite++

however, it follows from Lemma 3.1 that our transformation is polynomial, given that automata
are in general more succinct than regular expressions. Lastly, since Horn-𝖣𝗂𝗌𝗃 is strictly
contained in Horn-𝖣𝗂𝗌𝗃

𝖲𝖾𝗅𝖿
, from Lemma 4 in [ORS11] we obtain the desired upper

bounds.
Theorem 3.3. DL-Lite++(reg) -CERTAIN ANSWERS is ExpTime-complete and DL-Lite++(reg) -
CERTAIN ANSWERS(,𝑞) is 𝑃 -complete.

3.2 FO-rewritable Fragments of DL-Lite++
In this section we present two fragments of DL-Lite++ for which OMQs can be answered via
rewriting into a union of conjunctive queries such that standard database evaluation techniques
can be used to obtain complete answers. This means that the data complexity for evaluating CQs
in these logics is the same as for core DL-Lite. We also establish complexity results for testing
ABox consistency for each fragment.

3.2.1 Non-recursive DL-Lite++
We start with the observation that given an ontology  consisting of a single CRI 𝑟◦𝑠 ⊑ 𝑟 is
sufficient for reducing reachability in a directed graph, problem known to be NLogSpace-hard,
to instance query answering (i.e., query is atomic and with no existential variables) [ACKZ09].
For regaining rewritability, we need to ensure that the paths of simple roles on which CRIs are
applicable have bounded size in some canonical model of the KB. To achieve this, a first restriction
is to disallow cyclic dependencies between roles occuring in CRIs. We then extend the rewriting
rules for DL-Lite in a natural way and prove correctness of the rewriting for this fragment.
In order to define the notion of a recursive CRI in an ontology, we employ the notion of an
ontology recursion graph. For a DL-Lite++ ontology , the recursion graph of  is the directed
graph containing a node 𝑣𝐴 for each concept name 𝐴, and a node 𝑣𝑝 for each relation 𝑝 occurring
in , and for each:
- 𝐴1 ⊑ 𝐴2 ∈ , there exists an edge from 𝑣𝐴2

to 𝑣𝐴1
;

- 𝑝1 ⊑ 𝑝2 ∈ , there exists an edge from 𝑣𝑝2 to 𝑣𝑝1 ;- 𝑝1 ⊑ 𝑝−2 ∈ , there exists an edge from 𝑣𝑝2 to 𝑣𝑝1 ;- 𝐴 ⊑ ∃𝑝 ∈ , there exists an edge from 𝑣𝑝 to 𝑣𝐴;
- ∃𝑝 ⊑ 𝐴 ∈ , there exists an edge from 𝑣𝐴 to 𝑣𝑝;
- 𝑝1◦𝑝2 ⊑ 𝑝 ∈ , there exists an edge from 𝑣𝑝 to 𝑣𝑝1 and one to 𝑣𝑝2 .
A relation 𝑝 is recursive in  if 𝑣𝑝 participates in a cycle in the recursion graph of  and a CRI
𝑝1◦𝑝2 ⊑ 𝑝 is recursive in  if 𝑝 is.
Definition 3.4. A DL-Lite++(non-rec) ontology is a DL-Lite++ ontology  with no recursive CRIs.

Note that for a DL-Lite++(non-rec) ontology, the set of CRIs is regular since non-simple relations
cannot occur in a cycle in the ontology graph, therefore based on the ontology graph an order on

55

3. TAMING COMPLEX ROLE INCLUSIONS FOR DL-Lite

relations can be derived such that regularity restrictions are satisfied. Moreover, we show next
that restricting CRIs to be non-recursive indeed guarantees FO-rewritability.
The rewriting is the same as for DL-Lite, extended with an additional case for handling CRIs.
Definition 3.5 (DL-Lite++(non-rec) rewriting). Let  be a DL-Lite++(non-rec) ontology. For CQs
𝑞, 𝑞′ we say that 𝑞′ is a rewriting of 𝑞 w.r.t. , written 𝑞 ⇝ 𝑞′ whenever 𝑞′ is obtained from 𝑞 by
applying a DL-Lite rewriting rule S1– S6 from in Definition 2.26, or

S8 by replacing 𝑝(𝑥, 𝑦) ∈ 𝑞 with 𝑝1(𝑥, 𝑧), 𝑝2(𝑧, 𝑦), if 𝑝1◦𝑝2 ⊑ 𝑝 ∈ , where 𝑧 is a fresh variable.

The rewriting of 𝑞 w.r.t.  is 𝑟𝑒𝑤(𝑞,) = {𝑞} ∪ {𝑞′ ∣ 𝑞 ⇝∗ 𝑞′}, where ⇝∗ denotes the reflexive
and transitive closure of ⇝.

For any CQ 𝑞, 𝑟𝑒𝑤(𝑞,) is a finite set of CQs such that each 𝑞′ ∈ 𝑟𝑒𝑤(𝑞,) the derivation path
of 𝑞′ is polynomially bounded in the size of  and 𝑞.
Lemma 3.4. Let  be a DL-Lite++(non-rec) ontology, let 𝑞 a CQ and let 𝑛 denote the size of (, 𝑞).
Each 𝑞′ ∈ 𝑟𝑒𝑤(𝑞,) is polynomial in 𝑛 and can be obtained in polynomially many rewriting
steps.

Proof. Due to the non-recursiveness of the dependency graph and the restriction on simple roles,
we show that we can assign to queries a (suitably bounded) degree that roughly corresponds to
the number of rewriting steps that can be further applied. We prove that for each 𝑞′ such that
𝑞 ⇝∗ 𝑞′, the degree does not increase, and after polynomially many steps we will reach 𝑞 ⇝∗ 𝑞′′
such that the degree strictly decreases.
We first define 𝑎𝑐𝑦𝑐𝑙 as the acyclic version of the recursion graph of  in which nodes 𝑛 are
labeled with a bag of predicates symbols, 𝑏𝑎𝑔(𝑛), and each maximal cycle in the recursion graph
of  denotes a single node with a bag containing all symbols participating in the cycle. All
other nodes are labeled with a bag consisting of single predicate symbol. The edges in 𝑎𝑐𝑦𝑐𝑙
are obtained from the recursion graph, namely there is an edge between node 𝑛 and 𝑛′ if there
exists an edge in the recursion graph between some 𝑃 ∈ 𝑏𝑎𝑔(𝑛) and 𝑃 ′ ∈ 𝑏𝑎𝑔(𝑛′), where 𝑃 , 𝑃 ′

are concept or relation symbols.
The function 𝑚𝑝𝑎𝑡ℎ assigns a level to each node 𝑛 in 𝑎𝑐𝑦𝑐𝑙 as follows:

• if 𝑛 has no outgoing edges, then 𝑚𝑝𝑎𝑡ℎ(𝑛) = 0;
• otherwise, 𝑚𝑝𝑎𝑡ℎ(𝑛) = 𝑚𝑎𝑥{𝑚𝑝𝑎𝑡ℎ(𝑛′) + 1 ∣ 𝑛 → 𝑛′ ∈ 𝑎𝑐𝑦𝑐𝑙}.

For a given query 𝑞, we define a function 𝑑𝑔𝑟(𝑞) that, roughly, bounds the number of rewriting
steps that may be iteratively applied to it. It is defined as follows:

𝑑𝑔𝑟(𝑞) =
∑

𝑃 (𝑥⃗)∈𝑞,𝑃∈𝑏𝑎𝑔(𝑛)
𝑚𝑝𝑎𝑡ℎ(𝑛).

56

3.2. FO-rewritable Fragments of DL-Lite++

We will show that the application of the rules decreases the degree, except for some cases where
the degree stays the same, but can only do so for polynomially many rewriting steps (in the size
of largest bag of 𝑎𝑐𝑦𝑐𝑙). We show this bound before proving the main claim:
(‡) For each query of the form 𝑞1 = 𝑞 ∪ {𝑃 (𝑥⃗)} such that 𝑃 participates in a cycle, then there are
at most 𝑘2 different queries of the form 𝑞2 = 𝑞 ∪ {𝑃 ′(𝑥′)} that can be obtained by the rewriting
rules and such that 𝑑𝑔𝑟(𝑞2) = 𝑑𝑔𝑟(𝑞1), where 𝑘 is the size of the bag in 𝑎𝑐𝑦𝑐𝑙 containing 𝑃
(there is a unique bag containing 𝑃 , since if 𝑃 participates in two cycles, all symbols in the cycles
belong to the same bag).
Let query 𝑞2 be obtained by replacing 𝑃 (𝑥⃗) with 𝑃 ′(𝑥′) in 𝑞1. From the rewriting rules of
DL-Lite, 𝑥′ differs from 𝑥⃗ by at most one fresh variable. Since 𝑑𝑔𝑟(𝑞2) = 𝑑𝑔𝑟(𝑞1) it must be
that 𝑃 , 𝑃 ′ belong to the same bag in 𝑎𝑐𝑦𝑐𝑙. If 𝑃 occurs in a cycle then, by the restriction of CRIs
in DL-Lite++ , 𝑃 cannot be a non-simple role, hence 𝑞2 is not obtained by applying S8. Then,
applying the axioms in  that participate in this cycle in , it must be that 𝑞2 is obtained again
after at most 𝑘2 rewriting steps (number of distinct pairs of symbols in the bag) therefore there
are at most 𝑘2 rewritings of 𝑞1 that have the same degree.
Now that we have a bound on the number of times that the degree can stay the same for rewritings
of a specific form, we can proceed with proving the lemma. We will distinguish between the
types of queries produced by the rules in Definition 3.5:

1. for rules S2– S6: 𝑞 ∪ {𝑃 (𝑥⃗}) ⇝ 𝑞 ∪ {𝑃 ′(𝑥′)}, and there is an arc between node labeled
with 𝑃 , and node labeled with 𝑃 ′, or they occur in the same bag in 𝑎𝑐𝑦𝑐𝑙;

2. for rule S8 𝑞 ∪ {𝑝(𝑥, 𝑦)} ⇝ 𝑞 ∪ {𝑝1(𝑥, 𝑧), 𝑝2(𝑧, 𝑦)}, where 𝑧 is a variable not occurring in
𝑞 and there exists arcs between the node labeled with 𝑝 and nodes labeled with 𝑝1 and 𝑝2;

3. for rule S1 𝑞(𝑥⃗) ⇝ 𝜎(𝑞(𝑥⃗)), where a variable replaces another variable in 𝑞.

We now show that if 𝑞1 ⇝ 𝑞2, then either (i) 𝑑𝑔𝑟(𝑞2) < 𝑑𝑔𝑟(𝑞1), or (ii) 𝑑𝑔𝑟(𝑞2) = 𝑑𝑔𝑟(𝑞1)
if 𝑞1, 𝑞2 are as in (‡), and thus can only preserve the same degree for at most 𝑘2 ⋅ |𝑞1| rewriting
steps, or if 𝑞2 is obtained by applying a substitution on 𝑞1. This will imply that, after at most
𝑑𝑔𝑟(𝑞1) ⋅ (|𝑞1| ⋅ 𝑘)2 steps, the degree will be zero and no more steps will be applicable.
In what follows we show a proof by cases that matches cases 1–3 above. Firstly, for case 1 above,
if 𝑃 and 𝑃 ′ do not occur in same cycle, then 𝑑𝑔𝑟(𝑞 ∪ {𝑃 (𝑥⃗})) < 𝑑𝑔𝑟(𝑃 ′(𝑥′)) since there is an
arc between 𝑃 and 𝑃 ′, hence 𝑚𝑝𝑎𝑡ℎ(𝑛) > 𝑚𝑝𝑎𝑡ℎ(𝑛′), where 𝑃 ∈ 𝑏𝑎𝑔(𝑛) and 𝑃 ′ ∈ 𝑏𝑎𝑔(𝑛′). The
other sub-case follows from (‡), therefore the degree of the queries obtained using rules S3– S6
decreases after at most 𝑘2 ⋅ |𝑞| rewriting steps.
Next, we show for case 2 above that: for each pair of queries 𝑞1 = 𝑞 ∪ {𝑝(𝑥, 𝑦)}, 𝑞2 = 𝑞 ∪
{𝑝1(𝑥, 𝑧), 𝑝2(𝑧, 𝑦)} such that 𝑞1 ⇝ 𝑞2, we have that 𝑑𝑔𝑟(𝑞2) < 𝑑𝑔𝑟(𝑞1). Since 𝑞2 is obtained
by applying 𝑝1◦𝑝2 ⊑ 𝑝 ∈ , the degree strictly decreases in this case since 𝑝 cannot occur in a
cycle and there must be an arc between node labeled 𝑝 and nodes labeled 𝑝1 and 𝑝2 in 𝑎𝑐𝑦𝑐𝑙.

57

3. TAMING COMPLEX ROLE INCLUSIONS FOR DL-Lite

Lastly, for case 3 above: for each pair of queries 𝑞1 = 𝑞(𝑥⃗) ⇝ 𝑞2 = 𝜎(𝑞(𝑥⃗)), we have that
𝑑𝑔𝑟(𝑞2) = 𝑑𝑔𝑟(𝑞1), however in this case 𝑣𝑎𝑟𝑠(𝑞1) ⊊ 𝑣𝑎𝑟𝑠(𝑞2), hence such rule will eventually
either reduce the size of 𝑞1 and potentially make applicable cases 1 or 2 hence 𝑑𝑔𝑟(𝑞2) < 𝑑𝑔𝑟(𝑞1)
after at most (𝑘 ⋅ |𝑞1|)2 applications.
Therefore, we can conclude that each query 𝑞′ ∈ 𝑟𝑒𝑤(𝑞,) can be obtained after applying at most
𝑑𝑔𝑟(𝑞) ⋅ (|𝑞| ⋅ 𝑘)2 rewriting steps, where 𝑘 is the size of the largest cycle in .
We now argue the other part of the lemma, namely that each query in the rewriting has polynomial
size. In case 1 at most one new variable is introduced but the size of the query remains the
same, and in case 2 the size of the query increases by one, however only one of the newly
introduced atoms (the non-simple role atom) may further trigger application of rule S8, but only
a polynomially bounded number of times, since the degree decreases. Therefore the size of each
query in the rewriting is polynomially bounded in the size of  and 𝑞.

The next result is shown analogously as for DL-Lite [CGL+09b], considering the additional
rewriting case.
Lemma 3.5. Let  be a DL-Lite++(non-rec) ontology and 𝑞 a CQ. For every ABox  consistent
with :

𝑐𝑒𝑟𝑡(𝑞,,) =
⋃

𝑞′∈𝑟𝑒𝑤(𝑞,)
𝑐𝑒𝑟𝑡(𝑞′, ∅,).

Proof. Direction "⊇". We show that for each 𝑞′ ∈ 𝑟𝑒𝑤(𝑞,) we have that 𝑐𝑒𝑟𝑡(𝑞′,,) ⊆
𝑐𝑒𝑟𝑡(𝑞,,).

• Base step: trivial since 𝑞 ∈ 𝑟𝑒𝑤(𝑞,).
• Inductive step: Let 𝑞𝑖 denote the rewriting obtained from 𝑞 after 𝑖 application of rewriting

rules S1– S8 and suppose that 𝑐𝑒𝑟𝑡(𝑞𝑖,,) ⊆ 𝑐𝑒𝑟𝑡(𝑞,,). For 𝑞𝑖+1 obtained from 𝑞𝑖 by
means of one-step application of some rule S1– S8, we want to show that 𝑐𝑒𝑟𝑡(𝑞𝑖+1,,) ⊆
𝑐𝑒𝑟𝑡(𝑞𝑖,,). If 𝑞𝑖+1 is obtained by applying any of the rewriting cases S1– S6, then
this follows from the soundness of the rewriting for DL-Lite. It remains to argue for S8.
Suppose that 𝑝1◦𝑝2 ⊑ 𝑝 ∈  is applicable onto 𝑞𝑖, then 𝑞𝑖+1 is obtained by replacing 𝑝(𝑥, 𝑦)
in 𝑞 with 𝑝1(𝑥, 𝑧) ∧ 𝑝2(𝑧, 𝑦). From Proposition 3.2 we obtain that we can rely on the chase
procedure to answer queries, and it is easy to check that each answer of 𝑞𝑖+1 over 𝑐ℎ𝑎𝑠𝑒, is
an answer of 𝑞𝑖 over 𝑐ℎ𝑎𝑠𝑒, .

From the base and induction steps, we conclude that for each 𝑞′ ∈ 𝑟𝑒𝑤(𝑞,), we have that
𝑐𝑒𝑟𝑡(𝑞′, ∅,) ⊆ 𝑐𝑒𝑟𝑡(𝑞′,,) ⊆ 𝑐𝑒𝑟𝑡(𝑞,,).
Direction "⊆". We need to show that for each 𝑎 ∈ 𝑐𝑒𝑟𝑡(𝑞,,) there exists 𝑞′ ∈ 𝑟𝑒𝑤(𝑞,) such
that 𝑎 ∈ 𝑐𝑒𝑟𝑡(𝑞′, ∅,). Let 𝑎 be an arbitrary certain answer of (𝑞,) over . This means that
there exists some match 𝜋 of 𝑞 over 𝑐ℎ𝑎𝑠𝑒, such that 𝜋(𝑥⃗) = 𝑎, where 𝑥⃗ denote the free variables
in 𝑞. Since we can rely on the chase to construct the canonical model it means that for some 𝑘 ≥ 0
we have that 𝜋(𝑞) ∈ chase𝑘(). We show that for 𝑘 − 𝑖, with 0 ≤ 𝑖 ≤ 𝑘, there exist a rewriting

58

3.2. FO-rewritable Fragments of DL-Lite++

𝑞𝑖(𝑥𝑖) ∈ 𝑟𝑒𝑤(𝑞,) and a match 𝜋𝑖 such that 𝜋𝑖(𝑥𝑖) = 𝑎 and 𝜋𝑖(𝑞𝑖) ∈ chase𝑘−𝑖 (). The claim then
follows for 𝑖 = 𝑘 since chase0 = .

• Base step: This is an immediate consequence of the fact that 𝑞 ∈ 𝑟𝑒𝑤(𝑞,).
• Inductive step: Let 𝑘′ = 𝑘 − 𝑖 + 1 and suppose that there exist 𝑞𝑘′(𝑥′) ∈ 𝑟𝑒𝑤(𝑞,)

and 𝜋𝑘′ such that 𝜋𝑘′(𝑥′) = 𝑎 and 𝜋𝑘′(𝑞𝑘′) ∈ chase𝑘′ (). We show that the claim also
holds for 𝑘′ − 1. For the DL-Lite rewriting rules (covered by cases S1– S6) it follows
directly from the fact that the rewriting procedure is complete. We then show for the
remaining case S8. We assume that a CRI 𝑝1◦𝑝2 ⊑ 𝑝 ∈  is applied in chase𝑘′−1,
therefore there are 𝑝1(𝑎1, 𝑎2), 𝑝2(𝑎2, 𝑎3) ∈ chase𝑘′−1 and there is no 𝑝(𝑎1, 𝑎3) ∈ chase𝑘′−1,
and chase𝑘′ = chase𝑘′−1 ∪ {𝑝(𝑎1, 𝑎3)}. If 𝑝1◦𝑝2 ⊑ 𝑝 is not applicable on 𝑞𝑘′ then the claim
follows directly since 𝜋𝑘′ is a match of 𝑞𝑘′ in chase𝑘′−1. If 𝑝1◦𝑝2 ⊑ 𝑝 is applicable on
𝑞𝑘′ then we obtain a rewriting 𝑞𝑘′−1 which replaces 𝑝(𝑥, 𝑦) ∈ 𝑞𝑘′ with 𝑝1(𝑥, 𝑧) ∧ 𝑝2(𝑧, 𝑦)
where 𝑧 is a fresh variable. Then match 𝜋𝑘′−1 is obtained by extending 𝜋𝑘′ to map 𝑧 to 𝑎2.
Therefore the claim holds.

From the base and inductive step we conclude that for each 𝑎 ∈ 𝑐𝑒𝑟𝑡(𝑞,,) there exists
𝑞′ ∈ 𝑟𝑒𝑤(𝑞,) such that 𝑎 ∈ 𝑐𝑒𝑟𝑡(𝑞, ∅,).

From Lemmas 3.4 and 3.5, we obtain that non-recursive CRIs preserve FO-rewritability of
DL-Lite. Moreover, the combined complexity remains NP-complete as for DL-Lite: NP-
hardness is inherited from answering CQs over plain relational databases, while the NP mem-
bership follows from the fact that guessing a rewriting and a mapping it is possible to verify in
polynomial time if it is a match over the ABox.
Theorem 3.4. For consistent ABoxes, DL-Lite++(non-rec) -CERTAIN ANSWERS is NP-complete and
DL-Lite++(non-rec) -CERTAIN ANSWERS(,𝑞) is in 𝐴𝐶0.

The addition of non-recursive CRI is far from harmless for consistency testing. Indeed, unlike the
extension with transitive roles, even non-recursive CRIs increase the complexity of testing ABox
consistency w.r.t. DL-Lite++(non-rec) ontologies.

Theorem 3.5. DL-Lite++(non-rec) -ABOX CONSISTENCY is CoNP-complete.

Proof. Upper-bound: Similarly as for DL-Lite, inconsistency checking can be reduced to UCQ
answering, using a CQ 𝑞𝛼 for testing whether each disjointness or functionality axiom 𝛼 is violated
in the canonical model.
We consider first the case when 𝛼 is a functionality axiom. From the restrictions on functional
roles it follows that they can be violated only within the ABox since analogous to DL-Lite,
for each (𝖿𝗎𝗇𝖼𝗍 𝑝) such that  ⊨ (𝖿𝗎𝗇𝖼𝗍 𝑝), either (𝖿𝗎𝗇𝖼𝗍 𝑝) ∈  or 𝑝 = ∅ for each  ⊨ .
Therefore, the violation of each functionality axiom 𝛼 = (𝖿𝗎𝗇𝖼𝗍 𝑝) can be tested by evaluating the
following CQ with inequalities over the ABox alone: 𝑞𝛼() ← ∃𝑥, 𝑦, 𝑧 𝑝(𝑥, 𝑦) ∧ 𝑝(𝑥, 𝑧) ∧ 𝑦 ≠ 𝑧.

59

3. TAMING COMPLEX ROLE INCLUSIONS FOR DL-Lite

When 𝛼 is a disjointness axiom, by Lemmas 3.4 and 3.5, an NP procedure can guess a query 𝑞𝛼,
guess a 𝑞′𝛼 in its rewriting, and evaluate 𝑞′𝛼 over . Since the rewriting is of polynomial size, the
evaluation of such boolean CQs over the ABox can be done in polynomial time.
We can conclude then that the ABox is inconsistent iff () ∈ 𝑐𝑒𝑟𝑡(𝑞𝛼,,) for some disjointness
or functionality axiom 𝛼. As discussed above, this test is in NP, therefore we conclude that
DL-Lite++(non-rec) -ABOX CONSISTENCY is in CoNP.
Lower-bound: We reduce the complement of 3SAT to testing ABox consistency in DL-Lite++(non-rec) .
Suppose we are given a conjunction 𝜑 = 𝑐1 ∧⋯∧ 𝑐𝑛 of clauses of the form 𝓁𝑗1 ∨ 𝓁𝑗2 ∨ 𝓁𝑗3 , where
for 1 ≤ 𝑗 ≤ 𝑛 and 1 ≤ 𝑘 ≤ 3, each 𝓁𝑗𝑘 is a literal, i.e., propositional variables or their negation.
Let 𝑥0,… , 𝑥𝑚 be all the propositional variables occurring in 𝜑.
In order to encode the possible truth assignments of each variable 𝑥𝑖, we take two fresh roles 𝑟𝑥𝑖
and 𝑟̄𝑥𝑖 , intended to be disjoint. We construct a DL-Lite++(non-rec) ontology 𝜑 containing, for
every 0 ≤ 𝑖 ≤ 𝑚, the following axioms:

𝖽𝗂𝗌𝗃(𝑟𝑥𝑖 ,𝑟̄𝑥𝑖), 𝐴𝑖 ⊑ ∃𝑟𝑥𝑖 ⊓ ∃𝑟̄𝑥𝑖 , ∃𝑟−𝑥𝑖 ⊑ 𝐴𝑖+1,

∃(𝑟̄𝑥𝑖)
− ⊑ 𝐴𝑖+1, 𝑟𝑥𝑖 ⊑ 𝑝, 𝑟̄𝑥𝑖 ⊑ 𝑝

These axioms have a model that is a full binary tree, rooted at 𝐴0 and whose edges are labeled with
the role 𝑝, and with different combinations of the roles 𝑟𝑖 and 𝑟̄𝑥𝑖 . Intuitively, each path represents a
possible variable truth assignment. Further, 𝜑 contains axioms relating each variable assignment
with the clauses it satisfies, using roles 𝑠𝑐1 ,… , 𝑠𝑐𝑛 . More precisely, we have the following role
inclusions for 0 ≤ 𝑖 ≤ 𝑚, and 1 ≤ 𝑗 ≤ 𝑛:

𝑟𝑥𝑖 ⊑ 𝑠𝑐𝑗 , if 𝑥𝑖 ∈ 𝑐𝑗 𝑟̄𝑥𝑖 ⊑ 𝑠𝑐𝑗 , if ¬𝑥𝑖 ∈ 𝑐𝑗 (3.11)
To encode the evaluation of all clauses, we have axioms propagating down the tree all clauses
satisfied by some assignment. Note that we could do this easily using a CRI such as 𝑠𝑐𝑗◦𝑝 ⊑ 𝑠𝑐𝑗 .However, this would need a recursive role 𝑠𝑐𝑗 . Since the depth of the assignment tree is bounded
by 𝑚, we can encode this (bounded) propagation using at most 𝑚 roles 𝑠𝑖𝑐𝑗 for each clause 𝑐𝑗 ,
which will be declared as subroles of another role 𝑠∗𝑐𝑗 . For 1 ≤ 𝑗 ≤ 𝑛 and 1 ≤ 𝑖 < 𝑚, we have the
following CRIs:

𝑠𝑐𝑗◦𝑝 ⊑ 𝑠1𝑐𝑗 𝑠𝑖𝑐𝑗◦𝑝 ⊑ 𝑠𝑖+1𝑐𝑗
𝑠𝑖𝑐𝑗 ⊑ 𝑠∗𝑐𝑗

Thus, if 𝑐𝑗 is satisfied in a 𝑝-branch of the assignment tree, its leaf will have an incoming 𝑠∗𝑐𝑗 edge.
Now, in order to encode that there is at least one clause that is not satisfied, we need to forbid the
existence of a leaf satisfying the concept ∃(𝑠∗𝑐1)− ⊓⋯ ⊓ ∃(𝑠∗𝑐𝑛)

−. This cannot be straightforwardly
written in DL-Lite++(non-rec) , but we resort again to CRIs to propagate information:

∃(𝑠∗𝑐1)
− ⊑ ∃𝑡1 𝑠∗𝑐𝑘◦𝑡1 ⊑ 𝑝1𝑘, 2 ≤ 𝑘 ≤ 𝑛 (3.12)

60

3.2. FO-rewritable Fragments of DL-Lite++

Next, for 2 ≤ 𝑖 ≤ 𝑛, 𝑖 < 𝑘 ≤ 𝑛 we have the following:
∃(𝑝𝑖−1𝑖)− ⊑ ∃𝑡𝑖 𝑝𝑖−1𝑘 ◦𝑡𝑖 ⊑ 𝑝𝑖𝑘 (3.13)

By adding the axiom ∃𝑡𝑛 ⊑ ⊥, we obtain the required restriction. Then, 𝜑 is unsatisfiable if and
only if {𝐴0(𝑎)} is consistent w.r.t. 𝜑.

3.2.2 Recursion-safe fragment of DL-Lite++
Additionally to the increased complexity, DL-Lite++(non-rec) has another relevant limitation: it
cannot express CRIs like 𝑟◦𝑠 ⊑ 𝑟 which means that the propagation of properties along paths is
very limited. As 𝑠 is simple, it cannot be implied by non-simple roles, thus only ABox constants
are instances of these guarding roles. However, as motivated by our running example, CRIs such
as 3.1 are useful to propagate information along the location hierarchy denoted by concepts
District,City,Country. Indeed, in this case, the application of the CRI is very local, meaning that
each path that triggers the application of a CRI involves known objects from the data. Following
this observation, we define yet another fragment of DL-Lite++ that allows recursive CRIs, however
their application “fires” only very close to the ABox. We call such fragment recursion-safe, for
which regularity conditions are not imposed.
Definition 3.6. A DL-Lite++(rec-safe) ontology  is any DL-Lite++ ontology such that for each
CRI 𝑝1◦𝑠 ⊑ 𝑝2, there is no axiom of the form 𝐵 ⊑ ∃𝑝 ∈  with 𝑝 ⊑𝗌 𝑠 or 𝑝 ⊑𝗌 𝑠−, where ⊑𝗌
denotes the reflexive and transitive closure of 𝑠1 ⊑ 𝑠2 ∈  with 𝑠2 ∈ 𝐑𝐬 ∪ 𝐅𝐬.

The key idea behind recursion safety is that every recursive CRI is “guarded” by a simple role
that is not existentially implied. For query answering, we can assume that only ABox constants
are connected by these guarding roles, and thus recursive roles can connect only pairs of objects
in which at least one must be an ABox constant.
Standard reasoning problems like consistency checking and answering instance queries are
tractable for recursion safe DL-Lite++ ontologies. To see this, we first note that for a given
ABox  testing consistency can be done in a two step procedure: a) first verify if  satisfies all
functionality axioms, and then b) test if there exists a model of  that satisfies each remaining
axiom.
Claim 4. Let  be a DL-Lite++ ontology and let 𝑓 denote the functionality axioms in . For
any ABox ,  is consistent w.r.t.  if and only if  is consistent w.r.t. 𝑓 and  is consistent
w.r.t.  ⧵ 𝑓 .

Proof. Direction ⇒ is trivial. For the other direction, suppose that (i)  is consistent w.r.t. 𝑓
and (ii)  is consistent w.r.t. ⧵𝑓 . From (i), it follows that  satisfies each functionality axiom
in 𝑓 . Due to the fact that each functional relation cannot be specialized nor can occur on the
right-hand-side of a CRI, the following property holds: for each (𝖿𝗎𝗇𝖼𝗍 𝑝) such that  ⊨ (𝖿𝗎𝗇𝖼𝗍 𝑝)
we have that either (𝖿𝗎𝗇𝖼𝗍 𝑝) ∈ 𝑓 or 𝑝 = ∅, for each  ⊨ . Using this property and the facts:chase, extends  and it creates a fresh constant when applying axioms of the form 𝐴 ⊑ ∃𝑝, we

61

3. TAMING COMPLEX ROLE INCLUSIONS FOR DL-Lite

obtain that chase, satisfies 𝑓 . Lastly, from (ii) we have that chase, satisfies also each axiom in ⧵ 𝑓 . Therefore,  is consistent w.r.t. .

For the second part of the procedure to test consistency we can build a polynomial-sized interpre-
tation that is a model whenever  is consistent w.r.t.  ⧵ 𝑓 . This model can also be used for
answering instance queries. In the following we use the notation 𝛼 ⊑ 𝛽 whenever  ⊨ 𝛼 ⊑ 𝛽.
Definition 3.7. Let  be a recursion safe DL-Lite++ ontology and  an ABox. We define an
interpretation , as follows. As domain we use the constants in , fresh constants 𝑎𝑝 that serve
as 𝑝-fillers for individual 𝑎, and fresh constants 𝑐𝑖𝑝 for 𝑖 ∈ {1, 2, 3} that serve as shared 𝑝-fillers
for constants not from , where 𝑝 denotes either a role or a feature.

That is, Δ, = 𝐷0 ∪𝐷1 ∪𝐷2, where:

𝐷0 = cst(), 𝐷1 = {𝑎𝑝 ∣ 𝑎 ∈ 𝐷0, 𝐴 ⊑ ∃𝑝 ∈ }, 𝐷2 = {𝑐1𝑝 , 𝑐
2
𝑝 , 𝑐

3
𝑝 ∣ 𝐴 ⊑ ∃𝑝 ∈ }.

We again distinguish between constant symbols denoting objects Δ,
𝐎 and those denoting data

values Δ,
𝐕 . The interpretation function has 𝑐, = 𝑎 for each 𝑐 ∈ Δ, , and assigns to each

concept name 𝐴, each role name 𝑟 and each feature name 𝑓 in 𝗌𝗂𝗀() the minimal set of the form
𝐴, ⊆ Δ,

𝐎 , 𝑟, ⊆ Δ,
𝐎 × Δ,

𝐎 , 𝑓, ⊆ Δ,
𝐎 × Δ,

𝐕 such that the following conditions
hold, for all 𝐴 ∈ 𝐂, 𝐵 a basic concept, and 𝑓 ∈ 𝐅 and 𝑟, 𝑟1, 𝑟2 ∈ 𝐑. 𝑝, 𝑝1, 𝑝2 ∈ 𝐑 ∪ 𝐅:

1. If 𝐴(𝑎) ∈  then 𝑎 ∈ 𝐴, , if 𝑟(𝑎, 𝑏) ∈  then (𝑎, 𝑏) ∈ 𝑟, and if 𝑓 (𝑎, 𝑣) ∈  then
(𝑎, 𝑣) ∈ 𝑓, .

2. If 𝐵 ⊑ ∃𝑝 ∈ , 𝑎 ∈ 𝐵, ∩𝐷0 then (𝑎, 𝑎𝑝) ∈ 𝑝, .
3. If 𝐵 ⊑ ∃𝑝 ∈ , 𝑑 ∈ 𝐵, and

a) if 𝑑 ∈ 𝐷1 then (𝑑, 𝑐1𝑝) ∈ 𝑝, , or
b) if 𝑑 ∈ 𝐷2 then (i) if 𝑑 = 𝑐𝑖𝑟 , for some 𝑖 ∈ {1, 2}, then (𝑑, 𝑐𝑖+1𝑝) ∈ 𝑝, , (ii) if 𝑑 = 𝑐3𝑟

then (𝑑, 𝑐1𝑝) ∈ 𝑝, .
4. If 𝐵 ⊑ 𝐴 ∈ , 𝑑 ∈ 𝐵, then 𝑑 ∈ 𝐴, .
5. If 𝑝1 ⊑ 𝑝2 ∈ , (𝑐1, 𝑐2) ∈ 𝑝,1 then (𝑐1, 𝑐2) ∈ 𝑝,2 .
6. If 𝑝1 ⊑ 𝑝−2 ∈ , (𝑐1, 𝑐2) ∈ 𝑝,1 then (𝑐2, 𝑐1) ∈ 𝑝,2 .
7. If 𝑝1◦𝑝2 ⊑ 𝑝 ∈ , (𝑐1, 𝑐2) ∈ 𝑝,1 and (𝑐2, 𝑐3) ∈ 𝑝,2 then (𝑐1, 𝑐3) ∈ 𝑝, .

For ,, we can show the following useful properties:
Proposition 3.3. Let  = 𝑝 ∪𝑛 ∪𝑓 be a recursion safe DL-Lite++ TBox, where 𝑝 contains
only positive inclusion axioms, 𝑛 contains only disjointness axioms and 𝑓 contains only
functionality axioms. Then, for every ABox :

𝐏𝟏 If  is consistent w.r.t.  then , is a model of  w.r.t. 𝑝 ∪ 𝑛.
𝐏𝟐  is inconsistent w.r.t 𝑝 ∪ 𝑛 if and only if , ̸⊧ 𝛼 for some 𝛼 ∈ 𝑛.
𝐏𝟑 If  is consistent w.r.t.  and 𝑞 is an instance query (i.e., an atomic query with no existential

variables) then 𝑐𝑒𝑟𝑡(𝑞,,) = ans(𝑞, ,).
62

3.2. FO-rewritable Fragments of DL-Lite++

Proof. To prove 𝐏𝟏, we assume that  is consistent w.r.t. . Verifying that , satisfies all but
the disjointness axioms is easy from the definition of ,. Let  be an arbitrary model of 
w.r.t. . For 𝑑, 𝑑′ ∈ Δ , let 𝗍𝗉(𝑑) = {𝐵 ∣ 𝑑 ∈ 𝐵} the set of basic concepts satisfied at 𝑑 in ,
and 𝗍𝗉(𝑑, 𝑑′) = {𝑝 ∣ (𝑑, 𝑑′) ∈ 𝑝}, the set of relations connecting 𝑑 and 𝑑′ in . The following
claim shows a key property of ,.
Claim 5. For any given 𝑑 ∈ Δ, (i) there exists 𝑒 ∈ Δ such that 𝗍𝗉,(𝑑) ⊆ 𝗍𝗉(𝑒) and
(ii) for each 𝑑′ ∈ Δ, such that 𝗍𝗉,(𝑑, 𝑑′) ≠ ∅ we have that there exists 𝑒′ ∈ Δ such that
𝗍𝗉,(𝑑, 𝑑′) ⊆ 𝗍𝗉(𝑒, 𝑒′).

Proof (Sketch). Given that  is consistent w.r.t.  then chase, is a canonical model of  w.r.t. .
Since any canonical model can be homomorphically mapped into any other model, it suffices to
show the claim for  = chase, . By construction of the chase, we obtain that for the case when
𝑑 ∈ 𝐷0 the claim follows easily.
Suppose that 𝑑 = 𝑎𝑝 ∈ 𝐷1, then from the construction of , we have that 𝑎 ∈ 𝐷0, 𝐵 ∈ 𝗍𝗉,(𝑎)and 𝐵 ⊑ ∃𝑝 ∈ . In this case we have that 𝗍𝗉,(𝑑) = {𝐵 ∣ ∃𝑝 ⊑ 𝐵}. Using the induction
hypothesis we have that 𝐵 ∈ 𝗍𝗉(𝑎) hence from the construction of the chase we obtain that there
exists some fresh constant 𝑐𝑝 such that (𝑎, 𝑐𝑝) ∈ 𝑝 . Since  is a model, we easily conclude that
𝗍𝗉(𝑐𝑝) ⊇ 𝗍𝗉,(𝑑). Let 𝑑′ be such that there is some 𝑝′ ∈ 𝗍𝗉,(𝑑, 𝑑′). Since  is recursion-safe,
we cannot have that 𝑑′ ∈ 𝐷1, hence if 𝑑′ ∈ 𝐷0 we have that 𝑝 ∈ 𝗍𝗉,(𝑑′, 𝑑) and 𝑝 ⊑ ∃(𝑝′)− ∈ ,
case which is already considered. If 𝑑′ ∈ 𝐷1, then there is some 𝐵 ∈ 𝗍𝗉,(𝑑) and 𝐵 ⊑ ∃𝑠 and
𝑠 ⊑ 𝑝′ case which is also covered by the induction hypothesis and the chase construction.
For the remaining case when 𝑑 ∈ 𝐷2, given that the construction of , avoids creating cycles
of length 1 or 2 thus the re-use of constants does not create extra types for edges, thus condition
(ii) in Claim is satisfied also in this case. Thus the proof in this case is done analogously to the
previous one.

We resume the proof of 𝐏𝟏. Towards a contradiction, assume there is 𝛼 = 𝖽𝗂𝗌𝗃(𝐵1, 𝐵2) ∈ ,
where 𝐵1, 𝐵2 are general concepts, such that , ̸⊧ 𝛼; the case of other disjointness axioms is
analogous. Then there is 𝑑 ∈ Δ, with 𝐵1, 𝐵2 ∈ 𝗍𝗉, , and by the claim above, for each model
 there exists some 𝑑′ ∈ Δ such that 𝗍𝗉,(𝑑) ⊆ 𝗍𝗉(𝑑′), therefore 𝐵1, 𝐵2 ∈ 𝗍𝗉(𝑑′). Since
this holds for each model , we obtain a contradiction with the fact that  is consistent w.r.t. .
Therefore, it must be that , ⊨ 𝛼 for each 𝛼 ∈ 𝑛. This concludes proof of 𝐏𝟏.
For property 𝐏𝟐, direction ⇐ follows directly from Claim 5. For the other direction, suppose that is inconsistent w.r.t. 𝑝 ∪ 𝑛. This means that there exists some 𝛼 ∈ 𝑛 that is not satisfied
in chase, . Since chase, is a canonical model of  w.r.t. 𝑝 and since , is also a model of 
w.r.t. 𝑝, there exists a homomorphism from chase, to ,. However, since  is inconsistent
w.r.t. 𝑝 ∪ 𝑛, there is some axiom 𝛼 ∈  such that chase, ̸⊨ 𝛼, which means that there exists
some tuple of constants 𝑐1 in chase, whose types contain two disjoint concepts or roles. Since 𝑐
can be homomorphically mapped into some tuple of constants 𝑐2 in , that satisfies the same
types as 𝑐2, we directly obtain that , ̸⊨ 𝛼, which concludes the proof of 𝐏𝟐.

63

3. TAMING COMPLEX ROLE INCLUSIONS FOR DL-Lite

For 𝐏𝟑, since  is consistent w.r.t. , using Claim 4 we have that  satisfies each functionality
axiom and  is consistent w.r.t. 𝑝 ∪ 𝑛. From 𝐏𝟏 we have that , is a model of  w.r.t.𝑝 ∪ 𝑛 and using Claim 5 we obtain that each OMQ with query the form 𝑞(𝑥) ← 𝐴(𝑥) or
𝑞(𝑥, 𝑦) ← 𝑟(𝑥, 𝑦) can be evaluated over ,.

By definition, the procedure to construct , runs in polynomial time in the size of the ontology
and the ABox. Then, from Claim 4 and Proposition 3.3 we obtain the following:
Theorem 3.6. DL-Lite++(rec-safe) -ABOX CONSISTENCY and DL-Lite++(rec-safe) -CERTAIN AN-
SWERS for instance queries are in PTime.

The recursion safe fragment of DL-Lite++ is not FO-rewritable, since reachability can be encoded
using one CRI of the form 𝑟◦𝑠 ⊑ 𝑟. However, we can get rid of recursive CRIs and regain
rewritability if we have guarantees that they will only be relevant on paths of bounded length. We
formalize this rough intuition next.
Definition 3.8 (k-bounded ABox). Let  be a DL-Lite++ ontology and  an ABox. Let 𝑆 be a set
of simple relations. Given 𝑎, 𝑏 ∈ cst(), we say that there exists an 𝑆-path of length 𝑛 between 𝑎
and 𝑏 (in  w.r.t.) if there exist pairwise distinct 𝑑1,… , 𝑑𝑛−1 ∈ cst() with 𝑑𝑖 ∉ {𝑎, 𝑏}, and
𝑠1(𝑎, 𝑑1),… , 𝑠𝑖(𝑑𝑖−1, 𝑑𝑖), … , 𝑠𝑛(𝑑𝑛−1, 𝑏) ∈  such that 𝑠𝑖 ⊑𝗌 𝑠 and 𝑠 ∈ 𝑆, 1 ≤ 𝑖 < 𝑛. Let

𝑆𝑝 = {𝑝𝑖 ∣ 𝑝1◦… ◦𝑝𝑛 ⊑ 𝑝} ∩ (𝐑±
𝐬 ∪ 𝐅±

𝐬).

We say that  is 𝑘-bounded for  if for each recursive 𝑝 ∈  there is no 𝑆𝑝-path of size larger
than 𝑘.

Since the path for each each recursive CRI is bounded, we simulate recursive CRIs by unfolding
them into non-recursive ones. The general idea is to have a new predicate denoting the size of
each path that triggers the application of a recursive CRI.
Definition 3.9 (𝑘-unfolding, 𝑘-rewriting). Let  be an arbitrary DL-Lite++(rec-safe) ontology and
𝑘 ≥ 0 fixed. For each non-simple relation 𝑝 ∈ sign(), let 𝑝𝑖 where 0 ≤ 𝑖 ≤ 𝑘 and 𝑝̂ be fresh
relation names not occurring in .

A 𝑘-unfolding of  is a DL-Lite++(non-rec) ontology 𝑘 obtained as follows:

a) For each non-simple relation 𝑝, add new axioms 𝑝 ⊑ 𝑝0 and 𝑝𝑖 ⊑ 𝑝̂, for 0 ≤ 𝑖 ≤ 𝑘.
b) Replace each CRI 𝑝1◦𝑠 ⊑ 𝑝2 with 𝑝𝑖1◦𝑠 ⊑ 𝑝𝑖+12 , for 0 ≤ 𝑖 ≤ 𝑘 − 1.
c) Replace each non-simple 𝑝 relation in all other axioms with 𝑝̂ and copy the remaining

axioms.

For a query 𝑞, the 𝑘-rewriting of (, 𝑞) is the OMQ (𝑘, 𝑞), where 𝑞 is obtained from 𝑞 by replacing
each 𝑝(𝑥, 𝑦) ∈ 𝑞 by 𝑝̂(𝑥, 𝑦), for each non-simple relation 𝑝.

Applying this transformation yields a non-recursive DL-Lite++ ontology since each CRI in the
new ontology is non-recursive. By disallowing 𝐴 ⊑ ∃𝑠, simple roles cannot occur in cycles
involving non-simple relations. Therefore, we conclude that 𝑘 is in DL-Lite++(non-rec) .

64

3.2. FO-rewritable Fragments of DL-Lite++

We proceed next with showing that the translation preserves query non-entailment, which is the
problem of deciding whether there exists a model of an ABox w.r.t. the given ontology that admits
no match for a given query, written  ̸⊨ 𝑞.
Proposition 3.4. Let  be a DL-Lite++(rec-safe) ontology and 𝑘 ≥ 1 fixed. For any 𝑘-bounded
ABox  and CQ 𝑞 we have that:

P1 For each  model of  w.r.t.  such that  ̸⊨ 𝑞 there exists ̂ model of  w.r.t. 𝑘 such
that ̂ ̸⊨ 𝑞.

P2 For each ̂ model of  w.r.t. 𝑘 such that ̂ ̸⊨ 𝑞 there exists  model of  w.r.t.  such
that  ̸⊨ 𝑞.

Proof. Proof of P1: Let  be an arbitrary model of  w.r.t. . We construct interpretation ̂,
with Δ̂ = Δ as follows:

• 𝐴̂ = 𝐴 , for each 𝐴 ∈ 𝐂;
• 𝑠̂ = 𝑠 , for each simple relation 𝑠;
• for each non-simple relation 𝑝2 and each 𝑝1◦𝑠 ⊑ 𝑝2 ∈ :

(i) (𝑝02)
̂ = {(𝑑, 𝑑′) ∣ (𝑑, 𝑑′) ∈ 𝑝2 such that {𝑑, 𝑑′} ∩ cst() ≠ ∅}

(ii) (𝑝𝑖2)
̂ = {(𝑑, 𝑑′) ∣ (𝑑, 𝑑′′) ∈ 𝑝𝑖−11

̂ and (𝑑′′, 𝑑′) ∈ 𝑠̂}, for 1 ≤ 𝑖 ≤ 𝑘;
(iii) 𝑝2

̂ =
⋃

0≤𝑖≤𝑘𝑝
𝑖
2
̂ .

