
Inductive Reasoning in
Superposition

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktorin der Technischen Wissenschaften

by

Mgr. Petra Hozzová
Registration Number 11934931

to the Faculty of Informatics

at the TU Wien

Advisor: Prof. Dr. Laura Kovács
Second advisor: Prof. Dr. Andrei Voronkov

The dissertation has been reviewed by:

Jasmin Blanchette Viorica Sofronie-Stokkermans

Vienna, June 3, 2024
Petra Hozzová

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Mgr. Petra Hozzová

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 3. Juni 2024
Petra Hozzová

iii

Acknowledgements

This PhD was quite a ride! And as any great adventure, it was enabled by many people
to whom I am deeply grateful.

First and foremost, I would like to express my gratitude to my advisor Laura, whose
guidance in all areas was integral to my journey. Further, I also thank my second advisor
Andrei for many valuable discussions. Moreover, I would like to thank the reviewers of
this thesis Jasmin Blanchette and Viorica Sofronie-Stokkerman, whose feedback improved
the final product and provided me with food for future thought. Additionally, to my
coauthors Márton, Joe, Chase, Daneshvar, Eva, Jakob, Michael, Martin, Giles, Jarda,
Alex, and Yoav: thank you, it was a pleasure to work with you – and I hope to have an
opportunity to do so again in the future!

My heartfelt thanks go to my colleagues, who along the way became my friends: Anton,
Clemens, Friedrich, Liana, Márton, Pamina, and Sarah. The whole PhD experience
managed to surprise me in many ways, but finding such great people was one of the
nicest surprises of all. Дзякуй, danke, köszönöm!

I would also like to extend my gratitude to my closest friends from my non-academic life.
Moni, Máška, Mário, Žaba, thank you for keeping me going and keeping me in check.
Finally, a huge thank you to my family: my parents Zuzka and Palko, whose unwavering
support helped me stay on my path, and my amazing husband Janko, who was my point
of stability throughout all the ups and downs. Ďakujem!

v

Kurzfassung

In dieser Arbeit erweiteren wir automatisiertes Beweisen für formale Verifikation und
Programmsynthese mit Induktion. Wir arbeiten mit Systemen, die auf der Sättigung einer
initialen Klauselmenge durch logische Schlüsse basieren, im Weiteren sättigungsbasierte
Systeme gennant. Der Fokus liegt dabei auf Theorembeweisern für Prädikatenlogik erster
Stufe, die wir Beweiser erster Stufe nennen.
Theorien von induktiv definierte Datentypen wie natürliche Zahlen oder Listen sowie
die Theorie der Ganzzahlarithmetik werden häufig bei der Entwicklung imperativer und
funktionaler Programme verwendet. Darüber hinaus erfordern Beweise über Schleifen
oder Rekursion häufig das Induktionsprinzip. Daher müssen automatische Beweistech-
niken für die formale Verifikation von Programmen auch Induktion für die Typen der
oben genannten Theorien automatisieren. Um der Forderung nach vertrauenswürdigen
Softwaresystemen angemessen gerecht zu werden, konzentriert sich diese Arbeit auf (1) die
Automatisierung von induktiven Schlüssen in Therembeweisern für der Prädikatenlogik
erster Stufe und (2) die Synthese von Programmen auf der Grundlage von Beweisen in
Prädikatenlogik erster Stufe, die möglicherweise Induktion verwenden.
Im ersten Teil der Arbeit erweitern wir induktive Beweisverfahren für sättigungsbasierte
Theorembeweiser erster Stufe. Die Herausforderung besteht darin, dass sich das Fra-
mework erheblich von den meisten induktiven Beweisern unterscheidet – es unterstützt
nicht die Ziel-/Unterzielarchitektur. Wir integrieren daher Induktion in das Superposi-
tionskalkül, das von sättigungsbasierte Systeme verwendet wird, und verwenden weder
Termersetzungsregeln noch externe Heuristiken für die Erzeugung zusätzlicher induktiver
Lemmas.
Im zweiten Teil schlagen wir ein deduktives Programmsynthese-Framework vor, das auf
dem sättigungsbasierten System basiert. Wir verwenden Theorembeweisen als Grundlage
für die Synthese ausgehend von einer Funktionsspezifikation, die als Formel in Prädikaten-
logik erster Stufe gegeben ist und die Existenz eines bestimmten Programms ausdrückt.
Beim Beweisen der Existenz eines Programms synthetisieren wir auch das Programm, das
per Konstruktion korrekt ist. Wir beginnen mit der Konstruktion von rekursionsfreien
Programmen aus induktionsfreien Beweisen und erweitern diesen Ansatz dann, um auch
einfache rekursive Programme aus Beweisen mit Induktion zu synthetisieren.
Wir haben die in dieser Arbeit beschriebenen induktiven Beweistechniken im sättigungs-
basierten Beweiser Vampire implementiert. Wir präsentieren eine Reihe von experi-

vii

mentellen Auswertungen unserer Implementierung und zeigen, dass die in dieser Arbeit
vorgeschlagenen Ansätze in der Praxis gut funktionieren.

Abstract

In this thesis, we focus on extending automated reasoning for formal verification with
induction.

Theories of inductively defined data types, such as natural numbers or lists, and the
theory of integer arithmetic are commonly used in the development of imperative and
functional programs. Further, reasoning about loops or recursion often requires the
inductive principle. Therefore, automating reasoning in formal verification of programs
also needs to automate induction over the types of the aforementioned theories. To
adequately respond to the demand of ensuring trustworthiness of software systems, this
thesis focuses on (1) mechanizing inductive reasoning within first-order theorem proving,
and (2) constructing programs based on first-order proofs possibly using induction.

In the first part, we extend the inductive reasoning capabilities for the saturation-based
framework of automated first-order theorem provers. The challenge is that the framework
substantially differs from most inductive provers – it does not support the goal/subgoal
architecture. We therefore integrate induction with the superposition calculus used by the
saturation framework, and do not use rewrite rules nor external heuristics for generating
auxiliary inductive lemmas.

In the second part, we propose a deductive program synthesis framework based on
saturation. We use theorem proving as a basis for synthesis from a functional specification
given as a first-order formula expressing the existence of a particular program. In the
process of proving the existence of a program, we also synthesize the program, which
is correct by construction. We begin with constructing recursion-free programs from
induction-free proofs, and then we extend this approach to also synthesize simple recursive
programs from proofs using induction.

We implemented the inductive reasoning techniques described in this thesis in the
saturation-based theorem prover Vampire. We present a set of experimental evaluations
of our implementation, demonstrating that the approaches proposed in this thesis work
well in practice.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Contributions . 2
1.2 Publications and Relation to Contributions 4
1.3 Outline . 5

2 Preliminaries 7
2.1 Saturation . 10
2.2 Superposition . 11
2.3 Induction in Saturation . 11
2.4 Answer Literals . 14

3 Induction with Generalization 17
3.1 Motivating Example . 18
3.2 Induction with Generalization . 20

4 Integer Induction 23
4.1 Motivating Examples . 24
4.2 Integer Induction Axioms and Rules 27
4.3 Integer Induction in Saturation-Based Proof Search 28

5 Inductive Benchmarks 33
5.1 Benchmark Format . 33
5.2 Benchmark Categories . 34

6 Implementation of Induction in Vampire 41
6.1 Induction with Generalization . 42
6.2 Integer Induction . 46

xi

7 Synthesis of Recursion-Free Programs 53
7.1 Computable Symbols and Programs 54
7.2 Illustrative Example . 55
7.3 Program Synthesis with Answer Literals 56
7.4 Superposition with Answer Literals . 60
7.5 Computable Unification with Abstraction 67
7.6 Integrating Synthesis with Splitting in AVATAR 69

8 Synthesis of Programs with Recursion 75
8.1 Motivating Example . 76
8.2 Saturation with Induction in Constructive Logic 76
8.3 Induction with Magic Formulas . 77
8.4 Programs with Primitive Recursion . 79
8.5 Recursive Synthesis in Saturation . 85
8.6 Generalization to Arbitrary Term Algebras 88

9 Synthesis Examples and Implementation in Vampire 91
9.1 Recursion-Free Synthesis . 92
9.2 Synthesis of Recursive Programs . 93

10 Related Work 99
10.1 Induction . 99
10.2 Synthesis . 102

11 Conclusions and Future Work 105

List of Figures 109

List of Tables 111

List of Algorithms 113

Bibliography 115

CHAPTER 1
Introduction

As our world undergoes transformation to information society, more and more systems
are controlled by software. This includes safety-critical systems and systems with access
to valuable assets or sensitive data. The incentives for making all this software reliable
are therefore high. However, verifying correctness of software is a hard problem. Testing
is a straightforward method for discovering bugs, but short of checking the software
behavior on all possible inputs it cannot guarantee that the software will always behave
as it should. While there is no universal technique for certifying software correctness, the
methods of formal verification can do so in certain cases.
In a nutshell, formal verification works as follows. To verify that a program is indeed
correct, we first formulate the correctness specification. Then we encode both the program
and the specification in some suitable formal language(s), obtaining the encodings P and
S, respectively, for the program and its specification. Finally, we check whether P satisfies
S – if yes, this gives us some (possibly limited) guarantee of the program correctness with
respect to the specification. All three steps of this recipe for program verification require
some heavy lifting: in many cases it is not easy to formulate what exactly it means for a
program to be correct; depending on the program and the specification, a rigorous and
efficient encoding in the target formal language might not even exist; and finally, for many
formal languages that are expressive enough to encode the program and specification as
P and S, checking whether P satisfies S is not decidable. The third challenge is closely
related to the problem of proving mathematical theorems, for which there is also no
universal algorithm. However, recent developments in automated reasoning open up new
avenues to tackling the third challenge by automatically checking whether P satisfies S.
In this thesis we advocate the use of automated theorem proving for facilitating program
verification and synthesis. We assume that the program and the specification are encoded
as formulas P and S, respectively, in first-order logic with theories, a language rich
enough to model most standard constructions. Then we apply the methods of fully
automated first-order theorem proving to formally prove that P satisfies S. The focus

1

1. Introduction

of this thesis is on development of the reasoning methods with the aim of categorically
expanding the set of formulas for which we can prove that P satisfies S.

A feature crucial for reasoning about programs is induction: this is the principle that
allows for reasoning about loop iterations or recursive calls. If we can prove that a
property (i) holds at the beginning of the loop, and that (ii) it is an invariant of the loop
(i.e., if it holds after the ith iteration, it will also hold after the i + 1st iteration), then
by the induction principle the property holds after any iteration of the loop – including
the last one, if the loop terminates. Similarly, consider a recursive function definition
consisting of a base case and a recursive case. Assume that we can prove that a property
(i) holds for the value returned in the base case, and that (ii) the property holding for
the value returned in the recursive case follows from the property holding for the values
returned by any recursive call within the recursive case. Then, by the induction principle
the property holds for the value computed by the function when applied to any argument.

However, until recently fully automated inductive reasoning1 has been the domain of
inductive theorem provers [BM79, BSvH+93, CJRS12, SDE12, PCI+20], which lack other
capabilities necessary for reasoning about programs, such as efficient reasoning about
quantifiers or theories. On the other hand, theorem provers and SMT solvers, which
traditionally focused on the quantified and theory-specific areas of the automated reason-
ing landscape, respectively, did not support induction. This changed recently with the
advances in fully automated reasoning with first-order logic and SMT related to induction,
such as first-order reasoning with inductively defined data types [KRV17], the Avatar
architecture [Vor14], inductive strengthening of SMT properties [RK15], structural induc-
tion in superposition [Cru17] and general induction rules within saturation [RV19]. These
advances make it possible to re-consider the grand challenge of mechanizing mathematical
induction [BM79] in the context of reasoning with full first-order logic with theories.

1.1 Contributions
In our work, we focus on saturation-based first-order theorem proving using the superpo-
sition calculus. This is the leading approach to theorem proving, as evidenced by the
automated theorem proving competition CASC [Sut16], winners of which predominantly
use this paradigm. The work of [RV19] naturally extended the superposition calculus in
saturation with an induction rule. This thesis consists of two parts, both of which are
based on and further develop superposition in saturation extended with induction.

In the first part of this thesis, we extend the induction rule in superposition by introducing
new axioms to instantiate the rule with. Our new axioms allow us to fully automatically
solve problems coming from verification, as well as mathematics, that were not auto-
matically solvable before. This includes two types of properties. First, properties that
are not straightforwardly provable despite being instances of other inductive properties,

1In this thesis we use the term inductive reasoning with the meaning “reasoning with induction”, not
“generalizing from examples”.

2

1.1. Contributions

which can themselves be proved easily. The challenge our work addresses is automating
the discovery of a generalization of the original property, and the subsequent direct use
of the induction axiom for the generalization for proving the original property. Second,
we investigate proving of inductive properties over integers. Unlike inductively defined
data types, the set of integers with the standard less-than order is not well-founded, and
thus there is also no specific value that would be a natural candidate for a base case
of an induction axiom. However, we can apply inductive reasoning over any interval of
integers where at least one of the bounds is not (negative) infinity. Here, the automation
challenge we solve is how to choose the bounds, and thus also the base case and induction
step for the induction axiom. Finally, we also present a benchmark set we created while
developing the methods mentioned in this paragraph, since previously there were no
benchmarks focused on induction with generalization and integer induction.

In the second part of this thesis, we turn the verification problem upside-down and use
saturation-based proving to automate program synthesis. Instead of taking a program
and a specification and proving that the program satisfies the specification, we only
consider the specification and automatically synthesize a program satisfying it. We
focus on functional specifications summarized by valid first-order formulas expressing the
existence of a program computing the desired output for a given input [MW80, ABD+15].
While being a powerful alternative to formal verification [SGF10], program synthesis
faces intrinsic computational challenges. One of these challenges is posed to the reasoning
backend used for handling program specifications, as the latter typically include first-order
quantifier alternations and interpreted theory symbols. As such, efficient reasoning with
both theories and quantifiers is imperative for any effort toward program synthesis. We
address this challenge by integrating synthesis into saturation-based proof search, thereby
obtaining a saturation-based synthesis algorithm. The main idea is that we can construct
the program in parallel with proving its existence. We obtain fragments of the sought
program from substitutions used during the proof. Further, we construct the program
structure based on the proof structure. We translate branching from the proof (e.g.
when a resolution rule is used) to branching in the program using the if−then−else
construction. Finally, we take advantage of all the developments of inductive proving,
and utilize the connection between induction and recursion to translate induction from
the proof into recursion in the constructed program. Briefly, we construct the base case
for a recursive function in parallel with proving the base case of an induction axiom, and
the recursive case when proving the induction step of the induction axiom. As a result,
we fully automatically synthesize programs using primitive recursion.

We implemented all our results in the superposition-based theorem prover Vampire [KV13].
Our experimental evaluation shows that our methods are also practically viable and
allow us to solve many problems originating from the areas of program analysis and
mathematics that were not automatically solvable before.

3

1. Introduction

1.2 Publications and Relation to Contributions
The contributions of this thesis are based on the following peer-reviewed publications,
and one workshop proceedings contribution, for which I acted as the main author :

[HHK+20] Márton Hajdu, Petra Hozzová, Laura Kovács, Johannes Schoisswohl, and
Andrei Voronkov. Induction with Generalization in Superposition Reason-
ing. In Christoph Benzmüller and Bruce Miller, editors, Proc. of CICM,
volume 12236 of LNCS, pages 123–137, Cham, 2020. Springer
Chapter 3 and Section 6.1, as well as parts of Chapter 5 are based on this
peer-reviewed publication.

[HKV21] Petra Hozzová, Laura Kovács, and Andrei Voronkov. Integer Induction in
Saturation. In André Platzer and Geoff Sutcliffe, editors, Proc. of CADE,
volume 12699 of LNCS, pages 361–377, Cham, 2021. Springer
Chapter 4 and Section 6.2, as well as parts of Chapter 5 are based on this
peer-reviewed publication.

[HHK+21] Márton Hajdu, Petra Hozzová, Laura Kovács, Johannes Schoisswohl, and
Andrei Voronkov. Inductive Benchmarks for Automated Reasoning. In
Fairouz Kamareddine and Claudio Sacerdoti Coen, editors, Proc. of CICM,
volume 12833 of LNCS, pages 124–129, Cham, 2021. Springer
The main content of Chapter 5 is based on this peer-reviewed publication.

[HKNV23] Petra Hozzová, Laura Kovács, Chase Norman, and Andrei Voronkov.
Program Synthesis in Saturation. In Brigitte Pientka and Cesare Tinelli,
editors, Proc. of CADE, volume 14132 of LNCS, pages 307–324, Cham,
2023. Springer
Chapter 7 and Section 9.1 are based on this peer-reviewed publication,
which received an honorable mention for best student paper at CADE 2023.

[Hoz24] Petra Hozzová. Integrating Answer Literals with AVATAR for Program
Synthesis. In Laura Kovács and Michael Rawson, editors, Proc. of the
7th and 8th Vampire Workshop, volume 99 of EPiC Series in Computing,
pages 13–20. EasyChair, 2024
Section 7.6 is based on this workshop proceedings contribution.

[HAH+24] Petra Hozzová, Daneshvar Amrollahi, Márton Hajdu, Laura Kovács, An-
drei Voronkov, and Eva Maria Wagner. Synthesis of Recursive Programs
in Saturation. EasyChair Preprint no. 12145, EasyChair, 2024, to appear
in Proc. of IJCAR, 2024
Chapter 8 and Section 9.2 are based on this peer-reviewed publication.

4

1.3. Outline

Additionally, in the course of my PhD I also co-authored the following publications:

[HKH+20] Martin Homola, Ján Kľuka, Petra Hozzová, Vojtěch Svátek, and Miroslav
Vacura. Towards Higher-Order OWL. KI-Künstliche Intelligenz, 34(3):417–
421, 2020
I was a co-author of this project report not included in this thesis.

[HKR21] Petra Hozzová, Laura Kovács, and Jakob Rath. Automated Generation
of Exam Sheets for Automated Deduction. In Fairouz Kamareddine and
Claudio Sacerdoti Coen, editors, Proc. of CICM, volume 12833 of Lecture
Notes in Computer Science, pages 185–196, Cham, 2021. Springer
I was a co-author of this publication not included in this thesis.

[HHKV21] Márton Hajdu, Petra Hozzová, Laura Kovács, and Andrei Voronkov. In-
duction with Recursive Definitions in Superposition. In Ruzica Piskac
and Michael W. Whalen, editors, Proc. of FMCAD, pages 246–255. TU
Wien Academic Press, 2021
I was a co-author of this publication not included in this thesis.

[RSHR22] Michael Rawson, Martin Suda, Petra Hozzová, and Giles Reger. Reuse
of Introduced Symbols in Automatic Theorem Provers. In Boris Konev,
Claudia Schon, and Alexander Steen, editors, Proc. of PAAR, volume
3201 of CEUR Workshop Proceedings. CEUR-WS.org, 2022
I was a co-author of this publication not included in this thesis.

[HHK+22] Márton Hajdu, Petra Hozzová, Laura Kovács, Giles Reger, and Andrei
Voronkov. Principles of Systems Design: Essays Dedicated to Thomas A.
Henzinger on the Occasion of His 60th Birthday, volume 13660 of LNCS,
chapter Getting Saturated with Induction, pages 306–322. Springer, Cham,
2022
I was a co-author of this publication, which surveys (besides other work
also) the contributions from [HHK+20] and [HKV21], and therefore also
covers parts of Chapters 3 and 4.

[HBNR23] Petra Hozzová, Jaroslav Bendík, Alexander Nutz, and Yoav Rodeh. Over-
approximation of Non-Linear Integer Arithmetic for Smart Contract Veri-
fication. In Ruzica Piskac and Andrei Voronkov, editors, Proc. of LPAR,
volume 94 of EPiC Series in Computing, pages 257–269. EasyChair, 2023
I was the main author of this publication not included in this thesis.

1.3 Outline
This thesis is organized as follows.

We open the thesis with preliminaries summarizing the background of saturation-based
reasoning with superposition, induction, and synthesis in Chapter 2.

5

1. Introduction

The first part of the thesis extends inductive proving in saturation. In Chapter 3 we
describe our extension of induction by generalization [HHK+20]. Then, in Chapter 4
we present our work on integer induction [HKV21]. Chapter 5 describes our benchmark
set [HHK+21] developed to evaluate our aforementioned work, and Chapter 6 reports on
the implementation and evaluation of our inductive proving efforts.

The second part of the thesis introduces program synthesis in saturation. In Chapter 7 we
present our program synthesis framework for the case of recursion-free programs [HKNV23,
Hoz24]. Further, in Chapter 8 we describe an extension of our framework to recursive
program synthesis [HAH+24]. Then, in Chapter 9, we overview the implementation of
our synthesis framework and survey examples and experimental results.

Finally, we review related work in Chapter 10 before concluding in Chapter 11.

6

CHAPTER 2
Preliminaries

We consider multi-sorted first-order logic (FOL) with equality. We allow all the standard
logical connectives and quantifiers in the language: ¬, ∧, ∨, →, ↔, ∀, ∃. Additionally,
we assume the logical constants ⊤ for true and ⊥ for false, of the boolean sort Bool.
Throughout this thesis we denote variables by x, y, z, v, w, e, j, n, m, constants by c,
skolem constants by σ, terms by t, r, s, u, atoms by A, literals by L, formulas by F, G
and clauses (disjunctions of literals) by C, D, all possibly with indices. We denote the
equality predicate by ≃ and write t1 ̸≃ t2 as a shorthand for ¬(t1 ≃ t2). We reserve the
symbol □ for the empty clause which is logically equivalent to ⊥. We write L for the
literal complementary to L. We include a conditional term constructor if−then−else
in the language, as follows: given a formula F and terms s, t of the same sort, we write
if F then s else t to denote the term s if F is true and t otherwise.

An expression is a term, literal, clause, or formula. We write E[t] to denote that the
expression E contains the term t. For simplicity, E[s] denotes the expression E where all
occurrences of t are replaced by the term s. A substitution θ is a mapping from variables
to terms. A substitution θ is a unifier of two expressions E and E′ if Eθ = E′θ, and is a
most general unifier (mgu) if for every unifier η of E and E′, there exists a substitution
µ such that η = θµ. We denote the mgu of E and E′ with mgu(E, E′).

A universal closure of a formula F is the formula ∀z.F , where z are all free variables of
F . We write cnf(F) and cnf(S) to mean (an arbitrary but fixed) clausal normal form
(CNF) of a formula F and a set of formulas S, respectively. We consider free variables in
clauses to be implicitly universally quantified.

We use a set of closed formulas defining a theory T . We consider T arbitrarily fixed and
give all notions relative to T . For simplicity, we may drop the explicit reference to T .
Symbols occurring in a theory T are interpreted and all other symbols are uninterpreted.

We work with term algebras [RV01], in particular with the special classes of the alge-
braically defined data types of the natural numbers N, lists L, and binary trees BT.

7

2. Preliminaries

N
at

ur
al

nu
m

be
rs

N
Constructors: 0 : N, s : N → N

Symbols: +N : N×N → N, ·N : N×N → Bool
half : N → N, ≤N: N×N → Bool

Axioms: ∀y ∈ N. 0 +N y ≃ y

∀x, y ∈ N. s(x)+Ny ≃ s(x+Ny)
∀x ∈ N. 0 ·N x ≃ 0
∀x, y ∈ N. s(x)·Ny ≃ (x·Ny) + y

half(0) ≃ 0
half(s(0)) ≃ 0
∀x ∈ N. half(s(s(x))) ≃ s(half(x))
∀x ∈ N. 0 ≤N x

∀x ∈ N. ¬s(x) ≤N 0
∀x, y ∈ N.

�
s(x) ≤N s(y) ↔ x ≤N y

Li
st

s
L

Constructors: nil : L, cons : N × L → L
Symbols: ++: L × L → L, len : L → N, inL : N × L → Bool,

pref : L × L → Bool, suff : L × L → Bool
Axioms: ∀l ∈ L. nil ++ l ≃ l

∀x ∈ N. ∀l, k ∈ L. cons(x, l) ++ k ≃ cons(x, l ++ k)
len(nil) ≃ 0
∀x ∈ N. ∀l ∈ L. len(cons(x, l)) ≃ s(len(l))
∀l ∈ L. pref(nil, l)
∀x ∈ N. ∀l ∈ L. ¬pref(cons(x, l), nil)
∀x, y ∈ N. ∀l, k ∈ L.

�
pref(cons(x, l), cons(y, k))

↔ (x ≃ y ∧ pref(l, k))

∀l ∈ L. suff(nil, l)
∀x ∈ N. ∀l ∈ L. ¬(suff(cons(x, l), nil))
∀x ∈ N. ∀l, k ∈ L.

�
suff(k, l) → suff(k, cons(x, l))

∀x ∈ N. ∀l, k ∈ L.

�
suff(cons(x, k), l) → suff(k, l)

∀x ∈ N. ¬inL(x, nil)
∀x, y ∈ N. ∀l ∈ L.

�
inL(x, cons(y, l)) ↔ (inL(x, l) ∨ x ≃ y)

Bi
na

ry
tr

ee
s
BT

Constructors: Nil : BT, node : BT × N × BT → BT
Symbols: inBT : N × L → Bool, flat : BT → L
Axioms: ∀x ∈ N. ¬inBT(x, Nil)

∀x, y ∈ N. ∀l, r ∈ BT.
�
inBT(x, node(l, y, r))

↔ (inBT(x, l) ∨ inBT(x, r) ∨ x ≃ y)

flat(Nil) ≃ nil
∀x ∈ N. ∀l, r ∈ BT. flat(node(l, x, r)) ≃ flat(l) ++ cons(x, flat(r))

Figure 2.1: Term algebras of N, L, and BT, together with additional symbols and axioms.

8

For reference we include the definitions of these term algebras, extended by additional
function and predicate symbols, in Figure 2.1 We denote the sorts of symbols and terms
by : (colon), e.g., f : τ → α is a function symbol with domain τ and range α. To
emphasize the sort τ of a quantified variable x, we write ∀x∈τ or ∃x∈τ .

In particular, we will deal with the functions and predicates +N, ·N, half, ≤N for N
denoting addition, multiplication, floored division by two, and less-or-equal relation;
++, len, pref, suff, inL for L, denoting the list concatenation, length of a list, prefix and
suffix relations, and the member relation; and inBT, flat, denoting the member relation
and flattening of a tree to a list, respectively. These additional symbols are axiomatized
by first-order formulas corresponding to their recursive definitions, shown in Figure 2.1.
Further, we consider t <N s to be a syntactic shorthand for ¬(s ≤N t).

For a term algebra sort τ , we denote its constructors with Στ . We fix an arbitrary
ordering on the constructors, and denote the i-th constructor in the order by ci, i.e.,
Στ = {c1, . . . , c|Στ |}. For each ci, we denote its arity with nci . We denote with Pci the
set of argument positions of ci of the sort τ . We define terminating recursive functions
f : τ1 × · · · × τn → α, where τi is a term algebra type, and each τk for k ̸= i and α are
arbitrary types, by providing a set of equalities

{f(y1, . . . , yi−1, c(x), yi+1, . . . , yn) ≃
tc[x, f(y1, . . . , yi−1, xj1 , yi+1, . . . , yn), . . . , f(y1, . . . , yi−1, xj|Pc| , yi+1, . . . , yn)]}c∈Στ ,

where Pc = {j1, . . . , j|Pc|}, and each tc is a term of type α containing no occurrences of f
except for the distinguished ones. When we define more than one terminating recursive
function, we do it such that there is no circular dependency: the functions can be ordered
as f1, . . . , fn such that the equalities defining each fi contain no occurrences of fj for
any j > i. An example of such terminating recursive functions are +N, ·N defined by the
first four axioms of N in Figure 2.1.

Further, we also assume a distinguished integer sort, denoted by Z. When we use standard
integer predicates <Z, ≤Z, >Z, ≥Z, functions +Z, −Z, . . . and constants 0, 1, 2, . . . , we
assume that they denote the corresponding interpreted integer predicates and functions
with their standard interpretations.

Note that some function and relation symbols for N,L,BT and Z only differ in the
subscript. When the sort is clear from the context, we drop the subscript.

We use the standard semantics for FOL. Constants ⊤, ⊥ are interpreted as themselves.
We only consider the standard models of term algebras, and interpret all ground terms
consisting only of term algebra constructors as themselves. For an interpretation function
I, we denote the interpretation of a variable x, function symbol f , and a predicate symbol
p by xI , f I , pI , respectively. We use the notation EI , F I also for the interpretation of
expressions E and formulas F , respectively. Further, for a variable or a constant a and
a value o, we denote by I{a �→ o} the interpretation function I ′ such that aI′ = o and
bI′ = bI for any constant or variable b ̸= a. We write F1, . . . , Fn ⊢ G1, . . . , Gm to denote

9

2. Preliminaries

Algorithm 2.1: The Saturation Loop.
1 initial set of clauses S := {cnf(¬F)}
2 repeat
3 Select clause G ∈ S
4 Derive consequences C1, . . . , Cn of G and formulas from S using rules of I
5 S := S ∪ {C1, . . . , Cn}
6 if □ ∈ S then return F is valid
8 return F is not valid

that F1 ∧ . . . ∧ Fn → G1 ∨ . . . ∨ Gm is valid, and extend the notation also to validity
modulo a theory T .

We recall the standard notion of λ-expressions. Let t be a term and x a variable.
Then λx.t denotes a λ-expression. For any interpretation I, we define (λx.t)I as the
function f given by f(o) = tI{x
→o} for any value o. Moreover, we extend the notation
of λ-expressions to also bind constants. Let c be a constant, then λc.t also denotes a
λ-expression, and its interpretation (λc.t)I is the function f given by f(o) = tI{c
→o} for
any value o.

Given any b, we write a := b to denote assignment of b into a. In particular, given an
expression E, we write a := E to emphasize that we are assigning E into a, and thus for
a given expression E′[a] we obtain E′[E].

2.1 Saturation
Saturation-based proof search implements proving by refutation [KV13]: to prove validity
of F , a saturation algorithm establishes unsatisfiability of ¬F . First-order theorem
provers work with clauses, rather than with arbitrary formulas. To prove a formula F ,
first-order provers negate F which is further skolemized and converted to CNF. The
provers thus obtain cnf(¬F), which forms a set S of initial clauses. First-order provers
then saturate S by computing logical consequences of S with respect to a sound inference
system I. The saturated set of S is called the closure of S and the process of computing
the closure of S is called saturation. We refer to the set S throughout saturation as the
search space. If the closure of S contains the empty clause □, the original set S of clauses
is unsatisfiable, and hence the formula F is valid.

We show a simplified saturation algorithm for a sound inference system I in Algorithm 2.1,
with a goal F as input.

We may extend the set S of initial clauses with additional clauses C1, . . . , Cn. If C is
derived by saturating this extended set, we say C is derived from S under additional
assumptions C1, . . . , Cn.

10

2.2. Superposition

A way in which first-order theorem provers can handle reasoning with theories of term
algebras or integers is by extending the search space with axioms and introducing
additional inference rules. The axioms for term algebras include domain closure, injectivity,
distinctness and acyclicity – a detailed definition of these axioms can be found in [RV01,
KRV17]. The work [KRV17] addresses the challenge of automating proving term algebras
properties given the fact that the acyclicity axiom is not finitely axiomatizable. For
reasoning with the theory of integer arithmetic, see [KV13, RSV18, RSV21, KKR+23].

One of the keys to the efficiency of saturation-based theorem proving is clause splitting,
with the leading approach being the Avatar architecture [Vor14, BRSV16]. The main
idea of splitting is as follows. Let S be a set of clauses and C1 ∨ C2 a clause such
that C1, C2 have disjoint sets of variables. We call such clauses C1, C2 the components
of C1 ∨ C2. Then S ∪ {C1 ∨ C2} is unsatisfiable iff both S ∪ {C1} and S ∪ {C2} are
unsatisfiable. Therefore, instead of checking satisfiability of a set of large clauses, we
check the satisfiability of multiple sets of smaller clauses. Avatar implements this idea by
using an interplay between a saturation-based first-order theorem prover and a SAT/SMT
solver. The SAT/SMT solver finds a set of clause components, satisfiability of which
implies satisfiability of all split clauses. These components, called assertions, are then
used by the theorem prover for further derivations in saturation. All clauses derived
using assertions C1, . . . , Cn are called clauses with assertion C1, . . . , Cn. Finally, note
that when Avatar uses an SMT solver, the solver can also check the theory-consistency
of the assertions, and thus facilitate reasoning with theories.

2.2 Superposition
The superposition calculus, denoted as Sup, is the most common inference system used by
saturation-based provers for first-order logic with equality [NR01]. An example of such a
prover is the theorem prover Vampire [KV13], in which we implement the contributions
described in this thesis. An overview of the inference rules of Sup is given in Figure 2.2.
In the derivations we show in this thesis, we indicate how was each formula derived by
listing the (abbreviated) name of the applied rule in brackets.

