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Abstract

For a strongly inacessible cardinal k, Saharon Shelah generalized the notion of
Lebesgue null sets on the Cantor space 2¢ to the “Higher Cantor space” 2" (Archive
for Mathematical Logic, 2017). In this thesis we investigate, for such &, the relation-

ships between the following ideals:
1. the ideal of meager sets in the <k-box product topology.
2. the ideal of null sets in the sense of Shelah.

3. the ideal of nowhere stationary subsets of a (naturally defined) stationary set

Spy C K.

In particular, we analyse the provable inequalities between the cardinal characteris-
tics for these ideals, and we give consistency results showing that certain inequalities
are unprovable.

While some results from the classical case (k = w) can be easily generalized to
our setting, some key results (such as a Fubini property for the ideal of null sets) do
not hold; this leads to the surprising inequality cov(null)<non(null). Also, concepts
that did not exist in the classical case (in particular, the notion of stationary sets)
will turn out to be relevant.

We construct several models to distinguish the various cardinal characteristics;
the main tools are iterations with <k-support (and a strong “Knaster” version of

kt-c.c.) and one iteration with <s-support (and a version of k-properness).
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Kurzfassung

Fir eine stark unerreichbare Kardinalzahl x hat Saharon Shelah den Begriff der
Lebesgue-Nullmengen auf dem Cantor-Raum 2 auf den “héheren Cantor-Raum” 2%
verallgemeinert (Archive for Mathematical Logic, 2017). In dieser Arbeit unter-

suchen wir fiir solches k die Bezichungen zwischen folgenden Idealen:
1. dem Ideal der mageren Mengen in der <x-box-Produkttopologie.
2. dem Ideal der Nullmengen im Sinne Shelahs.

3. dem Ideal der nirgends stationdren Teilmengen einer (natiirlich definierten)

stationaren Menge Sf, C k.

Im Besonderen analysieren wir die beweisbaren Ungleichungen zwischen den Kar-
dinalzahlcharakteristiken dieser Ideale und beweisen Konsistenzresultate, die zeigen,
dass bestimmte Ungleichungen unbeweisbar sind.

Wéhrend manche Ergebnisse aus dem klassischen Fall (k = w) leicht verallgemei-
nert werden konnen, gelten andere Eigenschaften nicht mehr (wie zum Beispiel die
Fubini-Eigenschaft des Ideals der Nullmengen). Dies fiihrt zu der iiberraschenden
Ungleichung cov(null)<non(null). Weiters beginnen andere Konzepte, die im klassis-
chen Fall nicht existieren (im Besonderen stationidre Mengen), eine Rolle zu spielen.

Wir konstruieren mehrere Modelle, um verschiedene Kardinalzahlcharakteris-
tiken zu trennen; Die Werkzeuge hierzu sind Forcing-Iterationen mit <k-Tréger,
(und eine starke “Knaster”-Variante der x"-c.c.), sowie eine Iteration mit <x-Triger

(und eine Variante von k-properness).
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Introduction

Set theory of the reals deals with topological, measure-theoretic and combinatorial
properties of the real line, which set theorists often do not interpret as the linear
continuum R, but (often for technical or notational convenience) as the Cantor space

2% or the Baire space w®.

In this thesis we will be interested in a natural generalization of such properties
to the spaces 2% and k" for uncountable (and in our setup: always inaccessible)
cardinals . This area of research has progressed quickly in recent years; (Khomskii,
Laguzzi, Lowe, and Sharankou 2016) collected many questions inspired by workshops
on generalized reals, and several recent results can be found in (Brendle, Brooke-
Taylor, Friedman, and Montoya 2018), (Friedman and Laguzzi 2017), (Shelah 2017),
(Cohen and Shelah 201x).

We will occasionally refer to results or definitions involving 2* or w®; to empha-
size the distinction between this framework and our setup, we will use the adjective
“classical” to refer to these concepts: the classical Cichon diagram, classical random

reals, etc.

Concerning terminology, we suggested to use the adjective “higher” instead of
the less specific “generalized” or “generalised”. In analogy to higher Souslin trees
(Souslin trees on cardinals larger than wy), higher recursion theory (recursion theory
on ordinals greater than w), higher descriptive set theory we will speak of higher reals,

the higher Cantor space, higher random reals, the higher Cichon diagram, etc.
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Higher random reals

There exists a straightforward generalization the meager ideal on 2¥ (or w*) to an
ideal on 2% for (regular) x > w, using the <x-box product topology and defining a
set as meager if it can be covered by <k-many (closed) nowhere dense sets.

In (Shelah 2017) Saharon Shelah introduced a generalization Q, of the random
forcing to 2" for inaccessible . The forcing Q, is strategically x-closed, satisfies the
kt-chain condition and for weakly compact & is x®-bounding. These are of course
three properties that are satisfied by classical random forcing (i.e., on k = w). The
ideal id(Qj) generated by all k-Borel which are forced not to contain the Q,-generic
k-real turns out to be orthogonal to the ideal Coheny of all k-meager sets.

In (Cohen and Shelah 201x) it is shown how to replace the requirement of x
being weakly compact by assuming the existence of a stationary set that reflects
only in inaccessibles and has a diamond sequence. A construction of a k™-c.c. K"-
bounding forcing notion using a different diamond is given in (Friedman and Laguzzi
2017) but it implies 2 = k™, so that setup does not allow us to investigate cardinal
characteristics.

A different approach can be found in (Brendle, Brooke-Taylor, Friedman, and
Montoya 2018) where the authors use the well known characterization of the addi-
tivity and cofinality of the null ideal by slaloms (in the classical case (k = w), see for
example (Bartoszynski and Judah 1995)) to define their versions of add(null) and
cof (null) on 2% for inaccessible .

We continue the work of (Shelah 2017), and we also compare our cardinal char-

acteristics to those derived from slaloms.

Overview of the thesis

The research I did on the higher Cichonl diagram is collected in (Baumhauer, Gold-
stern, and Shelah 2018) which can be considered a sequel of (Shelah 2017). This
thesis is essentially a self-contained version of (Baumhauer, Goldstern, and Shelah
2018), including all necessary definitions and results (and in particular proofs) from

its predecessor.
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In section 1 we repeat some key definitions and results from (Shelah 2017),
introduce some notations and finally define the notion of a strengthened Galois-

Tukey connection.
In section 2 we prove preservation theorems for iterations of <k and k-support.

In section 3 we introduce an ideal id™ (Q,) C id(Qy) whose definition is slightly
simpler than the definition of id(Qy ); however, for weakly compact  the ideals
id and id™ coincide. We improve the characterizations of the additivity and
cofinality of id(Qy) given in (Shelah 2017) and also give a new characteriza-
tion of additivity and cofinality, using the additivity of the ideal of nowhere

stationary sets on k.

In section 4 we generalize a theorem from (Shelah 2017) by introducing the
notion of an anti-Fubini set and showing the existence of such set implies the

result for arbitrary ideals.

In section 5 we repeat and elaborate results from (Shelah 2017) and discuss
the Bartoszynski-Raisonnier-Stern theorem for id(Q.). We can show it for
inaccessible k only under additional assumptions, and we conjecture that it

does not hold in general.

In section 6 we provide six models separating characteristics of the generalized
Cichon diagram using the tools developed in section 2. Curiously we do exactly

all possible vertical separations.

In section 7 we repeat some definitions and results from (Brendle, Brooke-
Taylor, Friedman, and Montoya 2018) and use a model from that paper to
show that one of the generalized slalom characterizations of the additivity of

null is not provably equal to the additivity of id(Qj).
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CHAPTER 1

Preliminaries

In this section we establish some key definitions and results from (Shelah 2017).

1.1 The Generalized Random Forcing Q,

To motivate the main definition of this section, we first give a characterisation of

random forcing; the definition of Q. can then be seen as a generalization.

Definition 1.1.1. A “positive tree on w” is a set T C 2<% with the following

properties:

e T is a tree, i.e.: T is nonempty, and for all t € T" and all initial segments s < ¢

we also have s € T'.

e There is a family (N : k € w), with Nj, C 2* such that:

— The sets N, are small, more precisely: Y, “;—,f' <1

— Forall k,all s€2F: s€T =3 ((Vn < k) sln €T and s ¢ Ny).

It is easy to see that a tree T is positive in this sense if and only if the set [T] of
branches of T has positive Lebesgue measure in 2¢. Thus, the set of positive trees
is isomorphic to (a dense subset of) random forcing.

It is well-known and easy to see that the ideal of null sets can be defined from

the random forcing in several ways:
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Fact 1.1.2. Let A C 2¥. Then each of the following properties is equivalent to the

statement “A is Lebesgue measurable with measure 0”:
e For all positive trees p there is a positive tree ¢ C p such that [¢] N A = 0.
e There is a predense set C of positive trees such that AN J,cc[p] = 0.

e There is a single positive tree p such that not only [p] N A = (), but for every
s € 2<% we also have (s + [p]) N A = 0.
Here, we write s+ X for the set {s+x : x € X}, where s+ € 2 is defined by
(s +x)(i) = s(i) + (i) for i € dom(s), and (s+ x)(i) = s(i) otherwise. (s + X

is also called a “rational translate” of X.)

Definition 1.1.3. Unless stated otherwise, x denotes an strongly inaccessible car-
dinal throughout this paper. When we write “inaccessible” we will always mean

“strongly inaccessible” and for the set of all inaccessible cardinals below xk we write

Sk

mc

= {\ < k: A s inaccessible}.

Definition 1.1.4. Let S C k. We say that S is nowhere stationary if for every § < k

of uncountable cofinality the set S N4 is a nonstationary subset of §. Typically we

will only care about being nonstationary in § € Sf U {xk}.

We will now inductively define, for every inaccessible cardinal &,
e a forcing notion Q, (this definition uses the ideals id(Qj) for § < k)

e two ideals wid(Qy) C id(Qx) on 2%.

(The ideals coincide for weakly compact k, see 3.2.3.)

Definition 1.1.5. We recall the inductively defined forcing Q, from (Shelah 2017,
1.3). We have p € Qy, if there exists (7,5, A5 : 6 € S)) (this tuple is called the witness
for p € Q) where:

1. p C 2<% is a tree, i.e. closed under initial segments.
2. 7 € 2<% is the trunk of p, i.e., the least node which has two successors.
3. Above 7 the tree p is fully branching, i.e. 7 <nep=n"0,n"1 € p.

4. § C Sf. is nowhere stationary.
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5. For § € S the set Ag satisfies:

(a) Z € As = T is a predense subset of Q5.
(b) |As] < 0.
6. If 6 ¢ S is a limit ordinal and € 29, then: 7 € p iff (Vo < §) nlo € p.

7. If § € S is a limit ordinal and n € 2°, then: 7 € p iff

(a) (Vo <d) nlo € p and
(b) (VI € A5)(Bq€Z)nelql

For p,q € Q, we define ¢ stronger than p if ¢ C p. We write ¢ < p for “q stronger

than p” throughout this paper (and we use this convention for any forcing, not just

Qx)-
If G is a Qx-generic filter then we call n = |, tr(p) € 2% a Qx-generic real or a
“random real”, where tr(p) is the trunk of p. Alternatively, n is the unique element

of (,eq[pl, where [p] is the set of cofinal branches of p.

Remark 1.1.6. Note that the set S Nlg(7) (where lg(7) is the order type of the
predecessors of 7) is really irrelevant; if we require min(S) > 1g(7), then p is uniquely
defined by its witness and vice versa.

So given p € Q. we may write tr(p), S, and T\p for the unique elements such

that (tr(p), Sp, Kp) is a a witness for p € Q.
Fact 1.1.7.

1. Let np € 2<%, Then (2<%)" € Q,

2. 2<F is the maximal element of Q,..

3. Let p € Q, with witness (7,5, 7&) and let A < k be inaccessible with |7| < A.
Then p N 2<* € Q.

4. Let p € Q4 and let n € p with witness (7,.5, X) Then pl" € Q. and p > pl.
Proof.

1. (n,0,()) is a witness.
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2. By (1) we have 2<% = (2<%)l] ¢ Q,.. Maximality is obvious.
3. (1, SN A, X[)\) is a witness.
4. (tun,sS, K) is a witness. O

Remark 1.1.8. Let p,q € Q4. Then p and ¢ are compatible in Q, iff at least one
of the following holds:

1. tr(p) Qtr(q) € p

2. tr(q) < tr(p) € ¢

In particular, two conditions with the same stem are always compatible.