We start with showing that:
For each non-simple relation 𝑝 and for 1 ≤ 𝑖 ≤ 𝑘 if (𝑑1, 𝑑2) ∈ (𝑝𝑖)̂ , then (𝑑1, 𝑑2) ∈ 𝑝 . (3.14)

If 𝑖 = 0, since (𝑝0)̂ ⊆ 𝑝 the proposition holds. For each 𝑡𝑖−1◦𝑠 ⊑ 𝑝𝑖 ∈ 𝑘 suppose that for each
(𝑑1, 𝑑2) ∈ (𝑡𝑖−1)̂ we have that (𝑑1, 𝑑2) ∈ 𝑡 . Let (𝑑1, 𝑑2) ∈ (𝑡𝑖−1◦𝑠)̂ arbitrarily chosen; then
there exists 𝑑′ such that (𝑑1, 𝑑′) ∈ (𝑡𝑖−1)̂ and (𝑑′, 𝑑2) ∈ 𝑠̂ ⊆ 𝑠 (since 𝑠 must be simple). Using
our assumption we get that (𝑑1, 𝑑′) ∈ 𝑡 and since 𝑡◦𝑠 ⊑ 𝑝 ∈  we obtain that (𝑑1, 𝑑2) ∈ 𝑝 .
Therefore, from the induction base and induction step, we can conclude that (3.14) holds.
We proceed now with the proof that ̂ is a model of  w.r.t. 𝑘. Clearly, ̂ ⊨  and for each
𝛼 ∈  ∩ 𝑘 it is easy to check that ̂ ⊨ 𝛼. If 𝛼 ∈ 𝑘 ⧵  we have the following cases:

(i) if 𝛼 if of one of the forms 𝑝 ⊑ 𝑝0, 𝑝𝑖 ⊑ 𝑝̂ or 𝑡𝑖−1◦𝑠 ⊑ 𝑝𝑖 then from the construction of ̂ we
have that ̂ ⊨ 𝛼;

(ii) if 𝛼 is of the form 𝑝1 ⊑ 𝑝2, then there is 𝑝1 ⊑ 𝑝2 ∈ . Let (𝑑1, 𝑑2) ∈ 𝑝1
̂ , then using the

construction of ̂ and (3.14), we get that (𝑑1, 𝑑2) ∈ 𝑝1 . Then it must be that (𝑑1, 𝑑2) ∈ 𝑝2
and by construction of ̂, we get that (𝑑1, 𝑑2) ∈ 𝑝2

̂ , hence ̂ ⊨ 𝑝1 ⊑ 𝑝2. The proof is
analogous for 𝖽𝗂𝗌𝗃(𝑝1, 𝑝2);

(iii) if 𝛼 is of the form ∃𝑝̂ ⊑ 𝐵, 𝐵 ⊑ ∃𝑝̂ or 𝖽𝗂𝗌𝗃(𝑝̂, 𝑝′), this holds from the construction of ̂,
property (3.14) and the fact that  is a model of  w.r.t. .

65

3. TAMING COMPLEX ROLE INCLUSIONS FOR DL-Lite

We show now that  ̸⊨ 𝑞 implies ̂ ̸⊨ 𝑞. From the construction of ̂ and the fact that ̂ is a model,
we have that:

• for each 𝐴 ∈ 𝐂 if 𝑑 ∈ 𝐴̂ then 𝑑 ∈ 𝐴 ;
• for each simple relation 𝑠, if (𝑑, 𝑑′) ∈ 𝑠̂ then (𝑑, 𝑑′) ∈ 𝑠 ;
• for each non-simple relation 𝑝, if (𝑑, 𝑑′) ∈ 𝑝̂̂ then (𝑑, 𝑑′) ∈ 𝑝 ;

Let 𝑞 be a query over the signature of  such that  ̸⊨ 𝑞, and let us assume there exists a match 𝜋
of 𝑞 over ̂. From the above arguments we have 𝜋 is also a match of 𝑞 over  which contradicts
the fact that  ̸⊨ 𝑞.
Proof of P2: W.l.o.g., let ̂ be a minimal model of  w.r.t. 𝑘. We define interpretation 𝐼 , with
Δ ⊆ Δ̂ , as follows:

• 𝐴 = 𝐴̂ , for all 𝐴 ∈ 𝐂;
• 𝑝 =

⋃
0≤𝑖≤𝑘 (𝑝𝑖)̂ , for each non-simple relation 𝑝;

• 𝑠 = {(𝑎, 𝑏) ∈ 𝑠̂ ∣ 𝑎, 𝑏 ∈ cst()}, for each simple relation 𝑠.
It is clear from the construction of  and the fact that ̂ satisfies  and each axiom that occurs in ∩𝑘 that the same holds for . It remains to argue that  satisfies each axiom 𝛼 in  ⧵𝑘. For
that we distinguish the following cases:

(i) if 𝛼 is of the form 𝑝1◦𝑠 ⊑ 𝑝2, suppose that there is some (𝑑1, 𝑑2) ∈ (𝑝1◦𝑠) such that
(𝑑1, 𝑑2) ∉ 𝑝2 . Then there is some 𝑑′ such that (𝑑1, 𝑑′) ∈ 𝑝1 therefore (𝑑1, 𝑑′) ∈ (𝑝𝑖1)

̂ , for
some 𝑖 such that 0 ≤ 𝑖 ≤ 𝑘. The only way this can happen is if there exists an 𝑆𝑝-path larger
than 𝑘 connecting 𝑑1 and 𝑑2. By construction of  this path involves only constants from
the ABox, hence we obtain that in  there is an 𝑆𝑝-path larger than 𝑘, which contradicts
the fact that  is 𝑘-bounded. Therefore our assumption was wrong and we conclude that
(𝑑1, 𝑑2) ∈ 𝑝2 , hence  satisfies 𝛼.

(ii) if 𝛼 is of the form ∃𝑝 ⊑ 𝐵, it follows from the fact that 𝑝 ⊆ 𝑝̂̂ and ̂ satisfies ∃𝑝̂ ⊑ 𝐵.
Similarly for axioms of the form 𝖽𝗂𝗌𝗃(𝑝, 𝑝′).

(iii) if 𝛼 is of the form 𝐵 ⊑ ∃𝑝, it follows from the facts that 𝐵 ⊑ ∃𝑝̂ ∈ 𝑘, 𝑝̂ does not occur in
 and ̂ is minimal, therefore 𝑝 = 𝑝̂̂ .

Therefore we obtain that  ⊨ 𝛼, for all 𝛼 ∈ , therefore  is a model of  w.r.t. . It remains to
argue that for 𝑞 if ̂ ̸⊨ 𝑞 then  ̸⊨ 𝑞. This follows from the construction of .

From proposition above and Lemma 3.5 we obtain that for 𝑘-bounded ABoxes, the 𝑘-rewriting
ensures FO-rewritability of recursion safe DL-Lite++ OMQs.

Lemma 3.6. Let  be a DL-Lite++(rec-safe) ontology, 𝑘 a 𝑘-unfolding of , for some 𝑘 ≥ 0, and
𝑞 a CQ. Then, for every 𝑘-bounded ABox :

𝑐𝑒𝑟𝑡(𝑞,,) =
⋃

𝑞′∈𝑟𝑒𝑤(𝑞,𝑘)
𝑐𝑒𝑟𝑡(𝑞′, ∅,).

66

3.2. FO-rewritable Fragments of DL-Lite++

The combined complexity of answering CQs in the recursion safe fragment of DL-Lite++ is
NP-complete, since the lower-bound is inherited from answering CQs over relational databases
while the upper-bound follows from Theorem 3.6.
Theorem 3.7. For 𝑘-bounded and consistent ABoxes, DL-Lite++(rec-safe) -CERTAIN ANSWERS is
NP-complete and DL-Lite++(rec-safe) -CERTAIN ANSWERS(,𝑞) is in 𝐴𝐶0.

Ensuring k-boundedness. As we defined before, an ABox is 𝑘-bounded whenever each 𝑆𝑝-path
has length at most 𝑘. We can guarantee this by enforcing each simple role to connect constants in
an orderly manner: ordering the concepts which are connected via simple roles from “smaller” to
“larger” and enforcing that each 𝑆𝑝-path is respecting this order.
Definition 3.10 (Order constraints). For a simple role 𝑠, an order constraint (along 𝑠) takes the
form 𝑜𝑟𝑑(𝑠,𝐀, ≺), with 𝐀 ⊆ 𝐂 finite, and ≺ a strict partial order over 𝐀. An interpretation 
satisfies 𝑜𝑟𝑑(𝑠,𝐀, ≺) if

𝑠 ⊆
⋃

𝐴1,𝐴2∈𝐀
(𝐴

1 × 𝐴
2), 𝑠 ∩

⋃
𝐴1⊀𝐴2

(𝐴
1 × 𝐴

2) = ∅.

Let 𝐶 be a set of order constraints. We say that 𝐶 covers a relation 𝑝 in a given ontology  if there
exists a partial order (𝐀, ≺) such that for every simple relation 𝑠 in the set {𝑠 ∣ 𝑝′◦𝑠 ⊑ 𝑝 ∈ },
𝑜𝑟𝑑(𝑠,𝐀′, ≺) ∈ 𝐶 for some 𝐀 ⊆ 𝐀′. We say that 𝐶 covers , if it covers every relation 𝑝 in .

Further, for a recursion safe DL-Lite++ ontology  and an ABox , we say that  is 𝐶-admissible
w.r.t.  if (i) 𝐶 covers , and (ii) , satisfies each 𝑐 ∈ 𝐶 .

Concepts capturing different types of geographical locations, can be in general ordered according
to a granularity level. In our running example, it is natural to consider the order District ≺ City ≺
Country. By enforcing such order using order constraints, the instances of such concepts are
implicitly connected via partOf -paths complying with such order. One result of such enforcement
is that each partOf-path is bound by the size of the order, which in this case is 3. Thus, for a
𝐶-admissible ABox , the parameter 𝑘 corresponds to the maximal cardinality of 𝐀 in an order
constraint in 𝐶 .
Lemma 3.7. Let  be a recursion-safe DL-Lite++ KB, and let 𝐶 be a set of order constraints
covering . For any given ABox , if  is 𝐶-admissible w.r.t. , then then  is 𝓁(𝐶)-bounded
for , where 𝓁(𝐶) = 𝑚𝑎𝑥{|𝐀| ∣ 𝑜𝑟𝑑(𝑠,𝐀, ≺) ∈ 𝐶}.

Finally, we note that 𝐶-admissibility amounts to evaluating simple queries on ,, which can be
done in time that is polynomial in 𝐶 , , and . Moreover, although testing 𝐶-admissibility is
data dependent, once it is established, FO-rewritability is guaranteed for any CQ.
Proposition 3.5. Checking 𝐶-admissibility for recursion safe DL-Lite++ KBs is feasible in
polynomial time in combined complexity.

This concludes the theoretical part of this chapter. In the next section we discuss how to incorporate
aggregation into DL-Lite++(rec-safe) to capture functionalities reminiscent of OLAP.

67

3. TAMING COMPLEX ROLE INCLUSIONS FOR DL-Lite

3.2.3 The Case for Recursion-safe DL-Lite𝖺𝗀𝗀
Similarly as for DL-Lite, adding aggregating concepts to the recursion safe DL-Lite++ is not
computationally problematic. We can lift the results from the previous chapter to show that each
aggregating concept can be replaced by a fresh concept name such that the canonical models,
of the original ontology and that of the translated ontology are isomorphic. This is due to the
fact that CRIs can be applied only close to the ABox, therefore the application of axioms with
aggregating concepts is also bounded by the largest path of simple relations in the ABox.
Definition 3.11. A recursion safe DL-Lite𝖺𝗀𝗀

++ ontology is a DL-Lite𝖺𝗀𝗀 ontology which may
contain in addition a set of recursion safe CRIs.

In order to define the notion of modelhood also for this case, we extend the notion of a feature
closed interpretation to take into account CRIs: an interpretation  is called feature closed
for (,), where  is a DL-Lite++(rec-safe) ontology and  is an ABox, if for each 𝑓 ∈ 𝐅,
𝑓 = {(𝑎, 𝑣) ∣  ⊨ 𝑝1◦… ◦𝑝𝑛(𝑎, 𝑣), 𝑎, 𝑣 ∈ cst() and 𝑝1◦… ◦𝑝𝑛 ⊑ 𝑓}. Then Lemma 2.2 is
lifted by extending the closure of the ABox 𝑓 to contain also objects of the form 𝑎𝑟, where
𝑎 ∈ cst() and 𝑟 is a non-simple role. Since features and simple roles cannot be existentially
implied, due to the restrictions inherited from DL-Lite𝖺𝗀𝗀 and those imposed by recursion safeness,
we can apply each CRI that involves features in an apriori procedure since such CRIs are not
triggered at a later stage in the chase procedure. Threfore, the remaining of the proof of Lemma 2.2
stays the same. Furthermore, the translation into the aggregation-free counterparts of , and 𝑞
remain the same. Therefore the following result is straightforward:
Proposition 3.6. Let  be a recursion safe DL-Lite𝖺𝗀𝗀

++ ontology. For each ABox  and CQA
𝑞, we have that 𝑐𝑒𝑟𝑡(𝑞,,) = 𝑐𝑒𝑟𝑡(𝑞′,′,′), where ′, ′ and 𝑞′ are their DL-Lite++(rec-safe)
translations.

In our running example, extending 𝖺𝗀𝗀
MCI from Example 2.3 with the CRI 3.1 falls into the recursion

safe fragment of DL-Lite𝖺𝗀𝗀
++. Such extension, allows us to propagate incidents along locations

connected by a partOf -path. Hence, for the query
𝑞1(𝑥) ← HumanCausedMCI(𝑥) ∧ SevereMCI(𝑥) ∧ hasLocation(𝑥, 𝑦) ∧ 𝑦 = 𝖠𝗎𝗌𝗍𝗋𝗂𝖺.

when evaluated over ABox  from Example 2.4, 𝖾𝟣 is a certain answer, given that its location
is within the geographical borders of Austria. Moreover, since partOf is a simple role, infinite
sequences of objects connected by it are disallowed. Moreover, using CRIs, we can also define
integrity constrains that must be satisfied by the sub-component in order to be part of the whole.
In our example, suppose that constants belonging to the String data-value domain are lexicograph-
ically ordered, that is we can compare them: i.e., 𝗇𝗈 < 𝗒𝖾𝗌. Then, using the following axioms we
can define the concept of a location with hospital access by enforcing that some sub-location or a
connected location must have access to a hospital.

=𝗒𝖾𝗌 𝗆𝗂𝗇(hospAccess) ⊑ HospAccessible
∃partOf .HospAccessible ⊑ HospAccessible

∃connectedTo.HospAccessible ⊑ HospAccessible.

68

3.3. Related Work and Discussion

By the first axiom, we obtain that 𝖽𝗂𝗌𝗍𝗋𝟤 is an instance of HospAccessible, while by the latter two
we infer that also 𝖽𝗂𝗌𝗍𝗋𝟣, 𝖵𝗂𝖾𝗇𝗇𝖺 and 𝖠𝗎𝗌𝗍𝗋𝗂𝖺 are as well instances of HospAccessible. Note that
the latter axioms can be simulated given that  concepts can be translated using recursion safe
CRIs and it does not require value invention using simple relations.
We show next the usefulness of considering queries with aggregation and recursion-safe DL-Lite++ontologies. Suppose that a new MCI is reported using the following facts: Earthquake(𝖾𝟤),
hasLocation(𝖾𝟤, 𝗅𝗈𝖼𝟣), partOf(𝗅𝗈𝖼𝟣,𝖠𝗎𝗌𝗍𝗋𝗂𝖺), date(𝖾𝟤, 𝟣𝟢∕𝟢𝟤∕𝟤𝟢𝟤𝟢). We again consider that con-
stant symbols of data-value domain Date can be chronologically ordered: e.g., 𝟣𝟢∕𝟢𝟤∕𝟤𝟢𝟤𝟢 <
𝟣𝟢∕𝟢𝟦∕𝟤𝟢𝟤𝟢. Using the following CQA, we can then identify all incidents that have occurred in
Austria since the beginning of 2020:

𝑞2(𝑥) ← MCI(𝑥)∧ ≤𝟢𝟣∕𝟢𝟣∕𝟤𝟢𝟤𝟢 (𝗆𝗂𝗇 date)(𝑥) ∧ hasLocation(𝑥, 𝑦) ∧ 𝑦 = 𝖠𝗎𝗌𝗍𝗋𝗂𝖺.

Since for 𝖾𝟣 an exact date is not given, only 𝖾𝟤 is a certain answer to such query. As discussed
before, computing certain answers to such query can be done using the rewriting procedure,
provided that for the ABox , we have that  is feature closed. Moreover, using the following
analytical query we can also calculate the average number of casualties in any location in Austria
that occurred since the beginning of 2020.

𝑞3(𝖺𝗏𝗀(𝑢), 𝑧) ←MCI(𝑥)∧ ≤𝟢𝟣∕𝟢𝟣∕𝟤𝟢𝟤𝟢 (𝗆𝗂𝗇 date)(𝑥) ∧ casualties(𝑥, 𝑢) ∧ hasLocation(𝑥, 𝑧)
∧ partOf(𝑧, 𝑦) ∧ 𝑦 = 𝖠𝗎𝗌𝗍𝗋𝗂𝖺.

Since we rely on the epistemic semantics to compute answers to analytical queries, answering 𝑞3
is achieved by computing certain answers to the CQA obtained by replacing 𝖺𝗏𝗀(𝑢) with 𝑢 in 𝑞3,
grouping by sub-location and then averaging over the number of casualties.
These examples show the potential of enriching standard OMQA to allow CRIs, aggregating
concepts in the ontology and queries with aggregation. The good news is that this novel formalism
does not come with a high computational cost, thus existing OMQA evaluation techniques can be
easily adapted to this new setting.

3.3 Related Work and Discussion
The importance of CRIs was acknowledged since the earliest works on description logics, when
role value maps were considered very desirable and included in the first DL system KL-ONE
[BS85]. Such construct is useful to define path-complying concepts such as (f riendOf◦isChildOf ⊑
knowsParent) which denotes that each person knows the parents of their friends. CRIs are equiv-
alent to the global version of role value maps, i.e., the CRI f riendOf◦isChildOf ⊑ knowsParent
corresponds to ⊤ ⊑ (f riendOf◦isChildOf ⊑ knowsParent). As shown in [SS89], the extension
of  with role value maps leads to undecidability of subsumption and consistency testing,
however the proof uses a strictly more expressive language thus it cannot be inherited for the
DL-Lite case. More recently, some positive results are shown in [BT20] for which subsumption
in the presence of role value maps is decidable for 0.

69

3. TAMING COMPLEX ROLE INCLUSIONS FOR DL-Lite

As described in [HS04], there is a thight connection between CRIs and grammar logics [dCP88]
which represent a class of modal logics in which the accessibility relations are given by means
of a grammar and their semantics is defined in terms of relational structures that satisfy that
grammar. Similarly as for CRIs, the expressiveness of the grammar influences the complexity
of reasoning for such languages: for regular grammars, consistency testing is Exptime-complete
[Dem01] whereas this problem is undecidable for context-free grammars [Bal03, BGM98]. The
undecidability result is obtained from reducing the emptiness problem for the intersection of
context-free grammars, however due to our restrictions on CRIs, not all context-free languages
are captured in our case. Similarly for the regular fragment of DL-Lite++ , the ExpTime-hardness
cannot be directly obtained from the regular grammar logics, given that our CRIs cannot capture
all regular languages, as argued in [Kaz10].
Besides the already discussed extensions of  that consider CRIs, also in the  family there
exists an extension which captures them, namely ++ [BBL05]. In distinction to all the other
DLs, consistency testing in ++ is tractable even for unrestricted CRIs. However, ++ does
not allow for inverses, which means that the underlying cause of undecidability for DL-Lite++is the combination of CRIs and inverse roles. Indeed, for the extension of ++ with range
restrictions it has been shown that the subsumption problem becomes undecidable unless the
ranges of the path and the closure of the path coincide [BLB08]. Regarding query answering,
results are not as optimistic given that entailment of CQs in  ++ is undecidable [Ros07].
Capturing recursion in DLs is among the desired effects of having CRIs. This is a central property
of Datalog and its exended version Datalog± [CGL12, BLMS11] which allows for the central
property of DLs, namely value invention. It is then not a surprise that Datalog± is undecidable and
quests for finding decidable and even tractable languages have been lunched while correspondences
to DLs languages have been established. Among the tractable fragments is the linear Datalog±
[CGL09a] which captures DL-Lite, however each rule can have at most one atom in the body,
therefore CRIs are not captured. Similarly, all the FO-rewritable fragments: sticky and its extension
sticky-join [CGP10] and binary guarded [CR15] do not capture the expresivity of DL-Lite with
CRIs.
Our work is also related to regular path queries (RPQs) and their extensions. In fact, the kind
of query answering we advocate is naturally supported in any ontology-mediated setting where
the DL has CRIs, or the query language contains conjunctive RPQs. Many such settings have
been considered in the literature and their complexity is well understood, see [Ort13, OS12] for
references. However, any such combination is necessarily NLogSpace-hard in data complexity,
and the combined complexity is usually PSpace-hard even for lightweight DLs [BOS15].

70

CHAPTER 4
Ontology-enhanced Exploratory

Framework

For graph-structured data, ontologies act as an interface to data sources, facilitating query formu-
lation by providing a vocabulary closer to the users’ understanding. However, accessing data in
large and unfamiliar sources can still be challenging for non-domain experts. In practice, users
may find that the formulated queries have too many answers to be informative, or at the other
extreme, they have very few or no answers at all. Refining queries can be difficult for users who
may not know how to formulate their information needs according to the underlying data since
some changes in the query may have no effect on the answers, or dramatically affect them in
unexpected ways.
Manual exploration via iterative query evaluation can be computationally very costly if each
minor query variation is evaluated independently and from scratch. For example, querying all
mass casualty incidents (MCIs) over a huge historical dataset can produce a large and rather
uninformative set of answers. In this case a natural way to filter out some of the answers is to
select among suitable specializations of the query that partition the answers into subsets which
are more informative and easier to handle by the user. Such partitions could be generated by
choosing more fine-grained categories of MCIs such as floods, fires, earthquaques but also by
selecting a smaller geographical area. Such partitions can be conversely aggregated into larger
partitions such as MCIs that are caused either by humans or nature, which intuitively represent
generalizations of the more selective queries.
The ontology-enhanced specializing and generalizing operations on queries resemble the rolling-up
and drilling-down functionalities supported by the online analytical processing (OLAP) paradigm
which allows the users to analyze multidimensional data in an interactive fashion. In a nutshell,
a multidimensional dataset encodes relations between several independent attributes, called
dimensions, such as location, time, type of MCI, etc., and a certain number of numerical attributes,
called measures, such as number of casualties or number of severe MCIs, which depend on the

71

4. ONTOLOGY-ENHANCED EXPLORATORY FRAMEWORK

particular chosen values in each dimension. Typically, a record in a multidimensional dataset
encodes an observation of a value (e.g., number 160) and the attributes describing that value (e.g.
date of MCI: “05/10/2014", location: “Vienna", type of MCI: “fire"). A dimension usually consists
of several categories denoting different granularity levels, for instance, the location dimension can
be composed of district, city, country and region. Querying in this case offers a multidimensional
perspective over the statistical facts encoded in the dataset: e.g., “number of casualties caused
by fires that occurred in Vienna in 2014”. A rolling-up operation changes the perspective to
an upper level on some particular dimension (e.g., from “Vienna” to “Austria”), while drilling-
down represents the converse operation (e.g., from “Vienna” to “Innerestadt”–a specific district
of Vienna). Intuitively, the number of answers to queries can potentially increase with each
rolling-up and decrease with each drilling-down operation similarly to each specialization and
generalization operation.
In this chapter we propose an exploratory framework for graph-structured data that supports some
analytical functionalities in the style of OLAP. The general idea is to generate and interactively
navigate a large set of queries which are related via query containment relation. The main ingre-
dients of our abstract framework are: a) a query template language that extends the expressivity
of CQs by allowing concept and relations in the query body to be relaxed or restrained, b) a set
of rules based on the chosen knowledge-base to generate valid CQs from the given template,
c) a Datalog encoding to automatically compile the data, the ontology and the set of generated
queries such that answering each specialization and generalization can be done very efficiently,
thus enabling online exploration of the targeted data.

4.1 Abstract Exploratory Framework
In this section we propose a general approach for data exploration by means of identifying
meaningful query reformulations.

4.1.1 Motivating Example
It is often the case that the answer to a given query rises many follow-up questions. Suppose that
for the following query mediated by the MCI ontology we obtain following tabular representation
of the answers:

𝑞(𝑥, 𝑦) ← MCI(𝑥)∧hasLocation(𝑥, 𝑦)∧Location(𝑦)

MCI Location(s)
𝖾𝗏𝟣 𝖵𝗂𝖾𝗇𝗇𝖺, 𝖠𝗎𝗌𝗍𝗋𝗂𝖺
𝖾𝗏𝟤 𝖠𝗎𝗌𝗍𝗋𝗂𝖺
𝖾𝗏𝟥 𝖠𝗎𝗌𝗍𝗋𝗂𝖺
𝖾𝗏𝟦 𝖠𝗎𝗌𝗍𝗋𝗂𝖺, 𝖢𝗋𝗈𝖺𝗍𝗂𝖺

Such answer is not very informative, for example it does not present the specific type of each MCI.
In addition, for incident 𝖾𝗏𝟦 we obtain it has occurred in multiple locations and would require
further inquires to understand why we obtained such answer tuples. In principle, it could be

72

4.1. Abstract Exploratory Framework

that 𝖾𝗏𝟦 is either some severe MCI that has indeed affected all those areas, or it could be a data
anomaly, therefore this may require further investigation and potential fixes.
In order to explore the topic of interest, namely types of existing MCIs and their locations, there
are several approaches. Once could potentially create a more involved SPARQL query that
incorporates such information request. For example, the following query:

1 SELECT *
2 WHERE {
3 ?x a ?y .
4 ?y rdfs:subClassOf* :MCI .
5 ?x :hasLocation ?z.
6 ?z a ?u .
7 ?u rdfs:subClassOf* :Location .
8 }

retrieves all existing MCIs, their specific kind (lines 3-4), and their specific type of location (lines
6-7).
However, in general, there are several issues with such approach: (i) it requires knowledge of
SPARQL 1.1. query language and of the reasoning steps needed to ensure completeness of
answers, (ii) for ontology languages beyond DL-Lite, SPARQL is not expressive enough to
capture full reasoning [BKPR14], (iii) the returned answer may be too large and uninformative to
the user, thus requiring further manipulation and analysis. Indeed the above SPARQL query is
not complete w.r.t. MCI and the answer would require some careful filtering due to repetitive
and irrelevant information, since it is not possible to identify only the most specific type of MCIs
and their most specific location.
Alternatively, the user can start with the most specific query and then manually change the type of
MCI and the type of location based on the retrieved answers. This process can be very tedious and
time consuming. What we propose instead is to automatically construct all the possible follow-up
queries using the relevant concept and relation hierarchies in the ontology. Moreover, we also
want to take into account individuals and data values that the user deems relevant. In our running
example, the relevant follow-up queries are captured by the following querying template:

𝑞ref(𝑥, 𝑦) ← 𝐴𝑡𝑜𝑚1(𝑥) ∧ hasLocation(𝑥, 𝑦) ∧ 𝐴𝑡𝑜𝑚3(𝑦),

where:
𝐴𝑡𝑜𝑚1(𝑥) ∈ {MCI(𝑥),NaturalCausedMCI(𝑥),HumanCausedMCI(𝑥),Earthquake(𝑥),Flood(𝑥),

SevereMCI(𝑥)}, and
𝐴𝑡𝑜𝑚3(𝑦) ∈ {District(𝑦),City(𝑦),Country(𝑦),Location(𝑦), 𝑦 = 𝖵𝗂𝖾𝗇𝗇𝖺, 𝑦 = 𝖠𝗎𝗌𝗍𝗋𝗂𝖺}.

This means that even for simple queries, consisting of only few atoms, the number of possible
follow-up queries can be rather large. The question is then how to identify the most relevant
reformulations for a given query? We consider that ideally the best follow-up queries are selected

73

4. ONTOLOGY-ENHANCED EXPLORATORY FRAMEWORK

based on the following criterias: semantic relatedness and answer quality. What we mean by a
query being semantically related is that it tries to preserves as much as possible of the meaning
captured by the original query. For example,
𝑞1(𝑥, 𝑦) ← NaturalCausedMCI(𝑥) ∧ hasLocation(𝑥, 𝑦) ∧ Location(𝑦)

is semantically more related to 𝑞 than
𝑞2(𝑥, 𝑦) ← Fire(𝑥) ∧ hasLocation(𝑥, 𝑦) ∧ Location(𝑦)

given that NaturalCausedMCI is an immediate subconcept of MCI while Fire is a more specific
subconcept.
The second criteria used to identify the relevant reformulations is how well the reformulation
can discriminate the underlying data. If we look at Figure 4.1 we can see the distribution of the
answers among the relevant concepts such as type of MCI and the concrete location it is based in.
Using this diagram, there are several observations to be made regarding the answer quality of the
relevant reformulations:

1. There are certain specializations and generalizations which do not affect the answers, that
is they are neutral reformulations. For instance, the query

𝑞1(𝑥, 𝑦) ← MCI(𝑥) ∧ hasLocation(𝑥, 𝑦) ∧ Country(𝑦)

has the same answers though it is more specific. Similarly, since 𝖵𝗂𝖾𝗇𝗇𝖺 is the only existing
city in which MCIs have been reported, queries

𝑞2(𝑥, 𝑦) ← MCI(𝑥) ∧ hasLocation(𝑥, 𝑦) ∧ City(𝑦), and
𝑞3(𝑥, 𝑦) ← MCI(𝑥) ∧ hasLocation(𝑥, 𝑦) ∧ 𝑦 = 𝖵𝗂𝖾𝗇𝗇𝖺

produce the same answers, namely {(𝖾𝗏𝟣,𝖵𝗂𝖾𝗇𝗇𝖺)}, with 𝑞3 more specific than 𝑞2.
2. Among the neutral reformulations, those that bound the answers from above and be-

low are of interest since they respectively encode the most general and the most spe-
cific properties that the answers have in common. If we consider for instance the tuples
(𝖾𝗏𝟦,𝖠𝗎𝗌𝗍𝗋𝗂𝖺), (𝖾𝗏𝟦,𝖢𝗋𝗈𝖺𝗍𝗂𝖺), the most specific query which captures and implicitly describes
these answers is:
𝑞𝑠(𝑥, 𝑦) ← Earthquake(𝑥) ∧ SevereMCI(𝑥) ∧ NaturalCausedMCI(𝑥) ∧ hasLocation(𝑥, 𝑦)

∧Country(𝑦),
while the most general is:
𝑞𝑔(𝑥, 𝑦) ← NaturalCausedMCI(𝑥) ∧ SevereMCI(𝑥) ∧ hasLocation(𝑥, 𝑦) ∧ Location(𝑦).

3. There are multiple ways to specialize or generalize queries such that answers are either
dropped or added. For example, when specializing 𝑞, one possibility is to focus on one
of NaturalCausedMCIs or HumanCausedMCIs, but another is to filter out the answers by
choosing a more specific location. However, in order to allow the user to understand and
create a complete picture of the data, much like the illustrated diagram, gradual exploration
of answers is important, therefore the queries which minimally modify answers should

74

4.1. Abstract Exploratory Framework

be chosen among all the possible follow-up queries. For example to specialize 𝑞1 while
preserving most of the answers, query

𝑞4(𝑥, 𝑦) ← MCI(𝑥) ∧ hasLocation(𝑥, 𝑦) ∧ 𝑦 = 𝖠𝗎𝗌𝗍𝗋𝗂𝖺

is preferred among the other specializations that filter out answer tuples such as 𝑞2 and 𝑞3.

Earthquake MCI in Vienna

NaturalCausedMCI

HumanCausedMCI

Fire

SevereMCI

MCI in Austria

MCI in a City

MCI in a Country

Figure 4.1: Answers representation based on relevant semantic properties.

In the next section, we formalize the problem of exploring datasets by means of query navigation.
The formalization of the exploratory framework relies on an abstract preorder between queries
used to denote the semantic relation between queries, and we rely on containment of certain
answers to identify which are the most interesting reformulations according to the answer quality
criteria.

4.1.2 Problem Formulation
We start by formalizing the notion of query space which represents a set of ontology-mediated
queries that are related by means of a preorder ⪯ and whenever such relation ensures containment
we can use it for exploratory purposes like the ones previously exemplified.
Definition 4.1. (Query space) Let be an arbitrary ontology. For any given ABox, a preordered
set  = ⟨𝑄,⪯⟩ of queries mediated by  is called an exploratory query space for  if (𝑞1,) ⪯
(𝑞2,) implies 𝑞1 ⊆(,) 𝑞2. We will write 𝑞1 ⪯ 𝑞2, whenever  is clear from the context and
similarly write  instead of .

75

4. ONTOLOGY-ENHANCED EXPLORATORY FRAMEWORK

In the following we focus on the formalization of query space navigation to ensure exploration of
answers. For that we consider an arbitrary query 𝑞 within the space and identify two kinds of
reformulations for 𝑞 by exploring the preorder ⪯: We are interested in identifying other queries in
the space that are either more specific or more general than 𝑞 which can be categorized based on
containment of answers into (i) strict refomulations, which strictly change the set of answers, and
(ii) neutral reformulations, which do not change the set of answers.
In the remaining of this chapter it is convenient to consider an arbitrary but fixed setting. For that,
let  be an ABox,  an ontology and  = (𝑄,⪯) an exploratory query space for .
Definition 4.2 (Neutral and strict reformulations). For queries 𝑞1 ≠ 𝑞2 in  such that 𝑞1 ⪯ 𝑞2, we
say that 𝑞1 is a neutral specialization of 𝑞2, written 𝑞1 ≃ 𝑞2, if 𝑐𝑒𝑟𝑡(𝑞1,,) = 𝑐𝑒𝑟𝑡(𝑞2,,), and
it is a strict specialization of 𝑞2, written 𝑞1 ≺ 𝑞2, if 𝑐𝑒𝑟𝑡(𝑞1,,) ⊊ 𝑐𝑒𝑟𝑡(𝑞2,,). Conversely,
𝑞2 is a neutral, respectively strict, generalization of 𝑞1.

Note that ≃ is not symmetric since ⪯ is not symmetric either and we want to avoid cases such
as 𝑞1 ⪯ 𝑞2 and 𝑞1 ≃ 𝑞2 hold but 𝑞2  𝑞1. This restriction prevents that a neutral reformulation is
both a specialization and a generalization.
Using the neutral reformulations, we can identify the common semantic properties of the targeted
answers. For that, we want to identify the most specific and the most general properties that
the answers share. For example, considering Figure 4.1, for query 𝑞(𝑥, 𝑦) ← Earthquake(𝑥) ∧
hasLocation(𝑥, 𝑦) ∧𝑦 = 𝖠𝗎𝗌𝗍𝗋𝗂𝖺 which captures only tuple (𝖾𝗏𝟦,𝖠𝗎𝗌𝗍𝗋𝗂𝖺), the most specific neutral
specializations would be: 𝑞𝑠(𝑥, 𝑦) ← Earthquake(𝑥) ∧NaturalCausedMCI(𝑥) ∧ SevereMCI(𝑥) ∧
hasLocation(𝑥, 𝑦) ∧ 𝑦 = 𝖠𝗎𝗌𝗍𝗋𝗂𝖺, while the most general neutral generalizations would be
𝑞1𝑔(𝑥, 𝑦) ← NaturalCausedMCI(𝑥) ∧ hasLocation(𝑥, 𝑦) ∧ 𝑦 = 𝖠𝗎𝗌𝗍𝗋𝗂𝖺, and
𝑞2𝑔(𝑥, 𝑦) ← SevereMCI(𝑥) ∧ hasLocation(𝑥, 𝑦) ∧ 𝑦 = 𝖠𝗎𝗌𝗍𝗋𝗂𝖺.
In general there are multiple such reformulations which may be incomparable w.r.t. ⪯.
Definition 4.3 (MSN specializations and MGN generalizations). Let 𝑞1 ⪯ 𝑞2. If 𝑞1 ≃ 𝑞2 in ,
we say that 𝑞1 is a most specific neutral (MSN) specialization of 𝑞2 if for each 𝑞′ ∈ 𝑄 such
that 𝑞′ ⪯ 𝑞1 and 𝑞1  𝑞′, it holds that 𝑞′ ≺ 𝑞2. Conversely, 𝑞2 is a most general neutral (MGN)
generalization of 𝑞1 if for each 𝑞′ ∈ 𝑄 such that 𝑞2 ⪯ 𝑞′ and 𝑞′  𝑞2, we have 𝑞1 ≺ 𝑞′.

In order to ensure a gradual exploration, we need to identify the reformulations that modify the
answers in a minimal way. For example if our query is 𝑞(𝑥, 𝑦) ← MCI(𝑥) ∧ hasLocation(𝑥, 𝑦) ∧
Location(𝑦), the noteworthy changes on 𝑞 which have a minimal impact on the set of answers
are either to choose the HumanCausedMCI or NaturalCausedMCI instead of MCI. We call
such queries the most general strict specializations of 𝑞, and for the generalizing case such
reformulations are called the most specific strict generalizations.
Definition 4.4 (MGS specializations and MSS generalizations). If 𝑞1 ≺ 𝑞2, we say that 𝑞1 is a
most general strict (MGS) specialization of 𝑞2, if for each 𝑞′ ∈ 𝑄 such that 𝑞1 ⪯ 𝑞′ ⪯ 𝑞2 we have
𝑞′ ≃ 𝑞2. Conversely, 𝑞2 is a most specific strict (MSS) generalization of 𝑞1 if for each 𝑞′ ∈ 𝑄 such
that 𝑞1 ⪯ 𝑞′ ⪯ 𝑞2 we have 𝑞1 ≃ 𝑞′.

76

4.1. Abstract Exploratory Framework

For a given query 𝑞 ∈ , we denote the set of all most specific neutral specializations and
of all most general strict specializations of 𝑞 given  by msnSpe(𝑞,) and mgsSpe(𝑞,),
respectively. Similarly, we denote the set of all most general neutral generalizations and all most
specific strict generalizations of 𝑞 given  by mgnGen(𝑞,) and mssGen(𝑞,), respectively.
The decision problems associated with query space navigation are the following:

-MGS-SPE
Input: A query space  exploratory for ABox , 𝑞1, 𝑞2 in .
Question: Is 𝑞1 a most general strict specialization of 𝑞2?

-MSS-GEN
Input: A query space  exploratory for ABox , 𝑞1, 𝑞2 in .
Question: Is 𝑞1 a most specific strict generalization of 𝑞2?

To solve such problems in general we need to test for containment of answers. In the worst case
containment has to be tested at most (𝑛 ⋅ (𝑛 − 1))∕2, where 𝑛 = |𝑄| (i.e., the number of unique
query pairs).
If we know already for each query 𝑞 ∈  the set of msnSpe(𝑞,) and the set of mgnGen(𝑞,)
then we can identify all pairs 𝑞1, 𝑞2 ∈  such that 𝑞1 ≃ 𝑞2. Moreover, for pairs 𝑞1, 𝑞2 such
that 𝑞1 ⪯ 𝑞2 and 𝑞1 ≄ 𝑞2 we can infer that 𝑞1 ≺ 𝑞2. Then if we consider ≺1 to be the one-step
≺ relation, then each 𝑞′ such that there is some 𝑞𝑛 ≃ 𝑞 and 𝑞′ ≺1 𝑞𝑛 is a most general strict
specialization of query 𝑞. Similarly, each 𝑞′ such that there is some 𝑞 ≃ 𝑞𝑛 and 𝑞𝑛 ≺1 𝑞′ is a
most specific strict generalization of 𝑞. In another words, if we know which are the most specific
neutral specializations and most general neutral generalizations, we are able to identify also the
most general strict specializations and most specific strict generalizations without the need to test
for containment. We formally state this observation.
Observation 4.1. Let  be an ABox and  = ⟨𝑄,⪯⟩ be an exploratory query space for  and
let 𝑞1 ⪯ 𝑞2 in . Then, we have that 𝑞1 ≃ 𝑞2 iff either (i) there is some 𝑞𝑛 ∈ msnSpe(𝑞2,)
such that 𝑞𝑛 ⪯ 𝑞1, or (ii) there is some 𝑞𝑛 ∈ mgnGen(𝑞1,) such that 𝑞2 ⪯ 𝑞𝑛.

Similarly, we have that 𝑞1 ≺ 𝑞2 iff either (i) for all 𝑞𝑛 ∈ msnSpe(𝑞2,) we have that 𝑞𝑛 ≄ 𝑞1,
or (ii) for all 𝑞𝑛 ∈ mgnGen(𝑞1,) we have that 𝑞2 ≄ 𝑞𝑛. Let 𝑞1 ≺1 𝑞2 if 𝑞1 ≺ 𝑞2 and there is
no other 𝑞′ such that 𝑞1 ⪯ 𝑞′ ⪯ 𝑞2.

Then, for any 𝑞 ∈ , we have that:

• 𝑞1 ∈ mgsSpe(𝑞,) iff 𝑞1 ≺1 𝑞𝑛, for some 𝑞𝑛 ≃ 𝑞.
• 𝑞1 ∈ mssGen(𝑞,) iff 𝑞𝑛 ≺1 𝑞2, for some 𝑞 ≃ 𝑞𝑛.

Therefore, the utility of most specific neutral specializations and most general neutral general-
ization is two-fold: (i) they allow us to identify for a set of target individuals which are the most

77

4. ONTOLOGY-ENHANCED EXPLORATORY FRAMEWORK

specific and most general common properties, and (ii) they enable us to identify the relevant strict
reformulations. To show that, we first define the following decision problems:

-MSN-SPE
Input: A query space  exploratory for ABox , 𝑞1, 𝑞2 in 
Question: Is 𝑞1 a most specific neutral specialization of 𝑞2?

-MGN-GEN
Input: A query space  exploratory for ABox , 𝑞1, 𝑞2 in .
Question: Is 𝑞1 a most general neutral generalization of 𝑞2?

Lemma 4.1. -MSN-SPE is CoNP-hard, even for query spaces consisting of only tree-shaped
CQs with one answer variable.

Proof. We reduce the problem of verifying if 𝐷 is the  least common subsummer (LCS) of
concepts 𝐶1,… , 𝐶𝑛. This amounts to verifying if for each 𝑖 ∈ {1,… , 𝑛} we have that ⊨ 𝐶𝑖 ⊑ 𝐷
and for any  concept 𝐷′ such that ⊨ 𝐶𝑖 ⊑ 𝐷′ we have that ⊨ 𝐷 ⊑ 𝐷′. This problem is known
to be CoNP-complete [JLW20].
Given an  concept 𝐶 we can construct a tree-shaped ABox 𝐶 denoting concept 𝐶 with root
denoted by constant 𝑎𝐶 . Similarly, we can construct a tree-shaped CQ 𝑞𝐶 (𝑥) denoting 𝐶 .
Let 𝐶1,… , 𝐶𝑛 and 𝐷 be  concepts. We construct an ABox  and an exploratory query space⟨𝑄,⪯⟩ for  as follows:

•  = 𝐶1
∪⋯ ∪𝐶𝑛

and in addition we add 𝐴(𝑎𝐶𝑖
) for 𝑖 = 1,… , 𝑛, where 𝐴 is a fresh

concept name;
• 𝑄 contains each tree-shaped CQ 𝑞𝐵(𝑥) where 𝐵 is a  concept such that  ⊨ 𝐵(𝑎𝐶𝑖

);
• The preorder ⪯ is defined as follows: 𝑞1 ⪯ 𝑞2 if all query atoms in 𝑞2 are contained in 𝑞1,

modulo renaming variables.
Clearly, ⟨𝑄,⪯⟩ is an exploratory space for .
We show next that 𝐷 is the LCS of 𝐶1,… , 𝐶𝑛 iff 𝑞𝐴⊓𝐷(𝑥) is a most specific specialization of
𝑞𝐴(𝑥).
Direction ⇒: Assume that 𝐷 is the LCS of 𝐶1,… , 𝐶𝑛. It follows from Lemma 1 in [JLW20]
that 𝐶𝑖

⊨ 𝐷(𝑎𝐶𝑖
) for all 𝑖 = 1,… , 𝑛. This means that each 𝑎𝐶𝑖

is an answer to both 𝑞𝐴 and
𝑞𝐴⊓𝐷 over . Moreover, since 𝐴 is a fresh concept name we can conclude that 𝑞𝐴⊓𝐷 is a neutral
specialization of 𝑞𝐴. Lastly, from the fact that 𝐷 is the LCS it cannot be that there is another
𝑞′ ⪯ 𝑞𝐴⊓𝐷 such that each 𝑎𝐶𝑖

is an answer to 𝑞′ over . Therefore we conclude that 𝑞𝐴⊓𝐷 is a
most specific neutral specialization of 𝑞𝐴 in ⟨𝑄,⪯⟩.
Direction ⇐: Assume that 𝑞𝐴⊓𝐷 is a most specific neutral specialization of 𝑞𝐴. Clearly 𝑞𝐴⊓𝐶𝑖

⪯
𝑞𝐴⊓𝐷 and using again Lemma 1 in [JLW20] we obtain that ⊨ 𝐶𝑖 ⊑ 𝐷, for all 𝑖 = 1,… , 𝑛. From

78

4.2. Generating Meaningful Query Spaces

the construction of  and ⟨𝑄,⪯⟩, and the fact that for each 𝑞𝐵 such that 𝑞𝐵 ⪯ 𝑞𝐴⊓𝐷 we have that
𝑞𝐵 ≺ 𝑞𝐴 (which means that at least one of 𝑎𝐶𝑖

is not an answer to any further specialization 𝑞𝐵)
we conclude that 𝐷 must be the LCS of 𝐶1,… , 𝐶𝑛.

For -MGN-GEN the complexity remains open even for tree-shaped query spaces. Nevertheless,
based on the previous result, we can conclude that navigating within a query space is not feasible
in polynomial time in general. Moreover, there are several challenges to be addressed for realizing
such approach in practice: (i) automatic generation of meaningful query spaces, and (ii) techniques
for efficient answer retrieval and navigation within the query space. We propose concrete solutions
to such challenges in the following sections.