The Sup calculus is parametrized by a simplification ordering ≻ on terms and a selection
function, which selects in each non-empty clause a non-empty subset of literals (possibly
also positive literals). We denote selected literals by underlining them. An inference rule
can be applied on the given premise(s) if the literals that are underlined in the rule are
also selected in the premise(s). The superposition calculus Sup is sound (if □ is derived
from F , then F is unsatisfiable) and, for a certain class of selection functions, it is also
refutationally complete (if F is unsatisfiable, then □ can be derived from it).

2.3 Induction in Saturation
Inductive reasoning has been integrated into saturation in [RV19], and further extended
in [HHK+20, HKV21, HHKV21, HKRV22], where the former two papers form the first

11

2. Preliminaries

Superposition (Sup):

s ≃ t ∨ C L[s′] ∨ C ′

(L[t] ∨ C ∨ C ′)θ
s ≃ t ∨ C u[s′] ̸≃ u′ ∨ C ′

(u[t] ̸≃ u′ ∨ C ∨ C ′)θ
s ≃ t ∨ C u[s′] ≃ u′ ∨ C ′

(u[t] ≃ u′ ∨ C ∨ C ′)θ

where θ := mgu(s, s′); tθ ̸⪰ sθ; (first rule only) L[s′] is not an equality literal;
and (second and third rules only) u′θ ̸⪰ u[s′]θ.

Factoring (Fac):

A ∨ A′ ∨ C

(A ∨ C)θ

where θ :=mgu(A, A′).

Binary resolution (BR):

A ∨ C ¬A′ ∨ C ′

(C ∨ C ′)θ

where θ := mgu(A, A′).

Equality resolution (ER):

s ̸≃ t ∨ C

Cθ

where θ := mgu(s, t).

Equality factoring (EF):

s ≃ t ∨ s′ ≃ t′ ∨ C

(s ≃ t ∨ t ̸≃ t′ ∨ C)θ

where θ := mgu(s, s′); tθ ̸⪰ sθ; and t′θ ̸⪰ tθ.

Figure 2.2: The superposition calculus Sup. Underlined literals are selected. In proofs,
we denote the rules we use by the abbreviations in parentheses.

part of this thesis. For a survey, see also [HHK+22].

The main idea in this body of work is to apply induction by theory lemma generation:
based on already derived formulas, generate a suitable induction axiom and add it to the
search space. To this end, the following induction rule is used:

L[t] ∨ C

F → ∀x.L[x] (Ind), (2.1)

where L[t] is a ground literal, C is a clause, and F → ∀x.L[x] is a valid induction
axiom. The conclusion of the Ind rule is skolemized to obtain induction formula and then
clausified, yielding clauses cnf(¬F) ∨ L[x]. These clauses are resolved with the premise
L[t] ∨ C immediately after applying the Ind rule and the resulting clauses cnf(¬F) ∨ C
are added to the search space. Note that in some of the works, the clausification and
resolution steps are explicitly captured by formulating the induction rule as

L[t] ∨ C

cnf(¬F) ∨ L[x]
or L[t] ∨ C

cnf(¬F) ∨ C .

In this thesis, we will stick to the formulation of Ind from (2.1), but we emphasize that
the conclusion of the rule is always clausified and resolved with the premise of the rule.

12

2.3. Induction in Saturation

An induction schema is a collection of induction axioms. Each induction schema we
consider is the set of first-order instances of some valid higher-order formula. An example
of a valid induction schema is the structural induction schema for natural numbers [RV19],
where G[x] is any closed formula with x a variable of the natural number sort:�

G[0] ∧ ∀y.(G[y] → G[s(y)])

 → ∀x.G[x] (2.2)

Informally, the schema expresses that if the base case holds, and if the induction step
holds, then G[x] holds for all possible values of x. When we instantiate the schema with
G[x] := L[x], we obtain an axiom that can be used in Ind. Note that we can also use a
complex formula G[t] in place of the literal L[t] in Ind, obtaining a more involved rule,
possibly with multiple premises, similarly to a mutli-clause induction rule [HHKV21] or
a induction with arbitrary formulas [HKRV22].

The CNF of the structural induction axiom instantiated by L[x] is

¬L[0] ∨ L[σ] ∨ L[x]
¬L[0] ∨ ¬L[s(σ)] ∨ L[x],

where σ is the skolem constant corresponding to y from the axiom. After binary resolution
with the premise of the induction rule L[t] ∨ C we obtain:

¬L[0] ∨ L[σ] ∨ C

¬L[0] ∨ ¬L[s(σ)] ∨ C

These are the clauses that are added to the search space.

Compared with inductive provers such as [BSvH+93, CJRS12, SDE12, BM79, PCI+20],
the approach used in [RV19] and this thesis automates induction by integrating it
directly in superposition-based proof search, without relying on rewrite rules and external
heuristics for generating auxiliary inductive lemmas/subgoals. This approach is also
conceptually different from the previous attempts to use induction with superposition
[KP13, Cru17, EP20], as we are not restricted to specific clause splitting algorithms
and heuristics used in [Cru17], nor are we limited to induction over term algebras with
the subterm ordering in [EP20]. As a result, we stay within the standard saturation
framework and do not have to introduce constraint clauses, additional predicates or
change the notion of redundancy as in [EP20].

In this thesis, we will sometimes write “this problem requires induction”. This should
not be regarded as a formal statement: this property is not easy to formalize in general
and it is possible that some of these problems can be proved by certain combinations
of decision procedures, first-order theorem proving with uninterpreted functions, and
axiomatization of interpreted functions. However, when we make such statements, one
can see that these problems have relatively simple proofs involving induction and cannot
be proved by existing provers without induction.

13

2. Preliminaries

2.4 Answer Literals
Answer literals [Gre69] provide a question answering technique for tracking substitutions
into given variables throughout the proof. Suppose we want to find a witness for the
validity of the formula

∃y.F [y]. (2.3)
Within saturation-based proving, we first derive the skolemized negation of (2.3) and
add an answer literal using a fresh predicate ans with argument y, yielding

∀y.(¬F [y] ∨ ans(y)). (2.4)

We then saturate the CNF of (2.4), while ensuring that answer literals are not selected
for performing inferences. If the clause ans(t1)∨ . . .∨ans(tm) is derived during saturation,
note that this clause contains only answer literals in addition to the empty clause; hence,
in this case we proved unsatisfiability of ∀y.¬F [y], implying validity of (2.3). Moreover,
t1, . . . , tm provides a disjuntive answer, i.e. witness, for the validity of (2.3); that is,
F [t1] ∨ . . . ∨ F [tm] holds [Kun96]. In particular, if we derive the clause ans(t) during
saturation, we found a definite answer t for (2.3), namely F [t] is valid.

Answer literals with if−then−else. The derivation of disjunctive answers can
be avoided by modifying the inference rules to only derive clauses containing at most
one answer literal. One such modification is given within the A(R)-calculus for binary
resolution [Tam95]. The calculus is parametrized by a strongly liftable term restriction
R, i.e., a restriction such that if R(tθ) holds for any term t and substitution θ, then also
R(t) holds. The A(R)-calculus replaces the binary resolution rule when both premises
contain an answer literal by the following A-resolution rule:

A ∨ C ∨ ans(r) ¬A′ ∨ C ′ ∨ ans(r′)
(C ∨ C ′ ∨ ans(if A then r′ else r))θ (A-resolution),

where θ := mgu(A, A′) and the restriction R(if A then r′ else r) holds. We illustrate
the use of the A(R)-calculus by the following example from [Reg18].

Example 2.1. Let arcade, vampire be constants, sunday, monday boolean constants, and
workshop a unary predicate. The example models a conference, where the arcade workshop
takes place on sunday and vampire workshop on monday, and states that it is either sunday
or monday. The specification then asks for a workshop:

axioms: sunday → workshop(arcade)
monday → workshop(vampire)
sunday ∨ monday

specification: ∃x.workshop(x)

A possible definite answer for this input would be:

if workshop(arcade) then arcade else vampire

14

2.4. Answer Literals

However, it is disputable if this answer is helpful: after all, if we could evaluate whether a
condition workshop(·) holds ourselves, we would not need to pose the query ∃x.workshop(x)
at all. Therefore, we define the restriction R(t) to be true iff t does not contain the symbol
workshop. With this restriction, we derive a definite answer using the A(R)-calculus. For
each clause in the derivation, we list how the clause has been derived. For example,
clause 5 is the result of binary resolution (BR) applied on clauses 1 and 3.

1. ¬workshop(x) ∨ ans(x) [preprocessed specification with answer literal]
2. sunday ∨ monday [input axiom]
3. ¬sunday ∨ workshop(arcade) [input axiom]
4. ¬monday ∨ workshop(vampire) [input axiom]
5. ¬sunday ∨ ans(arcade) [BR 1, 3]
6. ¬monday ∨ ans(vampire) [BR 1, 4]
7. sunday ∨ ans(vampire) [BR 2, 6]
8. ans(if sunday then arcade else vampire) [A-resolution 5, 7]

Thus, the definite answer is if sunday then arcade else vampire.

15

CHAPTER 3
Induction with Generalization

The contributions of this chapter are based on:
Márton Hajdu, Petra Hozzová, Laura Kovács, Johannes Schoisswohl, and Andrei
Voronkov. Induction with Generalization in Superposition Reasoning. In Christoph
Benzmüller and Bruce Miller, editors, Proc. of CICM, volume 12236 of LNCS, pages
123–137, Cham, 2020. Springer [HHK+20]

In this chapter we extend inductive reasoning in saturation-based framework by intro-
ducing a new rule for induction with generalization. The rule adds induction axioms for
proving generalizations of the literals appearing during proof search.

Given a formula (goal) F , it is common in inductive theorem proving to try to prove a more
general goal instead [BM79]. This makes no sense in saturation-based theorem proving,
which is not based on a goal-subgoal architecture. As we aim to automate and generalize
inductive reasoning within saturation-based proof search, our work follows a different
approach than the one used in inductive theorem provers. Namely, our methodology
(Section 3.2) picks up a formula F (not necessarily the goal) in the search space and
adds to the search space new induction axioms with generalization, that is, instances of
generalized induction schemas, aiming at proving both ¬F and a more general formula
than ¬F .

We open this chapter by giving a concrete example motivating our approach in Section 3.1.
While we use N for illustration, we note that our approach can be used for proving
properties over any other theories with various forms of induction. The example illustrates
the advantage of induction with generalization in saturation-based proof search. We
then present a new inference rule for first-order superposition reasoning, called induction
with generalization (Section 3.2). Our work extends [RV19] by proving properties with

17

3. Induction with Generalization

multiple occurrences of the same induction term and by instantiating induction axioms
with logically stronger versions of the property being proved.

Further, in the following chapters we describe our implementation and experimental
evaluation of the method from this chapter (see Section 6.1), and we present a new
dataset of benchmarks focused on induction with generalization (see Section 5.2.1). Our
experiments show that our new approach solves many problems that other existing
systems cannot solve.

We note that in this chapter we only work with the sort of N and thus drop the data
type subscript from the function symbol +N.

3.1 Motivating Example
We motivate our approach to induction with generalization by variations of the associa-
tivity property of addition over N.

Example 3.1. Consider the following formula expressing the associativity of addition:

∀x, y, z ∈ N. x + (y + z) ≃ (x + y) + z (3.1)

We preprocess (3.1) by negating and skolemizing it, obtaining

σ1 + (σ2 + σ3) ̸≃ (σ1 + σ2) + σ3, (3.2)

where σ1, σ2, σ3 are fresh skolem constants used to skolemize x, y, z, respectively. The
induction approach introduced in [RV19] uses (3.2) to instantiate structural induction
schema (2.2) resulting in the following axiom:�

0 + (σ2 + σ3) ≃ (0 + σ2) + σ3 ∧
∀y.(y + (σ2 + σ3) ≃ (y + σ2) + σ3 → s(y) + (σ2 + σ3) ≃ (s(y) + σ2) + σ3)

→ ∀x.(x + (σ2 + σ3) ≃ (x + σ2) + σ3)

(3.3)

Using this induction axiom we obtain a refutational proof of (3.1), with the main steps
discussed below:

1. σ1 + (σ2 + σ3) ̸≃ (σ1 + σ2) + σ3 [preprocessed input]
2. 0 + (σ2 + σ3) ̸≃ (0 + σ2) + σ3 ∨ σ + (σ2 + σ3) ≃ (σ + σ2) + σ3 ∨

x + (σ2 + σ3) ≃ (x + σ2) + σ3 [Ind with (3.3)]
3. 0 + (σ2 + σ3) ̸≃ (0 + σ2) + σ3 ∨ s(σ) + (σ2 + σ3) ̸≃ (s(σ) + σ2) + σ3 ∨

x + (σ2 + σ3) ≃ (x + σ2) + σ3 [Ind with (3.3)]
4. 0 + (σ2 + σ3) ̸≃ (0 + σ2) + σ3 ∨ σ + (σ2 + σ3) ≃ (σ + σ2) + σ3 [BR 1, 2]
5. 0 + (σ2 + σ3) ̸≃ (0 + σ2) + σ3 ∨ s(σ) + (σ2 + σ3) ̸≃ (s(σ) + σ2) + σ3 [BR 1, 3]
6. 0 + (σ2 + σ3) ̸≃ (0 + σ2) + σ3 ∨ s(σ + (σ2 + σ3)) ̸≃ s((σ + σ2) + σ3) [5, axiom of +]

18

3.1. Motivating Example

7. 0 + (σ2 + σ3) ̸≃ (0 + σ2) + σ3 ∨ σ + (σ2 + σ3) ̸≃ (σ + σ2) + σ3 [injectivity 6]
8. 0 + (σ2 + σ3) ̸≃ (0 + σ2) + σ3 [BR 4, 7]
9. σ2 + σ3 ̸≃ σ2 + σ3 [8, axiom of +]

10. □ [trivial inequality removal 9]

Clauses 2 and 3 are the CNF of induction axiom (3.3). These clauses are resolved against
clause 1, yielding clauses 4 and 5. Clause 6 originates by repeated demodulation into 5
using the second axiom of + from Figure 2.1 over N. Further, 7 is derived from 6 by
using the injectivity property of term algebras and 8 is a resolvent of 4 and 7. Clause
9 is then derived by repeated demodulation into 8, using the the first axiom of + from
Figure 2.1 over N. By removing the trivial inequality from 9, we finally derive the empty
clause 10.

While (3.1) was easily proved using Ind, the next example shows the limitations of this
rule.

Example 3.2. Consider now the following instance of associativity property (3.1):

∀x ∈ N. x + (x + x) ≃ (x + x) + x (3.4)

While (3.4) is an instance of (3.1), we cannot prove it using the same approach. Let us
explain why this is the case. By instantiating induction schema (2.2) using (3.4), we get:�

0 + (0 + 0) ≃ (0 + 0) + 0 ∧
∀y.(y + (y + y) ≃ (y + y) + y → s(y) + (s(y) + s(y)) ≃ (s(y) + s(y)) + s(y))

→ ∀x.(x + (x + x) ≃ (x + x) + x)

(3.5)

After resolving this axiom with the skolemized negation of (3.4), we get the following
two clauses:

0 + (0 + 0) ̸≃ (0 + 0) + 0 ∨ σ + (σ + σ) ≃ (σ + σ) + σ (3.6)
0 + (0 + 0) ̸≃ (0 + 0) + 0 ∨ s(σ) + (s(σ) + s(σ)) ̸≃ (s(σ) + s(σ)) + s(σ) (3.7)

While the first literals of (3.6) and (3.7) are easily resolved using axioms of +, not much
can be done with the latter literals. We can only apply repeated demodulations over the
second literal of (3.7) using axioms of + and the injectivity property of term algebras,
yielding σ + s(σ + s(σ)) ̸≃ (σ + s(σ)) + s(σ). No further inference over this formula can
be applied, in particular, it cannot be resolved against the second literal of (3.6). Hence,
the approach of [RV19] fails proving (3.4).

The existing approaches to induction also suffer from the same problem. For exam-
ple [BM79, PCI+20, BCD+11, SDE12, Cru17], can prove property (3.1) but fail to prove
its weaker instance (3.4). The common recipe in inductive theorem proving [BM79] is to
try to prove (3.1) in addition to trying to prove (3.4).

19

3. Induction with Generalization

Interestingly, in saturation-based theorem proving we can do better. If we follow the
common recipe, we would add a generalized goal and then an induction axiom for it.
Instead, we only add the induction axiom instance corresponding to the generalized
goal without adding the extra goal, which results in a smaller number of clauses. More
precisely, in addition to the instance of the induction schema corresponding to (3.4), we
also add an instance corresponding to ∀x, y ∈ N. x + (y + y) ≃ (x + y) + y. We call this
new inference rule induction with generalization.

3.2 Induction with Generalization
Following [RV19], we consider an induction axiom to be any formula of the form
premise → ∀x.L[x], valid in the underlying theory, such as the theory of term alge-
bras. An example of an induction axiom is structural induction axiom (3.3). We recall
rule Ind [RV19], where a ground literal L[t] appearing in the proof search triggers the
addition of the corresponding induction axiom premise → ∀x.L[x] to the search space:

L[t] ∨ C

premise → ∀x.L[x] (Ind),

where L[x] is obtained from L[t] by replacing all occurrences of t by x. Examples of
axioms added by instances of Ind are (3.3) and (3.5).

While addition of a large number of such formulas may seem to blow up the search space,
in practice Vampire handles such addition with little overhead, resulting in finding
proofs containing nearly 150 induction inferences [RV19]. The reason why the overhead of
adding structural induction axioms is small is explained in [RV20]: the added clauses only
contain one variable (the x in L[x]), and the clauses containing this literal are immediately
subsumed by a ground clause. The net result is adding a small number of ground clauses,
which are especially easy to handle in the Avatar architecture implemented in Vampire.

Induction with generalization. In a nutshell, given a goal, we add an induction
axiom corresponding to a more general one. The rule can be formulated in the same way
as Ind, yet with a different conclusion:

¬L[t] ∨ C

cnf(premise′ → ∀x.L′[x])) (IndGen), (3.8)

where L′[x] is obtained from L[t] by replacing some occurrences of t by x, and premise′

is the premise corresponding to L′[x]. Both induction rules are obviously sound because
their conclusions are constructed such that they are valid in the underlying theory.

To implement IndGen, if a clause selected for inferences contains a ground literal ¬L[t]
having more than one occurrence of t, we should select a non-empty subset of occurrences
of t in L[t], select an induction axiom corresponding to this subset, and then apply the
rule.

20

3.2. Induction with Generalization

Example 3.3. We again consider proving (3.4) from Example 3.2. Suppose that t
is σ1 and ¬L[t] is σ1 + (σ1 + σ1) ̸≃ (σ1 + σ1) + σ1, which is obtained by negating and
skolemizing (3.4). Then by applying IndGen we can add the induction axiom�

0 + (σ1 + σ1) ≃ (0 + σ1) + σ1 ∧
∀y.(y + (σ1 + σ1) ≃ (y + σ1) + σ1 → s(y) + (σ1 + σ1) ≃ (s(y) + σ1) + σ1)

→ ∀x.(x + (σ1 + σ1) ≃ (x + σ1) + σ1),

(3.9)

which is different from (3.5). When we add this formula, we can derive the empty clause
from (3.4) in the same way as in the proof of (3.1) from Section 3.1.

Saturation with induction with generalization. The main questions to answer
when applying induction with generalization is which occurrences of the induction term
in the induction literal we should choose.

Generally, if the subterm t occurs n times in the premise, there are 2n − 1 ways of
applying the rule, all potentially resulting in formulas not implying each other. Thus,
an obvious heuristic to use all non-empty subsets may result in too many formulas. For
example, σ1 + (σ1 + σ1) ̸≃ (σ1 + σ1) + σ1 would result in adding 63 induction formulas.

Another simple heuristic is to restrict the number of occurrences selected as induction
term to a fixed number. This strategy reduces the number of applications of induction
at the cost of losing proofs that would need subsets of cardinality larger than the limit.
Finding possible heuristics for selecting specific subsets for common cases of literals can
be the subject of future work, especially interesting in proof assistants in mathematics,
and we note this challenge was later addressed in [HHKV21].

Note that some of the conclusions of (3.8) can, in turn, have many children obtained by
induction with generalization. Our experiments in Section 6.1 show that, even when we
generate all possible children, Vampire can still solve large examples with more than
10 occurrences of the same induction variable, again thanks to the effect that, for each
application of induction, only a small number of ground clauses turn out to be added to
the search space.

We therefore believe that our work can potentially be also useful for larger examples, and
even in cases when the inductive property to be proved is embedded in a larger context.

21

CHAPTER 4
Integer Induction

The contributions of this chapter are based on:
Petra Hozzová, Laura Kovács, and Andrei Voronkov. Integer Induction in Saturation.
In André Platzer and Geoff Sutcliffe, editors, Proc. of CADE, volume 12699 of LNCS,
pages 361–377, Cham, 2021. Springer [HKV21]

In this chapter we analyze the challenge of automating inductive reasoning with integers
and introduce inference rules for integer induction within the saturation framework,
including techniques for discovering a suitable base case.

We note that in this chapter we only work with the sort of Z and thus drop the data
type subscript from the predicate and function symbols ≤Z, <Z, ≥Z, >Z, +Z, ·Z, −Z.

One of the most commonly used data types in imperative/functional programs are
integers. For example, iterating over arrays in imperative programs or recursively
computing sums in functional programs include integer-valued program variables, as
illustrated in Figure 4.1. While for many uses of integers in programming we only need
to consider non-negative integers, there are also applications where integers are essential,
for example, reasoning about memory. To formally prove functional correctness of such
and similar programs, reasoning about integers is indispensable but so is handling some
sort of induction over integers. In this chapter we address these two reasoning challenges
and fully automate inductive reasoning with integers within saturation-based theorem
proving.

The works of [Cru17, RV19] and Chapter 3 focused on induction on inductively defined
data types, also called algebraic data types [KRV17], such as natural numbers or lists.
However, automating integer induction, that is, induction on integers, has not yet been
addressed sufficiently.

23

4. Integer Induction

While natural numbers have a well-founded order and induction over this order is very
useful in automated inductive theorem proving, the standard order on integers is not
well-founded, so it cannot be directly used as the induction ordering. In this chapter
we will use the observation that the standard ordering < is well-founded on every set of
integers having a lower bound b and likewise, the inverse > of this ordering is well-founded
on every set of integers having an upper bound b. This gives us two induction rules
on such integer subsets: induction (with the base case b) using < and induction (with
the base case b) using >, respectively, to prove that a property holds for all integers
≥ b and ≤ b, respectively. We define these induction rules as upward and downward
induction rules with symbolic bounds, respectively. We also consider two variations of
these rules over finite integer intervals and refer to such rules as interval upward and
interval downward induction rules with symbolic bounds, respectively.

For natural numbers, 0 is an obvious base case candidate, which also turns out to be
successful in the theorem proving practice. Analogously, 0 is a natural base case candidate
for integer induction. Nonetheless, in this chapter we present some natural problems for
which neither 0 nor any concrete integer is a good base case.

In Section 4.1 we illustrate our approach by considering properties of the functional and
imperative programs of Figure 4.1. Then in Section 4.2 we define four induction rules over
integers, called (interval) downward, respectively upward, induction rules with symbolic
bounds, and prove their soundness. Section 4.3 introduces an extension of superposition
calculus by our new integer induction rules. These rules are formulated in the context
of saturation-based theorem proving in a way that avoids an immediate combinatorial
explosion of the search space. We demonstrate that using this extension, superposition
provers can prove integer properties similarly to how humans would do. This extension
is especially successful when used together with the Avatar architecture [Vor14], since
Avatar helps in reasoning efficiently using constraints coming out of the integer induction
rules.

In later chapters we also describe our implementation of this work and its experimental
evaluation (see Section 6.2), as well as our associated benchmark set (see Section 5.2.2).

4.1 Motivating Examples

To illustrate problems arising in automating integer induction, let us consider the programs
of Figure 4.1. Properties of both programs are specified using assertions expressed in
first-order logic, with pre- and post-conditions specified by the keywords assume and
assert, respectively.

Functional programs. The ML-style functional program of Figure 4.1(a) computes
the sum sum(n, m) of integers in the interval [n, m], that is
m

i=n i, where m ≥ n. The

24

4.1. Motivating Examples

fun sum(n, m) =
if n = m then n

else n + sum(n + 1, m);

assert ∀n, m ∈ Z.(n ≤ m → 2 · sum(n, m) ≃ m · (m + 1) − n · (n − 1))

(a) Sum of integers from [n, m].

assume 0 ≤ pos < A.size

i := pos;
while i + 1 < A.size do

A[i + 1] := A[i];
i := i + 1;
inv ∀j ∈ Z.(pos ≤ j < i → valA(j + 1) ≃ valA(j))

end

assert ∀j ∈ Z.(pos ≤ j < A.size → valA(j) ≃ valA(pos))

(b) Array initialization, with valA(j) denoting A[j].

Figure 4.1: Motivating examples for inductive reasoning with integers.

function definition uses the following axioms of sum:

∀n ∈ Z.(sum(n, n) ≃ n); (4.1)
∀n, m ∈ Z.(n ̸≃ m → sum(n, m) ≃ n + sum(n + 1, m)). (4.2)

We should prove the assertion

∀n, m ∈ Z.(n ≤ m → 2 · sum(n, m) ≃ m · (m + 1) − n · (n − 1)). (4.3)

Formally proving (4.3) requires inductive reasoning with both integers and quantifiers.
Let F [x] be a formula with one or more occurrences of an integer variable x and b an
integer term not containing x. Consider the following formula:

F [b] ∧ ∀y ∈ Z.(y ≤ b ∧ F [y] → F [y − 1]) → ∀x ∈ Z.(x ≤ b → F [x]) (4.4)

This formula is valid. It is similar to the standard structural induction schema on natural
numbers (2.2), yet with two essential differences. First, we use y − 1 instead of s(y) and
second, we use the term b where for the structural induction on naturals we would use 0.

25

4. Integer Induction

Note that b does not have to be a concrete integer, it can be any term. In the sequel, we
will refer to such terms b used in induction rules as symbolic bounds.

For proving (4.3) using a theorem prover, we first negate and skolemize (4.3), obtaining
the following formula, where σn, σm are fresh skolem constants:

σn ≤ σm ∧ 2 · sum(σn, σm) ̸≃ σm · (σm + 1) − σn · (σn − 1) (4.5)

Modern theorem provers implementing linear integer arithmetic and quantifiers can prove
unsatisfiability of (4.1), (4.2) and (4.5) in a relatively straightforward way if we also add
an instance of induction schema (4.4) with

F [x] := 2 · sum(x, σm) ≃ σm · (σm + 1) − x · (x − 1);
b := σm.

If we want to automate this kind of reasoning, the main question is finding the corre-
sponding instance of induction schema (4.4), that is, finding the induction target formula
F [x] and the (symbolic) bound b.

Imperative programs. The C-style imperative program of Figure 4.1(b) initializes
an integer-valued array A starting at the index pos. We should prove the assertion
stating that all array elements at indices greater than or equal to pos are equal to each
other. Proving such assertions typically requires loop invariants “summarizing” the loop
behavior. One such invariant I is shown in the loop after the keyword inv. This invariant
I could be derived by existing approaches to invariant generation [FPMG19, GGK20].

The assertion of Figure 4.1(b) is then proved using I, by establishing that the post-
condition

∀j ∈ Z.(pos ≤ j < A.size → valA(j) ≃ valA(pos)) (4.6)

is a logical consequence of the invariant I and the negation of the loop condition:

∀j ∈ Z.(pos ≤ j < i → valA(j + 1) ≃ valA(j)) ∧ ¬(i + 1 < A.size) (4.7)

Interestingly, modern theorem provers cannot perform such proofs. Similar to the first
example, we can use an induction schema for integers formulated as follows:

F [b1] ∧ ∀y ∈ Z.(b1 ≤ y < b2 ∧ F [y] → F [y + 1]) → ∀x ∈ Z.(b1 ≤ x ≤ b2 → F [x]) (4.8)

Here we use two symbolic bounds, b1 and b2, to define a finite interval [b1, b2] over which
we apply induction. If we add an instance of this schema with

F [x] := valA(x) ≃ valA(pos);
b1 := pos;
b2 := A.size − 1,

then state-of-the-art theorem provers can easily prove that (4.6) is a logical conse-
quence of (4.7) and the corresponding instance of (4.8). For example, CVC4 [BCD+11],

26

4.2. Integer Induction Axioms and Rules

Z3 [DMB08] and Vampire prove such an instance in essentially no time. However,
similarly to the example of Figure 4.1(a), in order to find such proofs automatically using
the induction axiom of (4.8), we need to be able to discover, during the proof search,
the induction target formula F [x] and the symbolic bounds b1, b2. In what follows, we
describe our solution to automating this discovery by integrating integer induction within
saturation-based theorem proving.

4.2 Integer Induction Axioms and Rules
In this section we define four induction rules, or induction schemas, on integers. Two of
them were already considered in Section 4.1 – namely (4.4) and (4.8).

Definition 4.1 (Downward/Upward Induction). A downward, respectively upward,
induction axiom with symbolic bounds is any formula of the form

F [b] ∧ ∀y.(y ≤ b ∧ F [y] → F [y − 1]) → ∀x.(x ≤ b → F [x]); (downward)
F [b] ∧ ∀y.(y ≥ b ∧ F [y] → F [y + 1]) → ∀x.(x ≥ b → F [x]), (upward)

respectively, where F [x] is a formula with one or more occurrences of an integer variable
x and b is an integer term not containing x.

Note that (4.4) is a downward induction axiom with symbolic bounds.

Definition 4.2 (Interval Downward/Upward Induction). An interval downward, respec-
tively upward, induction axiom with symbolic bounds is any formula of the form

F [b2] ∧ ∀y.(b1 < y ≤ b2 ∧ F [y] → F [y − 1]) → ∀x.(b1 ≤ x ≤ b2 → F [x]); (downward)
F [b1] ∧ ∀y.(b1 ≤ y < b2 ∧ F [y] → F [y + 1]) → ∀x.(b1 ≤ x ≤ b2 → F [x]), (upward)

respectively, where F [x] is a formula with one or more occurrences of an integer variable
x and b1, b2 are integer terms not containing x.

Note that (4.8) is an interval upward induction axiom with symbolic bounds.

The main motivation for interval induction rules is their utility in reasoning about loops,
as illustrated by the example of Figure 4.1(a). While interval induction can be captured
by induction with one bound, it would require additional case analysis, which is not
efficient in saturation-based proving practice.

In the rest of this chapter, we will refer to the integer terms of b, b1, b2 from Definitions 4.1-
4.2 as symbolic bounds and the formulas F [x] from the induction axioms of Definitions 4.1-
4.2 as induction target formulas.

Definition 4.3 (Downward/Upward Induction Rules). The downward (respectively,
upward) induction rule with symbolic bounds, or simply downward (respectively, upward)

27

4. Integer Induction

induction rule is the inference rule whose instances are all downward (respectively, upward)
induction axioms with symbolic bounds.

Likewise, the interval downward (respectively, upward) induction rule with symbolic
bounds, or simply interval downward (respectively, upward) induction rule is the inference
rule whose instances are all interval downward (respectively, upward) induction axioms
with symbolic bounds.

It is easy to see that the new induction rules are sound.

Theorem 4.4 (Soundness). The (interval) downward/upward induction rules of Defini-
tion 4.3 are sound, that is, all corresponding induction axioms from Definitions 4.1-4.2
are valid.

Proof. The validity of the induction axioms follows from a straightforward inductive
argument.

4.3 Integer Induction in Saturation-Based Proof Search
Our next aim is to define analogues of the induction rules introduced in Section 4.2 that
can be used in superposition theorem provers and their saturation algorithms.

The most general way to introduce our new induction rules at the calculus level is to
add clausal forms of our new induction axioms to the search space. That is, for every
induction axiom G from Section 4.2, we add the rule

G
.

However, we cannot efficiently implement such a calculus, as any formula F [x] with one
variable can be used as an induction target formula. We will therefore introduce different,
more specialized rules, which still correspond to the previously defined induction rules.
The new rules use variations of the following three ideas:

1. Use only simple induction target formulas, for example literals;

2. To find an induction target formula, generalize a subgoal occurring in the search
space. Then the derived induction target formula can be immediately used to prove
this subgoal;

3. Use (symbolic) bounds that correspond to bounds already occurring in the search
space.

The first two ideas were already used in rules Ind [RV19] and IndGen (see Chapter 3). In
particular, given a ground literal L[t] in the search space, Ind introduces an induction

28

4.3. Integer Induction in Saturation-Based Proof Search

axiom instantiated with L[x] and thus with L[x] in the conclusion. This L[x] is then
resolved against L[t].