Moreover, if p and g are compatible, then p N ¢ is the weakest condition in Q.
which is stronger than both.

As a consequence, any set C C Q, with the property

(Vn€2°%)(3peC) tr(p) =n
is predense in Q.

Lemma 1.1.9 ((Shelah 2017, 1.5)). Letp = (p; : i < § < k) be a decreasing sequence
i Q. such that

6 <0 = suplg(tr(pi)) & S(pa)
<8

for all a < 6. Then ps = ({pi :i < &} is a lower bound for p.

Proof. For i < ¢ let (1;,S;, 7\2) be a witness for p;.

Clearly (7; : i < 6) is a J-increasing sequence. Let 75 = |J,_57: and of course
lg(75) = 6. By our assumption 8 ¢ S(p;) we have 75 € p; for i < 6.

Let S = ;59\ (0+1). Let A; = (A : A€ S;) and let Ay = {A;r:i <8\ €
S;} for A € S. Clearly |[Ay| <d-A=A.

This shows that (75,5, (Ay : A € S)) is a witness for ps € Qs. O

Lemma 1.1.10 ((Shelah 2017, 1.5)). Let p € Qy, let p € p and let J = (Ji i <
0 < k) be a sequence of dense subsets for Q.. Then there exists n € 2% such that
p<anelp) and (Vi < 8)(3q € Ji) n € lq), i.e. n € sety((T)).

Note that for § = 0 the Lemma simply states that every p € p is contained in a
branch of p of height k.
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Proof. We prove the Lemma by induction on inaccessible .
Let (1,5,A) be a witness for p.
Case 1: sup(SE ) = x < k.

mc

e Case la: y € S. In this case x is inaccessible. Use the induction hypothesis for
pN2<X and Ay to find v € pN 2X.

e Case 1b: x € S. Remember S is not stationary in x and work similarly to case
2 to find v € p N 2X.

Now for in both case la and 1b find n € [p]| N Setl(j) such that v < 7 using the
Baire category theorem for 27.

Case 2: sup(Sf.) = k. We construct (p;, o, q; : @ < k) such that:
1. a; < k, increasing continuous with i.

2. p; € Q4, decreasing with .

3. tr(p;) € 2%.

4. ¢ € J;

5.i=j41=p <gqj

How can we carry out this construction? For ¢ = j + 1 find ¢; € J; such that
q; L pj solet r; < q;,p;j. Let E be a club disjoint from S and for k < j let Ej, be
a club disjoint from S(gy). Choose a; such that (ay, a;) N EN(,.; Ej # 0 and use
the induction hypothesis to find v; € 2% Nr;. Let p; = rl[yi].

For ¢ limit use 1.1.9.

Now check that n = (J;,. tr(p;) is as required. O
Corollary 1.1.11. Q,; is k-strategically closed.

Proof. By 1.1.9. O

Corollary 1.1.12. Let p,q € Q4. Then p,q are compatible iff

[p] N gl #0

Proof. By 1.1.10. O
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Theorem 1.1.13. Q, is k-linked. In particular Q,. satisfies the k™ -chain condition.

Proof. 1f p,q € Q4 have the same trunk they are compatible (see 1.1.8). Because x

is inaccessible we have [2<%| = k and hence
Qx = U {pEQ,{:tr(p)Zp}
p€2<n

shows that Q, is k-linked. ]

Theorem 1.1.14 (k"-bounding, (Shelah 2017, 1.9)). Let k be weakly compact. Then
Qs is k-bounding, i.e. for every f € k* N V@ there exists g € k* NV such that

f<g,ie (Yi<k) f(i) < g(i).

Proof. Let p € Q, and f be a Q,-name such that p I+ f € k". For i < k we construct
D3, Bi,y Siy Ai, E; such that for all i < k we have:

—

(1) p; € Qg witnessed by (tr(p), S;, A;), po = p, p; decreasing with i.
(2) E; C k is a club disjoint from S;, C-decreasing with i.

(3) B;i € E;, increasing continuous with i, Sy = lg(tr(p)).

(4) For j < i we have p; N 2<Fi = p; N2<Fi.

(5) If i = j +1 and v € p; N 2% then pgy} forces a value f(j).

For i = j+11let {gj : @ < k} be a maximal antichain of Q, such that for every

« < K we have:

1. gjo forces a value v(j, ) to f(])

2. gja <pjVligial Nipsl = 0.

Let E; be a club disjoint from S;. Because ~ is weakly compact there exists an
inaccessible A; > f; such that {g;, N 2N Lo < Aj} is predense in Qy;.
Let
H={nepn2Y:3Ba<))neg.n2<Y]}.

For n € H find o < A; such that 1 € [gj o N 2<Y] and define r;,, = qj[ni Clearly
7in < ¢ja hence r;, forces a value t(lf(j).

Let 7;, be witnessed by (n,Sj,,A;,) and let Ej, be a club disjoint from S .
We define:
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(@) pi =Upen rin
(b) Si = (5N A;) UL UU, e (Sin\(A; + 1))
(c) A= (Aix s A €S;) where

U{Aj,nJ\ :meHAMNE Sj,ﬂ} A > )\j
Aiy)\ = Aj7,\ A< )\j
{{qj,a N2<N @ < )\j}} A= )\j
(d) Let E; = E; N (e (Ejn\(A; + 1))
(e) Let ,Bj = mln(EZ\)\J + 1)

For 4 limit let p; = ﬂj<ipj and 3; = sup;; ;. Let S; = Uj<i S; and for 0 € S;
let Ajs = Uj<i A; 5. By construction (tr(p), S, A;) is a witness for p;. In particular
note that S; N B; is not stationary in B; because {f; : j < i} is a club disjoint from
S; N B;.

Finally for j < k we have by construction py II—“f(j) < SUPgcy, v(j, @) = g(4)”.

O

1.2 The Generalized Null Ideal

Definition 1.2.1. For inaccessible k we now define ideals on 2% as follows:

e For J C Q. we define

set1(7) = (J o], seto(T) = 2%\ set1 (7).

peJ

e For a collection A of subsets of Q. we define

set1(A) = ﬂ set1(J), seto(A) = 27\ set1(A).

JeN

Definition 1.2.2. For A C 2%:

1. A € wid(Qy) iff there is a predense set C C Q,, such that A C seto(C).
Equivalently, A € wid(Q,,) iff

(Vp € Qu)(3¢ € Q) ¢g<pand [gjNA=0

(We will discuss the ideal wid(Qy) in section 3, for “equivalently” see in par-
ticular 3.1.3.)
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2. id(Qy) is the <k-closure of wid(Qy):

A € id(Qy) iff A can be covered by the union of at most x many sets in

wid(Qy).
Equivalently, A € id(Q,) iff there is a family A of £ many predense sets such
that A C seto(A).

Theorem 1.2.3 ((Shelah 2017, 3.2)). Let A C 2%. Then A € id(Qy) iff there exists
a k-Borel set B C 2% such that A C B and

QelFn¢B

where 1 is the canonical generic k-real added by Q.

[More explicitly, we should say that there is a k-Borel code ¢ in V such that the
corresponding Borel set B, contains A (A C HB.) and that in the Q-extension, n
will not be in the Borel set B., computed in the extension: Q. IF 1 & AB..]

Proof. By 1.2.4 and 1.2.5. O

Lemma 1.2.4 ((Shelah 2017, 3.2)). Let A C 2%. If there exists a k-Borel set B such
that A C B and Q, IF“n ¢ B” then A € id(Qy).

Proof. Let B C 2" be a k-Borel set such that Q, IF“n & B”. Let (T C k<%, ]§) be a
Borel code for B (see 1.2.6 but to make the proof less stressful we allow complements

and intersections instead of complements of unions). That is:
(1) T is a subtree of kK<“ with no infinite branch.

(2) For p € T we have either

(i) sucr(p) =0 or
(ii) sucr(p) = {p™0} or
(iii) sucr(p) = {p' :i < K}

N

(3) B=(B,:peT)and for B, is a Borelset for p € T'.
(4) B, = B.

(5) If sucy(p) = 0 then
B, ={ne2":n(i,) =c,}

for some i, < K,c, < 2.
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(6) If sucr(p) = {p~ 0} then B, = 2%\B,~o.
(7) If sucr(p) = {p' : i < Kk} then

B, =B,

1<K
For p € T we inductively construct Z,, t, such that:

(a) Z, is a maximal antichain of Q.

(b) t,: I, — 2.

(c) ty(p) =0=pln¢gB,” and t,(p) =1=pl-neB,”.

(d) If [sucr(p)| = 0, p € Z,, then lg(tr(p)) > ip.

(e) If |sucr(p)| = 1 then 7, = Z,~¢ and for p € Z,, we have t,~o(p) =1 —t,(p).
(f) If sucy(p) is infinite, p € Z,, t,(p) = 0, then p IF“9 & B,~;” for some i < k.
(g) If p <9 € T and q € Z,, then there exists a unique p € Z, such that p < g.

[Note that the construction is not strictly inductive. If p has only one successor then
we may need to look at a successor of p to satisfy (f) and then use (e) to push the
work down. But it should be clear that we can easily construct Z,,t, as required.|

Let Y = (1 cr set1(Z,) and by definition 27\Y" € ida(Qy). We claim that for each
peT,veY we have

veB, & (3pel,)velpAt,(p) =1

Proof by induction on T, starting from the leaves.
Case 1: |sucy(p)| = 0.
There exists a unique p € Z, such that v € [p] (remember 1.1.12). By (5) and (d)
we have
veB, < tr(p)iip) =¢, & tpp)=1
Case 2: |sucp(p)| = 1.
Let p € 7, = Z,~¢ be the unique condition such that v € [p]. Then

veB, & v¢gB,o & tl,op)=0 <& t,(p) =1

Case 3: sucr(p) is infinite.

Let p € Z,, be the unique condition such that v € [p].
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o Case 3a: t,(p) = 0.
By (f) there exists ¢ = p™i such that p IF"7) & By,. Let ¢ € Z;, be the unique
condition such that v € [¢]. By (g) we have ¢ < p hence t,,(¢) = 0. By induction
hypothesis this implies v ¢ By, hence v ¢ B,,.

o Case 3a: t,(p) = 1.

Similarly.

Finally by our assumption Qy I 7 ¢ B = By we have ¢,(p) = 0 for all p € 7.
Therefore Y "B = () and B € id2(Qy). O

Lemma 1.2.5. Let A € id(Qx). Then there exists a k-Borel set B such that A C B
and Qs I+ ) & B”.

Proof. Let T = {Z; : i < k} be a family of maximal antichains of Q, witnessing
A €id(Qy), ie.
2\A Dsety(Z) = () () [pl-

i<k peL;
It is easy to check that for any p € Q, the set [p] C 2" is closed. Remember that
Q. satisfies the kt-c.c. (1.1.13) hence |Z;| < x and thus set;(Z) is the intersection
of k-many closed sets.
It remains to show that Q, IF“n € set1(Z)”. Let p € Qy be arbitrary and let i < k.
Find p’ € Z; such that p,p’ are compatible and let p” = p A p'. Now p” IF“n € Z,;”.
Clearly this suffices. O

Definition 1.2.6. For every n € 2<" we write [n)] for the set of € 2" extending n;
these are the basic clopen sets of the box product topology (i.e., the <x-box product
topology).

Let Borel, be the smallest family containing all clopen sets which is closed under
complements and unions/intersections of at most xk-many sets. If B € Borel,, then
we call B a k-Borel set.

A Borel code is a well-founded tree (with a unique root) with x many nodes
whose leaves are labeled with elements of 2<%; this assigns basic clopen sets to every
leaf. This assignment can be naturally extended to the whole tree: if the successors
of a node v are labeled with set (B, : i € x), then v is labeled with 2%\ |J,_,. B;.

(Equivalently, a Borel code is an infinitary formula in the propositional language

L_,.+, where the propositional variables are identified with the basic clopen sets.)

10
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If ¢ is a Borel code, we write %, for the Borel set associated with it (i.e., the

value of the assignment described above on the root of the tree c).