4.2 Generating Meaningful Query Spaces
We now introduce the notion of query template, which is the starting point to build exploratory
query spaces. Syntactically, they are CQs whose atoms may be marked if we want to consider
more specialized (⋅𝗌) or generalized (⋅𝗀) versions of them.
Definition 4.5 (Query Templates). A query template Ψ[𝑥⃗] is an expression ∃𝑦.𝜏1 ∧⋯∧ 𝜏𝑛, where
each 𝜏𝑖 is an atom of the form:

𝐴(𝑥) ∣ 𝑟(𝑥, 𝑦) ∣ 𝑥 = 𝑎 ∣ 𝐴𝗌(𝑥) ∣ 𝐴𝗀(𝑥) ∣ 𝑟𝗌(𝑥, 𝑦) ∣ 𝑟𝗀(𝑥, 𝑦) ∣ 𝑥 = 𝑎𝗌 ∣ 𝑥 = 𝑎𝗀,

where 𝑥, 𝑦 ∈ 𝑥⃗ ∪ 𝑦, 𝑥⃗ are the answer variables, 𝐴 ∈ 𝐂 or ⊤, 𝑟 ∈ 𝐑 and 𝑎 ∈ 𝐈.

Example 4.1. We can succintly describe CQs that retrieve (possibly special types of) MCI in
𝖵𝗂𝖾𝗇𝗇𝖺, or more general locations that contain 𝖵𝗂𝖾𝗇𝗇𝖺, using template:

Ψ[𝑥] =∃𝑧 MCI𝗌(𝑥) ∧ hasLocation𝗀(𝑥, 𝑧) ∧ 𝑧 = 𝖵𝗂𝖾𝗇𝗇𝖺𝗀.

Given some query template Ψ as starting point, we will use reformulation rules to build a set
of related CQs. To guarantee that these queries can be ordered according to their specificity
(or generality), these rules will be guided by a set of reformulation axioms. In general,  can
be used to guide the rules application. However, to take also the data into account, we allow
other sets  of reformulation axioms as well. For example,  can be a subset of  that the
user considers relevant. It may contain assertions from , or other axioms implied by  and ,
enabling data-driven query reformulations in the style of [AIOS19].
The reformulation rules are presented in Table 4.1. We use ‘_’ as a placeholder for a fresh variable,
symbol 𝑦̃ denotes the condition (𝑦 ∉ vars(Ψ′) ∪ 𝑥⃗) ∨ (𝑦 = _) and 𝑦̂ denotes that 𝑦 is not an answer
variable in the template, and 𝑟𝗑 stands for any of 𝑟𝗌, 𝑟𝗀, or 𝑟.
Definition 4.6 (DL-Lite++(rec-safe) query space). A reformulation axiom is either an ABox assertion
or an ontology axiom of DL-Lite++(rec-safe) form.

79

4. ONTOLOGY-ENHANCED EXPLORATORY FRAMEWORK

(R1) If 𝐵 ⊑ 𝐴 ∈  then: Ψ′ ∧ 𝐴𝗌(𝑥)
𝗌
⇝ Ψ′ ∧ 𝐵𝗌(𝑥) Ψ′ ∧ 𝐵𝗀(𝑥)

𝗀
⇝ Ψ′ ∧ 𝐴𝗀(𝑥)

(R2) If 𝐴 ⊑ ∃𝑟 ∈  then: Ψ′ ∧ 𝑟𝗌(𝑥, 𝑦̃)
𝗌
⇝ Ψ′ ∧ 𝐴𝗌(𝑥) Ψ′ ∧ 𝐴𝗀(𝑥)

𝗀
⇝ Ψ′ ∧ 𝑟𝗀(𝑥, _)

(R3) If ∃𝑟 ⊑ 𝐴 ∈  then: Ψ′ ∧ 𝐴𝗌(𝑥)
𝗌
⇝ Ψ′ ∧ 𝑟𝗌(𝑥, _) Ψ′ ∧ 𝑟𝗀(𝑥, 𝑦̃)

𝗀
⇝ Ψ′ ∧ 𝐴𝗀(𝑥)

(R4) If 𝑟 ⊑ 𝑝 ∈  then: Ψ′ ∧ 𝑝𝗌(𝑥, 𝑦)
𝗌
⇝ Ψ′ ∧ 𝑟𝗌(𝑥, 𝑦) Ψ′ ∧ 𝑟𝗀(𝑥, 𝑦)

𝗀
⇝ Ψ′ ∧ 𝑝𝗀(𝑥, 𝑦)

(R5) If 𝑠− ⊑ 𝑝 ∈  then: Ψ′ ∧ 𝑝𝗌(𝑥, 𝑦)
𝗌
⇝ Ψ′ ∧ 𝑠𝗌(𝑦, 𝑥) Ψ′ ∧ 𝑠𝗀(𝑥, 𝑦)

𝗀
⇝ Ψ′ ∧ 𝑝𝗀(𝑦, 𝑥)

(R6) If {𝐵 ⊑ ∃𝑠.𝐴,
𝑟◦𝑠 ⊑ 𝑟} ⊆ 

then: Ψ′ ∧ 𝑟𝗑(𝑥, 𝑦̂) ∧ 𝐴𝗌(𝑦̂)
𝗌
⇝ Ψ′ ∧ 𝑟𝗑(𝑥, 𝑦) ∧ 𝐵𝗌(𝑦)

Ψ′ ∧ 𝑟𝗑(𝑥, 𝑦̂) ∧ 𝐵𝗀(𝑦̂)
𝗀
⇝ Ψ′ ∧ 𝑟𝗑(𝑥, 𝑦) ∧ 𝐴𝗀(𝑦)

(R7) If 𝐴(𝑎) ∈  then: Ψ′ ∧ 𝐴𝗌(𝑥)
𝗌
⇝ Ψ′ ∧ 𝑥 = 𝑎𝗌 Ψ′ ∧ 𝑥 = 𝑎𝗀

𝗀
⇝ Ψ′ ∧ 𝐴𝗀(𝑥)

(R8) If 𝑟(𝑎, 𝑏) ∈  then: Ψ′ ∧ 𝑟𝗌(𝑥, 𝑦̃)
𝗌
⇝ Ψ′ ∧ 𝑥 = 𝑎𝗌 Ψ′ ∧ 𝑥 = 𝑎𝗀

𝗀
⇝ Ψ′ ∧ 𝑟𝗀(𝑥, _)

Ψ′ ∧ 𝑟𝗌(𝑥̃, 𝑦)
𝗌
⇝ Ψ′ ∧ 𝑦 = 𝑏𝗌 Ψ′ ∧ 𝑥 = 𝑏𝗀

𝗀
⇝ Ψ′ ∧ 𝑟𝗀(_, 𝑥)

(R9) If {𝑠(𝑎, 𝑏),
𝑟◦𝑠 ⊑ 𝑟} ⊆ 

then: Ψ′ ∧ 𝑟𝗌(𝑥, 𝑦̂) ∧ 𝑦̂ = 𝑏𝗌
𝗌
⇝ Ψ′ ∧ 𝑟𝗌(𝑥, 𝑦) ∧ 𝑦 = 𝑎𝗌

Ψ′ ∧ 𝑟𝗀(𝑥, 𝑦̂) ∧ 𝑦̂ = 𝑎𝗀
𝗀
⇝ Ψ′ ∧ 𝑟𝗀(𝑥, 𝑦) ∧ 𝑦 = 𝑏𝗀

Table 4.1: Rules to derive CQs from query template Ψ[𝑥⃗].
.

Given a template Ψ and a set of reformulation axioms , we say that Ψ′ is derivable from Ψ using
 if there is a sequence of reformulations Ψ

𝗑
⇝ Ψ1…

𝗑
⇝ Ψ𝑛 = Ψ′, with 𝑛 ≥ 0 and 𝗑 ∈ {𝗌, 𝗀},

using the rules in Table 4.1. We will use Ψ
𝗑
⇝ Ψ′, to indicate that Ψ′ is derivable from Ψ w.r.t., and we will write 𝑞Ψ(𝑥⃗) to denote the CQ obtained from Ψ[𝑥⃗] by removing all the 𝗌 and 𝗀

labels. Then we define:

• 𝑄
Ψ is the set of all CQs {𝑞Ψ′(𝑥⃗) ∣ Ψ[𝑥⃗] ⇝ Ψ′[𝑥⃗]}.

• We write 𝑞Ψ1
⪯ 𝑞Ψ2

whenever Ψ2
𝗌

⇝ Ψ1 or Ψ1
𝗀

⇝ Ψ2.

Note that, following [AIOS19], we allow CRIs in our reformulation axioms to capture query
navigation similar to roll-up and drill-down operations in OLAP. For example, the location
dimension has different granularity levels connected by a part-of rather than by a subclass-
of relation. Using axioms like City ⊑ ∃partOf .Country and the CRI hasLocation◦partOf ⊑
hasLocation, we can generalize a query asking for MCIs in a city to one that asks for MCIs in a
country instead. The roll-up and its specializing counterpart drill-down are captured by rules R6
and R9, respectively.
To understand the process of creating the query space, let us discuss the rules in Table 4.1 in
more detail. Atom 𝐴𝗌(𝑥) can be specialized as: 𝐵(𝑥) using (R1) or 𝑟(𝑥, _) using (R3), or as
𝐴(𝑎), with 𝑎 a known instance of concept 𝐴 using (R7). Atom 𝑝𝗌(𝑥, 𝑦) is specialized as 𝑟(𝑥, 𝑦)
with 𝑟 a role more specific than 𝑟 using (R4) or (R5), or 𝐵(𝑥) (or 𝐵(𝑦)), with 𝐵 a concept that
is more specific than ∃𝑟 (or ∃𝑟−) with rule (R2). The rules work similarly for the generalizing
case. The process can be stopped by simply dropping the special markers and obtaining a CQ.
The derivation process also establishes the exploratory order in the query space.

80

4.2. Generating Meaningful Query Spaces

Example 4.2. Let us consider again the template Ψ[𝑥] from Example 4.1, and the set of reformu-
lation axioms: 1 = {hasLocation◦partOf ⊑ hasLocation, partOf(𝖵𝗂𝖾𝗇𝗇𝖺,𝖠𝗎𝗌𝗍𝗋𝗂𝖺)}.

Rule (R9) is applicable for Ψ and 1 (since 𝑧 is not an answer variable):

MCI𝗌(𝑥) ∧ hasLocation𝗀(𝑥, 𝑧) ∧ 𝑧 = 𝖵𝗂𝖾𝗇𝗇𝖺𝗀
𝗀
⇝ MCI𝗌(𝑥) ∧ hasLocation𝗀(𝑥, 𝑧) ∧ 𝑧 = 𝖠𝗎𝗌𝗍𝗋𝗂𝖺𝗀.

The query space generated by template Ψ and 1 is denoted by 𝑄1
Ψ ; by removing the special

markers, we get that the following query is part of it:

𝑞1(𝑥) ← MCI(𝑥) ∧ hasLocation(𝑥, 𝑧) ∧ 𝑧 = 𝖠𝗎𝗌𝗍𝗋𝗂𝖺.

Thus, 𝑞Ψ ⪯1
𝑞1 in 𝑄1

Ψ . The semantics of Ψ change if we consider, for example, the set of
reformulation axioms 2 = {Fire ⊑ MCI}, based on which by applying rule (R1) we can obtain
the query 𝑞2(𝑥) ← Fire(𝑥) ∧ hasLoccation(𝑥, 𝑧) ∧ 𝑧 = 𝖵𝗂𝖾𝗇𝗇𝖺 thus allowing flexibility and
control in choosing what it means to specialize or generalize template atoms.

The reformulation axioms might be derived from the existing knowledge base, but also they might
come from an external source and in that case we must ensure that they are compatible with the
existing knowledge.
Let  be written in a language that enjoys the canonical model property. Then we call a set 
of reformulation axioms compatible with (, ) if , ⊨ , where , denotes a canonical
model. Compatibility of  ensures that we obtain an exploratory query space.
Lemma 4.2. Let Ψ be a template,  a set of reformulation axioms, and  an ontology in a
language that enjoys the canonical model property. If  is such that  is compatible with (,),
then each query space ⟨𝑄

Ψ ,⪯⟩ is exploratory for .

Proof (Sketch). Since the symbol ‘_’ stands for a variable which does not occur free nor in a join,
and since only such variables can be freshly introduced during derivation, we easily obtain that
𝑄

Ψ is finite. Since  is compatible with (,) and since each query generation rule applies only
axioms and assertions from  in such a way that containment of answers is preserved in both
generalizing and specializing case, we directly obtain that for any given queries 𝑞1, 𝑞2 ∈ 𝑄

Ψ such
that 𝑞1 ⪯ 𝑞2 we have that 𝑞1 ⊆(,) 𝑞2.
Example 4.3. Let  = {Fire ⊑ NatureCausedMCI, NatureCausedMCI ⊑ MCI} and

 = {Fire(𝖾𝟣), hasLocation(𝖾𝟣,𝖵𝗂𝖾𝗇𝗇𝖺), partOf(𝖵𝗂𝖾𝗇𝗇𝖺, 𝖠𝗎𝗌𝗍𝗋𝗂𝖺),
hasLocation(𝖾𝟣,𝖠𝗎𝗌𝗍𝗋𝗂𝖺)}.

 = {hasLocation◦partOf ⊑ hasLocation} is compatible with (,) since in  the CRI is
already satisfied. Similarly, it is also easy to check that 1 and 2 from the previous example,
are compatible with (,), so both (1

Ψ ,⪯1
) and (2

Ψ ,⪯2
) are exploratory for .

If  is not a subset of  ∪ , in order to test compatibility, property that is important for
exploration purposes, we need to check if each axiom holds in the canonical model. When  is in
DL-Lite++(rec-safe) such test can be done in PTime (cf. Theorem 3.6).

81

4. ONTOLOGY-ENHANCED EXPLORATORY FRAMEWORK

4.3 Generating Query Spaces with Datalog
In this section, we describe a way to realize our exploratory framework using Datalog. The general
idea is to create a Datalog program that encodes the query generation and answering process,
based on the query template and the derivation rules (in Section 4.3.2), and the exploration process
by identifying the most relevant generalizations and specializations for each query in the space
(in Section 4.3.4).
Before proceeding with the Datalog encoding, we recall the syntax and semantics of Datalog
programs with stratified negation [ABW88].

4.3.1 Datalog with Equality and Stratified Negation
The vocabulary of a Datalog program is a collection of object contants and relation contants.
Object constants include, but are not limited to, constant symbols in 𝐊, therefore we use the same
notation to denote Datalog constants (e.g., 𝖵𝗂𝖾𝗇𝗇𝖺, 𝖠𝗎𝗌𝗍𝗋𝗂𝖺, etc.). Relation constants behave simi-
larly to symbols in 𝐂∪𝐑∪𝐅 but they consists of arbitrary aritities. In order to distinguish between
DL predicate names and Datalog relations, we denote a relation constant as an alphanumeric
string in 𝚃𝚢𝚙𝚎𝚠𝚛𝚒𝚝𝚎𝚛𝙵𝚘𝚗𝚝 with possible subscript e.g., 𝚌𝚊𝚙𝚒𝚝𝚊𝚕𝙾𝚏, 𝚑𝚊𝚜𝙲𝚘𝚗𝚗𝚎𝚌𝚝𝚒𝚘𝚗𝚖𝚎𝚝𝚛𝚘, and
so on.
Similarly to any other query language, a Datalog program allows the use of variables to point to
objects without specifically naming them. To distinguish Datalog variables among the variables
present in CQs, we write Datalog variables as alphanumeric strings with possible subscript that
begin with capital letter, e.g., 𝑋, 𝑌 , 𝑈 , 𝑈1 and so on. A Datalog term is either a Datalog constant
or a variable.
An atom 𝛽 is either (i) 𝚙(𝑇) with 𝑇 a tuple of terms of the same arity as 𝚙, or (ii) 𝑇 = 𝑇 ′ for terms
𝑇 , 𝑇 ′. A Datalog rule 𝜌 has the form:

𝚙(𝑉) ← 𝛽1,… , 𝛽𝑘,¬𝛽𝑘+1,… ,¬𝛽𝑚

where 𝑚 ≥ 𝑘, 𝚙(𝑉) is called the head of 𝜌 and denoted by ℎ𝑒𝑎𝑑(𝜌), while the set of atoms
{𝛽1,… , 𝛽𝑚} is the body of 𝜌 and body+(𝜌) denotes the positive atoms while body−(𝜌) the negative
ones. All variables in head(𝜌) and in body−(𝜌) must also occur in body+(𝜌). A Datalog fact is a
variable-free rule with empty body which may be written as 𝚙(𝖼⃗).
A Datalog program Π is a set of Datalog rules. Π is stratified if it can be partitioned as Π1,… ,Π𝑛
such that for each 𝚙, all rules with 𝚙 in the head are in the same partition Π𝑖, and for all atoms in
the bodies of those rules, the definitions of such predicates are in some Π𝑗 , with 𝑗 ≤ 𝑖 if the atom
is positive, or 𝑗 < 𝑖 for negative atoms.
A set of facts 𝐼 satisfies a rule 𝜌 if there exists a mapping ℎ ∶ vars(𝜌) ↦ cst(𝐼) such that whenever
ℎ(body+(𝜌)) ⊆ 𝐼 and ℎ(body−(𝜌)) ⊈ 𝐼 , then ℎ (head (𝜌)) ⊆ 𝐼 . A model of Π is any set of facts
that satisfies each 𝜌 ∈ Π. For a stratified program Π and finite set of facts 𝐷, Π(𝐷) denotes the
minimal model of Π (which is unique and always exists) consisting of ⋃𝑛

𝑖=0 𝐼𝑖, where 𝐼0 = 𝐷 and
for 1 ≤ 𝑖 ≤ 𝑛, each 𝐼𝑖 minimally extends 𝐼𝑖−1 such that 𝐼𝑖 is a model of Π𝑖.

82

4.3. Generating Query Spaces with Datalog

4.3.2 Datalog Encoding of Query Spaces
We now build a Datalog program that derives and evaluates all the queries in a space triggered by a
template and a set of reformulation axioms. Thus, in this section we fix a template Ψ[𝑥1,… , 𝑥𝑘] =
∃𝑦.𝜏1 ∧⋯ ∧ 𝜏𝑛 as well as a set of reformulation axioms . We also assume that each non-answer
variable that occurs exactly once in Ψ is substituted by the symbol _. Further, for each variable
𝑧 ∈ vars(Ψ), we consider an associated Datalog variable 𝑉𝑧.
In our encoding, we reason over concepts, relations and constants that appear in Ψ and , thus
for simplicity we use 𝖠 as the Datalog constant denoting concept 𝐴 ∈ 𝐂 and similarly p as the
Datalog constant denoting relation 𝑝 ∈ 𝐑 ∪ 𝐅. Moreover, we also consider a Datalog constant
𝗏𝑧 and 𝖼𝜏 for each variable 𝑧 and each atom 𝜏 in Ψ, respectively. A special constant 𝗇𝗎𝗅𝗅 acts as
placeholder for _ and as a “filler” for irrelevant positions in our designated Datalog predicates.
The initial step of our Datalog encoding consists in translating the given Ψ and  into a set of
Datalog facts. Such translation is presented in the first part of Table 4.2. Firstly, we encode all
relevant information in  into a set of facts denoted by 𝐃. For that, we map (↦) each concept
𝐴 in the signature of Ψ and  to a fact 𝚌𝚘𝚗𝚌(𝖠). Similarly, for each relation 𝑝 occuring in  or Ψ
we consider a fact 𝚛𝚘𝚕𝚎(𝗉). Then, each inclusion axiom in  is encoded using Datalog relations
𝚌𝙸𝚂𝙰 and 𝚛𝙸𝚂𝙰, and each inverse axiom is encoded using 𝚛𝙸𝚂𝙰𝚒𝚗𝚟. For each constant symbol
𝑐 we consider a fact 𝚌𝚘𝚗𝚜𝚝(𝖼). To encode unary 𝐴(𝑐), respectively binary 𝑟(𝑎, 𝑏), assertions
in  we use 𝚞𝙰𝚜𝚜𝚛𝚝(𝖠, 𝖼), respectively 𝚋𝙰𝚜𝚜𝚛𝚝(𝗋, 𝖺, 𝖻). For each 𝑟◦𝑠 ⊑ 𝑟 and 𝑠(𝑎, 𝑏) ∈ ,
respectively 𝐴 ⊑ ∃𝑠.𝐴′ ∈ , we have facts 𝚛𝚞𝚙(𝖺, 𝖻, 𝗋) and 𝚍𝚍𝚗(𝖻, 𝖺, 𝗋), respectively 𝚛𝚞𝚙(𝖠,𝖠′, 𝗋)
and 𝚍𝚍𝚗(𝖠′,𝖠, 𝗋). Next, we encode all the relevant information regarding the structure of Ψ into a
set of facts 𝐃Ψ. For each non-answer variable 𝑧 in Ψ we consider a fact 𝚗𝙰𝚗𝚜(𝖼𝑧) and proceed as
before if new concepts, relations or constants appear. Then, for each atom 𝜏 if it is a specializing
atom 𝐴𝗌(𝑥), 𝑟𝗌(𝑥, 𝑦), we consider a fact 𝚊𝚝𝚖𝚜(𝖼𝜏 ,𝖠, 𝖼𝑥, 𝗇𝗎𝗅𝗅), 𝚊𝚝𝚖𝚜(𝖼𝜏 , 𝗋, 𝖼𝑥, 𝖼𝑦), respectively. If it
is a generalizing atom the encoding is similar but using the predicate 𝚊𝚝𝚖𝚐, while for 𝜏 a query
atom we use predicate 𝚛𝚎𝚏𝙰𝚝.
The second step in our encoding is to simulate the query generation process captured by the
rules in Table 4.1. Using the relevant information captured by 𝐃Ψ ∪ 𝐃, the Datalog set of rules
Πrules are in one-to-one correspondance to the query generation rules and are explicitly defined in
the second part of the Table 4.2. These rules derive an 𝚊𝚝𝚖𝚜 atom for each reformulation of a
specializing atom, and an 𝚊𝚝𝚖𝚐 atom for each reformulation of a generalizing atom in Ψ.
The final group of rules Π in Table 4.2 build up the set of OMQs in the space. In this group of
Datalog rules, we first collect all reformulated atoms using 𝚛𝚎𝚏𝙰𝚝. Next, all possible combinations
of valid query formulations in the space are created using relation 𝚛𝚎𝚏𝙰𝚝𝚖𝚜 which has the same
arity as the number of atoms in the template. The last part of the encoding is to define the views
needed to evaluate each query in the space. For that we use for each template atom 𝜏 a predicate
𝚚𝙰𝚝𝚖𝜏 which intuitively captures all possible matches for any query atom that is derivable from
𝜏. We collect all the matches of all the queries in the space using view 𝚚𝚞𝚎𝚛𝚢Ψ(𝑈⃗ , 𝑉𝑥1 ,… , 𝑉𝑥𝑘)
where tuple 𝑈⃗ has arrity 𝑛–the number of atoms in Ψ, and each variable in it is mapped to
Datalog constants denoting symbols from the signature of  and Ψ. The tuple (𝑉𝑥1 ,… , 𝑉𝑥𝑛)

83

4. ONTOLOGY-ENHANCED EXPLORATORY FRAMEWORK

corresponds to the tuple of answer variables (𝑥1,… , 𝑥𝑛) in Ψ and each tuple 𝑉𝑖 in the body of the
view corresponds to the answer variables in each template atom 𝜏𝑖, for 1 ≤ 𝑖 ≤ 𝑛.
We can now describe how the query space is captured. We denote by tr(𝑞) the translation of a
given CQ 𝑞(𝑥⃗) into the signature of our Datalog program, obtained by applying to each atom in 𝑞
the function tr such as:
- tr(𝑥=𝑎) = 𝑉𝑥=𝑎,
- tr(𝐴(𝑥)) = 𝚞𝙰𝚝𝚖(𝖠, 𝑉𝑥),
- tr(𝑟(𝑥, 𝑦)) = 𝚋𝙰𝚝𝚖(𝗋, 𝑉𝑥, 𝑉𝑦),
- replace each non-join and non-answer variable in tr(𝑞) by 𝗇𝗎𝗅𝗅.
Definition 4.7 (Datalog encoding). We let ΠΨ = Πrules ∪Π and 𝐷Ψ, = 𝐷Ψ ∪𝐷, and call the
pair ⟨ΠΨ, 𝐷Ψ,⟩ the Datalog encoding of (Ψ,).

Let 𝑐 = (𝖼𝟣,… , 𝖼𝗇) be a tuple of Datalog constants from 𝐂 ∪𝐑 ∪ 𝐅 ∪𝐊. The unfolding of ΠΨ for
𝑐 is the rule obtained from

𝚚𝚞𝚎𝚛𝚢Ψ(𝑐, 𝑉𝑥1 ,… , 𝑉𝑥𝑘) ← 𝚛𝚎𝚏𝙰𝚝𝚖𝚜(𝑐), 𝚚𝙰𝚝𝚖𝜏1(𝖼𝟣, 𝑉1),… , 𝚚𝙰𝚝𝚖𝜏𝑛(𝖼𝗇, 𝑉𝑛)

by choosing some rule 𝜌 ∈ Π for each 𝚚𝙰𝚝𝚖𝜏𝑖(𝖼𝗂, 𝑉𝑖), and a substitution 𝜎 such that

• head(𝜌)𝜎 = 𝚚𝙰𝚝𝚖𝜏𝑖(𝖼𝗂, 𝑉𝑖), and
• exactly one of 𝚌𝚘𝚗𝚌(𝖼𝗂), 𝚛𝚘𝚕𝚎(𝖼𝗂) or 𝚌𝚘𝚗𝚜𝚝(𝖼𝗂) is contained in 𝐷Ψ,

and then: (i) replacing 𝚚𝙰𝚝𝚖𝜏𝑖(𝖼𝗂, 𝑉𝑖)with body(𝜌)𝜎, and (ii) removing each atom from body(𝚚𝚞𝚎𝚛𝚢Ψ(𝑐, 𝑥⃗))
that is contained in ΠΨ(𝐷Ψ,).
If the body of the unfolding ΠΨ for 𝑐 is tr(𝑞) for some CQ 𝑞, we call 𝑐 the ΠΨ-encoding of 𝑞.

The idea behind the unfolding is simple. If 𝑞 has a ΠΨ-encoding, then it is derivable from Ψ w.r.t. Conversely, for each derivable 𝑞 we can find a ΠΨ-encoding.
Example 4.4. Let 𝑐 = (𝖬𝖢𝖨, 𝗁𝖺𝗌𝖫𝗈𝖼𝖺𝗍𝗂𝗈𝗇,𝖵𝗂𝖾𝗇𝗇𝖺). The unfolding of ΠΨ for 𝑐 is

𝚚𝚞𝚎𝚛𝚢Ψ(𝑐, 𝑉𝑥) ← 𝚞𝙰𝚝𝚖(𝖬𝖢𝖨, 𝑉𝑥), 𝚋𝙰𝚝𝚖(𝗁𝖺𝗌𝖫𝗈𝖼𝖺𝗍𝗂𝗈𝗇, 𝑉𝑥, 𝑉𝑧), 𝑉𝑧 = 𝖵𝗂𝖾𝗇𝗇𝖺.

The body matches tr(𝑞Ψ) from Example 4.1, so 𝑐 is a ΠΨ-encoding for 𝑞Ψ.

We proceed next with showing that the Datalog encoding is correct.
Lemma 4.3. A CQ 𝑞 is derivable from Ψ using  iff there exists a ΠΨ-encoding of 𝑞.

Proof. The lemma follows from the following claims. Let (Ψ,) be an arbitrary pair consisting
of a template Ψ[𝑥⃗] = ∃𝑦𝜏1 ∧⋯ ∧ 𝜏𝑛 and a set of reformulation axioms .
Claim 6. For any CQ 𝑞 such that 𝑞 is derivable from Ψ using  there exists a ΠΨ-encoding of 𝑞.

84

4.3. Generating Query Spaces with Datalog

𝑫: 𝐴 ↦ 𝚌𝚘𝚗𝚌(𝐴),
𝑟 ↦ 𝚛𝚘𝚕𝚎(𝑟),
𝑎 ↦ 𝚌𝚘𝚗𝚜𝚝(𝑎),

𝐴 ⊑ 𝐴′ ↦ 𝚌𝙸𝚂𝙰(𝐴,𝐴′) 𝐴(𝐴) ↦ 𝚞𝙰𝚜𝚜𝚛𝚝(𝖠, 𝑎)
∃𝑟 ⊑ 𝐴 ↦ 𝚌𝙸𝚂𝙰(𝑟, 𝐴) 𝑟(𝑎, 𝑏) ↦ 𝚋𝙰𝚜𝚜𝚛𝚝(𝗋, 𝑎, 𝑏)
𝐴 ⊑ ∃𝑟 ↦ 𝚌𝙸𝚂𝙰(𝐴, 𝑟) {𝑠(𝑎, 𝑏), 𝑟◦𝑠 ⊑ 𝑟} ↦ 𝚍𝚍𝚗(𝑏, 𝑎, 𝗋), 𝚛𝚞𝚙(𝑎, 𝑏, 𝗋)
𝑠 ⊑ 𝑟 ↦ 𝚛𝙸𝚂𝙰(𝗌, 𝗋) {𝐴 ⊑ ∃𝑠.𝐴′, 𝑟◦𝑠 ⊑ 𝑟} ↦ 𝚍𝚍𝚗(𝖠′,𝖠, 𝗋)

𝑝− ⊑ 𝑟 ↦ 𝚛𝙸𝚂𝙰𝚒𝚗𝚟(𝗉, 𝗋) {𝐴 ⊑ ∃𝑠.𝐴′, 𝑟◦𝑠 ⊑ 𝑟} ↦ 𝚛𝚞𝚙(𝖠,𝖠′, 𝗋)

𝑫𝚿: 𝑥 ∉ 𝑥⃗ ↦ 𝚗𝙰𝚗𝚜(𝗏𝑥) 𝐴𝗑(𝑥) ↦ 𝚊𝚝𝚖𝚜(𝖼𝜏 ,𝖠, 𝗏𝑥, 𝗇𝗎𝗅𝗅) 𝐴(𝑥) ↦ 𝚛𝚎𝚏𝙰𝚝(𝖼𝜏 ,𝖠, 𝗏𝑥, 𝗇𝗎𝗅𝗅)
𝐴 ↦ 𝚌𝚘𝚗𝚌(𝐴) 𝑟𝗑(𝑥, 𝑦) ↦ 𝚊𝚝𝚖𝚜(𝖼𝜏 , 𝗋, 𝗏𝑥, 𝗏𝑦) 𝑟(𝑥, 𝑦) ↦ 𝚛𝚎𝚏𝙰𝚝(𝖼𝜏 , 𝗋, 𝗏𝑥, 𝗏𝑦)
𝑟 ↦ 𝚛𝚘𝚕𝚎(𝑟) 𝑥 = 𝑎𝗑 ↦ 𝚊𝚝𝚖𝚜(𝖼𝜏 , 𝑎, 𝗏𝑥, 𝗇𝗎𝗅𝗅) 𝑥 = 𝑎 ↦ 𝚛𝚎𝚏𝙰𝚝(𝖼𝜏 , 𝑎, 𝗏𝑥, 𝗇𝗎𝗅𝗅)
𝑎 ↦ 𝚌𝚘𝚗𝚜𝚝(𝑎) with 𝗑 ∈ {𝗌, 𝗀}

Encoding of the reformulation rules 𝚷𝒓𝒖𝒍𝒆𝒔

(R1–3)

𝚊𝚝𝚖𝚜(𝑉𝜏 , 𝑈 , 𝑌 ,𝑍) ← 𝚊𝚝𝚖𝚜(𝑉𝜏 , 𝑈 ′, 𝑌 , 𝑍), 𝚌𝙸𝚂𝙰(𝑈,𝑈 ′), 𝚌𝚘𝚗𝚌(𝑈 ′).
𝚊𝚝𝚖𝚐(𝑉𝜏 , 𝑈 ′, 𝑌 , 𝑍) ← 𝚊𝚝𝚖𝚐(𝑉𝜏 , 𝑈 , 𝑌 ,𝑍), 𝚌𝙸𝚂𝙰(𝑈,𝑈 ′), 𝚌𝚘𝚗𝚌(𝑈).
𝚊𝚝𝚖𝚜(𝑉𝜏 , 𝑈 , 𝑌 , 𝗇𝗎𝗅𝗅) ← 𝚊𝚝𝚖𝚜(𝑉𝜏 , 𝑈 ′, 𝑌 , 𝗇𝗎𝗅𝗅), 𝚌𝙸𝚂𝙰(𝑈,𝑈 ′), 𝚌𝚘𝚗𝚌(𝑈), 𝚛𝚘𝚕𝚎(𝑈 ′).
𝚊𝚝𝚖𝚐(𝑉𝜏 , 𝑈 ′, 𝑌 , 𝗇𝗎𝗅𝗅) ← 𝚊𝚝𝚖𝚐(𝑉𝜏 , 𝑈 , 𝑌 , 𝗇𝗎𝗅𝗅), 𝚌𝙸𝚂𝙰(𝑈,𝑈 ′), 𝚌𝚘𝚗𝚌(𝑈 ′), 𝚛𝚘𝚕𝚎(𝑈).

(R4), (R5)

𝚊𝚝𝚖𝚜(𝑉𝜏 , 𝑈 , 𝑌 ,𝑍) ← 𝚊𝚝𝚖𝚜(𝑉𝜏 , 𝑈 ′, 𝑌 , 𝑍), 𝚛𝙸𝚂𝙰(𝑈,𝑈 ′).
𝚊𝚝𝚖𝚐(𝑉𝜏 , 𝑈 ′, 𝑌 , 𝑍) ← 𝚊𝚝𝚖𝚐(𝑉𝜏 , 𝑈 , 𝑌 ,𝑍), 𝚛𝙸𝚂𝙰(𝑈,𝑈 ′).
𝚊𝚝𝚖𝚜(𝑉𝜏 , 𝑈 , 𝑌 ,𝑍) ← 𝚊𝚝𝚖𝚜(𝑉𝜏 , 𝑈 ′, 𝑍, 𝑌), 𝚛𝙸𝚂𝙰𝚒𝚗𝚟(𝑈,𝑈 ′).
𝚊𝚝𝚖𝚐(𝑉𝜏 , 𝑈 ′, 𝑌 , 𝑍) ← 𝚊𝚝𝚖𝚐(𝑉𝜏 , 𝑈 ,𝑍, 𝑌), 𝚛𝙸𝚂𝙰𝚒𝚗𝚟(𝑈,𝑈 ′).

(R6), (R9)

𝚊𝚝𝚖𝚜(𝑉𝜏 , 𝑈 ′,𝑊 , 𝗇𝗎𝗅𝗅) ← 𝚍𝚍𝚗(𝑈,𝑈 ′, 𝑍), 𝚊𝚝𝚖𝚜(𝑉𝜏 , 𝑈 ,𝑊 , 𝗇𝗎𝗅𝗅),𝑊 ≠ 𝗇𝗎𝗅𝗅,
𝚛𝚎𝚏𝙰𝚝(𝑉𝜏′ , 𝑍, 𝑌 ,𝑊), 𝑉𝜏 ≠ 𝑉𝜏′ , 𝚗𝙰𝚗𝚜(𝑊).

𝚊𝚝𝚖𝚐(𝑉𝜏 , 𝑈 ′,𝑊 , 𝗇𝗎𝗅𝗅) ← 𝚛𝚞𝚙(𝑈,𝑈 ′, 𝑍), 𝚊𝚝𝚖𝚐(𝑉𝜏 , 𝑈 ,𝑊 , 𝗇𝗎𝗅𝗅),𝑊 ≠ 𝗇𝗎𝗅𝗅,
𝚛𝚎𝚏𝙰𝚝(𝑉 ′

𝜏 , 𝑍, 𝑌 ,𝑊), 𝑉𝜏 ≠ 𝑉𝜏′ , 𝚗𝙰𝚗𝚜(𝑊).

(R7), (R8)

𝚊𝚝𝚖𝚜(𝑉𝜏 , 𝑉 , 𝑌 , 𝗇𝗎𝗅𝗅) ← 𝚊𝚝𝚖𝚜(𝑉𝜏 , 𝑈 , 𝑌 , 𝗇𝗎𝗅𝗅), 𝚞𝙰𝚜𝚜𝚛𝚝(𝑈, 𝑉).
𝚊𝚝𝚖𝚐(𝑉𝜏 , 𝑈 , 𝑌 , 𝗇𝗎𝗅𝗅) ← 𝚊𝚝𝚖𝚐(𝑉𝜏 , 𝑉 , 𝑌 , 𝗇𝗎𝗅𝗅), 𝚞𝙰𝚜𝚜𝚛𝚝(𝑈, 𝑉).
𝚊𝚝𝚖𝚐(𝑉𝜏 , 𝑈 , 𝗇𝗎𝗅𝗅, 𝑌) ← 𝚊𝚝𝚖𝚐(𝑉𝜏 , 𝑉 ′, 𝑌 , 𝗇𝗎𝗅𝗅), 𝚋𝙰𝚜𝚜𝚛𝚝(𝑈, 𝑉 , 𝑉 ′).
𝚊𝚝𝚖𝚐(𝑉𝜏 , 𝑈 , 𝑌 , 𝗇𝗎𝗅𝗅) ← 𝚊𝚝𝚖𝚐(𝑉𝜏 , 𝑉 , 𝑌 , 𝗇𝗎𝗅𝗅), 𝚋𝙰𝚜𝚜𝚛𝚝(𝑈, 𝑉 , 𝑉 ′).
𝚊𝚝𝚖𝚜(𝑉𝜏 , 𝑉 , 𝑌 , 𝗇𝗎𝗅𝗅) ← 𝚊𝚝𝚖𝚜(𝑉𝜏 , 𝑈 , 𝑌 , 𝗇𝗎𝗅𝗅), 𝚋𝙰𝚜𝚜𝚛𝚝(𝑈, 𝑉 , 𝑉 ′), 𝑌 ≠ 𝗇𝗎𝗅𝗅.
𝚊𝚝𝚖𝚜(𝑉𝜏 , 𝑉 ′, 𝗇𝗎𝗅𝗅, 𝑍) ← 𝚊𝚝𝚖𝚜(𝑉𝜏 , 𝑈 , 𝗇𝗎𝗅𝗅, 𝑍), 𝚋𝙰𝚜𝚜𝚛𝚝(𝑈, 𝑉 , 𝑉 ′), 𝑍 ≠ 𝗇𝗎𝗅𝗅.

Query space encoding 𝚷:
𝚛𝚎𝚏𝙰𝚝(𝑉𝜏 , 𝑈 ,𝑋, 𝑌) ← 𝚊𝚝𝚖𝚜(𝑉𝜏 , 𝑈 ,𝑋, 𝑌).
𝚛𝚎𝚏𝙰𝚝(𝑉𝜏 , 𝑈 ,𝑋, 𝑌) ← 𝚊𝚝𝚖𝚐(𝑉𝜏 , 𝑈 ,𝑋, 𝑌).

𝚛𝚎𝚏𝙰𝚝𝚖𝚜(𝑈1,… , 𝑈𝑛) ← 𝚛𝚎𝚏𝙰𝚝(𝖼𝜏1 , 𝑈1, 𝑉1),… , 𝚛𝚎𝚏𝙰𝚝(𝖼𝜏𝑛 , 𝑈𝑛, 𝑉𝑛).

𝚚𝚞𝚎𝚛𝚢Ψ(𝑈⃗ , 𝑉𝑥1 ,… , 𝑉𝑥𝑘) ← 𝚛𝚎𝚏𝙰𝚝𝚖𝚜(𝑈⃗), 𝚚𝙰𝚝𝚖𝜏1(𝑈1, 𝑉1),… , 𝚚𝙰𝚝𝚖𝜏𝑛(𝑈𝑛, 𝑉𝑛).
𝚚𝙰𝚝𝚖𝜏(𝑈,𝑋, 𝗇𝗎𝗅𝗅) ← 𝚞𝙰𝚝𝚖(𝑈,𝑋), 𝚌𝚘𝚗𝚌(𝑈).
𝚚𝙰𝚝𝚖𝜏(𝑈,𝑋, 𝗇𝗎𝗅𝗅) ← 𝑈 = 𝑋, 𝚌𝚘𝚗𝚜𝚝(𝑈).
𝚚𝙰𝚝𝚖𝜏(𝑈,𝑋, 𝑌) ← 𝚋𝙰𝚝𝚖(𝑈,𝑋, 𝑌), 𝚛𝚘𝚕𝚎(𝑈).

Table 4.2: Datalog encoding of Ψ[𝑥⃗],  and reformulation rules
.

85

4. ONTOLOGY-ENHANCED EXPLORATORY FRAMEWORK

Proof (Sketch). To prove this claim, we first argue that for each atom in 𝑞 there exists an associated
assertion 𝚛𝚎𝚏𝙰𝚝(𝖼⃗) ∈ Π𝑟𝑢𝑙𝑒𝑠 ∪ Π(𝐷Ψ ∪ 𝐷). This follows almost immediately from the fact
that there is some 𝚊𝚝𝚘𝚖𝗑, with 𝗑 ∈ {𝗌, 𝗀}, for each specializing or generalizing atom in Ψ, Π𝑟𝑢𝑙𝑒𝑠
mimics each of the reformulation rules to derive queries from the templates, and that 𝚊𝚝𝚘𝚖𝗑
implies 𝚛𝚎𝚏𝙰𝚝. Since this holds for any query atom in 𝑞, we obtain that there exists some tuple
(𝖼𝟣,… , 𝖼𝗇) of Datalog constants denoting concept, relations or constants such that 𝖼𝗂 denotes the
symbol appearing in atom 𝑖 in 𝑞, and that 𝚛𝚎𝚏𝙰𝚡(𝖼𝟣,… , 𝖼𝗇) ∈ Π𝑟𝑢𝑙𝑒𝑠 ∪ Π(𝐷Ψ ∪ 𝐷). Lastly,
since each of 𝖼𝗂 has exactly one type, i.e. it is either concept, role or constant, and that 𝚚𝚞𝚎𝚛𝚢Ψpreserves the structure of Ψ, we obtain that (𝖼𝟣,… , 𝖼𝗇) is the ΠΨ-encoding of 𝑞.

Claim 7. For any CQ 𝑞 such that there exists a ΠΨ-encoding we have that 𝑞 is derivable from Ψ
using .

Proof (Sketch). Let 𝑞 be an arbitrary CQ and let 𝑐 = (𝑐1,… , 𝑐𝑛) be the ΠΨ-encoding of 𝑞. By
definition, we obtain that 𝚛𝚎𝚏𝙰𝚡(𝑐) ∈ ΠΨ(𝐷Ψ,). Since each fact in ΠΨ(𝐷Ψ,) is either present
in 𝐷Ψ, or derived by the application of some rule in ΠΨ, we obtain that there exists some
𝚛𝚎𝚏𝙰𝚝(𝖼𝜏𝑖 , 𝑐𝑖, 𝖼𝑦𝑖) ∈ ΠΨ(𝐷Ψ,), for each 𝜏𝑖 ∈ Ψ. Following the same reasoning, we obtain a
sequence of rules 𝛼1,… , 𝛼𝑘 in Πrules which are sequentially applied starting from the facts in
𝐷Ψ, which account to the encoding of the template and of the reformulation axioms. Since rules
in Πrules simulate the derivation rules in Table 4.1, and 𝐷Ψ, encodes the structure of Ψ and each
reformulation axiom, we directly obtain that 𝑞, modulo variable renaming, is derivable from Ψ
using .

From the above claims we obtain that the above lemma holds.

4.3.3 Evaluation of the Datalog Translation for DL-Lite OMQs
We now fix an ABox  and a DL-Lite ontology , and consider the evaluation of the queries
(𝑞,) in 

Ψ over . The relevant queries are captured by ⟨ΠΨ, 𝐷Ψ,⟩, but we still need an OMQ
answering algorithm for the DL of . In the case of DL-Lite, one could call an external query
rewriting engine for the encoded queries. However, we chose to partially complete the data w.r.t., and then evaluate the Datalog encoding over the extended dataset.1
We say that a CQ template is rooted if each variable is either an answer variable or occurs in
a join sequence of the form 𝑟1(𝑥0, 𝑥1),… , 𝑟𝑘(𝑥𝑘−1, 𝑥𝑘), where 𝑥1 is an answer variable and for
1 < 𝑖 ≤ 𝑘, 𝑥𝑖 occurs existentially in Ψ. We define the join length of a CQ template as the length
of its longest join sequence, and let 𝑘 be the join length of Ψ. In the following, 𝐵 denotes either a
concept name or ∃𝑟. Then, we apply the following procedure:

1. For Σ denoting the signature of (Ψ,), we build a 𝑘-bounded Σ-expansion ,𝑘
Σ of 

w.r.t. constructed by taking for each 𝐴 ∈ Σ and each 𝑟 ∈ Σ:
1Such a procedure is very easy to realize if an existential rule engine [CDG+19] is chosen instead of a plain

Datalog, as we do in the next section.

86

4.3. Generating Query Spaces with Datalog

∙ If  ⊨ 𝐵 ⊑ 𝐴 and  ⊧ 𝐵(𝑎), then 𝐴(𝑎) ∈ ,𝑘
Σ .

∙ If  ⊨ 𝐵 ⊑ ∃𝑟1 ⊑ … ⊑ ∃𝑟𝑛,  ⊨ ∃𝑟−𝑛 ⊑ 𝐴 and  ⊨ 𝐵(𝑎), then 𝐴(𝑎𝑟1…𝑟𝑛) ∈ ,𝑘
Σ , where

𝑎𝑟1…𝑟𝑛 is a fresh individual not in  and 𝑛 ≤ 𝑘.
∙ If  ⊨ 𝑠 ⊑ 𝑟 (with 𝑠 possibly inverse) and  ⊨ 𝑠(𝑎, 𝑏), then 𝑟(𝑎, 𝑏) ∈ ,𝑘

Σ .
∙ If  ⊨ 𝐵 ⊑ ∃𝑟1 ⊑ … ⊑ ∃𝑟𝑛 ⊑ ∃𝑟 and  ⊨ 𝐵(𝑎) then 𝑟(𝑎𝑟1…𝑟𝑛 , 𝑎𝑟1…𝑟𝑛𝑟) ∈ ,𝑘

Σ , where
𝑘 ≥ 𝑛 ≥ 0 and 𝑎𝑟1…𝑟𝑛 and 𝑎𝑟1…𝑟𝑛𝑟 are fresh individuals.