The third idea is new. Note that, if we use the first two ideas and the upward induction
rule, instead of L[x] we will derive b ≤ x → L[x]. When we resolve this against L[t], we
obtain the clause ¬(b ≤ t). However, if we already previously derived b ≤ t, we can also
resolve away ¬(b ≤ t). This gives us the idea to only apply the upward induction rules
when we have b ≤ t.1

Based on the three ideas above, we introduce the following four induction rules on clauses.
In these rules t is a ground term, b is a constant and L[x] is a literal containing at
least one occurrence of a variable x and no other variables. The rules depend on which
comparisons among t ≥ b, t > b, t ≤ b and t < b already occur in the current search
space:

L[t] ∨ C t ≥ b�
L[b] ∧ ∀y.(y ≥ b ∧ L[y] → L[y + 1])

 → ∀x.(x ≥ b → L[x])
(IntInd≥)

¬L[t] ∨ C t > b�
L[b] ∧ ∀y.(y ≥ b ∧ L[y] → L[y + 1])

 → ∀x.(x > b → L[x])
(IntInd>)

¬L[t] ∨ C t ≤ b�
L[b] ∧ ∀y.(y ≤ b ∧ L[y] → L[y − 1])

 → ∀x.(x ≤ b → L[x])
(IntInd≤)

¬L[t] ∨ C t < b�
L[b] ∧ ∀y.(y ≤ b ∧ L[y] → L[y − 1])

 → ∀x.(x < b → L[x])
(IntInd<)

Note that IntInd≥ and IntInd> are upward induction rules, whereas IntInd≤ and IntInd<

are downward induction rules. One can also introduce non-ground analogues of these
rules but we do not consider them in this work.

Similarly to the above rules on the clausal level, we also introduce the interval up-
ward/downward induction rules on clauses to be used in saturation algorithms for the
superposition calculus. Here we present rule IntInd[≥] for interval upward induction, and
show the rest of the rules in Figure 4.2. For a ground term t, constants b1, b2, and L[x]
a literal containing at least one occurrence of a variable x and no other variables, an
interval upward induction rule is:

¬L[t] ∨ C t ≥ b1 t ≤ b2�
L[b1] ∧ ∀y.(b1 ≤ y < b2 ∧ L[y] → L[y + 1])

 → ∀x.(b1 ≤ x ≤ b2 → L[x])
(IntInd[≥])

In view of Theorem 4.4, all induction rules of Section 4.2 are sound. Therefore, also
all the induction rules of this section are sound. Finally, when we use these rules in
saturation, the induction axioms get clausified. Assuming that our clausification function

1Using the Avatar architecture [Vor14], we can easily obtain valid literals b ≤ t.

29

4. Integer Induction

¬L[t] ∨ C t ≥ b1 t < b2�
L[b1] ∧ ∀y.(b1 ≤ y < b2 ∧ L[y] → L[y + 1])

 → ∀x.(b1 ≤ x < b2 → L[x])
(IntInd[≥′])

¬L[t] ∨ C t > b1 t ≤ b2�
L[b1] ∧ ∀y.(b1 ≤ y < b2 ∧ L[y] → L[y + 1])

 → ∀x.(b1 < x ≤ b2 → L[x])
(IntInd[>])

¬L[t] ∨ C t > b1 t < b2�
L[b1] ∧ ∀y.(b1 ≤ y < b2 ∧ L[y] → L[y + 1])

 → ∀x.(b1 < x < b2 → L[x])
(IntInd[>′])

¬L[t] ∨ C t ≤ b1 t ≥ b2�
L[b1] ∧ ∀y.(b1 ≥ y > b2 ∧ L[y] → L[y − 1])

 → ∀x.(b1 ≥ x ≥ b2 → L[x])
(IntInd[≤])

¬L[t] ∨ C t ≤ b1 t > b2�
L[b1] ∧ ∀y.(b1 ≥ y > b2 ∧ L[y] → L[y − 1])

 → ∀x.(b1 ≥ x > b2 → L[x])
(IntInd[≤′])

¬L[t] ∨ C t < b1 t ≥ b2�
L[b1] ∧ ∀y.(b1 > y > b2 ∧ L[y] → L[y − 1])

 → ∀x.(b1 > x ≥ b2 → L[x])
(IntInd[<])

¬L[t] ∨ C t < b1 t > b2�
L[b1] ∧ ∀y.(b1 > y > b2 ∧ L[y] → L[y − 1])

 → ∀x.(b1 > x > b2 → L[x])
(IntInd[<′])

Figure 4.2: Integer interval rules for a ground term t, constants b1, b2, and L[x] a literal
containing at least one occurrence of a variable x and no other variables.

preserves satisfiability, we conclude that also adding the clausified induction formulas
from our rules (IntInd≥, IntInd>, IntInd≤, IntInd<, IntInd[≥], IntInd[≥′], IntInd[>], IntInd[>′],
IntInd[≤], IntInd[≤′], IntInd[<], IntInd[<′]) is a sound reasoning step.

Example 4.5. To illustrate again how the choice of induction target formulas allows us
to have shorter clauses, consider IntInd≤. The CNF in its conclusion consists of three
clauses:

¬L[b] ∨ σ ≤ b ∨ ¬y ≤ b ∨ L[y]
¬L[b] ∨ L[σ] ∨ ¬y ≤ b ∨ L[y]
¬L[b] ∨ ¬L[σ − 1] ∨ ¬y ≤ b ∨ L[y]

(4.9)

These clauses can be resolved against premises of IntInd≤, yielding the following clauses:

¬L[b] ∨ σ ≤ b ∨ C
¬L[b] ∨ L[σ] ∨ C
¬L[b] ∨ ¬L[σ − 1] ∨ C

(4.10)

They have an especially simple form when C is the empty clause □. In this case we have
three clauses:

¬L[b] ∨ σ ≤ b
¬L[b] ∨ L[σ]
¬L[b] ∨ ¬L[σ − 1]

(4.11)

30

4.3. Integer Induction in Saturation-Based Proof Search

which subsume the original three longer clauses and are ground. Since they are ground,
they can be handled efficiently by Avatar.

Example 4.6. Let us now demonstrate how the downward induction rule IntInd≤ works
for refuting the inductive property (4.3) from our motivating example of Figure 4.1(a).
We use literals from (4.5) as the premises of the IntInd≤ rule. The corresponding instance
of the downward induction rule is given by

b := σm;
t := σn;

L[x] := 2 · sum(x, σm) ≃ σm · (σm + 1) − x · (x − 1).

This instance of IntInd≤ is:

2 · sum(σn, σm) ̸≃ σm · (σm + 1) − σn · (σn − 1) σn ≤ σm�
2 · sum(σm, σm) ≃ σm · (σm + 1) − σm · (σm − 1)

∧ ∀y.(y ≤ σm → 2 · sum(y, σm) ≃ σm · (σm + 1) − y · (y − 1)
→ 2 · sum(y − 1, σm) ≃ σm · (σm + 1) − (y − 1) · ((y − 1) − 1))

→ ∀x.(x ≤ σm → 2 · sum(x, σm) ≃ σm · (σm + 1) − x · (x − 1))

(IntInd≤)

This single instance of the induction rule does the magic. After clausifying the conclusion
of the IntInd≤ rule as in (4.9), we can resolve it against the premises, and obtain the
following instances of the clauses from (4.11), where σ is a fresh skolem constant:

2 · sum(σm, σm) ̸≃ σm · (σm + 1) − σm · (σm − 1) ∨ σ ≤ σm (4.12)
2 · sum(σm, σm) ̸≃ σm · (σm + 1) − σm · (σm − 1)

∨ 2 · sum(σ, σm) ≃ σm · (σm + 1) − σ · (σ − 1)
(4.13)

2 · sum(σm, σm) ̸≃ σm · (σm + 1) − σm · (σm − 1)
∨ 2 · sum(σ − 1, σm) ̸≃ σm · (σm + 1) − (σ − 1) · ((σ − 1) − 1)

(4.14)

The first literal of all three clauses (4.12)-(4.14), which is the same for all three clauses,
can be refuted by first using the axiom (4.1), and then by simple arithmetic (applied by
using superposition on the clauses and on suitable instances of axioms of arithmetic).
Thus, the clauses (4.12)-(4.14) are reduced to their latter literals. From the second literal
of (4.12) we derive (again by using a suitable axiom of ≤) the literal σ − 1 < σm. Then
we use the following instance of axiom (4.2):

σ − 1 < σm → sum(σ − 1, σm) ≃ (σ − 1) + sum((σ − 1) + 1, σm) (4.15)

We resolve the CNF of (4.15) with σ − 1 < σm, and then use the resulting equation,
sum(σ −1, σm) ≃ (σ −1)+ sum((σ −1)+1, σm), together with the second literal of (4.14),
and derive:

2 · ((σ − 1) + sum((σ − 1) + 1, σm)) ̸≃ σm · (σm + 1) − (σ − 1) · ((σ − 1) − 1) (4.16)

31

4. Integer Induction

By simple arithmetic together with (4.16), we obtain:

2 · sum(σ, σm) ̸≃ σm · (σm + 1) − σ · (σ − 1) (4.17)

Ultimately, we resolve (4.17) with the second literal of (4.13) and obtain □, which
concludes the refutation of (4.5) and therefore also the proof of (4.3). The proof of the
problem is also evidenced by the results for the first problem subset, x_all of sum, in
Table 6.5 of Chapter 6.

We finally note that functional correctness of Figure 4.1(b) is proved by the interval
upward induction rule IntInd[≥], in a similar way as above, and as evidenced by the
results of Table 6.5 for declared_unint_ax-fin_conj-fin in val.

What we find especially interesting in Example 4.6 is that the induction axiom used in
it (and discovered by our implementation of induction in Vampire) uses the induction
argument that would probably be used by a majority of humans who would try to argue
why the program property holds.

32

CHAPTER 5
Inductive Benchmarks

The contributions of this chapter are based on:
Márton Hajdu, Petra Hozzová, Laura Kovács, Johannes Schoisswohl, and Andrei
Voronkov. Inductive Benchmarks for Automated Reasoning. In Fairouz Kamareddine
and Claudio Sacerdoti Coen, editors, Proc. of CICM, volume 12833 of LNCS, pages
124–129, Cham, 2021. Springer [HHK+21]

Evaluation of our developments from Chapters 3 and 4 prompts comparison not only
among first-order theorem provers [Cru17] and/or SMT solvers [RK15], but also with
inductive provers (e.g., ACL2 [BM79], Zeno [SDE12] or Imandra [PCI+20]). In this
chapter we describe a benchmark set of 3516 benchmarks based on variations of properties
of inductive data types as well as integers, which we created as a part of our work on
automating induction in Vampire. We primarily present our benchmarks in the SMT-LIB
input format [BFT16]. To facilitate comparison of different solvers and provers, we also
provide translations of the benchmarks into the input formats of other state-of-the-art
inductive reasoners, for example as functional program encodings.

Our benchmark set is available at:

https://github.com/vprover/inductive_benchmarks

5.1 Benchmark Format
We provide all benchmarks in the standard SMT-LIB 2.6 syntax. We chose SMT-LIB
as the main format for our benchmarks, since it is the most common format used
by automated reasoners (SMT solvers and first-order provers, e.g., cvc5 [BBB+22]

33

https://github.com/vprover/inductive_benchmarks

5. Inductive Benchmarks

or Vampire [KV13]) and verification tools (e.g., CBMC [KT14], Dafny [Lei10], or
eThor [SGSM20]). In our examples, we use the SMT-LIB construct declare-fun
to declare functions and assert to axiomatize functions (see the example benchmarks
in Section 5.2). In addition to the SMT-LIB syntax, we also translated our examples
to other formats depending on the data types used in these examples: three subsets
of our benchmark set use inductively defined data types, and one subset uses integers
(see Section 5.2). For the benchmarks with inductively defined data types, we also
provide SMT-LIB encoding using the define-fun-rec construct for recursive function
definitions.

Besides the SMT-LIB format, we also provide our benchmarks translated into other, less
common input formats supported by state-of-the-art solvers for automating induction.
Namely, for our benchmarks with inductively defined data types, we provide two en-
codings for Zipperposition [Cru17] (using Zipperposition’s native input format .zf
with/without function definitions encoded as rewrite rules), and when possible1 functional
program encodings for ACL2 [BM79] (in Lisp), Imandra [PCI+20] (in OCaml) and
Zeno [SDE12] (in Haskell). Since the solvers support a broad variety of logics, the
benchmarks must be encoded in a logic belonging to a common subset. Further, since
the input formats of Zeno and Imandra only support properties of functional programs,
the axioms of +N and ++ were translated to function definitions by pattern matching,
while the predicates ≤N and pref were translated into boolean functions.2

For our inductive benchmarks over integers, we only provide a translation into Lisp for
ACL2. To the best of our knowledge, in addition to Vampire [HKV21] and cvc5 [RK15],
ACL2 is the only prover supporting inductive reasoning with integers.

5.2 Benchmark Categories
Our benchmark set consists of two categories, requiring different kinds of inductive reason-
ing, as follows. The benchmark category dty uses structural induction over inductively
defined data types, whereas our int benchmark suite exploits integer induction.

To confirm that our new benchmarks require the use of inductive reasoning, we tested
them on the SMT solver Z3 [DMB08] that does not support induction. Z3 solved 17 out
of the 3396 problems from the dty set, and could not solve any of the 120 problems from
the int set.

5.2.1 dty - Benchmarks with Inductively Defined Data Types
The 3396 problems within the category dty involve three different inductively defined
data types: natural numbers N, lists of natural numbers L, and binary trees of natural

1Some concepts, like conjectures that contain existential quantification, or some uninterpreted
functions used to model out-of-bounds access for list indexing, are not straightforwardly translatable into
these formats.

2This is why we defined ≤N the way we did in Figure 2.1 instead of using a more common definition,
such as {∀x.x ≤N x, ∀x.∀y.(x ≤N y → x ≤N s(y))}.

34

5.2. Benchmark Categories

numbers BT. These data types are defined as follows:

(declare-datatypes ((nat 0) (list 0) (tree 0))
(((zero) (s (s0 nat)))
((nil) (cons (head nat) (tail list)))
((Nil) (node (lc tree) (val nat) (rc tree)))))

The set is split into three subcategories nat, list, and tree, depending on the algebraic
data types used in the examples. The category nat uses natural numbers only, list
uses lists and natural numbers, and tree uses all three of the data types. Each of
these categories within dty contains examples defining functions and predicates on the
respective data type and a conjecture/goal to prove about these functions and predicates,
as described next. To avoid repetition in the displayed examples, we use short descriptions
of repeated content beginning with the comment sign ;-.

Part of the benchmarks are hand-crafted based on natural mathematical problems. Some
examples were taken from or inspired by the TIP benchmark library [CJRS15]. An
example benchmark of the dty set is the problem of associativity of addition with only
one variable (3.4) which we recall here:

∀x ∈ N. x +N (x +N x) ≃ (x +N x) +N x

This is a special case of a family of problems over natural numbers. The problems can
be formulated as follows:

Let t1 and t2 be two terms built using variables, +N and the successor function. Then the
equality t1 ≃ t2 is valid over natural numbers if and only if they have the same number
of occurrences of the successor function and each variable of this equality has the same
number of occurrences in t1 and t2.

For example, the following equality is valid:

∀x, y, z ∈ N. s(x +N (x +N s(y +N z))) +N s(z) ≃ (z +N s(x)) +N (x +N s(s((z +N y))))

To prove such problems over natural numbers, one needs both induction and general-
ization. Without the successor function, they can be easily proved using associativity
and commutativity of +N, but associativity and commutativity are not included in the
axioms of N. When the terms are large, the problems become highly challenging.

We generated a set of instances of these problems (with and without the successor
function, and also other functions and predicates) by increasing term sizes. We also
generated similar problems for lists using the concatenation and reverse functions, and the
prefix predicate. Some of the terms were, e.g., variations of (3.4) with 20 occurrences of
x. These generated instances of various sizes form the second part of the dty benchmark
set.

The dty benchmarks were used for evaluating the work from Chapter 3 (see Section 6.1).

35

5. Inductive Benchmarks

nat Examples. The category nat contains a set of hand-crafted benchmarks encoding
basic properties of natural numbers like commutativity of addition and multiplica-
tion. Additionally, nat contains three groups of generated benchmarks. In group
add_<m>var_<n>occ, the conjecture of each benchmark consists of an equality of
two sums of variables, with arbitrary bracketing, and n variables on each side of the
equality, where m distinct variables occur in the conjecture. In group add_<n>sym,
the conjectures are equalities with an arbitrary combination of the successor function,
zero, addition, and variables, on both hand sides. Each side of the equality in these
benchmarks contains n symbols in total. The group leq_<m>var_<n>_<o>occ has a
less-or-equal inequality as conjecture. It contains m distinct variables, with a total of n
variables on the left-hand side arbitrarily added up, and a total of o variables occurring
on the right-hand side, where each variable on the left-hand side is contained on the
right-hand side at least as often as on the left one in order to ensure that the conjecture
is indeed valid.

Inductive nat example from the set add_2var_4occ
(set-logic UFDT)

(declare-datatypes ((nat 0)) (((zero) (s (s0 nat)))))

(declare-fun add (nat nat) nat)
(assert (forall ((y nat)) (= (add zero y) y)))
(assert (forall ((x nat) (y nat)) (= (add (s x) y) (s (add x y)))))

(assert (not (forall ((v0 nat) (v1 nat))
(= (add (add v0 (add v1 v1)) v1) (add (add (add v1 v1) v1) v0)))))

(check-sat)

The conjecture is a combination of associativity and commutativity of addition of natural
numbers for two variables with four occurrences in total:

∀v0, v1 ∈ N. (v0 +N (v1 +N v1)) +N v1 ≃ ((v1 +N v1) +N v1) +N v0

list Examples. These examples describe basic properties of lists, such as relat-
ing concatenation of lists to the resulting list length. Similarly to nat, the category
list also contains two generated example sets: concat_<m>var_<n>occ contains
examples as in add_<m>var_<n> occurrences, but using list concatenation instead
of list addition, while pref_<m>var_<n>_<o>occ is defined in the same way as
leq_<m>var_<n>_<o>occ, but replacing the less-or-equal order with the prefix rela-
tion and using list concatenation instead of natural addition.

Inductive list example from the set crafted
(set-logic UFDT)

(declare-datatypes ((nat 0) (list 0) (tree 0))
(((zero) (s (s0 nat)))
((nil) (cons (head nat) (tail list)))))

36

5.2. Benchmark Categories

;- add function declaration & axiomatization, as in the example above

(declare-fun app (list list) list)
(assert (forall ((r list)) (= (app nil r) r)))
(assert (forall ((a nat) (l list) (r list))

(= (app (cons a l) r) (cons a (app l r)))))
(declare-fun len (list) nat)
(assert (= (len nil) zero))
(assert (forall ((e nat) (l list)) (= (len (cons e l)) (s (len l)))))

(assert (not (forall ((x list) (y list))
(= (add (len x) (len y)) (len (app x y))))))

(check-sat)

The conjecture asserts that addition of lengths of two lists is equal to the length of the two
lists concatenated:

∀x, y ∈ L. len(x) +N len(y) ≃ len(x ++ y)

tree Examples. This category consists only of hand-crafted benchmarks, and has
two main subcategories: one problem set relates binary trees indirectly by flattening
them to lists, the other relates them directly to each other. The defined functions are
two in-order flattening variants, two functions that recursively rotate a tree completely
to the left and to the right at its root, one counting the number of non-leaf nodes in a
tree and one checking if two trees are mirror images of each other. Occurrences of the
flattening and rotating functions are varied to get variants for each problem.

Inductive tree example from the set flatten0_rotate_5var
(set-logic UFDT)

(declare-datatypes ((nat 0) (list 0) (tree 0))
(((zero) (s (s0 nat)))
((nil) (cons (head nat) (tail list)))
((Nil) (node (lc tree) (val nat) (rc tree)))))

;- app function declaration & axiomatization, as in the example above

(declare-fun flat0 (tree) list)
(assert (= (flat0 Nil) nil))
(assert (forall ((p tree) (x nat) (q tree))

(= (flat0 (node p x q)) (app (flat0 p) (cons x (flat0 q))))))

(assert (not (forall ((p tree) (q tree) (r tree) (x nat) (y nat))
(= (flat0 (node (node p x q) y r)) (flat0 (node p x (node q y r))))

)))

(check-sat)

37

5. Inductive Benchmarks

assume e ≥Z 1

fun power(x, 1) = x

| power(x, e) = x ·Z power(x, e −Z 1);

assert ∀x, y ∈ Z.(power(x ·Z y, e) ≃ power(x, e) ·Z power(y, e))
Figure 5.1: ML-like functional program computing integer powers for positive exponents.

The conjecture asserts that the result of a tree flattening does not depend on the rotation in
the root:

∀p, q, r ∈ BT. ∀x, y ∈ N. flat(node(node(p, x, q), y, r)) ≃ flat(node(p, x, (node(q, y, r))))

5.2.2 int - Benchmarks with Integers
The int category of our benchmark set contains 120 problems and to the best of our
knowledge it is the first published benchmark set focused on inductive reasoning with
integers. It is inspired by software verification problems for three programs:

1. power, computing powers of integers. We show an example program in Figure 5.1.
A corresponding encoding in first-order logic is:

axioms: ∀x ∈ Z. power(x, 1) ≃ x

∀x, e ∈ Z. (2 ≤Z e → power(x, e) ≃ x ·Z power(x, e −Z 1)) (5.1)
conjecture: ∀x, y, e ∈ Z.(1≤Z e → power(x·Zy, e)≃power(x, e)·Zpower(y, e))

2. sum, computing sums of integer intervals. We show an example program in
Figure 4.1(a). The corresponding first-order encoding forms the axioms (4.1-4.2)
and the assertion (4.3).

3. val, using integers as array indices to encode array properties. We show an example
program in Figure 4.1(b). We encode the invariant and the negation of the loop
condition as the axioms (4.7), and the assertion as (4.6).

A sample problem from power corresponding to the program in Figure 5.1 and encod-
ing (5.1), expressing that the recursively defined power function on integers for positive
exponents is distributive over multiplication, is:

Inductive int example from the set power
(set-logic UFNIA)

(declare-fun pow (Int Int) Int)
(assert (forall ((x Int)) (= (pow x 1) x)))
(assert (forall ((x Int) (e Int))

38

5.2. Benchmark Categories

Set Variant tag Description

sum
x / y sum(x, y) for x >Z y defined as x +Z sum(x +Z 1, y) or

y +Z sum(x, y −Z 1)
all / geq / leq the conjecture holds for all x, y where x ≤Z y, or only for

x ≤Z y ≃ c, or only for c ≃ x ≤Z y; where c ∈ Z is an interpreted
constant

val

declared / defined val was either not defined, only declared and axiomatized (as
in (4.6)), or defined as a total computable function (as in (5.3))

inter / unint /
mixed

the axiom and conjecture use concrete interpreted constants, or
uninterpreted constants, or a mix of both

ax-fin / ax-all /
ax-leq / ax-geq

the axiom holds for integers in an interval [c, c′), or for all x ∈ Z,
or only for x ≤Z c, or only for x ≥Z c; where c, c′ ∈ Z are
constants

conj-fin / conj-all
/ conj-leq /
conj-geq

the conjecture holds for integers in an interval [c, c′], or for all
integers, or only for integers ≤Z c, or only for integers ≥Z c;
where c, c′ ∈ Z are constants

power
0 / 1 power defined starting with power(x, 0) ≃ 1 or power(x, 1) ≃ x
all / pos / neg the conjecture holds either for all x, y, or only for x, y ≥Z 0, or

only for x, y ≤Z 0

Table 5.1: Description of the int benchmark set.

(=> (<= 2 e) (= (pow x e) (* x (pow x (- e 1)))))))

(assert (not (forall ((x Int) (y Int) (e Int))
(=> (<= 1 e) (= (pow (* x y) e) (* (pow x e) (pow y e)))))))

(check-sat)

The example corresponds to the program in Figure 5.1 and its encoding from (5.1).

All variations of the int benchmarks were created by varying the constraints and
constants in the definitions and goals as described in Table 5.1. For example, variations
of the sample problem above use the function power defined starting from 0 instead of 1,
or introduce additional constraints on variables x, y, and e in the conjecture.

Names of subsets of our new benchmarks are constructed by joining variant tags described
in Table 5.1. For example, problem (4.6) belongs to the category declared_unint_ax-
fin_conj-fin of the set val. The following benchmark:

axiom: ∀x ∈ Z. valA(x) ≃ valA(x +Z 1)
conjecture: ∀x, y ∈ Z. valA(x) ≃ valA(y)

(5.2)

belongs to declared_unint_ax-all_conj-all of val and the below example is from

39

5. Inductive Benchmarks

defined_inter_ax-geq_conj-geq of val:

axioms: ∀x ∈ Z.(x ≤Z 0 → valA(x) ≃ 0)
∀x ∈ Z.(0 <Z x → valA(x) ≃ valA(x −Z 1))

conjecture: ∀x ∈ Z.(0 ≤Z x → valA(x) ≃ valA(0))
(5.3)

While 9 of the benchmarks (all in val) use finite intervals in both the assertion and the
invariant (ax-fin_conj-fin), the remaining 111 benchmarks require inductive reasoning
over infinite intervals.

The benchmarks from this set were used for evaluating the work from Chapter 4 (see
Section 6.2).

40

CHAPTER 6
Implementation of Induction in

Vampire

The contributions of this chapter are based on:
Márton Hajdu, Petra Hozzová, Laura Kovács, Johannes Schoisswohl, and Andrei
Voronkov. Induction with Generalization in Superposition Reasoning. In Christoph
Benzmüller and Bruce Miller, editors, Proc. of CICM, volume 12236 of LNCS, pages
123–137, Cham, 2020. Springer [HHK+20],
Petra Hozzová, Laura Kovács, and Andrei Voronkov. Integer Induction in Saturation.
In André Platzer and Geoff Sutcliffe, editors, Proc. of CADE, volume 12699 of LNCS,
pages 361–377, Cham, 2021. Springer [HKV21]

We describe the implementation and experimental evaluation of the methods from
chapters 3 and 4. We implemented the methods in the first-order theorem prover
Vampire [KV13]. We differentiate between different versions of Vampire by using
subscripts. In particular, by Vampireo we denote the original version of Vampire
without our new developments. Our implementation is available online at:

https://github.com/vprover/vampire

We note that in this chapter we compare the performance of our implementation with
the solver CVC4 [BCD+11], and not its newer version cvc5 [BBB+22]. Our initial
experiments were performed in 2020-2021 with the most recent version of the solver
that was available at that time. The inductive reasoning features are also supported in
cvc5 [BBB+22] in a similar way as in CVC4.

41

https://github.com/vprover/vampire

6. Implementation of Induction in Vampire

6.1 Induction with Generalization
We implemented the method from Chapter 3 in Vampire and compared it to state-of-the-
art reasoners automating induction, including ACL2 [BM79, KMM00], CVC4 [BCD+11],
Imandra [PCI+20], Zeno [SDE12] and Zipperposition [Cru17] on benchmarks de-
scribed in Subsection 5.2.1. We show that induction with generalization in Vampire can
solve problems that existing systems, including Vampire without this rule, cannot.

6.1.1 Implementation
We implemented induction with generalization in Vampire. Our implementation consists
of approximately 350 lines of C++ code additional to Vampire’s pre-existing induction
features. We introduced two new options:

• boolean-valued option indgen, which turns on/off the application of induction
with generalization, with the default value being off, and

• integer-valued option indgenss, which sets the maximum size of the subset of
occurrences used for induction, with the default value 3. This option is ignored if
indgen is off.

In experiments described here, if indgen is off, Vampire performs induction on all
occurrences of a term in a literal as in [RV19]. In this section

• Vampireo refers to the (default) version of Vampire with induction rule Ind (2.1)
(i.e., the option -ind struct).

• Vampireg additionally uses the IndGen rule of induction with generalization (3.8)
(i.e., the options -ind struct -indgen on).

• Vampiregc uses the same options as Vampireg plus the option -indoct on,
which applies induction to arbitrary ground terms, not just to constants as in
Vampireo or in Vampireg.

6.1.2 SMT-LIB experiments
We evaluated our work using the UFDT and UFDTLIA problem sets from SMT-
LIB [BFT16], yielding all together 4854 problems. Many of these problems come from
program analysis and verification and contain large numbers of axioms, so they are
different from standard mathematical examples used in many other papers on automation
of induction. Given the nature of the benchmarks, we were interested in two questions:

1. What is the overhead incurred by using induction with generalization in large search
spaces, especially when it is not used in proofs? If the new rule is prohibitively

42

6.1. Induction with Generalization

expensive, this means it could probably only be used in smaller examples used in
interactive theorem proving.

2. Is the new rule useful at all for this kind of benchmarks? While the new rule can be
used in principle, should it (or can it) be used in program analysis and verification?

Our results show that the overhead is relatively small but we could not solve problems
not solvable without the use of the new rule.

Induction rule Ind (2.1) in Vampireo was already evaluated in [RV19] against other
solvers on these examples. Hence, we only compare how Vampireg/Vampiregc performs
against Vampireo, using both the default and the portfolio modes. (In the default mode,
Vampireo/Vampireg/Vampiregc uses default values for all parameters except the ones
specified by the user; in the portfolio mode, Vampireo/Vampireg/Vampiregc sequentially
tries different configurations for parameters not specified by the user.) Together, we ran
18 instances: Vampireo, Vampireg with indgenss set to 2, 3, 4, and unlimited, and
Vampiregc with the same four variants of indgenss; each of them in both default and
portfolio mode. We ran our experiments on the StarExec cluster [SST14].

The best Vampireg/Vampiregc solved 5 problems in the portfolio mode and 1 problem
in the default mode not solved by Vampireo. However, the proofs found by them did
not use induction with generalization. This is a common problem in experiments with
saturation theorem proving: new rules change the direction of the proof search and may
result in new simplifications that also drastically affect the search space. As a result, new
proofs may be found, yet these proofs do not actually use the new rule. There were no
problems solved by Vampireo that were not solved by any Vampireg/Vampiregc.

The maximum number of IndGen applications in proofs was 3 and the maximum depth
of induction was 4. Vampireg/Vampiregc used generalized induction in proofs of 10
problems. However, these problems are also solvable by Vampireo (without generalized
induction). Thus, we conclude that SMT-LIB problems (probably as well as other
typical program analysis and verification benchmarks) typically do not gain from using
generalization. However, such examples would typically arise in mathematical properties
over naturals/lists, as discussed next.

6.1.3 Experiments with mathematical problems
In this subsection we zoom in on selected hand-crafted benchmarks over natural numbers
and lists (see categories nat and list from Section 5.2). Table 6.1 lists 16 of such
examples using the functions defined in Figure 2.1. While the examples are hand-
crafted, we believe they are representative of problems requiring generalization, since no
attempt was made to exclude problems not solvable by Vampire using induction with
generalization in practice.

We evaluated and compared several state-of-the-art reasoners supporting standard input
formats and, due to the nature of our work, either superposition-based approaches or

43

6. Implementation of Induction in Vampire

The
ory

Vampir
eg

Vampir
egc

Vampir
eo

Cvc
4

Zipp
er

po
sit

ion

Zen
o

Im
andra

Acl
2

Cvc
4-G

en

ZipR
ew

rite

∀x, y.(x + y ≃ y + x)

N

✓ ✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓
∀x.(x + s(x) ≃ s(x + x)) ✓ ✓ – – – – – – ✓ ✓

∀x, y, z.(x + (y + z) ≃ (x + y) + z) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
∀x.(x + (x + x) ≃ (x + x) + x) ✓ ✓ – – – ✓ – – ✓ ✓

∀x.((x + x) + ((x + x) + x)
≃ x + (x + ((x + x) + x))) ✓ ✓ – – – ✓ – – ✓ ✓

∀x, y.(y + (x + x) ≃ (x + y) + x) ✓ ✓ – – – – – – – ✓
∀x.(x ≤ x) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

∀x, y.(x ≤ x + y) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
∀x.(x ≤ x + x) ✓ ✓ – – – – – – – –

∀x.(x + x ≤ (x + x) + x) ✓ ✓ – – – ✓ – – – –
∀l, k, j.(l ++ (k ++ j) ≃ (l ++ k) ++ j)

L

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
∀l.(l ++ (l ++ l) ≃ (l ++ l) ++ l) ✓ ✓ – – – – – – – ✓

∀l, k.(l ++ (k ++ (l ++ l))
≃ (l ++ k) ++ (l ++ l)) ✓ ✓ – – – – – – – ✓

∀l, k.pref(l, l ++ k) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
∀l.pref(l, l ++ l) ✓ ✓ – – – – – – – –

∀l : L, x : N.(cons(x+s(x), l) ++ (l++ l)
≃ (cons(s(x) + x, l) ++ l) ++ l) N,L ✓ ✓ – – – – – – – –

Table 6.1: Experiments with 16 hand-crafted benchmarks. “✓” denotes success, “–”
denotes failure. In this table, we use + to denote +N and ≤ to denote ≤N.

approaches to generalization. It was not easy to carry out these experiments since provers
use different input syntaxes (see Table 6.2). As a result, we also had to design translations
of our benchmarks.

Except for Imandra (which is a cloud-based service), we ran our experiments on a 2,9
GHz Quad-Core Intel Core i7 machine. We ran each solver as a single-threaded process
with a 5-second time limit.

Both Zipperposition and CVC4 feature additional methods for inductive reasoning.
Zipperposition implements heuristics for generalizing inductive goals, that are used by
default if functions are defined as rewrite rules in functional programming style instead of
being defined by ordinary formulas [Cru17]. We refer to Zipperposition run on inputs
with functions defined as rewrite rules as ZipRewrite. The additional technique CVC4
features is automatic lemma discovery [RK15]. We refer to CVC4 with this feature as
Cvc4-Gen. Zeno supports some heuristics for generalization out of the box.