Fact 1.2.7. Let V, W be two universes. Let n € 2* NV N'W and let ¢ be a Borel

code in VN W. Then it follows from an easy inductive argument on the rank of ¢:
VEne % < WEnpeA.

This fact will allow us to speak about Borel sets when we should officially speak

about Borel codes.

Definition 1.2.8. Let S C SF

. be nowhere stationary. By Q, s we mean the forcing

that is inductively defined similarly to Q, but additionally for § € Si":ltl we require
p € Qs 5ns iff:

1. p e Q.
2. p is witnessed by some (7, W, 7\) such that W C SN4.

Note that this definition is different from 3.3.8.

1.3 Quantifiers and Rational Translates

Definition 1.3.1. Let u be a regular cardinal. We use the following notation:

e Let A, B C pu. We say A C}, B if there exists ( < p such that A\( C B. If p is

clear from the context we write A C* B.

o “(I€) p(e)” is an abbreviation for “{e < u : ¢(e)} is cofinal in p”. Similarly
“(V*e) ¢(e)” is an abbreviation for “{e < u : —¢(€)} is bounded in p” If y is

clear from the context we write 3*° and V°°.

Note that these quantifiers satisfy the usual equivalence
(Fe) ple) < (V) —o(e).
e For n,v € 2* (or p*) define

Lp=v & (Vi <p)n()=v(.
2.n< v & (V< p) (i) <v(i).

11
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and again we may just write n =* v and n <* v.
Definition 1.3.2. We define:
1. by =min{|B|: BC k" A (Vn € k")(Fv € B) =(v <*n)}.
2. 0, =min{|D|: D C k" A (V€ r")(Tve D)n<*v)}.

Definition 1.3.3. e Forp € Qq, a < Kk, v € 2% and n € pN 2% (typically
tr(p) < n) we let p”"! be the condition obtained from p by first removing all
nodes not compatible with 7, and then replacing n by v:

P ={p:p<avv (@) nTeep Ap=v"0)}
e For J C Q4, a < K, a permutation 7 of 2% let
gl = {phl:pe 7, e (pn2%),v =r(n)}
e For a collection A of subsets of Q,, and a < k.
Al — {j[a’ﬂ :J € A, 7 is a permutation of 2%}

Easily |[AlY] < & + |A|. If A% = A for all @ < k we say that A is closed under

rational translates.

1.4 The Property Pr(:) and the Nowhere Stationary Ideal

Definition 1.4.1. Pr(x) means there exists A = {A; : i < K} where A; C Q, is a

maximal antichain (or predense) such that for no p € Q, we have
[p] € sety (A) = () sety (Ay).

We define
Spr = A € She 1 Pr(V)}.

Lemma 1.4.2. Let k be Mahlo. Then

X ={X < K : X is inaccessible but not Mahlo}

1§ a stationary subset of k.

12
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Proof. Towards contradiction assume X is not stationary and let £ C k be a club
disjoint from X. Note that A € £'N Sine = A is Mahlo. Let

A = min{acc(E) N Sinc }

and of course acc(E) C E hence A is Mahlo. Clearly ANE is a club of A and because A
is Mahlo S = AN EN Sy, is stationary. Consider the function f : u € S +— sup(ENu)
and note that by definition of A we have f(u) < pu, i.e. f is regressive. Of course \ is
regular, uncountable use Fodor’s lemma to find S’ C S such that S’ is a stationary
subset of A\ and f[]S = ~. In particular S’ is unbounded hence (y,\) N E = {.
Contradiction to A € acc(E). O

Lemma 1.4.3 ((Shelah 2017, 4.4)).
1. If k is inaccessible but not Mahlo then Pr(k).
2. If k is weakly compact then = Pr(k).

3. If k = sup(SE

mc

) then k = sup(Sp,).
4. 1If K 1s Mahlo then S5, is a stationary subset of k. O
Proof.

1. Let E C & be a club disjoint from S and let (a; : i < k) be an increasing

enumeration of E. For i < k let
i ={[v 0] : Ig(v) = o, j > 1} C Qs

and clearly each Z; is open dense. We claim that {Z; : i < x} witnesses Pr(x).

Let p € Q4 and find i* < & such that a;+ > lg(tr(p)). By induction on i € [i*, k)
find v; € 2% N p such that

i*§j<i:>1/jf\1§1w.

[Why possible? Trivial for successor. For limit remember the choice of E.]

Let 7 = U;efi- x) vi- Clearly n € [p] but n € set1({Z; : © < k}).

2. Work as in 1.1.14.

13
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3. By (1).
4. By (1) and 1.4.2. O

Discussion 1.4.4. A similar argument as 1.4.3 shows that for x not Mahlo Q,
adds a Cohen real. This gives a lower bound for the consistency strength of “Q, is

k"-bounding”.

Theorem 1.4.5 ((Shelah 2017, 4.7, 4.8)). Let p € Q,, lg(tr(p)) < a < 8 < k. Then
there exists ¢ < p such that:

(a) tr(p) = tr(q).
(b) Sp\(a, B) = Sy\(a, B) and X € S\ (e, ) = Apx = Aga.
(c) SqN (e, B) € SE:.
In particular for B = k we get
{p € Qx: 5y €nst}
is a dense subset of Q.

Proof. By induction on .
Casel: a=pFVa=08+1.
Trivial because (o, 8) = 0.
Case 2: f =sup(8NSy) + 1, sup(BNSp) € Sp\Sp,-
Let v = sup(8NSp) and use the induction hypothesis for p and («, ) to get ¢. Now
q also satisfies the demands for («, 3) because either v € S, or v € Sf,.
Case 3: B > sup(BNSy,) + 1.
Let v = sup(8NSy) + 1 and use the induction hypothesis for p and («a, ) to get q.
Again easily ¢ satisfies the demands for (a, 3).
Case 4: f = sup(8 N S)).
So (3 is limit and let 8* = cf(8) and let (o; : ¢ < B*) be an increasing, continuous

sequence such that:

14
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3. For every i < 8* we have o; € S,. (Remember S, is not stationary in 3.)
For ¢ < g* find p; € Q4 such that:

1. po =p.

2. tr(p;) = tr(p)

3. Sp\(a, ;) = Sp\(ev, ) and A € Sy \ (v, 05) = Ap, \ = Ap .

4. If j < i then p; < pj, Sp,\(ay, ;) = Sp;\(ay, ) and X € Sy \(aj, ) =
Apix = Ap,

5. If i = j + 1 then S, N (o, ;) € Sp,.

[How can we carry out this construction? For ¢ = j 4+ 1 use the induction hy-
pothesis with pj, (o, o;). For ¢ limit remember that {a; : j < i} is by construction
a club disjoint from Sy, ]

Now g = py is as required.

Case 5: B=0+1,0 € S,\Sp,, 6 > .

So = Pr(9). Find p* € Qs such that:

L tr(p*) = ().
2. Sp* Q (06,5).
3. [p] Cset1(Apys).

[Why possible? Use rational translates.]
Now define ¢ € Q4 by:

1. tr(q) = tr(p).
2. 8, =5,\{0} U Sp-.

3. For A € 5y let
Ap)\ AE Sp\Sp*
Agx = § Apen A€ Sp-\Sp
AP,)\UAP*J\ )\ESpﬂSp*.

Now because ¢ ¢ S; we can work as in case 2 or case 3. O

15
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Definition 1.4.6. Define ideals:

nst, = {S C S{;. : S is nowhere stationary}

nst?’ = {S C SE" : S is nowhere stationary}

The order on these ideals is C*, i.e. set-inclusion modulo bounded subsets. Note
that by 1.4.3(4), for every Mahlo cardinal x the set S[, is stationary; so x Mahlo is

sufficient for nst),' to be proper (i.e., x ¢ nsth ).

1.5 Ideals and Strengthened Galois-Tukey Connections

Definition 1.5.1. Let X be a set and let i C B(X) be an ideal. The equivalence
relation ~; on P(X) is defined by A ~; B < AAB € i. We write X/~; for the set
of equivalence classes.

If j is an ideal containing i, we write j/i for the naturally induced ideal on X/i:
j/i={A/~| A€j}.

Definition 1.5.2. Let X be a set and let i C (X) be an ideal containing all

singletons. Then:

add(i) :=min{|A|: A Ci A UA € i}
cov(i) :=min{|A] : ACi N UA= X}
non(i) :=min{|A| : A € P(X)\i}
cf(i) :==min{|A|: ACi A (VBei)(JA e A) BC A}

For two ideals i,j C P(X) let

add(i,j) :=min{|A| : ACi AN UAEZj}
cf(i,j) :=min{|A| : ACj A (VBei)(FAec A) BC A}.

Fact 1.5.3. Let X be a set and let i C B(X) be an ideal. Then
(a) add(i) < cov(i) < cf(i).
(b) add(i) < non(i) < cf(i).

Fact 1.5.4. Let X be a set and let i~ C i C PB(X) be two ideals. Then:
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(a) add(i) < add(i™,1i).
(b) add(i™) < add(i™,i).
(c) cf(i™,i) < cf(i).
(d) cf(i7,i) <cf(i7). O
Fact 1.5.5. Let X be a set and let i~ C i C P(X) be two ideals. Then:
(a) add(i) > min{add(i™),add(i/i")}.
(b) cf(i) <cf(i™) +cf(i/i7).
Definition 1.5.6. Consider ideals i~ C i CB(X), j CP(U) We call maps
1. o7 :i—j
2. ¢ :j i
a strengthened Galois-Tukey connection if for all A € i, B € j:
p~(B)CA = BC¢(A).

Discussion 1.5.7. Strengthened Galois-Tukey connections are a special case of
what is called a generalized Galois-Tukey connection in (Vojtas 1993) and a mor-

phism in (Blass 2010).

Lemma 1.5.8. Consideri~ CiC P(X),j CB(U) and let =, ¢ be a strengthened

Galois-Tukey connection between them. Then
(a) add(i~,i) < add(j).
(b) cf(i™,i) < cf(j).

Proof.

(a) Let (B¢ : ¢ < p < add(i™,i)) be a family of B¢ € j. Find A € i such that
U<<N ¢~ (B) C A thus UC<M By C ¢ (A).

(b) Let (A¢ : ¢ < p = cf(i7,i)) be a family of A; € i cofinal for i~. Then for
B € j we can find ( < p such that ¢~ (B) C A¢ thus B C ¢T(Ae), ie.
(T (A¢) : ¢ < p) is a cofinal family of j. O
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1.6 Miscellaneous

Definition 1.6.1. Let X C k. Then
1. acc(X) :=={a<k:(FY CX) sup(Y) = a.
2. nacc(X) := X\ acc(X).

Definition 1.6.2. Let id(Cohen,) be the ideal of meager subsets of 2.

18



CHAPTER 2
Tools

In this section we introduce/recall several concepts and tools that will be useful
later. In particular, we give sufficent conditions for the following properties to be

preserved in iterations.
e 2.1: Closure properties, such as strategic closure.

e 2.2: Stationary Knaster, a property that is intermediate between the x™-chain
condition and k-centeredness; this property is preserved in <k-support itera-

tions.

e 2.3: a version of k-centeredness.
(Also, similarly to the classical case, sufficiently centered forcing notions will

not add random reals, and will neither decrease non(Qy) nor increase cov(Qy).)

e 2.4 and 2.5: A property defined by a game, which allows fusion arguments in

iterations with k-support, and implies properness and x"-bounding.

2.1 Closure

Definition 2.1.1. Let Q be a forcing notion. We say that Q is a-closed if for every
descending sequence (p; : i < i*) of length i* < a (with all p; € Q) there is a lower
bound in Q, i.e. there exists ¢ € Q such that for every ¢ < ¢* the condition ¢ is

stronger than p;.
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To avoid confusion we may write <a-closed.

Definition 2.1.2. Let Q be a forcing notion. We say that Q is a-directed closed if
every directed set D C Q of cardinality < a has a lower bound. (A set D is called
directed if any two elements of D are compatible and moreover have a lower bound
in D.)

To avoid confusion we may write <a-directed closed.

Remark 2.1.3. It is customary to write x-closed and x-c.c. for <x-closed and <k-
c.c., respectively.