2. Lastly, we translate ,𝑘
Σ into the signature of ΠΨ, similarly as before. For that, we assume

that each individual in ,𝑘
Σ is a constant in 𝐊. We define 𝐷 = tr(,𝑘

Σ), where tr
translates each assertion in ,𝑘

Σ as above.

We formulate a minor adaptation of a well known result in the OMQ literature [KLT+10, BOSX13].
Lemma 4.4. Let (𝑞,) be a rooted DL-Lite OMQ over the signature Σ. Then, 𝑐𝑒𝑟𝑡(𝑞,,) =
𝑐𝑒𝑟𝑡(𝑞, ∅,,𝑘

Σ).

If the template is rooted, then we can answer all (𝑞,) in the space by evaluating ΠΨ over
𝐷Ψ, ∪𝐷. From Lemmas 4.3 and 4.4 we obtain:
Theorem 4.1. Let Ψ be rooted. Let 𝑞 ∈ 

Ψ , and let 𝑐𝑞 be the ΠΨ-encoding of 𝑞. Then

𝑎 ∈ 𝑐𝑒𝑟𝑡(𝑞,,) iff 𝚚𝚞𝚎𝚛𝚢Ψ(𝑐𝑞, 𝑎) ∈ ΠΨ(𝐷Ψ, ∪𝐷).

4.3.4 Datalog Program to Compute Query Reformulations
In order to compute within the same Datalog program which are the MGSSs and MSSGs of each
query in the space, we additionally define a set rules Πref, presented in Table 4.3. We describe
the rules for identifying the MGSS for all queries in the space that produce answers. For the
generalizing case the intuition behind the defined rules is analogous.
Firstly, we collect all the reformulation axioms using predicate 𝚛𝚎𝚏𝙰𝚡 to account for each one-step
reformulation. For example, we have 𝚛𝚎𝚏𝙰𝚡(𝖠,𝖠′) whenever 𝐴′ ⊑ 𝐴 ∈  or {𝐴′ ⊑ ∃𝑠.𝐴, 𝑟◦𝑠 ⊑
𝑟} ⊆ . Next, for each query in the space which has answers we identify the strict one-step
specializations and generalizations respectively. For example, we have that 𝚜𝚝𝚛𝙰𝚝𝚖𝚜(𝑐𝑞, 𝖼𝜏𝑖 , 𝖼′) ∈
ΠΨ,,ref(Ψ, ∪) whenever by reformulating one-step further the atom in 𝑞 that is derivable
from 𝜏𝑖 we obtain 𝖼′ and via this one-step operation some answer is dropped. To realize this
we use the fact that each query in the space and all of its answers are captured using predicate
𝚚𝚞𝚎𝚛𝚢Ψ. If some 𝚛𝚎𝚏𝙰𝚡(𝖼, 𝖼′) is applicable on 𝚚𝚞𝚎𝚛𝚢Ψ(𝖼𝟣,… , 𝖼𝑖−1, 𝖼,… , 𝖼𝗇, 𝑎) and there is
no 𝚚𝚞𝚎𝚛𝚢Ψ(𝖼𝟣,… , 𝖼𝑖−1, 𝖼′, 𝖼𝑖+1,… , 𝖼𝗇, 𝑎), this means that such operation is strict for the query
encoded as (𝖼𝟣,… , 𝖼𝑖−1, 𝖼, 𝖼𝑖+1,… , 𝖼𝗇), meaning that 𝑎 is not an answer to the derived query
denoted by (𝖼𝟣,… , 𝖼𝑖−1, 𝖼′, 𝖼𝑖+1,… , 𝖼𝗇).
Similarly, we can identify the neutral one-step specializations and generalizations. If some
𝚛𝚎𝚏𝙰𝚡(𝖼, 𝖼′) is applicable on the query denoted by (𝖼𝟣,… , 𝖼𝑖−1, 𝖼, 𝖼𝑖+1… , 𝖼𝗇), meaning that we

87

4. ONTOLOGY-ENHANCED EXPLORATORY FRAMEWORK

have some 𝚛𝚎𝚏𝙰𝚝(𝖼𝜏𝑖 , 𝖼, 𝗏⃗), and the fact 𝚜𝚝𝚛𝙰𝚝𝚖𝚜(𝖼𝟣,… , 𝖼𝑖−1, 𝖼, 𝖼𝑖+1,… , 𝖼𝗇, 𝖼𝜏𝑖 , 𝖼
′) cannot be

derived, then we get 𝚗𝚛𝚝𝙰𝚝𝚖𝚜(𝖼𝟣,… , 𝖼𝑖−1, 𝖼, 𝖼𝑖+1,… , 𝖼𝗇, 𝖼𝜏𝑖 , 𝖼
′) and conclude that such operation

produces a neutral one-step specialization of the query and we transitively close all such operations
for (𝖼𝟣,… , 𝖼𝑖−1, 𝖼, 𝖼𝑖+1,… , 𝖼𝗇) and 𝖼𝜏𝑖 .
In the next step, we identify for each query the one-step neutral reformulations. Then, for each
atom 𝜏𝑖, and query, denoted by 𝚛𝚎𝚏𝙰𝚝𝚖𝚜(𝖼⃗), we define rules using predicates 𝚗𝚛𝚝𝙰𝚝𝚖𝚜 and
𝚗𝚝𝚛𝙰𝚝𝚖𝚐 to identify the non-strict operations on atom 𝑖 in the query. For that we rely on the
applicable reformulation axioms which do not trigger a strict specialization or generalization,
i.e. negating 𝚜𝚝𝚛𝙰𝚝𝚖𝚜(𝖼⃗, 𝖼𝜏𝑖 , 𝖼

′) and 𝚜𝚝𝚛𝙰𝚝𝚖𝚐(𝖼⃗, 𝖼𝜏𝑖 , 𝖼
′), where 𝖼′ denotes the Datalog constant

for the reformulated atom. Then we collect using predicate 𝚗𝚛𝚝𝚜 all possible application of
one-step specializations and close them transitively: 𝚗𝚛𝚝𝚜(𝖼⃗, 𝖼⃗) denotes that query with encoding
𝖼′ is a neutral specialization of 𝖼⃗. Lastly, as according to the definition, a most specific neutral
specialization is a specialization that cannot be further neutrally specialized, which is what the
rule defining predicate 𝚖𝚜𝚗𝚂𝚙𝚎 states. The generalizing case is analogous.
We have now a Datalog encoding that is is sound and complete for navigating the query space.
Theorem 4.2. Let Ψ be rooted,  = (𝑄

Ψ ,⪯) and let 𝐷all = 𝐷Ψ, ∪ 𝐷. For 𝑞, 𝑞′ ∈ 
such that 𝑐𝑒𝑟𝑡(𝑞, ∅,,𝑘

Σ) ≠ ∅ and 𝑐𝑒𝑟𝑡(𝑞′, ∅,,𝑘
Σ) ≠ ∅, let 𝑐𝑞 be ΠΨ-encoding of 𝑞 and 𝑐𝑞′ the

ΠΨ-encoding of 𝑞′.

(a) 𝑞′ ∈ msnSpe(𝑞,) iff 𝚖𝚜𝚗𝚂𝚙𝚎(𝑐𝑞, 𝑐𝑞′) ∈ ΠΨ,,ref(𝐷all),
(b) 𝑞′ ∈ mgsSpe(𝑞,) iff 𝚖𝚐𝚜𝚂𝚙𝚎(𝑐𝑞, 𝑐𝑞′) ∈ ΠΨ,,ref(𝐷all),
(c) 𝑞′ ∈ mgnGen(𝑞,) iff 𝚖𝚐𝚗𝙶𝚎𝚗(𝑐𝑞, 𝑐𝑞′) ∈ ΠΨ,,ref(𝐷all),
(d) 𝑞′ ∈ mssGen(𝑞,) iff 𝚖𝚜𝚜𝙶𝚎𝚗(𝑐𝑞, 𝑐𝑞′) ∈ ΠΨ,,ref(𝐷all).

Proof. We proceed with a proof for the specializing cases. The proof is done analogously for the
generalizing cases.
First, we want to show correctness of the rule defining 𝚜𝚝𝚛𝙰𝚝𝚖𝚜. Recall that Ψ 𝗌

⇝ Ψ′ denotes a
specializing one-step and we reuse the same notation upon queries, i.e., 𝑞1

𝗌
⇝ 𝑞2 if Ψ𝑞1

𝗌
⇝ Ψ𝑞1 .For any 𝑞1, 𝑞2 ∈ :

𝑞1
𝗌
⇝ 𝑞2 s.t. 𝑞2 ≺ 𝑞1 iff 𝚜𝚝𝚛𝙰𝚝𝚖𝚜(𝑐𝑞1 , 𝖼𝜏𝑗 , 𝑐

′) ∈ ΠΨ,,ref(𝑎𝑙𝑙) and 𝑐𝑞2 = 𝑐𝑞1[𝑐𝑗 ↦ 𝑐′],

for some 1 ≤ 𝑗 ≤ 𝑛, (4.1)
where 𝑐𝑞1[𝑐𝑗 ↦ 𝑐′] denotes that 𝑐′ replaces constant on position 𝑗 from tuple 𝑐𝑞1 .
Direction ⇒ follows immediately from the fact that the Datalog encoding captures all queries
in the space and all their answers using predicate 𝚚𝚞𝚎𝚛𝚢Ψ (c.f. Theorem 4.1). This means that
each query encoding is captured by 𝚛𝚎𝚏𝙰𝚝 in ΠΨ,(𝐷all). From 𝑞2 ≺ 𝑞1 we get that there is some
answer 𝑎 of 𝑞1 which is not an answer of 𝑞2, hence we also have that 𝚚𝚞𝚎𝚛𝚢Ψ(𝑐𝑞1 , 𝑎) ∈ ΠΨ,(𝐷all)
and 𝚚𝚞𝚎𝚛𝚢Ψ(𝑐𝑞2 , 𝑎) ∉ ΠΨ,(𝐷all). Therefore, rule defining 𝚜𝚝𝚛𝙰𝚝𝚖𝚜 fires in this case, hence this
strict specializing step is captured by 𝚜𝚝𝚛𝙰𝚝𝚖𝚜 in ΠΨ,,𝑟𝑒𝑓 (𝐷all). Direction ⇐ follows from the

88

4.3. Generating Query Spaces with Datalog

𝚷ref:

𝚛𝚎𝚏𝙰𝚡(𝑈 ′, 𝑈) ← 𝚌𝙸𝚂𝙰(𝑈,𝑈 ′). 𝚛𝚎𝚏𝙰𝚡(𝑈 ′, 𝑈) ← 𝚛𝙸𝚂𝙰(𝑈,𝑈 ′).
𝚛𝚎𝚏𝙰𝚡(𝑈,𝑋) ← 𝚞𝙰𝚝𝚖(𝑈,𝑋). 𝚛𝚎𝚏𝙰𝚡(𝑈,𝑋) ← 𝚋𝙰𝚝𝚖(𝑈,𝑋, 𝑌).
𝚛𝚎𝚏𝙰𝚡(𝑈, 𝑌) ← 𝚋𝙰𝚝𝚖(𝑈,𝑋, 𝑌). 𝚛𝚎𝚏𝙰𝚡(𝑈 ′, 𝑈) ← 𝚛𝙸𝚂𝙰𝚒𝚗𝚟(𝑈,𝑈 ′).
𝚛𝚎𝚏𝙰𝚡(𝑈 ′, 𝑈) ← 𝚛𝚞𝚙(𝑈,𝑈 ′, 𝑍). 𝚛𝚎𝚏𝙰𝚡(𝑈,𝑈 ′) ← 𝚍𝚍𝚗(𝑈,𝑈 ′, 𝑍).
𝚛𝚎𝚏𝙰𝚡(𝑈,𝑈) ← 𝚌𝚘𝚗𝚌(𝑈). 𝚛𝚎𝚏𝙰𝚡(𝑈,𝑈) ← 𝚛𝚘𝚕𝚎(𝑈).
𝚛𝚎𝚏𝙰𝚡(𝑈,𝑈) ← 𝚌𝚘𝚗𝚜𝚝(𝑈).

𝚜𝚝𝚛𝙰𝚝𝚖𝚜(𝑈⃗ [𝑈𝑖 ↦ 𝑉], 𝖼𝜏𝑖 , 𝑉
′) ← 𝚛𝚎𝚏𝙰𝚡(𝑉 , 𝑉 ′), 𝚛𝚎𝚏𝙰𝚝(𝖼𝜏𝑖 , 𝑉 ,𝑋, 𝑌), 𝚛𝚎𝚏𝙰𝚝(𝖼𝜏𝑖 , 𝑉

′, 𝑋′, 𝑌 ′),

𝚚𝚞𝚎𝚛𝚢Ψ(𝑈⃗ [𝑈𝑖 ↦ 𝑉], 𝑋⃗), ¬ 𝚚𝚞𝚎𝚛𝚢Ψ(𝑈⃗ [𝑈𝑖 ↦ 𝑉 ′], 𝑋⃗).

𝚜𝚝𝚛𝙰𝚝𝚖𝚐(𝑈⃗ [𝑈𝑖 ↦ 𝑉 ′], 𝖼𝜏𝑖 , 𝑉) ← 𝚛𝚎𝚏𝙰𝚡(𝑉 , 𝑉 ′), 𝚛𝚎𝚏𝙰𝚝(𝖼𝜏𝑖 , 𝑉 ,𝑋, 𝑌), 𝚛𝚎𝚏𝙰𝚝(𝖼𝜏𝑖 , 𝑉
′, 𝑋′, 𝑌 ′),

𝚚𝚞𝚎𝚛𝚢Ψ(𝑈⃗ [𝑈𝑖 ↦ 𝑉], 𝑋⃗), ¬ 𝚚𝚞𝚎𝚛𝚢Ψ(𝑈⃗ [𝑈𝑖 ↦ 𝑉 ′], 𝑋⃗).

𝚗𝚛𝚝𝙰𝚝𝚖𝚜(𝑈⃗ [𝑈𝑖 ↦ 𝑉], 𝖼𝜏𝑖 , 𝑉
′) ← 𝚛𝚎𝚏𝙰𝚡(𝑉 , 𝑉 ′), 𝚛𝚎𝚏𝙰𝚝𝚖𝚜(𝑈⃗ [𝑈𝑖 ↦ 𝑉]),¬ 𝚜𝚝𝚛𝙰𝚝𝚖𝚜(𝑈⃗ [𝑈𝑖 ↦ 𝑉], 𝖼𝜏𝑖 , 𝑉

′).

𝚗𝚝𝚛𝙰𝚝𝚖𝚐(𝑈⃗ [𝑈𝑖 ↦ 𝑉], 𝖼𝜏𝑖 , 𝑉
′) ← 𝚛𝚎𝚏𝙰𝚡(𝑉 ′, 𝑉), 𝚛𝚎𝚏𝙰𝚝𝚖𝚜(𝑈⃗ [𝑈𝑖 ↦ 𝑉]),¬ 𝚜𝚝𝚛𝙰𝚝𝚖𝚐(𝑈⃗ [𝑈𝑖 ↦ 𝑉], 𝖼𝜏𝑖 , 𝑉

′).

𝚗𝚛𝚝𝚡(𝑈⃗ , 𝑈⃗ [𝑈𝑖 ↦ 𝑉]) ← 𝚛𝚎𝚏𝙰𝚝𝚖𝚜(𝑈⃗), 𝚗𝚛𝚝𝚡(𝑈⃗ , 𝖼𝜏𝑖 , 𝑉).

𝚗𝚛𝚝𝚡(𝑈⃗ , 𝑉 ′) ← 𝚗𝚛𝚝𝚡(𝑈⃗ , 𝑉), 𝚗𝚛𝚝𝚡(𝑉 , 𝑉 ′).

𝚖𝚜𝚗𝚂𝚙𝚎(𝑈⃗ , 𝑉) ← 𝚗𝚛𝚝𝚜(𝑈⃗ , 𝑉), 𝚛𝚎𝚏𝙰𝚝𝚖𝚜(𝑉 ′),¬𝚗𝚛𝚝𝚜(𝑉 , 𝑉 ′), 𝑉 ≠ 𝑉 ′.

𝚖𝚐𝚗𝙶𝚎𝚗(𝑈⃗ , 𝑉) ← 𝚗𝚛𝚝𝚐(𝑈⃗ , 𝑉), 𝚛𝚎𝚏𝙰𝚝𝚖𝚜(𝑉 ′),¬𝚗𝚛𝚝𝚐(𝑉 , 𝑉 ′), 𝑉 ≠ 𝑉 ′.

𝚜𝚒𝚖𝚎𝚚(𝑈⃗ [𝑈𝑖 ↦ 𝑉], 𝑈⃗) ← 𝚗𝚛𝚝𝙰𝚝𝚖𝚜(𝑈⃗ , 𝖼𝜏𝑖 , 𝑉).

𝚜𝚒𝚖𝚎𝚚(𝑈⃗ , 𝑈⃗ [𝑈𝑖 ↦ 𝑉]) ← 𝚗𝚝𝚛𝙰𝚝𝚖𝚐(𝑈⃗ , 𝖼𝜏𝑖 , 𝑉).

𝚜𝚒𝚖𝚎𝚚(𝑈1, 𝑈3) ← 𝚜𝚒𝚖𝚎𝚚(𝑈1, 𝑈2), 𝚜𝚒𝚖𝚎𝚚(𝑈2, 𝑈3).

𝚖𝚐𝚜𝚂𝚙𝚎(𝑈⃗ , 𝑉 ′[𝑉 ′
𝑖 ↦ 𝑉 ′′]) ← 𝚜𝚒𝚖𝚎𝚚(𝑉 ′, 𝑈⃗), 𝚜𝚝𝚛𝙰𝚝𝚖𝚜(𝑉 ′, 𝖼𝜏𝑖 , 𝑉

′′).

𝚖𝚜𝚜𝙶𝚎𝚗(𝑈⃗ , 𝑉 ′[𝑉 ′
𝑖 ↦ 𝑉 ′′]) ← 𝚜𝚒𝚖𝚎𝚚(𝑈⃗ , 𝑉 ′), 𝚜𝚝𝚛𝙰𝚝𝚖𝚐(𝑉 ′, 𝖼𝜏𝑖 , 𝑉

′′).

Table 4.3: Datalog program to compute query reformulations

fact that all queries in 𝚛𝚎𝚏𝙰𝚝 are part of  (c.f. Lemma 4.3) and that each answer of 𝚚𝚞𝚎𝚛𝚢Ψover ΠΨ,(𝐷all) contains some query encoding and one of its answers. Since the rules in Π𝑟𝑢𝑙𝑒𝑠
capture all query derivation rules, we conclude that for 𝚜𝚝𝚛𝙰𝚝𝚖𝚜(𝑐𝑞1 , 𝖼𝜏𝑘𝑐′) s.t. 𝑐𝑞2 = 𝑐𝑞1[𝑐𝑘 ↦ 𝑐′]
it must be that 𝑞2 ≺ 𝑞1.
We proceed next with proving statement a. For direction ⇒ let 𝑞, 𝑞′ be such that 𝑞′ is a MSNS
of 𝑞 in  and 𝑐𝑒𝑟𝑡(𝑞, ∅,,𝑘

Σ) ≠ ∅. Let 𝑐𝑞 = (𝖼𝟣,… , 𝖼𝗇) and 𝑐𝑞′ = (𝖼𝟣′,… , 𝖼𝗇′) be the ΠΨ-
encodings of 𝑞 and 𝑞′ respectively. Then there exists some sequence of one-step derivation
such that 𝑞 𝗌

⇝ 𝑞1
𝗌

⇝ …
𝗌

⇝ 𝑞𝑚
𝗌

⇝ 𝑞′ s.t. 𝑞𝑘 ≃ 𝑞, for 1 ≤ 𝑘 ≤ 𝑚. We argue that such
sequence is captured by predicate 𝚗𝚛𝚝𝙰𝚝𝚖𝚜: for 1 ≤ 𝑘 ≤ 𝑚 there is some 1 ≤ 𝑖𝑘 ≤ 𝑛 such that
𝚗𝚛𝚝𝙰𝚝𝚖𝚜(𝑐𝑞𝑘 , 𝖼𝜏𝑖𝑘 , 𝑐

′), where 𝑐′ denotes the constant on position 𝑖𝑘 in 𝑐𝑞𝑘+1 . If 𝑘 = 0, it means
that 𝑞′ = 𝑞 and in this case, for each 1 ≤ 𝑖 ≤ 𝑛, there is no 𝚜𝚝𝚛𝙰𝚝𝚖𝚜(𝑐𝑞, 𝖼𝜏𝑖 , 𝑐𝑖) in ΠΨ,,ref(𝑎𝑙𝑙).
Moreover, from the fact that 𝚛𝚎𝚏𝙰𝚡 is reflexive, we obtain that 𝚗𝚛𝚝𝙰𝚝𝚖𝚜(𝑐𝑞, 𝖼𝜏𝑖 , 𝑐𝑖) holds, hence
also 𝚗𝚛𝚝𝚜(𝑐𝑞, 𝑐𝑞′). If 𝑘 ≥ 1, since all derivation steps are captured by the Datalog encoding

89

4. ONTOLOGY-ENHANCED EXPLORATORY FRAMEWORK

Template Ψ𝑖 [# atoms in Ψ𝑖] Ψ1[2] Ψ2[3] Ψ3[5] Ψ4[5] Ψ5[6]
Size of Π𝑖 = (D𝑖) (MB) 0.45 5 0.2 18.8 0.5

Queries in 𝑄
Ψ𝑖

with answers 4 82 56 316 119
Sum of answers over all queries 1774 3431 16 2758 113

Δ𝑠(Ψ𝑖) / Δ𝑔(Ψ𝑖) 350.7 / 175.2 236 / 1005 1.32 / 1.28 139 / 510 3.9 / 40
Time

Computation of Π𝑖(D𝑖) (s) 2.4 4.04 2 10.7 5.6
Avg. retrieval of answers 𝑞 ∈ 𝑄

Ψ𝑖
(ms) 0.5 0.17 0.3 0.09 0.16

Avg. retrieval 𝑞′ ∈ 𝗆𝗂𝗇𝖲𝗍𝗋𝖦∕𝖲(𝑞) (ms) 0.3 / 0.4 0.10 / 0.09 0.14 / 0.1 0.04 / 0.03 0.10 / 0.09

Table 4.4: Experiment results over DBpedia. Here Π𝑖 = ΠΨ𝑖
∪ Πref and D𝑖 = 𝐷Ψ𝑖, ∪𝐷.

ΠΨ, and from (4.1) we get that all such neutral one-step specializations are not captured by
𝚜𝚝𝚛𝙰𝚝𝚖𝚜, we obtain that 𝚗𝚛𝚝𝚜(𝑐𝑞𝑘 , 𝑐𝑞𝑘+1) holds and by the transitive closure rule, we get that also
𝚗𝚛𝚝𝚜(𝑐𝑞, 𝑐𝑞′) holds. Likewise, from (4.1) we can also conclude that there is no other 𝚗𝚛𝚝𝚜(𝑐𝑞′ , 𝑐𝑞′′)
since otherwise will contradict the fact that 𝑞′′ is most specific w.r.t. ⪯.
For direction ⇐, let 𝚖𝚜𝚗𝚂𝚙𝚎(𝑐𝑞, 𝑐𝑞′) ∈ ΠΨ,,ref(𝑎𝑙𝑙). Then there must be a sequence s.t. 𝑐𝑞1 = 𝑐𝑞
and 𝑐𝑞𝑚 = 𝑐𝑞′ and for 1 ≤ 𝑘 ≤ 𝑚 there is some 1 ≤ 𝑖𝑘 ≤ 𝑛 and 𝚗𝚛𝚝𝙰𝚝𝚖𝚜(𝑐𝑞𝑘 , 𝖼𝜏𝑖𝑘 , 𝑐𝑘) such that
𝑐𝑞𝑘 = 𝑐𝑞𝑘−1[𝑐𝑖𝑘−1 ↦ 𝑐𝑘−1]. Hence we get that 𝚛𝚎𝚏𝙰𝚡(𝑐𝑞𝑘) holds and from completeness of ΠΨ
regarding all queries in the space we get that each 𝑞𝑘 ∈ . Moreover, from (4.1), we get that
𝑞𝑘+1 ≃ 𝑞𝑘. From definition of rule 𝚖𝚜𝚗𝚂𝚙𝚎, we get that the sequence stops with 𝑞𝑚, i.e., there
is no 𝚗𝚛𝚝𝙰𝚝𝚖𝚜(𝑐𝑞𝑚+1 , 𝖼𝜏𝑖𝑚+1 , 𝑐𝑚+1) with 𝑐𝑞𝑚+1 ≠ 𝑐𝑞𝑚 . Then it must be that if some 𝑞′′ ⪯ 𝑞′ then
𝑞′′ ≺ 𝑞′, therefore 𝑞′′ ≺ 𝑞. We then conclude that 𝑞′ is a MSNS of 𝑞.
We now focus on b. Recall that, a most general strict specialization of a query 𝑞 is a query 𝑞′ such
that 𝑞′ ≺ 𝑞 and for each 𝑞′ such that 𝑞′ ⪯ 𝑞′′ ⪯ 𝑞, we have that 𝑞′′ ≃ 𝑞. Based on Observation 4.1,
if we can identify all neutral specializations and all strict specializations, we can identify the most
general strict specializations by applying a strict one-step specializing operation to some neutral
specialization, reflected in the rule defining mgsSpe. We then conclude that also b holds.
The proof of statements c and d is done analogously.

4.4 Implementation and Evaluation
We implemented our exploratory framework using Rulewerk Java API for VLog Datalog reasoner
[CDG+19]. The implementation2 consists of a template parser and a translator of the template and
rules of the encoding into Rulewerk syntax. All experiments have been performed on a MacBook

2https://github.com/medinaandresel/DL2020

90

https://github.com/medinaandresel/DL2020

4.4. Implementation and Evaluation

%Psi_1
X,Y :− GEN{dbo:FilmFestival}(X) AND dbo:startDate(X,Y)

%Psi_2
X :− GEN{dbo:FilmFestival}(X) AND SPE{dul:hasLocation}(X,Z) AND Z=GEN{dbr:Paris}

%Psi_3
X,Y :− GEN{dbo:Museum}(X) AND SPE{dbo:Museum}(Y,X) AND

SPE{dbo:Artwork}(Y) AND SPE{dul:hasLocation}(X,Z) AND Z=GEN{dbr:Paris}

%Psi_4
X,Y :− GEN{dbo:FilmFestival}(X) AND SPE{dbo:Museum}(Y) AND

SPE{dul:hasLocation}(X,Z) AND SPE{dul:hasLocation}(Y,Z) AND Z=GEN{dbr:Paris}

%Psi_5
X,Y,Z :− SPE{dbo:Organisation}(X) AND GEN{dbo:foundationPlace}(X,Y)

AND GEN{dbo:headquarter}(X,Z) AND SPE{dbo:isPartOf}(Z,U)
AND SPE{dbo:isPartOf}(Y,U) AND U=GEN{dbr:Paris}

Figure 4.2: The templates Ψ1, … , Ψ5 (in the supported input syntax) used in the experimental
evaluation.

Pro (2.7 GHz i5 8GB) using JavaSE 14.0.1 and Rulewerk version 0.5.03. We used the DBpedia
ontology and dataset, accessed via the endpoint4. We used one set  of reformulation axioms
with 336 axioms and assertions extracted from DBpedia. With its signature and the DBpedia
ontology, we computed the 𝑘-bounded Σ-extension 𝐷 using existential rules in VLog. The
resulting dataset was computed relatively fast, given that the data was remotely accessed, and it
took in total about 3 minutes to materialize. The size of the extended dataset is around 700 MB.
We have designed templates of various sizes and shapes over the ontology vocabulary containing
classes such as: 𝖤𝗏𝖾𝗇𝗍𝗌, 𝖬𝗎𝗌𝖾𝗎𝗆𝗌, 𝖠𝗋𝗍𝖶𝗈𝗋𝗄𝗌, 𝖮𝗋𝗀𝖺𝗇𝗂𝗓𝖺𝗍𝗂𝗈𝗇𝗌 etc., properties 𝗌𝗍𝖺𝗋𝗍𝖣𝖺𝗍𝖾𝗀,𝗆𝗎𝗌𝖾𝗎𝗆𝗌,
𝗁𝖺𝗌𝖫𝗈𝖼𝖺𝗍𝗂𝗈𝗇𝗌, 𝗁𝖾𝖺𝖽𝗊𝗎𝖺𝗋𝗍𝖾𝗋𝗀 etc., and resources e.g., 𝖯𝖺𝗋𝗂𝗌𝗀. We have used 5 templates with sizes
between 2 and 6 atoms, which are presented in Figure 4.2 in the supported input syntax (for
further details regarding this syntax please consult the online repository).
The main goals of our evaluation were (a) to test the feasibility of our framework in practice,
in particular the trade-off between the time to evaluate the Datalog program and the time to
answer and compute query reformulations from the pre-computed model, and (b) to test if
the template-generated query spaces ensure a gradual navigation of the answers. For each
input Ψ𝑖 we have measured: |𝑄

Ψ𝑖
| - number of generated queries with answers, total number

of answers captured by the query space, and as well as the computational time: to evaluate
the Datalog program, the average time to read the answers to queries and the average time to

3https://github.com/knowsys/rulewerk
4SPARQL endpoint: https://dbpedia.org/sparql

91

https://github.com/knowsys/rulewerk
https://dbpedia.org/sparql

4. ONTOLOGY-ENHANCED EXPLORATORY FRAMEWORK

compute reformulations from the compilation. Then, for each query 𝑞, we measure Δ𝑠(𝑞) – the
average number of answers that are dropped by some query in mgsSpe(𝑞), respectively Δ𝑔(𝑞)
the average number of answers gained by some mssGen(𝑞). Then, for the entire query space,
Δ𝑠(Ψ𝑖) = (

∑
𝑞∈𝑄Ψ𝑖

Δ𝑠(𝑞))∕|𝑄Ψ𝑖
| measures the average discarded answers when navigating the

query space and similarly Δ𝑔(Ψ𝑖) = (
∑

𝑞∈𝑄Ψ𝑖
Δ𝑔(𝑞))∕|𝑄Ψ𝑖

| measures the average gained answers.
Table 4.4 summarizes our evaluation. Evaluating the Datalog program ΠΨ,,ref over the materi-
alized data 𝑎𝑙𝑙 is done within seconds for all the query spaces and depends on the number of
answers captured by the query space (i.e. the larger the number of answers the longer it took to
compile). Reading the answers to queries and navigating the query space is done in less than 1
ms in all cases. Based on the inclusivity and exclusivity of answers, measured for of the strict
reformulations, we can conclude that using most general strict specializations and most specific
strict generalizations offer a reasonably gradual exploration of the data, relative to the number of
answers captured by each query space.

4.5 Related Work and Discussion
In recent years, several exploratory search engines have been proposed to support data access
for different exploratory purposes. The basic idea at the core of many of them is to guide the
query formulation process, in a step-by-step fashion. The many proposed techniques for exploring
ontology-mediated data include similarity-based methods such as [SEI+18, YBRW16], and visual
query languages [ACGK+14, SGKK17, SKZ+14], which include ontology reasoning with query
language expressivity ranging between tree-shaped CQs and monadic positive existential queries.
More recently, [VAHL19] is able to cover formulation of SPARQL queries, however without
ontological reasoning. To abstract away the ontology reasoning step needed to obtain complete
answers, in [BKPR14] a schema-agnostic approach to rewrite DL-Lite OMQs into SPARQL
1.1. is proposed.
Query generalizations have been proposed as a technique for interpreting null answers (i.e., empty
answers) in cooperative database systems [Mot84]. The considered generalizations are similar to
the ones we propose, however they also consider numeric comparisons, while we additionally
consider the roll-up and drill-down operations. In line with, [MT14], we propose a query template
language also designed to ease the process of constructing queries in which specializing or
generalizing atoms are at the core. Our template language allows to describe a set of CQs that are
semantically related via two types of taxonomies: concept and role hierarchies, and dimensions.
In addition, we propose also solutions for automatic query reformulations that supports data
exploration. In our approach this is achieved by moving from one query to another in a way that
minimally changes the answers. One advantage of our approach is that it is implementable in
Datalog and our preliminary evaluation results show that it is feasible in practice.
Evaluating the Datalog program is related to the problem of answering queries using views,
which has been intensively studied for relational data [Hal01, Hal00]. As shown in [CGLR12], to
answer OMQs using views, a different semantics to materialize the views is needed, however, for
DL-Lite this can be done using existing techniques as discussed in this chapter.

92

4.5. Related Work and Discussion

(a) Unary atom creation

(b) Binary atom creation
Figure 4.3: Node and edge view modes used to create query templates

For future work, it would be interesting to implement a user interface that can support the creation
of the query template, the query navigation process and the visualization of the answers in an
informative manner. This is indeed a low-hanging fruit and an initial prototype, illustrated in
Figure 4.3, has been implemented.
Another interesting extension is to study other derivation rules that rely on more expressive
ontology languages. Moreover, the notion of query space for aggregating queries is another
relevant direction as well as to exploit the information existing in the compilation for data analysis
purposes.

93

Part II

Data Incompleteness

95

CHAPTER 5
Ontology-mediated Conditional

Answers

In many scenarios traditional query answering is too restrictive when the data is either incomplete
or only partially accessible to the end-users. For example, medical records or private information
are in general inaccessible and thus not accounted in decision making.
Among the coping mechanisms for handling incompleteness is to answer queries considering
possible hypothesis, problem denoted as hypothetical query answering [CA98], which allows
answering questions of the form “which students are eligible for graduation if they pass a particular
exam”. In this formalism the assumptions are used as possible data extensions and in general
they are very concrete and pre-defined by users. Another existing approach is to compute the
conditions which guarantee the validity of the answer [Dem92, Dem98]. In this latter approach,
the conditions are as well derived, thus not designed in advance.
In this chapter, we consider the problem of answering ontology-mediated queries under assump-
tions and present novel semantics that use the notion of a conditional answer, which, in our case,
pairs tuples (which need not be certain answers) with sets of facts (that would make them true
certain answers). Traditional certain answers are just assumptive answers where the assumption
component is empty.
In order to allow some control in choosing the assumptions, we enrich OMQs with assumption
patterns, which define the form of complex assertions that we want to use as conditions. This leads
to a powerful formalism, but does not impact significantly the worst-case complexity compared to
plain OMQs. Importantly, our OMQs with assumptions are first-order rewritable for DL-Lite.
Our extension of OMQs turns out to be particularly powerful when complete and incomplete
information coexist. Based on classical logic, standard OMQs make the open-world assumption
(OWA), where a fact that cannot be inferred may be either true or false. Traditional databases, in
contrast, make the closed-world assumption (CWA): facts that cannot be inferred are assumed

97

5. ONTOLOGY-MEDIATED CONDITIONAL ANSWERS

false. The OWA makes OMQs useful for incomplete data, but at the same time, too weak to
yield useful answers when the data is known to be partially complete. For example, a gluten-free
restaurant implies there exists some gluten-free dish in the menu, and in the data all existing
gluten-free dishes are also labeled healthy. If we know that 𝑟1 is a gluten-free restaurant and in
addition all existing gluten-free dishes in the menu are present in the data, then 𝑟1 is expected
as answer to the query “restaurants with some healthy dish in the menu” even if no explicit link
between 𝑟1 and some gluten-free dish exists in the data. Therefore leveraging the completeness
assumption we can obtain additional answers that cannot be derived under the classical OWA.
A simple yet powerful way to leverage such meta-information is to explicitly declare the predicates
that should be assumed complete, e.g., marking GlutenFreeDish as closed and restricting the
semantics such that we rely only on models that map such predicates to the exact set of constants
(or pair of constants in the case of roles) present in the ABox. Closed predicates are very useful to
cope with partial incompleteness, but they can dramatically increase the complexity of reasoning.
So far most results were negative, even for lightweight DLs [LSW13, LSW15, NOv16]. Existing
results show that even for the most restricted OMQs languages, like CQs paired with DL-Lite
ontologies, closed predicates make OMQ answering intractable in data complexity, and destroy
FO-rewritability [LSW13]. Remarkably, in our OMQs, we can use closed predicates in our
assumptions, for instance by using that each gluten-free restaurant has also a gluten-free dish in
the menu as an assumption instead of a rule in the ontology, we can as well obtain 𝑟1 as answer to
the query “restaurants with some healthy dish in the menu” under the condition that 𝑟1 has some
gluten-free dish in the menu.
This chapter is structured as follows: in Section 5.1 we formalize the notion of an ABox extension,
which is used to define the semantics of conditional answers, and differentiate it from the notion
of ABox completion1, in Section 5.2 we introduce the notion of assumption-based OMQA and
propose concrete semantics in terms of conditional answers while in Section 5.3 we present
a rewriting approach to construct them for FO-rewritable DL-Lite++ positive ontologies. The
integration of closed predicates is presented in Section 5.4, while in Section 5.5 we propose a
rewriting approach for integrating functionality and disjointness axioms. A preliminary empirical
evaluation of the approach is presented in Section 5.6. It shows that our technique is not only
feasible in practice but also is more efficient than evaluating federated queries. Based on this
observation, assumption-based OMQA is a good alternative technique in cases when the data
is not centralized and part of it is accessed via remote end-points. This chapter concludes with
Section 5.7 in which we present an in-depth overview of the related work and discussion.

5.1 ABox Completion and Extension
In this section we motivate the need for expanding the ABox and analyze two perspectives on how
to complete the ABox for obtaining plausible answers derived from using coherent assumptions
about existing data.

1or KG completion as mostly known in the literature.

98

5.1. ABox Completion and Extension

A natural way to complete the data is to add missing true facts involving the given signature
of the ABox and ontology. For example the fact that the UN is located in Vienna is a true fact
however the assertion locatedIn(𝖴𝖭,𝖵𝗂𝖾𝗇𝗇𝖺) might not be present in the data. In this case, under
the assumption that missing facts involve only constants and predicates from the given signature,
the challenge is then to identify the missing connections between them. This notion of completion
is closely related to the problem of link prediction over incomplete knowledge graphs, which we
will address more closely in the next chapter.
Definition 5.1 (ABox completion). Given an ABox  and an ontology , a completion for 
w.r.t.  is an ABox ′ that is consistent w.r.t.  such that  ⊆ ′ and which can contain any
additional assertion 𝛼 of the form 𝐴(𝑎) or 𝑟(𝑎, 𝑏), with 𝐴, 𝑟 ∈ sign() and 𝑎, 𝑏 ∈ cst(), such
that (,) ⊭ 𝛼.

The above introduced notion of an ABox completion is different than the notion of an ABox
model since it considers as relevant only missing assertions involving known individuals. For
that reason, given that the signature of  and the set of ABox constant symbols are finite, each
possible ABox completion is finite and moreover there exist only finitely many of them.
In our case, we want to identify only those which trigger possible additional answers to OMQs.
There are however many sets of possible facts which do not make sense given the underlying
domain ontology. For example, consider the following ABox, ontology and query:
 = {MCI(𝖾), location(𝖾, 𝖯𝗋𝖺𝗍𝖾𝗋𝗌𝗍𝖾𝗋𝗇), connectedTo(𝖯𝗋𝖺𝗍𝖾𝗋𝗌𝗍𝖾𝗋𝗇,𝖳𝖺𝖻𝗈𝗋𝗌𝗍𝗋𝖺𝗌𝗌𝖾)},
 = {SevereMCI ⊑ MCI, (𝖿𝗎𝗇𝖼𝗍 location)}, 𝑞(𝑦) ← ∃𝑥.SevereMCI(𝑥) ∧ location(𝑥, 𝑦).

For such an OMQ and ABox, there are no certain answers, however there are several additional
sets of possible facts which either produce senseless answers, such as:

• 𝖾 by adding the facts 𝖾 = {SevereMCI(𝖯𝗋𝖺𝗍𝖾𝗋𝗌𝗍𝖾𝗋𝗇), location(𝖯𝗋𝖺𝗍𝖾𝗋𝗌𝗍𝖾𝗋𝗇, 𝖾)},
or produce answers that require the addition of facts which do not make sense with respect to the
ontology:

• 𝖯𝗋𝖺𝗍𝖾𝗋𝗌𝗍𝖾𝗋𝗇 by adding any 𝑐 = {location(𝑐, 𝖯𝗋𝖺𝗍𝖾𝗋𝗌𝗍𝖾𝗋𝗇), SevereMCI(𝑐)}, for 𝑐 ∈ {𝖾,
𝖯𝗋𝖺𝗍𝖾𝗋𝗌𝗍𝖾𝗋𝗇, 𝖳𝖺𝖻𝗈𝗋𝗌𝗍𝗋𝖺𝗌𝗌𝖾};

• 𝖳𝖺𝖻𝗈𝗋𝗌𝗍𝗋𝖺𝗌𝗌𝖾 by adding any 𝑐 = {SevereMCI(𝑐), location(𝑐,𝖳𝖺𝖻𝗈𝗋𝗌𝗍𝗋𝖺𝗌𝗌𝖾)}, for 𝑐 ∈
{𝖳𝖺𝖻𝗈𝗋𝗌𝗍𝗋𝖺𝗌𝗌𝖾, 𝖯𝗋𝖺𝗍𝖾𝗋𝗌𝗍𝖾𝗋𝗇}.

In the first case SevereMCI(𝖾) is sufficient for obtaining 𝖾 as answer and it is preferred instead of𝖾, 𝖯𝗋𝖺𝗍𝖾𝗋𝗌𝗍𝖾𝗋𝗇 or 𝖳𝖺𝖻𝗈𝗋𝗌𝗍𝗋𝖺𝗌𝗌𝖾, while in the second case, we want to avoid obtaining such sets of
possible facts. To avoid completions which do not make sense, we could add to the ontology all
the necessary concept disjointness assertions with the effect of loosing 𝖳𝖺𝖻𝗈𝗋𝗌𝗍𝗋𝖺𝗌𝗌𝖾 as a possible
certain answer, since there will be no completion which makes this answer true w.r.t. the extended
ontology.
While having meaningful approximations of the ground truth is important in many scenarios, it is
typically difficult to obtain. What we propose instead is to identify possible answers to OMQs and

99

5. ONTOLOGY-MEDIATED CONDITIONAL ANSWERS

the assumptions that are needed to ensure the answer is certain. For testing if the assumptions hold
or not, additional solutions are required which are beyond of the scope of this thesis. However, to
avoid obtaining meaningless answers, we aim for identifying very specific assumptions which are
in general easier to verify. To that end, we build on the notion of an ABox completion and allow assertions as possible facts.
Definition 5.2 (ABox extension). Let  be an ABox,  an ontology. A set  of assertions of the
form 𝑟(𝑐, 𝑐′) or 𝐶(𝑐), where 𝑐, 𝑐′ ∈ cst(), 𝑟 ∈ sign() and 𝐶 is an  concept over sign() is
called a set of possible assertion w.r.t. (,) iff  ∪  is consistent w.r.t.  and for each 𝛼 ∈ 
we have that (,) ⊭ 𝛼.

In this setting, by adding ∃location−.SevereMCI(𝖳𝖺𝖻𝗈𝗋𝗌𝗍𝗋𝖺𝗌𝗌𝖾) to  in the previous example,
which states that there is a severe MCI located at station Taborstrasse, without naming a particular
entity would allow us to obtain also 𝖳𝖺𝖻𝗈𝗋𝗌𝗍𝗋𝖺𝗌𝗌𝖾 as additional answer, while completing the
ABox in a manner that is coherent w.r.t. the ontology. Moreover, answers which do not make
sense can be avoided by controlling on which positions in the query the assumptions should be
applied. In the following section we formalize such problem.

5.2 Assumption-based Ontology-mediated Query Answering
In this section we present the problem of evaluating OMQs over ABox extensions to obtain
conditional answers, which determine not only the possible certain answer tuple but also which
set of possible assertions we need to add.
Definition 5.3 (Conditional answers semantics). Let  = (, 𝑞(𝑥⃗)) be an OMQ and let  be an
arbitrary ABox. A pair (𝑎, ) consisting of a tuple of constants 𝑎 and a set of possible assertions w.r.t. (,) is a conditional certain answer to  over  if 𝑎 is a certain answer of  over ∪  .

We denote by 𝑐𝑎𝑛𝑠(,) the set of all conditional answers to  over . We call (𝑎, ) ∈
𝑐𝑎𝑛𝑠(,) a minimal conditional answer if there is no  ′ ⊊  such that (𝑎,  ′) ∈ 𝑐𝑎𝑛𝑠(,),
and denote the set thereof by 𝑐𝑎𝑛𝑠𝑚𝑖𝑛(,).

A certain answer does not need any additional assumptions, i.e., (𝑎, ∅) is a conditional answer iff
𝑎 is a certain answer in the usual sense, however for a tuple which is a possible certain answer,
the most relevant assertions are those participating in the matching of that tuple. Furthermore,
we are also interested in minimal extensions, meaning that all facts in  are needed to ensure
entailment which can be computed by identifying the minimal  , with respect to set inclusion, for
each tuple 𝑎. Note that in general for some tuple 𝑎 there can be several minimal extensions which
are incomparable.
In order to facilitate some control over the preferred extensions and matching positions in the
query, we introduce the notion of assumption patterns, which are  atoms that can include
terms from the query. The intention is that only extensions of that shape are relevant on the
indicated query atoms.

100

5.2. Assumption-based Ontology-mediated Query Answering

Definition 5.4 (Assumptive OMQs). An assumption pattern is an atom of the form 𝑟(𝑡, 𝑡′) or 𝐶(𝑡)
where 𝑡, 𝑡′ are terms, 𝑟 is a relation and 𝐶 is an  concept.

An assumptive ontology-mediated query (AOMQ) is a triple  = (𝑞(𝑥⃗),,), where (𝑞(𝑥⃗),) is
an OMQ, and  is a set of assumption patterns.

For an AOMQ we consider as valid conditional answers only those pairs for which  is complying
with the shape of the given assumption pattern. However sometimes part of the ground assumption
is made true by the existing facts in the data therefore it is useful to identify also the minimal
extensions that are necessary to construct a conditional answer. To make this more precise, we
define the set of implied assumption patterns which is obtained as follows.
Definition 5.5. Given , the set of implicit assumption patterns, denoted by  contains  and
in addition extensively applying the following rules:

• If 𝐶1 ⊓ 𝐶2(𝑡) ∈  then add 𝐶1(𝑡) and 𝐶2(𝑡) to .
• If (∃𝑝.𝐶)(𝑡) ∈  and there are no {𝑝(𝑡, 𝑦), 𝐶(𝑦)} ⊆ , add 𝑝(𝑡, 𝑦) and 𝐶(𝑦) to , where 𝑦

is a fresh variable.
• If 𝑟−(𝑡, 𝑡′) ∈ , then add 𝑟(𝑡′, 𝑡) to .
• If 𝑟(𝑡, 𝑡′) ∈ , then add 𝑟−(𝑡′, 𝑡) to .