Configurations used for running all solvers are listed in Table 6.2, and the comparison
results are summarized in Table 6.1. All solvers can prove general properties, such
as associativity, when it is supplied as a goal. However, most solvers fail to prove
instances of these properties. Interestingly, Cvc4-Gen’s heuristic discovered associativity
of addition, but not its list counterpart for concatenation. ZipRewrite’s heuristic
works on both plus and concatenation, but cannot handle ordering relations. Zeno’s
generalization heuristic does not permit for a straightforward interpretation, since it

44

6.1. Induction with Generalization

Solver Configuration Input format
Vampireo --induction struct SMT-LIB
Vampireg --induction struct

--induction_gen on
SMT-LIB

Vampiregc --induction struct
--induction_gen on
--induction_on_\

complex_terms on

SMT-LIB

CVC4 --quant-ind SMT-LIB
Cvc4-Gen --quant-ind

--conjecture-gen
SMT-LIB

Zipperposition default mode .zf (native input format)
ZipRewrite default mode .zf with definitions as rewrite rules
Zeno default mode functional program encoding in Haskell
Imandra default mode functional program encoding in OCaml
Acl2 default mode functional program encoding in Lisp

Table 6.2: Configurations and input format of solvers for the mathematical problems.

fails for commutativity, but succeeds for associativity. Further, it fails to generalize
over variables (row 6), but solves a similar problem by generalizing over terms (row
7). Table 6.1 shows that Vampireg/Vampiregc (with -indgenss 3) outperforms all
solvers, including Vampireo itself. When considering solvers without fine-tuned heuristics,
such as in ZipRewrite and Cvc4-Gen, Vampiregc solves many more problems. We
believe our experiments show the potential of using induction with generalization as
a new inference rule since it outperforms heuristic-driven approaches with no special
heuristics or fine-tuning added to Vampire.

6.1.4 Experiments with problems requiring associativity and
commutativity

In this subsection we focus on evaluating and comparing various reasoners and approaches
on the generated subsets of the benchmark categories nat and list (see Section 5.2).
The interesting feature of these problems is that they are natural yet we can generate
problems of almost arbitrary complexity.

We evaluated and compared Vampireg, Vampiregc, Cvc4-Gen, Zeno and ZipRewrite,
that is the best performing solvers on inductive reasoning with generalization according
to Table 6.1, using the same experimental setting as already described for Table 6.1.
Table 6.3 lists a partial summary of our experiments, displaying results for 2,007 large
instances of four simple properties with one variable, corresponding to the fourth, ninth,
twelfth, and fifteenth problem from Table 6.1. Since the solvers’ performance was very
similar for the whole benchmark set, we chose these problems as a representative subset
of our large benchmarks.

45

6. Implementation of Induction in Vampire

In Table 6.3, we use the following notation. By nx ≃ nx we denote formulas of the
form x ◦ · · · ◦ x ≃ x ◦ · · · ◦ x with n occurrences of x on both sides of the equality, and
parentheses in various places in the expressions, with ◦ being +N, or ++ for the data
types N and L, respectively. By mx ≤N nx and pref(mx, nx) we denote formulas of the
form x +N . . . +N x ≤ x +N . . . +N x and pref(x ++ · · · ++ x, x ++ · · · ++ x), respectively,
with m occurrences of x on the left and n occurrences of x on the right hand side of
the ≤N or pref predicates, and with parentheses on various places in the expressions.
Result N%(M) means that the solver solved M of the problems from this category, which
corresponds to N%.

From Table 6.3, we conclude that Vampiregc scales better than Cvc4-Gen on a large
majority of benchmarks, and scales comparably to Zeno. While ZipRewrite can solve
more problems than Vampiregc, Vampiregc is more consistent in solving at least some
problems from each category. ZipRewrite can solve many problems thanks to the
treatment of equalities as rewrite rules. We note that Vampire was also later extended
by new rules using recursive definitions for rewriting (see [HHKV21]).

6.2 Integer Induction
We implemented the integer induction method from Chapter 4 in Vampire and compared
our implementation with other relevant provers, including Vampire without integer
induction. Our experiments show that integer induction can completely automatically
solve many new problems that could not so far be solved by any prover. For example, 75
problems coming from program analysis and/or mathematical integer properties could
be solved only by Vampire with the new induction rules.

To the best of our knowledge, the state-of-the-art systems implementing inductive
reasoning have so far not yet considered inductive reasoning over integers, with two
exceptions: CVC4 [RK15], which mainly focuses on induction over inductively defined
data types but mentions induction on non-negative integers, and ACL2 [KMM00], which
supports inductive reasoning using recursive function definitions without any special
treatment for integers.

6.2.1 Implementation
We implemented all our integer induction rules from Section 4.3 (IntInd≥, IntInd>, IntInd≤,
IntInd<, IntInd[≥], IntInd[≥′], IntInd[>], IntInd[>′], IntInd[≤], IntInd[≤′], IntInd[<], IntInd[<′])
in Vampire. Further, we also implemented a more general induction rule IntInd that
does not require bounds to be in the search space and uses 0 as the lower or the upper
bound. Our implementation in Vampire consists of approximately 1,200 lines of new
C++ code. The size of this additional code is relatively small because Vampire has
libraries for indexing and chaining inference rules that could be used off the shelf.

Our (interval) downward/upward induction rules described in Section 4.3 can be applied
when either (i) the comparison literal (e.g., t ≥Z b for the IntInd≥ rule) is selected and the

46

6.2. Integer Induction

Theory Vampireg Vampiregc Cvc4-Gen Zeno ZipRewrite
3x ≃ 3x

N

100% (1) 100% (1) 100% (1) 100% (1) 100% (1)
4x ≃ 4x 90% (9) 100% (10) 100% (10) 20% (2) 100% (10)
5x ≃ 5x 30% (15) 50% (25) 100% (50) 12% (6) 100% (50)
6x ≃ 6x 8% (4) 18% (9) 100% (50) 22% (11) 100% (50)
7x ≃ 7x – 10% (5) 100% (50) 2% (1) 100% (50)
8x ≃ 8x – 2% (1) 100% (50) 4% (2) 100% (50)
9x ≃ 9x – 2% (1) 100% (50) 8% (4) 84% (42)

10x ≃ 10x – – 100% (50) 8% (4) 90% (45)
3x ≃ 3x

L

100% (1) 100% (1) – – 100% (1)
4x ≃ 4x 70% (7) 90% (9) – – 100% (10)
5x ≃ 5x 46% (23) 48% (24) – – 100% (50)
6x ≃ 6x 6% (3) 26% (13) – 6% (3) 100% (50)
7x ≃ 7x 2% (1) 6% (3) – – 100% (50)
8x ≃ 8x – – – – 90% (45)
9x ≃ 9x – – – – 88% (44)

10x ≃ 10x – – – – 68% (34)
3x ≤N 3x

N

100% (2) 100% (2) 100% (2) 100% (2) 100% (2)
4x ≤N 4x – 15% (3) 100% (20) 20% (4) 100% (20)
5x ≤N 5x – 4% (2) 100% (50) 12% (6) 100% (50)
1x ≤N 2x 100% (1) 100% (1) – – –
2x ≤N 3x 50% (1) 50% (1) – 100% (2) –
3x ≤N 4x – 30% (3) – 40% (4) –
4x ≤N 5x – 8% (4) – 16% (8) –
5x ≤N 6x – 6% (3) – 10% (5) –
1x ≤N 3x 100% (2) 100% (2) – 100% (2) 100% (2)
2x ≤N 4x – 40% (2) – 40% (2) 100% (5)
3x ≤N 5x – 14% (4) – 28% (8) 100% (28)
4x ≤N 6x – 10% (5) – 18% (9) 100% (50)
5x ≤N 7x – 4% (2) – 18% (9) 100% (50)
1x ≤N 4x 100% (5) 100% (5) – 80% (4) 100% (5)
2x ≤N 5x – 35% (5) – 42% (6) 100% (14)
3x ≤N 6x – 18% (9) – 38% (19) 100% (50)
4x ≤N 7x – 6% (3) – 16% (8) 100% (50)
5x ≤N 8x – – – 6% (3) 100% (50)
1x ≤N 5x 100% (14) 100% (14) – 85% (12) 100% (14)
2x ≤N 6x – 33% (14) – 26% (11) 100% (42)
3x ≤N 7x – 14% (7) – 32% (16) 100% (50)
4x ≤N 8x – 4% (2) – 18% (9) 100% (50)
5x ≤N 9x – – – 14% (7) 100% (50)

pref(3x, 3x)

L

100% (2) 50% (1) – – 100% (2)
pref(4x, 4x) – 25% (5) – – 100% (20)
pref(5x, 5x) – 2% (1) – 4% (2) 100% (50)
pref(1x, 2x) 100% (1) 100% (1) – – –
pref(2x, 3x) – 50% (1) – 50% (1) –
pref(3x, 4x) – 20% (2) – 20% (2) –
pref(4x, 5x) – 8% (4) – 8% (4) –
pref(5x, 6x) – – – – –
pref(1x, 3x) 100% (2) 100% (2) – 50% (1) 100% (2)
pref(2x, 4x) 20% (1) 40% (2) – 20% (1) 100% (5)
pref(3x, 5x) – 14% (4) – 14% (4) 100% (28)
pref(4x, 6x) – 6% (3) – 8% (4) 100% (50)
pref(5x, 7x) – 2% (1) – 2% (1) 100% (50)
pref(1x, 4x) 100% (5) 100% (5) – 40% (2) 100% (5)
pref(2x, 5x) – 35% (5) – 21% (3) 100% (14)
pref(3x, 6x) – 14% (7) – 12% (6) 100% (50)
pref(4x, 7x) – 4% (2) – 4% (2) 100% (50)
pref(5x, 8x) – – – 4% (2) 100% (50)
pref(1x, 5x) 100% (14) 100% (14) – 42% (6) 100% (14)
pref(2x, 6x) – 33% (14) – 21% (9) 100% (42)
pref(3x, 7x) – 16% (8) – 16% (8) 100% (50)
pref(4x, 8x) – 10% (5) – 12% (6) 100% (50)
pref(5x, 9x) – – – – 100% (50)

Table 6.3: Experiments on 2,007 arithmetical problems.

47

6. Implementation of Induction in Vampire

corresponding clause ¬L[t] ∨ C was already selected as an induction candidate before, or
(ii) if ¬L[t] ∨ C is selected as an induction candidate and the corresponding comparison
literal was already selected before. To implement these rules efficiently, we should be
able to efficiently retrieve comparison literals and literals selected for induction. To do
so, we extended the indexing mechanism of Vampire to index such literals. We do not
apply induction when the induction target formula L[x] is a comparison having x as a
top-level argument, for example, x ≤Z t, and allow to apply it to all other induction
target formulas deemed to be suitable by other user-specified options.

Our (interval) downward/upward induction rules in Vampire are enabled by
the new option --induction int. The options --int_induction_interval
infinite and --int_induction_interval finite limit the enabled rules to
downward/upward only, and interval downward/upward only, respectively. Further,
--int_induction_default_bound on enables the more general rule which does
not require bounds to be in the search space. Our new induction rules can also
be controlled by other Vampire options for well-founded/structural induction, such
as --induction_on_complex_terms on, which enables applying induction on any
ground complex term. To improve Vampire’s performance for integer induction, we com-
bined our new induction rules with --induction_on_complex_terms on and also
other options not specific to induction. We extended Vampire with a new mode scheduling
various option configurations for integer induction, switched on by the option --mode
portfolio --schedule integer_induction. Additionally, we introduced the
option --schedule induction which uses either the integer induction configurations
as for --schedule integer_induction, or structural induction configurations, or
both, depending on the data types used in the problem/property to be proved.

6.2.2 Experimental Setup

We used two sets of examples: (i) benchmark sets LIA and UFLIA from the SMT-LIB
collection [BFT16], consisting of, respectively, 607 and 10,137 examples, and (ii) 120
integer benchmarks from our new inductive benchmark set (see Subsection 5.2.2), similar
to our motivating examples from Section 4.1.

We ran our experiments on computers with 32 cores (AMD Epyc 7502, 2.5 GHz) and 1
TB RAM. In all experiments we used the memory limit of 16 GB per problem. For the
new benchmarks we used a 300-second time limit. For the experiments on the larger LIA
and UFLIA sets we used a 10-second time limit.

In this section:

• Vampireo refers to the default version of Vampire.

• By Vampirei we denote our new version of Vampire, using integer induction rules
(--induction int).

48

6.2. Integer Induction

Problem
set

Total
count

CVC4 Z3 Vampireo Vampirei

new
compared to
Vampireo

new compared
to Vampireo,
CVC4 and Z3

LIA 607 553 435 216 214 10 1
UFLIA 10137 7002 6705 6116 5796 99 44

Table 6.4: Comparison of solvers on SMT-LIB benchmarks.

• Vampireip is like Vampirei, but using additional options to run in the portfolio
mode: scheduling various option configurations for integer induction (--mode
portfolio --schedule induction).

For experiments with the new benchmarks, we note that Vampireo without integer induc-
tion cannot solve any of the problems. In this set of experiments, we therefore compared
Vampireip to the provers CVC4 [RK15] and ACL2 [KMM00], which are, to the best
of our knowledge, the only two automated solvers supporting inductive reasoning with
integers in addition to reasoning with theories and quantifiers. For CVC4, we used
the ig configuration from [RK15]: --quant-ind --quant-cf --conjecture-gen
--conjecture-gen-per-round=3 --full-saturate-quant. For ACL2, we
used its default configuration. In the experiments with the LIA and UFLIA bench-
mark sets of SMT-LIB, we also used Z3 [DMB08] in the default configuration.

We ran CVC4, Z3, and all versions of Vampire on problems encoded in the SMT-LIB
syntax [BFT16]. For running ACL2 on the new benchmarks, we translated problems
into the functional program encoding syntax of ACL2.

6.2.3 Experimental Results
SMT-LIB benchmarks. First, we evaluated the improvements of integer induction
in Vampirei when compared to Vampireo, CVC4 and Z3 on the LIA and UFLIA
sets of SMT-LIB [BFT16]. We aimed to verify that Vampirei’s performance does not
deteriorate due to adding integer induction, check whether Vampirei can solve problems
that could not be solved automatically before, and to identify the best values for options
related to integer induction. To this end, we picked five different strategies (e.g. using
different saturation algorithms and selection functions) and used different combinations
of induction options. Table 6.4 summarizes our results, showcasing that integer induction
enabled Vampirei to solve over 100 new problems that Vampireo could not solve before
(second to the last column of Table 6.4). Moreover, 45 of these problems were also new
compared to CVC4 and Z3 (last column of Table 6.4), which most likely means that no
theorem prover was able to prove them before.

In problems solved using integer induction, the integer induction rules were applied often:
at least one of the interval induction rules was used in nearly 99% of problems, while
one of the induction rules with one bound was used in nearly all problems. The interval

49

6. Implementation of Induction in Vampire

Problem set Problem subset Count ACL2 CVC4 Vampireip

sum

x_all 1 0 0 1
y_all 1 0 0 1
x_leq 5 0 0 4
y_geq 5 0 5 5
subset total 12 0 5 11

val

declared_mixed_ax-fin_conj-fin 6 0 1 4
declared_unint_ax-fin_conj-fin 3 0 0 3
declared_inter_ax-all_conj-all 5 0 0 3
declared_inter_ax-all_conj-geq 9 0 9 9
declared_inter_ax-all_conj-leq 9 0 0 9
declared_inter_ax-geq_conj-geq 13 0 13 10
declared_inter_ax-leq_conj-leq 13 0 0 11
declared_unint_ax-all_* 7 0 0 7
declared_unint_ax-geq_conj-geq 2 0 0 2
declared_unint_ax-leq_conj-leq 2 0 0 2
defined_inter_ax-all_conj-all 3 1 0 3
defined_inter_ax-geq_conj-geq 3 2 3 3
defined_inter_ax-leq_conj-leq 3 2 0 3
defined_unint_* 6 0 0 6
subset total 84 5 26 75

power

0_all 4 0 0 4
0_pos 4 0 0 4
0_neg 4 0 0 4
1_all 4 0 0 2
1_pos 4 0 0 4
1_neg 4 0 0 2
subset total 24 0 0 20

all sets combined total 120 5 31 106
all sets uniquely solved - 0 3 75

Table 6.5: Experiments with our new benchmarks from Table 5.1.

induction and induction rules were used on average 4559 and 1191 times, respectively.
89% of the proofs employed interval induction (67% upward, 29% downward), while 27%
of the proofs used induction with one bound (22% upward, 8% downward). Additionally,
over 64% of proofs only required one application of any induction rule.

Experiments with benchmarks from Subsection 5.2.2. Comparison results for
Vampireip, ACL2 and CVC4 on our new benchmarks are displayed in Table 6.5,
aggregated by benchmark subsets, as described in Table 5.1. We do not show Vampireo

in the table, since without integer induction it cannot solve any of the problems.

50

6.2. Integer Induction

The results show that in some cases ACL2 can perform upward and downward induction
on integers, but only when using interpreted constants as a base case (that is, it cannot
handle symbolic bounds). However, it can only do so if it also proves termination of the
recursively defined function. It also has issues with reasoning about multiplication.

CVC4 has limited support for integer induction: it can apply upward induction but
only when the base case is an interpreted constant. Since some problems seem to require
induction with symbolic bounds, CVC4 is mostly able to either solve all problems in a
subset, or none of them. The only exception is the subset declared_mixed_ax-fin_conj-fin,
in which CVC4 solves one problem, which can be solved using upward induction with an
interpreted constant as the base case.

Vampireip does not have any conceptual problems with solving the benchmarks. However,
since it uses axioms and inference rules rather than dedicated decision procedures for
handling integers, it sometimes has issues with solving problems with large integer values.
For example, for the infinite interval subset of the val benchmark set, the only problems
Vampireip did not solve were those containing the interpreted constant 100 or −100.
Similarly, in the power benchmark set, the unsolved problems contained large numbers.
Finally, in the declared_mixed_ax-fin_conj-fin subset, the two problems Vampireip

did not solve also required more sophisticated arithmetic reasoning. However, the
inability to efficiently deal with large numbers is not an intrinsic problem of superposition
theorem provers. Reasoning with quantifiers and theories is still in its infancy and major
improvements are underway. For example, there are recent parallel developments in
superposition and linear arithmetic [RSV21] that should improve this kind of reasoning
in Vampire.

51

CHAPTER 7
Synthesis of Recursion-Free

Programs

The contributions of this chapter are based on:
Petra Hozzová, Laura Kovács, Chase Norman, and Andrei Voronkov. Program Syn-
thesis in Saturation. In Brigitte Pientka and Cesare Tinelli, editors, Proc. of CADE,
volume 14132 of LNCS, pages 307–324, Cham, 2023. Springer [HKNV23],
Petra Hozzová. Integrating Answer Literals with AVATAR for Program Synthesis. In
Laura Kovács and Michael Rawson, editors, Proc. of the 7th and 8th Vampire Work-
shop, volume 99 of EPiC Series in Computing, pages 13–20. EasyChair, 2024 [Hoz24]

In this chapter we present a framework for synthesis of recursion-free programs using a
first-order saturation-based theorem prover as a reasoning backend. We extract code from
correctness proofs of functional specifications given as first-order formulas ∀x.∃y.F [x, y].
These formulas state that “for all (program) inputs x there exists an output y such
that the input-output relation (program computation) F [x, y] is valid”. Given such a
specification, we synthesize a recursion-free program while also deriving a proof certifying
that the program satisfies the specification.

The programs we synthesize are built using first-order theory terms extended with
if−then−else constructors. To ensure that our programs yield computational models,
i.e., that they can be evaluated for given values of input variables x, we restrict the
programs we synthesize to only contain computable symbols.

Briefly, in order to synthesize a recursion-free program, we prove its functional specification
using saturation-based theorem proving [NR01, KV13]. We extend saturation-based proof
search with answer literals [Gre69], allowing us to track substitutions into the output

53

7. Synthesis of Recursion-Free Programs

variable y of the specification. These substitutions correspond to the sought program
fragments and are conditioned on clauses they are associated with in the proof. When we
derive a clause corresponding to a program branch if C then r, where C is a condition
and r a term and both C, r are computable, we store it and continue proof search
assuming that ¬C holds; we refer to such conditions C as (program) branch conditions.
The saturation process for both proof search and code construction terminates when
the conjunction of negations of the collected branch conditions becomes unsatisfiable.
Then we synthesize the final program satisfying the given (and proved) specification by
assembling the recorded program branches (see e.g. Examples 7.1, 7.9, and 7.10).

The main challenges of making our approach effective come with (i) integrating the
construction of the programs with if−then−else into the proof search, turning thus
proof search into program search/synthesis, and (ii) guiding program synthesis to derive
only computable branch conditions and programs.

We start this chapter with a terminology overview in Section 7.1, and then we present
an illustrative example in Section 7.2. In Section 7.3 we formalize the semantics for
clauses with answer literals and introduce a saturation-based algorithm for program
synthesis based on this semantics. We prove that, given a sound inference system, our
saturation algorithm derives correct and computable programs. Next, in Section 7.4, we
define the properties of a sound inference calculus in order to make the calculus suitable
for our saturation-based algorithm for program synthesis. We accordingly extend the
superposition calculus and define a class of substitutions to be used within the extended
calculus; we refer to these substitutions as computable unifiers. Then in Section 7.5 we
extend a first-order unification algorithm to find computable unifiers to be further used
in saturation-based program synthesis. In Section 7.6 we integrate our saturation-based
algorithm with with the Avatar framework [Vor14], enabling efficient splitting and
theory reasoning.

Later in Chapter 9 we describe the implementation of our work in the Vampire
prover [KV13] and evaluate our synthesis approach on a number of examples, comple-
menting other techniques in the area (Section 9.1). For example, our results demonstrate
the applicability of our work on synthesizing programs for specifications that cannot be
even encoded in the SyGuS syntax [PPR+21].

7.1 Computable Symbols and Programs
We distinguish between computable and uncomputable symbols in the signature. The
set of computable symbols is given as part of the specification. Intuitively, a symbol is
computable if it can be evaluated and hence is allowed to occur in a synthesized program.
A term or a literal is computable if all symbols it contains are computable. A symbol,
term, or literal is uncomputable if it is not computable.

A functional specification, or simply just a specification, is a formula

∀x.∃y.F [x, y]. (7.1)

54

7.2. Illustrative Example

∀x. inv(x)∗x ≃ e (G1) ∀x. e ∗ x ≃ x (G2) ∀x, y, z. x∗(y ∗z) ≃ (x∗y)∗z (G3)
Figure 7.1: Axioms defining a group. Uninterpreted function symbols inv(·), e, ∗ represent
the inverse, the identity element, and the group operation, respectively.

The variables x of a specification (7.1) are called input variables. Note that while we use
specifications with a single variable y, our work can analogously be used with a tuple of
variables y in (7.1).

Let σ denote a tuple of skolem constants. Consider a computable term r[σ] such that
the instance F [σ, r[σ]] of (7.1) holds. Since σ are fresh skolem constants, the formula
∀x.F [x, r[x]] also holds; we call such r[x] a program for (7.1) and say that the program
r[x] computes a witness of (7.1).

Further, if ∀x.(F1 ∧ . . . ∧ Fn → F [x, r[x]]) holds for computable formulas F1, . . . , Fn,
we write ⟨r[x], �n

i=1 Fi⟩ to refer to a program with conditions F1, . . . , Fn for (7.1). In
the sequel, we refer to (parts of) programs with conditions also as conditional branches.
In Section 7.3 we show how to build programs for (7.1) by composing programs with
conditions for (7.1) (see Corollary 7.4).

7.2 Illustrative Example
Let us illustrate our approach to program synthesis. We use answer literals (see Section 2.4)
in saturation to construct programs with conditions while proving specifications of the
form (7.1). By adding an answer literal to the skolemized negation of (7.1), we obtain

∀y.(¬F [σ, y] ∨ ans(y)), (7.2)

where σ are the skolemized input variables x. When we derive a unit clause ans(r[σ])
during saturation, where r[σ] is a computable term, we construct a program for (7.1)
from the definite answer r[σ] by replacing σ with the input variables x, obtaining the
program r[x]. Hence, deriving computable definite answers by saturation allows us to
synthesize programs for specifications.

Example 7.1. Consider the group theory axioms (G1)–(G3) of Figure 7.1. We are
interested in synthesizing a program for the following specification:

∀x.∃y. x ∗ y ≃ e (7.3)

In this example we assume that all symbols are computable. To synthesize a program
for (7.3), we preprocess the specification by adding an answer literal to the skolemized
negation of (7.3) and convert the resulting formula to CNF. We consider the set S of
clauses containing the obtained CNF and the axioms (G1)–(G3). We saturate S using
Sup and obtain the following derivation:

55

7. Synthesis of Recursion-Free Programs

1. σ ∗ y ̸≃ e ∨ ans(y) [preprocessed specification]
2. inv(x) ∗ (x ∗ y) ≃ e ∗ y [Sup (G1), (G3)]
3. inv(x) ∗ (x ∗ y) ≃ y [Sup (G2), 2]
4. inv(inv(x)) ∗ y ≃ x ∗ y [Sup 3, 31]
5. e ≃ x ∗ inv(x) [Sup 4, (G1)]
6. ans(inv(σ)) [BR 5, 1]

Using the above derivation, we construct a program for the functional specification (7.3)
as follows: we replace σ in the definite answer inv(σ) by x, yielding the program inv(x).
Note that for each input x, our synthesized program computes the inverse inv(x) of x as
an output. In other words, our synthesized program for (7.3) ensures that each group
element x has a right inverse inv(x).

While Example 7.1 yields a definite answer within saturation-based proof search, our
work supports the synthesis of more complex recursion-free programs (see Examples 7.9
and 7.10) by composing program fragments derived in the program search (Section 7.3)
as well as by using answer literals with if−then−else to effectively handle disjunctive
answers (Section 7.4).

7.3 Program Synthesis with Answer Literals
We now introduce our approach to saturation-based program synthesis using answer
literals (Algorithm 7.1). Here we focus on recursion-free program synthesis, which we in
Chapter 8 extend to recursive synthesis, and present our work in a more general setting.
Namely, we consider functional specifications whose validity may depend on additional
assumptions (e.g. additional program requirements) A1, . . . , An, where each Ai is a closed
formula:

A1 ∧ . . . ∧ An → ∀x.∃y.F [x, y] (7.4)

Note that specification (7.1) is a special case of (7.4). However, since A1, . . . , An are
closed formulas, (7.4) is equivalent to ∀x.∃y.(A1 ∧ . . . ∧ An → F [x, y]), which is a special
case of (7.1).

Given a functional specification (7.4), we use answer literals to synthesize programs with
conditions (Section 7.3.1) and extend saturation-based proof search to reason about

1For clarity, consider two instances of 3 with differently named variables:

3. inv(x) ∗ (x ∗ y) ≃ y

3′. inv(z) ∗ (z ∗ w) ≃ w

We rewrite the term z ∗ w in 3′ using the equality 3 and the substitution {z �→ inv(x), w �→ x ∗ y}. The
instance of 3′ we rewrite is inv(inv(x)) ∗ (inv(x) ∗ (x ∗ y)) ≃ x ∗ y. After rewriting we obtain 4.

56

7.3. Program Synthesis with Answer Literals

answer literals (Section 7.3.2). For doing so, we add the answer literal ans(y) to the
skolemized negation of (7.4) and obtain

A1 ∧ . . . ∧ An ∧ ∀y.(¬F [σ, y] ∨ ans(y)). (7.5)

We saturate the CNF of (7.5) while ensuring that answer literals are not selected within
the inference rules used in saturation. We guide saturation-based proof search to derive
clauses C[σ] ∨ ans(r[σ]), where C[σ] and r[σ] are computable.

7.3.1 From Answer Literals to Programs
Our next result ensures that, if we derive the clause C[σ] ∨ ans(r[σ]), the term r[σ]
is a definite answer under the assumption ¬C[σ] (Theorem 7.2). We note that we
do not terminate saturation-based program synthesis once a clause C[σ] ∨ ans(r[σ])
is derived. We rather record the program r[x] with condition ¬C[x] (and possibly
also other conditions), replace clause C[σ] ∨ ans(r[σ]) by C[σ], and continue saturation
(Corollary 7.3). As a result, upon establishing validity of (7.4), we synthesized a program
for (7.4) (Corollary 7.4).

Theorem 7.2 (Semantics of Clauses with Answer Literals). Let C be a clause not
containing an answer literal. Assume that, using a saturation algorithm based on a
sound inference system I, the clause C ∨ ans(r[σ]) is derived from the set of clauses
consisting of initial assumptions A1, . . . , An, the clausified formula cnf(¬F [σ, y] ∨ ans(y))
and additional assumptions C1, . . . , Cm. Then,

A1, . . . , An, C1, . . . , Cm ⊢ C, F [σ, r[σ]].

That is, under the assumptions C1, . . . , Cm, ¬C, the computable term r[σ] provides a
definite answer to (7.4).

Proof. We consider the calculus that was used for deriving C ∨ ans(r[σ]), but with lifted
ordering and selection conditions. I.e., we allow application of the rules regardless of
the term ordering and of which literals are selected. Since the soundness of the calculus
does not depend on these side conditions, the calculus without the conditions is sound
as well. Now, since ans is uninterpreted, we can replace ans(y) by y ̸≃ r[σ], and obtain
a derivation of C ∨ r[σ] ̸≃ r[σ] from A1, . . . , An, ∀y.cnf(¬F [σ, y] ∨ y ̸≃ r[σ]) using the
calculus without the conditions.2

We want to show that
n�

i=1
Ai ∧

m�
i=1

Ci → C ∨ F [σ, r[σ]] (7.6)

is valid. Hence, we need to show that in each interpretation, in which the antecedent
is true, also the consequent is true. Let us consider such an interpretation I. We

2The derivation might not have been possible in the calculus with the ordering and selection conditions
due to replacing the positive literal ans(y) with the negative literal y ̸≃ r[σ] containing different symbols.

57

7. Synthesis of Recursion-Free Programs

distinguish two cases. First, assume that ∀y.cnf(¬F [σ, y] ∨ y ̸≃ r[σ]) is true in I. Then
since all assumptions from which we derived C ∨ r[σ] ̸≃ r[σ] are true in I and since
the inference system is sound, also C ∨ r[σ] ̸≃ r[σ] is true. That clause is equivalent
to C, hence C is true, which makes the consequent of (7.6) true. Second, assume that
∀y.cnf(¬F [σ, y] ∨ y ̸≃ r[σ]) is false in I. Then its negation, ¬∀y.cnf(¬F [σ, y] ∨ y ̸≃ r[σ]),
equivalent to ∃y.(F [σ, y] ∧ y ≃ r[σ]), equivalent to F [σ, r[σ]] must be true in I. Hence,
the consequent of (7.6) is true also in this case. Therefore (7.6) is valid.

We further use Theorem 7.2 to synthesize programs with conditions for (7.4).

Corollary 7.3 (Programs with Conditions). Let r[σ] be a computable term and C[σ]
a ground computable clause not containing an answer literal. Assume that clause
C[σ]∨ans(r[σ]) is derived from the set of initial clauses A1, . . . , An, the clausified formula
cnf(¬F [σ, y] ∨ ans(y)) and additional ground computable assumptions C1[σ], . . . , Cm[σ],
by using saturation based on a sound inference system I. Then,

⟨r[x],
m�

j=1
Cj [x] ∧ ¬C[x]⟩

is a program with conditions for (7.4).

Proof. From Theorem 7.2 follows that �n
i=1 Ai∧�m

i=1 Ci[σ] → C[σ]∨F [σ, r[σ]] holds. Since
σ are fresh uninterpreted constants, we obtain that �n

i=1 Ai∧�m
i=1 Ci[x] → C[x]∨F [x, r[x]]

is valid as well, and that is equivalent to �m
j=1 Cj [x] ∧ ¬C[x] → (�n

i=1 Ai → F [x, r[x]]).
Therefore ⟨r[x], �m

j=1 Cj [x] ∧ ¬C[x]⟩ is a program with conditions for A1 ∧ . . . ∧ An →
∀x.∃y.F [x, y].

Note that a program with conditions ⟨r[x], �m
j=1 Cj [x]∧¬C[x]⟩ corresponds to a conditional

(program) branch if
�m

j=1 Cj [x]∧¬C[x] then r[x]: only if the condition �m
j=1 Cj [x]∧¬C[x]

is valid, then r[x] is computed for (7.4).

We use programs with conditions ⟨r[x], �m
j=1 Cj [x]∧¬C[x]⟩ to finally synthesize a program

for (7.4). To this end, we use Corollary 7.3 to derive programs with conditions, and
once their conditions cover all possible cases given the initial assumptions A1, . . . , An, we
compose them into a program for (7.4).