An iteration in which the domains of the conditions have size < x should logically
be called “iterations with <x*-supports”, or abbreviated “x*-supports”. Conven-
tion, however, dictates that such iterations are called “iterations with k-supports”;
we will follow this convention.

Most of our forcing iterations will have < k-support and behave similarly to finite
support iterations in the classical case; some of our iterations will have k-support,

in analogy to countable support iterations.

Definition 2.1.4. Let Q be a forcing notion and let ¢ € Q. Define the game €, (Q, q)
between two players White and Black taking turns playing conditions of QQ stronger
than ¢, i.e. first White plays py < ¢, then Black plays a condition p; € Q, then
White plays p; € Q and so on. The game continues for xk-many turns and note that

White plays first in limit steps. The rules of the game are:
1. For i < k we require p, < p;.
2. For i < j < k we require p; < pf.

White wins if he can follow the rules until the end.
We say that Q is k-strategically closed if White has a winning strategy for €,,(Q, q)
for every g € Q.

Fact 2.1.5. Let Q be a forcing notion. Consider the following statements:
(a) Q is <k-directed closed.
(b) Q is <k-closed.

(¢) Q is k-strategically closed.
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Then: (a) = (b) = (c). O

Fact 2.1.6. Let P = (P,,Q, : o < 0) be a forcing iteration with <A-support. If for
every o < & we have Py IF “Qq E ¢” then also P = ¢ where ¢ € {“<k-directed
closed”, “<k-closed”, “k-strategically closed”} whenever A > k. In particular, these

properties are preserved in <x-support iterations and in k-support iterations. ]

2.2 Stationary Knaster, preservation in <k-support it-
erations

Discussion 2.2.1. To obtain independence results for the classical case (k = w) we
often use finite support iterations of c.c.c. forcing notions. Such iterations are useful
due to the well known fact that their finite support limits will again satisfy the c.c.c.

In this section we will quote a parallel for the case of uncountable k, first ap-
pearing in (Shelah 1978).

Definition 2.2.2. Let x be a cardinal. Let Q be a forcing notion. We say that
Q satisfies the stationary st-Knaster condition if for every {p; : i < kT} C Q
there exists a club £ C x™ and a regressive function f on E N Sf such that any
L,jeEEN S,’§+ we have that

f@)=r0G) = piLp;
Fact 2.2.3. The stationary x™-Knaster condition implies the x-chain condition.

Proof. By Fodor’s pressing down lemma, the stationary x*-Knaster condition implies
that for every {p; : i < k™} C Q there exists a stationary set S C 1 such for that
any ¢,j € S the conditions p;, p; are compatible. ]

Definition 2.2.4. Let k be a cardinal. Let Q be a forcing notion. We say that Q
satisfies (%) if the following holds:

(a) Q satisfies the stationary x™-Knaster condition.

(b) Any decreasing sequence (p; : i < w) of conditions of Q has a greatest lower
bound.

(¢) Any compatible p,q € Q have a greatest lower bound.
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(d) Q does not add elements of (k1)< (e.g. Q is strategically k-closed.)
Lemma 2.2.5. Let k be a cardinal. Let Q be a forcing notion such that:

1. Q satisfies the stationary k™ -Knaster condition.

2. Qx is k-strategically closed.
Then Q does not collapse cardinals. 0

Lemma 2.2.6. Let Q be a forcing notion that satisfies the k™ -c.c. and let C be a
Q-name for a club of K+ in VQ. Then there exists a club D € V of kT such that
QI-DcCC.

Proof. For every a < k let ¢, be a name for the a-th element of C' and let (Pac
¢ < k) be a maximal antichain such that each ( < k we have p, ¢ IF “¢o = Cay” for
some cq ¢ < k1. Let cq = sup;,(ca,c) and define f(a) = cq.

By induction we construct an enumeration (d, : o < £T) of the elements of D.
For o limit simply let do = supg.,(dg).

Given d, we find dy+1 > d,, as follows. Let (a; : i < w) be a sequence such that
ag = do and for each j =i+ 1 we have oj = f(i) + 1.

Note that

QlFa<éy<co=fla)< fla)+1

and let dyy1 = sup;.,, a;. Clearly do1 > do and Q IF “dyy1 € C”. O
Lemma 2.2.7. Let Q be a forcing notion satisfying:

(b) Any decreasing sequence (p; : i < w) of conditions of Q has a greatest lower

bound.
(c) Any compatible p,q € Q have a greatest lower bound.

Letr = (r; :i <w), s =(s; 11 <w) be two decreasing sequences of conditions of Q
such that for all i < w we have r; L s;. Let v, s be a greatest lower bounds for r,s

respectively. Then r L s.

Proof. For i < w use (c) and let t; = r; A s;. It is easy to see that t= (ti 11 <w) is
decreasing. If i = j+1 then ¢; < r; As; = t;. Thus use (b) and let ¢ be a lower bound
for L. Now check that ¢ is a lower bound for both r and s. Hence ¢ < r,t < s. OJ
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Theorem 2.2.8. Let s be a cardinal. Let <IP’§,Q§ : &€ < 0) be a <k-support iteration
such that for every & < §

Pe I Qg satisfies (x) from Definition 2.2.4.
Then Ps satisfies the stationary k™ -Knaster condition.

Proof. We follow (Shelah 1978). Let {p; : i < k™} C Ps and we are going to find
E, f satisfying 2.2.2.

We inductively define (p' : i < kT, n < w) and (E’g,fg‘,a? 1€ < d,n < w) such
that:

1. For ¢ < k+ we have p? = p;.

2. For ¢ < 4, n < w we have P¢ \F“Eg,f? witness the stationary sxT-Knaster
condition for (p"(¢) : ¢ < k7)”. By 2.2.6 and an inductive argument we have

without loss of generality Eg =E e V.

3. For i < k*,n < w we have pI't! < pp.

4. For i < kT ,n < w, & € supp(p?) we have p?“ I¢ IF “fg‘(z) = a?(i)” for some

%

ag (i) <i. (Remember 2.2.4 (d)).

Now let Ee = |J
of (pf : n < w). Let (£ : @ < k1) be an enumeration of X = J,_,.+ supp(py’). Let

Eg¢ and remembering 2.2.4 (b) let p}’ be the greatest lower bound

n<w

E={i<r":(Na<i)i€ Eg}
be the diagonal intersection “along X”. For i < k™ let:
1. a; =min{y <i: (Vo <) & € supp(p¥) = a < v}
2. B; = sup(supp(py’))-
Note that:
1. Fori e S,’§+ we always have «a; < i.

2. There exists a club E’ C k™ such that for j € E' and i < j we have 3; < j.
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Define
f(@) =", (ag, (i) s a <i,n <w))”

where 77 : kT x (kT)<FX® — kT is a coding function. Let E” C E N E’ be a club
such that f is regressive on E”/NS%" and we claim that f, E” witness the stationary
xT-Knaster condition for (p; : i < k™).

Let i,j € B’ NS5, let f(i) = f(j) and i < j and we are going to show Py Lpy.
We claim exists 7 stronger than pi” and p§ with r(§) = pi’(§) A p§ (§) for § < 4.

We show inductively for § < § that 7[¢ is stronger than p [ and p}'[§ (and that
¢ is well defined). For & limit ordinal or £ & supp(py’) ﬂsupp(p;‘»’ ) this is immediate.

For £ € supp(p;’) Nsupp(py) there is some vy < kT such that £ = &,. Remember
Bi < j hence v < a; = aj < i. Thus agy (i) = agy(j) and by definition of E we also
have 4, j € Ego. So by construction for each n < w we have r[§ IF“pi'(£) L p}(§)”.
Thus by 2.2.7 also 7[£ IF“p(£) £ p¥(§) and let r(§) witness it. O

Fact 2.2.9. Let x be a cardinal. Let Q be a x-linked forcing notion. Then Q satisfies

the stationary x*-Knaster condition. O

2.3 k-centered.,, preservation in <k-support iterations
Definition 2.3.1. Let « be a cardinal, let P be a forcing notion and let X C P.

1. We say that X is linked if for every pg,p1 € X we have py £ p;.

We say that P is s-linked if there exist (X; : ¢ < k) such that X; C P is linked

and
P=]Jx.

1<K
2. We say that X is centered., if for every Y € [X]<" there exists ¢ such that
q <pforeverypeY.

We say that P is k-centered if there exist (X; : i < k) such that each X; C P

is centered.,, and
P=|]JX.

<K
Fact 2.3.2. Let k be a cardinal and let P be a forcing notion. Consider the following

statements:
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(a) P is k-centeredy.
(b) P is k-linked.
(c) P satisfies the k™-c.c.
Then: (a) = (b) = (c¢). O

Definition 2.3.3. Let & be a cardinal. We say that an iteration (Py,Qq : o < ¢) is

k-centered if it has <k-support and
P, IF Qa is k-centered .

Fact 2.3.4. Let (P,,Q, : a < ¢) be a s-centered iteration. Then there exists a
sequences <Ca ta < (), (€q : o < ) such that for all C,, and ¢, are P,-names such

that P, forces:

(a) Cq is a function k& — P(Qy)

(b) ran(Ca) = Qa

(c) i < k= Cu(i) is centered,
(d) ¢, is a function Q, — &

(€) 4 €Qa =g € Caléalq))

Without loss of generality we may also assume that each C’a(n) is nonempty and
closed under weakening of conditions, in particular 1g, € C, (n) for each n.

We shall use this notation throughout this section.

Definition 2.3.5. Let P = (P,,Q, : a < () be a k-centered iteration. We call a
condition p € P fine if for each a € supp(p) the restriction p[a decides some n < k
such that pla IF “p(a) € Cu(n)”. Note that for a ¢ supp(p) this is trivially true

because 1g, is in every Cq(n).

Definition 2.3.6. Let P = (]Pa,(@a s < () be a k-centered iteration. We say that
P is finely <x-closed if for every a < ¢ with cf(a) < s there exist L € V and a

P,-name Li such that:

(a) L} is a function k<" — &
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(b) Py II—“L?X is a function Qg” = Qu.

(c) If ¢ = (g; : i < i*) is a descending sequence of length i* < k in Q, then P,

forces:

(1) L2(q) is a lower bound for g.
(2) ¢a(L2() = Li({(éalds) 1 < i)

The typical situation here is that the coloring of the forcing is essentially some
trunk function so if we find a lower bound ¢ for some descending sequence (g; : i < )

the union of the trunks of the p; will tell us the color of g.

Lemma 2.3.7. Let P = (Po,Qq : a < ) be a k-centered finely <r-closed iteration
of length ¢ < (2%)* then:

(a) P ={p e P:pis fine} is dense in P.
(b) P is k-centered<,.

Discussion 2.3.8. The following proof closely follows (Blass 2011) where the result
is explained for the w-case. The only adjustment we have to make is the demand for
fine closure (as defined in 2.3.6) to deal with the limit case that does not appear in
the w-version of the proof.

This theorem also appears in (Brendle, Brooke-Taylor, Friedman, and Montoya

2018).
Proof.

(a) Let p € P be arbitrary. We are going to find a condition p’ stronger than p
such that p’ is fine. We prove this by induction on § < ¢ for Ps, constructing a
decreasing sequence of conditions (p; : ¢ < ) with p; € Ps such that for each
i < ¢ the condition p;[(i + 1) is fine:

(i) po=p
(ii) ¢ = j + 1: First find ¢ stronger than p;[i such that ¢ decides the color

of p;(i). Then use the induction hypothesis to find ¢’ < ¢ such that ¢
is fine and let p; = ¢’ A p.
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(iii) ¢ a limit ordinal, cf(i) < k: Consider the condition
¢ = (LA((qu(j) sk <i)):j<i) €P;

and let p; = ¢’ A p.

(iv) ¢ a limit ordinal, cf(i) > x: Remember that P has <x-support so this

case is trivial.

(b) By the Engelking-Kartowicz theorem (Engelking and Karlowicz 1965) there
exists a family of functions (f; : ( = k | i < k) such that for any A € [(]<"
and every f: A — k there exists ¢ < k such that f C f;.

For each k < & let
D(i) = {p € B¢ :Va < k: plalk p(a) € Ca(fi(a))}.