When the set of assumption patterns is associated to an OMQ we assume that the fresh variables
in the implicit set of assumption patterns are disjoint from the variables in the query.
Observation 5.1. For any ABox , OMQ  = (, 𝑞(𝑥⃗)) and conditional answer (𝑎, ) of  over, by definition, there exists a mapping 𝜋 ∶ 𝑥⃗ ↦ cst() such that 𝜋(𝑥⃗) = 𝑎 and , ∪  ⊨ 𝑞𝜋.
We call 𝜋 a conditional match of  given (, ).
Next, we characterize the conditional answers which comply with the assumption patterns of
choice. We are interested in set of possible assertions that are obtained from grounding the set
of assumption patterns. If the assumption patterns refer to particular variables in the query, we
ensure that the ground assumption patterns are used on the exact positions to match the query.
Definition 5.6 (Conditional answers AOMQs). Let  be a set of assumption patterns and  a set
of possible assertions. If there exists a substitution 𝜋 ∶vars() ↦ cst() such that ′𝜋 =  for
some ′ ⊆ , then we say that  is a 𝜋-instantiation of .

Let  = (, 𝑞(𝑥⃗),) be an AOMQ,  an ABox and let (𝑎, ) be a conditional answer of (, 𝑞(𝑥⃗))
over . We say that (𝑎, ) is a conditional answer of  over  if there is a partial mapping
𝜋 ∶ 𝑥⃗ ∪ vars() ↦ cst() such that 𝜋(𝑥⃗) = 𝑎, 𝜋 is a conditional match of  given (, ), and 
is a 𝜋-instantiation of .

Example 5.1. The following example illustrates that conditional answers for AOMQs can retrieve
additional information that we would not obtain with standard OMQs. In Figure 5.1, we have the
existing facts illustrated in black and solid edges, such as Anna is currently located at Karlsplatz

101

5. ONTOLOGY-MEDIATED CONDITIONAL ANSWERS

Ontology :
∃location−.SevereMCI ⊑ ClosedStation 𝖽𝗂𝗌𝗃(SevereMCI,Location)
∃line−.ClosedStation ⊑ DisruptedLine (𝖿𝗎𝗇𝖼𝗍 location)

Query and assumption patterns:
𝑞(𝑦) ← ∃𝑥𝑧 location(𝖠𝗇𝗇𝖺, 𝑥) ∧ line(𝑥, 𝑦) ∧ DisruptedLine(𝑦) ∧ line(𝑧, 𝑦) ∧ location(𝖠𝗇𝗇𝖺_𝗁𝗈𝗆𝖾, 𝑧),

 = {∃location−.SevereMCI(𝑥),∃location−.SevereMCI(𝑧)}

Figure 5.1: Evaluating an assumptive OMQ

and that there is a reported incident at station Praterstern, which is her usual stop to get home.
In this situation, she wants to check which are the disrupted lines provided that the incident turns
out to be severe.

We can encode this information request as an assumptive OMQ, e.g., (𝑞(𝑦),,) in Figure 5.1,
in which the ontology states that the stations at which some severe incident is reported are closed,
and the lines which pass through those stations are disrupted. With the assumption pattern
∃location−.SevereMCI(𝑥) we enable the assumption that there is some severe MCI reported
where Anna is located, while with ∃location−.SevereMCI(𝑧) we enable the assumption that there
is some severe MCI located where Anna lives. The only groundings of the assumption patterns
which produce answers are obtained when 𝑥 ↦ 𝖪𝖺𝗋𝗅𝗌𝗉𝗅𝖺𝗍𝗓 and 𝑧 ↦ 𝖯𝗋𝖺𝗍𝖾𝗋𝗌𝗍𝖾𝗋𝗇, as graphically
shown (with blue color) in Figure 5.1.

Applying ontology reasoning over the ground assumptions, we obtain that such stations are closed
stations and hence lines 𝑈1 and 𝑈2 would be disrupted. Then the (minimal) conditional answers

102

5.2. Assumption-based Ontology-mediated Query Answering

for (𝑞,,), which looks for the disrupted lines that connect Anna’s location to her home, are:

𝖴𝟣 and 𝖴𝟤 for 1 = {∃location−.SevereMCI(𝖪𝖺𝗋𝗅𝗌𝗉𝗅𝖺𝗍𝗓)},
𝖴𝟣 for 2 = {SevereMCI(𝖾)} or 3 = {∃location−.SevereMCI(𝖯𝗋𝖺𝗍𝖾𝗋𝗌𝗍𝖾𝗋𝗇)}.

The conditional answers offer the information that the disrupted lines which affect Anna’s commute
are metro line 𝖴𝟣, if the reported incident 𝖾 is severe or if there is some severe incident at
Praterstern, and both metro lines 𝖴𝟣,𝖴𝟤 if there is some severe incident at Karlsplatz.

Since only these possible assertions produce possible answers and since none of them implies
that tram line 2 could be disrupted, this means that Anna can safely take the alternative route:
the tram line 2 from Taborstrasse to Am Tabor.

The associated decision problem is to test if a pair consisting of a tuple 𝑎 and a set of possible
assertions is a conditional answer to a given AOMQ. This problem, naturally depends on the
ontology language. For a given ontology language , the problem of evaluating an AOMQ in 
is defined as follows:

-COND-ANSWERS
Input: An AOMQ  = (𝑞,,), ABox , 𝑎 a tuple of constants and  a set of possible

facts w.r.t. (,)
Question: Is (𝑎, ) ∈ 𝑐𝑎𝑛𝑠(,)?

For OMQ languages where we can rely on existing algorithms for entailment of regular OMQs
and consistency testing, it is not hard to obtain an algorithm for answering AOMQs. Given a
candidate conditional answer (𝑎, ), an ABox , and an AOMQ  = (𝑞(𝑥⃗),,), we can decide
whether (𝑎, ) ∈ 𝑐𝑎𝑛𝑠(,) in the following way:

1. Guess ′ ⊆  and a partial mapping 𝜋 of vars(𝑞) ∪ vars(exp(′)) to cst() such that
𝜋(𝑥⃗) = 𝑎 and  = ′𝜋.

2. Test if , ∪  ⊨ 𝑞𝜋.
For typical OMQ languages that combine well known DLs with CQs, the combined complexity
of OMQ answering falls into the classes NP, ExpTime, or 2-ExpTime. In such cases, this simple
algorithm yields tight complexity bounds, as the cost of the additional steps is subsumed by the
cost of answering OMQs.
Theorem 5.1. -COND-ANSWERS is:

• NP-complete when  is DL-Lite [CDL+07], DL-Lite++(rec-safe) (cf. Theorem 3.7),
DL-Lite++(non-rec) (cf. Theorem 3.4), and ⊥ [Ros07],

• ExpTime-complete when  is , Horn- [BO15] and Horn- [ORS11],
• 2-ExpTime-complete when  is  [GLHS08],  [GHS08].

If we consider the ABox as the only component of the input, then we can consider  = (, 𝑞,)
to be an arbitrary but fixed AOMQ in . Then,

103

5. ONTOLOGY-MEDIATED CONDITIONAL ANSWERS

-COND-ANSWERS(, 𝑞,)
Input: ABox , 𝑎 a tuple of constants and  a set of possible facts w.r.t. (,)
Question: Is (𝑎, ) ∈ 𝑐𝑎𝑛𝑠(,)?

The latter problem determines the data complexity of answering AOMQs, and we show next that
for ontology languages in DL-Lite++ which enjoy the FO-rewriting property we can rely on a
rewriting approach to construct conditional answers.

5.3 Rewriting AOMQs
In this section we provide a rewriting algorithm for AOMQs  = (𝑞(𝑥⃗),,) where  is an
ontology in a language that enjoys the FO-rewritabiity property. The algorithm takes such a 
as input, and it outputs a set of FO-queries 𝑅𝑒𝑤(), whose answers over any ABox  are in
one-to-one correspondence with the conditional answers of  over .
Given an ontology , we denote by 𝑛𝑒𝑔() the set of all disjointness and functionality axioms in, and by 𝑝𝑜𝑠() the set  ⧵ 𝑛𝑒𝑔(). Our procedure to obtain the full FO-rewriting for AOMQs
has three steps:
(1) We rewrite 𝑞 w.r.t. 𝑝𝑜𝑠().
(2) Each resulting query is rewritten w.r.t. .
(3) Finally, we take into account 𝑛𝑒𝑔() to rule out ground assumptive patterns which can lead

to inconsistency.

5.3.1 Rewriting w.r.t. 𝑝𝑜𝑠()
An important observation is that for FO-rewritable ontology languages we can drop the ontology
by simply rewriting the query and the resulting FO-query preserves the set of conditional answers.
Lemma 5.1. Let (𝑞(𝑥⃗),) be an OMQ in  that enjoys the FO-rewritability property and let
𝜙(𝑥⃗) be the FO-rewriting of 𝑞(𝑥⃗) w.r.t. .

Then, for any ABox  that is consistent w.r.t.  and for any set of assumption patterns  we
have:

𝑐𝑎𝑛𝑠((𝑞(𝑥⃗),,),) = 𝑐𝑎𝑛𝑠((𝜙(𝑥⃗), ∅,),).

Proof. We consider an arbitrary ABox  and set of assumption patterns . Let (𝑎, ) be an
arbitrary conditional answer of AOMQ  = (𝑞(𝑥⃗),,) over  and we want to show that it
is also a conditional answer for ′ = (𝜙(𝑥⃗), ∅,). By definition we have that there exists a
substitution 𝜋 such that: (i) 𝜋(𝑥⃗) = 𝑎, (ii) (,  ∪ ) ⊨ 𝑞𝜋, (iii)  = ′𝜋 for some ′ ⊆ .
From the first two conditions we get that 𝑎 is a certain answer of (, 𝑞(𝑥⃗)) over  ∪. Therefore,
𝑎 is a certain answer of (∅, 𝜙(𝑥⃗)) over  ∪ hence (𝑎, ) is a conditional answer for (𝜙, ∅,)
over .

104

5.3. Rewriting AOMQs

For the other direction, let (𝑎, ) be an arbitrary conditional answer of ′ = (𝜙(𝑥⃗), ∅,) and
we want to show that it is a conditional answer of  over . Again, by definition we have that
there exists a substitution 𝜋′ such that: (i) 𝜋′(𝑥⃗) = 𝑎, (ii)  ∪  ⊨ 𝜙𝜋′, (iii)  = ′𝜋′, for
some ′ ⊆ . Firstly, since 𝜙 is a FO-rewriting of (, 𝑞(𝑥⃗)) we have that vars(𝑞) ⊆ vars(𝜙).
Secondly, from (i),(ii) we have that 𝑎 is an answer to 𝜙(𝑎) over  ∪  . From the fact that
each answer of 𝜙 is a certain answer of (𝑞,), we obtain that and , ∪  ⊨ 𝑞𝜋′, hence
(𝑎, ) ∈ 𝑐𝑎𝑛𝑠((𝑞(𝑥⃗),,),).

5.3.2 Rewriting w.r.t. Assumption Patterns
In this section we propose a technique to rewrite a given FO-query w.r.t. a set of assumption
patterns such that each match of the rewriting stands for a conditional answer. The core idea is
to identify subformulas which are made true by the assumptions, and drop them while carefully
handling the free and join variables.
Definition 5.7. Given an  atom 𝛼 we can transform it into a set of unary and binary atoms
using the following recursive function:

• If 𝛼 is 𝐴(𝑡) or 𝑟(𝑡, 𝑡′) then exp𝛼 = {𝛼}.
• If 𝛼 is 𝑟−(𝑡, 𝑡′) then exp𝛼 = {𝑟(𝑡′, 𝑡)}.
• If 𝛼 of the form (𝐶1 ⊓ 𝐶2)(𝑡) then exp𝛼 = exp𝐶1(𝑡) ∪ exp𝐶2(𝑡).
• If 𝛼 is of the form (∃𝑝.𝐶)(𝑡) then exp𝛼 = exp𝑝(𝑡,𝑦𝛼) ∪ exp𝐶(𝑦𝛼), where 𝑦𝛼 is a fresh variable.

The expansion of a set  of assumption patterns is defined as: exp() =
⋃
𝛼∈ exp𝛼 .

Intuitively, the expansion allows us to view a given set of assumption patterns as simply a set of
query atoms. Note that the set of implicit assumption patterns  ⊇ exp() and that exp() is
identical to exp(), modulo variable renamings.
From the definition of conditional answers in presence of assumption patterns, the set of possible
assertions  that are part of conditional answers, represent groundings of the implicit assumption
patterns (i.e., of some set of atoms in ). The rewriting idea is to unify some implicit assumption
patterns with some part of the query, and make the variable equalities explicit in the rewriting in
order to construct each  from the answer of the rewriting and .
Given two sets of query atoms Γ1 and Γ2, a unifier of Γ1 and Γ2 is a partial mapping 𝜃 from
vars(Γ1 ∪ Γ2) to term(Γ1 ∪ Γ2) such that Γ1𝜃 = Γ2𝜃.
Let 𝑞(𝑥⃗) be a CQ and Γ a subset of atoms in 𝑞. We denote by 𝑞Γ the sub-formula of 𝑞 containing all
atoms in Γ and by 𝑞Γ the sub-formula containing all the atoms not in Γ. We denote by 𝑘𝑒𝑒𝑝(𝑞,Γ)
the set of variables in vars(Γ) that are in 𝑥⃗ ∪ (vars(𝑞) ⧵ vars(Γ)).
In order to ensure that the query entailment is correctly captured by the obtained rewriting, we
need to disallow unifying free or join variables to existential variables.
Definition 5.8 (Rewriting w.r.t. ). Let  be a set of assumption patterns and 𝑞(𝑥⃗) a CQ. We
write 𝑞(𝑥⃗) ⇝ 𝑞′(𝑥′) and call 𝑞′ a rewriting of 𝑞 w.r.t.  if it is obtained by choosing

105

5. ONTOLOGY-MEDIATED CONDITIONAL ANSWERS

(i) a subset Γ of the atoms of 𝑞, and a subset Γ′ of exp()
(ii) a unifier ℎ of Γ and Γ′ that verifies the following conditions: each variable in 𝑘𝑒𝑒𝑝(𝑞,Γ) is

not mapped to fresh variables in exp(), and each fresh variable in exp() is not mapped
to a variable in 𝑘𝑒𝑒𝑝(𝑞,Γ),

and then doing the following transformations on 𝑞:

1. Discard 𝑞Γ from 𝑞
2. Add 𝑞ℎ =

⋀
{𝑥 = ℎ(𝑥) ∣ 𝑥 ∈ 𝑘𝑒𝑒𝑝(𝑞,Γ) ∪ vars()}.

3. Drop existential quantification for each 𝑥 ∈ vars().

The rewritten queries may have more free variables than the original 𝑞. After each rule application
the resulting 𝑞′ has vars() as free variables, additionally to the original 𝑥⃗. These additional
free variables and the equality atoms will allow us to read from each (ordinary) answer to some
rewritten query, the variable assignment for  that gives the corresponding conditional answer.
Example 5.2. Let us revisit the Example 5.1. The following query

𝑞1(𝑦) ←∃𝑥𝑧𝑢 location(𝖠𝗇𝗇𝖺, 𝑥) ∧ line(𝑥, 𝑦) ∧ location(𝑢, 𝑧) ∧ SevereMCI(𝑢)∧
location(𝖠𝗇𝗇𝖺_𝗁𝗈𝗆𝖾, 𝑧), line(𝑧, 𝑦)

is contained in the rewriting of 𝑞 w.r.t.  (obtained by firstly applying axiom∃line−.ClosedStation ⊑
DisruptedLine on atom DisruptedLine(𝑦) in 𝑞 and, after a unification step, the axiom
∃location−.SevereMCI ⊑ ClosedStation is applied).

If we consider = {∃location−.SevereMCI(𝑧)}with exp() = {location(𝑢′, 𝑧),SevereMCI(𝑢′)},
a rewriting of 𝑞1 w.r.t.  can be obtained by choosing:

Γ = {location(𝑢, 𝑧),SevereMCI(𝑢)}, Γ′ = {location(𝑢′, 𝑧),SevereMCI(𝑢′)} and
ℎ = {𝑢′ ↦ 𝑢, 𝑧 ↦ 𝑧}.

The conditions (ii) of Definition 5.8 are satisfied since 𝑘𝑒𝑒𝑝(Γ, 𝑞1) = {𝑧} and ℎ maps 𝑧 to itself,
and the fresh variable 𝑢′ is mapped to existential variable 𝑢. The result of the transformations 1-3
as described in Definition 5.8 yields the following rewriting:

𝑞′1(𝑦, 𝑧) ←∃𝑥𝑢 location(𝖠𝗇𝗇𝖺, 𝑥) ∧ line(𝑥, 𝑦) ∧ location(𝖠𝗇𝗇𝖺_𝗁𝗈𝗆𝖾, 𝑧) ∧ line(𝑧, 𝑦) ∧ 𝑧 = 𝑧.

The purpose of the equality atoms is to capture the variable assignment for  from each match of
the rewriting. For instance, given the match 𝜋 of 𝑞′1(𝑦, 𝑧) over the ABox  in Example 5.1 that
maps 𝑦 to 𝖴𝟣 and 𝗓 to 𝖯𝗋𝖺𝗍𝖾𝗋𝗌𝗍𝖾𝗋𝗇, we can construct the following conditional answer, by simply
applying 𝜋◦ℎ to . In this case, we get (𝖴𝟣,∃location−.SevereMCI(𝖯𝗋𝖺𝗍𝖾𝗋𝗌𝗍𝖾𝗋𝗇)) as conditional
answer to 𝑞1, hence also to 𝑞.

The motivation behind applying implicit assumption patterns is to find more specific ground
assumptions. For example, if we apply the implicit assumption patterns ′ = {SevereMCI(𝑢′)},
which is more specific, to rewrite 𝑞1 we obtain:

𝑞′′1 (𝑦, 𝑢
′) ←∃𝑥𝑧𝑢 location(𝖠𝗇𝗇𝖺, 𝑥) ∧ line(𝑥, 𝑦) ∧ location(𝑢, 𝑧)∧

location(𝖠𝗇𝗇𝖺_𝗁𝗈𝗆𝖾, 𝑧) ∧ line(𝑧, 𝑦) ∧ ∧𝑢 = 𝑢′.

106

5.3. Rewriting AOMQs

which also gives 𝖴𝟣, hence obtaining (𝖴𝟣,SevereMCI(𝖾)) as conditional answer.

As shown in the above example, the use of  is to automatically construct multiple related
assumption patterns that minimizes the input of the user while maximizing the variety of ABox
completions that can be relevant for the given OMQ. The full rewriting of a query w.r.t. a set of
assumption patterns  is therefore obtained by rewriting w.r.t. each subset ′ of .
Definition 5.9 (Complete rewriting w.r.t. ). Let 𝑞 be a CQ and  a set of assumption patterns.
The complete rewriting of 𝑞 w.r.t.  is

𝑟𝑒𝑤(𝑞) =
⋃

′⊆
{𝑞′ ∣ 𝑞 ⇝′ 𝑞′}.

The key to the correctness is that the unifier ℎ for Γ and Γ′ exists iff the atoms of Γ are made true
in a grounding of a subset of . Hence each rewriting step drops precisely atoms that would be
made true by some grounding of a subset of 𝐻 . We show that the rewriting is correct by using
the following claim:
Claim 8. Let  = (𝑞(𝑥⃗), ∅,) be an AOMQ,  an ABox and  a set of possible assertions given. For any partial mapping 𝜋 ∶ vars(𝑞) ∪ (vars()) ↦ cst() such that  is a 𝜋-instantiation
of ′ for some ′ ⊆ , we have that the following are equivalent:

1) 𝜋 is a conditional match of 𝑞 given (, ), and
2) there exist unifier ℎ of Γ ⊆ 𝑞 and Γ′ ⊆ exp(′) satisfying (ii) in Definition 5.8 and 𝜋 is a

match over  for query 𝑞′(𝑥⃗) obtained by applying steps 1-3 in Definition 5.8.

Proof. Given a query 𝑞 and a set of assumption patterns , a rewriting of 𝑞 w.r.t.  has the
following form:

𝑞′(𝑥⃗ ∪ vars()) ← 𝑞Γ ∧ 𝑞ℎ
where 𝑞Γ is the query obtained by discarding 𝑞Γ from 𝑞 (step 1 in Definition 5.8), and 𝑞ℎ are the
equality atoms added according to the unifier ℎ (step 2). Using this notation, we proceed with the
proof of the claim.
2) ⇒ 1): Let 𝜋 be a match of an arbitrary 𝑞′ such that 𝑞 ⇝′ 𝑞′ over . This means that there

exist: Γ ⊆ 𝑞, Γ′ ⊆ exp(′) and unifier ℎ complying with conditions in Definition 5.8. W.l.o.g., we
assume that 𝜋 is defined over all variables in 𝑞′. Since each join or free variable must be mapped
by ℎ to a variable in ′, each existential variable in Γ′ cannot be mapped to a free variable in 𝑞,
and 𝜋 matches such variables according to ℎ, we obtain that ′𝜋 ⊨ 𝑞Γ𝜋. Since 𝜋 is also a match
of 𝑞Γ over  we obtain that  ∪′𝜋 ⊨ 𝑞𝜋. Clearly ′𝜋 is a 𝜋-instantiation of .
1) ⇒ 2). Let 𝜋 be an arbitrary conditional match of 𝑞 such that  is a 𝜋-instantiation of ′ ⊆ 𝐻 .
By definition, we have that  ∪  ⊨ 𝑞𝜋 and  = ′𝜋. This implies that there exists a set of
atoms Γ in 𝑞 such that for sub-query 𝑞Γ we have  ⊨ 𝑞Γ𝜋 and for the remainder part 𝑞Γ we
have that  ⊨ 𝑞Γ𝜋. W.l.o.g. for Γ denoting the set of atoms in 𝑞Γ, we assume that Γ𝜋 ⊆ . It
follows that ′𝜋 ⊨ 𝑞Γ𝜋 and let Γ′ be the minimal set of atoms in exp(′) such that Γ′𝜋 ⊨ 𝑞Γ𝜋.

107

5. ONTOLOGY-MEDIATED CONDITIONAL ANSWERS

Then there exists a mapping 𝜃 that extends 𝜋 by mapping remaining variables in Γ to terms in
Γ′𝜋 and fresh variables in Γ′ to themselves such that Γ𝜃 = Γ′𝜃. Based on the set of equalities
𝐸 = {𝑥 = 𝑦 ∣ 𝜃(𝑥) = 𝜃(𝑦)}, using the same procedure to obtain the most general unifier, we can
construct a set of variable renamings 𝑅 by iteratively taking some 𝑥 = 𝑦 and: (1) adding 𝑥 ↦ 𝑦
to 𝑅, (2) replace all occurrences of 𝑥 with 𝑦 in 𝐸, (3) remove atoms of the form 𝑥 = 𝑥 from 𝐸.
Based on 𝑅 we can construct a substitution ℎ such that ℎ(𝑥) = 𝑦 if 𝑥 ↦ 𝑦 ∈ 𝑅.
We show next that ℎ is a unifier of Γ and Γ′, and satisfies conditions in Definition 5.8. We proceed
with showing that 𝜃 = 𝜋◦ℎ: for some variable 𝑥 let ℎ(𝑥) = 𝑦. Then there exists a series of equality
atoms 𝑥 = 𝑥1 = ⋯ = 𝑥𝑛 = 𝑦 in 𝐸 hence 𝜃(𝑥) = 𝜃(𝑦) and since 𝜃 extends 𝜋 to all variables
in Γ ∪ Γ′, we obtain: 𝜋(ℎ(𝑥)) = 𝜋(𝑦) = 𝜃(𝑦) = 𝜃(𝑥), thus clearly 𝜃 = 𝜋◦ℎ. Moreover, since
Γ𝜃 = Γ′𝜃, we obtain that also Γℎ = Γ′ℎ, thus ℎ is a unifier of Γ and Γ′.
Next, we show that ℎ does not map (i) any join or free variable in 𝑞 to an existential one in exp(′)
or (ii) fresh variables in exp(′) to free variables in 𝑞. We proof by contradiction: assume that
for some 𝑥 ∈ 𝑘𝑒𝑒𝑝(Γ, 𝑞) we have ℎ(𝑥) = 𝑦 with 𝑦 fresh variable in exp(′). By definition it
must be that 𝜃(𝑥) = 𝜃(𝑦) = 𝑦, thus we can construct a model  of  ∪′𝜋 by mapping 𝑦 to any
arbitrary constant in the domains such that  ̸⊨ 𝑞Γ𝜋, hence a contradiction with the fact that 𝜋
is a conditional match. Similarly, for (ii) let 𝑥 be a free variable in exp(′) such that ℎ(𝑥) = 𝑦
and 𝑦 ∈ 𝑘𝑒𝑒𝑝(Γ, 𝑞). Since Γ𝜋 ⊆  and since 𝑦 ∈ 𝑘𝑒𝑒𝑝 it occurs in Γ and we can easily see that′𝜋 ̸⊨ 𝑞Γ𝜋 which is a direct contradiction, therefore we conclude that ℎ satisfies the conditions
in Definition 5.8. Lastly, from Γ𝜋 ⊆  and properties of ℎ it follows that 𝜋 is indeed a match of
the rewriting denoted by 𝑞′.

The following Lemma states that the rewriting w.r.t. assumption patterns is complete.
Lemma 5.2. Let  = (𝑞(𝑥⃗), ∅,) be an AOMQ. For every ABox  and conditional answer (𝑎, )
of  over , there exists some ′ ⊆ , with vars(′) = 𝑦 and 𝑞(𝑥⃗) ⇝′ 𝑞′(𝑥⃗ ∪ 𝑦) such that
(𝑎 ∪ 𝑏⃗) ∈ 𝑐𝑒𝑟𝑡(𝑞′(𝑥⃗ ∪ 𝑦), ∅,) and  = ′(𝑏⃗).

Proof. We take an arbitrary ABox  and arbitrary conditional answer (𝑎, ) of  over . By
definition, there exists some ′ ⊆  and a partial mapping 𝜋 ∶ vars(𝑞) ∪ vars(′) ↦ cst()
such that 𝜋(𝑥⃗) = 𝑎,  ∪  ⊨ 𝑞𝜋 and  = ′𝜋 and suppose that 𝜋(𝑦) = 𝑏⃗. From Claim 8 it
follows that there exists a unifier ℎ of some Γ ⊆ 𝑞 and some Γ′ ⊆ exp(′) that complies with
variable conditions according to Definition 5.8 and 𝜋 is a match for the obtained rewriting 𝑞′.
Since vars(′) are free in 𝑞′ be obtain that 𝜋(𝑥⃗ ∪ 𝑦) = (𝑎 ∪ 𝑏⃗) and since 𝜋 is a match of 𝑞′ over, we obtain (𝑎 ∪ 𝑏⃗) ∈ 𝑐𝑒𝑟𝑡(𝑞′(𝑥⃗ ∪ 𝑦), ∅,).

The remaining step in proving the correctness of the rewriting is to show that it is a sound
procedure. The following Lemma states exactly that.
Lemma 5.3. Let = (𝑞(𝑥⃗), ∅,) be an AOMQ. For any ABox, ′ ⊆  and 𝑞(𝑥⃗) ⇝′ 𝑞′(𝑥⃗∪𝑦),
if (𝑎 ∪ 𝑏⃗) ∈ 𝑐𝑒𝑟𝑡(𝑞′(𝑥⃗ ∪ 𝑦), ∅,) then (𝑎,′(𝑏⃗)) ∈ 𝑐𝑎𝑛𝑠(,).

108

5.4. AOMQs with Closed Predicates

Proof. Let  be an arbitrary ABox, ′ ⊆  and 𝑞′(𝑥⃗ ∪ 𝑦) be a rewriting of 𝑞 w.r.t. ′, where
vars(′) = 𝑦 and take an arbitrary (𝑎 ∪ 𝑏⃗) ∈ 𝑐𝑒𝑟𝑡(𝑞′(𝑥⃗ ∪ 𝑦), ∅,). Then there is some mapping
𝜋 ∶ vars(𝑞′) ↦ cst() such that 𝜋(𝑥⃗) = 𝑎, 𝜋(𝑦) = 𝑏⃗ and  ⊨ 𝑞′𝜋. Again, from Claim 8 we
obtain that 𝜋 is a conditional match of 𝑞 given (,′𝜋). Therefore (𝑎,′𝜋) ∈ 𝑐𝑎𝑛𝑠(,).

The following definition captures the full rewriting of a given AOMQ, when the ontology does not
contain any disjointness or functionality axiom since they can restrict the number of consistent
ground assumptions (a case which is captured in a later section). The definition captures any
AOMQ such that the ontology belongs to a language  that is FO-rewritable and which has UCQ
as target rewriting query language. In this category falls DL-Lite and any of the FO-rewritable
DL-Lite++ extensions.
Definition 5.10 (Perfect rewriting of AOMQ over 𝑝𝑜𝑠()). Let  = (𝑞(𝑥⃗), 𝑝𝑜𝑠(),) be an
AOMQ where  is a FO-rewritable DL-Lite++ ontology. Then its perfect rewriting consists of
the following set of queries

𝑅𝑒𝑤() = {𝑞′′ ∣ 𝑞′′ ∈ 𝑟𝑒𝑤(𝑞′) and 𝑞′ ∈ 𝑟𝑒𝑤(𝑞)}.

Note that the queries in 𝑅𝑒𝑤(𝑄) may not all share the same answer variables, hence we write it
as a set of CQs rather than a UCQ.
From Lemmas 5.1 to 5.3, evaluating 𝑅𝑒𝑤(𝑄) over the ABox alone is sound and complete for
AOMQs over positive ontologies and it is a special case of Definition 5.14 below. We provide the
full correctness theorem after we discuss the incorporation of closed predicates and of 𝑛𝑒𝑔().
5.4 AOMQs with Closed Predicates
The usual open-world semantics of ontologies is not suitable when part of the data is known to be
complete, and there are many application domains which require the combination of both open
and closed world assumptions. For example the information about the transportation system in
a city is in general known to the users, such as the metro lines in Vienna, while concepts like
“functioning or out of service metro stations” are more prone to updates and therefore incomplete
to the users.
In the literature, a successful mechanism for combining open and closed-world semantics is to
declare some predicates as closed and to strengthen the usual certain answer semantics of OMQs
by considering only particular models that interpret each marked predicate exactly as described in
the data. To be more precise, if for a given set of predicate symbols Σ (i.e., a set of concept, role
or feature names) we know the ABox  contains all the (tuples of) constants for each predicate
symbol in Σ then, to answer OMQs, we rely only on models  such that they employ the standard
name assumption and that for each 𝑃 ∈ Σ we have that 𝑃  = {𝑐 ∣ 𝑃 (𝑐) ∈ }.
Unfortunately, allowing closed predicates in the ontology comes with a cost: DL-Lite-CERTAIN
ANSWERS(, 𝑞) is CoNP-hard, and thus not FO-rewritable [LSW13]. In this section, we extend
AOMQs to allow declarations of closed predicates in a different way while remarkably preserving
the FO-rewritability for ontology languages which extend DL-Lite.

109

5. ONTOLOGY-MEDIATED CONDITIONAL ANSWERS

5.4.1 OMQs with Closed Predicates (OMQC)
In this subsection, the preliminaries for evaluating OMQs in presence of closed predicates are
presented.
Definition 5.11 (OMQCs). A set of closed predicates Σ, is a subset of predicate symbols,i.e.,
Σ ⊆ 𝐂 ∪ 𝐑 ∪ 𝐅. An interpretation  is a Σ-model of (,) , written  ⊧Σ (,), if  ⊧ (,)
and additionally 𝑎 ∈ 𝑃  implies 𝑃 (𝑎) ∈  for all 𝑃 ∈ Σ. We say that  is Σ-consistent
w.r.t.  if there exists a Σ-model of (,). An OMQ with closed predicates (OMQC) is a tuple = (𝑞(𝑥⃗),,Σ) where (𝑞,) is an OMQ.

The notion of certain answers for OMQCs is lifted in the usual way from OMQs and the notation
𝑐𝑒𝑟𝑡(,) remains valid for OMQCs.
Definition 5.12 (OMQCs certain answers). A certain answer for an OMQC  is a tuple 𝑎 such
that 𝑎 is an answer to 𝑞 in every Σ-model of (,). The set 𝑐𝑒𝑟𝑡(,) denotes the set of all
certain answers of  over .

Given a certain answer 𝑎, we call a substitution 𝜋 such that 𝜋(𝑥⃗) = 𝑎 and (,) ⊨Σ 𝑞𝜋 a Σ-match
of 𝑎 given (,).

To exemplify the use of OMQCs, let us consider a minor adaptation of Example 1 in [LSW15],
which nicely illustrate the need for allowing closed predicates.
Example 5.3. Suppose the ABox  contains the following facts:

SkodaModel(𝗌𝗆𝟣𝟩), SkodaEngine(𝗌𝖾𝟣), SkodaEngine(𝗌𝖾𝟤), DieselEngine(𝗌𝖾𝟣),
PetrolEngine(𝗌𝖾𝟤),

and we know that there is no additional Skoda model other than 𝗌𝗆𝟣𝟩 and no other Skoda
engine other than 𝗌𝖾𝟣 and 𝗌𝖾𝟤. Hence we consider SkodaModel and SkodaEngine as closed, i.e.,
Σ = {SkodaModel,SkodaEngine}.

Moreover, in the ontology  we have the following axioms:

DieselEngine ⊑ ICEngine, PetrolEngine ⊑ ICEngine,
SkodaModel ⊑ ∃hasEngine.SkodaEngine.

Considering the query

𝑞(𝑥) ← ∃𝑦.SkodaModel(𝑥) ∧ hasEngine(𝑥, 𝑦) ∧ ICEngine(𝑦)

from first two ontology axioms we know that each Diesel and petrol engine is a internal combustion
(IC) engine, hence also 𝗌𝖾𝟣 and 𝗌𝖾𝟤 are implicitly IC engines. Using the last axiom, each Skoda
model must have a Skoda engine and since it has to be precisely one of 𝗌𝖾𝟣 or 𝗌𝖾𝟤, we deduce,
that 𝗌𝗆𝟣𝟩 is a certain answer to the OMQC (𝑞,,Σ). Thus, a desirable additional answer is
retrieved which could not be obtained under the classical certain answer semantics of OMQs.

110

5.4. AOMQs with Closed Predicates

As previously stated, the OMQ in this example is no longer FO-rewritable. The underlying
problem is the occurrence of closed predicate SkodaEngine on the right-hand-side of the last
axiom, which creates a form of non-determinism, thus an increase in the complexity of reasoning.
This motivates the extension of our formalism to include close predicates in the assumption
patterns and redefine the semantics of answering AOMQs to take into account the use of closed-
world semantics. The main advantage of AOMQs with closed predicates is that they preserve
FO-rewritability.

5.4.2 AOMQs with Closed Predicates
In this subsection, we introduce AOMQs with closed predicates and present a rewriting technique
that can be used to compute conditional answers, under the clopen world assumption, without
the complexity increase. In our formalism, we disallow closed predicates in the ontology, for
reasons previously discussed, and allow them in the assumption patterns. The difference in this
case is that we cannot take arbitrary groundings  of  in conditional answers, but only ground
assumptions that are valid w.r.t. the semantics of closed predicates.
Definition 5.13 (AOMQ with closed predicates (AOMQC)). An AOMQ with closed predicates
(AOMQC) is a tuple  = (𝑞,,,Σ), where (𝑞,,) is an AOMQ and Σ is a set of closed
predicates, disjoint from sign().
Let  be an ABox. A pair (𝑎, ) of a tuple of constants 𝑎 and a set of possible assertions  w.r.t.
(,), is called a conditional answer to  over  if (i) there exists a Σ-model of (, ∪ ), and
(ii) a substitution 𝜋 that is a Σ-match of 𝑎 given (, ∪ ), and  is a 𝜋-instantiation of .

Conditional answers of AOMQCs can capture typical scenarios where closed predicates are
desirable for OMQs. Based on Example 5.3, we can discard the problematic axiom SkodaModel ⊑
∃hasEngine.SkodaEng from the ontology and rely on the assumption patterns

 = {∃hasEngine.SkodaEng(𝑥)}

and the fact that they are applicable to atom SkodaModel(𝑥) in 𝑞. Answering such AOMQC,
yields (𝗌𝗆𝟣𝟩, hasEngine.SkodaEng(𝗌𝗆𝟣𝟩)) as a conditional answer, hence we obtain that 𝗌𝗆𝟣𝟩
is a Skoda model that has an IC engine, assuming that 𝗌𝗆𝟣𝟩 has a Skoda engine (which is known
to be true).
This shows that we can model examples that motivate the use of closed predicates in the first place,
and remarkably, as we show next, this formalism remains FO-rewritable for DL-Lite++(non-rec)
and DL-Lite++(rec-safe) .

Rewriting AOMQCs. The rewriting process is similar to the previous case: we first apply
the rewriting w.r.t. the ontology, and then we rewrite w.r.t. the assumption patterns. This step,
however, is different if  has closed predicates.
Intuitively, now we cannot assume arbitrary groundings of , but only groundings that respect
the extensions of Σ in the input ABox. There is no canonical way to ground , and instead we

111

5. ONTOLOGY-MEDIATED CONDITIONAL ANSWERS

need to iterate over all groundings and exclude those that are not valid w.r.t. Σ and the input
data. However, they are determined by the finite number of possible groundings of the closed
predicates, so we use an FO-query with universal quantification to iterate over them.
We denote by termΣ() all terms 𝑧 ∈ vars(exp()) such that 𝑃 (𝑧) ∈ 𝑞 and 𝑃 ∈ Σ.
Definition 5.14 (Rewriting w.r.t. (,Σ)). Let  be a set of assumption patterns, Σ a set of closed
predicates and 𝑞 a CQ. A rewriting of 𝑞 w.r.t. (,Σ), written 𝑞 ⇝,Σ 𝜑, has the following form:

∀𝑢.(𝑞Σ(𝑢) → 𝑞′(𝑥′))

where 𝑞Σ(𝑢) and 𝑞′(𝑥′)) are CQs obtained as follows:

(i) Choose a set of atoms Γ1 of q, and a set of atoms Γ2 of exp(),
(ii) a unifier ℎ of Γ1 and Γ2 that satisfies the following: no variable in 𝑘𝑒𝑒𝑝(𝑞,Γ1) is mapped

to a fresh variables in exp() ⧵ termΣ(), and no fresh variable in exp() ⧵ termΣ() is
mapped to a variable in 𝑘𝑒𝑒𝑝(𝑞,Γ1).

Then 𝑞Σ consists of 𝑃1(𝑦1) ∧⋯ ∧ 𝑃𝑘(𝑦𝑘), where 𝑃𝑖(𝑦𝑖) ∈ exp() such that 𝑃𝑖 ∈ Σ and ℎ(𝑧) = 𝑦1
or ℎ(𝑦𝑖) = 𝑧 for 𝑧 ∈ vars(Γ1), and 𝑞′ is obtained by the following steps:

1. Replace by ⊤ every atom in Γ1.
2. Add

⋀
{𝑧 = 𝑦𝑖 ∣ 𝑧 ∈ vars(Γ1), 𝑃𝑖(𝑦𝑖)) ∈ exp() and ℎ(𝑧) = 𝑦1 or ℎ(𝑦𝑖) = 𝑧}.

3. Add
⋀
{𝑥 = ℎ(𝑥) ∣ 𝑥 ∈ 𝑘𝑒𝑒𝑝(𝑞,Γ1) ∪ vars()}.

4. Drop from the existential quantification all 𝑥∈ vars().
5. Rename each universally quantified 𝑥 if 𝑥 = 𝑥 ∈ 𝑞′ and 𝑥 ∈ free(𝑞) ∪ vars(), and apply the

renaming to one part of the equality.

The rewriting generalizes Definition 5.8, but the main difference is that we add to the universally
quantified precondition each closed 𝑃 (𝑥) in exp() that contributes the assumptions that make
Γ1 true.
Example 5.4. Considering ABox in Example 5.1, it is reasonable to assume that the information
regarding the stations and transportation lines is complete. Therefore we take Σ = {Station, line}
as a set of closed predicates. Moreover, we consider the following additional axioms:

location ⊑ accessible accessible◦connectedTo ⊑ accessible.

Suppose that we are interested in checking if Anna’s home is accessible from the her current
location, under the assumption that she is located near a station. Thus the following  =
{∃location.Station(𝖠𝗇𝗇𝖺)} and query:

𝑞() ← ∃𝑥𝑦 location(𝖠𝗇𝗇𝖺, 𝑥) ∧ accessible(𝑥, 𝑦) ∧ location(𝖠𝗇𝗇𝖺_𝗁𝗈𝗆𝖾, 𝑦).

The rewriting of 𝑞 w.r.t. (,Σ) is:

𝜑() ← ∀𝑢.(Station(𝑢) → 𝑢 = 𝑥 ∧ accessible(𝑥, 𝑦) ∧ location(𝖠𝗇𝗇𝖺_𝗁𝗈𝗆𝖾, 𝑦)).

112

5.4. AOMQs with Closed Predicates

Since the assumption does not point to any particular station, and under the closed-world semantics
all stations are known, the empty tuple is an answer to the OMQ (𝑞,,Σ) since all existing stations
have an accessible connection to Anna’s home.

However, in order to actually obtain this conditional answer, the ontology rewriting is also
required. Since the ontology rewriting is applicable only on the atom accessible(𝑥, 𝑦) and the
ABox in the example is 𝑘-bounded for 𝑘 = 5, we obtain that the full rewriting is equivalent to the
following FO-query:

𝜑′() ← ∀𝑢.(Station(𝑢) → ∃𝑥, 𝑥0 𝑢 = 𝑥 ∧ (location(𝑥, 𝑥0) ∨ accessible(𝑥, 𝑥0))∧⋁
𝑖∈[0..5]

∃𝑥1… 𝑥𝑖 (connectedTo(𝑥0, 𝑥1) ∧⋯ ∧ connectedTo(𝑥𝑖−1, 𝑥𝑖) ∧ location(𝖠𝗇𝗇𝖺_𝗁𝗈𝗆𝖾, 𝑥𝑖))).

The full rewriting, when evaluated over the ABox returns the empty tuple, since all stations are
connected to the station where Anna’s home is located.

We show next that the rewriting w.r.t. (,Σ) is correct, analogously to the previous case. For that
we rely on a finite set of minimal Σ-models of  ∪  which are sufficient for obtaining the set of
conditional answers.
Definition 5.15 (Representative Σ-models of (, )). Let Σ be a set of closed predicates and 
an ABox. Given a set of possible assertions  w.r.t.  let 𝜃 ∶ vars(exp()) ↦ 𝐂 be a mapping
such that for each 𝑃 (𝑥⃗) ∈ exp() we have that (i) 𝑃 (𝑥⃗)𝜃 ∈ , if 𝑃 ∈ Σ, (ii) 𝑥⃗ are mapped to
fresh constants 𝑐𝑥⃗, otherwise. For some 𝜃, A representative Σ-model of (, ) is the minimal
interpretation 𝜃 that models  ∪ exp()𝜃.

Given a pair (, ), the set of representative Σ-models is finite given that each 𝜃 depends on
the mapping of variables occurring in closed predicate atoms. In the following we show that
each Σ-model of (, ) is structurally represented by some 𝜃, hence we can rely on the set of
representative models to compute conditional answers.
Claim 9. Let  be an ABox and  a set of possible assertions w.r.t. . For each Σ-model  of
(, ) there exists a mapping 𝜃 such that 𝜃 ⊳ .

Proof. Given  and  , let  be an arbitrary Σ-model of (, ). We construct 𝜃 as in Defini-
tion 5.15. Since both  and 𝜃 are Σ-models of (, ), and by definition 𝜃 is minimal, we
easily obtain that there exists a mapping 𝓁 ∶ Δ𝜃 ↦ Δ such that 𝓁(𝑐) = 𝑐, for each 𝑐 ∈ cst()
and for each additional fresh constant 𝑎 there must be some 𝑏 such that 𝓁(𝑎) = 𝑏 and if 𝜃 ⊨ 𝐴(𝑎)
then  ⊨ 𝐴(𝑏) and if 𝜃 ⊨ 𝑝(𝑎, 𝑑) then  ⊨ 𝑝(𝑏, 𝑒) and 𝓁(𝑑) = 𝑒. Mapping 𝓁 is clearly a
homomorphism, hence 𝜃 ⊳ .

The next property follows immediately.
Corollary 2. Let  be an AOMQC. For each ABox  we have that (𝑎, ) ∈ 𝑐𝑎𝑛𝑠(,) iff
𝑎 ∈ ans(𝑞,𝜃) for each minimal Σ-model 𝜃 of (, ).

113

5. ONTOLOGY-MEDIATED CONDITIONAL ANSWERS

We proceed now by showing that the rewriting is correct.
Lemma 5.4. Let  = (𝑞(𝑥⃗), ∅,,Σ) be an AOMQC and for ′ ⊆  let 𝜑(𝑥⃗ ∪ 𝑥′) be a rewriting
w.r.t. (′,Σ). For any ABox , if (𝑎 ∪ 𝑏⃗) ∈ 𝑐𝑒𝑟𝑡(𝜑(𝑥⃗ ∪ 𝑥′), ∅,) then (𝑎,′(𝑏⃗)) ∈ 𝑐𝑎𝑛𝑠(,).

Proof. Let  be an arbitrary ABox and let (𝑎 ∪ 𝑏⃗) ∈ 𝑐𝑒𝑟𝑡(𝜑(𝑥⃗ ∪ 𝑥′), ∅,). By definition, we
have that  ⊨ 𝜑(𝑎 ∪ 𝑏⃗), hence  ⊨ ∀𝑢.(𝑞Σ(𝑢) → 𝑞′(𝑎 ∪ 𝑏⃗)). This means that for each 𝑐, a tuple
of constants from  of the same arity as 𝑢, there exists a substitution 𝜋 ∶ 𝑢 ∪ 𝑥⃗ ∪ 𝑥′ ↦ cst()
such that 𝜋(𝑢) = 𝑐, 𝜋(𝑥⃗) = 𝑎 and 𝜋(𝑥′) = 𝑏⃗, and  ⊨ (𝑞Σ(𝑢) → 𝑞′(𝑥⃗ ∪ 𝑥′))𝜋. If  ̸⊨ 𝑞Σ(𝑢)𝜋
then exp(𝑞Σ𝜋) ⊊ , therefore 𝜋 is not a Σ-model of . It remains to show that for 𝜋 such that ⊨ 𝑞Σ𝜋 we have that 𝜋 ⊨ 𝑞𝜋.
Let 𝜋 be an arbitrary such mapping. Then, we can construct 𝜃 such that 𝜃(𝑢) = 𝜋(𝑢) (since 𝜋
is defined on 𝑢 as they appear in 𝑞′), and other variables in exp(′) as in Definition 5.15. By
applying Claim 8 on the fact that  ⊨ 𝑞′𝜋 and that 𝑞′ is obtained by the identification of a unifier ℎ
that respects the conditions in Definition 5.8, we obtain that 𝜃 ⊨ 𝑞𝜋. Since 𝜋 is arbitrarily chosen
we conclude that for each representative 𝜃 we have that 𝜃 ⊨ 𝑞(𝑎). Lastly from Corollary 2 we
obtain that 𝑎 ∈ 𝑐𝑎𝑛𝑠(,).