Corollary 7.4 (From Programs with Conditions to Programs for (7.4)). Let
P1[x], . . . , Pk[x], where Pi[x] = ⟨ri[x], �i−1

j=1 Cj [x] ∧ ¬Ci[x]⟩, be programs with conditions
for (7.4), such that �n

i=1 Ai ∧ �k
i=1 Ci[x] is unsatisfiable. Then P [x], given by

P [x] := if ¬C1[x] then r1[x]
else if ¬C2[x] then r2[x]

. . .

else if ¬Ck−1[x] then rk−1[x]
else rk[x],

(7.7)

58

7.3. Program Synthesis with Answer Literals

is a program for (7.4).

Proof. For any interpretation I and any variable assignment v, let p be the smallest index
such that ¬Cp[x] holds in I under v, but all ¬Cj [x], where 1 ≤ j < p, do not hold in I
under v. Since �n

i=1 Ai ∧ �k
i=1 Ci[x] is unsatisfiable, under the assumptions A1, . . . , An

such a p has to exist. Then in I under v and under the assumptions A1, . . . , An, the
interpretation of P [x] is the same as the interpretation of rp[x].

Further, since �p−1
j=1 Cj [x] ∧ ¬Cp[x] is the condition for Pp[x], from the definition of a

program with conditions we obtain that A1 ∧ · · · ∧ An → F [x, rp[x]] holds in I under v.
Hence also A1 ∧ · · · ∧ An → F [x, P [x]] holds in I under v.

Finally, since this argument holds for any I and v, and since all A1, . . . , An are closed
formulas, also A1 ∧ · · · ∧ An → ∀x.F [x, P [x]] holds. Therefore P [x] is a program for (7.4).

Note that since the conditional branches of (7.7) cover all possible cases to be considered
over x, we do not need the condition if ¬Ck. In particular, if k = 1, i.e. �n

i=1 Ai ∧ C1[x]
is unsatisfiable, then the synthesized program for (7.4) is r1[x].

7.3.2 Saturation-Based Program Synthesis
Our program synthesis results from Theorem 7.2, Corollary 7.3 and Corollary 7.4 rely upon
a saturation algorithm using a sound (but not necessarily complete) inference system I. In
this section, we present our modifications to extend state-of-the-art saturation algorithms
with answer literal reasoning, allowing us to derive clauses C[σ] ∨ ans(r[σ]), where both
C[σ] and r[σ] are computable. In Sections 7.4–7.5 we then describe modifications of the
inference system I to implement rules over clauses with answer literals.

Our saturation algorithm is given in Algorithm 7.1. In a nutshell, we use Corollary 7.3 to
construct programs from clauses C[σ] ∨ ans(r[σ]) and replace clauses C[σ] ∨ ans(r[σ]) by
C[σ] (lines 7–10 of Algorithm 7.1). The newly added computable assumptions C[σ] are
used to guide saturation towards deriving programs with conditions where the conditions
contain C[x]; these programs with conditions are used for synthesizing programs for (7.4),
as given in Corollary 7.4.

Compared to a standard saturation algorithm used in first-order theorem proving (e.g.
lines 4–5 of Algorithm 7.1), Algorithm 7.1 implements additional steps for processing newly
derived clauses C[σ]∨ans(r[σ]) with answer literals (lines 6-10). As a result, Algorithm 7.1
establishes not only the validity of the specification (7.4) but also synthesizes a program
(lines 12-13). Throughout the algorithm, we maintain a set P of programs with conditions
derived so far and a set C of additional assumptions. For each new clause Ci, we check
if it is in the form C[σ] ∨ ans(r[σ]) where C[σ] is ground and computable (line 7). If
yes, we construct a program with conditions ⟨r[x], �

C′∈C C ′ ∧ ¬C[x]⟩, extend C with
the additional assumption C[x], and replace Ci by C[σ] (lines 8-10). Then, when we

59

7. Synthesis of Recursion-Free Programs

Algorithm 7.1: Saturation Loop for Program Synthesis
1 initial set of clauses S := {cnf(A1 ∧ . . . ∧ An ∧ ∀y.(¬F [σ, y] ∨ ans(y)))}
2 initial sets of additional assumptions C := ∅ and programs P := ∅
3 repeat
4 Select clause G ∈ S
5 Derive consequences C1, . . . , Cn of G and formulas from S using rules of I
6 for each Ci do
7 if Ci = (C[σ] ∨ ans(r[σ])) and C[σ] is ground and computable then
8 P := P ∪ {⟨r[x], �

C′∈C C ′ ∧ ¬C[x]⟩} /* Corollary 7.3 */
9 C := C ∪ {C[x]}
10 Ci := C[σ]
11 S := S ∪ {C1, . . . , Cn}
12 if □ ∈ S then
13 return program (7.7) for specification (7.4),

derived from P /* Corollary 7.4 */

derive the empty clause, we construct the final program as follows. We first collect all
clauses that participated in the derivation of □. We use this clause collection to filter the
programs in P – we only keep a program originating from a clause C[σ] ∨ ans(r[σ]) if the
condition C[σ] was used in the proof, obtaining programs P1, . . . , Pk. From P1, . . . , Pk

we then synthesize the final program P using the construction (7.7) from Corollary 7.4.

Remark. Compared to [Tam95] where potentially large programs (with conditions)
are tracked in answer literals, Algorithm 7.1 removes answer literals from clauses and
constructs the final program only after saturation found a refutation of the negated (7.4).
Our approach has two advantages: first, we do not have to keep track of potentially many
large terms using if−then−else, which might slow down saturation-based program
synthesis. Second, our work can naturally be integrated with clause splitting techniques
within saturation (see Section 7.6).

7.4 Superposition with Answer Literals
We note that our saturation-based program synthesis approach is not restricted to
a specific calculus. Algorithm 7.1 can thus be used with any sound set of inference
rules, including theory-specific inference rules, e.g. [KKR+23], as long as the rules allow
derivation of clauses in the form C ∨ ans(r), where C, r are computable and C is ground.
I.e., the rules should only derive clauses with at most one answer literal, and should not
introduce uncomputable symbols into answer literals.

In this section we present changes tailored to the superposition calculus Sup, yet, without
changing the underlying saturation process of Algorithm 7.1. We first introduce the
notion of an abstract unifier [RSV18] and define a computable unifier – a mechanism for

60

7.4. Superposition with Answer Literals

dealing with the uncomputable symbols in the reasoning instead of introducing them
into the programs. The use of such a unifier in any sound calculus is explained, with
particular focus on the Sup calculus.

Definition 7.5 (Abstract Unifier [RSV18]). An abstract unifier of two expressions E1, E2
is a pair (θ, D) such that:

1. θ is a substitution and D is a (possibly empty) disjunction of disequalities,

2. (D ∨ E1 ≃ E2)θ is valid in the underlying theory.

Intuitively speaking, an abstract unifier combines disequality constraints D with a
substitution θ such that the substitution is a unifier of E1, E2 if the constraints D are
not satisfied.

Definition 7.6 (Computable Unifier). A computable unifier of two expressions E1, E2
with respect to an expression E3 is an abstract unifier (θ, D) of E1, E2 such that the
expression E3θ is computable.

For example, let f be computable and g uncomputable. Then ({y �→ f(z)}, z ̸≃ g(x))
is a computable unifier of the terms f(g(x)), y with respect to f(y). Further, ({y �→
f(g(x))}, ∅) is an abstract unifier of the same terms, but not a computable unifier with
respect to f(y).

Ensuring computability of answer literal arguments. We modify the rules of a
sound inference system I to use computable unifiers with respect to the answer literal
argument instead of unifiers. Since a computable unifier may entail disequality constraints
D, we add D to the conclusions of the inference rules. That is, for an inference rule of I
as below

C1 · · · Cn

Cθ
,

(7.8)

where θ is a substitution such that Eθ ≃ E′θ holds for some expressions E, E′, we extend
I with the following n inference rules with computable unifiers:

C1 ∨ ans(r) C2 · · · Cn

(D ∨ C ∨ ans(r))θ′ · · ·
C1 C2 · · · Cn ∨ ans(r)

(D ∨ C ∨ ans(r))θ′ ,
(7.9)

where (θ′, D) is a computable unifier of E, E′ with respect to r and none of C1, . . . , Cn

contains an answer literal. We obtain the following result.

Lemma 7.7 (Soundness of Inferences with Answer Literals). If the rule (7.8) is sound,
the rules (7.9) are sound as well.

61

7. Synthesis of Recursion-Free Programs

Proof. We will prove the soundness of the new rule

C1 ∨ ans(r) C2 · · · Cn

(D ∨ C ∨ ans(r))θ′ , (7.10)

where (θ′, D) is a computable unifier of E, E′ with respect to r, and none of C1, . . . , Cn

contains an answer literal. The proof of soundness of the other new rules of (7.9) is
analogous.

Assume interpretation I to be a model of the universal closures of the premises of (7.10),
but not a model of the universal closure of its conclusion. Then Dθ′, Cθ′ and ans(r)θ′ are
false in I. From Dθ′ being false in I and from (θ′, D) being an abstract unifier follows
that Eθ′ ≃ E′θ′ holds. We can therefore set θ := θ′. From the soundness of (7.8) and
Cθ′ being false in I then follows that some of C1, . . . , Cn is false in I. However, none
of C2, . . . , Cn can be false in I, because we assumed all premises of (7.10) to be true
in I. Hence, C1 is false in I. Further, from ans(r)θ′ being false in I follows that ans(r)
is false in I. However, that means that C1 ∨ ans(r) is false in I, which contradicts the
assumption that the universal closures of all premises of rule (7.10) are true in I.

Hence, the rule (7.10) is sound.

We note that we keep the original rule (7.8) in I, but impose that none of its premises
C1, . . . , Cn contains an answer literal. Clearly, neither the such modified rule (7.8) nor
the new rules (7.9) introduce uncomputable symbols into answer literals. Rather, these
rules add disequality constraints D into their conclusions and immediately select D for
further applications of inference rules. Such a selection guides the saturation process
in Algorithm 7.1 to first discharge the constraints D containing uncomputable symbols
with the aim of deriving a clause C ∨ ans(r) where C is computable. If C is ground, the
clause C ∨ ans(r) is then converted into a program with conditions using Corollary 7.3.

Superposition with answer literals. We make the inference rule modifications (7.8),
together with the addition of new rules (7.9), for each inference rule of the Sup calculus
from Figure 2.2. Further, we also ensure that rules with multiple premises, when applied
on several premises containing answer literals, derive clauses with at most one answer
literal. We therefore introduce the following two rule modifications:

1. We use the if−then−else constructor to combine answer literals of premises, by
adapting the use of if−then−else within binary resolution [LWC74, MW80, Tam95]
to superposition rules.

2. We use an answer literal from only one of the rule premises in the rule conclusion
and add new disequality constraint r ̸≃ r′ between the premises’ answer literal
arguments, similar to the constraints D of the computable unifier. Analogously to
the computable unifier constraints, we immediately select this disequality constraint
r ̸≃ r′.

62

7.4. Superposition with Answer Literals

Superposition (Sup):

s ≃ t ∨ C ∨ ans(r) L[s′] ∨ C′ ∨ ans(r′)

(D ∨ L[t] ∨ C ∨ C′ ∨ ans(if s≃ t then r′ else r))θ

s ≃ t ∨ C ∨ ans(r) L[s′] ∨ C′ ∨ ans(r′)

(D ∨ r ̸≃r′ ∨ L[t] ∨ C ∨ C′ ∨ ans(r))θ
s ≃ t ∨ C ∨ ans(r) u[s′] ̸≃ u′ ∨ C′ ∨ ans(r′)

(D∨u[t] ̸≃u′∨C∨C′∨ans(if s≃ t then r′ else r))θ

s≃ t∨C∨ans(r) u[s′]≃u′∨C′∨ans(r′)

(D∨r ̸≃r′∨u[t]≃u′∨C∨C′∨ans(r))θ
s ≃ t ∨ C ∨ ans(r) u[s′] ≃ u′ ∨ C′ ∨ ans(r′)

(D∨u[t]≃u′∨C∨C′∨ans(if s≃ t then r′ else r))θ

s≃ t∨C∨ans(r) u[s′] ̸≃u′∨C′∨ans(r′)

(D∨r ̸≃r′∨u[t] ̸≃u′∨C∨C′∨ans(r))θ

where (θ, D) is a computable unifier of s, s′ w.r.t. the argument of the answer
literal in the rule conclusion (i.e. if s ≃ t then r′ else r for the left-column
rules, and r for the others); (rules on the first line only) L[s′] is not an equality
literal; and (rules on the second and third line only) u′θ ̸⪰ u[s′]θ.

Binary resolution (BR):

A ∨ C ∨ ans(r) ¬A′ ∨ C ′ ∨ ans(r′)
(D∨C∨C ′∨ans(if A then r′ else r))θ

A ∨ C ∨ ans(r) ¬A′ ∨ C ′ ∨ ans(r′)
(D ∨ r ̸≃r′ ∨ C ∨ C ′ ∨ ans(r))θ

where (θ, D) is a computable unifier of A, A′ w.r.t. (first rule) if A then r′ else r
or (second rule) r.

Factoring (Fac):

A ∨ A′ ∨ C ∨ ans(r)
(D∨A∨C∨ans(r))θ

where (θ, D) is a
computable unifier

of A, A′ w.r.t. r.

Equality resolution (ER):

s ̸≃ t ∨ C ∨ ans(r)
(D ∨ C ∨ ans(r))θ

where (θ, D) is a
computable unifier

of s, t w.r.t. r.

Equality factoring (EF):

s ≃ t ∨ s′ ≃ t′ ∨ C ∨ ans(r)
(D∨s≃ t∨t ̸≃ t′∨C∨ans(r))θ

where (θ, D) is a computable
unifier of s, s′ w.r.t. r;
tθ ̸⪰ sθ; and t′θ ̸⪰ tθ.

Figure 7.2: Selected rules of the extended superposition calculus Sup for reasoning with
answer literals, with underlined literals being selected.

The resulting extension of the Sup calculus with answer literals is given in Figure 7.2.
In addition to the rules of Figure 7.2, the extended calculus contains rules constructed
as (7.9) for superposition and binary resolution rules of Figure 2.2. Using Lemma 7.7,
we conclude the following.

Lemma 7.8 (Soundness of Sup with Answer Literals). The inference rules of the extended
Sup calculus with answer literals (from Figure 7.2) are sound.

Proof. Soundness of the factoring, equality factoring, and equality resolution rules follows
from Lemma 7.7.

63

7. Synthesis of Recursion-Free Programs

We will prove soundness for the first superposition rule and the second binary resolution
rule. The proofs for other superposition and binary resolution rules are analogous.

For clarity we recall the first superposition rule of Figure 7.2:

s ≃ t ∨ C ∨ ans(r) L[s′] ∨ C ′ ∨ ans(r′)
(D ∨ L[t] ∨ C ∨ C ′ ∨ ans(if s≃ t then r′ else r))θ

Assume interpretation I to be a model of the universal closures of the premises of the rule,
but not a model of the universal closure of its conclusion. Then there is some variable
assignment v such that (D ∨ L[t] ∨ C ∨ C ′ ∨ ans(if s≃ t then r′ else r))θ is false in I
under v. Let v′ be a variable assignment that assigns to each variable x the value that
xθ has in I under v. Then:

1. From L[t]θ, Cθ, C ′θ being false in I under v follows that L[t], C, C ′ are false in I
under v′.

2. Since Dθ is false in I under v, from (θ, D) being an abstract unifier of s, s′ follows
that sθ ≃ s′θ is true in I under v, and therefore s, s′ have the same interpretation
in I under v′. Then consider two cases:

a) s ≃ t is true in I under v′ and sθ ≃ tθ is true in I under v. Then from
ans(if s≃ t then r′ else r)θ being false in I under v follows that ans(r′)θ is
false in I under v and therefore ans(r′) is false in I under v′. Also from s ≃ t
being true in I under v′, 1., and 2. follows that L[s′] is false in I under v′.
Then the whole second premise of the rule is false in I under v′, which is a
contradiction with the assumption that I is a model of its universal closure.

b) s ≃ t is false in I under v′ and sθ ≃ tθ is false in I under v. This case leads
similarly to the first premise being false, in contradiction with the assumption.

Therefore the first superposition rule is sound.

For clarity we recall the second binary resolution rule of Figure 7.2:

A∨C∨ans(r) ¬A′∨C ′∨ans(r′)
(D ∨ r ̸≃r′ ∨ C ∨ C ′ ∨ ans(r))θ

Assume interpretation I to be a model of the universal closures of the premises of the rule,
but not a model of the universal closure of its conclusion. Then there is some variable
assignment v such that (D ∨ r ̸≃r′ ∨ C ∨ C ′ ∨ ans(r))θ is false in I under v. Let v′ be a
variable assignment that assigns to each variable x the value that xθ has in I under v.
Then:

1. From rθ ̸≃ r′θ, Cθ, C ′θ being false in I under v follows that r ̸≃ r′, C, C ′ are false
in I under v′. Therefore r, r′ have the same interpretation in I under v′.

64

7.4. Superposition with Answer Literals

2. Since ans(r)θ is false in I under v, also ans(r) is false in I under v′. Then from 1.
follows that ans(r′) is also false in I under v′.

3. Since Dθ is false in I under v, from (θ, D) being an abstract unifier of A, A′ follows
that Aθ, A′θ have the same interpretation in I under v, and therefore A, A′ have
the same interpretation in I under v′. Therefore, only one of A, ¬A′ is true in I
under v′, which together with C, C ′, ans(r), ans(r′) being false in I under v′ forms
a contradiction with the assumption that I is a model of both premises of the rule.

Therefore the second binary resolution rule is sound as well.

By the soundness results of Lemmas 7.7–7.8, Corollaries 7.3–7.4 imply that, when
applying the calculus of Figure 7.2 in the saturation-based program synthesis approach
of Algorithm 7.1, we construct correct programs.

Example 7.9. We illustrate the use of Algorithm 7.1 with the extended Sup calculus of
Figure 7.2, strengthening our motivation from Section 7.2 with if−then−else reasoning.
To this end, consider the functional specification over group theory:

∀x, y.∃z.(x ∗ y ̸≃ y ∗ x → z ∗ z ̸≃ e), (7.11)

asserting that, if the group is not commutative, there is an element, the square of which
is not e. In addition to the axioms (G1)–(G3) of Figure 7.1, we also use the right identity
axiom (G2′) ∀x. x ∗ e ≃ x.3 Based on Algorithm 7.1, we obtain the following derivation
of the program for (7.11):

1. σ1 ∗ σ2 ̸≃ σ2 ∗ σ1 ∨ ans(z) [preprocessed specification]
2. e ≃ z ∗ z ∨ ans(z) [preprocessed specification]
3. σ1 ∗ σ2 ̸≃ σ2 ∗ σ1 [answer literal removal 1 (Algorithm 7.1, line 10)]
4. x ∗ (x ∗ y) ≃ e ∗ y ∨ ans(x) [Sup 2, (G3)]
5. e ≃ x ∗ (y ∗ (x ∗ y)) ∨ ans(x ∗ y) [Sup (G3), 2]
6. x ∗ (x ∗ y) ≃ y ∨ ans(x) [Sup 4, (G2)]
7. x ∗ e ≃ y ∗ (x ∗ y) ∨ ans(if e ≃ x ∗ (y ∗ (x ∗ y)) then x else x ∗ y) [Sup 6, 5]
8. y ∗ (x ∗ y) ≃ x ∨ ans(if e ≃ x ∗ (y ∗ (x ∗ y)) then x else x ∗ y) [Sup 7, (G2′)]
9. x∗y ≃ y∗x∨ans(if x∗(y∗x) ≃ y then x else if e ≃ x∗(y∗(x∗y)) then x else x∗y)

[Sup 6, 8]
10. ans(if σ1 ∗ (σ2 ∗ σ1) ≃ σ2 then σ1 else if e ≃ σ1 ∗ (σ2 ∗ (σ1 ∗ σ2)) then σ1 else

σ1 ∗ σ2) [BR 9, 3]
3We include axiom (G2′) to shorten the presentation of the obtained derivation. The derivation would

work also without (G2′).

65

7. Synthesis of Recursion-Free Programs

11. □ [answer literal removal 11 (Algorithm 7.1, line 10)]

The programs with conditions collected during saturation-based program synthesis, in
particular corresponding to steps 3. and 11. above, are:

P1[x, y] := ⟨z, x ∗ y ≃ y ∗ x⟩
P2[x, y] := ⟨if x ∗ (y ∗ x) ≃ y then x else (if e ≃ x ∗ (y ∗ (x ∗ y)) then x else x ∗ y),

x ∗ y ̸≃ y ∗ x⟩

Note the variable z, representing an arbitrary witness, in P1[x, y]. An arbitrary value is
a correct witness in case x ∗ y ≃ y ∗ x holds, as in this case (7.11) is trivially satisfied.
Thus, we do not need to consider the case x ∗ y ≃ y ∗ x separately. Hence, we construct
the final program P [x, y] only from P2[x, y] and obtain:

P [x, y] := if x ∗ (y ∗ x) ≃ x then x else (if e ≃ x ∗ (y ∗ (x ∗ y)) then x else x ∗ y)

We conclude this section by illustrating the benefits of computable unifiers.

Example 7.10. Consider the group axioms (G1)–(G3) of Figure 7.1, the additional
axioms (G1′) ∀x. x ∗ inv(x) ≃ e for right inverse and (G2′) ∀x. x ∗ e ≃ x for right identity
(symmetric to (G1), (G2)),4 and the specification

∀x, y.∃z. z ∗ (inv(x) ∗ inv(y)) ≃ e, (7.12)

describing the inverse element of inv(x) ∗ inv(y). The trivial program derivation for this
specification would only have three steps:

1. e ̸≃ x ∗ (inv(σ1) ∗ inv(σ2)) ∨ ans(x) [preprocessed specification]
2. ans(inv(inv(σ1) ∗ inv(σ2))) [BR (G1), 1]
3. □ [answer literal removal 2]

To disallow the trivial solution, inv(inv(x) ∗ inv(y)), we annotate the function symbol
inv as uncomputable. Therefore we do not perform step 2 from above, but instead
perform binary resolution with the computable unifier ({x �→ inv(inv(σ1) ∗ inv(σ2))}, x ̸≃
inv(inv(σ1) ∗ inv(σ2))), leading to the following derivation:

1. e ≄ x ∗ (inv(σ1) ∗ inv(σ2)) ∨ ans(x) [preprocessed specification]
2. inv(inv(σ1) ∗ inv(σ2)) ̸≃ x ∨ ans(x) [BR (G1), 1]
4As in the previous example, we include the symmetric axioms only to shorten the derivation for

presentation purposes.

66

7.5. Computable Unification with Abstraction

3. inv(x) ∗ (x ∗ y) ≃ e ∗ y [Sup (G3), (G1)]
4. inv(x) ∗ (x ∗ y) ≃ y [Sup 3, (G2)]
5. inv(inv(x)) ∗ e ≃ x [Sup 4, (G1)]
6. inv(inv(x)) ≃ x [Sup 5, (G2′)]
7. e ≃ x ∗ (y ∗ inv(x ∗ y)) [Sup (G1′), (G3)]
8. x ∗ inv(y ∗ x) ≃ inv(x) ∗ e [Sup 4, 7]
9. inv(x) ≃ y ∗ inv(x ∗ y) [Sup 8, (G2′)]

10. inv(x) ∗ inv(y) ≃ inv(y ∗ x) [Sup 4, 9]
11. inv(inv(σ2, σ1)) ̸≃ x ∨ ans(x) [Sup 10, 2]
12. ans(σ2 ∗ σ1) [BR 6, 11]
13. □ [answer literal removal 12]

We synthesize the program P [x, y] := y ∗ x. Note that there exists a different derivation
only using computable unifiers in the form (θ,□) (i.e., not using abstraction).

7.5 Computable Unification with Abstraction
When compared to the Sup calculus of Figure 2.2, our extended Sup calculus with
answer literals from Figure 7.2 uses computable unifiers instead of mgus. To find
computable unifiers, we introduce Algorithm 7.2 by extending the standard unification
algorithm [Rob65, HV09] and the algorithm for unification with abstraction of [RSV18].
Algorithm 7.2 combines computable unifiers with mgu computation, resulting in the
computable unifier θ := mgucomp(E1, E2, E3) to be further used in Figure 7.2.

Algorithm 7.2 modifies a standard unification algorithm to ensure computability of E3θ.
Changes compared with a standard unification algorithm are highlighted. Algorithm 7.2
does not add s �→ t to θ if s is a variable in E3 and t is uncomputable. Instead, if t is
f(t1, . . . , tn) where f is computable but not all t1, . . . , tn are computable, we extend θ by
s �→ f(x1, . . . , xn) and then add equations x1 = t1, . . . , xn = tn to the set of equations
E to be processed. Otherwise, f is uncomputable and we perform an abstraction: we
consider s and t to be unified under the condition that s ≃ t holds. Therefore we add a
constraint s ̸≃ t to the set of literals D which will be added to any clause invoking the
computable unifier. To discharge the literal s ̸≃ t, one must prove s ≃ t. While s can be
later substituted for other terms, as long as we use mgucomp, s will never be substituted
for an uncomputable term. Thus, we conclude the following result.

Theorem 7.11. Let E1, E2, E3 be expressions. Then (θ, D) := mgucomp(E1, E2, E3) is a
computable unifier.

Proof. We will denote the subexpression of the expression E at position p by E|p.

67

7. Synthesis of Recursion-Free Programs

Algorithm 7.2: Computable Unification with Abstraction
function mgucomp(E1, E2, E3)
if E3 is uncomputable then fail
let E be a set of equations and θ be a substitution; E := {E1 = E2}; θ := {}
let D be a set of disequalities; D := ∅
repeat
if E is empty then
return (θ, D) where D is the disjunction of literals in D

Select an equation s = t in E and remove it from E
if s coincides with t then do nothing
else if s is a variable and s does not occur in t then
if s does not occur in E3 or t is computable then

θ :=θ◦{s �→ t}; E =E{s �→ t}
else if t = f(t1, . . . , tn) and f is computable then

θ :=θ◦{s �→f(x1, . . . , xn)}; E :=E{s �→f(x1, . . . , xn)}∪{x1 = t1, . . . , xn = tn}
where x1, . . . , xn are fresh variables

else if t = f(t1, . . . , tn) and f is uncomputable then D := D ∪ {s ̸≃ t}
else if s is a variable and s occurs in t then fail
else if t is a variable then E := E ∪ {t = s}
else if s and t have different top-level symbols then fail
else if s=f(s1, . . . , sn) and t=f(t1, . . . , tn) then

E :=E ∪{s1 = t1, . . . , sn = tn}

We first prove that (θ, D) is an abstract unifier of E1, E2. If E1θ|p′ and E2θ|p′ differ,
there has to be a position p, where p′ is a prefix of p, such that the top-level symbol
of E1θ|p and E2θ|p differs. From the construction of θ follows that for any position p,
the subexpressions E1θ|p, E2θ|p differ in their top-level symbol only if E1|p = s and
E2|p = f(t1, . . . , tn) (or, symmetrically, E1|p = f(t1, . . . , tn) and E2|p = s) where s is
a variable and f is uncomputable. However, in this case s ̸≃ f(t1, . . . , tn) occurs in D.
Therefore, for any interpretation I, any variable assignment v, and any position p′, the
interpretations of E1θ|p′, E2θ|p′ in I under v will either be the same, or sθ ̸≃ f(t1, . . . , tn)θ
will be true in I under v. Hence, (D ∨ E1 ≃ E2)θ is valid, and therefore (θ, D) is an
abstract unifier of E1, E2.

Next, we prove that E3θ is computable. Since the algorithm successfully terminated,
E3 must have been computable (otherwise it would fail). Further, the algorithm only
extends the substitution θ by s �→ t where t is uncomputable if s does not occur in E3.
Thus, E3θ is computable, and hence (θ, D) is a computable unifier.

68

7.6. Integrating Synthesis with Splitting in AVATAR

7.6 Integrating Synthesis with Splitting in AVATAR
In the final section of this chapter we elaborate on the practical challenges of integrating
saturation-based program search with clause splitting, as introduced in Section 2.1.

When using Algorithm 7.1 for program synthesis with (standard) Avatar to saturate
a preprocessed specification (7.5), we may derive a clause ans(r[σ]) with assertions
C1[σ], . . . , Cm[σ]. By Theorem 7.2, we then obtain

A1, . . . , An, C1[σ], . . . , Cm[σ] ⊢ F [σ, r[σ]].

If C1[σ], . . . , Cm[σ] are computable and ground, then ⟨r[x], �m
i=1 Ci[x]⟩ is a program with

conditions. However, if not all of the assertions C1[σ], . . . , Cm[σ] are computable and
ground, then Algorithm 7.1 should continue reasoning with these assertions with the
aim of reducing them to computable and ground literals. This, however, is not directly
possible in the Avatar framework.

To preclude this limitation of using Avatar in saturation-based program synthesis, we
modified the Avatar framework to only allow splitting over ground computable clauses
that do not contain answer literals. Further, if we derive a clause C[σ] ∨ ans(r[σ]) with
Avatar assertions C1[σ], . . . , Cm[σ], where C[σ] is ground and computable, we replace it
by the clause C[σ] ∨ �m

i=1 ¬Ci[σ] ∨ ans(r[σ]) without any assertions. We then immediately
record a program with conditions ⟨r[x], ¬C[x] ∧ �m

i=1 Ci[x]⟩, and replace the clause by
C[σ] ∨ �m

i=1 ¬Ci[σ] (see lines 7-10 of Algorithm 7.1), which may be then further split by
Avatar.

In the following subsections we explain these modifications in detail.

7.6.1 Example without Splitting
We illustrate the pitfalls of using answer literals in Avatar by exploring Example 2.1
(example originally from [Reg18]).

Example 7.12. We recall the axioms and the specification:

axioms: sunday → workshop(arcade)
monday → workshop(vampire)
sunday ∨ monday

specification: ∃x.workshop(x)

As explained in Example 2.1, we do not want the symbol workshop to occur in the target
synthesized program, and therefore annotate it as uncomputable. With this annotation,
we first straightforwardly synthesize a program for the input without using Avatar.
Note that this derivation differs from the one in Example 2.1 by answer literal removal
used in steps 7 and 8 (see line 10 of Algorithm 7.1):

1. ¬workshop(x) ∨ ans(x) [preprocessed specification]

69

7. Synthesis of Recursion-Free Programs

2. sunday ∨ monday [input axiom]
3. ¬sunday ∨ workshop(arcade) [input axiom]
4. ¬monday ∨ workshop(vampire) [input axiom]
5. ¬sunday ∨ ans(arcade) [BR 1, 3]
6. ¬monday ∨ ans(vampire) [BR 1, 4]
7. ¬sunday [answer literal removal 5]
8. ¬monday [answer literal removal 6]
9. monday [BR 2, 7]

10. □ [BR 8, 9]

The programs with conditions recorded in steps 7 and 8 are:

if sunday then arcade
if monday then vampire

The final program we construct by composing them is the same as in Example 2.1:

if sunday then arcade else vampire

Note that we do not need to consider the condition if monday, because the proof was
concluded by deriving □, and hence ¬sunday combined with the input clauses together
implies monday.

We use this simple problem, which admits a short proof without splitting, to illustrate
the issues with using Avatar with answer literals. However, we note that the problems
that benefit most from the integration of Avatar and synthesis are more complex, such
as the maximum of n variables (for a sufficiently large given constant n):

∀x1, . . . , xn ∈ Z. ∃y ∈ Z.


i≤n�
i=1

y ≥Z xi ∧
 i≤n�

i=1
y ≃ xi

	
(7.13)

7.6.2 Path to Integration
In the process of integrating synthesis with Avatar we dealt with two main questions.

Q1. What would happen if we split clauses containing answer literals? We
note that answer literals appear in all clauses only with positive polarity. Hence, if we
split a clause containing answer literals such that an answer literal becomes a component
and pass it to Avatar, nothing prevents Avatar from finding a model in which all
answer literals are true. This model will satisfy all splittable clauses that contain answer
literals. Thus, we might only find a proof by refutation if the input axioms without the

70

7.6. Integrating Synthesis with Splitting in AVATAR

negated specification were unsatisfiable, since the axioms correspond to the only input
clauses without answer literals. Therefore, to avoid answer literals being true in the
Avatar model, we disallow splitting of clauses that contain answer literals.

To illustrate our second question, let us take another look at the problem from Exam-
ple 7.12 using the answer for Q1 from the previous paragraph.

Example 7.13. We search for a proof of the problem from Example 7.12 using Avatar
but without splitting clauses containing answer literals:

1. ¬workshop(x) ∨ ans(x) [preprocessed specification]
2. sunday ∨ monday [input axiom]
3. ¬sunday ∨ workshop(arcade) [input axiom]
4. ¬monday ∨ workshop(vampire) [input axiom]

Avatar splits clauses 2-4, denoting the literals sunday, monday, workshop(arcade),
workshop(vampire) by a, b, c, d, respectively:

2: a ∨ b

3: ¬a ∨ c

4: ¬b ∨ d

Clauses 2-4 now do not participate in the first-order inferences anymore. Avatar
computes a model {a, c, d} and introduces the component clauses:

5. sunday ← a [component a]
6. workshop(arcade) ← c [component c]
7. workshop(vampire) ← d [component d]

First-order reasoning continues:

8. ans(arcade) ← c [BR 1, 6]
9. ans(vampire) ← d [BR 1, 7]

At this point, there are no more inferences that can be applied. Further, since the clauses
containing answer literals (i.e., 8 and 9 also have Avatar assertions, they are not in the
form C ∨ ans(r), where C is ground and computable. Therefore, we cannot apply the
answer literal removal steps we used in the Avatar-less proof, and the proof attempt
gets stuck.