It is easy to see that each D(k) is centered, and that every fine p € P is

contained in some D(7). So by (a) we are done. O

Lemma 2.3.9. Let x be an inaccessible cardinal with sup(k N SP) = k. Let P be a
forcing notion that does not add new subsets of 6 for § < k (e.g. P is k-strategically

closed). Then P does not add a Q-generic real if either:
(a) P is k-centered<y, or just

(b) P is (2%, k)-centered<,, meaning that any set Y C P of cardinality at most 2

1s included in the union of at most k-many centered<,, subsets of P or just

(c) if pp € P, p € 2" is a family of conditions, then for some non-meager A C 2~
we have

u € [A]*" = {p, : p € u} has a lower bound.

Proof. Clearly (a)=(b)=>(c). The first implication is trivial. The second implication
follows from the kT -completeness of the meager ideal. So we shall assume (c).

Let p* IF “v is a counterexample and thus e € V for all ¢ < k”. (Recall
that Q. is strategically x-closed.) Let (A : € < k) be an increasing enumeration of
{Ae SE. A >sup(ANSE) . Now for n € 2% let

mc

Ay ={p€2%: (P < k) (3% < A n(a) # p(a)}.
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Clearly 2"\ A, € id™(Q,) C id(Qx) as defined in 3.2.1 but we may argue 2"\ A4, €
id(Qy) as follows: For € 2% and € < k let B, = {p € 2* : p =* } and note that
|Bp,el = Ae, hence By € id(Qy, ). Let S = {Ac : € < s} and clearly S is nowhere

stationary. So for every n € 2" the set
In={pe€Q.:5CS, N (Ve <k) [A >1g(tr(p)) = By € seto(Ap. )]}

is dense in Q, and p € J,, = pIFv € A,”.
Now because 2"\ A € id(Q,) we have p* IF“0 € A:” hence for n € 2" there are
(py, ¢y) such that p, < p*, {, < k, and

Py lFp “if € € [G, k) then (F¥a < A)n(a) # v(a)”.

Hence there exists a non-meager set Y C 2" such that any set {p, : p € Y} of
cardinality <x has a lower bound. Because the meager ideal is k*-complete there
exists (* < k such that without loss of generality n € ¥ = ¢, = (*. As Y is

non-meager it is somewhere dense. So there exists p* € 2<% such that
(Vo €25%) p*<pe2" = (FpeY) oxp.

Without loss of generality lg(o*) = (* (we may increase either value to match
the greater one). Choose € <  such A\ > ¢*. Let T' = {p € 2* : p* 1o} and for each
o €T let n, €Y be such that o<1, Now {n,: 0 € I'} € [Y]<" hence by the choice
of Y there exists a lower bound ¢ of {p,, : 0 € '}

As p* Ik “vle € V7 without loss of generality let ¢ force a value to e, so call

this value v. Now ¢ is stronger than p; . ) and forces A = sup{a < A :

vile,Ne

0* " v[e, Ae)(a) # v(a)}, which means A = sup{a < k : v(a) # v(a)}. Contradic-

tion to the choice of v. O

Remark 2.3.10. Lemma 2.3.9 implies that Q, is not k-centered... However, Q.
has, for every A < k, a dense subset which is k-centered.), namely the set of
conditions with trunk of length > A. This parallels the classical case of random

forcing, which is not o-centered, but o-n-linked for all n € w.

Discussion 2.3.11. The following theorem 2.3.12 is a straightforward generalization
of (Bartoszyniski and Judah 1995, 6.5.30). We formulate it in terms of the ideal
id™(Qx) C id(Qx). For the definition see 3.2.1.
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Lemma 2.3.12. Let k be weakly compact. Let P be a forcing notion such that
(a) P is k-centeredy.
(b) P does not add new subsets of 6 for 6 < k (e.g. P is k-strategically closed).

Let (N, €) < (H(x), €) for some x large enough with N* C N and P € N. Then for
A €id™ (Qx) we have

NN2"CA = Pl “N[GIN2"C A”

where G is the generic filter of P. (As usual, A is to be read as a definition of a null
set, to be interpreted in 'V and VT.)

Proof. Let A € id™(Qj) be witnessed by A= (As:6€8),ie. A= seta(g), and let
P = Ua< Pa and each P, is centered.

Assume there exists P name of a x real 77 € N and p* € P such that
Pl g A7
and without loss of generality even
p*IE “(V6 > o) nld & As” (2.1)
for some &g < k. For a < k,§ € S we define
Tos={ve 20 . (VpePy)(FgeP)g<pandqlk“nléd=v"}

Note that in general we will have p* ¢ N. However, we will have p* € P, for
some «, and the partition (P, : a < k) is in N, as is the family (T, 5 : @ < K, € 5).

None of the sets T, 5 (for all @ < &, 6 € S) is empty. We prove this indirectly:
Assume T, s = (). Then for every v € 29 there exists p, € P, such that p, |- v # 1]4.
Now because P, is centered., there exists a lower bound ¢ for {p, : v € 2°}. Thus
for all v € 2° we have ¢ - v # n]d, contradicting our assumption that P does not
add short sequences.

For oo < & consider the tree that is the downward closure of | J;. g T, 5. Because &
is weakly compact, x has the tree property thus there exists a branch 7, € 2" through
this tree, i.e. for every § € S we have 1,[é € Ty, 5. Note that f, can be calculated
from 7 hence f, € N so by our assumption 7, € A, i.e. (36 € §) 1, € As. Find
a* < k such that p* € Py« and find §* > §p such that ne«[d* € Ag«.
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Let v = 1o+ [0" € Ty« 5+ so there exists ¢ < p* such that
qlFn[é* =v =mne=[0" € A5.

Contradiction to (2.1). O
Corollary 2.3.13. Let k be weakly compact. Let P be a forcing notion such that

(a) P is k-centered.

(b) P does not add new subsets of 6 for 6 < k (e.g. P is k-strategically closed).
Then:

(1) P does not decrease non(Qy), i.e. if non(Qy) = A then P IF “non(Q,) > A"

(2) P does not increase cov(Qy), i.e. if cov(Qx) = A then P IF “cov(Q,) < A7
Proof.

1. Let p < X\ and assume P IF“X = {n; : i < u} is a set of size p’. Find N
as in 2.3.12 with 7; € N for each i < p and |[N| = p. Now because k is
weakly compact by 3.2.5 we have ;1 < non(id™ (Qy)) so find A € id™ (Qj) such
that N N 2% C A. By 2.3.12 we have P [F“X C N|[G] C A”. Le.: For any set
X € VP of size u < A we have X € id ™ (Q,).

2. We show: P does not add a Q-generic real. Assume P I-“n is Qx-generic”.
Find N as in 2.3.12 with n € N and |N| = k. Find A € id™ (Q,) be such that
N N2" C A. Now by 2.3.12 we have P IF“p € N[G] C A € id™(Q,) C id(Qx)”,

a contradiction to 7 being @, generic. O

Remark 2.3.14. So 2.3.13(2) duplicates 2.3.9 but there we do not require x weakly

compact.

2.4 The Fusion Game, preservation in x-support itera-
tions

The work in this subsection can be considered a generalization of (Kanamori 1980,
Section 6), where it is shown how to iterate x-Sacks forcing for inaccessible k. The

games defined in this subsection and the iteration theorem 2.4.8 first appeared in
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(Rostanowski and Shelah 2006) where §}, §. (defined below) are called E)%CA and
D%Za respectively. However §7, §. are slightly more general in the sense that White
may freely decide the length fi¢ of the (-th round during the game (i.e. our games

do not require an additional parameter ).

Definition 2.4.1. Let Q be a forcing notion and let ¢ € Q. We define two (very
similar) games §.(Q, q),§5(Q, ¢) between two players White and Black. A play in
either of the games consists of k-many rounds and for each { < k the (-th round

lasts jic-many moves. The rules of the ¢-th round of the game §.(Q, ¢) are:
1. First White plays 0 < p¢ < k. So White decides the length of the new round.
2. On move i < pi¢:
(a) White plays g¢; < g.
(b) Black responds with q/C,i < qci
The rules of the ¢-th round of the game §(Q, q) are:

1. First White plays 0 < pu¢ < &. For ¢ a limit ordinal we additionally require
K¢ < Supe<§ HMe-

2. On move i < pi¢:
(a) White plays g¢; < g but without looking at any q’C ; for j <i. (Equiva-

lently: White plays all moves of the current round at once at the start of
the round.)

(b) Black responds with q’C’i < qc,
The winning condition of both games is the same:

White wins & (3¢" < q) ¢" IF “(V¢ < k) {qe; 7 < pctn Go # 0.
where G@ is a name for the generic filter of Q.

Discussion 2.4.2. In point (1.) of the definition of §(Q,q) we could be slightly

more general: Instead of sup any function f : k<"

— k that gives us an upper
bound for ji based on upper bounds for the p will do. (This is simply a technical

requirement for the proof of 2.4.8.) So we could define Sh s (Q,q) and let F5(Q, q) =
:,id (Qa Q) .
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Discussion 2.4.3. The typical forcing for which White has a winning strategy for
the games defined in 2.4.1 is a tree forcing permitting fusion sequences. See 6.9.6 for

an example.

Fact 2.4.4. The game §7, is slightly harder for White than the game §, hence: If
White has a winning strategy for §%(Q, ¢) then White has a winning strategy for

3+(Q, q).

Definition 2.4.5. For technical reasons we define the game §5(Q, ¢, A) for A < k.
The rules are the same as for §5(Q, ¢q) except the first A rounds are skipped and
the game starts with the A-th round. So this is really just an index shift. Of course
55(Q,q) = F5:(Q,q,0) and easily for every A < k White has a winning strategy for
§5(Q, q) iff he has a winning strategy for §5(Q, g, ).

Fact 2.4.6. Assume White has a winning strategy for & € {F.(Q,q),Fx«(Q,q)}.
Then without loss of generality during a run of & White only plays moves ¢¢; such

that there exists 6 ; € He<g Lte With

/

l.e<d< (= e, i(c) < 96.005)-

2. €<C=drg (o S i

Consider the tree

T=J U b

(<K i<pe
Then a condition ¢* witnesses a win for White iff ¢* I+ *“for every { < k there exists

a branch 6 of T of length ¢ such that for every e < ¢ we have qéﬁ- € G’Q”.

(e)
Theorem 2.4.7. Let Q be a forcing notion. If for every q € Q Black does not have
a winning strategy for the game F.(Q, q) then:

(a) If A is a Q-name such that q IF“{A| < k” then there exists B € V, |B| < k
and ¢* < q such that ¢* I A C B.

In particular Q does not collapse k™.

(b) Q does not increase cf(Coheny), and in fact: if (A; : i < p) are a cofinal

family of meager sets in 'V then this family remains cofinal in V@,

(c) Q is k"-bounding.
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Proof.

(a) Like (b), just easier. But let us do it for warmup.

Let (a; : ¢ < &) be such that ¢ I- {a; : ¢ < x} = A. Now consider a
run of §,(Q,q) where Black’s strategy is to play in such way that for each
¢ < K,i < pg¢ there is b¢; such that qé’i IFac = b¢;”. Le., every move Black
makes during the ¢-th round decides a.

By our assumption White can beat this strategy thus there exists ¢* < ¢ such
that ¢* IF A C {bc;: ¢ < ki < p¢ < K}

(b) Let us show: if M is a Q-name and ¢ IF“M is nowhere dense” then there
exists a nowhere dense set N € V and ¢* < ¢ such that ¢* IF M C N. Since
meager sets are the union of k-many nowhere dense sets, we can then use (a)

to conclude the proof.

We are going to find ¢* < ¢ such that for each s € 2<% there exists t5 > s
such that ¢* IF” M N [t] = 07 so

N =2%\ ] [t]
s€2<kK
is as desired.

Let (s¢ : ¢ < k) be an enumeration of 2<*. We will define a strategy for player
Black. In addition to his moves (q’C ;» he will construct elements t;; € 2<%

satisfying the following properties:

(a) s¢ D¢
(b) (Ujcites) Stci

¢) ¢ IF<M N [te;] =07, (and of course ¢ . < qc, as required by the rules
C ? C’ C (2 C7
of the game).

Why can Black play like that?

(a) Obvious.
(b) Obvious for i successor. For 7 a limit ordinal just remember i < p¢ < k.