We show next that the rewriting w.r.t. (,Σ) is complete.
Lemma 5.5. Let  = (𝑞(𝑥⃗), ∅,,Σ) be an AOMQC. For any ABox , ′ ⊆  and tuples 𝑎,
𝑏⃗ such that (𝑎,′(𝑏⃗)) ∈ 𝑐𝑎𝑛𝑠(,), then there is some 𝜑 such that 𝑞(𝑥⃗) ⇝,Σ 𝜑(𝑥⃗ ∪ 𝑥′) and
(𝑎 ∪ 𝑏⃗) ∈ ans(𝜑,).
Proof. We arbitrarily take ABox , ′ ⊆  and 𝑎, 𝑏⃗ such that (𝑎,′(𝑏⃗)) ∈ 𝑐𝑎𝑛𝑠(,). From
Corollary 2 we obtain that for each representative Σ-model 𝜃 of (,′(𝑏⃗)) we have that 𝜃 ⊨
𝑞(𝑎). It follows then that there is a mapping 𝜋 such that 𝜋(𝑥⃗) = 𝑎 and 𝜋(vars(′)) = 𝑏⃗ that
is a conditional match of 𝑞 w.r.t. (, exp(′)𝜃). Applying Claim 8 for each 𝜃, we obtain that
there exists ℎ a unifier of Γ in 𝑞 and Γ′ in exp(′) satisfying conditions in Definition 5.14 (since
conditions in Definition 5.14 comply with those in Definition 5.8), therefore the rewriting 𝜑 as in
Definition 5.14 exists.
Lastly, for mapping 𝜃′ = 𝜋∪𝜃 we obtain that  ⊨ 𝑞′𝜃′ for each 𝜃 as in Definition 5.15. Therefore,
clearly  ⊨ 𝜑𝜋, hence 𝑎 ∈ ans(𝜑,).

The full rewriting is the set of all FO-queries obtain by rewriting w.r.t. any subset of 𝐻 and Σ,
and, similarly to the case without closed predicates, the perfect rewriting is obtained by firstly
rewriting w.r.t.  and then further w.r.t. (,Σ).
Definition 5.16 (Perfect Rewriting of AOMQC over 𝑝𝑜𝑠()). Let  = (𝑞(𝑥⃗), 𝑝𝑜𝑠(),Σ,) be
a FO-rewritable DL-Lite++ AOMQ with closed predicates. The complete rewriting of 𝑞 w.r.t.
(,Σ) is

𝑟𝑒𝑤,Σ(𝑞) =
⋃

′⊆𝐻

{𝜑(𝑥′) ∣ 𝑞(𝑥⃗) ⇝′,Σ 𝜑(𝑥′)}.

114

5.5. Incorporating Disjointness and Functionality Axioms

The perfect rewriting of , is

𝑅𝑒𝑤() = {𝜑′(𝑥′) ∣ 𝜑′(𝑥′) ∈ 𝑟𝑒𝑤,Σ(𝑞′) and 𝑞′(𝑥⃗) ∈ 𝑟𝑒𝑤(𝑞)}.

Correctness of this rewriting follows from Lemma 5.1 (using the fact that the closed predicates
do not occur in the ontology), Lemma 5.5 and Lemma 5.4. We will state the theorem after the
inclusion of disjointness and functionality axioms.
Let us return to the initial example of the section.
Example 5.5. For  of Example Example 5.3, the 𝑟𝑒𝑤() is equivalent to

𝜑(𝑥)←∃𝑦.(SkodaModel(𝑥) ∧ hasEngine(𝑥, 𝑦)∧(ICEngine(𝑦)∨PetrolEngine(𝑦)∨DieselEngine(𝑦)).

Then, 𝑅𝑒𝑤() is equivalent to:

𝜑′(𝑥) ←SkodaModel(𝑥) ∧ ∀𝑦′.(SkodaEngine(𝑦′) → ∃𝑦 𝑦 = 𝑦′∧
(ICEngine(𝑦) ∨ PetrolEngine(𝑦) ∨ DieselEngine(𝑦))).

Evaluating such query over the data, will allow us to easily construct the expected conditional
answer.

5.5 Incorporating Disjointness and Functionality Axioms
Note that an AOMQ is a special case of an AOMQC and in this section we focus on adapting
the rewriting of AOMQCs when negative axioms are part of the given ontology. The obtained
rewriting can be applied also to the case without closed predicates.
The last step in obtaining the full rewriting of a given AOMQC is to apply the disjointness and
functionality axioms for discarding tuples (𝑎, ) for which  ∪ is inconsistent w.r.t. .
In standard OMQs, to evaluate an OMQ (𝑞,) one can usually check first if the given ABox  is
consistent with , and then answer 𝑞 assuming consistency of  w.r.t. . Unfortunately, this
approach is not sufficient for AOMQCs, since we would need to verify consistency for each ABox
extension. For that reason, we incorporate the inconsistency check as part of the rewritten query.
For that we will make use of inequality atoms 𝑥 ≠ 𝑦 for checking violations of functionality
constraints. Queries with inequalities are in general problematic, however due to the restriction
regarding relations participating in functionality assertions for DL-Lite++ , violations of such
axioms can occur only in the ABox (see upper-bound proof of Theorem 3.5). Furthermore, due
to the SNA, query answering is a reliable procedure for checking consistency of ABoxes over
DL-Lite++(non-rec) and DL-Lite++(rec-safe) ontologies.
Definition 5.17 (Inconsistency CQs). For any given disjointness or functional axiom 𝛼, we define
the (Boolean) CQ 𝑞𝛼() as follows:

115

5. ONTOLOGY-MEDIATED CONDITIONAL ANSWERS

• if 𝛼 = 𝖽𝗂𝗌𝗃(𝐴,𝐴′), then 𝑞𝛼() ← ∃𝑥 𝐴(𝑥) ∧ 𝐴′(𝑥),
• if 𝛼 = 𝖽𝗂𝗌𝗃(𝐴,∃𝑟), then 𝑞𝛼() ← ∃𝑥𝑦 𝐴(𝑥) ∧ 𝑟(𝑥, 𝑦),
• if 𝛼 = 𝖽𝗂𝗌𝗃(𝑟1, 𝑟2), then 𝑞𝛼() ← ∃𝑥𝑦 𝑟1(𝑥, 𝑦) ∧ 𝑟2(𝑥, 𝑦),
• if 𝛼 = (𝖿𝗎𝗇𝖼𝗍 𝑝), then 𝑞𝛼() ← ∃𝑥𝑦𝑧 𝑝(𝑥, 𝑦) ∧ 𝑝(𝑥, 𝑧) ∧ 𝑦 ≠ 𝑧.

Let  be a FO-rewritable DL-Lite++ ontology. For a given set of assumption patterns  and a
set of closed predicates Σ, the set of inconsistent queries for (,,Σ), denoted by Rew⊥(,,Σ)
is ⋁

𝛼∈𝑛𝑒𝑔()
{𝜑 ∣ 𝜑 ∈ 𝑟𝑒𝑤,Σ(𝑞′), and 𝑞′ ∈ 𝑟𝑒𝑤(𝑞𝛼)}.

We then show that each grounding of some set of assumption patterns which causes any in-
consistency is captured by some query in Rew⊥(,). For a tuple 𝑦 from vars(), we denote
by 𝑅𝑒𝑤(𝑦

𝑝𝑜𝑠) the UCQ whose disjuncts are the queries 𝑞 ∈ 𝑅𝑒𝑤(𝑝𝑜𝑠) with free(𝑞) = 𝑦, and
similarly, Rew⊥

𝑦(,) is a UCQ with all queries 𝑞 ∈ Rew⊥
𝑦(,) with free(𝑞) = 𝑦.

Proposition 5.1. Let  be a FO-rewritable DL-Lite++ ontology and ABox  consistent with .
For any  a set of possible assertions w.r.t. (, 𝑝𝑜𝑠()), we have that  ∪  is Σ-inconsistent
w.r.t.  iff () ∈ 𝑐𝑒𝑟𝑡((

⋁
𝛼∈𝑛𝑒𝑔()𝑞𝛼, 𝑝𝑜𝑠(),Σ), ∪ ).

Proof. Direction ⇐: Let  be such that () ∈ 𝑐𝑒𝑟𝑡((
⋁

𝛼∈𝑛𝑒𝑔()𝑞𝛼, 𝑝𝑜𝑠(),Σ), ∪ ). This means
that for each  a Σ-model of  ∪  w.r.t. 𝑝𝑜𝑠() we have that there exists some 𝑞𝛼 and a variable
assignment 𝜃 such that  ⊨ 𝑞𝛼𝜃, hence  ̸⊨ 𝛼. Since this holds for each such  we conclude that ∪  is Σ-inconsistent w.r.t. .
Direction ⇒: Consider a set  of possible assertions w.r.t. (, 𝑝𝑜𝑠()) such that  is Σ-
inconsistent w.r.t. . This means that for each  a Σ-model of (, ) w.r.t. 𝑝𝑜𝑠() there is
some 𝛼 ∈ 𝑛𝑒𝑔() such that  ̸⊨ 𝛼. Therefore, there is some variable assignment 𝜃 such that ⊨ 𝑞𝛼𝜃, hence () ∈ 𝑐𝑒𝑟𝑡(

⋁
𝛼∈𝑛𝑒𝑔()𝑞𝛼, 𝑝𝑜𝑠(),Σ).

Note that, again, we obtain a set of queries with possibly different subsets of vars() as free
variables. We next prove that each answer of any query in Rew⊥(,,Σ) produces an ABox
extension which is inconsistent w.r.t. .
Claim 10. Let  be a FO-rewritable DL-Lite++ ontology and  a set of assumption patterns. For
any ABox  consistent with  we have that 𝑐 ∈ ans(Rew⊥

𝑦(,,Σ),) iff for each ′ ⊆ 𝐻
such that vars(′) = 𝑦 we have that  ∪′(𝑐) is (Σ-)inconsistent with .

Proof. Direction ⇒. Let  be an arbitrary ABox Σ-consistent w.r.t. . We take an arbitrary 𝑐 ∈
ans(𝜑⊥,) such that for some arbitrary 𝛼 ∈ 𝑛𝑒𝑔() and ′ ⊆ 𝐻 we have that 𝑞𝛼 ⇝∗ 𝑞′𝛼 ⇝′,Σ
𝜑⊥ and 𝑐 ∈ ans(𝜑⊥,). From Lemma 5.4 we obtain that ((),′(𝑐)) ∈ 𝑐𝑎𝑛𝑠((𝑞′𝛼, ∅,,Σ),)
and from Lemma 5.1 and the fact that the ontology does not contain symbols in Σ, we obtain that

116

5.6. Empirical Evaluation

((),′(𝑐)) ∈ 𝑐𝑎𝑛𝑠((𝑞𝛼, 𝑝𝑜𝑠(),,Σ),) and using Proposition 5.1 we conclude that  ∪′(𝑐)
is Σ-inconsistent w.r.t. .
Direction ⇐. Let 𝑐 be a tuple of constants from  such that  ∪′(𝑐) is Σ-inconsistent w.r.t. .
Therefore, for each Σ-model of  ∪′(𝑐) that satisfies 𝑝𝑜𝑠() we have that there exists some
variable assignment 𝜃 such that  ⊨

⋁
𝛼∈𝑛𝑒𝑔()𝑞𝛼𝜃, hence () ∈ 𝑐𝑒𝑟𝑡((

⋁
𝛼∈𝑛𝑒𝑔()𝑞𝛼, 𝑝𝑜𝑠(),Σ), ∪

′(𝑐)) from which, using Proposition 5.1, we get that ((),′(𝑐)) ∈ 𝑐𝑎𝑛𝑠((𝑞𝛼, 𝑝𝑜𝑠(),,Σ),).
From Lemma 5.5 we obtain that there exists some 𝜑⊥ ∈ 𝑟𝑒𝑤,Σ(𝑞𝛼) such that 𝑐 ∈ ans(𝜑⊥,).
Since 𝜑⊥ ∈ Rew⊥

vars(′)(,,Σ) we obtain that 𝑐 ∈ ans(Rew⊥
vars(′)(,,Σ),).

A direct result form this claim is that the negation of Rew⊥(,,Σ) correctly ensures that the
possible groundings of the assumption patterns do not produce inconsistencies.
Corollary 3. Let  be a FO-rewritable DL-Lite++ ontology and  a set of assumption patterns.
For each ABox , each 𝑐 ∈ ans(¬Rew⊥

𝑦(,,Σ),) and ′ ⊆  such that vars(′) = 𝑦, we
have that  ∪′(𝑐) is Σ-consistent w.r.t .

Therefore, to prevent inconsistency we can negate Rew⊥(,,Σ) and add it to the previous
rewriting. The only minor issue to take care of is that the queries have different free variables.
Then the rewriting of general AOMQCs is obtained as follows.
Definition 5.18 (Perfect Rewriting of general AOMQCs). Let = (𝑞,,,Σ) be a FO-rewritable
DL-Lite++ AOMQC and let 𝑝𝑜𝑠 = (𝑞, 𝑝𝑜𝑠(),,Σ). The perfect rewriting of , 𝑅𝑒𝑤() is as
follows: ⋃

𝑦⊆vars()

{¬Rew⊥
𝑦(,,Σ) ∧ 𝑅𝑒𝑤(𝑄(𝑥⃗,𝑦)

𝑝𝑜𝑠)}.

The following theorem follows from Corollary 3 and the fact that perfect rewriting for 𝑝𝑜𝑠 is
correct.
Theorem 5.2. Let  = (𝑞(𝑥⃗),,) be a FO-rewritable DL-Lite++ AOMQ. For every ABox ,
the following are equivalent:

a) (𝑎, ) ∈ 𝑐𝑎𝑛𝑠(,).
b) There exists ′ ⊆ , 𝜑(𝑥⃗ ∪ 𝑦) ∈ 𝑅𝑒𝑤(), a substitution 𝜋 such that 𝜋(𝑥⃗) = 𝑎, ′𝜋 =  and

𝜋(𝑥⃗ ∪ 𝑦) is an answer to the query 𝜑 over .

5.6 Empirical Evaluation
To demonstrate the potential usefulness of our approach, we developed a prototype implemen-
tation2 of the AOMQ rewriting. It was done in Java using Apache Jena 2.11 and Jena ARQ as
SPARQL query engine, and tested on a MacBook Pro i5 2.7, Sierra OS.

2https://github.com/medinaandresel/conditionalAnswers

117

https://github.com/medinaandresel/conditionalAnswers

5. ONTOLOGY-MEDIATED CONDITIONAL ANSWERS

Size of AOMQ  and 𝑅𝑒𝑤() Average Time (sec)
 [#] #𝑟𝑒𝑤() #𝑅𝑒𝑤() #𝑐𝑎𝑛𝑠𝑚𝑖𝑛() Evaluate 𝑅𝑒𝑤() Construct 𝑐𝑎𝑛𝑠𝑚𝑖𝑛() Test  FedSPARQL
𝑞1[3] 12 54 14415 0,6 1,1 40,4 42,7
𝑞2[4] 44 47 1603 0,1 0,2 4,8 6,6
𝑞3[4] 65 69 980 0,3 0,5 3,5 5,4
𝑞4[3] 14 64 60501 2,1 4,6 145,6 163,9
𝑞5[1] 3 6 8742 0,08 0,2 22 32,2

Table 5.1: Evaluation results for AOMQs over MyITS dataset.

We used the ontology, data, and a data generation tool from the MyITS project ([EKS13, EPS+15]).
The tool creates ABoxes with assertions for spatial relations like locatedNext out of Open-
StreetMap data, using parameters such as distance to create large sets of facts, in addition to other
‘local’ data (e.g., crowd-sourced restaurant data). Then one can pose queries that need both parts
of data, as well as ontological reasoning, to get answers (e.g., hotels in residential areas close to a
subway station).

Integrating geospatial data is relevant to many applications, however usually such datasets are
incomplete or noisy. Instead of ingesting such data into our ABox, we might better keep such
data as a remote source and query it on demand. In many application scenarios, however, instant
answer retrieval is important, therefore assumption-based query answering can be a suitable
option as only boolean queries need to be evaluated remotely. To simulate this scenario, we
extracted some spatial relations and outsourced their access via a SPARQL endpoint (using Jena
Fuseki). This resulted in two sources: the local datasets with 227634 RDF triples, and a remote
one with more than 2 million triples. We created 5 AOMQs based on test queries of [EPS+15],
and treated spatial atoms as assumption patterns. In this way, we can query the local datasets
and verify at the remote access point whether the geospatial relations hold, only for the relevant
candidates.

Table 5.1 shows for these queries the sizes of rewritings w.r.t. , and (,), and the size of
𝑐𝑎𝑛𝑠𝑚𝑖𝑛, which gives a bound on the number of remote tests. We evaluated the time needed to
answer the full rewriting over the local dataset, the time to construct the set 𝑐𝑎𝑛𝑠𝑚𝑖𝑛, and the
time to test remotely the spatial atoms (using SPARQL “ask queries”). The results show that
evaluating 𝑅𝑒𝑤() and constructing 𝑐𝑎𝑛𝑠𝑚𝑖𝑛() is very efficient, while testing the assumptions
remotely was more expensive, as expected. In practice, this delay may be amortized in many
cases, e.g., if many queries share remote tests. As a sanity check, we compared the total time
needed by our approach to posing a federated SPARQL query [W3C13] using both data sources.
The latter approach was slower, even despite the fact that we disregarded ontological reasoning.
This implies that naively posing the result of the ontology rewriting as a federated query seems
infeasible in practice at least based on current engines for evaluating federated queries.

118

5.7. Related Work and Discussion

5.7 Related Work and Discussion
Conditional query answering problem was studied since the early nineties in order to cope with
incompleteness in disjunctive deductive databases [Dem92]. They are related to the problem of
evaluating queries in hypothetically updated states of databases [GGMO95, CA98]. In [GH97]
hypothetical queries are rewritten into equivalent usual queries which are evaluated using standard
techniques. Recently, [tCCST15] define so-called why-not queries, where an ontology is leveraged
to obtain explanations of why tuples are not an answer, and study the complexity of obtaining
most general explanations. We consider the shape of the explanations to be part of the input,
while focusing on preserving worst-case (data) complexity.
This work is most in line with the work of [COvS13], where negative answers are employed for
describing a tuple of individuals and an associated explanation to why it is not an answer to the
given query. Explanations there are ABoxes with assertions over concept and role names, while
here this is generalized to sets of  atoms. Additionally, we allow for closed predicates.
We have introduced AOMQs, which are extensions of OMQs with assumption patterns, designed
for leveraging information when querying incomplete databases. Answering AOMQs consists of
computing conditional answers, which generally extend the answers of OMQs with tuples that are
made true by the assumptions. In the case of DL-Lite AOMQs, they remain FO-rewritable even
in the presence of closed predicates. A simple prototype for constructing and testing minimal
conditional answers shows promising results, and suggests that this approach may be useful in
scenarios when answering OMQs over all relevant data at once is costly or infeasible.
For future work, it would be interesting to consider different shapes of assumption patterns, and
to extend the evaluation with closed predicates.

119

CHAPTER 6
Neural-Symbolic Ontology-mediated

Query Answering

Knowledge Graphs are relevant to many applications such as natural question answering, web
search and data analytics, and due to their semi-automatic construction, they are prone to be
incomplete. Since in a KG, each fact is represented as a triple (𝑠, 𝑝, 𝑜), where 𝑠 denotes the subject
entity, 𝑝 the predicate or relation, and 𝑜 the object entity, the goal of link prediction is that of
identifying the missing edges in the graph, and has received increasingly more attention since the
seminal work [BUG+13]. The proposed model, TransE, aims at learning a representation of the
graph in a low-dimensional vector space by translating each entity and relation in the KG into
the vector space. Such translation is denoted as the embedding function of the model. In order to
cover higher semantical expressivity, such as reflexivity or symmetry, other embedding models
have been proposed in recent years, see [WQW21] for an in-depth overview.
The general idea of KG embedding models is that semantically related entities in the KG are
embedded closely together in the vector space. Based on a scoring function that takes as input any
possible triple over the KG signature and that depends on an embedding function, each possible
triple in the KG has an associated score. If the score is higher than a threshold, then one concludes
it is a true fact. The goal of the link prediction model is to learn an embedding function based on
which accurate predictions are obtained.
Missing links are problematic when answering queries over KGs and several coping mechanisms
are required to obtain the desired answers to queries. For example, the query Who works for
Amazon and has a degree from MIT? over the KG in Figure 6.1 enhanced with ontology , can be
formulated as 𝑞(𝑥) ← degreeFrom(𝑋,𝗆𝗂𝗍) ∧ worksFor(𝑋, 𝖺𝗆𝖺𝗓𝗈𝗇). Evaluated in the traditional
way such OMQ does not produce answers, however, there exist plausible answers to such query
which may be true, such as entity 𝗆𝖺𝗋𝗒.
Standard query answering is not sufficient in this case but neither is the use of out-of-the-box
link prediction models. For instance, 𝗆𝖺𝗋𝗒 is a missing but desired answer of 𝑞 and it is clear

121

6. NEURAL-SYMBOLIC ONTOLOGY-MEDIATED QUERY ANSWERING

mat mit
bob yale

Professor

maryamazon

University

AProfessor

teachesAt

hasAlumnus

degreeFrom

managerAt

hasAlumnus

Knowledge Graph

type

worksFor
john googleworksFor

type
degreeFrom

type

Ontology

Figure 6.1: An example KG in which solid edges illustrate existing facts in the KG, while dashed
edges indicate missing facts. The rules in  state that (1) managers at companies also work there;
(2) the inverse of relation degreeFrom is hasAlumnus; (3) assistant professors are professors; (4)
teachers at organizations also work there; (5) the range of the relation teachesAt is University.

that it cannot be obtained in the traditional way since fact worksFor(𝗆𝖺𝗋𝗒, 𝖺𝗆𝖺𝗓𝗈𝗇) cannot be
derived by means of ontological reasoning. Similarly, due to the data distribution in the KG, link
prediction models might learn that managerAt(𝗆𝖺𝗋𝗒, 𝖺𝗆𝖺𝗓𝗈𝗇) is a missing true fact, however it
is not sufficient since in order to derive 𝗆𝖺𝗋𝗒 as answer to 𝑞, further domain knowledge has to be
applied. The only way to obtain such answer is to use the fact that managerAt implies worksFor
in ontology  of Figure 6.1, and derive the new fact worksFor(𝗆𝖺𝗋𝗒, 𝖺𝗆𝖺𝗓𝗈𝗇) which leads to the
retrieval of 𝗆𝖺𝗋𝗒 as an answer to 𝑞. As demonstrated, obtaining complete answers for such a
query require combining link prediction models and ontological reasoning.
A naive approach is to apply link prediction before query answering, however this is infeasible
in practice as it requires the scoring and enumeration of all possible subgraphs that can satisfy
a query. Recently, Knowledge Graph Embedding (KGE) techniques [NMTG16, WMWG17]
that are able to predict missing answers to queries have been proposed. These models operate
in the embedding space and produce scores for each entity and each possible query over the
existing signature. The existing methods can be broadly divided into two categories: query-
based [RHL20, RL20, LDJ+21, CRK+21, KLN21] and atom-based [ADMC21]. The former
compute continuous query embedding representations, and use them for answering queries, while
the latter compute answers to a query by identifying the most likely answers to all its atoms using
neural link predictors [NMTG16], and then aggregating those answers using t-norms.
While being promising, such existing embedding-based query answering methods do not account
for ontologies. On the one hand, the use of ontologies requires deductive reasoning, i.e., inferring
new facts by applying ontology rules to existing facts, but it cannot derive true facts that do not
directly follow from the existing knowledge. On the other hand, embedding methods are essentially
tailored towards inductive reasoning, i.e., learning from examples: Given a number of queries
and their answers, they are used to predict answers to other similar queries, but they typically
cannot perform ontology reasoning. Since large portions of expert knowledge can be conveniently
encoded using ontologies, the benefits of coupling ontology reasoning and embedding methods for
KG completion are evident, and have been acknowledged [BRC+20, ZCZ+20, GS18, KLYH19].
However, to the best of our knowledge, such coupling has not been studied for OMQA.
Similarly to the naive approach to predict answers, a natural attempt is to interchangeably complete
the KG using ontology reasoning and embedding methods, and then perform query answering
on top of the result. This naive procedure, as mentioned before, comes with a big scalability
challenge: In practice, we need to restrict ourselves to computing merely small subsets of likely

122

6.1. Query Answering over Knowledge Graph Embeddings

fact predictions required for answering a given query; thus more sophisticated techniques are
required. To this end, we investigate three open questions: (1) How can we adapt existing OMQA
techniques to the setting of Knowledge Graph Embeddings (KGE)? (2) How do different data
augmentation strategies impact the accuracy of existing embedding models on the OMQA task?
and (3) Does the enforcement of ontology axioms in the embedding space, via the loss function,
help in improving the inductive and deductive reasoning performance? We answer these questions
by making the following contributions:

• We formally define the task of Embedding-Based OMQA (E-OMQA) and empirically show
that existing off-the-shelf KGE models applied naively perform poorly on this task.

• We propose novel ontology-driven strategies for sampling training queries as well as loss
function modifications to enforce the ontology within the embedding space, and demonstrate
the effectiveness of these proposals on popular representatives of query-based and atom-based
KGE models.

• Since no previous benchmarks exist for E-OMQA, we design two datasets using LUBM and
NELL, which are well-known benchmarks for OMQA and embedding models, respectively.

• Extensive evaluation for the E-OMQA task shows that enforcing the ontology via the loss
function improves the deductive power of the KGE models, while data augmentation seems to
be much more crucial for optimal performance. We obtain improvements, ranging from 20%
to 55% in HITS@3.

The chapter is structured as follows: In Section 6.1, we present the preliminaries regarding the
KG completion problem and we focus on two representative embedding techniques for QA. Next,
in Section 6.2 we introduce the problem of E-OMQA. The proposed solutions for E-OMQA
are presented in Section 6.3 – where we introduce several ontology-driven data augmentation
strategies, and in Section 6.4 – where we present techniques for ontology injection into the loss
function of the representative models. Section 6.5 presents the evaluation procedure and results
on two novel benchmarks. We conclude the chapter with the related work and discussion in
Section 6.6.

6.1 Query Answering over Knowledge Graph Embeddings
In this section we present a general overview on knowledge graph embeddings and two state-of-
the-art models that rely on a learned embedding function to answer queries.

6.1.1 Knowledge Graphs and Embedding Models
In a broad sense, a KG contains data represented as a multi-relational graph. In particular, a
knowledge graph (KG) is a set of triples of the form (𝑠, 𝑝, 𝑜) in which 𝑠 and 𝑜 denote entities,
such as 𝖬𝖺𝗋𝗒 and 𝖠𝗆𝖺𝗓𝗈𝗇, while 𝑝 denotes the relation between 𝑠 and 𝑜, like worksFor. This
resembles to the already familiar notion of an ABox and it is relatively easy to view any given
ABox as a KG and vice-versa. However, given the already defined ABox signature, there is

123

6. NEURAL-SYMBOLIC ONTOLOGY-MEDIATED QUERY ANSWERING

another distinction we need to make: concept assertions of the form 𝐴(𝑎) are given as triples of
the form (𝑎, type, 𝐴) in a KG, using the special relation “type”, thus the set of entities captures
symbols from 𝐂 ∪𝐊, i.e. concept names and constants. Given a KG , the set of certain answers
for an OMQ  = (𝑞,), denoted by 𝑐𝑒𝑟𝑡(,) is the set of certain answers obtained over the
corresponding ABox  obtained by transforming each triple into an ABox assertion.
An important task is that of link prediction in which the goal is to predict missing relations between
existing entities in the graph. This amounts to predict plausible answers to atomic queries (having
exactly one answer variable) such as 𝑞(𝑥) ← worksFor(𝖬𝖺𝗋𝗒, 𝑥). Statistical approaches that use
embeddings are the most promising, in which, roughly speaking, entities and relations in the
signature of the KG are encoded as points and regions in a low-dimensional vector space with
the goal of creating semantically meaningful vector representation of the data. This implies that
entities that are (possibly) related are closely located within the embedding space. By leveraging
the underlying structure of the data, the embedding-based model could potentially learn additional
data patterns which are then leveraged for predicting missing edges in the graph. Among the most
popular such models are TransE [BUG+13], DistMult [YYH+15] and ComplEx [TWR+16].
Recall Definition 5.1, which defines a general notion of ABox completion as an addition of a set
of possible assertions which do not directly follow from the data and the ontology. A natural
attempt in identifying sets of possible assertions is by using link predictors, however in addition,
for the link prediction task the goal is to obtain sets of possible assertions that approximate the
ground truth, thus a link predictor aims at identifying the most relevant sets of possible assertions.
Recently, embedding-based models are able to predict answers to more complex queries. Depend-
ing on the underlying approach, they can be categorized into query-based and atom-based. In the
former category the general idea is to embed arbitrary queries (with more than one atom in the
body) into the vector space by means of learning various geometrical operators such as projection
and intersection. The main representatives of such category are models such as Query2Box
[RHL20] and GQE [HBZ+18]. The atom-based models try to answer any general query by firstly
decomposing it into query atoms which are then answered using existing atomic KGEs models,
and later aggregating all answers using t-norms. The main representative of atomic-based QA
model is CQD [ADMC21]. Given that none of the existing models are tailored for answering
OMQs, we want to adapt such models for predicting missing answers to OMQs. For that we chose
Query2Box and CQD as our front-runners for which we provide next the conceptual description
behind such models.
We define next the type of queries currently supported by Query2Box and CQD.
Definition 6.1 (Anchor queries). Given a (U)CQ 𝑞, the dependency graph of 𝑞 is a graph in which
the nodes correspond to variables or entities in 𝑞 and edges correspond to relations in atoms of 𝑞.
A source node in the graph is a node with no incoming edges and a target node is a node with no
outgoing edges.

An anchor (U)CQ is a (U)CQ for which the dependency graph is a directed acyclic graph in
which each source node is an entity–denoted as anchors, and which has exactly one target node
corresponding to the unique free variable.

124

6.1. Query Answering over Knowledge Graph Embeddings

Figure 6.2: Dependency Graph Example

An example of an anchor query is 𝑞(𝑦) ← ∃𝑥 hasAlumnus(𝗎𝖼𝗅, 𝑥) ∧ hasAlumnus(𝗆𝗂𝗍, 𝑥) ∧
worksFor(𝑥, 𝑦) for which the dependency graph is illustrated in Figure 6.2.
We focus next on each representative embedding model for query answering.

6.1.2 Query2Box
In order to answer queries with conjunction it is required to have a corresponding operation in
the embedding space. That motivates the design choice of Query2Box to embed queries as box
regions given that the intersection of boxes is also a box. This model can also answer queries
with disjunction by firstly transforming each such query into disjunctive normal form, secondly
answering each conjunctive query by performing intersections of boxes, and lastly aggregating
those answers.
Definition 6.2 (Box embeddings). Let 𝐸 ⊂ 𝐂∪𝐊 be a finite set of entities and 𝑅 ⊂ 𝐑∪𝐅 a finite
set of relations. A 𝑑-dimensional box, denoted as 𝐩=(𝐜𝐞𝐧𝐩, 𝐨𝐟𝐟𝐩) ∈ ℝ𝑑 ×ℝ𝑑≥0 where 𝐜𝐞𝐧𝐩 is the
center of the box, and 𝐨𝐟𝐟𝐩 is the positive offset of the box modeling its size, is defined by:

𝑏𝑜𝑥𝐩 = {𝐯 ∈ ℝ𝑑 ∣ 𝐜𝐞𝐧𝐩 − 𝐨𝐟𝐟𝐩 ⪯ 𝐯 ⪯ 𝐜𝐞𝐧𝐩 + 𝐨𝐟𝐟𝐩},

where ⪯ is the element-wise inequality.

A 𝑑-dimensional box embedding is a function that maps each 𝑒 ∈ 𝐸 to a box 𝐞 with offset 𝟎 ∈ ℝ𝑑

(i.e., a point), each 𝑟 ∈ 𝑅 to a box 𝐫, and each anchor query 𝑞 to a box 𝐪.

In order to obtain the embedding of a query, based on the dependency graph, we can derive two
geometric operators: projection and intersection which are then used to compute embeddings to
queries. The idea behind is to learn embeddings to entities and relations such that by performing
projection and intersection operations in the embedding space, the probable answer entities are
contained in the box embedding of each query.

Projection. Assume a KG , a set of entities 𝐸 ⊂ 𝐂 ∪ 𝐊 and a relation 𝑟 ∈ 𝐑 ∪ 𝐅. The
projection operator provides the set {𝑣′ ∈ 𝐸 ∣ 𝑣 ∈ 𝐸, 𝑟(𝑣, 𝑣′) ∈ }. If we are given the
embedding 𝐫 = (𝐜𝐞𝐧𝐫 , 𝐨𝐟𝐟 𝐫), then the projection of a box 𝐯 = (𝐜𝐞𝐧𝐯, 𝐨𝐟𝐟𝐯) by applying element-
wise summation 𝐯 + 𝐫 = (𝐜𝐞𝐧𝐯 + 𝐜𝐞𝐧𝐫 , 𝐨𝐟𝐟𝐯 + 𝐨𝐟𝐟 𝐫). This relational translation [BUG+13]
operation corresponds to the translation and enlargement of the box 𝐯.

125

6. NEURAL-SYMBOLIC ONTOLOGY-MEDIATED QUERY ANSWERING

Intersection. Given a set of entity sets {𝑆1,… , 𝑆𝑛}, this operator computes the intersection
of the given sets. We model the intersection 𝐰 = (𝐜𝐞𝐧𝐰, 𝐨𝐟𝐟𝐰) of a set of boxes by applying the
following operations:

𝐜𝐞𝐧𝐰 = 𝑛
𝑖=1

𝜙(𝐍𝐍(𝐜𝐞𝐧𝐯1),… ,𝐍𝐍(𝐜𝐞𝐧𝐯𝑛))𝑖 ⊙ 𝐜𝐞𝐧𝐯𝑖
𝐨𝐟𝐟𝐰 = 𝑚𝑖𝑛(𝐨𝐟𝐟𝐯1 ,… , 𝐨𝐟𝐟𝐯𝑛)⊙ 𝜎(𝜓(𝐨𝐟𝐟𝐯1),… , 𝐨𝐟𝐟𝐯𝑛),

where ⊙ and 𝑚𝑖𝑛 denote the element-wise multiplication and minimum, respectively. 𝐍𝐍 ∶ ℝ𝑑 ↦
ℝ𝑑 is a 2-layer feed-forward neural network having the same dimensionality for the hidden layers
as for the input layer. 𝜙 and 𝜎 stand for softmax and sigmoid functions, respectively, applied in a
dimension-wise manner. 𝜓 is a permutation invariant function composed of a 2-layer feed-forward
network followed by element-wise mean operation and a linear transformation. The center 𝐜𝐞𝐧𝐰 is
calculated as the weighted mean of the box centers 𝐜𝐞𝐧𝐯1 ,… , 𝐜𝐞𝐧𝐯𝑛 . This geometric intersection
provides a smaller box that lies inside the set of boxes.
Intuitively, the projection and intersection operators are used to perform graph traversal in the
vector space. Note that there is a set of parameters, corresponding to the parameters of the
projection and intersection operators, that need to be optimized in order to learn the embedding
function. For more technical details, we invite the reader to consult the original work – [RHL20].

Scoring Function. The score for an entity 𝑣 being an answer to 𝑞 is computed based on the
Euclidean distance from 𝐯 to 𝐪:

𝑑(𝐪, 𝐯) = 𝑑outside(𝐪, 𝐯) + 𝛼 ⋅ 𝑑inside(𝐪, 𝐯),

where 𝑑outside represents the distance between 𝐯 and the margins of the box 𝐪, while 𝑑inside
represents the distance between 𝐯 and the center of 𝐪, and 𝛼 is a weight which penalizes if 𝐯 is
inside the box but far from the center.

Training Objective. The goal is to learn the (box) embeddings of entities and relations such
that for each query embedding, computed as a sequence of projection and intersection operations
in the embedding space, the embedding of each answer entity is located inside the box embedding
of the query. This is achieved by minimizing the following loss function:

𝐿 = −log 𝜎(𝛾 − 𝑑(𝐪, 𝐯)) −
𝑘∑
𝑖=1

1
𝑘

log 𝜎(𝑑(𝐯′𝑖,𝐪) − 𝛾)

where 𝛾 is a scalar margin, 𝑣 is an answer of 𝑞 (i.e., positive entity) and 𝑣′𝑖 is a non-answer entity
(i.e., negative entity) and 𝑘 is the number of negative examples. The 𝜎 function (called sigmoid
function) is being used to transform the distance between the embedding of a query and the
embedding of some entity into the interval (0, 1). The intuition behind the loss function is that
with each training step, the distance between each positive entity and the query box is minimized,
and the distance between each negative entity and the query box is maximized.

126

6.2. Embedding-based Ontology-mediated Query Answering

6.1.3 Continuous Query Decomposition (CQD)
Another embedding model which we consider is Continuous Query Decomposition (CQD) which
relies on neural link predictors for answering atomic subqueries, and aggregates the resulting
scores via t-norms.

Neural Link Predictor. A neural link predictor is a differentiable model in which assertions
are mapped into a 𝑑-dimensional vector space and then used for obtaining a score for the atom.
More precisely, given an assertion 𝑟(𝑎, 𝑏) or 𝐴(𝑎), the score for 𝑟(𝑎, 𝑏) or 𝐴(𝑎), is computed as
𝑓𝑟(𝐚,𝐛), resp. 𝑓type(𝐚,𝐀), where 𝐚,𝐛,𝐀 ∈ ℝ𝑑 are the embedding vectors of entities 𝑎, 𝑏, 𝐴, and
𝑓𝑟, respectively 𝑓type take as input any two entity embeddings and produce a score in interval
[0, 1] that denotes the likelihood of the triple 𝑟(𝑎, 𝑏), respectively 𝐴(𝑎).
Current implementation of CQD is based on neural link predictor ComplEx-N3 [TWR+16] and the
technical details of such model are not relevant for understanding how to answer queries. Moreover,
any neural link predictor can be in principle used for the continuous query decomposition method.

T-Norms. A t-norm is a generalization of the conjunction logical operator, and the ones that
are being used by this technique are the product t-norm ⊤prod(𝑥, 𝑦) = 𝑥 ⋅ 𝑦, and the Gödel t-norm
⊤min(𝑥, 𝑦) = 𝑚𝑖𝑛{𝑥, 𝑦}. For handling disjunction, the complementary t-conorm is defined as
⊥(𝑥, 𝑦) = 1 − ⊤(1 − 𝑥, 1 − 𝑦).

Query Answering via Combinatorial Optimization. Given a query 𝑞, in this approach we
search for a set of variable substitutions that maximizes the query score. This is done by traversing
the dependency graph of the query and for each atom 𝑟(𝑎, 𝑥) where 𝑎 is an entity and 𝑥 a variable, 𝑥
is replaced by top-𝑘 entities 𝑐 that maximize 𝑓𝑟(𝐚, 𝐜), i.e. the most likely entities that are predicted
as answers to the atomic query 𝑞(𝑥) ← 𝑟(𝑎, 𝑥) by the neural link predictor. This procedure is
similar to the beam search. The results are then aggregated using t-norms as described above.

6.2 Embedding-based Ontology-mediated Query Answering
Current embedding-based QA methods, like the ones presented before, only focus on inductive
reasoning, i.e. answering queries by predicting missing facts based on patterns learned from
the data, and lack the ability of deductive reasoning, i.e. inferring new triples derived from
existing triples and predefined logical axioms in ontologies. Inductive and deductive reasoning
complement each other, and thus yield more complete answers to a given query. Therefore, our
goal is to develop an Embedding-Based Ontology-Mediated Query Answering method in which
both types of reasoning are combined.
Following the common settings for KG completion[ACLS20, ADMC21, DNPR13], we define the
ideal completion 𝑖 of a knowledge graph  as a super-set of  that contains as many true triples,
constructed using the signature of , as possible. For example, 𝑖 for  in Figure 6.1 contains in
addition the triples denoted by the dashed edges. The goal is then to approximate certain answers
to OMQs over 𝑖. Given that 𝑖 is difficult to obtain in practice, in order to evaluate the accuracy

127

6. NEURAL-SYMBOLIC ONTOLOGY-MEDIATED QUERY ANSWERING

of an embedding method, the standard procedure is to consider some 𝑖 typically fixed at the
beginning (testing graph) and  (training graph) is created by removing facts from 𝑖.
For a given KG , based on the particular scoring function, and the learned embedding function,
the embedding-based QA function 𝑓 takes as input a query and returns answers to that query. We
rely on such an abstract notion to define the problem of answering OMQs over KGEs.
Definition 6.3 (Embedding-based OMQA). Let  be a KG,  an ontology, and 𝑖 be the ideal
completion of . An embedding function 𝑓 is reliable if for any query 𝑞 and entity 𝑎 we have
𝑎 ∈ 𝑐𝑒𝑟𝑡(𝑞, ∅,𝑖) iff 𝑎 ∈𝑓 (𝑞). Moreover, 𝑓 is also ontology-aware if for any query 𝑞 and entity
𝑎 we have 𝑎 ∈ 𝑐𝑒𝑟𝑡(𝑞,,𝑖) iff 𝑎 ∈𝑓 (𝑞). The problem of embedding-based OMQA is to obtain
a reliable and ontology-aware embedding function.

While we do not have access to the ideal completion 𝑖 of , our goal is to approximate it using
embedding methods. Note that, 𝑐𝑒𝑟𝑡(𝑞,,𝑖) subsumes both 𝑐𝑒𝑟𝑡(𝑞, ∅,𝑖), the answers that can
be approximated by an embedding QA method via inductive reasoning, and 𝑐𝑒𝑟𝑡(𝑞,,), the
answers computed by OMQA methods via deductive reasoning. In fact the most challenging
answers are those that require deductive reasoning over missing facts (so-called hard answers).
Inspired by classical approaches for OMQA, we suggest the following options for embedding-
based OMQA.

Query Rewriting. One of the most natural approaches is to first apply the ontology rewriting
and then to evaluate each rewriting using the embedding-based QA function 𝑓. In practice this
amounts to train any embedding-based QA model using only information from , and then take the
union of the set of answers of each query in the rewriting. This setting is similar to the rewriting
techniques which are sound and complete procedures for OMQA. However, as our experiments
demonstrate, this method enhances the effectiveness of identifying hard answers only by little
compared to the evaluation of the original query using 𝑓 (more details in Section 6.5).

Ontology-Aware Models. An alternative to query rewriting is to develop an embedding QA
function that accounts for axioms in . While several ontology-aware models have been proposed
for the standard link prediction task [MDRR17, ACLS20], to the best of our knowledge, none of
the existing models addresses the problem of embedded-based OMQA. Thus, we propose two
different approaches:

1. To train existing embedding models for logical QA on the data derived from the deductive
closure of  using .

2. To develop an ontology-aware embedding model that has special terms in the training
objective structurally enforcing in the embedding space the axioms in .

While the proposed approaches can be realized on top of any embedding model for complex QA, in
this work we verify their effectiveness on Query2Box and CQD. Regarding (1), in Section 6.3 we
present several methods for effective ontology-driven training. As for (2), building on Query2Box,
in Section 6.4 we develop an ontology-aware embedding model. Moreover, as an ontology-
aware extension of 𝐶𝑄𝐷, we build it on top of the neural link predictor using adversarial sets

128

6.3. Ontology-driven Data Sampling

regularization (ASR) [MDRR17] to enforce the ontology axioms. We chose this approach, since
it is general, and allows us to incorporate rules into any off-the-shelf neural link predictor. In our
experiments, we use ComplEx-N3 as it requires minimal modification to CQD and it outperforms
other neural link predictors (see [LUO18]).

6.3 Ontology-driven Data Sampling
In order to obtain a reliable and ontology-aware QA function, the training set has to be carefully
designed. The existing sampling procedure in the literature [HBZ+18, RHL20], arbitrarily chooses
entities and edges in the graph to construct queries of various shapes. The training dataset consists
of arbitrary queries and their answers over the KG. Since for Query2Box the projection and
intersection operators have to be trained, queries of different shapes must be considered, while for
CQD, since it relies on a neural link predictor, atomic queries are sufficient. For checking how
well the model generalizes, the testing queries consist of more complex shapes and their answers
are taken over 𝑖.
The set of training queries does not take the ontology into account as they are randomly generated
and answered over the KG alone, as positive entities. The negative entities, meaning some of
the entities which are not answers over the KG, are as well randomly generated during training.
This random query sampling technique is clearly not optimal for the case of OMQs since queries
which might not have answers over the ABox alone cannot be generated following such procedure,
while implicit answers can be selected as negative entities during training.
There are also other limitations which we need to consider. In practice it is not feasible to consider
all possible queries of some shape over a given signature as they can be exponentially many. In the
following, we discuss various options for sampling queries to train ontology-aware KGE models.

Certain Answer and Query Rewriting-Based Sampling. The first natural training approach
is to use the random query sampling procedure described above but take their certain answers
instead of the answers over the KG alone. For ontology languages such DL-Lite++(non-rec) and
DL-Lite++(rec-safe) introduced in Chapter 3 computing certain answers can be done efficiently.
A second approach is to incorporate the ontology axioms in the training set. To do that, for each
query shape we can randomly sample queries over the KG, using the standard procedure described
above, transform each query into a query templates by marking atoms for specializing and gener-
alizing, and generate their generalizations and specializations obtained using the reformulation
rules in Table 4.1 presented in Chapter 4. The last step is to incorporate the reformulations
into the training set alongside their certain answers. Intuitively, the specializations of a given
query 𝑞 incorporate additional more specific information regarding the answers of 𝑞, while the
generalizations of 𝑞 incorporate additional related entities, which can reinforce the inductive bias
of the model.
Example 6.1. Let 𝑞1(𝑥)←University(𝑥), 𝑞2(𝑥)←∃𝑧 teachesAt(𝑧, 𝑥) be two queries. Using R3 in
Table 4.1 and (5) in Figure 6.1 we get that 𝑞2 is a specialization of 𝑞1 and vice-versa, 𝑞1 is a
generalization of 𝑞2.