This example leads us to the second question.

71

7. Synthesis of Recursion-Free Programs

Q2. What can we do with a clause derived using assertions and which
also contains an answer literal? The Avatar assertions correspond to additional
conditions that entail the clause. Hence, a natural way of converting a clause with
assertions to a clause without assertions is to add negations of the assertions as literals.
I.e., we can convert a clause C ← A1, . . . , An to a clause C ∨ ¬A1 ∨ · · · ∨ ¬An.

Example 7.14. Let us try converting the clauses with assertions to assertion-free clauses
to continue with our proof from Example 7.13:

10. ans(arcade) ∨ ¬workshop(arcade) [reintroduce assertions of 8]
11. ans(vampire) ∨ ¬workshop(vampire) [reintroduce assertions of 9]

Clauses 10 and 11 are also not in the form C ∨ ans(r) where C is ground and computable,
because the symbol workshop is uncomputable. Therefore, we cannot apply answer
literal removal. To make matters even worse, now the first-order reasoning continues by
subsuming clauses 10 and 11 by clause 1. Then, there are once again no more first-order
inferences that could be applied – we reached saturation with respect to the Avatar
model {a, c, d}, corresponding to {sunday, workshop(arcade), workshop(vampire)}.

Our solution to preclude the situation where we add back assertions only to find that the
resulting clause cannot be reasoned with further is to disallow splitting clauses that are
not ground and computable. Then, all Avatar assertions are ground and computable, and
thus if we derive a clause C ∨ ans(r) ← A1, . . . , An where C is ground and computable,
we can apply answer literal removal. Formally, we do this by introducing a new inference
rule

C ∨ ans(r) ← A1, . . . , An

C ∨ ¬A1 ∨ · · · ∨ ¬An ∨ ans(r) (Reintroduce Assertions),

which applies only if C is ground and computable. An application of this rule is always
followed by an answer literal removal step, i.e., by recording of the program branch
if ¬C ∧A1 ∧· · ·∧An then r and replacement of the clause C ∨¬A1 ∨· · ·∨¬An ∨ans(r) by
C ∨¬A1 ∨· · ·∨¬An. We note that since the answer literal removal is in fact a simplifying
inference (with the side effect of recording a program branch), assertion reintroduction
cannot cause looping of the proof search.

Example 7.15. Let us take a look at the proof of the problem from Example 7.12 using
Avatar with the constraints and the new rule as described above:

1. ¬workshop(x) ∨ ans(x) [preprocessed specification]
2. sunday ∨ monday [input axiom]
3. ¬sunday ∨ workshop(arcade) [input axiom]
4. ¬monday ∨ workshop(vampire) [input axiom]

72

7.6. Integrating Synthesis with Splitting in AVATAR

Avatar splits the clause 2 (not clauses 3 and 4, since workshop is not computable):

2: a ∨ b

Clause 2 now does not participate in the first-order inferences anymore. Avatar com-
putes a model {a} and introduces the component clause, and then first-order reasoning
continues:

5. sunday ← a [component a]
6. workshop(arcade) ← a [BR 5, 3]
7. ans(arcade) ← a [BR 6, 1]
8. ¬sunday ∨ ans(arcade) [reintroduce assertions 7]
9. ¬sunday [answer literal removal 8]

10. □ ← a [BR 5, 9]
11. ¬a [Avatar contradiction 10]

Avatar recomputes a model {b}, introduces the component clause for it, and the
first-order reasoning continues:

12. monday ← b [component b]
13. workshop(vampire) ← b [BR 12, 4]
14. ans(vampire) ← b [BR 13, 1]
15. ¬monday ∨ ans(vampire) [reintroduce assertions 14]
16. ¬monday [answer literal removal 15]
17. □ ← b [BR 12, 16]
18. ¬b [Avatar contradiction 17]

Avatar tries to recompute the model, but detects that its input clauses are unsatisfiable,
which concludes the proof:

19. □ [Avatar refutation 2, 11, 18]

Finally, we construct the program from the programs with conditions collected in steps 9
and 16:

if sunday then arcade else vampire

73

CHAPTER 8
Synthesis of Programs with

Recursion

The contributions of this chapter are based on:
Petra Hozzová, Daneshvar Amrollahi, Márton Hajdu, Laura Kovács, Andrei Voronkov,
and Eva Maria Wagner. Synthesis of Recursive Programs in Saturation. EasyChair
Preprint no. 12145, EasyChair, 2024 [HAH+24], to appear in Proc. of IJCAR 2024

The synthesis method from the previous chapter worked with the standard superposition
calculus. In this chapter we extend it to synthesize recursive programs from proofs using
induction by exploiting the correspondence between induction and recursion.

We start this chapter with a motivating example in Section 8.1. We continue in Section 8.2
by giving a high-level overview of the key ideas of our approach. In Section 8.3 we
introduce induction axioms, dubbed magic axioms, which capture the constructive nature
of induction. Next, in Section 8.4 we convert the magic axioms into formulas used by
a saturation-based framework to derive programs using recursion over algebraic data
types. We also state necessary requirements for the calculus used in saturation and prove
correctness of synthesized programs. Then, in Section 8.5 we present an extension of
the superposition calculus that fulfills our requirements and advocate for superposition
reasoning for recursive function synthesis. Finally, in Section 8.6 we show that our
approach, illustrated initially for natural numbers, naturally extends to programs over
arbitrary term algebras.

Later in Chapter 9 we describe the implementation of our work in the Vampire
prover [KV13] and survey challenging examples it can synthesize.

75

8. Synthesis of Programs with Recursion

axioms: half(0) ≃ 0 (H1)
half(s(0)) ≃ 0 (H2)
∀x. half(s(s(x))) ≃ s(half(x)) (H3)

specification: ∀x.∃y. half(y) ≃ x (8.1)

Figure 8.1: Axioms of half and the ∀∃-specification for the function computing double.

We note that in this chapter we work with data types, and in particular with natural
numbers. Unless indicated differently, quantifiers range over N.

8.1 Motivating Example
Consider the specification (8.1) of Figure 8.1, which describes the inverse of the half
function over natural numbers. Given the axiomatization of half (of Figure 2.1, recalled
in Figure 8.1), the desired program to synthesize for (8.1) is the recursive function double:

double(0) ≃ 0
∀x. double(s(x)) ≃ s(s(double(x)))

(8.2)

The framework from Chapter 7 fails to synthesize a solution of (8.1), as double is a
recursive program. To the best of our knowledge, there exists no automated approach
supporting recursive function synthesis from functional input-output specifications in full
first-order logic.

This chapter provides a solution in this respect by exploiting the constructive nature
of induction. Intuitively, each case of an induction axiom tells us how to construct the
desired program for the next recursive step using the program for the previous recursive
step. We capture this construction recipe contained in the applications of induction in
saturation-based proof search, by again utilizing answer literals ans(r) [Gre69]. When
we use an induction axiom in the proof, we introduce a special term into the answer
literal, serving for tracking the program corresponding to the induction axiom. As we
prove the cases of the induction axiom, we capture their corresponding programs in
the answer literal. Finally, when we derive a clause C ∨ ans(r), where C only contains
symbols allowed in a program, we convert the special tracker terms from r into recursive
functions, and then, similarly to Chapter 7, obtain a program for the initial specification
conditioned on ¬C.

8.2 Saturation with Induction in Constructive Logic
In this section we summarize the key challenges our work resolves towards recursive
synthesis in saturation. The idea of extracting programs from proofs originates from

76

8.3. Induction with Magic Formulas

results in constructive (intuitionistic) logic, starting with Kleene’s realizability [Kle45]. In
constructive logic, provability of a formula ∀x.∃y.F [x, y] implies that there is an algorithm
which, given values for x, outputs a value for y satisfying F [x, y] (for x, y of any sorts).

We note that the structural induction axiom (2.2) over natural numbers has computational
content, as follows. The program r for ∀x.G[x] can be built from a program r0 for G[0]
and a program rs for ∀y.(G[y] → G[s(y)]) as:

r(0) ≃ r0

r(s(y)) ≃ rs(r(y))

For this to be useful, we need to first prove G[0], then prove ∀x.(G[y] → G[s(y)]), and
then use the induction axiom to derive ∀x.G[x]. Such an approach towards constructing
programs does not however work in saturation-based theorem proving, as saturation does
not reduce goals to subgoals [Bon99]. Rather, as explained in Section 2.3, we add the
induction axiom as a theory lemma to the proof search and continue saturation. Thus,
we do not have proofs of either G[0] or ∀y.(G[y] → G[s(y)]). Constructing programs
during saturation becomes even more complex when using answer literals, because clauses
generated during saturation may contain these literals. For example, if we try to extract
a proof of G[0], we may find a proof with an answer literal in it.

To capture the constructive nature of induction and address the above challenges of
program synthesis in saturation, we use the following trick. We modify the induction
axiom so that it indirectly stores information about the programs for G[0] and ∀y.(G[y] →
G[s(y)]). To do this, instead of adding the induction axiom (2.2), in Section 8.3 we add
what we call a magic axiom for (2.2), where G has an additional argument for storing
the program. In Section 8.4 we further convert our magic axioms into formulas to be
used to derive recursive programs in saturation.

8.3 Induction with Magic Formulas
We first present our approach to proving formulas with a free variable by induction. We
further extend this approach to synthesis in Section 8.4. While our approach works the
same way with arbitrary term algebras, for the sake of clarity we first introduce our work
for natural numbers and then for general term algebras in Section 8.6.

Let G[t, x] be a formula with a single free variable x : α containing a term t : N. We use
the following magic axiom:

∃v0 ∈α. G[0, v0]∧∀y.
�∃w∈α. G[y, w] → ∃vs ∈α. G[s(y), vs]


→ ∀z.∃x∈α. G[z, x] (8.3)

Note that all magic axioms are valid, as they are instances of the structural induction
schema (2.2) with the quantified formula ∃x∈α.G[t, x] in place of G[t]. The magicalness
of (8.3) stems from its simple, yet powerful expressiveness: when used in proof search,
the variables v0, vs in the antecedent capture the programs for the base and step cases,
allowing us to construct a program for x in the consequent.

77

8. Synthesis of Programs with Recursion

Using axiom (8.3), we introduce the following variant of the Ind rule:

L[t, x] ∨ C
∃v0 ∈α.L[0, v0] ∧ ∀y.

�∃w∈α.L[y, w] → ∃vs ∈α.L[s(y), vs]



→ ∀z.∃x∈α.L[z, x]
(MagInd)

where the only free variable of L[t, x] is x and C does not contain x.

Example 8.1. Consider the specification (8.1) from Figure 8.1. To prove it using
superposition, and not yet synthesize the function satisfying (8.1), we use the following
magic axiom:


∃v0.half(v0)≃0 ∧ ∀y.

�∃w.half(w)≃y → ∃vs.half(vs)≃s(y)



→ ∀z.∃x.half(x)≃z (8.4)

To use (8.4) in saturation, we clausify it and skolemize the variables y, w, x as σy, σw, σx(z),
respectively. The following is a refutational proof of (8.1):

1. half(y) ̸≃ σ [preprocessed specification]

2. half(v0) ̸≃ 0 ∨ half(σw) ≃ σy ∨ half(σx(z)) ≃ z [MagInd with (8.4)]

3. half(v0) ̸≃ 0 ∨ half(vs) ̸≃ s(σy) ∨ half(σx(z)) ≃ z [MagInd with (8.4)]

4. half(v0) ̸≃ 0 ∨ half(σw) ≃ σy [BR 1, 2]

5. half(v0) ̸≃ 0 ∨ half(vs) ̸≃ s(σy) [BR 1, 3]

6. half(v0) ̸≃ 0 ∨ half(vs) ̸≃ s(half(σw)) [Sup 4, 5]

7. half(v0) ̸≃ 0 ∨ half(vs) ̸≃ half(s(s(σw))) [Sup (H3), 6]

8. half(v0) ̸≃ 0 [ER 7]

9. □ [BR 8,(H2)]

Hence, the magic axiom (8.3) is sufficient to prove (8.1). However, (8.3) does not suffice
to synthesize the program for (8.1) from the above proof. Similarly as in Chapter 7, for
synthesis we would use

half(y) ̸≃ σ ∨ ans(y) (8.5)

instead of clause 1 and obtain a derivation similar to the one above, but with the answer
literal ans(σx(σ)). As σx is a fresh skolem function, it is uncomputable and not allowed in
answer literals. Therefore, simply following the approach of Chapter 7 fails to synthesize
a recursive program from the proof of (8.1). We address the challenge of program
construction for the skolem function σx in the following section.

78

8.4. Programs with Primitive Recursion

8.4 Programs with Primitive Recursion
We now construct recursive programs for proofs using induction over natural numbers (8.3).
In Section 8.6 we generalize the approach to any term algebra.

As mentioned in Section 8.2, the antecedent of the induction axiom gives us a recipe
for constructing the program for the consequent. To capture this dependence of the
consequent program x on the antecedent programs v0, vs, we convert the magic axiom (8.3)
to its equivalent prenex normal form, where ∀v0, vs precedes ∃x:

∃y. ∃w∈α. ∀v0, vs ∈α. ∀z. ∃x∈α.
�

G[0, v0] ∧ (G[y, w] → G[s(y), vs])

 → G[z, x]


(8.6)

We next define a recursive operator to be used for constructing programs.

Definition 8.2 (Primitive Recursion Operator). Let f1 : α, and f2 : N × α → α. The
primitive recursion operator R for natural numbers and α is:

R(f1, f2)(0) ≃ f1

R(f1, f2)(s(y)) ≃ f2(y, R(f1, f2)(y))

Lemma 8.3 (Recursive Witness). The expression R(v0, λy, w.vs)(z) is a witness for the
variable x in (8.6).

Proof. Let us consider the following formula obtained by replacing x in (8.6) by
R(v0, λy, w.vs)(z):

∃y. ∃w∈α. ∀v0, vs ∈α. ∀z.
�

G[0, v0] ∧ (G[y, w] → G[s(y), vs])

 → G[z, R(v0, λy, w.vs)(z)]


(8.7)

We will prove that every interpretation I is a model of (8.7).

By contradiction, let us assume that (8.7) is false in I. That would mean that for all
values a, b and an interpretation I{y �→ a, w �→ b}, there exists an extension Ja,b of
I{y �→ a, w �→ b} by {v0 �→ o0, vs �→ os, z �→ oz} for some values o0, os, oz which depend
on a, b, such that:�

G[0, v0] ∧ (G[y, w] → G[s(y), vs])

 → G[z, R(v0, λy, w.vs)(z)]

Ja,b

= ⊥ (8.8)

This means that for any values a, b:1

GJa,b [0, v
Ja,b

0] = ⊤ (8.9)

GJa,b [a, b] = ⊥ or GJa,b [s(a), v
Ja,b
s] = ⊤ (8.10)

GJa,b [zJa,b , RJa,b(vJa,b

0 , (λy, w.vs)Ja,b)(zJa,b)] = ⊥ (8.11)

1In the following, we write v
Ja,b

0 , v
Ja,b
s instead of o0, os to emphasize the dependence of the interpreta-

tion of v0, vs on the values a, b.

79

8. Synthesis of Programs with Recursion

Since the operator R has a fixed interpretation and since the variables y, w, v0, vs, z do
not occur in G[x1, x2] (where x1, x2 are fresh), from (8.9)-(8.11) we obtain for any values
a, b:

GI [0, v
Ja,b

0] = ⊤ (8.12)

GI [a, b] = ⊥ or GI [s(a), v
Ja,b
s] = ⊤ (8.13)

GI [zJa,b , RI(vJa,b

0 , (λy, w.vs)Ja,b)(zJa,b)] = ⊥ (8.14)

By definition (λy, w.vs)Ja,b = fa,b where for any o1, o2: fa,b(o1, o2) = v
Ja,b{y
→o1,w
→o2}
s .

Since Ja,b{y �→ o1, w �→ o2} = Jo1,o2 , the function fa,b actually does not depend on a, b
and thus we define f = fa,b and obtain:

f(o1, o2) = v
Jo1,o2s (8.15)

Using (8.15) we obtain from (8.13) and (8.14) for any a, b:

GI [a, b] = ⊥ or GI [s(a), f(a, b)] = ⊤ (8.16)

GI [zJa,b , RI(vJa,b

0 , f)(zJa,b)] = ⊥ (8.17)

We now consider (8.17) for arbitrarily fixed values a := oy, b := ow. As oz = zJoy,ow , o0 =
v

Joy,ow

0 , we obtain:
GI [oz, RI(o0, f)(oz)] = ⊥ (8.18)

Assume there is a smallest value of oz such that (8.18) holds. Either this value is 0, or a
successor of some o, i.e., oz = s(o):

1. If oz = 0, then RI(o0, f)(oz) = RI(o0, f)(0) is by definition of R equal to o0.
Therefore,

⊥ (8.18)= GI [0, RI(o0, f)(0)] = GI [0, o0] (8.12) with a:=oy ,b:=ow= ⊤.

This is a contradiction and thus it has to be the second case:

2. oz = s(o), therefore from (8.18):

GI [s(o), RI(o0, f)(s(o))] = ⊥

By definition of R we have RI(o0, f)(s(o)) = f(o, RI(o0, f)(o)), and thus:

GI [s(o), f(o, RI(o0, f)(o))] = ⊥ (8.19)

From (8.16) with a := o, b := RI(o0, f)(o) we obtain:

GI [o, RI(o0, f)(o)] = ⊥ or GI [s(o), f(o, RI(o0, f)(o))] = ⊤

80

8.4. Programs with Primitive Recursion

From that and (8.19) we get:

GI [o, RI(o0, f)(o)] = ⊥

That is, o satisfies (8.18), which contradicts the assumption that s(o) is the smallest
value satisfying (8.18).

Therefore, there is no value oz satisfying (8.18). Thus, since the argument above works
for arbitrary oy = a, ow = b, the formula from (8.8) cannot be false in any Ja,b. This
means that (8.7) cannot be false in any I, meaning that it is valid and R(v0, λy, w.vs)(z)
is indeed a witness for the variable x in (8.6).

Lemma 8.3 ensures that we can construct a program for the consequent of the magic
axiom given programs for the base case and the step case. We next integrate this
construction into our synthesis framework using answer literals. For that we take a close
look at skolemization of induction axiom (8.6), and define skolem symbols for the variable
x, capturing the recursive program.

Definition 8.4 (rec-Symbols). Consider formulas G[t, x] with a single free variable x : α
containing a term t : N. For each such formula, we introduce a distinct computable
function symbol recG[t,x] : α × α × N → α. We will refer to such symbols recG[t,x] as
rec-symbols. When the formula G[t, x] is clear from the context or unimportant for the
context, we will simply write rec instead of recG[t,x].

A term with a rec-symbol as the top-level functor is called a rec-term.

Definition 8.5 (Magic Formula). The magic formula for G[t, x] is:

∀v0, vs ∈α. ∀z.
�

G[0, v0] ∧ (G[σy, σw] → G[s(σy), vs])

 → G[z, recG[t,x](v0, vs, z)]


(8.20)

It is easy to see that magic formula (8.20) is obtained by skolemizing the prenex normal
form of magic axiom (8.6), where we replace the variables y, w by fresh constants σy, σw,
and the variable x by a fresh recG[t,x]-symbol. The constants σy, σw introduced in (8.20)
are said to be associated with the recG[t,x]-term. An occurrence of any skolem constant
σy, σw is considered computable if it is an occurrence in the second argument of a
recG[t,x]-term which it is associated with.

We introduce additional requirements for reasoning with rec-terms to ensure that they
always represent the recursive function to be synthesized.

Definition 8.6 (rec-Compliance). An inference system I is rec-compliant if:

1. I only introduces rec-terms in the instances of the magic formula (8.20),

81

8. Synthesis of Programs with Recursion

2. I does not introduce uncomputable symbols into arguments of rec-terms in clauses
it derives.

Using a rec-compliant inference system I, we derive clauses containing rec-terms. These
terms correspond to functions constructed using the operator R.

Definition 8.7 (Recursive Function Term). Let σy, σw be associated with rec(s1, s2, t).
Then we call the term R(s1, λσy, σw.s2)(t) the recursive function term corresponding to
rec(s1, s2, t).

For a term r, we denote by rR the expression obtained from r by iteratively replacing all
rec-terms by their corresponding recursive function terms, starting from the innermost
ones. Similarly, formula F R denotes the formula F in which we replace all rec-terms by
their corresponding recursive function terms.

Lemma 8.8 (Recursive Witness for Magic Formulas). Consider the formula obtained
from (8.20) by replacing recG[t,x](v0, vs, z) by its corresponding recursive function term
R(v0, λσy, σw.vs)(z):

∀v0, vs ∈α.∀z.
�

G[0, v0] ∧ (G[σy, σw] → G[s(σy), vs])

 → G[z, R(v0, λσy, σw.vs)(z)]


(8.21)

For every interpretation I, there exists a mapping of skolem constants to values {σy �→
oy, σw �→ ow} such that I extended by this mapping is a model of (8.21). As a consequence,
formula (8.21) is satisfiable.

Proof. The lemma immediately follows from the fact that formula (8.21) is a skolemization
of

∃y.∃w∈α.∀v0, vs ∈α.∀z.
�

G[0, v0] ∧ (G[y, w] → G[s(y), vs])

 → G[z, R(v0, λy, w.vs)(z)]


,

which is by Lemma 8.3 valid.

Lemma 8.8 implies that we can use formula (8.21) instead of (8.20) in derivation, while
preserving the soundness of the derivations. The following theorem, based on Theorem 7.2,
is the key theorem showing the soundness of our approach to recursive program derivation.

Theorem 8.9 (Semantics of Clauses with Answer Literals and rec-terms). Let C1, . . . , Cm

be clauses and F a formula containing no answer literals and no rec-symbols. Let C be a
clause containing no answer literals. Let M1, . . . , Ml be magic formulas. Assume that
using a sound rec-compliant inference system I, we derive C ∨ ans(r[σ]), where r[σ] is
computable, from the set of clauses

{ C1, . . . , Cm, M1, . . . , Ml, cnf(¬F [σ, y] ∨ ans(y)) }.

82

8.4. Programs with Primitive Recursion

Then
MR

1 , . . . , MR
l , C1, . . . , Cm ⊢ CR, F [σ, rR[σ]].

That is, under the assumptions MR
1 , . . . , MR

l , C1, . . . , Cm, ¬CR, the computable expression
rR[x] is a witness for y in ∀x.∃y.F [x, y].2

Proof. The proof mirrors the proof of Theorem 7.2.

We consider the calculus that was used for deriving C ∨ ans(r[σ]), but with lifted ordering
and selection conditions, i.e., we allow application of the rules regardless of the term
ordering and of which literals are selected. Since the soundness of the calculus does
not depend on these side conditions, the calculus without the conditions is sound as
well. Now, since ans is uninterpreted, we can replace ans(y) by y ̸≃ rR[σ]. Further,
since also all rec-symbols are uninterpreted, we can also replace each rec(v, z) in each
induction formula Mi by its corresponding recursive function term. Since the calculus
is rec-compliant, all rec-terms were introduced by the induction formulas M1, . . . , Ml,
and therefore after the replacements we obtain a derivation of CR ∨ rR[σ] ̸≃ rR[σ] from
∀y.cnf(¬F [σ, y] ∨ y ̸≃ rR[σ]), MR

1 , . . . , MR
l , C1, . . . , Cm using the calculus without the

conditions.3

We want to show that
l�

i=1
MR

i ∧
m�

i=1
Ci → CR ∨ F [σ, rR[σ]] (8.22)

is valid. Hence, we need to show that in each interpretation, in which the antecedent is
true, also the consequent is true. Let us consider such an interpretation I. We distinguish
two cases:

1. First, assume that ∀y.cnf(¬F [σ, y] ∨ y ̸≃ rR[σ]) is true in I. Then since all
assumptions from which we derived CR ∨ rR[σ] ̸≃ rR[σ] are true in I and since the
inference system is sound, also CR ∨ rR[σ] ̸≃ rR[σ] is true. That clause is equivalent
to CR, hence CR is true, which makes the consequent of (8.22) true.

2. Second, assume that ∀y.cnf(¬F [σ, y] ∨ y ̸≃ rR[σ]) is false in I. Then its negation,
¬∀y.cnf(¬F [σ, y] ∨ y ̸≃ rR[σ]), equivalent to ∃y.(F [σ, y] ∧ y ≃ rR[σ]), equivalent to
F [σ, rR[σ]] must be true in I. Hence, the consequent of (8.22) is true also in this
case.

Therefore (8.22) is valid. Since σ are fresh uninterpreted constants, we obtain that�l
i=1 MR

i ∧ �m
i=1 Ci → CR ∨ F [x, rR[x]] is valid too, and hence rR[x] is a witness for

∀x.∃y.F [x, y] under the assumptions MR
1 , . . . , MR

l , C1, . . . , Cm, ¬CR.
2for x, y of any sorts
3The derivation might not have been possible in the calculus with the ordering and selection conditions

due to replacing the positive literal ans(y) with the negative literal y ̸≃ rR[σ] containing different symbols,
and replacing rec-terms by terms with R and λ.

83

8. Synthesis of Programs with Recursion

Finally, note that since r[σ] is computable, so is r[x]. The only skolem constants r[x]
contains are skolem constants within the respective arguments of rec-terms they are
associated with. Since rR[x] lambda-binds exactly those skolem constants from the
rec-terms, we have that rR[x] is computable too.

Based on Theorem 8.9, if the CNF of A1, . . . , An is among C1, . . . , Cm, then rR[x] is a
witness for y in (7.4) under the assumptions MR

1 , . . . , MR
l , C1, . . . , Cm, ¬CR. We note

that we consider (7.4) for x, y of any sorts. The following theorem, based on Corollary 7.3,
ensures that we can construct recursive programs with conditions.

Theorem 8.10 (Recursive Programs with Conditions). Let r[σ] be a computable term,
and C[σ], C1[σ], . . . , Cm[σ] be ground computable clauses containing no answer literals
and no rec-symbols. Assume that using a sound rec-compliant inference system I, we
derive the clause C[σ] ∨ ans(r[σ]) from the CNF of

{ A1, . . . , An, C1[σ], . . . , Cm[σ], M1, . . . , Ml, ¬F [σ, y] ∨ ans(y) }

where M1, . . . , Ml are magic formulas. Then,

⟨rR[x],
m�

j=1
Cj [x] ∧ ¬C[x]⟩

is a program with conditions for (7.4).

Proof. From Theorem 8.9 follows that

n�
i=1

Ai ∧
l�

i=1
MR

i ∧
m�

i=1
Ci[σ] → CR[σ] ∨ F [σ, rR[σ]] (8.23)

is valid. Since C[σ] does not contain any rec-terms, CR[σ] = C[σ]. We can therefore
equivalently rewrite (8.23) as

l�
i=1

MR
i → (

n�
i=1

Ai ∧
m�

i=1
Ci[σ] → C[σ] ∨ F [σ, rR[σ]]). (8.24)

Let us consider an arbitrary interpretation I of
n�

i=1
Ai ∧

m�
i=1

Ci[σ] → C[σ] ∨ F [σ, rR[σ]]. (8.25)

From Lemma 8.8 follows that we can extend I to I ′ which is a model of �l
i=1 MR

i by
choosing suitable values for skolem constants in each Mi (each of these skolems only
occurs in one Mi, and they do not occur in (8.25)). Since (8.24) is valid and �l

i=1 MR
i is

true in I ′, also (8.25) has to be true in I ′. However, since (8.25) does not contain any of

84

8.5. Recursive Synthesis in Saturation

those skolem constants by which I was extended to I ′, we get that (8.25) is also true in
I. Therefore (8.25) is valid.

Next, since σ are fresh uninterpreted constants, we obtain that the formula �n
i=1 Ai ∧�m

i=1 Ci[x] → C[x] ∨ F [x, rR[x]] is valid as well, and this formula is equivalent to�m
j=1 Cj [x] ∧ ¬C[x] → (�n

i=1 Ai → F [x, rR[x]]). Therefore ⟨rR[x], �m
j=1 Cj [x] ∧ ¬C[x]⟩

is a program with conditions for A1 ∧ . . . ∧ An → ∀x.∃y.F [x, y].

From Theorem 8.10 we obtain the following key result on program synthesis, analogous
to Corollary 7.4.

Theorem 8.11 (Recursive Program Synthesis). Let P1[x], . . . , Pk[x], where Pi[x] =
⟨rR

i [x], �i−1
j=1 Cj [x] ∧ ¬Ci[x]⟩, be programs with conditions for (7.4), such that �n

i=1 Ai ∧�k
i=1 Ci[x] is unsatisfiable. Then the program P [x] defined as

P [x] := if ¬C1[x] then rR
1 [x]

else if ¬C2[x] then rR
2 [x]

. . .

else if ¬Ck−1[x] then rR
k−1[x]

else rR
k [x],

is a program for (7.4).

Proof. The proof is the same as for Corollary 7.4.

8.5 Recursive Synthesis in Saturation
This section integrates the proving and synthesis steps of Sections 8.3–8.4 into saturation.
The crux of our approach is that instead of adding standard induction formulas to the
search space, we add magic formulas.

Theorems 8.10–8.11 imply that, to derive recursive programs, we can use any rec-compliant
calculus, as long as the calculus supports derivation of clauses C ∨ ans(r), where r is
computable and C is ground, computable, and contains neither rec-terms nor answer
literals. In our work we rely on the extended Sup calculus of Figure 7.2, which we:

1. further extend by adding magic formulas alongside standard induction formulas
when using MagInd,

2. make rec-compliant by disallowing inferences containing uncomputable rec-terms,

3. extend by adding more complex rules for introducing conditions into rec-terms. We
display the new rules in Figure 8.2. These rules are useful when the BR and Sup
rules from the left-hand column of Figure 7.2 do not apply, because the condition

85

8. Synthesis of Programs with Recursion

Superposition (Sup):

s ≃ t ∨ C ∨ ans(r[rec(r0, rs, r′′)]) L[s′] ∨ C ′ ∨ ans(r′[rec(r0, r′
s, r′′)])

(D ∨ L[t] ∨ C ∨ C ′ ∨ ans(r[rec(r0, if s≃ t then r′
s else rs, r′′)]))θ

s ≃ t ∨ C ∨ ans(r[rec(r0, rs, r′′)]) u[s′] ̸≃ u′ ∨ C ′ ∨ ans(r′[rec(r0, r′
s, r′′)])

(D∨u[t] ̸≃u′∨C∨C ′∨ans(r[rec(r0, if s≃ t then r′
s else rs, r′′)]))θ

s ≃ t ∨ C ∨ ans(r[rec(r0, rs, r′′)]) u[s′] ≃ u′ ∨ C ′ ∨ ans(r′[rec(r0, r′
s, r′′)])

(D∨u[t]≃u′∨C∨C ′∨ans(r[rec(r0, if s≃ t then r′
s else rs, r′′)]))θ

where (θ, D) is a computable unifier of s, s′ and r, r′, both w.r.t. r[rec(r0,
if s≃ t then r′

s else rs, r′′)]; (first rule only) L[s′] is not an equality literal; and
(second and third rule only) u′θ ̸⪰ u[s′]θ.

Binary resolution (BR):

A ∨ C ∨ ans(r[rec(r0, rs, r′′)]) ¬A′ ∨ C ′ ∨ ans(r′[rec(r0, r′
s, r′′)])

(D∨C∨C ′∨ans(r[rec(r0, if A then r′
s else rs, r′′)]))θ

where (θ, D) is a computable unifier of A, A′ and r, r′, both w.r.t.
r[rec(r0, if A then r′

s else rs, r′′)].

Figure 8.2: Rules of the extended superposition calculus Sup for reasoning with answer
literals with rec-terms. The underlined literals are selected.

of the if−then−else is not computable outside of the second argument of the
rec-term – i.e., when the condition contains skolem constants associated with the
rec-term. Applying these new rules results in conditions that are local to the
recursive branch of the synthesized recursive function, and use the argument of the
recursive call, or the result of the recursive call.

We illustrate these proving and synthesis steps by our running example.