(c) Remember q;; <g¢ l-“M is nowhere dense”.
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Let t; = Ui<u< te,i- Again White can beat this strategy so there exists ¢* < ¢

as required.
(c¢) Like (b). O

Theorem 2.4.8. Let P = <]P’a,Qa ta < a*) be a k-support iteration and let p € P
such that for all @ < o*:

(a) plo - “Qq is k-strategically closed”.

(b) pla lF “White has a winning strategy for §(Qq, q) for every q < p(a)”.
Then:

(1) White has a winning strategy for §.(P,p).

(2) If White plays according to his strategy from (1) in a run <p<7i,p’gi (<
Kyi < pic) of §x(P,p) then there exists p* witnessing White’s win such that
for all a < o we have p*la H—“(pg,i(a),plgi(a) 1 ¢ < Ryt < pe) is a run of
55 (Qq, p(ar)) won by White and White’s win is witnessed by p*(«a)”.

Discussion 2.4.9. Note that the proof of 2.4.8 also works for k = w.

Proof. Let p € P and we are going to show how White can win § (P, p) by finding
p* < p witnessing White’s victory while also being as required by (2). We are going

to construct at sequence (p¢ : ¢ < k) such that
1. (<k=pceP.
2. po =p.
3. € < (= pe>pe.

of which p* is going to be a lower bound (but remember that under our assump-
tions the lower bound of a k-sequence does not exist in general so we will have to

construct p*). We are also going to construct a sequence (F¢ : ¢ < x) such that

2. ( < k= F¢ Csupp(pe).

3. (<K= |F]|<k.
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4. €<C:>F€ch.

and we are going to use bookkeeping to ensure ' = U<<n Fe = U<<n supp(p¢) which
is also going to be the support of p*.

Furthermore we are implicitly going to construct strategies for Black in the games
3 (Qa,p(a)) for o € F. Then we will choose p* = (¢ : o € F) where §, witnesses
that White can beat Black’s strategy.

What does White play in the ¢-th round?

Let (oce: €< §Z> enumerate F¢. For { < we want to play the ¢(-th round of

the game 3,’2(@04“7 p(ace)) where White plays according to the name of a winning
strategy (White sticks to same strategy throughout the proof of course). To make
notation easier we do not want to keep track of when o, first appeared Fe for
some € < (. Instead let e = min{e < ¢ : ac¢ € F.} and assume we are play-
ing SZ(Qacyg,pggé(agg),6475). Le., we are playing in the ¢(-th round for each agg.
See 2.4.5.

By induction (we are going to address this further down) we assume for each
&< 52‘ that pclace IF “fiac ¢ < Hacec” for some g, ¢ < k where fin, ¢ is the
length of (-th round of 7 (Qa, s Pe. ¢ (ace), €c¢) as decided by the name of White’s
winning strategy. Then there exist (in V where we are trying to construct a winning
strategy) not necessarily injective enumerations (qa, ¢, 1 % < fla ) of the moves
that White plays according to the name of his winning strategy in the (-th round
of 32(@%@,]96“ (ace), €ce). To make notation easier easier we only do the proof for
the special case where White always plays an antichain (but the proof works even if
White doesn’t).

Let pe = |H5<§E [acec| and this is what White decides to be the length of
the ¢-th round of §.(P,p). Remember that x is inaccessible so indeed ¢ < k. Let
(A¢,i 14 < p¢) enumerate H§<5Z [ac.e.c- Now we construct a sequence (p¢; : i < fi¢)
(of course anything that is not explicitly stated to be done by Black is part of White’s

strategy that we are currently constructing):

1. First we find p¢ g < pe for every e < ¢ as follows:

e If there is no § < & such that a = ac¢ then let pco(a) be such that
peola lF peo(a) < pe(a) according to a winning strategy for White in
¢(Qa)-
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o If there is £ < & such that @ = a¢e then let pco(a) be such that
p<70 ra H_“p<O (a> = \/'y<,ua’§ q.O‘vC:’Y”'
Remember 2.4.6 so without loss of generality this implies

peola ke (o) < pe(a)”.

2. For the i-th move of the {-th round White plays p'w where

Pl () = Peiace) A dacecnte i @ = age for some & < £F
¢ pei(a) otherwise.

3. Black responds with pzﬂ. < p’CZ

4. Let p’C”i be such that for a < a* we have

/11

plila - “pdi(a) < pf () and p’;(a) is a according to
a winning strategy for White in @(Qa)”.

5. Let p{i be defined by

/11

P () = (Pe,i(ac,e)\dag e cauten) V PLilace) i = agg for some £ < &
¢, p/g”z (a) otherwise.

/"1

and easily check Pei < p-

6. If i = j + 1 then let p¢; = p’C’fj. If i is a limit ordinal, then we find p¢; < p¢ ;

for every j < ¢ as follows:

e If there is no § < £ such that o = ag¢ then let pe,i(a) be such that
peila IFpei(a) is according to a winning strategy for White in Qﬁ(@a)

b

for the sequence (p¢ (o) : j < i)
e If there is { < £ such that o = ac ¢ then let p () be such that
peilalk “pei(@) = \/ ician
'7<Ma,(

where pe;la -7 ; o~ is according to a winning strategy for White in

¢(Qa) for the sequence (p¢ (@) A dacn:j < i)'
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Finally let p¢ be a lowerbound for (p¢; : ¢ < p¢) as in 6. (but not really, we have
to do some preparation work for the next step first, see below). Now the strategy

for Black in §}(Qa . p(g.e)) is to play pe(ace) A dageci
Preparation for the ¢ 4+ 1-th round.

We still have to address why the 4, ¢ exist but having understood the proof
to this point this is now easy. Let Fry1 = Fr U {a} for some o € supp(p¢)\Fe, if
such « exists (and remember to use bookkeeping). Now for every o € Fq work as
above on p¢[a and Fr Na but instead of taking a response from Black in (3.) White
responds to himself deciding 1o, ¢41.

So we have prepared for ¢ + 1. But what about limit steps? Remember that
the rules of §y state that fi, ¢ < SUDc<¢ flave- So if we let Fy = U€<< F all is good
because having an estimate for successor steps gives us an estimate for limit steps.

Why does White win?

Because for a € F = UC<H F¢ there exists a Qqu-name ¢}, such that pla I-“g},

witnesses that White wins if Black plays as described above in §(Qq, p())”.
By construction p* = (¢ : @ € F) is as required. O
2.5 Fusion and Properness

In this subsection we give a sufficient condition for a limit of a <k-support iteration
to be k-proper, namely, the existence of winning strategies for the games S;(QQ) for
all iterands Q, encountered in the iteration.

We also show that if all iterands have cardinality <s*, and the length § of the
iteration is <x™T, then the resulting forcing Ps has a dense set of size k™ and in

particular will still satisfy the x**-c.c.

Definition 2.5.1. In this section we consider an iteration P = (P,,Q, : o < 6)
with limit Ps such that:

1. 6 <kt
2. P has k-support.
3. White has a winning strategy for SZ(QQ, q) for every a < ¢ and ¢ € Qa.

4. In VP the forcing Q, has size at most x7.
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For oo < 6 let i)a be a P,-name of a one-to-one map from ' onto Qa.

Lemma 2.5.2. Let (N, €) a model of size k, closed under <k-sequences, let R be
an arbitrary forcing notion such that R € N and (N, €) < (H(x),€) for some x
large enough. If White has a winning strategy for §.(R,p) then for every p € RNN
there exists ¢* € R, ¢* < p such that q* is N-R-generic. This means:

1. For every mazimal antichain A of R with A € N we have

¢ IFANNNGR £ 0.

2. Or equivalently: for every name 7 of an ordinal with T € N we have

¢ -+ € N.

Proof. Note that because |N| = k there are at most k-many names of ordinals in N.
By our assumption White has a winning strategy for §,(R, p) and because N is an
elementary submodel White has a winning strategy that lies in N. Now consider a

run of the game where:

1. White plays according to his winning strategy in N. By induction all these

moves are in N by our assumption N<* C N.

2. Black decides all ordinals of N such that they lie in N by playing p/C,i € N for
¢ <k, < .

Now ¢* witnessing White’s win is N-generic. O

Definition 2.5.3. Let R be a forcing notion. Consider a run of the game & € {F,, 5%}

where:

1. White wins.

2. Black plays p’ = <p’<l DC < Ryt < ).
Then we call ¢* witnessing White’s win a &-fusion limit of p'.
Corollary 2.5.4. Let P be as in 2.5.1. Then:

(a) For every p € PN N there exists a generic condition ¢* < p that is a §x(P)-
fusion limit of p’ with pgi €N forall ¢ <k, i < p¢. (However, in general we
will have ¢* ¢ N.)
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(b) Furthermore for a < & we have ¢*|a IF “g* () is a §(Qq)-fusion limit”.
Proof.
(a) By 2.5.1(3) and 2.4.8(1) White has a winning strategy for §. (R, p) so use 2.5.1.
(b) By 2.4.8(2).
O

Definition 2.5.5. For a < k a condition p € P, is called a H,-condition if for every
B < o the Pg-name p(f) is a Hy-Pg-name.
For @ < § we inductively define the notion of a H,-P,-name. On the one hand

we consider H,-names for elements of s, on the other hand for elements of Q.

1. 7 is a Hy-name for an element of x* iff by(7) is a H,-name of an element
of Qq. (bo was defined in 2.5.1.)

2. For every v € kT, the standard name ¥ is a H,-name.

3. For every sequence ((p;,7;) : i < k) where p; are H,-P,-conditions and 7; are
H,-P,-names there exists a H,-name 7 forced to be equal to 7; where 7 is the

least index such that p; € G[p: if such i exists, 0 otherwise.

4. For every §7. (Qa)—fusion sequence p’ where plg,z‘ are H,.-P,-names for elements
of Qa there exists a H,-name 7 that is forced to be equal to the condition

witnessing White’s win. (If it exists; 0 otherwise.)

Remark 2.5.6. The “H,”’-names are an easy generalization of the “hereditarily
countable” names appearing in (Shelah 1998, 4.1), see also (Goldstern and Kellner
2016).

Lemma 2.5.7. For every condition p € P there exists a H,-condition q* < p.

Proof. First let N be a model of size k with p,P € N and let ¢* be a §(P)-fusion
limit with p}.; € N as in 2.5.4.
Now we will try to find a H,-name for p’cﬂ-(a), for all (, a0 < k,@ < pic.
For « € supp(q*) we define p’c”i(a) as follows. We find (in IN) a maximal antichain
A = A¢ i that decides l');l(p’cyi(oz)), Le. there exists a function f = fc;a: A — KT,
such that for all r € A
rlk (@) = ba(f(r)).
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Let A’ = ANN. Consider the sequence ((r,b,(f(r))) : » € A’). This family defines
a Hy-name pf ;().
Now because ¢*[a is N-generic
q T Ik P,QJ;(O‘) = plg/,z'(a)
Hence ¢* [« forces that ¢*(«) is equal to a witness of White’s win against p’c’,i(a), ie.

q*(a) is a §F5(Qq)-fusion limit. Hence ¢*(«) is a Hy-name so ¢* is a H,-condition.
O

Corollary 2.5.8. Let Ps be as in 2.5.1 (so in particular 6 < k* ). Then there exists
D C Ps such that

1. D 1is dense.

2. |D| =xT.

3. Ps has the k™1 -c.c.
Proof. Follows immediately from 2.5.7. O
Corollary 2.5.9. Assume 2% = kT, and let P = (Po, Qq : a < k) be an iteration
with limit P ++ satisfying the following:

1. P has k-support.

2. For each a < k1 we have P, IF |Qq| = 2.

3. For each oo < k™t and each name ¢ € Qq, Py forces that White has a winning
strategy for the fusion game §:(Qa,q). (Defined in 2.4.1, see 2.4.3 for which

forcings this may be the case.)
Then we have:

(a) For each o < k™ the forcing notion Py has a dense subset of cardinality k™.
(b) For each oo < Kkt Py forces 2% = k™.

(c) For each § < k*T, Ps has the kTt -c.c.

Proof. The k™ T-c.c. of P4+ follows by the Solovay-Tennenbaum theorem from the
fact that P uses direct limits on a stationary set, namely, the set of ordinals of
cofinality . (See (Solovay and Tennenbaum 1971).)