129

6. NEURAL-SYMBOLIC ONTOLOGY-MEDIATED QUERY ANSWERING

In general, there are exponentially many rewritings thus to keep the training size reasonable, we
fix a rewriting depth, up to which the respective training queries are generated, via a dedicated
parameter.

Strategic Ontology-Based Sampling. While adding generalizations and specializations of
randomly selected queries should capture some parts of the domain knowledge, many relevant
queries might still be missed. For example, if query 𝑞(𝑥) ← teachesAt(𝑥, 𝗒𝖺𝗅𝖾) is not sampled
during the random procedure neither is going to be 𝑞′(𝑥) ← worksFor(𝑥, 𝗒𝖺𝗅𝖾) since 𝗒𝖺𝗅𝖾 has no
incoming worksFor edges. Based on this observation that the random sampling could still miss
relevant part of implicit information, another training approach that we propose is to leverage the
ontology to strategically generate the train queries.
For that first, we formalize the set of target queries by means of a query shape, i.e., a directed
acyclic graph (DAG) (𝑁,𝐸), where 𝑁 is a set of nodes and 𝐸 ⊆ 𝑁 × 𝑁 is a set of directed
edges. Such DAG captures the underlying structure of each query having that shape. The set of
target queries is then obtained by applying a labeling function to assign symbols in Σ to nodes
and edges.
Definition 6.4 (Query Shape). A query shape 𝑆 is a tuple (𝑁,𝐸, 𝑛) such that (𝑁,𝐸) is a DAG
and 𝑛 ∈ 𝑁 is the distinguished node of 𝑆 (i.e., the node corresponding to the answer variable).
For a given set of relations and constants in Σ, a labeling function 𝓁 ∶ 𝑁 ∪ 𝐸 ↦ Σ ∪ 𝐕 maps
each node to either a variable or an entitiy and each edge to a relation symbol in Σ.

Our goal is to exploit the ontology to label query shapes and create queries that are semantically
meaningful. For that we create query templates for each particular shape and then use the
derivation rules introduced in Table 4.1 from Chapter 4 to obtain semantically meaningful training
queries. The query sampling process is then defined for shapes that belong to the anchor queries,
thus no cycles are involved and it is sufficient to only look at the neighboring edges and nodes to
label each query shape.
Towards that, for any relation 𝑝 in the signature of the ontology we define:

𝑖𝑛𝑣(𝑝) = {𝑝′ ∣ 𝑝 ⊑ 𝑝′− ∈ },
𝑑𝑜𝑚(𝑝) = {𝐴 ∣ ∃𝑝′⊑𝐴′ ∈  s.t. 𝑝 ⊑∗ 𝑝′, 𝐴⊑∗𝐴′ or 𝐴′⊑∗𝐴},

𝑟𝑎𝑛𝑔𝑒(𝑝) = {𝐴 ∣ ∃𝑝′−⊑𝐴′∈ s.t. 𝑝⊑∗𝑝′, 𝐴⊑∗𝐴′or𝐴′⊑∗𝐴},
𝑓𝑜𝑙𝑙𝑜𝑤𝑠(𝑝) = {𝑝′ ∣ 𝑟𝑎𝑛𝑔𝑒(𝑝) ∩ 𝑑𝑜𝑚(𝑝′) ≠ ∅ or 𝑝◦𝑝′ ⊑ 𝑠 ∈ },
𝑖𝑛𝑡𝑒𝑟𝑟(𝑝) = {𝑝′ ∣ 𝑟𝑎𝑛𝑔𝑒(𝑝) ∩ 𝑟𝑎𝑛𝑔𝑒(𝑝′) ≠ ∅ or 𝑝1 ∈ 𝑖𝑛𝑣(𝑝), 𝑝2 ∈ 𝑖𝑛𝑣(𝑝′) and 𝑑𝑜𝑚(𝑝1) ∩ 𝑑𝑜𝑚(𝑝2) ≠ ∅},
𝑖𝑛𝑡𝑒𝑟𝑑(𝑝) = {𝑝′ ∣ 𝑑𝑜𝑚(𝑝) ∩ 𝑑𝑜𝑚(𝑝′) ≠ ∅ or 𝑝1 ∈ 𝑖𝑛𝑣(𝑝), 𝑝2 ∈ 𝑖𝑛𝑣(𝑝′) and 𝑟𝑎𝑛𝑔𝑒(𝑝1) ∩ 𝑟𝑎𝑛𝑔𝑒(𝑝2) ≠ ∅}.

Intuitively, for a given relation 𝑝, the set 𝑖𝑛𝑣(𝑝) contains all inverse relations of 𝑝, 𝑑𝑜𝑚(𝑝) contains
all domain types for 𝑝, 𝑟𝑎𝑛𝑔𝑒(𝑝) all range types for 𝑝, 𝑓𝑜𝑙𝑙𝑜𝑤𝑠(𝑝) stores all relations 𝑝′ which
can follow 𝑝, and 𝑖𝑛𝑡𝑒𝑟𝑟(𝑝), 𝑖𝑛𝑡𝑒𝑟𝑑(𝑝) contain respectively all relations 𝑝′ which can intersect 𝑝
on range and domain positions. Then, for each shape, starting from the anchor nodes, we label
nodes and edges to create query templates that are valid w.r.t.  as illustrated in Figure 6.3. This

130

6.4. Ontology-Aware Models

Figure 6.3: Ontology-driven rules to label query template atoms; 𝗌, 𝗀 denote that the atom can be
either specialized or generalized.

query sampling process uses only the ontology, thus it is data independent, however to create
anchor UCQs, we also randomly choose a small percentage of entities as anchors provided that
the obtained anchored UCQ has answers.

6.4 Ontology-Aware Models
In this section we present the modifications we made to Query2Box and CQD in order to enforce
the ontology axioms in the embedding space. For CQD we build it on top of the neural link
predictor using adversarial sets regularization (ASR) [MDRR17] to enforce the ontology axioms.
We chose this approach, since it is general, and allows us to incorporate rules into any off-the-shelf
neural link predictor. In our experiments, we use ComplEx-N3 as it requires minimal modification
to CQD and it outperforms other neural link predictors (see [LUO18]).

6.4.1 Ontology-aware CQD
In this subsection we briefly describe how we inject the ontology axioms into the neural link
predictor employed by CQD. For that we rely on the FO translation of the DL axioms. Following
[MDRR17], for each rule the goal is to identify the entity embeddings which maximize an
inconsistency loss, meaning the entities for which the scoring of the head is much lower compared
to the scoring of the body. For example, given the rule teachesAt(𝑋, 𝑌) → type(𝑌 ,University),
the goal is to find a mapping from variables to 𝑑-dimensional embeddings, i.e. 𝜙 ∶ 𝐕 ↦ ℝ𝑑 , such
that [𝑓teachesAt(𝜙(𝑋), 𝜙(𝑌)) − 𝑓type(𝜙(𝑌),𝐔𝐧𝐢𝐯𝐞𝐫𝐬𝐢𝐭𝐲)]+ is maximal, where [𝑥]+ = 𝑚𝑎𝑥([𝑥], 0)
and [𝑥] is the integral part of x. Such mapping determines a so-called adversarial input set,
which is used as an adaptive regulariser for the neural link predictor. This inconsistency loss
is then incorporated into the final loss function of the ontology-aware model which tries to
minimize the maximal inconsistency while learning to predict the target graph over the given sets
of correct triples. In our experiments we rely on the existing implementation of the adversarial
sets regularisation method into ComplEx-N3, which is the default neural link predictor for CQD.

6.4.2 Ontology-aware Query2Box
In this section, we present our novel training objective function employed by Query2Box. Recall
that when embedding a query, the Query2Box model defines a box in an embedding space, such
that the answer entities of the given query are mapped to points located inside of the box. The

131

6. NEURAL-SYMBOLIC ONTOLOGY-MEDIATED QUERY ANSWERING

Figure 6.4: Our extension of Query2Box, where query embeddings capture the ontology axiom
teachesAt ⊑ worksFor, represented by the inclusion of the respective boxes.

general idea is to treat each ontological axiom as an inclusion of queries and then injecting them
into the model by ensuring in the vector space the inclusion of the boxes corresponding to the
respective queries.
Example 6.2. In Figure 6.4, the entities and relations are embedded into the vector space as points
and projection operators, respectively. The embedding of 𝑞(𝑌) ← ∃𝑋.hasAlumnus(𝗆𝗂𝗍, 𝑋) ∧
worksFor(𝑋, 𝑌) is represented by the larger grey box, obtained by applying the projection
hasAlumnus to the embedding of entity 𝗆𝗂𝗍 followed by the projection on worksFor. To enforce
teachesAt ⊑ worksFor we ensure that the box corresponding to 𝑞′(𝑌)←∃𝑋.hasAlumnus(𝗆𝗂𝗍, 𝑋)∧
teachesAt(𝑋, 𝑌), is contained in the box corresponding to 𝑞.

The goal is to learn the embedding of queries, such that the distance between the box, correspond-
ing to the query, and its answers is minimized, while the distance to this box from other negative
samples is maximized. Similarly to [RHL20], we define the distance between 𝐪 ∈ ℝ𝑑 × ℝ𝑑≥0
and 𝐯 ∈ ℝ𝑑 as 𝑑(𝐪, 𝐯) = ‖𝐜𝐞𝐧𝑞 − 𝐯‖1, namely the 𝐿1 distance from the entity 𝐯 to the center
of the box. Using the sigmoid function we transform the distance into the (0, 1) interval, that
is, 𝑝(𝐯 |𝐪) = 𝜎

(
− (𝑑(𝐪, 𝐯) − 𝛾)

), where 𝛾 > 0 is a margin, which denotes the probability of
𝑣 ∈ 𝑐𝑒𝑟𝑡(𝑞,,𝑖).
For a query 𝑞, let 𝐺𝑒𝑛(𝑞) = {𝑞1… 𝑞𝑛} be the set of all generalizations of 𝑞 based on . Given a
train query 𝑞 and its certain answer 𝑣 ∈ 𝑐𝑒𝑟𝑡(𝑞,,), we aim at maximizing∏𝑛

𝑖=1 𝑝(𝐯 |𝐪𝑖)𝛽𝑖 , where
𝛽𝑖 ≥ 0 is a weighting parameter for all 𝑖 = 1,… , 𝑛. This is achieved by minimizing the negative
log-likelihood:1 − log

(∏𝑛
𝑖=1 𝑝(𝐯 |𝐪𝑖)𝛽𝑖) = −

∑𝑛
𝑖=1 𝛽𝑖 log

(
𝑝(𝐯 |𝐪𝑖)). By exploiting the fact that

𝜎(𝑥) = 1−𝜎(−𝑥), for any 𝐯′𝑗 ∉ 𝑐𝑒𝑟𝑡(𝑞,,), we have that 𝑝(𝐯′ |𝐪) = 1−𝑝(𝐯 |𝐪𝑖) = 𝜎(𝑑(𝐪, 𝐯)−𝛾) .

Our goal is to ensure that if 𝑞′ is a generalization of a given train query 𝑞 w.r.t. , then the box of
𝑞′ contains the box of 𝑞. In other words, if 𝑎 is an answer to the query 𝑞 then the distance not only
between 𝑎 and 𝑞 should be minimized, but also between 𝑎 and 𝑞′ as well as between 𝑎 and all
other generalizations of 𝑞. The following training objective reflects our goal:

𝐿=−
𝑛∑
𝑖=1

𝛽𝑖 log 𝜎
(
𝛾 − 𝑑(𝐯,𝐪𝑖)

)
−

𝑘∑
𝑗=1

1
𝑘
log 𝜎(𝑑(𝐯′𝑗 ;𝐪) − 𝛾),

where 𝐯′𝑗 ∉ 𝑞[,] is a random entity for all 𝑗 = 1,… , 𝑘 obtained via negative sampling. In our
experiments, we use 𝛽𝑖 = |𝐺𝑒𝑛(𝑞)|−1 = 1∕𝑛.

1The log is strictly monotonically increasing, thus, it will not change the maximization. It only changes the product
to a summation. During training we consider a minimization, which motivates the negative sign.

132

6.5. Evaluation

Example 6.3. Consider 𝑞(𝑌)←∃𝑋.hasAlumnus(𝗆𝗂𝗍, 𝑋)∧type(𝑋,AProfessor)∧teachesAt(𝑋, 𝑌).
We have 𝐺𝑒𝑛(𝑞) = {𝑞1, 𝑞2, 𝑞3}, where 𝑞1 is obtained from 𝑞 by substituting teachesAt with
worksAt, while 𝑞2 is 𝑞 with type(𝑋, 𝖯𝗋𝗈𝖿𝖾𝗌𝗌𝗈𝗋) instead of type(𝑋,𝖠𝖯𝗋𝗈𝖿𝖾𝗌𝗌𝗈𝗋). In 𝑞3 the first,
second and third atoms are resp. the same as in 𝑞, 𝑞1 and 𝑞2. It holds that 𝑞[,] = {𝗒𝖺𝗅𝖾}, hence
our training objective is to minimize the distance between 𝐲𝐚𝐥𝐞 (the embedding of 𝗒𝖺𝗅𝖾), and 𝐪 as
well as the distance between 𝐲𝐚𝐥𝐞 and the boxes of 𝑞1, 𝑞2 and 𝑞3 (denoted by 𝐪𝟏, 𝐪𝟐 and 𝐪𝟑).

Note that conceptually, our training data sampling techniques and the loss function modifica-
tions are flexible in terms of the DL in which the ontology is encoded. The only restriction is
that for this DL there exist meaningful reformulation rules to generalize queries and efficient
algorithms to construct them. Moreover, using this technique one can enforce more expres-
sive rules: For example, consider the pair of queries: 𝑞1(𝑦) ← ∃𝑥 nationality(𝑥,𝖢𝖺𝗇𝖺𝖽𝗂𝖺𝗇) ∧
hasAward(𝑥,𝖳𝗎𝗋𝗂𝗇𝗀𝖠𝗐𝖺𝗋𝖽) ∧ graduatedFrom(𝑥, 𝑦) and 𝑞2(𝑦) ← ∃𝑥 nationality(𝑥,𝖠𝗆𝖾𝗋𝗂𝖼𝖺𝗇) ∧
worksFor(𝑥,𝖦𝗈𝗈𝗀𝗅𝖾) ∧ hasPhDFrom(𝑥, 𝑦). Using our method one can enforce the following
complex rule: “The set of universities, from which Canadian Turing Awardees are graduated
is included in the set of universities from which American Google employees got their PhDs
degrees”. To the best of our knowledge, existing embedding methods cannot capture this kind of
complex rules involving constants.

6.5 Evaluation
In this section, we evaluate the proposed training strategies on the two recent embedding models
for QA: Query2Box model [RHL20] and Continuous Query Decomposition [ADMC21] as well
as our ontology-aware adaptations 𝑂2𝐵 and 𝐶𝑄𝐷𝐴𝑆𝑅. All models are evaluated in different
settings to measure their ability to perform inductive reasoning, deductive reasoning, and their
combination.2

Query and Answers Sampling. We use the same type of queries as [RHL20] (see Figure 6.5).
We consider each input KG  to be the ideal completion (i.e. 𝑖) and then partition it into𝑣𝑎𝑙𝑖𝑑 for validation and 𝑡𝑟𝑎𝑖𝑛 for training by discarding 10% of edges at each step; this yields𝑡𝑟𝑎𝑖𝑛 ⊊ 𝑣𝑎𝑙𝑖𝑑 ⊊ . We then create several training sets of queries according to our ontology-aware
data sampling strategies from Section 6.3. More specifically, these include:
𝑝𝑙𝑎𝑖𝑛: the training queries are randomly sampled based on the signature of 𝑡𝑟𝑎𝑖𝑛, and their plain

answers, i.e. over 𝑡𝑟𝑎𝑖𝑛 alone ignoring the ontology.
𝑔𝑒𝑛: queries from 𝑝𝑙𝑎𝑖𝑛 augmented with their ontology-based generalizations 3; all answers are

certain, i.e. over 𝑡𝑟𝑎𝑖𝑛 by taking into account the ontology.
𝑠𝑝𝑒𝑐: queries from 𝑔𝑒𝑛 augmented with their ontology-based specializations; all answers are

certain answers as well.
2Code and data are available at https://tinyurl.com/66hbhppc.
3This setting is similar to random sampling over the deductive closure of 𝑡𝑟𝑎𝑖𝑛 w.r.t. , but our procedure is

guaranteed to terminate. We used the rewriting depth of up to 10.

133

https://tinyurl.com/66hbhppc

6. NEURAL-SYMBOLIC ONTOLOGY-MEDIATED QUERY ANSWERING

upu

uu

2u
u1p 3i2p 3p 2i ip pi

Figure 6.5: Query shapes considered in our experiments, where blue nodes correspond to anchor
entities and red ones to answer variables; p stands for projection, i for intersection and u for union.
The first five shapes are used in training.

𝑜𝑛𝑡𝑜: queries constructed relying on the ontology axioms as introduced in section 6.3, for which
we randomly choose a percentage of valid entities as anchors; all answers are certain.

Following [RL20], the training query shapes are the first five ones in Figure 6.5 (1p–3i); non-
compliant specializations and generalizations are discarded. The 𝑄2𝐵 and 𝑂2𝐵 are trained on all
five query shapes, while 𝐶𝑄𝐷 and 𝐶𝑄𝐷𝐴𝑆𝑅 are trained only on 1p queries [ADMC21].

Evaluation Procedure. For each trained model we measure its performance using standard
metric HITS at 𝐾 for 𝐾=3 (HITS@3), which indicates the frequency that the correct answer is
ranked among the top-3 results (the higher, the better). We use such metric for measuring the
reliability and ontology-awareness of the resulting models (as in Definition 6.3):
Inductive reasoning (I). Is the model able to predict missing answers to queries over the ideal

completion 𝑖?
Deductive reasoning (D). Is the model able to predict answers that can be inferred from the

known triples in 𝑡𝑟𝑎𝑖𝑛 using ontology axioms?
Inductive + Deductive reasoning (I+D). The combination of I and D: Is the model able to

predict missing answers that are inferred from the ideal completion 𝑖 using axioms from?
For test case I , respectively I+D , test queries are randomly sampled over , respectively over
deductive closure of  w.r.t. , while for D they are randomly sampled over the deductive closure
of 𝑡𝑟𝑎𝑖𝑛 w.r.t. . All test queries are sampled in such a way that they cannot be trivially answered
over 𝑡𝑟𝑎𝑖𝑛, and they are unseen during training. In each test case the validation queries are
generated similarly but over 𝑣𝑎𝑙𝑖𝑑 . For each test and validation query, we measure the accuracy
based on so-called hard answers, i.e., those that cannot be trivially answered over 𝑡𝑟𝑎𝑖𝑛 (or 𝑣𝑎𝑙𝑖𝑑
for test queries) and require prediction of missing edges and/or ontology application. The statistics
regarding the train, validation and test queries is presented in Table 6.2.

Models and Datasets. We consider 𝑄2𝐵, 𝑂2𝐵, 𝐶𝑄𝐷 and 𝐶𝑄𝐷𝐴𝑆𝑅 trained in each described
setting: i.e., 𝑀𝑥, where 𝑀 ∈ {𝑄2𝐵, 𝑂2𝐵, 𝐶𝑄𝐷, 𝐶𝑄𝐷𝐴𝑆𝑅 } and 𝑥 ∈ {plain, gen, spec, onto};
𝑄2𝐵𝑝𝑙𝑎𝑖𝑛 and 𝐶𝑄𝐷𝑝𝑙𝑎𝑖𝑛 are taken as baselines. We consider two datasets: NELL [CBK+10],
a general purpose real world KG, and LUBM [GPH05], a domain specific synthetic dataset
describing the university domain. We chose these KGs, as they are among few large KGs that
have ontologies (see Table 6.1 for statistics).

134

6.5. Evaluation

Table 6.1: The number of axioms in the ontology ||, the number of each type of axiom, the size
of the input KG ||, the number of entities |𝐄|, the number of relations |𝐑|, and the number of
materialized triples (|∞()|).

Dataset Ontology  KG || 𝐴 ⊑ 𝐴′ 𝑝 ⊑ 𝑠 𝑝− ⊑ 𝑠 ∃𝑝 ⊑ 𝐴 ∃𝑝− ⊑ 𝐴 || |𝐄| |𝐑| |∞()|
LUBM 68 13 5 28 11 11 284k 55684 28 565k
NELL 307 – 92 215 – – 285k 63361 400 497k

Table 6.2: Number of queries per query shape for each sampling case.

Dataset Train/Test Query Shape
1p 2p 3p 2i 3i ip pi 2u up

LUBM

𝑃 𝑙𝑎𝑖𝑛 110000 110000 110000 110000 110000 – – – –
𝐺𝑒𝑛 117124 136731 150653 181234 208710 – – – –
𝑆𝑝𝑒𝑐 117780 154851 173678 271532 230085 – – – –
𝑂𝑛𝑡𝑜 116893 166159 333406 212718 491707 – – – –

I 8000 8000 8000 8000 8000 8000 8000 8000 8000
D 1241 4701 6472 3829 4746 7393 7557 4986 7122

I+D 8000 8000 8000 8000 8000 8000 8000 7986 8000

NELL

𝑃 𝑙𝑎𝑖𝑛 107982 107982 107982 107982 107982 – – – –
𝐺𝑒𝑛 174310 408842 864268 398412 930787 – – – –
𝑆𝑝𝑒𝑐 174310 419664 906609 401954 936537 – – – –
𝑂𝑛𝑡𝑜 114614 542923 864268 629144 930787 – – – –

I 15688 3910 3918 3828 3786 3932 3895 3940 3966
D 346 4461 4294 4842 5996 7295 5862 5646 6894

I+D 8000 8000 8000 8000 8000 8000 8000 7990 8000

We have configured both 𝑄2𝐵 and 𝑂2𝐵 systems as follows: The size of the embedding dimension
was set to 400, and the models were trained for 15×104 steps using Adam optimizer with an initial
learning rate of 10−4 and the batch size of 512. We evaluated the models periodically and reported
the test results of the models which have the best performance on the validation dataset. For 𝐶𝑄𝐷
and 𝐶𝑄𝐷𝐴𝑆𝑅 we have used the following configuration: we used ComplEx-N3 [LUO18] as the
underlying neural link predictor, where the embedding size was set to 1000, and the regularisation
weight was selected based on the validation set by searching in {10−3, 5 × 10−3,… , 10−1}.

6.5.1 Evaluation Results
We present the results in the settings D and I+D for LUBM and NELL in Tables 6.3–6.6 (ag-
gregated in Table 6.7 which in addition contains also the setting 𝑠𝑝𝑒𝑐) and Figures 6.6–6.7, and

135

6. NEURAL-SYMBOLIC ONTOLOGY-MEDIATED QUERY ANSWERING

Table 6.3: HITS@3 scores in the deductive setting (D) for LUMB
Model Avg. 1p 2p 3p 2i 3i ip pi 2u up
𝑄2𝐵𝑝𝑙𝑎𝑖𝑛 0.253 0.318 0.12 0.103 0.464 0.588 0.181 0.242 0.160 0.104
𝑂2𝐵𝑝𝑙𝑎𝑖𝑛 0.276 0.317 0.113 0.094 0.512 0.63 0.189 0.263 0.257 0.11
𝐶𝑄𝐷𝑝𝑙𝑎𝑖𝑛 0.174 0.101 0.051 0.100 0.364 0.509 0.133 0.199 0.076 0.040
𝐶𝑄𝐷𝐴𝑆𝑅

𝑝𝑙𝑎𝑖𝑛 0.685 0.806 0.727 0.442 0.811 0.777 0.710 0.601 0.649 0.646

𝑄2𝐵𝑔𝑒𝑛 0.506 0.619 0.242 0.113 0.887 0.936 0.426 0.333 0.671 0.327
𝑂2𝐵𝑔𝑒𝑛 0.493 0.641 0.221 0.100 0.876 0.921 0.399 0.317 0.66 0.301
𝐶𝑄𝐷𝑔𝑒𝑛 0.427 0.460 0.150 0.079 0.770 0.830 0.343 0.342 0.618 0.252
𝐶𝑄𝐷𝐴𝑆𝑅

𝑔𝑒𝑛 0.778 0.879 0.794 0.477 0.883 0.871 0.788 0.726 0.835 0.749
𝑄2𝐵𝑜𝑛𝑡𝑜 0.818 0.929 0.760 0.482 0.988 0.994 0.877 0.646 0.932 0.751
𝑂2𝐵𝑜𝑛𝑡𝑜 0.838 0.960 0.771 0.514 0.991 0.996 0.879 0.697 0.963 0.768
𝐶𝑄𝐷𝑜𝑛𝑡𝑜 0.861 0.901 0.857 0.552 0.961 0.979 0.896 0.879 0.942 0.788
𝐶𝑄𝐷𝐴𝑆𝑅

𝑜𝑛𝑡𝑜 0.830 0.902 0.860 0.493 0.920 0.915 0.853 0.818 0.908 0.808

Table 6.4: HITS@3 scores in the inductive and deductive setting (I+D) for LUMB
Model Avg. 1p 2p 3p 2i 3i ip pi 2u up
𝑄2𝐵𝑝𝑙𝑎𝑖𝑛 0.218 0.173 0.101 0.107 0.433 0.546 0.167 0.200 0.133 0.100
𝑂2𝐵𝑝𝑙𝑎𝑖𝑛 0.245 0.235 0.109 0.095 0.488 0.584 0.176 0.218 0.2 0.103
𝐶𝑄𝐷𝑝𝑙𝑎𝑖𝑛 0.179 0.109 0.058 0.104 0.384 0.502 0.130 0.187 0.092 0.046
𝐶𝑄𝐷𝐴𝑆𝑅

𝑝𝑙𝑎𝑖𝑛 0.56 0.682 0.589 0.393 0.659 0.664 0.547 0.488 0.509 0.509

𝑄2𝐵𝑔𝑒𝑛 0.458 0.592 0.267 0.129 0.789 0.870 0.360 0.282 0.552 0.279
𝑂2𝐵𝑔𝑒𝑛 0.447 0.577 0.257 0.114 0.777 0.859 0.359 0.27 0.546 0.264
𝐶𝑄𝐷𝑔𝑒𝑛 0.408 0.539 0.214 0.098 0.710 0.791 0.304 0.302 0.513 0.208
𝐶𝑄𝐷𝐴𝑆𝑅

𝑔𝑒𝑛 0.628 0.733 0.640 0.413 0.717 0.720 0.598 0.599 0.653 0.582
𝑄2𝐵𝑜𝑛𝑡𝑜 0.687 0.762 0.617 0.447 0.868 0.915 0.693 0.555 0.732 0.600
𝑂2𝐵𝑜𝑛𝑡𝑜 0.707 0.771 0.629 0.476 0.878 0.927 0.694 0.619 0.752 0.618
𝐶𝑄𝐷𝑜𝑛𝑡𝑜 0.723 0.752 0.681 0.481 0.870 0.924 0.735 0.728 0.738 0.604
𝐶𝑄𝐷𝐴𝑆𝑅

𝑜𝑛𝑡𝑜 0.664 0.753 0.681 0.421 0.744 0.755 0.643 0.666 0.704 0.615

briefly discuss the setting I (results illustrated in Figure 6.8). Our main observation in the test
case I is that baseline 𝑄2𝐵𝑝𝑙𝑎𝑖𝑛 performs best on LUBM, while 𝐶𝑄𝐷𝑝𝑙𝑎𝑖𝑛 outperforms the other
models and configurations on NELL. The reason is that ontologies are not effective when coping
with missing edges and facts in a KG beyond those that they can deductively infer. In fact, if
statistically, the patterns reflected by ontologies do not hold. The second observation is that the
query rewriting over pre-trained embedding models only slightly improves the prediction accuracy,
resulting in at most 10% enhancement on test cases D and I+D over 𝑄2𝐵𝑝𝑙𝑎𝑖𝑛, and 𝐶𝑄𝐷𝑝𝑙𝑎𝑖𝑛
respectively (see Table 6.8). These limited improvements are likely due to the incompleteness of
the rewriting procedure caused by the restriction of the queries supported by the models. The

136

6.5. Evaluation

Table 6.5: HITS@3 scores in the deductive setting (D) for NELL
Model Avg. 1p 2p 3p 2i 3i ip pi 2u up
𝑄2𝐵𝑝𝑙𝑎𝑖𝑛 0.521 0.763 0.401 0.325 0.776 0.832 0.452 0.535 0.337 0.272
𝑂2𝐵𝑝𝑙𝑎𝑖𝑛 0.664 0.816 0.483 0.413 0.961 0.975 0.535 0.648 0.792 0.355
𝐶𝑄𝐷𝑝𝑙𝑎𝑖𝑛 0.598 0.710 0.412 0.341 0.891 0.929 0.522 0.593 0.649 0.331
𝐶𝑄𝐷𝐴𝑆𝑅

𝑝𝑙𝑎𝑖𝑛 0.708 0.942 0.647 0.403 0.880 0.909 0.666 0.663 0.700 0.570

𝑄2𝐵𝑔𝑒𝑛 0.734 0.974 0.559 0.466 0.99 0.99 0.622 0.685 0.94 0.377
𝑂2𝐵𝑔𝑒𝑛 0.744 0.962 0.572 0.492 0.989 0.990 0.639 0.712 0.944 0.396
𝐶𝑄𝐷𝑔𝑒𝑛 0.953 1.000 0.996 0.601 1.000 1.000 0.997 0.999 1.000 0.988
𝐶𝑄𝐷𝐴𝑆𝑅

𝑔𝑒𝑛 0.949 1.000 0.998 0.570 1.000 1.000 0.998 0.994 0.997 0.989
𝑄2𝐵𝑜𝑛𝑡𝑜 0.725 0.973 0.567 0.466 0.985 0.986 0.606 0.654 0.909 0.384
𝑂2𝐵𝑜𝑛𝑡𝑜 0.748 0.968 0.598 0.496 0.989 0.988 0.646 0.697 0.941 0.412
𝐶𝑄𝐷𝑜𝑛𝑡𝑜 0.591 0.659 0.404 0.329 0.896 0.943 0.515 0.611 0.663 0.302
𝐶𝑄𝐷𝐴𝑆𝑅

𝑜𝑛𝑡𝑜 0.902 0.979 0.921 0.542 0.995 0.995 0.942 0.921 0.976 0.852

Table 6.6: HITS@3 scores in the inductive and deductive setting (I+D) for NELL
Model Avg. 1p 2p 3p 2i 3i ip pi 2u up
𝑄2𝐵𝑝𝑙𝑎𝑖𝑛 0.458 0.516 0.343 0.286 0.747 0.81 0.404 0.447 0.325 0.241
𝑂2𝐵𝑝𝑙𝑎𝑖𝑛 0.596 0.79 0.409 0.359 0.904 0.936 0.479 0.521 0.666 0.303
𝐶𝑄𝐷𝑝𝑙𝑎𝑖𝑛 0.555 0.664 0.383 0.304 0.853 0.903 0.471 0.512 0.599 0.306
𝐶𝑄𝐷𝐴𝑆𝑅

𝑝𝑙𝑎𝑖𝑛 0.592 0.716 0.518 0.337 0.807 0.831 0.547 0.513 0.614 0.445

𝑄2𝐵𝑔𝑒𝑛 0.642 0.858 0.485 0.397 0.928 0.95 0.538 0.539 0.768 0.312
𝑂2𝐵𝑔𝑒𝑛 0.652 0.859 0.494 0.420 0.928 0.953 0.552 0.559 0.77 0.329
𝐶𝑄𝐷𝑔𝑒𝑛 0.809 0.903 0.775 0.473 0.957 0.969 0.821 0.757 0.886 0.743
𝐶𝑄𝐷𝐴𝑆𝑅

𝑔𝑒𝑛 0.787 0.9 0.771 0.467 0.919 0.924 0.793 0.723 0.846 0.741
𝑄2𝐵𝑜𝑛𝑡𝑜 0.636 0.858 0.472 0.398 0.927 0.948 0.529 0.524 0.747 0.317
𝑂2𝐵𝑜𝑛𝑡𝑜 0.655 0.862 0.498 0.423 0.933 0.953 0.557 0.555 0.773 0.340
𝐶𝑄𝐷𝑜𝑛𝑡𝑜 0.545 0.667 0.368 0.293 0.848 0.904 0.453 0.506 0.595 0.275
𝐶𝑄𝐷𝐴𝑆𝑅

𝑜𝑛𝑡𝑜 0.77 0.9 0.741 0.456 0.922 0.923 0.77 0.701 0.851 0.672

results on I and query-rewriting over embeddings are presented in Figure 6.8 and Table 6.8
respectively. Moreover, the results on certain answer prediction (D and I+D) show that none
of the baselines is able to capture the domain knowledge expressed in the ontology, and thus
cannot be used directly for OMQA. Next, we discuss our main observations based on the results
reported on test cases D and I+D . Overall, the effectiveness of the proposed solutions is evident:
for I+D on LUBM the improvements are of almost 50% for Query2Box and 54% for CQD, while
for NELL of almost 20% for Query2Box and 25% for CQD.

137

6. NEURAL-SYMBOLIC ONTOLOGY-MEDIATED QUERY ANSWERING

Table 6.7: HITS@3 metric per query shape for deductive (D) and inductive+deductive (I+D)
Model Test Case D Test Case I+D

Avg. 1p 2p 3p 2i 3i ip pi 2u up Avg. 1p 2p 3p 2i 3i ip pi 2u up

LUBM

𝑄2𝐵𝑝𝑙𝑎𝑖𝑛 0.253 0.318 0.12 0.103 0.464 0.588 0.181 0.242 0.160 0.104 0.218 0.173 0.101 0.107 0.433 0.546 0.167 0.200 0.133 0.100
𝑂2𝐵𝑝𝑙𝑎𝑖𝑛 0.276 0.317 0.113 0.094 0.512 0.63 0.189 0.263 0.257 0.11 0.245 0.235 0.109 0.095 0.488 0.584 0.176 0.218 0.2 0.103
𝐶𝑄𝐷𝑝𝑙𝑎𝑖𝑛 0.174 0.101 0.051 0.100 0.364 0.509 0.133 0.199 0.076 0.040 0.179 0.109 0.058 0.104 0.384 0.502 0.130 0.187 0.092 0.046
𝐶𝑄𝐷𝐴𝑆𝑅

𝑝𝑙𝑎𝑖𝑛 0.685 0.806 0.727 0.442 0.811 0.777 0.710 0.601 0.649 0.646 0.56 0.682 0.589 0.393 0.659 0.664 0.547 0.488 0.509 0.509

𝑄2𝐵𝑔𝑒𝑛 0.506 0.619 0.242 0.113 0.887 0.936 0.426 0.333 0.671 0.327 0.458 0.592 0.267 0.129 0.789 0.870 0.360 0.282 0.552 0.279
𝑂2𝐵𝑔𝑒𝑛 0.493 0.641 0.221 0.100 0.876 0.921 0.399 0.317 0.66 0.301 0.447 0.577 0.257 0.114 0.777 0.859 0.359 0.27 0.546 0.264
𝐶𝑄𝐷𝑔𝑒𝑛 0.427 0.460 0.150 0.079 0.770 0.830 0.343 0.342 0.618 0.252 0.408 0.539 0.214 0.098 0.710 0.791 0.304 0.302 0.513 0.208
𝐶𝑄𝐷𝐴𝑆𝑅

𝑔𝑒𝑛 0.778 0.879 0.794 0.477 0.883 0.871 0.788 0.726 0.835 0.749 0.628 0.733 0.640 0.413 0.717 0.720 0.598 0.599 0.653 0.582

𝑄2𝐵𝑠𝑝𝑒𝑐 0.506 0.677 0.229 0.107 0.893 0.936 0.408 0.327 0.66 0.313 0.456 0.590 0.263 0.122 0.791 0.872 0.359 0.286 0.548 0.275
𝑂2𝐵𝑠𝑝𝑒𝑐 0.497 0.646 0.228 0.104 0.873 0.919 0.407 0.317 0.666 0.310 0.447 0.576 0.258 0.113 0.776 0.857 0.360 0.27 0.544 0.265
𝐶𝑄𝐷𝑠𝑝𝑒𝑐 0.436 0.459 0.193 0.097 0.764 0.825 0.378 0.342 0.616 0.252 0.414 0.539 0.240 0.114 0.705 0.787 0.330 0.298 0.511 0.210
𝐶𝑄𝐷𝐴𝑆𝑅

𝑠𝑝𝑒𝑐 0.793 0.881 0.806 0.483 0.890 0.878 0.803 0.745 0.878 0.774 0.639 0.732 0.652 0.412 0.718 0.727 0.609 0.620 0.682 0.598

𝑄2𝐵𝑜𝑛𝑡𝑜 0.818 0.929 0.760 0.482 0.988 0.994 0.877 0.646 0.932 0.751 0.687 0.762 0.617 0.447 0.868 0.915 0.693 0.555 0.732 0.600
𝑂2𝐵𝑜𝑛𝑡𝑜 0.838 0.960 0.771 0.514 0.991 0.996 0.879 0.697 0.963 0.768 0.707 0.771 0.629 0.476 0.878 0.927 0.694 0.619 0.752 0.618
𝐶𝑄𝐷𝑜𝑛𝑡𝑜 0.861 0.901 0.857 0.552 0.961 0.979 0.896 0.879 0.942 0.788 0.723 0.752 0.681 0.481 0.870 0.924 0.735 0.728 0.738 0.604
𝐶𝑄𝐷𝐴𝑆𝑅

𝑜𝑛𝑡𝑜 0.830 0.902 0.860 0.493 0.920 0.915 0.853 0.818 0.908 0.808 0.664 0.753 0.681 0.421 0.744 0.755 0.643 0.666 0.704 0.615
NELL

𝑄2𝐵𝑝𝑙𝑎𝑖𝑛 0.521 0.763 0.401 0.325 0.776 0.832 0.452 0.535 0.337 0.272 0.458 0.516 0.343 0.286 0.747 0.81 0.404 0.447 0.325 0.241
𝑂2𝐵𝑝𝑙𝑎𝑖𝑛 0.664 0.816 0.483 0.413 0.961 0.975 0.535 0.648 0.792 0.355 0.596 0.79 0.409 0.359 0.904 0.936 0.479 0.521 0.666 0.303
𝐶𝑄𝐷𝑝𝑙𝑎𝑖𝑛 0.598 0.710 0.412 0.341 0.891 0.929 0.522 0.593 0.649 0.331 0.555 0.664 0.383 0.304 0.853 0.903 0.471 0.512 0.599 0.306
𝐶𝑄𝐷𝐴𝑆𝑅

𝑝𝑙𝑎𝑖𝑛 0.708 0.942 0.647 0.403 0.880 0.909 0.666 0.663 0.700 0.570 0.592 0.716 0.518 0.337 0.807 0.831 0.547 0.513 0.614 0.445

𝑄2𝐵𝑔𝑒𝑛 0.734 0.974 0.559 0.466 0.99 0.99 0.622 0.685 0.94 0.377 0.642 0.858 0.485 0.397 0.928 0.95 0.538 0.539 0.768 0.312
𝑂2𝐵𝑔𝑒𝑛 0.744 0.962 0.572 0.492 0.989 0.990 0.639 0.712 0.944 0.396 0.652 0.859 0.494 0.420 0.928 0.953 0.552 0.559 0.77 0.329
𝐶𝑄𝐷𝑔𝑒𝑛 0.953 1.000 0.996 0.601 1.000 1.000 0.997 0.999 1.000 0.988 0.809 0.903 0.775 0.473 0.957 0.969 0.821 0.757 0.886 0.743
𝐶𝑄𝐷𝐴𝑆𝑅

𝑔𝑒𝑛 0.949 1.000 0.998 0.570 1.000 1.000 0.998 0.994 0.997 0.989 0.787 0.9 0.771 0.467 0.919 0.924 0.793 0.723 0.846 0.741
𝑄2𝐵𝑠𝑝𝑒𝑐 0.734 0.974 0.559 0.464 0.99 0.991 0.622 0.684 0.940 0.377 0.641 0.859 0.483 0.397 0.927 0.950 0.538 0.538 0.766 0.313
𝑂2𝐵𝑠𝑝𝑒𝑐 0.745 0.967 0.573 0.493 0.988 0.990 0.639 0.711 0.944 0.397 0.651 0.859 0.494 0.42 0.928 0.954 0.551 0.558 0.771 0.329
𝐶𝑄𝐷𝑠𝑝𝑒𝑐 0.953 1.000 0.996 0.599 1.000 1.000 0.998 0.999 1.000 0.988 0.808 0.902 0.774 0.474 0.958 0.968 0.820 0.755 0.885 0.741
𝐶𝑄𝐷𝐴𝑆𝑅

𝑠𝑝𝑒𝑐 0.949 1.000 0.998 0.566 1.000 1.000 0.998 0.993 0.997 0.990 0.784 0.899 0.768 0.461 0.919 0.921 0.790 0.721 0.841 0.738
𝑄2𝐵𝑜𝑛𝑡𝑜 0.725 0.973 0.567 0.466 0.985 0.986 0.606 0.654 0.909 0.384 0.636 0.858 0.472 0.398 0.927 0.948 0.529 0.524 0.747 0.317
𝑂2𝐵𝑜𝑛𝑡𝑜 0.748 0.968 0.598 0.496 0.989 0.988 0.646 0.697 0.941 0.412 0.655 0.862 0.498 0.423 0.933 0.953 0.557 0.555 0.773 0.340
𝐶𝑄𝐷𝑜𝑛𝑡𝑜

* 0.591 0.659 0.404 0.329 0.896 0.943 0.515 0.611 0.663 0.302 0.545 0.667 0.368 0.293 0.848 0.904 0.453 0.506 0.595 0.275
𝐶𝑄𝐷𝐴𝑆𝑅

𝑜𝑛𝑡𝑜 0.902 0.979 0.921 0.542 0.995 0.995 0.942 0.921 0.976 0.852 0.77 0.9 0.741 0.456 0.922 0.923 0.77 0.701 0.851 0.672
* Trained using 34% fewer queries than 𝐶𝑄𝐷𝑔𝑒𝑛.

Evaluation of Data Augmentation Strategies The first observation is that incorporating the
ontology in the training data is crucial as both 𝑄2𝐵 and 𝐶𝑄𝐷 trained in settings 𝑔𝑒𝑛 and 𝑜𝑛𝑡𝑜
yields significant improvements over the baselines.
However the additional incorporation of specializations (setting 𝑠𝑝𝑒𝑐) does not seem to have a
major impact (see Table 6.7). On LUBM, for all models, the advantage of the ontology-driven
query sampling (i.e. 𝑜𝑛𝑡𝑜 setting) is significant compared to 𝑔𝑒𝑛 setting. Remarkably, for LUBM
𝐶𝑄𝐷𝑜𝑛𝑡𝑜, respectively 𝐶𝑄𝐷𝐴𝑆𝑅

𝑜𝑛𝑡𝑜 trained on less data than 𝐶𝑄𝐷𝑔𝑒𝑛, respectively 𝐶𝑄𝐷𝐴𝑆𝑅
𝑔𝑒𝑛 results

138

6.5. Evaluation

Figure 6.6: Comparison of 𝑄2𝐵,𝑂2𝐵, 𝐶𝑄𝐷 and 𝐶𝑄𝐷𝐴𝑆𝑅 in each training setting for test cases
(D) and (I+D) for LUBM

Figure 6.7: Comparison of 𝑄2𝐵, 𝑂2𝐵, 𝐶𝑄𝐷 and 𝐶𝑄𝐷𝐴𝑆𝑅 in each training setting for test cases
(D) and (I+D) for NELL

in higher accuracy. This shows that random sampling is not adequate for E-OMQA. For NELL,
since the ontology is not expressive enough to create meaningful queries, for 𝑜𝑛𝑡𝑜 we proceeded
in a bottom-up fashion: we randomly labeled query shapes which produce answers, and construct
their generalizations as before; thus the settings 𝑔𝑒𝑛 and 𝑜𝑛𝑡𝑜 are similar. As the total number
of queries constructed is very large, in order to keep the training set reasonable we chose a
significantly smaller number of anchors, which explains why 𝐶𝑄𝐷𝑔𝑒𝑛 outperforms 𝐶𝑄𝐷𝑜𝑛𝑡𝑜.

Evaluation of the Ontology-Aware Training Objective The results of all models on setting
𝑝𝑙𝑎𝑖𝑛 show that the ontology-aware models 𝑂2𝐵 and 𝐶𝑄𝐷𝐴𝑆𝑅 show significant improvement
over the baselines, meaning that enforcing the rules in the embedding space already leads to
better results. However, it is not sufficient, as by simply training on 𝑜𝑛𝑡𝑜 we obtain significantly
better results across both datasets (𝑄2𝐵𝑜𝑛𝑡𝑜 outperforms 𝑂2𝐵𝑝𝑙𝑎𝑖𝑛, and 𝐶𝑄𝐷𝑜𝑛𝑡𝑜 and 𝐶𝑄𝐷𝑔𝑒𝑛

139

6. NEURAL-SYMBOLIC ONTOLOGY-MEDIATED QUERY ANSWERING

plain gen spe onto
0.55

0.6

0.65

0.7

Hi
ts@

3

𝑄2𝐵 𝐶𝑄𝐷 𝑂2𝐵 𝐶𝑄𝐷𝐴𝑆𝑅

LUBM

plain gen spe onto
0.22

0.24

0.26

0.28

0.3

0.32

0.34

Hi
ts@

3

𝑄2𝐵 𝐶𝑄𝐷 𝑂2𝐵 𝐶𝑄𝐷𝐴𝑆𝑅

NELL

Figure 6.8: Comparison of 𝑄2𝐵, 𝑂2𝐵, 𝐶𝑄𝐷 and 𝐶𝑄𝐷𝐴𝑆𝑅 in each train setting for inductive
test case (I)

Table 6.8: Avg. HITS@3 metric on answering queries of shapes 1p, 2p, 3p, 2i, 3i using rewriting
on top of pre-trained 𝑝𝑙𝑎𝑖𝑛 model versus the 𝑝𝑙𝑎𝑖𝑛 model alone.