Example 8.12. Using the extended Sup calculus, we synthesize the program for the
specification of Figure 8.1. With the magic formula corresponding to (8.4),

∀v0, vs, z.
�

half(v0)≃0 ∧ (half(σw)≃σy → half(vs)≃s(σy))

 → half(rec(v0, vs, z))≃z


, (8.26)

we obtain the following derivation4:

1. half(y) ̸≃ σ ∨ ans(y) [preprocessed specification]
4we detail the full derivation produced by Vampire in Section 9.2

86

8.5. Recursive Synthesis in Saturation

2. half(v0) ̸≃ 0 ∨ half(σw) ≃ σy ∨ half(σx(z)) ≃ z [MagInd with (8.26)]

3. half(v0) ̸≃ 0 ∨ half(vs) ̸≃ s(σy) ∨ half(σx(z)) ≃ z [MagInd with (8.26)]

4. half(v0) ̸≃ 0 ∨ half(σw) ≃ σy ∨ ans(rec(v0, vs, σ)) [BR 1, 2]

5. half(v0) ̸≃ 0 ∨ half(vs) ̸≃ s(σy) ∨ ans(rec(v0, vs, σ)) [BR 1, 3]

6. half(v0) ̸≃ 0 ∨ half(vs) ̸≃ s(half(σw)) ∨ ans(rec(v0, vs, σ)) [Sup 4, 5]

7. half(v0) ̸≃ 0 ∨ half(vs) ̸≃ half(s(s(σw))) ∨ ans(rec(v0, vs, σ)) [Sup (H3), 6]

8. half(v0) ̸≃ 0 ∨ ans(rec(v0, s(s(σw)), σ)) [ER 7]

9. ans(rec(s(0), s(s(σw)), σ)) [BR 8, (H2)]

10. □ [answer literal removal 9]

The program recorded in step 10 of the proof is

rec(s(0), s(s(σw)), x)R = R(s(0), λσw.s(s(σw)))(x) = f(x),

where f is defined as:

f(0) ≃ s(0)
f(s(n)) ≃ s(s(f(n)))

Note that while the synthesized program satisfies the specification (8.1), it does not
match the expected definition of the double function from (8.2). Since the half function is
rounding down, and the specification does not require the synthesized function to produce
even results, the base case was resolved in step 9 with (H2), leading to f(0) ≃ s(0). As a
result, we have f(n) = s(double(n)) for any n.

Example 8.12 demonstrates that specification (8.1) has multiple solutions and saturation
can find a solution different from the intended one. In the next example we modify the
specification to have a single solution and synthesize it.

Example 8.13. To synthesize the double function, we modify the specification:

additional axioms: even(0) (E1)
¬even(s(0)) (E2)
∀x. (even(s(s(x))) ↔ even(x)) (E3)

new specification: ∀x∃y. (half(y) ≃ x ∧ even(y)) (8.27)

After negating and skolemizing (8.27) and adding the answer literal, we obtain:

half(y) ̸≃ σ ∨ ¬even(y) ∨ ans(y) (8.28)

87

8. Synthesis of Programs with Recursion

In this case we use the magic axiom for the conjunction G[t, x] := half(x) ≃ t ∧ even(x):
∃v0.(half(v0) ≃ 0 ∧ even(v0)) ∧

∀y.
�∃w.(half(w) ≃ y ∧ even(w)) → ∃vs.(half(vs) ≃ s(y) ∧ even(vs))


→ ∀z.∃x.(half(x) ≃ z ∧ even(x))

(8.29)

We clausify the magic formula corresponding to (8.29), and further resolve it with the
premise (8.28) to obtain:

half(v0) ̸≃ 0 ∨ ¬even(v0) ∨ half(σw) ≃ σy ∨ ans(rec(v0, vs, σ))
half(v0) ̸≃ 0 ∨ ¬even(v0) ∨ even(σw) ∨ ans(rec(v0, vs, σ))

half(v0) ̸≃0 ∨ ¬even(v0) ∨ half(vs) ̸≃s(σy) ∨ ¬even(vs) ∨ ans(rec(v0, vs, σ))

The refutation of these clauses follows a similar course to the proof in Example 8.12.
However, v0 occurring in the literal ¬even(v0) forces the proof to use (H1) instead of (H2),
and thus the final derived answer literal will be rec(0, s(s(σw)), σ), corresponding exactly
to the function definition of double from (8.2). Note that a derivation of this program in
this case requires a saturation prover to apply induction on conjunctions of literals.

8.6 Generalization to Arbitrary Term Algebras
Our approach from Sections 8.3–8.5 generalizes naturally to arbitrary term algebras. In
this section we present all definitions, lemmas, and theorems for this generalization.

We will work with an arbitrary (possibly polymorphic) term algebra τ with constructors
{c1, . . . , cn}, where we denote the sort of each ci by τi,1 × · · · × τi,nci

→ τ , and Pci =
{j1, . . . , j|Pci |} for each i = 1, . . . , n. Let α be any sort. We note that in this section, we
consider variables of the sorts given as follows: x, v, w : α, and y, z : τ , all possibly with
indices.

The magic axiom for G[t, x], where t : τ, x : α, and by yc we denote yc,1, . . . , yc,nc , is: �
c∈Στ

∀nc
i=1yc,i.

�
(

�
j∈Pc

∃wc,j .G[yc,j , wc,j]) → ∃vc.G[c(yc), vc]



→ ∀z.∃x.G[z, x] (8.30)

We use the magic axiom in MagInd, when L[t, x] is a literal with the only free variable x:

L[t, x] ∨ C�
c∈Στ

∀nc
i=1yc,i.

�
(�j∈Pc

∃wc,j .L[yc,j , wc,j])→∃vc.L[c(yc), vc]

 → ∀z.∃x.L[z, x]

(MagInd)

We convert (8.30) to prenex normal form such that ∀c∈Στ vc precedes ∃x:

∃c∈Στ , i∈{1,...,nc}yc,i.∃c∈Στ , k∈Pcwc,k.∀c∈Στ vc.∀z.∃x. �
c∈Στ

�
(

�
j∈Pc

G[yc,j , wc,j]) → G[c(yc), vc]

 → G[z, x]

	
(8.31)

88

8.6. Generalization to Arbitrary Term Algebras

We define the primitive recursion operator R for τ and α analogously to Definition 8.2:

R(f1, . . . , fn)(c1(x)) ≃ f1(x1, . . . , xnc1
, R(f1, . . . , fn)(xj1), . . . , R(f1, . . . , fn)(xj|Pc1|))

...
R(f1, . . . , fn)(cn(x)) ≃ fn(x1, . . . , xncn

, R(f1, . . . , fn)(xj1), . . . , R(f1, . . . , fn)(xj|Pcn|))

where for each i we have fi : τi,1 × · · · × τi,nci
× α|Pci | → α.

Using the recursion operator R, we state the analogue of Lemma 8.3:

Lemma 8.14 (Recursive Witness for Term Algebra τ). The expression

R(λnc1
i=1yc1,i.λk∈Pc1

wc1,k. vc1 , . . . , λ
ncn
i=1ycn,i.λk∈Pcn

wcn,k. vcn)(z) (8.32)

is a witness for the variable x in axiom (8.31).

Proof. The proof is analogous to the proof of Lemma 8.3. We consider an interpretation
I under which (8.32) is not a witness for x in (8.31), and extend it to Ja,b, parametrized
by values a, b assigned to y, w. Under this interpretation the antecedent of (8.31) is true.
Hence, we obtain one assumption per each of the cases of the antecedent (corresponding
to constructors of τ), similarly as we obtained (8.12) for 0 and (8.16) for s in the proof
of Lemma 8.3. We use these assumptions to refute that there is a smallest value vz for
which

GI [vz, RI(f)(vz)] = ⊥,

where vz = z
J

a,b and each element of f is defined analogously to f in the original
proof.

For each G[t, x] we introduce a distinct computable function symbol recG[t,x] : αnc ×τ → α.
As for natural numbers, we call such symbols for any G[t, x] the rec-symbols, and terms
with a rec-symbol as the top-level functor the rec-terms.

The magic formula for G[t, x] corresponding to magic axiom (8.30) is

∀c∈Στ vc.∀z.
 �

c∈Στ

� �
j∈Pc

G[σyc,j , σwc,j] → G[c(σyc), vc]

 → G[z, recG[t,x](v, z)]


, (8.33)

where skolem constants σyci,j , σwci,j are used to skolemize the variables yci,j , wci,j , and
the skolem function recG[t,x] to skolemize the variable x, and where by v we denote
vc1 , . . . , vcn , and by σyc we denote σyc,1, . . . , σyc,nc As for natural numbers, we say that
the skolem constants σyci,j , σwci,j introduced in the same (8.33) as the recG[t,x]-term are
associated with the recG[t,x]-term. Each σyci,j , σwci,j introduced in (8.33) is considered
computable only in the ith argument of its associated rec-term.

Exactly as for natural numbers, an inference system I is rec-compliant if:

89

8. Synthesis of Programs with Recursion

1. I only introduces rec-terms in the instances of the magic formula (8.33),

2. I does not introduce uncomputable symbols into arguments of rec-terms in clauses
it derives.

When σyci,j , σwci,j are associated with rec(s, t), then the term

R(λnc1
i=1σyc1,i .λk∈Pc1

σwc1,k
. s1, . . . , λ

ncn
i=1σycn,i .λk∈Pcn

σwcn,k
. sn)(t)

is the recursive function term corresponding to rec(s, t). As for natural numbers, for
a term r, we denote by rR the expression obtained from r by iteratively replacing all
rec-terms by their corresponding recursive function terms, starting from the innermost
ones. Similarly, formula F R denotes the formula F in which we replace all rec-terms by
their corresponding recursive function terms.

Lemma 8.15 (Recursive Witness for Magic Formulas Using τ). Consider the formula
obtained from (8.33) by replacing recG[t,x](v, z) by its corresponding recursive function
term:

∀c∈Στ vc.∀z.
 �

c∈Στ

� �
j∈Pc

G[σyc,j , σwc,j] → G[c(σyc), vc]

→ G[z, R(λnc1
i=1σyc1,i .λk∈Pc1

σwc1,k
. vc1 , . . . , λ

ncn
i=1σycn,i .λk∈Pcn

σwcn,k
. vcn)(z)]

 (8.34)

For every interpretation, there exists its extension by some

{σyc,i �→vy,c,i, σwc,k
�→ vw,c,k}c∈Στ ,i∈{1,...,nc},k∈Pc

,

such that the extension is a model of (8.34). As a consequence, formula (8.34) is
satisfiable.

Proof. Immediately follows from (8.34) being a skolemization of

∃c∈Στ , i∈{1,...,nc}yc,i.∃c∈Στ , k∈Pcwc,k.∀c∈Στ vc.∀z.

 �
c∈Στ

�
(

�
j∈Pc

G[yc,j , wc,j]) → G[c(yc), vc]

→ G[z, R(λnc1
i=1yc1,i.λk∈Pc1

wc1,k.vc1 , . . . , λ
ncn
i=1ycn,i.λk∈Pcn

wcn,k.vcn)(z)]
	

,

which is by Lemma 8.14 valid.

Using Lemma 8.15, we derive the analogues of Theorems 8.9–8.11 for an arbitrary term
algebra τ . Note that since we extended the definition of a rec-compliant system and
rR, F R for τ , the statements and proofs of the theorems do not change.

We finally note that our synthesis method generalizes also to other sorts as term algebras,
as long as the induction axiom used for the sort carries the constructive meaning described
in Section 8.2.

90

CHAPTER 9
Synthesis Examples and

Implementation in Vampire

The contributions of this chapter are based on:
Petra Hozzová, Laura Kovács, Chase Norman, and Andrei Voronkov. Program
Synthesis in Saturation. In Brigitte Pientka and Cesare Tinelli, editors, Proc. of
CADE, volume 14132 of LNCS, pages 307–324, Cham, 2023. Springer [HKNV23],
Petra Hozzová, Daneshvar Amrollahi, Márton Hajdu, Laura Kovács, Andrei Voronkov,
and Eva Maria Wagner. Synthesis of Recursive Programs in Saturation. EasyChair
Preprint no. 12145, EasyChair, 2024 [HAH+24], to appear in Proc. of IJCAR 2024

In this chapter we describe the implementation of the methods from chapters 7 and 8.
We also present a set of examples for recursion-free as well as recursive program synthesis
and experimentally evaluate our methods on them.

We implemented our methods in the first-order theorem prover Vampire [KV13], and
the implementation is available online at

https://github.com/vprover/vampire,

for recursion-free synthesis in the master branch, for synthesis of recursive programs in
the synthesis-recursive branch.

Our benchmarks as well as the configurations for our experiments are available at:

https://github.com/vprover/vampire_benchmarks/tree/master/synthesis

91

https://github.com/vprover/vampire
https://github.com/vprover/vampire_benchmarks/tree/master/synthesis

9. Synthesis Examples and Implementation in Vampire

9.1 Recursion-Free Synthesis
We implemented the method from Chapter 7 in Vampire and compared it to the SyGuS-
based synthesizer of cvc5 [BBB+22], demonstrating that our approach complements the
existing work.

9.1.1 Implementation
We implemented Algorithm 7.1, the modification of Avatar described in Section 7.6,
and selected rules of the modified superposition calculus from Figure 7.2.1 Our im-
plementation, consisting of approximately 1100 lines of C++ code, is based on Vam-
pire’s existing support for answer literals for question answering [Reg18], which we
extended to synthesis. The synthesis functionality can be turned on using the option
--question_answering synthesis.

Vampire accepts functional specifications in an extension of the SMT-LIB 2.6
format [BFT16], by using the new command assert-not to mark the specification.
We consider interpreted theory symbols to be computable. Uninterpreted symbols can
be annotated as uncomputable via the command:

(set-option :uncomputable (symbol1 ... symbolN))

Vampire also allows specifications in the TPTP format [Sut22] using the conjecture
or negated_conjecture formula roles, but without uncomputable annotations.

Our implementation simplifies the programs we synthesize. First, as mentioned in
Section 7.3, we only use a program with conditions recorded during the proof search if
the condition appears in the derivation of □. If in Algorithm 7.1 we record a program
⟨z, F ⟩ where z is a variable, we do not use this program in the final program construction
(line 12 of Algorithm 7.1) even if F occurs in the derivation of □ (see Example 7.9). This
is because z represents an arbitrary witness – therefore any other program ⟨t, F ′⟩ (where t
is not a variable) computes a satisfactory witness also for the condition F . If all recorded
programs correspond to a variable, then we choose a constant of the corresponding sort,
and use that as the final program. Further, we utilize the simplification rules of the
theorem prover. In the saturation loop of Algorithm 7.1 we first simplify clause Ci, and
only then carry out the program recording and answer literal removal on lines 6-10.

9.1.2 Experiments
The goal of our experimental evaluation is to showcase the benefits of our approach
on problems that are deemed to be hard, even unsolvable, by state-of-the-art synthesis
techniques. We therefore focused on first-order theory reasoning and evaluated our work

1Note that Vampire does not yet use the unification with abstraction from Section 7.5. All our
examples – including Example 7.10 – can be solved by guiding the proof search such that a rule with
ordinary unifier θ is used only if (θ,□) is a computable unifier.

92

9.2. Synthesis of Recursive Programs

on the group theory problems of Examples 7.1, 7.9, and 7.10, as well as on integer
arithmetic problems.

As the SMT-LIB format can easily be translated into the SyGuS 2.1 syntax [PPR+21],
we compared our results to cvc5 1.0.4 [BBB+22], supporting SyGuS-based synthe-
sis [AFP+19]. Our experiments were run on an AMD Epyc 7502, 2.5 GHz CPU with 1
TB RAM, using a 5-minute time limit per example.

Experimental results with group theory properties. Vampire synthesizes the
solutions of the Examples 7.1, 7.9, and 7.10 in 0.01, 13, and 0.03 seconds, respectively.
Since these examples use uninterpreted functions, they cannot be encoded in the SyGuS
2.1 syntax, showcasing the limits of other synthesis tools.

Experimental results with maximum of n ≥ 2 integers. We consider for-
mula (7.13), specifying the maximum of n integers. For n = 2, the specification is

∀x1, x2 ∈ Z. ∃y ∈ Z.
�
y ≥Z x1 ∧ y ≥Z x2 ∧ (y ≃ x1 ∨ y ≃ x2)

,

and the program we synthesize is if x1 <Z x2 then x2 else x1. Thanks to the
integration with Avatar, Vampire (using Z3 [DMB08] as the SMT solver backend) is
able to synthesize programs choosing the maximal value for up to n = 23 input variables
within a 5-minute time limit, exactly as cvc5. For n > 23, both Vampire and cvc5
time out. The following table shows times in seconds it took Vampire and cvc5 to solve
different versions of the benchmark:

Number n of variables for 2 5 10 15 20 22 23which max is synthesized
Vampire 0.03 0.03 0.05 1 13 55 215

cvc5 0.01 0.03 0.6 6.8 88 188 257

Experimental results with polynomial equations. Vampire can synthesize the
solution of polynomial equations; for example, for

∀x1, x2 ∈ Z. ∃y ∈ Z. y2 ≃ x2
1 +Z 2x1x2 +Z x2

2,

we synthesize x1 +Z x2. Vampire finds the corresponding program in 26 seconds using
simple first-order reasoning, while cvc5 fails in our setup, even with the help of complex
decision procedures for non-linear arithmetic.

9.2 Synthesis of Recursive Programs
We instrumented Vampire with a proof-of-concept implementation of our method from
Chapter 8. We also present a collection of problems for which our framework synthesizes
programs.

93

9. Synthesis Examples and Implementation in Vampire

Specification Program Synthesized definitions Vampire
Double:

∀x ∈ N.∃y ∈ N.
(half(y) ≃ x ∧ even(y))

f(x) f(0) ≃ 0
f(s(n)) ≃ s(s(f(n))) ✓

Associativity of addition:
∀x1, x2, x3 ∈ N.∃y ∈ N.

(x1 +N x2) +N x3 ≃ x1 +N y

f(x3) f(0) ≃ x2
f(s(n)) ≃ s(f(n)) ✓

Subtraction with condition:
∀x1, x2 ∈ N.∃y ∈ N.

(x2 <N x1 → x2 +N y ≃ x1)
f(x2) f(0) ≃ x1

f(s(n)) ≃ p(f(n)) ✓

Floored square root:
∀x ∈ N.∃y ∈ N.

(y ·N y ≤N x ∧ x <N s(y) ·N s(y))
f(x)

f(0) ≃ 0
f(s(n)) ≃ if s(n) ≃ s(f(n)) ·N s(f(n))

then s(f(n)) else f(n)
–

Floored division:
∀x1, x2 ∈ N.∃y ∈ N.(x2 ̸≃ 0 →

(y ·N x2 ≤N x1 ∧ x1 <N s(y) ·N x2))
f(x1)

f(0) ≃ 0
f(s(n)) ≃ if s(n) ≃ s(f(n)) ·N x2

then s(f(n)) else f(n)
–

Length of two concatenated lists:
∀x1, x2 ∈ L.∃y ∈ N.

y ≃ len(x1 ++ x2)
f(x1) f(nil) ≃ len(x2)

f(cons(n,l)) ≃ s(f(l)) ✓

Last element of a list:
∀x ∈ L.∃y ∈ N.(x ̸≃ nil →

∃z ∈ L.x ≃ z ++ cons(y, nil))
f(x) f(cons(n,nil)) ≃ n

l ̸≃ nil → f(cons(n,l)) ≃ f(l) ✓

Prefix of a list given its suffix:
∀x1, x2 ∈ L.∃y ∈ L.

(suff(x2, x1) → x1 ≃ y ++ x2)
f(x2)

f(nil) ≃ x1
f(cons(n,l)) ≃ g(f(l))

g(cons(n,nil)) ≃ nil
l ̸≃ nil → g(cons(n,l)) ≃ cons(n,g(l))

–

Maximum element of a list:
∀x ∈ L.∃y ∈ N.(x ̸≃nil →
(inN(y,x)∧∀k ∈N.(inN(k,x)→k ≤N y))

f(x)
f(cons(n,nil)) ≃ n

l ̸≃ nil → f(cons(n,l)) ≃ if f(l) <N n

then n else f(l)
–

Maximum element of a tree:
∀x ∈ BT.∃y ∈ N.(x ̸≃Nil →
(inBT(y,x)∧∀k ∈N.(inBT(k,x)→k ≤N y)

f(x)

f(node(Nil,n,Nil)) ≃ n

r ̸≃ Nil → f(node(Nil,n,r)) ≃
if n <N f(r) then f(r) else n

l ̸≃ Nil → f(node(l,n,Nil)) ≃
if n <N f(l) then f(l) else n

l ̸≃ Nil∧r ̸≃ Nil → f(node(l,n,r)) ≃
if f(l) <N f(r) then

if n <N f(r) then f(r) else n

else
if n <N f(l) then f(l) else n

–

Table 9.1: Synthesis examples using natural numbers N, lists L and binary trees BT. The
x-variables in the program and synthesized definitions are the inputs. While our framework
synthesizes all these examples, our implementation in Vampire only synthesizes those
marked with “✓”. Note that for “Length of 2 concatenated lists” we consider ++ to be
uncomputable.

9.2.1 Implementation

We implemented our method for recursive program synthesis in saturation. Our imple-
mentation consists of approximately 1,100 lines of C++ code on top of the recursion-free

94

9.2. Synthesis of Recursive Programs

synthesis implementation from the previous section. As a proof of concept, it supports
the MagInd rule with structural induction axiom for general term algebras. Additionally,
we also implemented a version of MagInd using a magic axiom with base case s(0) for
natural numbers and cons(a, nil) for any a for lists.

To support synthesis requiring induction on specifications ¬F [t, x], where F [t, x] is an
arbitrary formula with the only free variable x, we use an encoding as follows. We change
the original specification ∀x.∃y.F [x, y] to ∀x.∃y.p(x, y), where p is a fresh uncomputable
predicate, and we add an axiom ∀x, y.(p(x, y) ↔ F [x, y]). This encoding allows us to
synthesize more problems in practice. However, it is not a universal replacement of a rule
which allows induction on complex formulas, because we can only use it if the formula,
on which induction should be applied, occurs already in the input.

9.2.2 Examples

Our implementation can synthesize the programs for the specification (8.1), and using
the encoding mentioned above, also the program for (8.27), both in under 1 second. We
also synthesize further examples over natural numbers N, lists L, and binary trees BT.
We display the specifications alongside the programs synthesized by our framework in
Table 9.1. For the full derivations of most of the synthesized programs, see Appendix D
of [HAH+24]. Our framework synthesizes programs for each of the examples, yet our
implementation supports so far only a limited set of magic formulas; therefore, the
“Vampire” column of Table 9.1 lists which examples are solved in practice.

Note that for the second example of Table 9.1 (associativity of addition), a possible
program would be x2 +N x3. Using our framework we however synthesize a syntactically
different program. The function f(n) we synthesize for this example computes x2 +N n,
and the program is f(x3), which is semantically equivalent to x2 +N x3. Further, for the
sixth example (length of two concatenated lists), we consider ++ to be uncomputable to
disallow the trivial derivation consisting of one application of equality resolution, deriving
the term from specification len(x1 ++ x2) as the program. For the eighth example (prefix
of a list given suffix) we construct a recursive function calling another recursive function.
Intuitively, g(l) removes the last element of l, while f(l′) iteratively calls g on x1 as many
times as there are elements in l′. The synthesized program for this example is f(x2),
resulting in removing len(x2) elements from the end of x1. Finally, note that to derive the
programs for the last four examples, we use induction axioms with non-nil and non-Nil
base cases.

Vampire derivation. Finally, we list the derivation produced by Vampire for specifi-
cation (7.4), corresponding to Example 8.12. The runtime was 0.021s. The derivation
uses the TPTP syntax [Sut22]. We underline the final derived program consisting of the
definition of the function rf85 (corresponds to f from Example 8.12), and the program
body rf85(X0), where the variable X0 to the input variable x.

95

9. Synthesis Examples and Implementation in Vampire

Note that the derivations produced by Vampire might differ from those presented in
Chapter 8 due to Vampire using specific ordering and selection constraints, and a limited
subset of MagInd instances.

Vampire configuration used to produce this derivation:
--forced_options ind=struct:indu=off:qa=synthesis

Output:
...
% Inputs for synthesis:
5. ∼! [X0 : nat] : ? [X1 : nat] : half(X1) = X0 [negated conjecture

4]
% Recursive function definitions:
rf85(zero) = s(zero)
rf85(s(X5)) = s(s(rf85(X5)))
% SZS answers Tuple [[rf85(X0)]|_]
% SZS output start Proof
2. zero = half(s(zero)) [input]
3. ! [X0 : nat] : s(half(X0)) = half(s(s(X0))) [input]
4. ! [X0 : nat] : ? [X1 : nat] : half(X1) = X0 [input]
5. ∼! [X0 : nat] : ? [X1 : nat] : half(X1) = X0 [negated conjecture

4]
9. ! [X1 : nat] : ∼(half(X1) = sK1_in & ans0(X1)) [answer literal

with input var skolemisation 5]
10. ! [X0 : nat] : ∼(half(X0) = sK1_in & ans0(X0)) [rectify 9]
11. ! [X0 : nat] : (half(X0) != sK1_in | ∼ans0(X0)) [ennf

transformation 10]
12. half(X0) != sK1_in | ∼ans0(X0) [cnf transformation 11]
13. s(half(X0)) = half(s(s(X0))) [cnf transformation 3]
14. zero = half(s(zero)) [cnf transformation 2]
20. ? [X5 : nat] : ? [X6 : nat] : ! [X7 : nat,X3 : nat] : ! [X8 : nat

] : ((zero = half(X3) & (half(X6) = X5 => s(X5) = half(X7))) =>
half(rec2(X3,X7,X8)) = X8) [structural induction hypothesis]

21. ? [X5 : nat] : ? [X6 : nat] : ! [X7 : nat,X3 : nat] : ! [X8 : nat
] : (half(rec2(X3,X7,X8)) = X8 | (zero != half(X3) | (s(X5) !=
half(X7) & half(X6) = X5))) [ennf transformation 20]

22. sK3 = half(sK4) | zero != half(X3) | half(rec2(X3,X7,X8)) = X8 [
cnf transformation 21]

23. half(X7) != s(sK3) | zero != half(X3) | half(rec2(X3,X7,X8)) = X8
[cnf transformation 21]

24. half(X1) != s(sK3) | zero != half(X0) | ∼ans0(rec2(X0,X1,sK1_in))
[resolution 23,12]

25. zero != half(X0) | sK3 = half(sK4) | ∼ans0(rec2(X0,X1,sK1_in)) [
resolution 22,12]

123. zero != zero | sK3 = half(sK4) | ∼ans0(rec2(s(zero),X0,sK1_in))
[superposition 25,14]

127. sK3 = half(sK4) | ∼ans0(rec2(s(zero),X0,sK1_in)) [trivial
inequality removal 123]

160. s(half(X0)) != s(sK3) | zero != half(X1) | ∼ans0(rec2(X1,s(s(X0)

96

9.2. Synthesis of Recursive Programs

),sK1_in)) [superposition 24,13]
724. s(sK3) != s(sK3) | zero != half(s(zero)) | ∼ans0(rec2(s(zero),s(

s(sK4)),sK1_in)) [superposition 160,127]
753. zero != half(s(zero)) | ∼ans0(rec2(s(zero),s(s(sK4)),sK1_in)) [

trivial inequality removal 724]
758. ∼ans0(rec2(s(zero),s(s(sK4)),sK1_in)) [subsumption resolution

753,14]
759. ans0(X0) [answer literal]
760. $false [unit resulting resolution 759,758]
% SZS output end Proof
% ------------------------------
% Version: Vampire 4.8 (commit 3cddf8311 on 2024-01-28 09:37:47

+0100)
% Termination reason: Refutation
% Memory used [KB]: 718
% Time elapsed: 0.021 s
% ------------------------------

97

CHAPTER 10
Related Work

In this chapter we outline related work and discuss its relationship with our contributions.

10.1 Induction
Research in automating induction has a long history with a number of techniques
developed, including for example approaches based on semi-automatic inductive theorem
proving [BM79, BSvH+93, PCI+20, CJRS12], specialized rewriting procedures [FK12],
SMT reasoning [RK15] and superposition reasoning [KP13, Cru17, RV19, EP20].

Previous works on automating induction mainly focus on inductive theorem prov-
ing [BSvH+93, CJRS12, SDE12]: deciding when induction should be applied and what
induction axiom should be used. Further restrictions are made on the logical expres-
siveness, for example, induction only over universal properties [BM79, SDE12] and
without uninterpreted symbols [PCI+20], or only over term algebras [KP13, EP20]. In-
ductive provers usually rely on auxiliary lemmas to help prove an inductive property.
In [CJRS12] heuristics for finding such lemmas are introduced, for example by randomly
generating equational formulas over random inputs and using these formulas if they hold
reasonably often. The use of [CJRS12] is therefore limited to the underlying heuristics.
Other approaches to automating induction circumvent the need for auxiliary lemmas
by using uncommon cut-free proof systems for inductive reasoning, such as a restricted
ω-rule [BIS92], or cyclic reasoning [BS11].

Our work from Chapters 3 and 4, extending [RV19], automates induction by integrating it
directly in superposition-based proof search, without relying on rewrite rules and external
heuristics for generating auxiliary inductive lemmas/subgoals as in [BSvH+93, CJRS12,
SDE12, BM79, PCI+20]. The work was also later extended in [HHKV21] and [HKRV22]
to support induction based on recursive function definitions and induction on complex
formulas. See also [HHK+22] for a survey of induction methods used by Vampire.

99

10. Related Work

10.1.1 Induction with Generalization
Our new inference rule IndGen for induction with generalization (Chapter 3) adds new
formulas to the search space and can thus in some cases play the role of lemma discovery
heuristics used in [BSvH+93, CJRS12, RK15]. Our work also extends [RV19] by using
and instantiating induction axioms with logically stronger versions of the property being
proved. Unlike [Cru17], our methods do not necessarily depend on Avatar [Vor14], and
can be used with any sort (not just inductive data types) and target also induction rules
different than structural induction. Contrarily to [EP20], we are not limited to induction
over term algebras with the subterm ordering and we stay in the standard saturation
framework. Moreover, compared to [BM79, BSvH+93, CJRS12, RK15, SDE12, PCI+20],
one of the main advantages of our approach is that it does not use a goal-subgoal
architecture and can, as a result, combine superposition-based equational reasoning with
inductive reasoning.

Normally, generalization in theorem proving means that given a goal F , we try to prove
a more general goal. In logic, a statement F ′ is more general than F if F ′ implies
F . Thus, by proving F ′ we also prove F . One way to generalize is to replace one or
more occurrences of a subterm with a fresh variable, using the fact that ∀x.F [x] implies
F [t]. This is essentially the idea behind approaches to generalization in all systems we
compared our method with. While our approach is superficially similar, it does something
fundamentally different. Instead of (or beside) adding an instance I of the induction
schema that can be used to prove F [t], we add an instance I ′ that can be used to prove
∀x.F [x]. An interesting observation is that, in general, neither I implies I ′, nor I ′ implies
I, so neither of I and I ′ is more general.

The second fundamental difference is that because induction in Vampire is not based on
a goal-subgoal architecture, we can add both induction formulas I and I ′ at the same
time. While this may seem inefficient, for some induction schemas, including structural
induction, the overhead in practice is negligible (as also confirmed by our experiments).

10.1.2 Integer Induction
Previous works on automating induction mainly focused on inductive reasoning for in-
ductively defined data types, for example in inductive theorem provers ACL2 [KMM00],
IsaPlanner [DF04], HipSpec [CJRS13], Zeno [SDE12] and Imandra [PCI+20]; su-
perposition theorem provers Zipperposition [Cru17] and Vampire [RV19]; and the
SMT solver CVC4 [RK15] (succeeded by cvc5 [BBB+22]). While most of these solvers
support reasoning with integers, only ACL2 and CVC4/cvc5 implement some form of
induction over integers.

The ACL2 approach [KMM00] generates induction schemas based on recursive function
calls in the property to be proved. Hence, it can only use induction to solve problems
based on recursively defined functions, and moreover, only on functions that can be proven
terminating. Further, as mentioned in Section 6.2, ACL2 only supports interpreted
constants as base cases. As an inductive theorem prover, ACL2 has limitations with

100

10.1. Induction

respect to theory reasoning and reasoning with quantifiers, which further curb its utility
when it comes to program verification and reasoning about integers in general. On the
other hand, the SMT-based setting of CVC4 and cvc5 [RK15] has a robust handling of
theories, and to an extent also supports reasoning with quantifiers. It applies induction
by inductive strengthening of SMT properties in combination with subgoal discovery.
However, as noted in Section 6.2, CVC4/cvc5 is limited to upward induction with
interpreted constants as base cases.

While downward integer induction can be considered a straightforward extension of
upward integer induction and does not solve many more problems in our benchmark sets,
symbolic bounds provide a very powerful generalization, as witnessed by our experimental
results (see Section 6.2). In automated reasoning, the power provided by more general
rules comes with the price of uncontrollable blowup of the search space. To harness
this power we came up with defining (interval) upward/downward induction rules with
symbolic bounds in the superposition calculus in such a way that they result in most
cases in the addition of very simple and ground clauses (see e.g. Example 4.5), which
can be efficiently handled within the Avatar architecture.

We believe that variants of our induction rules defined in Section 4.3 can also be
successfully used by SMT solvers. The idea is to apply them, like we do, only when there
is a suitable bound in the current candidate model. One can also combine this with
the observation made in Example 4.5: one can resolve added induction formulas against
literals already occurring in the search space to add only ground formulas.

10.1.3 Inductive Benchmarks
The benchmark suite we propose and use in this thesis is new and can be used to
complement existing inductive benchmarks: the TIP library [CJRS15] and the examples
of [RK15].