The rest just summarizes previous theorems. O
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CHAPTER 3

Smaller Ideals

In this section we first describe two ideals wid(Q,) and id™ (Qj), both of which are
closely related (and often equal) to id(Q,). We then give a more “combinatorial”
characterization of add(Qy) and cof(Qy), involving the additivity and cofinality of

the ideal nsty’ of nowhere stationary subsets of S, C &.

3.1 The ideal wid(Q,)

Definition 3.1.1. For id(Qj) we allow x many antichains to define A € id(Q,). But
we may also consider the weak ideal wid(Qy) of all sets A C 2" such that for some

maximal antichain A (or equivalently: every predense set A) we have A C setg(A),
where seto(A) := 2"\ U, 4[P]-

Lemma 3.1.2.
(a) wid(Qx) C id(Qx).
(b) wid(Qy) = id(Qw) iff ~Pr(x).
(¢) wid(Qy) is K-complete.
Proof.

(a) Trivial: If A witnesses A € wid(Qy) then A = { A} witnesses A € id(Qy).
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Chapter 3. Smaller Ideals

(b) Assume = Pr(k). Let A be a set of at most k-many maximal antichains of Qj
and without loss of generality assume that A is closed under rational shifts,

i.e. for all n1,m2 € 2% we have
m="mn = [m €seto(A) & n2 € seto(A)].

Let A C setop(A). By our assumption about x there exists p € Q, such that
[p] C set1(A) and let p be witnessed by (7,5,T"). Let

A ={q € Qy : q is witnessed by (p, S, 1:) for some p € 2<%}

and check that A is predense. Now easily ¢ € A = [¢] C setg(A) hence
setq(A) C set1(A) hence A C setp(A), i.e. A € wid(Qy).

Conversely assume wid(Q,) = id(Q,) and let A be a set of no more than
k-many maximal antichains of Q.. By our assumption there exists a maximal
antichain A of Q. such that

L Ip] = set1(A) C seta (M)

peA

Hence for any p € A we have [p] C set1(A); as A was arbitrary, we get = Pr(k).
(c) Because Q, is strategically x-closed. O
Lemma 3.1.3. Consider the usual forcing ideal
fid(Qy) ={AC2: (Vpe Q)¢ <p) [d N A =0}
Then we have id(Q,) = wid(Qy).

Proof. Let A € wid(Qj) be witnessed by A. Now for any p € Qj there exists p’ € A
such that p and p’ are compatible. Let ¢ = p N p’ and clearly A N [q] = 0, hence

A € fid(Qy)
Conversely if A € fid(Q,) then the set D = {q : [¢) N A = 0} is dense. Choose
any maximal antichain A C D, then A will witness A € wid(Qy). O

3.2 The ideal id (Q,)

Definition 3.2.1. The ideal id™(Q,) consists of all sets A C 2% for which there

exists a nowhere stationary set S C S . and a sequence A= (As : 9 € S) such that

mc
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each Ags is a set of at most d-many maximal antichains of Qs such that

—

A Cseto(A) ={ne2¥: (3% €8) nld € seto(As)}

For a nowhere stationary set S C S = we define id™ (Qy,5) to be the ideal of all
sets A such that:

1. Aeid (Qg).
2. A is witnessed by a sequence (A4s : 0 € W) such that W C S.

Note that we are often lazy and use the notation add(Qy). This always means
add(id(Qy)), never add(id™ (Qy)). The same applies for cov,non and cf.

Lemma 3.2.2. id™ (Q,) C wid(Qx).

Proof. Given S C SF and A= (A5 : 0 € 8) let p, € Q. be the condition witnessed

mc

by (p, S, 7&) and let D = {p, : p € 2<"}. It is easy to check that seta(f\) C seto(D).
O

Theorem 3.2.3. Let k be a weakly compact cardinal. Then id™ (Qy) = wid(Qy).
Lemma 3.2.4. id™(Qy) is <k -complete.

Proof of Lemma 3.2.4. For i < k let (S’i,f\i) represent A; = seta(Ki) € id™ (Qx).
Let
S*={d<k:(Ji<d)de S}

be the diagonal union of S; and for 6 € S* let A5 = U{A;5:4 < 0} and easily
U A; C sety (7\*)
1<K
O]

Proof of Theorem 3.2.3. Let D = {p. : ¢ < k} C Q4 be a maximal antichain wit-
nessing A C seto(D) € wid(Qy). For € < k let p. be witnessed by (7, Se, A¢) Using

weak compactness we find a sequence (J,, : @ < k) such that

1. 6, € SE

nc*

2. 0q > SUPg<q Oa-
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3. Dy = {p. N 2% : ¢ < §,} is a maximal antichain in Qs, .

Let

S; = ( U Se)\éa

€<l
and let
St = U ShU{da:a < K}

a<k

It is easy to check that S* is nowhere stationary. For § € S* we define

A;={JAsU

<0

{Dy} if § =, for some o < K
0 otherwise.

We claim that seto(D) C sety (7\*), witnessing A € id™ (Qy). Let n € seto(D).

Case 1: (I%a < k) N[dq € seto(Dy). Thus clearly 7 € set (K*)

Case 2: (V°a < k) N]da € set1(Dy). So 7[da € [pe, N 2%] for some €, < dq
for almost all (or just infinitely many) o < k. However n € seto(D,) implies that
n & [pe,]. Hence there exists § € Se,\0n such that n[d € set; (A, s). Recall that
Ac, s € Aj and thus n € setO_(X*). O

Corollary 3.2.5. Let k be a weakly compact cardinal. Then id™ (Q,) = id(Qy).

Proof. By (Shelah 2017, Observation 4.4) k weakly compact implies = Pr(x) which
by 3.1.2(b) implies wid(Qyx) = id(Qx). So by 3.2.3 the result follows. O

Lemma 3.2.6. Let S C k be nowhere stationary. Then we can find:

1. A regressive function f on S.

2. A family {Eq : a < k,cf(a) > w} where Ey C « is a club disjoint from SN a.
such that:

(a) (V6 € k\w) [{A € S\d: f(A) <} <6.

(b) (Va)(VA € Ey) 0 > A= f(5) > A

Proof. We prove by induction on 3 < x that we can find a regressive function fz on
SN and a family {E, : « < §} with the required properties. For 8 = k the result

follows.
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3.2. The ideal id™ (Qx)

Case 1: 8 > sup(S N B). Obvious.
Case 2: B = sup(S N ), cf(B) > w. Let Eg = (a¢ : ¢ < cf(B)) be an increasing
continuous cofinal sequence in (3, disjoint from S.
Let
SC =5nN [OzC,OéC_H)
and let f: be a function on S¢ from the induction hypothesis. Without loss of

generality A € S¢ = fe(A) > a¢. [Why? Just round up, i.e., replace f¢(A) b

max(ay, fc(A))]. The new function is still regressive, because a¢ ¢ S.) So

U %

¢<cf(B)

is as required.

Case 3: B =sup(S N P), cf(f) = w. This is similar to Case 2: Fix an increasing
sequence (o, : n € w) cofinal in . Define f(ap41) := o, and use the induction
hypothesis to get f[(an, ant1). This does not violate (a) because we require § > w
there.

By construction, the sets E3 have the property (b). O

Theorem 3.2.7. Let A € id™ (Qy) be represented by A= (As : 6 € S). Then there
exists A’ € 1d™(Qy) represented by A = (A5 : § € S’) such that:

1. ACA

2. S' € nstY

3. SnS;Cs

4. 6€SNS" = As CAj.

Proof. First without loss of generality we assume A is closed under rational translates
(see 1.3.3) and in particular As are closed under rational translates. For 6 € S\SF,
find ps € Qs witnessed by ({),I's, Ss) such that [ps] C As. By 1.4.5 we may assume
S5 C Sgr.

Now let f be a regressive function on S as in 3.2.6 and let

S=(nspu Y 55\ +1)
deS\S5,
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and for § € S’ let

As S§€S5NSE

0 otherwise.

Ag = U{F(;*ﬁ 20" >60> f(o)uU {

Why is S’ nowhere stationary? Let o < &, cf(a) > w. Why is S’ N a not stationary

in a.
e a>sup(SNa). Use 3.2.6(a).

e o = sup(S N a). For the part of S’ N « that comes from S5 with § < «
use 3.2.6(b) to show that the club set E, is disjoint to Ss\(f(d) + 1), for all

0 < o For the part that comes from Ss with § > « use (a) as above.

See 3.3.16 for the same argument carried out in more detail. Similarly argue [Aj| < 6
that.
Now check that S’, A’ define a set A’ € id™ covering A. O

3.3 Characterizing Additivity and Cofinality

Lemma 3.3.1 (Null set normal form theorem). Let k = sup(Sinec N k) and let
A €id(Qyg). Fore < k let W, C k = sup(W,) and otherwise arbitrary (e.g. disjoint).
Then there exist S, A = (As : 5 € S), p, T = (J. : € < k) such that

1. S C Kk is nowhere stationary.
2. S CSE
3. p={p,: p € 2<%} where p, € Q. is witnessed by (p, S, K)

4. T C{pp : p € 2% N lg(p) € W} is predense in Q. (or even a mazimal

antichain).
5. A Cseto(J).

Discussion 3.3.2. So the idea is as follows: a general null set A is represented by
k-many antichains each consisting of xk-many conditions that are all witnessed by
different nowhere stationary sets S and sequences A. But using a diagonalization
argument we find a representation of the null set using only a single S and A.
Lemma 3.3.1 first appears in (Shelah 2017, 3.16) but we repeat a sketch of the

proof here for the convenience of the reader.
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Proof. Let A € 1d(Qj) be witnessed by (Z. : € < k) maximal antichains of Q,. Let
Te = {pei : i < K} and let p.; be witnessed by (T€7i,S€7i,K€7i). By 1.4.5 we may
assume without loss of generality S¢; C S5,
Let
S={0ek:(Fe,i<d)de S}

and it is easy to see that S is nowhere stationary. For § € S let
As=U{A¢is:€<0,i<6,0€Sc;}
and it is easy to see that |As| < J. Finally let
Je=1{pp: (F,e <k)ie<Ig(p) € We A nei > p}.
Now check. O
Corollary 3.3.3 (Baire’s theorem for id(Qy)). The ideal id(Qy) is not trivial.

Proof. If k > sup(Sinc N k) then id(Qy) = id(Coheny) so the corollary follows from
Baire’s theorem for the meager ideal on 2.
If K = sup(Sinc N &) let S, p, (Je : € < k) be as in 3.3.1. Let E C x be a club

disjoint from S. We construct an sequence (p. : € < k) of p. € 2<% such that:
1. py. € Te.
2. (<e= pc D pe.
3. (As a consequence:) ( < € = p,. < Py, and in particular pe € p,..
We work inductively: If e = ( 4+ 1 find p. € J. such that:
(a) pp. £ Do,

(b) (g(pe),1g(pc)) N E #0

If € is a limit then let p = ... pc and find pe > p; as above. (Letting ¢ := lg(p;)
we have ¢ € E, so no branches die out in level 4, so p; € p,. for all { <e.)
Finally let n = {J.., pe and clearly 1 € set1(J), i.e. seto(J) # 2". O

Lemma 3.3.4. Let x be Mahlo (or at least Sf, stationary). Then there exist maps

1. ¢t :id(Qy) — nstd
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2. ¢~ :msth —id " (Qx)
such that for all S € nsty , A € 1d(Qy):
p (S)CA = SC"¢t(A).

Discussion 3.3.5. Lemma 3.3.4 first appears implicitly in (Shelah 2017) but proving
it in terms of the id ™ (Qj) ideal and strengthened Galois-Tukey connections may be

more transparent.

Proof. For X € S{" let A} witness A € SL'. For S € nst}’ define
¢ (S)={ne2":(3°5 € S) nld €set(A})}

and for A € id(Qy) define ¢+ (A) = S where S is as in 3.3.1.

Now let A € id(Qy), S* € nstl be such that S* Z* ¢ (A) and we are going to
show ¢~ (S*) € A. So let (S,T\,ﬁ, j) be as in 3.3.1 for A (so ¢T(A) = S). By our
assumption S’ = S*\S is unbounded. Easily we can find an unbounded set S” C S’
with its closure E disjoint from S. (Simply take a club C' disjoint from S and working
inductively for € € C take A € S” such that e < \.)