Models Test Case D Test Case I+D
LUBM NELL LUBM NELL

𝑄2𝐵𝑝𝑙𝑎𝑖𝑛 0.189 0.617 0.193 0.539
𝑄2𝐵𝑟𝑒𝑤

𝑝𝑙𝑎𝑖𝑛 0.248 0.683 0.261 0.639
Gain +0.059 +0.066 +0.068 + 0.1

𝐶𝑄𝐷𝑝𝑙𝑎𝑖𝑛 0.225 0.656 0.231 0.621
𝐶𝑄𝐷𝑟𝑒𝑤

𝑝𝑙𝑎𝑖𝑛 0.228 0.743 0.249 0.708
Gain +0.003 +0.087 +0.018 + 0.087

outperform 𝐶𝑄𝐷𝐴𝑆𝑅
𝑝𝑙𝑎𝑖𝑛). Therefore, the best training strategy for E-OMQA depends on the chosen

model, and the ontology language. For complex ontologies, relying on the ontology-driven training
strategies yields the best performance, while for less expressive ontologies, generalization-based
training strategy is already effective. Moreover, we observe that for query-based models, the rule
enforcement offers a significant advantage, while for the atom-based models using ontology-driven
training strategy is already sufficient.

6.6 Related Work and Discussion
The task of answering queries that involve multiple atoms using embedding techniques has recently
received a lot of attention. The existing proposals can be divided into query-based [RHL20, RL20,
LDJ+21, CRK+21, KLN21, SAB+20] and atom-based [ADMC21]. [FdB20] and [BCL19] study
the relation between the problem of conjunctive QA in the embedding space and over probabilistic
databases. Our work is different from the above proposals in that along with the data we also rely
on ontologies to answer queries.

140

6.6. Related Work and Discussion

Integration of ontologies into KG embeddings has been studied by e.g. [KBT15, MDRR17,
HCY+19, GWW+16, RSR15, DRR16, KP18, FRP19, ACLS20], but these works do not capture
all supported axioms and focus on link prediction rather than QA. The capability of embeddings
to model hierarchical data has been explored by [PDB+20, IKA19, GS18]. In particular, [IKA19]
aim at interpreting embeddings by finding concept spaces in node embeddings and linking
them to a simple external type hierarchy; this is different from our method for OMQA over
embeddings. In [GS18], conceptual space representations of known concepts are learned by
associating a Gaussian distribution with each concept over a learned vector space. Constructing
models for  ontologies in the embedding space [KLYH19] is another relevant direction. While
[GS18, KLYH19, ÖLW20] are related to our work, they do not touch upon the problem of
performing OMQA in the embedding space. The OMQA problem has been actively studied from
the data management perspective (see e.g. [SS20] for an overview), but available theoretical and
practical methods in this setting only focus on purely logic-based deductive reasoning, without
aiming at simultaneously handling missing links.
In this chapter, we have presented methods for ontology-mediated query answering that operate in
the embedding space to enable simultaneous inductive and deductive reasoning over the incomplete
data. To the best of our knowledge, this is the first work on embedding-based OMQA. We have
empirically demonstrated that embedding-based methods for QA applied naively or combined
with query rewriting techniques are not effective. In our work, we have proposed alternative
solutions for making the existing models ontology-aware via ontology-driven training sampling
strategies and loss function modifications. The improvements in the accuracy on prominent
query-based and atom-based models range from 20% to 50% compared to the baselines. We
believe that this work opens interesting perspectives for combining OMQA methods, with roots
in knowledge representation, and embedding techniques originating from the machine learning
domain.

141

CHAPTER 7
Summary and Conclusions

In this thesis we focus on the problem of query answering over incomplete graph-structured data
that is mediated by ontologies. In particular, we focus on the querying process from a user’s
perspective, which can be challenging for non-experts, and on the need to facilitate interactive
querying solutions.
In Chapter 1 we motivate, based on a concrete application scenario, the need for more sophisticated
tools that make the query process more interactive and help the exploration and analysis of the
existing data. In particular we advocate for the need to support the user in formulating queries
and exploring the data by means of navigation from one query to another. Furthermore, we
also motivate the adaptation of OLAP functionalities to the OBDA context, for which part-of
hierarchies and aggregation are crucial.
Based on this envisioned goal, in Chapter 3 we study how to model part-of hierarchies. For
that, we need to allow complex role inclusions (CRIs) in the ontology language which can easily
lead to undecidability. However their addition to lightweight DLs such as DL-Lite has not
been previously studied. Our results show that, unsurprisingly, without syntactical restrictions,
the extension of DL-Lite with CRIs, denoted as DL-Lite++ , is undecidable. Following this
result, we consider several restrictions to ensure decidability. Among the decidable fragments are
DL-Lite++(non-rec) which disallows recursion involving complex relations, and DL-Lite++(rec-safe)which restrict it to involve only known objects or constants. For each we study the data and
combined complexity for consistency testing and query answering. The obtained positive results
include that the data complexity for such languages can remain AC0, meaning that OMQs are
FO-rewritable.
In Chapter 4, we present an exploratory framework that leverages DL-Lite++(rec-safe) ontologies to
facilitate OLAP-like functionalities and to support query navigation. The framework involves
three main components: a) a query template which allows the user to mark query atoms for
specializing or generalizing, b) reformulation rules which apply the ontology axioms to generate a
large set of queries that are semantically related and c) a Datalog encoding of the framework that

143

7. SUMMARY AND CONCLUSIONS

compiles all queries, their minimal specializations and generalizations as well as their complete
answers. We also implemented a prototype using VLog engine and provided an initial evaluation
in practice, which shows promising results. An interface to support the creation of the query
template and the visualization of answers has also been proposed.
In order to cope with missing information at query time, in Chapter 5 consider conditional query
answering and extend the ontology-mediated query formalism to include assumption patterns
which when instantiated over existing data, they can produce more informative answers to the users.
This problem is related to hypothetical query answering which is a flexible access mechanism
in the context of traditional databases. For that, we introduce novel semantics for answering
DL-Lite OMQs under assumptions, and show that such formalism is FO-rewritable also in when
considering closed-predicates in the assumption patterns. Also in this case, we implemented and
tested our solution in practice for which we considered that part of the data is remotely available
and we rely on assumption patterns to construct ground assumptions that require remote data
access. Our results show that such approach is more efficient than evaluating each OMQ as a
federated query.
Another proposed solution for dealing with incomplete data, is to rely on existing state-of-the-art
KG embedding models to predict answers to OMQs. However, such models are not tailored to KG
that are mediated by ontologies, therefore in Chapter 6 we introduce the task of embedding-based
ontology-mediated query answering and study how to adapt existing KG embedding models for this
task. In contrast to the answer prediction for plain queries, for our novel task it is required that the
embedding models can apply both inductive and deductive reasoning, which is much challenging
and requires more sophisticated solutions. As proposed approaches, we consider several training
strategies for incorporating the ontology into the training set, and as well as adaptation of the loss
function to enforce the ontology axioms in the embedding space. We evaluate them on two novel
datasets, based on LUBM and NELL KGs. The achieved improvements for the chosen models
are from 20% to 55% in HITS@3.

Further Research
The work presented in this thesis is foundational and there are several interesting directions for
future work. One of the goals is to create a fully-fledged implementation of the exploratory
framework which can support all the described functionalities. This would require intensive work
in the design and implementation of such system as well as user studies to assess the usefulness
of having such exploratory capabilities.
Another future work regarding the exploratory framework is to consider other ontology languages
and queries. For instance investigating other reformulation rules relying on more expressive
ontology axioms and as well as extending the framework to support reformulations of regular
path queries, while ensuring the feasibility of constructing and navigating the query space.
A possible interesting further research is to combine both techniques to query knowledge graphs,
that is ontology-based query answering and embedding-based query answering. Currently,
embedding-based models are not able to support arbitrary conjunctive queries or queries with
aggregation and classical ontology-based methods are not able to cope with missing links, however

144

the combination of both is desirable in many scenarios, such as the drug discovery use-case. For
instance, using an embedding model we can predict the side effects of a particular substance
and filter based on their score, then using classical query answering methods, return the known
symptoms associated to the top 5 side effects.
Conditional query answering is another relevant direction for future work and there are several
potential applications that could benefit from having a system that can support this. For example,
in domains such as military and criminal investigations, “what if” queries are very relevant in
assessing targets and identify threats. Therefore more research as well as engineering efforts are
required in order to create a system that can be used in practice.
With the increasing relevance of ontologies and knowledge graphs in many applications, hav-
ing flexible means to access graph-structured data is important to create value from the large
amounts of available information. We believe this work contributes to this purpose and opens
new perspective and ideas to advance this area of research.

145

List of Figures

1.1 Ontology for risk assessment in the disaster management domain. 4
2.1 Example of the semantics of a dataset  w.r.t. MCI in terms of a model . . . . 25
2.2 Example of matching a query over an interpretation. 30
3.1 Inclusion relations for DL-Lite++ family of languages. 46
3.2 Encoding the computations of a Turing Machine. 53
4.1 Answers representation based on relevant semantic properties. 75
4.2 The templates Ψ1, … , Ψ5 (in the supported input syntax) used in the experimental

evaluation. 91
4.3 Node and edge view modes used to create query templates 93
5.1 Evaluating an assumptive OMQ . 102
6.1 An example KG in which solid edges illustrate existing facts in the KG, while dashed

edges indicate missing facts. The rules in  state that (1) managers at companies
also work there; (2) the inverse of relation degreeFrom is hasAlumnus; (3) assistant
professors are professors; (4) teachers at organizations also work there; (5) the range
of the relation teachesAt is University. 122

6.2 Dependency Graph Example . 125
6.3 Ontology-driven rules to label query template atoms; 𝗌, 𝗀 denote that the atom can be

either specialized or generalized. 131
6.4 Our extension of Query2Box, where query embeddings capture the ontology axiom

teachesAt ⊑ worksFor, represented by the inclusion of the respective boxes. . . 132
6.5 Query shapes considered in our experiments, where blue nodes correspond to anchor

entities and red ones to answer variables; p stands for projection, i for intersection
and u for union. The first five shapes are used in training. 134

6.6 Comparison of 𝑄2𝐵,𝑂2𝐵, 𝐶𝑄𝐷 and 𝐶𝑄𝐷𝐴𝑆𝑅 in each training setting for test cases
(D) and (I+D) for LUBM . 139

6.7 Comparison of 𝑄2𝐵, 𝑂2𝐵, 𝐶𝑄𝐷 and 𝐶𝑄𝐷𝐴𝑆𝑅 in each training setting for test cases
(D) and (I+D) for NELL . 139

6.8 Comparison of 𝑄2𝐵, 𝑂2𝐵, 𝐶𝑄𝐷 and 𝐶𝑄𝐷𝐴𝑆𝑅 in each train setting for inductive
test case (I) . 140

147

List of Tables

2.1 Semantics of the considered DLs concept and role expressions. We use 𝑝 to denote
either a role or a feature, 𝑠 denotes a possibly inverse role or feature name. 22

3.1 Summary of complexity results. 46
3.2 𝐴,𝐵, 𝐶 ∈ 𝐂, 𝑟 ∈ 𝐑±, and 𝑟𝐴, 𝑟𝐵, 𝑝, 𝑠𝐴⊓𝐵, 𝑝𝑟𝐴 , 𝑝𝑟𝐵 𝑠𝐴, are fresh role names. 51
4.1 Rules to derive CQs from query template Ψ[𝑥⃗]. 80
4.2 Datalog encoding of Ψ[𝑥⃗],  and reformulation rules 85
4.3 Datalog program to compute query reformulations 89
4.4 Experiment results over DBpedia. Here Π𝑖 = ΠΨ𝑖

∪ Πref and D𝑖 = 𝐷Ψ𝑖, ∪𝐷. . 90
5.1 Evaluation results for AOMQs over MyITS dataset. 118
6.1 The number of axioms in the ontology ||, the number of each type of axiom, the

size of the input KG ||, the number of entities |𝐄|, the number of relations |𝐑|, and
the number of materialized triples (|∞()|). 135

6.2 Number of queries per query shape for each sampling case. 135
6.3 HITS@3 scores in the deductive setting (D) for LUMB 136
6.4 HITS@3 scores in the inductive and deductive setting (I+D) for LUMB 136
6.5 HITS@3 scores in the deductive setting (D) for NELL 137
6.6 HITS@3 scores in the inductive and deductive setting (I+D) for NELL 137
6.7 HITS@3 metric per query shape for deductive (D) and inductive+deductive (I+D) 138
6.8 Avg. HITS@3 metric on answering queries of shapes 1p, 2p, 3p, 2i, 3i using rewriting

on top of pre-trained 𝑝𝑙𝑎𝑖𝑛 model versus the 𝑝𝑙𝑎𝑖𝑛 model alone. 140

149

List of Algorithms

151

Bibliography

[ABW88] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a theory of
declarative knowledge. In Jack Minker, editor, Foundations of Deductive Databases
and Logic Programming, pages 89–148. Morgan Kaufmann, 1988.

[ACGK+14] Marcelo Arenas, Bernardo Cuenca Grau, Evgeny Kharlamov, Sarunas Marciuska,
and Dmitriy Zheleznyakov. Faceted search over ontology-enhanced rdf data. In Pro-
ceedings of the 23rd ACM International Conference on Conference on Information
and Knowledge Management, CIKM ’14, pages 939–948, 2014.

[ACKZ09] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Za-
kharyaschev. The DL-Lite family and relations. J. Artif. Intell. Res., 36:1–69,
2009.

[ACLS20] Ralph Abboud, İsmail İlkan Ceylan, Thomas Lukasiewicz, and Tommaso Salvatori.
BoxE: A box embedding model for knowledge base completion. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020.

[ADMC21] Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez. Complex
query answering with neural link predictors. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021.

[AGMR15] Elham Akbari Azirani, François Goasdoué, Ioana Manolescu, and Alexandra Roatis.
Efficient OLAP operations for RDF analytics. In ICDE Workshops, pages 71–76.
IEEE Computer Society, 2015.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[AIO20] Medina Andresel, Yazmín Ibáñez-García, and Magdalena Ortiz. A framework
for exploratory query answering with ontologies. In Proceedings of the 33rd
International Workshop on Description Logics (DL 2020) co-located with the 17th

153

International Conference on Principles of Knowledge Representation and Reasoning
(KR 2020), Online Event [Rhodes, Greece], September 12th to 14th, 2020, volume
2663 of CEUR Workshop Proceedings. CEUR-WS.org, 2020.

[AIOS18] Medina Andresel, Yazmín Angélica Ibáñez-García, Magdalena Ortiz, and Mantas
Simkus. Taming complex role inclusions for DL-Lite. In Proceedings of the 31st
International Workshop on Description Logics co-located with 16th International
Conference on Principles of Knowledge Representation and Reasoning (KR 2018),
Tempe, Arizona, US, October 27th - to - 29th, 2018, volume 2211 of CEUR Workshop
Proceedings. CEUR-WS.org, 2018.

[AIOS19] Medina Andresel, Yazmín Ibáñez-García, Magdalena Ortiz, and Mantas Simkus.
Relaxing and restraining queries for OBDA. In The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications
of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii,
USA, January 27 - February 1, 2019, pages 2654–2661. AAAI Press, 2019.

[ANS12] Stefan Anderlik, Bernd Neumayr, and Michael Schrefl. Using domain ontologies
as semantic dimensions in data warehouses. In ER, volume 7532 of Lecture Notes
in Computer Science, pages 88–101. Springer, 2012.

[AOS20] Medina Andresel, Magdalena Ortiz, and Mantas Simkus. Query rewriting for
ontology-mediated conditional answers. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications
of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA,
February 7-12, 2020, pages 2734–2741. AAAI Press, 2020.

[ATD+23] Medina Andresel, Trung-Kien Tran, Csaba Domokos, Pasquale Minervini, and
Daria Stepanova. Combining inductive and deductive reasoning for query answering
over incomplete knowledge graphs. In Ingo Frommholz, Frank Hopfgartner, Mark
Lee, Michael Oakes, Mounia Lalmas, Min Zhang, and Rodrygo L. T. Santos,
editors, Proceedings of the 32nd ACM International Conference on Information
and Knowledge Management, CIKM 2023, Birmingham, United Kingdom, October
21-25, 2023, pages 15–24. ACM, 2023.

[Bal03] Matteo Baldoni. Normal multimodal logics: Automatic deduction and logic pro-
gramming extension. PhD thesis, Dipartimento di Informatica — Universit‘a degli
Studi di Torino, 2003.

[BBL05] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope. In
Leslie Pack Kaelbling and Alessandro Saffiotti, editors, IJCAI-05, Proceedings of
the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh,
Scotland, UK, July 30 - August 5, 2005, pages 364–369. Professional Book Center,
2005.

154

[BCL19] Stefan Borgwardt, İsmail İlkan Ceylan, and Thomas Lukasiewicz. Ontology-
mediated query answering over log-linear probabilistic data. In The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative
Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Sym-
posium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu,
Hawaii, USA, January 27 - February 1, 2019, pages 2711–2718. AAAI Press, 2019.

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press, New York, NY, USA,
2003.

[BGM98] Matteo Baldoni, Laura Giordano, and Alberto Martelli. A tableau for multimodal
logics and some (un)decidability results. In TABLEAUX, volume 1397 of Lecture
Notes in Computer Science, pages 44–59. Springer, 1998.

[BHLS17] Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. An Introduction to
Description Logic. Cambridge University Press, United Kingdom, 2017.

[BKPR14] Stefan Bischof, Markus Krötzsch, Axel Polleres, and Sebastian Rudolph. Schema-
agnostic query rewriting in SPARQL 1.1. In International Semantic Web Conference
(1), volume 8796 of Lecture Notes in Computer Science, pages 584–600. Springer,
2014.

[BLB08] Franz Baader, Carsten Lutz, and Sebastian Brandt. Pushing the EL envelope further.
In OWLED (Spring), volume 496 of CEUR Workshop Proceedings. CEUR-WS.org,
2008.

[BLMS11] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Eric Salvat. On
rules with existential variables: Walking the decidability line. Artif. Intell., 175(9-
10):1620–1654, 2011.

[BO15] Meghyn Bienvenu and Magdalena Ortiz. Ontology-mediated query answering with
data-tractable description logics. In Wolfgang Faber and Adrian Paschke, editors,
Reasoning Web. Web Logic Rules - 11th International Summer School 2015, Berlin,
Germany, July 31 - August 4, 2015, Tutorial Lectures, volume 9203 of Lecture
Notes in Computer Science, pages 218–307. Springer, 2015.

[BOS15] Meghyn Bienvenu, Magdalena Ortiz, and Mantas Simkus. Regular path queries
in lightweight description logics: Complexity and algorithms. J. Artif. Intell. Res.,
53:315–374, 2015.

[BOSX13] Meghyn Bienvenu, Magdalena Ortiz, Mantas Simkus, and Guohui Xiao. Tractable
queries for lightweight description logics. In Francesca Rossi, editor, IJCAI 2013,
Proceedings of the 23rd International Joint Conference on Artificial Intelligence,
Beijing, China, August 3-9, 2013, pages 768–774. IJCAI/AAAI, 2013.

155

[BRC+20] Federico Bianchi, Gaetano Rossiello, Luca Costabello, Matteo Palmonari, and
Pasquale Minervini. Knowledge graph embeddings and explainable AI. In Knowl-
edge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and
Challenges, pages 49–72. 2020.

[BS85] Ronald J. Brachman and James G. Schmolze. An overview of the KL-ONE knowl-
edge representation system. Cogn. Sci., 9(2):171–216, 1985.

[BT20] Franz Baader and Clément Théron. Role-value maps and general concept inclusions
in the minimal description logic with value restrictions or revisiting old skeletons
in the DL cupboard. Künstliche Intell., 34(3):291–301, 2020.

[BUG+13] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. In Christo-
pher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger,
editors, Advances in Neural Information Processing Systems 26: 27th Annual Con-
ference on Neural Information Processing Systems 2013. Proceedings of a meeting
held December 5-8, 2013, Lake Tahoe, Nevada, United States, pages 2787–2795,
2013.

[CA98] Henning Christiansen and Troels Andreasen. A practical approach to hypothetical
database queries. In Burkhard Freitag, Hendrik Decker, Michael Kifer, and Andrei
Voronkov, editors, Transactions and Change in Logic Databases, pages 340–355,
Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[CBK+10] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hruschka
Jr., and Tom M. Mitchell. Toward an architecture for never-ending language learning.
In Maria Fox and David Poole, editors, Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15,
2010, pages 1306–1313. AAAI Press, 2010.

[CDG+19] David Carral, Irina Dragoste, Larry González, Ceriel J. H. Jacobs, Markus Krötzsch,
and Jacopo Urbani. Vlog: A rule engine for knowledge graphs. In ISWC (2), volume
11779 of Lecture Notes in Computer Science, pages 19–35. Springer, 2019.

[CDL+07] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Tractable reasoning and efficient query answering in descrip-
tion logics: The DL-Lite family. J. Autom. Reasoning, 39(3):385–429, 2007.

[CGL+05] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Dl-lite: Tractable description logics for ontologies. In AAAI,
pages 602–607. AAAI Press / The MIT Press, 2005.

[CGL+07] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Tractable reasoning and efficient query answering in descrip-
tion logics: The DL-Lite family. J. Autom. Reasoning, 39(3):385–429, 2007.

156

[CGL09a] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. A general datalog-based
framework for tractable query answering over ontologies. In PODS, pages 77–86.
ACM, 2009.

[CGL+09b] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
Antonella Poggi, Mariano Rodriguez-Muro, and Riccardo Rosati. Ontologies and
databases: The dl-lite approach. In Reasoning Web, volume 5689 of Lecture Notes
in Computer Science, pages 255–356. Springer, 2009.

[CGL12] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. A general datalog-based
framework for tractable query answering over ontologies. J. Web Semant., 14:57–83,
2012.

[CGLR12] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati.
View-based query answering in description logics: Semantics and complexity. J.
Comput. Syst. Sci., 78(1):26–46, 2012.

[CGMR14] Dario Colazzo, François Goasdoué, Ioana Manolescu, and Alexandra Roatis. RDF
analytics: lenses over semantic graphs. In Chin-Wan Chung, Andrei Z. Broder,
Kyuseok Shim, and Torsten Suel, editors, 23rd International World Wide Web
Conference, WWW ’14, Seoul, Republic of Korea, April 7-11, 2014, pages 467–478.
ACM, 2014.

[CGP10] Andrea Calì, Georg Gottlob, and Andreas Pieris. Query answering under non-
guarded rules in datalog+/-. In RR, volume 6333 of Lecture Notes in Computer
Science, pages 1–17. Springer, 2010.

[CHH10] Catherine Comparot, Ollivier Haemmerlé, and Nathalie Hernandez. An easy way
of expressing conceptual graph queries from keywords and query patterns. In ICCS,
volume 6208 of Lecture Notes in Computer Science, pages 84–96. Springer, 2010.

[CKNT08] Diego Calvanese, Evgeny Kharlamov, Werner Nutt, and Camilo Thorne. Aggregate
queries over ontologies. In Proceedings of the 2nd International Workshop on
Ontologies and Information Systems for the Semantic Web, ONISW 2008, Napa
Valley, California, USA, October 30, 2008, pages 97–104, 2008.

[COvS13] Diego Calvanese, Magdalena Ortiz, Mantas Šimkus, and Giorgio Stefanoni. Rea-
soning about explanations for negative query answers in dl-lite. J. Artif. Intell. Res.,
48:635–669, 2013.

[CR15] Cristina Civili and Riccardo Rosati. On the first-order rewritability of conjunctive
queries over binary guarded existential rules. In Davide Ancona, Marco Maratea,
and Viviana Mascardi, editors, Proceedings of the 30th Italian Conference on Com-
putational Logic, Genova, Italy, July 1-3, 2015, volume 1459 of CEUR Workshop
Proceedings, pages 25–30. CEUR-WS.org, 2015.

157

[CRK+21] Nurendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik Subbian, and Chan-
dan K. Reddy. Self-supervised hyperboloid representations from logical queries
over knowledge graphs. In WWW ’21: The Web Conference 2021, Virtual Event /
Ljubljana, Slovenia, April 19-23, 2021, pages 1373–1384, 2021.

[dCP88] Luis Fariñas del Cerro and Martti Penttonen. Grammar logics. Logique et Analyse,
31(121–122):123–134, 1988.

[Dem92] Robert Demolombe. A strategy for the computation of conditional answers. In
ECAI, pages 134–138, 1992.

[Dem98] Robert Demolombe. Answers about validity and completeness of data: Formal
definitions, usefulness and computation technique. In Troels Andreasen, Henning
Christiansen, and Henrik Legind Larsen, editors, Flexible Query Answering Systems,
pages 138–147. Springer Berlin Heidelberg, 1998.

[Dem01] Stéphane Demri. The complexity of regularity in grammar logics and related modal
logics. J. Log. Comput., 11(6):933–960, 2001.

[DNPR13] Fariz Darari, Werner Nutt, Giuseppe Pirrò, and Simon Razniewski. Completeness
statements about RDF data sources and their use for query answering. In ISWC (1),
volume 8218 of Lecture Notes in Computer Science, pages 66–83. Springer, 2013.

[DRR16] Thomas Demeester, Tim Rocktäschel, and Sebastian Riedel. Lifted rule injec-
tion for relation embeddings. In EMNLP, pages 1389–1399. The Association for
Computational Linguistics, 2016.

[EKS13] Thomas Eiter, Thomas Krennwallner, and Patrik Schneider. Lightweight spatial
conjunctive query answering using keywords. In The Semantic Web: Semantics
and Big Data, pages 243–258. Springer Berlin Heidelberg, 2013.

[EPS+15] Thomas Eiter, Jeff Z. Pan, Patrik Schneider, Mantas Šimkus, and Guohui Xiao. A
rule-based framework for creating instance data from openstreetmap. In RR, volume
9209 of Lecture Notes in Computer Science, pages 93–104. Springer, 2015.

[FdB20] Tal Friedman and Guy Van den Broeck. Symbolic querying of vector spaces:
Probabilistic databases meets relational embeddings. In Ryan P. Adams and Vibhav
Gogate, editors, UAI, pages 1268–1277, 2020.

[FGTT11] Enrico Franconi, Paolo Guagliardo, Marco Trevisan, and Sergio Tessaris. Quelo:
an ontology-driven query interface. In Riccardo Rosati, Sebastian Rudolph, and
Michael Zakharyaschev, editors, Proceedings of the 24th International Workshop
on Description Logics (DL 2011), Barcelona, Spain, July 13-16, 2011, volume 745
of CEUR Workshop Proceedings. CEUR-WS.org, 2011.

[FRP19] Bahare Fatemi, Siamak Ravanbakhsh, and David Poole. Improved knowledge graph
embedding using background taxonomic information. In IAAI, pages 3526–3533,
2019.

158

[FS99] Enrico Franconi and Ulrike Sattler. A data warehouse conceptual data model for
multidimensional aggregation. In In Proceedings of the Workshop on Design and
Management of Data Warehouses (DMDW’99, 1999.

[GGMO95] D. Gabbay, L. Giordano, A. Martelli, and N. Olivetti. Hypothetical updates, priority
and inconsistency in a logic programming language. In Logic Programming and
Nonmonotonic Reasoning, pages 203–216. Springer Berlin Heidelberg, 1995.

[GGR+18] Enrico Gallinucci, Matteo Golfarelli, Stefano Rizzi, Alberto Abelló, and Oscar
Romero. Interactive multidimensional modeling of linked data for exploratory
OLAP. Inf. Syst., 77:86–104, 2018.

[GH97] Timothy Griffin and Richard Hull. A framework for implementing hypothetical
queries. SIGMOD Rec., 26(2):231–242, June 1997.

[GHM+14] Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe Wang. Hermit:
An owl 2 reasoner. Journal of Automated Reasoning, 53(3):245–269, 2014.

[GHS08] Birte Glimm, Ian Horrocks, and Ulrike Sattler. Unions of conjunctive queries in
SHOQ. In KR, pages 252–262. AAAI Press, 2008.

[GIKK15] Víctor Gutiérrez-Basulto, Yazmin Angélica Ibáñez-García, Roman Kontchakov,
and Egor V. Kostylev. Queries with negation and inequalities over lightweight
ontologies. J. Web Semant., 35:184–202, 2015.

[GLHS08] Birte Glimm, Carsten Lutz, Ian Horrocks, and Ulrike Sattler. Conjunctive query
answering for the description logic SHIQ. J. Artif. Intell. Res., 31:157–204, 2008.

[GPH05] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for OWL
knowledge base systems. J. Web Semant., 3(2-3):158–182, 2005.

[GS18] Víctor Gutiérrez-Basulto and Steven Schockaert. From knowledge graph embedding
to ontology embedding? An analysis of the compatibility between vector space rep-
resentations and rules. In Principles of Knowledge Representation and Reasoning:
Proceedings of the Sixteenth International Conference, KR 2018, Tempe, Arizona,
30 October - 2 November 2018, pages 379–388. AAAI Press, 2018.

[GWW+16] Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. Jointly embedding
knowledge graphs and logical rules. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas,
USA, November 1-4, 2016, pages 192–202, 2016.

[Hal00] Alon Y. Halevy. Theory of answering queries using views. SIGMOD Rec., 29(4):40–
47, 2000.

[Hal01] Alon Y. Halevy. Answering queries using views: A survey. VLDB J., 10(4):270–294,
2001.

159

[HBZ+18] William L. Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec.
Embedding logical queries on knowledge graphs. In Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 2030–
2041, 2018.

[HCY+19] Junheng Hao, Muhao Chen, Wenchao Yu, Yizhou Sun, and Wei Wang. Universal
representation learning of knowledge bases by jointly embedding instances and
ontological concepts. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK,
USA, August 4-8, 2019, pages 1709–1719, 2019.

[HKS06] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible sroiq.
In Proceedings of the Tenth International Conference on Principles of Knowledge
Representation and Reasoning, KR’06, pages 57–67. AAAI Press, 2006.

[HS04] Ian Horrocks and Ulrike Sattler. Decidability of shiq with complex role inclusion
axioms. Artif. Intell., 160(1-2):79–104, December 2004.

[HYY05] Orland Hoeber, Xue Dong Yang, and Yiyu Yao. Conceptual query expansion.
In AWIC, volume 3528 of Lecture Notes in Computer Science, pages 190–196.
Springer, 2005.

[IKA19] Maximilian Idahl, Megha Khosla, and Avishek Anand. Finding interpretable
concept spaces in node embeddings using knowledge bases. CoRR, abs/1910.05030,
2019.

[JLW20] Jean Jung, Carsten Lutz, and Frank Wolter. Least general generalizations in de-
scription logic: Verification and existence. In AAAI 2020, Proceedings of the
Thirty-Fourth AAAI Conference on Artificial Intelligence, Februrary 7 -12, 2020,
New York, New York, US, 2020.

[Jon75] Neil D. Jones. Space-bounded reducibility among combinatorial problems. J.
Comput. Syst. Sci., 11(1):68–85, 1975.

[Kaz08] Yevgeny Kazakov. RIQ and SROIQ are harder than SHOIQ. In KR, pages 274–284.
AAAI Press, 2008.

[Kaz10] Yevgeny Kazakov. An extension of complex role inclusion axioms in the description
logic SROIQ. In Proc. IJCAR 2010, 2010.

[KBT15] Denis Krompaß, Stephan Baier, and Volker Tresp. Type-constrained representation
learning in knowledge graphs. In The Semantic Web - ISWC 2015 - 14th Inter-
national Semantic Web Conference, Bethlehem, PA, USA, October 11-15, 2015,
Proceedings, Part I, pages 640–655, 2015.

160

[KKM+16] Evgeny Kharlamov, Yannis Kotidis, Theofilos Mailis, Christian Neuenstadt, Char-
alampos Nikolaou, Özgür L. Özçep, Christoforos Svingos, Dmitriy Zheleznyakov,
Sebastian Brandt, Ian Horrocks, Yannis E. Ioannidis, Steffen Lamparter, and Ralf
Möller. Towards analytics aware ontology based access to static and streaming data.
In International Semantic Web Conference (2), volume 9982 of Lecture Notes in
Computer Science, pages 344–362, 2016.

[KLN21] Bhushan Kotnis, Carolin Lawrence, and Mathias Niepert. Answering complex
queries in knowledge graphs with bidirectional sequence encoders. In Thirty-Fifth
AAAI Conference on Artificial Intelligence, AAAI 2021, pages 4968–4977, 2021.

[KLT+10] Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and Michael Za-
kharyaschev. The combined approach to query answering in DL-Lite. In Principles
of Knowledge Representation and Reasoning: Proceedings of the Twelfth Interna-
tional Conference, KR 2010, Toronto, Ontario, Canada, May 9-13, 2010. AAAI
Press, 2010.

[KLYH19] Maxat Kulmanov, Wang Liu-Wei, Yuan Yan, and Robert Hoehndorf. EL embed-
dings: Geometric construction of models for the description logic EL ++. CoRR,
abs/1902.10499, 2019.

[KP18] Seyed Mehran Kazemi and David Poole. SimplE embedding for link prediction
in knowledge graphs. In Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, pages 4289–4300, 2018.

[KR13] Egor V. Kostylev and Juan L. Reutter. Answering counting aggregate queries over
ontologies of the DL-Lite family. In Proceedings of the Twenty-Seventh AAAI
Conference on Artificial Intelligence, July 14-18, 2013, Bellevue, Washington, USA.
AAAI Press, 2013.

[LDJ+21] Lihui Liu, Boxin Du, Heng Ji, ChengXiang Zhai, and Hanghang Tong. Neural-
answering logical queries on knowledge graphs. In KDD ’21: The 27th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event,
Singapore, August 14-18, 2021, pages 1087–1097, 2021.

[LP82] Harry R. Lewis and Christos H. Papadimitriou. Symmetric space-bounded compu-
tation. Theor. Comput. Sci., 19:161–187, 1982.

[LSW13] Carsten Lutz, Inanç Seylan, and Frank Wolter. Ontology-based data access with
closed predicates is inherently intractable(sometimes). In IJCAI 2013, Proceedings
of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China,
August 3-9, 2013, pages 1024–1030. IJCAI/AAAI, 2013.

[LSW15] Carsten Lutz, Inanç Seylan, and Frank Wolter. Ontology-mediated queries with
closed predicates. In Proceedings of the Twenty-Fourth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015, pages 3120–3126. AAAI Press, 2015.

161

[LSW19] Carsten Lutz, Inanç Seylan, and Frank Wolter. The data complexity of ontology-
mediated queries with closed predicates. Log. Methods Comput. Sci., 15(3), 2019.

[LUO18] Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. Canonical tensor
decomposition for knowledge base completion. In ICML, volume 80 of Proceedings
of Machine Learning Research, pages 2869–2878. PMLR, 2018.

[MDRR17] Pasquale Minervini, Thomas Demeester, Tim Rocktäschel, and Sebastian Riedel.
Adversarial sets for regularising neural link predictors. In Proceedings of the
Thirty-Third Conference on Uncertainty in Artificial Intelligence, UAI 2017, Sydney,
Australia, August 11-15, 2017. AUAI Press, 2017.

[Mot84] Amihai Motro. Query generalization: A method for interpreting null answers. In
Expert Database Workshop, pages 597–616. Benjamin/Cummings, 1984.

[MT14] Davide Martinenghi and Riccardo Torlone. Taxonomy-based relaxation of query
answering in relational databases. VLDB J., 23(5):747–769, 2014.

[NAS12] Bernd Neumayr, Stefan Anderlik, and Michael Schrefl. Towards ontology-based
OLAP: datalog-based reasoning over multidimensional ontologies. In DOLAP
2012, ACM 15th International Workshop on Data Warehousing and OLAP, Maui,
HI, USA, November 2, 2012, Proceedings, pages 41–48. ACM, 2012.

[NMTG16] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A
review of relational machine learning for knowledge graphs. Proc. IEEE, 104(1):11–
33, 2016.

[NOv16] Nhung Ngo, Magdalena Ortiz, and Mantas Šimkus. Closed predicates in description
logics: Results on combined complexity. In Principles of Knowledge Representation
and Reasoning: Proceedings of the Fifteenth International Conference, KR 2016,
Cape Town, South Africa, April 25-29, 2016, pages 237–246. AAAI Press, 2016.

[Nut11] Premchand Nutakki. Specializing conjunctive queries in the el-family for better
comprehension of result sets. Master’s thesis, 2011.

[ÖLW20] Özgür Lütfü Özçep, Mena Leemhuis, and Diedrich Wolter. Cone semantics for
logics with negation. In Christian Bessiere, editor, Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages
1820–1826. ijcai.org, 2020.

[ORS10] Magdalena Ortiz, Sebastian Rudolph, and Mantas Simkus. Worst-case optimal
reasoning for the horn-dl fragments of OWL 1 and 2. In Principles of Knowledge
Representation and Reasoning: Proceedings of the Twelfth International Conference,
KR 2010, Toronto, Ontario, Canada, May 9-13, 2010. AAAI Press, 2010.

[ORS11] Magdalena Ortiz, Sebastian Rudolph, and Mantas Simkus. Query answering in
the horn fragments of the description logics SHOIQ and SROIQ. In IJCAI 2011,

162

Proceedings of the 22nd International Joint Conference on Artificial Intelligence,
Barcelona, Catalonia, Spain, July 16-22, 2011, pages 1039–1044. IJCAI/AAAI,
2011.

[Ort10] Magdalena Ortiz. Query Answering in Expressive Description Logics - Techniques
and Complexity Results. PhD thesis, TU Wien, 2010.

[Ort13] Magdalena Ortiz. Ontology based query answering: The story so far. In Proceedings
of the 7th Alberto Mendelzon International Workshop on Foundations of Data
Management, Puebla/Cholula, Mexico, May 21-23, 2013, volume 1087 of CEUR
Workshop Proceedings. CEUR-WS.org, 2013.

[OS12] Magdalena Ortiz and Mantas Simkus. Reasoning and query answering in description
logics. In Reasoning Web, volume 7487 of Lecture Notes in Computer Science,
pages 1–53. Springer, 2012.

[Pap94] Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
[PDB+20] Dhruvesh Patel, Shib Sankar Dasgupta, Michael Boratko, Xiang Li, Luke Vilnis,

and Andrew McCallum. Representing joint hierarchies with box embeddings. In
Conference on Automated Knowledge Base Construction, AKBC 2020, Virtual, June
22-24, 2020, 2020.

[PHH11] Camille Pradel, Ollivier Haemmerlé, and Nathalie Hernandez. Expressing con-
ceptual graph queries from patterns: How to take into account the relations. In
Conceptual Structures for Discovering Knowledge - 19th International Conference
on Conceptual Structures, ICCS 2011, Derby, UK, July 25-29, 2011. Proceedings,
volume 6828 of Lecture Notes in Computer Science, pages 229–242. Springer, 2011.

[PLC+08] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo,
Maurizio Lenzerini, and Riccardo Rosati. Linking data to ontologies. In Stefano
Spaccapietra, editor, Journal on Data Semantics X, volume 4900 of Lecture Notes
in Computer Science, pages 133–173. Springer Berlin Heidelberg, 2008.

[RHL20] Hongyu Ren, Weihua Hu, and Jure Leskovec. Query2box: Reasoning over knowl-
edge graphs in vector space using box embeddings. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net, 2020.

[RKZ13] Mariano Rodriguez-Muro, Roman Kontchakov, and Michael Zakharyaschev.
Ontology-based data access: Ontop of databases. In The Semantic Web - ISWC 2013
- 12th International Semantic Web Conference, Sydney, NSW, Australia, October
21-25, 2013, Proceedings, Part I, pages 558–573, 2013.

[RL20] Hongyu Ren and Jure Leskovec. Beta embeddings for multi-hop logical reasoning
in knowledge graphs. In Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020.

163

[Ros07] Riccardo Rosati. On conjunctive query answering in EL. In Proceedings of the
2007 International Workshop on Description Logics (DL2007), Brixen-Bressanone,
near Bozen-Bolzano, Italy, 8-10 June, 2007, volume 250 of CEUR Workshop
Proceedings. CEUR-WS.org, 2007.

[RSR15] Tim Rocktäschel, Sameer Singh, and Sebastian Riedel. Injecting logical background
knowledge into embeddings for relation extraction. In NAACL HLT 2015, The 2015
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Denver, Colorado, USA, May 31 -
June 5, 2015, pages 1119–1129, 2015.

[SAB+20] Haitian Sun, Andrew O. Arnold, Tania Bedrax-Weiss, Fernando Pereira, and
William W. Cohen. Faithful embeddings for knowledge base queries. In Ad-
vances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
2020.

[Sat00] Ulrike Sattler. Description logics for the representation of aggregated objects. In
ECAI 2000, Proceedings of the 14th European Conference on Artificial Intelligence,
Berlin, Germany, August 20-25, 2000, pages 239–243. IOS Press, 2000.

[SBN+21] Christoph G. Schuetz, Loris Bozzato, Bernd Neumayr, Michael Schrefl, and Luciano
Serafini. Knowledge graph OLAP. Semantic Web, 12(4):649–683, 2021.

[SEI+18] Marta Sabou, Fajar J. Ekaputra, Tudor B. Ionescu, Juergen Musil, Daniel Schall,
Kevin Haller, Armin Friedl, and Stefan Biffl. Exploring enterprise knowledge
graphs: A use case in software engineering. In ESWC, volume 10843 of Lecture
Notes in Computer Science, pages 560–575. Springer, 2018.

[SGKK17] Evgeny Sherkhonov, Bernardo Cuenca Grau, Evgeny Kharlamov, and Egor V.
Kostylev. Semantic faceted search with aggregation and recursion. In International
Semantic Web Conference (1), volume 10587 of Lecture Notes in Computer Science,
pages 594–610. Springer, 2017.

[SKZ+14] Ahmet Soylu, Evgeny Kharlamov, Dmitriy Zheleznyakov, Ernesto Jimenez-Ruiz,
Martin Giese, and Ian Horrocks. Optiquevqs: Visual query formulation for obda. In
Proceedings of the 27th International Workshop on Description Logics (DL 2014),
volume 1193, pages 725–728, Vienna, Austria, 2014.

[SN07] P. K. Srimani and S. F. B. Nasir. Context-Free Grammars and Context-Free Lan-
guages, page 304–376. Foundation Books, 2007.

[SPG+07] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden
Katz. Pellet: A practical owl-dl reasoner. Web Semant., 5(2):51–53, June 2007.

164

[SS89] Manfred Schmidt-Schaubß. Subsumption in KL-ONE is undecidable. In Proceed-
ings of the First International Conference on Principles of Knowledge Represen-
tation and Reasoning, pages 421–431, San Francisco, CA, USA, 1989. Morgan
Kaufmann Publishers Inc.

[SS91] Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with
complements. Artif. Intell., 48(1):1–26, 1991.

[SS20] Thomas Schneider and Mantas Simkus. Ontologies and data management: A brief
survey. Künstliche Intell., 34(3):329–353, 2020.

[SSS09] Dimitrios Skoutas, Alkis Simitsis, and Timos K. Sellis. Ontology-driven conceptual
design of ETL processes using graph transformations. J. Data Semant., 13:120–146,
2009.

[tCCST15] Balder ten Cate, Cristina Civili, Evgeny Sherkhonov, and Wang-Chiew Tan. High-
level why-not explanations using ontologies. In PODS, pages 31–43. ACM, 2015.

[TWR+16] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. Complex embeddings for simple link prediction. In Proceedings of
the 33nd International Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference
Proceedings, pages 2071–2080. JMLR.org, 2016.

[VAHL19] Hernán Vargas, Carlos Buil Aranda, Aidan Hogan, and Claudia López. RDF
explorer: A visual SPARQL query builder. In The Semantic Web - ISWC 2019 -
18th International Semantic Web Conference, Auckland, New Zealand, October
26-30, 2019, Proceedings, Part I, volume 11778 of Lecture Notes in Computer
Science, pages 647–663. Springer, 2019.

[Var82] Moshe Y. Vardi. The complexity of relational query languages (extended abstract).
In Proceedings of the 14th Annual ACM Symposium on Theory of Computing, May
5-7, 1982, San Francisco, California, USA, pages 137–146. ACM, 1982.

[W3C13] W3C. Sparql 1.1 federated query. w3c recommendation 21 march 2013, 2013.
https://www.w3.org/TR/sparql11-federated-query/.

[WMWG17] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embed-
ding: A survey of approaches and applications. IEEE Trans. Knowl. Data Eng.,
29(12):2724–2743, 2017.

[WQW21] Meihong Wang, Linling Qiu, and Xiaoli Wang. A survey on knowledge graph
embeddings for link prediction. Symmetry, 13(3):485, 2021.

[YBRW16] Mohamed Yahya, Klaus Berberich, Maya Ramanath, and Gerhard Weikum. Ex-
ploratory querying of extended knowledge graphs. Proc. VLDB Endow., 9(13):1521–
1524, 2016.

165

[YYH+15] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding
entities and relations for learning and inference in knowledge bases. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

[ZCZ+20] Jing Zhang, Bo Chen, Lingxi Zhang, Xirui Ke, and Haipeng Ding. Neural-symbolic
reasoning on knowledge graphs. CoRR, abs/2010.05446, 2020.

[ZGN+15] Yujiao Zhou, Bernardo Cuenca Grau, Yavor Nenov, Mark Kaminski, and Ian Hor-
rocks. Pagoda: Pay-as-you-go ontology query answering using a datalog reasoner.
J. Artif. Intell. Res. (JAIR), 54:309–367, 2015.

166

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Formulation and State-of-the-art
	Research Challenges and Methodology
	Contributions
	Thesis Structure

	Ontology-mediated Query Answering
	Description Logics Ontologies
	Ontology-mediated Query Answering
	Techniques for Answering DL OMQs
	Complexity of Reasoning

	Interactive Ontology-mediated Query Answering
	Taming Complex Role Inclusions for DL-Lite
	Extending DL-LiteA with Complex Relation Inclusions
	FO-rewritable Fragments of DL-LiteA++
	Related Work and Discussion

	Ontology-enhanced Exploratory Framework
	Abstract Exploratory Framework
	Generating Meaningful Query Spaces
	Generating Query Spaces with Datalog
	Implementation and Evaluation
	Related Work and Discussion

	Data Incompleteness
	Ontology-mediated Conditional Answers
	ABox Completion and Extension
	Assumption-based Ontology-mediated Query Answering
	Rewriting AOMQs
	AOMQs with Closed Predicates
	Incorporating Disjointness and Functionality Axioms
	Empirical Evaluation
	Related Work and Discussion

	Neural-Symbolic Ontology-mediated Query Answering
	Query Answering over Knowledge Graph Embeddings
	Embedding-based Ontology-mediated Query Answering
	Ontology-driven Data Sampling
	Ontology-Aware Models
	Evaluation
	Related Work and Discussion

	Summary and Conclusions
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