Both TIP and the benchmark set of [RK15] focus on classic inductive problems inspired
by program verification and mathematical properties. An overwhelming majority of
the benchmarks in TIP focus on inductive data types – in fact, out of more than 536
inductive problems, only 3 use integers and no inductive data types. The examples
from [RK15] contain 311 inductive benchmarks translated into three encodings: (i) using
only inductive data types, (ii) using integers instead of natural numbers, but also other
inductive data types (such as lists or trees), and (iii) using both integers and natural
numbers to express the same properties, alongside other inductive data types. Problems
from (iii) are also included in the UFDTLIA benchmark set of SMT-LIB [BFT16].

While our benchmarks also include 63 classic problems with inductive data types, sharing
some of the problems with TIP and [RK15], we also provide a large set of 3,333 problems
of increasing sizes for inductive data types (category dty). Further, our suite also contains
120 benchmarks targeting different variations of induction over integers (category int).
Note that there is a substantial difference between our int benchmarks and benchmarks
from (ii). The latter mostly require inductive reasoning only for inductive data types (or no

101

10. Related Work

induction at all): they contain integers but only a few of them require inductive reasoning
over integers, while most of our int benchmarks require proper integer induction. For
example, Vampire can solve 131 of 311 benchmarks in (ii) without using integer induction.
In this respect, the available benchmark sets reflect the inductive capabilities of different
provers and solvers, which, as mentioned in Subsection 10.1.2, have only limited support
for integer induction.

In terms of the benchmark syntax, TIP uses a non-standard variant of SMT-LIB, and
offers tools for translating the benchmarks into standard SMT-LIB. All three encodings
of [RK15] employ the standard SMT-LIB 2 syntax. Our dataset is also encoded in the
current standard SMT-LIB 2 syntax, allowing us to potentially integrate our examples in
any repository using the SMT-LIB standard.

10.2 Synthesis
Our work builds upon deductive synthesis [MW80] using answer literals [Gre69] adapted
for the resolution calculus [LWC74, Tam95].

The deductive framework of [MW80] combines theorem proving and program synthesis.
The framework uses unification, induction, and transformation rules. The synthesized
programs can contain recursive functions constructed based on the induction subgoals.
Work of [LWC74] adapts this approach for resolution calculus. Further, [Tam95] extends
it by an optional restriction on which synthesized programs are allowed (see Section 2.4),
and proves completeness of the calculus. The synthesized programs can contain recursion
if the proofs use induction outside of the calculus. However, these approaches offer no
strategy for proof search, and consequently have no implementation.

We extend this line of work by modifying the superposition calculus and integrating it into
the saturation algorithm. We thus reason not only about answer literals but also about
their use of if−then−else terms, which we construct not only within answer literals, but
also by removal of the answer literals from the clauses in saturation. The modifications
of superposition and saturation allow us to construct programs while keeping the impact
to the practical proof search efficiency low (see Sections 7.3–7.4).

Further, [MW80, Tam95] construct recursive programs from proofs by induction by
reducing the program specification to subgoals corresponding to the cases of the induction
axiom. Induction is thus applied outside of their calculus. Modern first-order theorem
provers mostly implement saturation-based proof search, which however does not support
a goal-subgoal architecture. Our approach integrates induction directly into saturation
and thus enables automated inductive reasoning, resulting in automated synthesis of
recursive programs.

Recursion-free synthesis. We further overview less closely related work on synthesis,
starting with recursion-free synthesis. Component-based synthesis of recursion-free pro-
grams [SWL+94] from logical specifications is addressed in [SWL+94, GJTV11, TGD15].

102

10.2. Synthesis

Amphion [SWL+94] uses the first-order theorem prover Snark to prove graphical specifi-
cations based on axiomatized subroutine library. The system then extracts recursion-free
Fortran programs from proofs. Works of [GJTV11, TGD15] produce ∃∀-formulas to
capture specifications over component properties. In [GJTV11], the existential quantifier
captures the locations of the components, and the formula is solved by counterexample-
guided iterative synthesis using SMT solving. The method of [TGD15] considers specifi-
cations consisting of a size constraint, and functional and non-functional requirements on
the program. These are combined into the ∃∀-formula, where the existential quantifier
captures the sought term. Similarly as in [GJTV11], the formula is solved by SMT solving.
Both these approaches produce straight-line programs – however, as if−then−else can
be encoded as a base component, this corresponds to recursion-free programs.

The sketching technique [SL09, TB13] synthesizes program assignments to variables.
Sketch [SL09] uses a C-like programming language, while Rosette [TB13] is an exten-
sion to the Racket programming language with high-level meta-programming primitives.
Both rely on an alternative framework to our program synthesis setting. In particular,
sketching addresses domains that do not involve input logical formulas as functional
specifications, such as example-guided synthesis [TNS+21].

A prominent line of research comes with syntax-guided synthesis (SyGuS) [ABD+15],
where functional specifications are complemented with a context-free grammar. This
grammar yields program templates to be synthesized via an enumerative search procedure,
possibly based on SMT solving. SyGuS solvers include DryadSynth [HQSW20] and
the SMT solver cvc5 [BBB+22], which offers a SyGuS mode. As such, the SMT-based
synthesis techniques belong to a large class of program synthesis techniques referred to
as Oracle-Guided Inductive Synthesis [JS17], where synthesis candidates are evaluated
by external programs, providing feedback to refine the search. If the oracle provides
feedback in the form of counterexamples to refine the search, the method is referred to
as a Counter-Example Guided Inductive Synthesis (CEGIS) method [STB+06, SJB08].
We believe our work on recursion-free synthesis by strengthening first-order reasoning
for program synthesis is complementary to SyGuS, as evidenced by Examples 7.1, 7.9,
and 7.10.

Recursive synthesis. While SyGuS supports specifications for recursive functions and
can encode our examples from Section 9.2.2, SyGuS solvers so far do not support recursive
synthesis. Further, the semantics-guided synthesis framework SemGuS [KHDR21] is
conceptually very general and as such also supports recursive functions. However, its (to
the best of our knowledge) only solvers Messy [KHDR21] and Messy-Enum [DHKR21]
rely on input specifications different from the FOL setting we use: Messy synthesizes
programs from input-output examples, while Messy-Enum requires a grammar to
enumerate candidate programs.

Fully automated methods supporting recursive program synthesis include Syn-
quid [PKSL16], Leon [KKKS13], Jennisys [LM12], SuSLik [PS19], Cypress [IPP+21],
and Burst [MNnB+22]. Except for Burst, all these works decompose goals into sub-

103

10. Related Work

goals. Our work complements these methods, by turning saturation into a recursive
synthesis framework reasoning with first-order logic with theories. As such, our work
also differs from Synquid, where term enumeration combined with type checking is
used over program specifications within decidable logics. Its specifications are formulas
using polymorphic refinement types, that is, types augmented by predicates from a
decidable logic. Leon uses recursive schemas corresponding to our recursive operator R,
instantiates them by candidate program terms, and checks if they satisfy the specification.
Additionally, it employs abduction to infer when a particular program branch works
only under certain conditions. It works with specifications expressed in a subset of the
programming language Scala. Unlike Leon, we support a complete handling of quantifiers
via superposition reasoning. Jennisys uses a verifier to generate input-output examples,
which differs from our setting of using inductive formulas as logical specifications. These
examples are then extrapolated into a heap-manipulating program. The specification
consists of a data structure abstraction and definition, and a behavioral description,
expressed in Jennisys’ own language. SuSLik introduces a separation logic framework
dubbed SSL, which derives programs alongside proofs, using goal-directed backtracking
proof search. The specification consists of a pre- and post-condition on the heap state
encoded in separation logic. Cypress is an extension of SuSLik by cyclic proofs, deriving
a wider range of recursive functions. Burst generates programs by composition from
existing ones, using quantifier-free fragments of first-order logic. Contrarily to this, we
support full first-order logic and induction, without using subgoal proof strategies.

There is also a body of work on semi-automated recursive synthesis, which we do not
overview here. Similarly, we do not discuss synthesis based on input-output example
pairs nor templates.

104

CHAPTER 11
Conclusions and Future Work

This thesis focused on automating induction for reasoning about programs. In the
first part, we extended the capabilities of induction in saturation [RV19] by induction
with generalization and integer induction (Chapters 3, 4, and 6). We also presented
a new inductive benchmark set (Chapter 5). In the second part, we developed the
saturation-based proving framework into a (recursive) program synthesis framework
(Chapters 7-9).

We summarize the conclusions of the individual parts and outline possible directions for
future work below.

Induction. We introduced a new inference rule for induction with generalization in
saturation-based reasoning. The rule is based on adding induction axioms for proving
generalizations of the goals appearing during proof-search. Our experiments show that we
solve many problems that other existing systems and approaches cannot solve. Possible
directions for future work include designing heuristics to guide proof search and performing
other kinds of generalization and induction. We also note that the related direction of
using recursive function definitions for rewriting and constructing induction axioms was
already addressed in [HHKV21].

Further, we introduced new rules for automating inductive reasoning with integers. In
these rules, we instantiate a (symbolic) bound for the induction term as well as the
induction step based on comparison literals occurring in the search space. We showed
that these rules can be efficiently implemented in saturation-based theorem proving.
Many problems in program analysis and mathematical problems of integers previously
unsolvable by any theorem prover can now be solved completely automatically. We believe
our results can advance automated program analysis and automation of mathematics,
where integers are commonly used. This observation also serves as a pointer to a possible
area for future work: tighter integration of theorem proving with program analysis, both

105

11. Conclusions and Future Work

by incorporating theorem provers into the verification toolchain, but also by extending
theorem proving with custom induction schemas tailored to program verification problems.

Inductive benchmarks. We described our benchmark set for evaluating inductive
capabilities of automated reasoners. Although we primarily provide our problems in the
standard SMT-LIB syntax, we also translated them to other input formats of state-of-
the-art reasoners to facilitate comparison of different approaches to inductive reasoning.

An obvious future work direction is to extend our benchmark set with further examples
coming from application domains of security and safety verification, as well as formaliza-
tion of mathematics. Another task for future work is a possible integration of our dataset
with the TIP benchmark set [CJRS15] or with the SMT-LIB repository [BFT16]. One
possibility for incorporating our benchmark set into SMT-LIB would be to add a new
subset or an annotation for inductive problems in SMT-LIB, since SMT-LIB does not
currently distinguish benchmarks focused on induction from those which can be easily
solved without induction.

Program synthesis. We extended saturation-based proof search to saturation-based
program synthesis. Our first aim was to derive recursion-free programs from specifications
expressed as forall-exists formulas in first-order logic, augmented with a computability
annotation defining which symbols are (not) allowed in the target programs. To this
end we integrated the answer literal technique with saturation and defined calculus
requirements that ensure that the calculus derives correct (conditional) programs in the
form of computable terms. We also modified the superposition calculus and unification
in a corresponding way, and demonstrated that our approach synthesizes computable
programs. Our initial experiments show that a first-order theorem prover becomes an
efficient program synthesizer.

We then extended our framework to synthesize recursive programs by utilizing the
constructive nature of induction axioms. We introduced magic axioms as a tracking
mechanism and seamlessly integrated these axioms into saturation. Using our framework
with these axioms, we construct correct recursive programs, as also demonstrated by our
proof-of-concept implementation.

The synthesis of recursive programs could be explored in more depth in the future,
similarly to the study of recursion-free synthesis in [Hoz24]. Beyond that, a possible
direction for future work is extending our framework with tailored handling of (more
general) magic axioms, and respective superposition inferences. Further, the synthesized
programs could be simplified in postprocessing.

Another line of future work is extending the specifications our framework supports. One
possibility would be to go in the direction of the SyGuS format [PPR+21], where the
specification includes a grammar for the language of the target program. A conceptually
simpler yet powerful possibility would be to extend the specification language with an

106

interpreted predicate unifies, requiring that the target program unifies (or conversely,
does not unify) with a given term [G. Sutcliffe, personal communication, June 6, 2023].

Finally, another interesting direction is to relate synthesis with proving for higher-order
logic. Since our synthesis specifications correspond to a certain class of higher-order
formulas, one possibility would be to use synthesis in higher-order proving. The connection
with higher-order logic also points to further possible specification extensions, such as
going beyond single-invocation properties.

107

List of Figures

2.1 Term algebras of N, L, and BT, together with additional symbols and axioms. 8
2.2 The superposition calculus Sup. 12

4.1 Motivating examples for inductive reasoning with integers. 25
4.2 Integer interval rules. 30

5.1 ML-like functional program computing integer powers for positive exponents. 38

7.1 Axioms defining a group. 55
7.2 Selected rules of the extended superposition calculus Sup for reasoning with

answer literals. 63

8.1 Axioms of half and the ∀∃-specification for the function computing double. 76
8.2 Rules of the extended superposition calculus Sup for reasoning with answer

literals with rec-terms. 86

109

List of Tables

5.1 Description of the int benchmark set. 39

6.1 Experiments with 16 hand-crafted benchmarks. 44
6.2 Configurations and input format of solvers for the mathematical problems. 45
6.3 Experiments on 2,007 arithmetical problems. 47
6.4 Comparison of solvers on SMT-LIB benchmarks. 49
6.5 Experiments with our new benchmarks from Table 5.1. 50

9.1 Synthesis examples using natural numbers N, lists L and binary trees BT. 94

111

List of Algorithms

2.1 The Saturation Loop. 10

7.1 Saturation Loop for Program Synthesis 60

7.2 Computable Unification with Abstraction 68

113

Bibliography

[ABD+15] Rajeev Alur, Rastislav Bodík, Eric Dallal, Dana Fisman, Pranav Garg,
Garvit Juniwal, Hadas Kress-Gazit, P. Madhusudan, Milo M. K. Martin,
Mukund Raghothaman, Shambwaditya Saha, Sanjit A. Seshia, Rishabh
Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-
Guided Synthesis. In Dependable Software Systems Engineering, pages 1–25.
2015.

[AFP+19] Rajeev Alur, Dana Fisman, Saswat Padhi, Andrew Reynolds,
Rishabh Singh, and Abhishek Udupa. SyGuS-Comp 2019.
https://sygus.org/comp/2019/, 2019.

[BBB+22] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna
Lachnitt, Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina
Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds,
Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A Versatile and Industrial-
Strength SMT Solver. In Proc. of TACAS, pages 415–442, 2022.

[BCD+11] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4.
In G. Gopalakrishnan and S. Qadeer, editors, Proc. of CAV, volume 6806 of
LNCS, pages 171–177. Springer, 2011.

[BFT16] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo
Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

[BIS92] Siani Baker, Andrew Ireland, and Alan Smaill. On the Use of the Construc-
tive Omega-Rule within Automated Deduction. In Proc. of LPAR, pages
214–225, 1992.

[BM79] Robert S. Boyer and J. Strother Moore. A Computational Logic Handbook,
volume 23 of Perspectives in computing. Academic Press, 1979.

[Bon99] Maria Paola Bonacina. A Taxonomy of Theorem-Proving Strategies. In
Artificial Intelligence Today: Recent Trends and Developments, pages 43–84.
1999.

115

[BRSV16] Nikolaj Bjøner, Giles Reger, Martin Suda, and Andrei Voronkov. AVATAR
modulo theories. In Proc. of GCAI, pages 39–52, 2016.

[BS11] James Brotherston and Alex Simpson. Sequent Calculi for Induction and
Infinite Descent. J. Log. Comput., 21(6):1177–1216, 2011.

[BSvH+93] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling:
A Heuristic for Guiding Inductive Proofs. Artif. Intell., 62(2):185–253, 1993.

[CJRS12] K. Claessen, M. Johansson, D. Rosén, and N. Smallbone. HipSpec: Au-
tomating Inductive Proofs of Program Properties. In Proc. of ATx/WInG,
pages 16–25, 2012.

[CJRS13] Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone. Au-
tomating Inductive Proofs using Theory Exploration. In M. P. Bonacina,
editor, Proc. of CADE, volume 7898 of LNCS, pages 392–406. Springer,
2013.

[CJRS15] Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone. TIP:
Tons of Inductive Problems. In M. Kerber, J. Carette, C. Kaliszyk, F. Rabe,
and V. Sorge, editors, Proc. of CICM, volume 9150 of LNCS, pages 333–337.
Springer, 2015.

[Cru17] Simon Cruanes. Superposition with Structural Induction. In C. Dixon and
M. Finger, editors, Proc. of FRoCoS, volume 10483 of LNCS, pages 172–188.
Springer, 2017.

[DF04] Lucas Dixon and Jacques Fleuriot. Higher Order Rippling in IsaPlanner.
In K. Slind, A. Bunker, and G. Gopalakrishnan, editors, Proc. of TPHOLs,
volume 3223 of LNCS, pages 83–98. Springer, 2004.

[DHKR21] Loris D’Antoni, Qinheping Hu, Jinwoo Kim, and Thomas Reps. Pro-
grammable Program Synthesis. In Alexandra Silva and K. Rustan M. Leino,
editors, Proc. of CAV, pages 84–109, Cham, 2021. Springer.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In
C. R. Ramakrishnan and J. Rehof, editors, Proc. of TACAS, volume 4963
of LNCS, pages 337–340. Springer, 2008.

[EP20] Mnacho Echenheim and Nicolas Peltier. Combining Induction and
Saturation-Based Theorem Proving. J. Automated Reasoning, 64:253–294,
2020.

[FK12] Stephan Falke and Deepak Kapur. Rewriting Induction + Linear Arithmetic
= Decision Procedure. In Proc. of IJCAR, pages 241–255, 2012.

116

[FPMG19] Grigory Fedyukovich, Sumanth Prabhu, Kumar Madhukar, and Aarti Gupta.
Quantified Invariants via Syntax-Guided Synthesis. In I. Dillig and S. Tasiran,
editors, Proc. of CAV, volume 11561 of LNCS, pages 259–277. Springer,
2019.

[GGK20] Pamina Georgiou, Bernhard Gleiss, and Laura Kovács. Trace Logic for
Inductive Loop Reasoning. In Alexander Ivrii and Ofer Strichman, editors,
Proc. of FMCAD, volume 1 of Conference Series: FMCAD, pages 255–263,
2020.

[GJTV11] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan.
Synthesis of Loop-Free Programs. In Proc. of PLDI, page 62–73, 2011.

[Gre69] Cordell Green. Theorem-Proving by Resolution as a Basis for Question-
Answering Systems. Machine Intelligence, 4:183–205, 1969.

[HAH+24] Petra Hozzová, Daneshvar Amrollahi, Márton Hajdu, Laura Kovács, Andrei
Voronkov, and Eva Maria Wagner. Synthesis of Recursive Programs in
Saturation. EasyChair Preprint no. 12145, EasyChair, 2024.

[HBNR23] Petra Hozzová, Jaroslav Bendík, Alexander Nutz, and Yoav Rodeh. Over-
approximation of Non-Linear Integer Arithmetic for Smart Contract Veri-
fication. In Ruzica Piskac and Andrei Voronkov, editors, Proc. of LPAR,
volume 94 of EPiC Series in Computing, pages 257–269. EasyChair, 2023.

[HHK+20] Márton Hajdu, Petra Hozzová, Laura Kovács, Johannes Schoisswohl, and
Andrei Voronkov. Induction with Generalization in Superposition Reasoning.
In Christoph Benzmüller and Bruce Miller, editors, Proc. of CICM, volume
12236 of LNCS, pages 123–137, Cham, 2020. Springer.

[HHK+21] Márton Hajdu, Petra Hozzová, Laura Kovács, Johannes Schoisswohl, and
Andrei Voronkov. Inductive Benchmarks for Automated Reasoning. In
Fairouz Kamareddine and Claudio Sacerdoti Coen, editors, Proc. of CICM,
volume 12833 of LNCS, pages 124–129, Cham, 2021. Springer.

[HHK+22] Márton Hajdu, Petra Hozzová, Laura Kovács, Giles Reger, and Andrei
Voronkov. Principles of Systems Design: Essays Dedicated to Thomas A.
Henzinger on the Occasion of His 60th Birthday, volume 13660 of LNCS,
chapter Getting Saturated with Induction, pages 306–322. Springer, Cham,
2022.

[HHKV21] Márton Hajdu, Petra Hozzová, Laura Kovács, and Andrei Voronkov. In-
duction with Recursive Definitions in Superposition. In Ruzica Piskac and
Michael W. Whalen, editors, Proc. of FMCAD, pages 246–255. TU Wien
Academic Press, 2021.

117

[HKH+20] Martin Homola, Ján Kľuka, Petra Hozzová, Vojtěch Svátek, and Miroslav
Vacura. Towards Higher-Order OWL. KI-Künstliche Intelligenz, 34(3):417–
421, 2020.

[HKNV23] Petra Hozzová, Laura Kovács, Chase Norman, and Andrei Voronkov. Pro-
gram Synthesis in Saturation. In Brigitte Pientka and Cesare Tinelli,
editors, Proc. of CADE, volume 14132 of LNCS, pages 307–324, Cham, 2023.
Springer.

[HKR21] Petra Hozzová, Laura Kovács, and Jakob Rath. Automated Generation
of Exam Sheets for Automated Deduction. In Fairouz Kamareddine and
Claudio Sacerdoti Coen, editors, Proc. of CICM, volume 12833 of Lecture
Notes in Computer Science, pages 185–196, Cham, 2021. Springer.

[HKRV22] Márton Hajdu, Laura Kovács, Michael Rawson, and Andrei Voronkov. The
Vampire Approach to Induction. In Proc. of PAAR, 2022.

[HKV21] Petra Hozzová, Laura Kovács, and Andrei Voronkov. Integer Induction in
Saturation. In André Platzer and Geoff Sutcliffe, editors, Proc. of CADE,
volume 12699 of LNCS, pages 361–377, Cham, 2021. Springer.

[Hoz24] Petra Hozzová. Integrating Answer Literals with AVATAR for Program
Synthesis. In Laura Kovács and Michael Rawson, editors, Proc. of the 7th
and 8th Vampire Workshop, volume 99 of EPiC Series in Computing, pages
13–20. EasyChair, 2024.

[HQSW20] Kangjing Huang, Xiaokang Qiu, Peiyuan Shen, and Yanjun Wang. Recon-
ciling Enumerative and Deductive Program Synthesis. In Proc. of PLDI,
PLDI 2020, page 1159–1174, New York, NY, USA, 2020. Association for
Computing Machinery.

[HV09] Krystof Hoder and Andrei Voronkov. Comparing Unification Algorithms in
First-Order Theorem Proving. In Proc. of KI, pages 435–443, 2009.

[IPP+21] Shachar Itzhaky, Hila Peleg, Nadia Polikarpova, Reuben N. S. Rowe, and
Ilya Sergey. Cyclic Program Synthesis. In Proc. of PLDI, page 944–959,
2021.

[JS17] Susmit Jha and Sanjit A. Seshia. A Theory of Formal Synthesis via Inductive
Learning. Acta Informatica, 54(7):693–726, 2017.

[KHDR21] Jinwoo Kim, Qinheping Hu, Loris D’Antoni, and Thomas Reps. Semantics-
Guided Synthesis. Proc. ACM Program. Lang., 5(POPL), 2021.

[KKKS13] Etienne Kneuss, Ivan Kuraj, Viktor Kuncak, and Philippe Suter. Synthesis
Modulo Recursive Functions. In Proc. of OOPSLA, page 407–426, 2013.

118

[KKR+23] Konstantin Korovin, Laura Kovács, Giles Reger, Johannes Schoisswohl, and
Andrei Voronkov. ALASCA: Reasoning in Quantified Linear Arithmetic. In
Sriram Sankaranarayanan and Natasha Sharygina, editors, Proc. of TACAS,
pages 647–665, Cham, 2023. Springer.

[Kle45] S.C. Kleene. On the Interpretation of Intuitionistic Number Theory. J.
Symbolic Logic, 10:109–124, 1945.

[KMM00] Matt Kaufmann, Panagiotis Manolios, and J. Strother Moore. Computer-
Aided Reasoning: An Approach, volume 3. Springer, 06 2000.

[KP13] A. Kersani and N. Peltier. Combining Superposition and Induction: A
Practical Realization. In Proc. of FroCoS, pages 7–22, 2013.

[KRV17] Laura Kovács, Simon Robillard, and Andrei Voronkov. Coming to Terms
with Quantified Reasoning. In Giuseppe Castagna and Andrew D. Gordon,
editors, Proc. of POPL, volume 52 of ACM SIGPLAN Notices, pages 260–
270. ACM, 2017.

[KT14] Daniel Kroening and Michael Tautschnig. CBMC – C Bounded Model
Checker. In Erika Ábrahám and Klaus Havelund, editors, Proc. of TACAS,
pages 389–391. Springer, 2014.

[Kun96] Kenneth Kunen. The Semantics of Answer Literals. J. of Automated
Reasoning, 17(1):83–95, 1996.

[KV13] Laura Kovács and Andrei Voronkov. First-Order Theorem Proving and
Vampire. In N. Sharygina and H. Veith, editors, Proc. of CAV, volume 8044
of LNCS, pages 1–35. Springer, 2013.

[Lei10] K. Rustan M. Leino. Dafny: An Automatic Program Verifier for Functional
Correctness. In Edmund M. Clarke and Andrei Voronkov, editors, Proc. of
LPAR, pages 348–370. Springer, 2010.

[LM12] K. Rustan M. Leino and Aleksandar Milicevic. Program Extrapolation with
Jennisys. In Proc. of OOPSLA, OOPSLA ’12, page 411–430, 2012.

[LWC74] Richard C. T. Lee, Richard J. Waldinger, and Chin-Liang Chang. An
Improved Program-Synthesizing Algorithm and Its Correctness. Commun.
ACM, (4):211–217, 1974.

[MNnB+22] Anders Miltner, Adrian Trejo Nuñez, Ana Brendel, Swarat Chaudhuri, and
Isil Dillig. Bottom-up Synthesis of Recursive Functional Programs using
Angelic Execution. Proc. ACM Program. Lang., 6(POPL), 2022.

[MW80] Zohar Manna and Richard Waldinger. A Deductive Approach to Program
Synthesis. ACM Transactions on Programming Languages and Systems,
2(1):90–121, 1980.

119

[NR01] R. Nieuwenhuis and A. Rubio. Paramodulation-Based Theorem Proving. In
Handbook of Automated Reasonings, volume I, pages 371–443. Elsevier and
MIT Press, 2001.

[PCI+20] Grant Passmore, Simon Cruanes, Denis Ignatovich, David Aitken, Matthew
Bray, Elijah Kagan, Konstantin Kanishev, Ewen Maclean, and Nicola
Mometto. The Imandra Automated Reasoning System. In N. Peltier
and V. Sofronie-Stokkermans, editors, Proc. of IJCAR, volume 12167 of
LNCS, pages 464–471. Springer, 2020.

[PKSL16] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. Program
Synthesis from Polymorphic Refinement Types. ACM SIGPLAN Notices,
51(6):522–538, 2016.

[PPR+21] Saswat Padhi, Elizabeth Polgreen, Mukund Raghothaman, Andrew
Reynolds, and Abhishek Udupa. The SyGuS Language Standard Version
2.1. https://sygus.org/language/, 2021.

[PS19] Nadia Polikarpova and Ilya Sergey. Structuring the Synthesis of Heap-
Manipulating Programs. Proc. ACM Program. Lang., 3(POPL), 2019.

[Reg18] Giles Reger. Revisiting Question Answering in Vampire. EPiC Series in
Computing, 53:64–74, 2018.

[RK15] Andrew Reynolds and Viktor Kuncak. Induction for SMT Solvers. In
D. D’Souza, A. Lal, and K. G. Larsen, editors, Proc. of VMCAI, volume
8931 of LNCS, pages 80–98. Springer, 2015.

[Rob65] John A. Robinson. A Machine-Oriented Logic Based on the Resolution
Principle. J. ACM, 12(1):23–41, 1965.

[RSHR22] Michael Rawson, Martin Suda, Petra Hozzová, and Giles Reger. Reuse
of Introduced Symbols in Automatic Theorem Provers. In Boris Konev,
Claudia Schon, and Alexander Steen, editors, Proc. of PAAR, volume 3201
of CEUR Workshop Proceedings. CEUR-WS.org, 2022.

[RSV18] Giles Reger, Martin Suda, and Andrei Voronkov. Unification with Abstrac-
tion and Theory Instantiation in Saturation-Based Reasoning. In Proc. of
TACAS, pages 3–22, 2018.

[RSV21] Giles Reger, Johannes Schoisswohl, and Andrei Voronkov. Making Theory
Reasoning Simpler. In J. F. Groote and K.G. Larsen, editors, Proc. of
TACAS, volume 12652 of LNCS, pages 164–180. Springer, 2021.

[RV01] Tatiana Rybina and Andrei Voronkov. A Decision Procedure for Term
Algebras with Queues. ACM Transactions on Computational Logic, 2(2):155–
181, 2001.

120

[RV19] Giles Reger and Andrei Voronkov. Induction in Saturation-Based Proof
Search. In P. Fontaine, editor, Proc. of CADE, volume 11716 of LNCS,
pages 477–494. Springer, 2019.

[RV20] Giles Reger and Andrei Voronkov. Induction in Saturation-Based Proof
Search. EasyChair Smart Slide, 2020.

[SDE12] William Sonnex, Sophia Drossopoulou, and Susan Eisenbach. Zeno: An
Automated Prover for Properties of Recursive Data Structures. In C. Flana-
gan and B. König, editors, Proc. of TACAS, volume 7214 of LNCS, pages
407–421. Springer, 2012.

[SGF10] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. From Program
Verification to Program Synthesis. In Proc. of POPL, page 313–326, 2010.

[SGSM20] Clara Schneidewind, Ilya Grishchenko, Markus Scherer, and Matteo Maffei.
eThor: Practical and Provably Sound Static Analysis of Ethereum Smart
Contracts. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna,
editors, Proc. of CCS, pages 621–640. ACM, 2020.

[SJB08] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodík.
Sketching Concurrent Data Structures. In Proc. of PLDI, pages 136–148,
2008.

[SL09] Armando Solar-Lezama. The Sketching Approach to Program Synthesis. In
Proc. of APLAS, pages 4–13, 2009.

[SST14] Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. StarExec: A Cross-
Community Infrastructure for Logic Solving. In Proc. of IJCAR, pages
367–373, 2014.

[STB+06] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia,
and Vijay A. Saraswat. Combinatorial Sketching for Finite Programs. In
Proc. of ASPLOS, pages 404–415, 2006.

[Sut16] G. Sutcliffe. The CADE ATP System Competition - CASC. AI Magazine,
37(2):99–101, 2016.

[Sut22] G. Sutcliffe. The Logic Languages of the TPTP World. Logic Journal of
the IGPL, 2022.

[SWL+94] Mark Stickel, Richard Waldinger, Michael Lowry, Thomas Pressburger, and
Ian Underwood. Deductive Composition of Astronomical Software from
Subroutine Libraries. In Proc. of CADE, pages 341–355, 1994.

[Tam95] Tanel Tammet. Completeness of Resolution for Definite Answers. J. of
Logic and Computation, 5(4):449–471, 08 1995.

121

[TB13] Emina Torlak and Rastislav Bodik. Growing Solver-Aided Languages with
Rosette. In Proc. of Onward!, Onward! 2013, page 135–152, 2013.

[TGD15] Ashish Tiwari, Adrià Gascón, and Bruno Dutertre. Program Synthesis
Using Dual Interpretation. In Proc. of CADE, pages 482–497, 2015.

[TNS+21] Aalok Thakkar, Aaditya Naik, Nathaniel Sands, Rajeev Alur, Mayur Naik,
and Mukund Raghothaman. Example-Guided Synthesis of Relational
Queries. In Proc. of PLDI, page 1110–1125, 2021.

[Vor14] Andrei Voronkov. AVATAR: The Architecture for First-Order Theorem
Provers. In A. Biere and R. Bloem, editors, Proc. of CAV, volume 8559 of
LNCS, pages 696–710. Springer, 2014.

122

	Kurzfassung
	Abstract
	Contents
	Introduction
	Contributions
	Publications and Relation to Contributions
	Outline

	Preliminaries
	Saturation
	Superposition
	Induction in Saturation
	Answer Literals

	Induction with Generalization
	Motivating Example
	Induction with Generalization

	Integer Induction
	Motivating Examples
	Integer Induction Axioms and Rules
	Integer Induction in Saturation-Based Proof Search

	Inductive Benchmarks
	Benchmark Format
	Benchmark Categories

	Implementation of Induction in Vampire
	Induction with Generalization
	Integer Induction

	Synthesis of Recursion-Free Programs
	Computable Symbols and Programs
	Illustrative Example
	Program Synthesis with Answer Literals
	Superposition with Answer Literals
	Computable Unification with Abstraction
	Integrating Synthesis with Splitting in AVATAR

	Synthesis of Programs with Recursion
	Motivating Example
	Saturation with Induction in Constructive Logic
	Induction with Magic Formulas
	Programs with Primitive Recursion
	Recursive Synthesis in Saturation
	Generalization to Arbitrary Term Algebras

	Synthesis Examples and Implementation in Vampire
	Recursion-Free Synthesis
	Synthesis of Recursive Programs

	Related Work
	Induction
	Synthesis

	Conclusions and Future Work
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