We are going to inductively construct a <-increasing sequence (n; : i < k) in

n; € 2<% and an increasing sequence (J; : i < k) of §; € k such that for i < k:
(a) [mi] = 6
(b) 0; € E (thus in particular ¢; & S)
(c) i=j+1=0; € S” (thus in particular ¢; € S*)
(d) [pn] € Mj<iset1(T))
(e) i=j+1=n; €seto(A])

Now let n = and note that

i<k Th

e 1€ ¢ (S*) by clause (e).

e 1 ¢ A by clause (d).
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It remains to prove that we can indeed carry out this induction. The case ¢ = 0
is trivial. For i limit let n; = {J;_, n;. (remember (b)).

For i = j + 1 consider p;,. Because J; is predense we find p € 2<% such that
pp € J; and py;, p, are compatible with lower bound p,, v = p Un;. Choose §; € S”
such that &; > |v|. Now we have that [p, N 2<%] ¢ set1(Aj,) so choose 7; € [p, N
2<%\ set1(Aj,) and note that because &; ¢ S we have n; € p,; hence p;, C p,,. O

Theorem 3.3.6. Let x be Mahlo (or at least Sy, stationary). Then:

1. add(id™ (Qx),id(Qx)) < add(nsth").

2. cf(id™(Qu), id(Qy)) > cH(mst).
Proof. By 3.3.4 and 1.5.8. 0
Corollary 3.3.7. Let k be Mahlo (or at least Sy, stationary). Then:

1. add(id(Qy)) < add(nsty").

2. add(id™(Qy)) < add(nst}").

3. cf(id(Qx)) > cf(nsth).

4. cf(id™(Qy)) > cf(nstk)). O
Definition 3.3.8. We define

Qs ={reQs: 5 C S}

Note that we have Q, g C Q;‘; g but in general equality does not hold.

Theorem 3.3.9. Let k be Mahlo (or let at least Sy, be stationary). Then

add(id(Qx)) = min{su, p2}

where
e ;1 = add(nst}).

o p2 = min{add(id(Qj, 5),1d(Qx) : S € nsty'}.
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Proof. Let = add(Qy). p < py follows from Theorem 3.3.6 (remember 1.5.4) and
p < po is trivial. So it remains to show that p > min{puy, pa}.

Let A; € id(Qy) for ¢ < ¢* < min{u, uo} and let (Si,f\i,ji,ﬁi) be as in 3.3.1.
By 1.4.5 we may assume that S; € nsth and because i* < p; there is S € nsth
such that ¢ < i* = 5; C* S. Thus easily A; € id( :S) and because i* < us we have

O

Theorem 3.3.10. Let x be Mahlo (or let at least Sf, be stationary). Then

cf(id(Qx)) = p1 + 2

where
o 11 = cf(nst}).
o pz = sup{cf(id(Q} 5)),id(Qyx) : S € nsty'}.

Proof. Let u = cf(Qg). p > pp follows from Theorem 3.3.6 (remember 1.5.4) and
W > po is trivial. So it remains to show that p < pg + po.
Let (S¢ : ¢ < p1) witness pg and for ¢ < p let (A¢e @ € < pg) witness

cf (id( szg)),id(Q,@) < pa. We claim that

{Ace: ¢ < e < pg}

is a cofinal family of id(Q,). Thus let A € id(Q,) be arbitrary and let (S, A, 7, p)
be as in 3.3.1. By 1.4.5 we may assume that S € nsth and find ¢ < u1,a* < k such
that S\a* C Sc\a*. For 0 € S define

v [N ifoes\at
710 g Sord<ar

Now for each ¢ < k correct J; to J/ such that it uses only trunks of length greater
than a*. Thus we have found A" C A and A" € id(Q}; Sg). Hence there exists € < o
such that A" C A¢ . O

Definition 3.3.11. Let S C k and we define

s = (] [ (id(Qs)/1d™ (Qs)), <*)

0es
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where the intended meaning of <* is pointwise set-inclusion for almost all places of
the product. Writing [As] for the id ™ -equivalence class of Ag, for A = ([As] : § € 5),
I'=([[s] : 6 € §) € Ilg we define

A<'T & (V95 € S) As\Ts € id ™ (Qy).
Lemma 3.3.12. Let S € nst,, sup(S) = k. Then there exist maps:
1. ¢" 1 id(Qy) — Mg
2. ¢ i Thg — id~(Q)
such that for all Ac IIg, A €id(Qy):
(M CA = A<*oT(A).

Proof. Then for A= ([As] : 6 € S) € IIg define ¢*(K) = sety ((As : 0 € 5)). Given
A €id(Qy), find any A as in 3.3.1 and define ¢ (A) = A|S.
Now assume A € id(Qy), A* € IIg such that A* £* ¢ (A) and we are going to

show ¢~ (A*) € A. Let A = ([A3] : 6 € S) and for A there are (as in 3.3.1) SA,j,
A= (As:6€854) =9¢T(A) (without loss of generality (S4 2 ) such that we have
(376 € S) =(seto(As) 2 seto(A3)) mod id™(Qy)).
Let Bs = set1(As) Nsetg(Aj). Hence by the above we have
(36 € §) Bs ¢ id™(Qs).
We are going to show
(%) there exists n € (2%\A) Nset, (K*), witnessing set (K*) Z A.
Without loss of generality assume closure under rational translates, i.e. seto(Ag)/?) =

seto(As) for f < é € S, and clearly we may assume the same for A,

N

Claim: Let p, € Q, be the condition witnessed by (p, Sa, A). Then for all p € 2<%,
there exists § € S\(Ig(p) + 1) such that

(pp N 2%) Niseto(A]) # 0.
To see this choose § > lg(p) such that Bs € id™(Qs) and let

Cs={ne2’: (¥ o € 84N3d) nlo € sety(A,).}
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The idea is that C is a set of candidates for elements of pp025. Towards contradiction
assume that
Cs C seto(Ag) U Setl(AE) = —Bs

i.e. every candidate either dies out at level ¢ by definition of p, or is not in seto(Aj}).

N

But clearly Cs = seti(A]d) i.e. is a co-id™ (Qys) set, contradicting Bs ¢ id™ (Qs).
Hence there exists n € Cs N Bs. Now use the closure under rational translates and

choose 3 € (lg(tr(p,)), d) large enough such that for v € 2° N p, we have

vIB7nl(B,08) € (pp N 2°) Nseto(Af).

This concludes to proof of the claim.
Now fix a club E disjoint from S and work as in 3.3.4 constructing a <-increasing
sequence (n; : i < k) of 1; € 2<% and an increasing sequence (J; : i < k) of §; € K

such that for i < k:

(a) [mi] = &

(b) i=j+1=0;€8.

(c) i limes = §; € E.

(d) [pn] € mj<i set1(Jj).-

(e) i=j+1=n; €seto(A},).
Finally let n = (J,.,. 7 and note that
e 7 € seto(A*) =¢~ (7\*) by clause (e).
e 1 ¢ A by clause (d).

So we have shown (x).

It remains to check that we can carry out the induction. For ¢ = j 4+ 1 we
find p, € J; such that p, and p,; are compatible. Now let v = p U n; and we
find 6; > |v| such that ¢; € Bs and (0;,0;) N E # (. Now using the claim we find
ni € py N 2% N seto(Agi). O

Theorem 3.3.13. Let S € nst,,sup(S) = k. Then:

1. add(id™(Qx), id(Qx)) < add(Ils).
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2. Cf(id_ (@n)v ld(Qn)) > Cf(HS)'
Proof. By 3.3.12 and 1.5.8. O

We will use the following definition and the revised GCH theorem from (Shelah
2000).

Definition 3.3.14. Let u, 6 be cardinals such that 6 < 1 and 0 regular. We define
pl? = min{|U] : U CB(p) A o(U)}
where ¢(U) iff:
1. All uw € U have size 6.
2. Every v C p of size 0 is contained in the union of fewer than 6 members of U.

Theorem 3.3.15 (The revised GCH theorem). Let « be an uncountable strong limit
cardinal, i.e. B < a = 28 < a. E.g. a = |V 4| = Do, the first strong limit cardinal.

Then for every p > « for some € < a we have:

0¢le,a] A6 is regular = pl = 4.

Theorem 3.3.16. Let k be Mahlo (or at least Sy, stationary). Then:
(a) cf(id™(Qr)) = p1 + p2.
(b) ct(id(Qx)) = pn + p2 + 3.
where
e 1 = cf(nsty).
o po = sup(cf(Ils) : S € nstf)
o p3 = cf(id(Qx)/id™ (Qx)).

Proof. The inequality >:

(a) Let p* = cf(id™ (Qx),1id(Qx)). Then remembering 1.5.4:
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(1) p* > p1 by 3.3.6.
(2) p* > pa by 3.3.13.

(b) Use the same theorems. Finally cf(id(Qy)) > us is trivial.

The inequality <: We only show (a) which using 1.5.5 easily implies (b).

L. Let (S¢: ¢ < p1) witness 1 = cf(nsty,), i.e.

(a) ¢ <p1 = S¢ € nst},.
(b) (VS €nsty)(3¢ < p1) S S Se.

2. For every ¢ < up let <E§z 11 < pg) witness pa 5. < po, ie.
(a) ACvi = <AC,i,5 10 € S<>
(b) Ac,is € id(Qs), representing the equivalence class [A¢ ;5] € id(Q5)/id™ (Qs).

(c) for all Ae [Lsc Se id(Qs), there is some i < o such that for every 4 large
enough we have A; C A¢; s mod id™(Qy).

(d) Changing the representative of [A¢; 5] if necessary we may assume
(ne2’: (3% € ScnNd) nlo € Aciont C Acis
3. Let
6 =min{f : 0 = cf(0) < [Vorru| A (a1 +p2)" = pir + 2},
see 3.3.14 and 3.3.15 for definition of notation and existence of 6.

For u € [/Jl X /1,2]0

() Su = U{Sc : {C} x 2 N £ 0},
(b) For 6 € S, we inductively define A, 5 = U{A¢;5: (i) € u} U{n € 2°:
(F*®0 € Syund)nloc € Ayt

(c) Ay ={ne2F: (3% €8)nde Aus}
4. Note that in (3) (because for any ¢ € Sinc we have § > |V o] > 6).

(a) Su € mstp,.
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3.3. Characterizing Additivity and Cofinality

(b) Aus €id(Qs).
(c) Ay €id™(Qy).

5. Remembering 3.3.14, 3.3.15 we find u such that

(a) = (uq: < p1+ pa).

(b) e € [pn x pa2]’.

(c) If u € [u1 x po]? then it is the union of fewer than # members of {u, :

a < pi+ pal

We claim that (A,, : o < p1 + p2) is a cofinal family in id™(Q). So let A €
id™(Qx) be arbitrary and for € < 6 we inductively define A, (., i, etc. such that:

(a) A Q A().
(b) € <e= Au C A..
(c) Ac = sety (A}) € id™(Qy) where:

(a) Al=(Al;:0€sD).
(b) S% € nstf, (remember 3.2.7)

(c) A; s is a set of at most d-many maximal antichains of Q.
(d) ¢ < pq is minimal such that S} C* S, .

(e) Kz = <A§75 : 0 € S¢.) is such that § € S NS¢, = Ai,d = Aa&. (E.g. choose
Az’a = for § € Sc.\SL)

(f) i < po is minimal such that for some S2 C S¢_, S3 =* S :

(Vo € SS’) (setO(Af,(;) C A¢.i.s) mod id™(Qy).

(2) Kﬁ = (A5 :6 € S?) is such that:

(1) §? C 5% € nstf,.
(2) If6 e Sg then ACe,ie,5 - Set()(Ai(S)'
(3) If § € S3 then seto(Azﬁ) - setg(Ails) U seto_(xz1 [§). This point is the

only non-explicit step, see below for why we can do this.
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(h) If e = € + 1 then S! = §4, Al = A%,

(i) If € is a limit then S! =

€'<e

b Ay = U

€ e<e e 6

Why is carrying out the induction enough?
Note {(Ce,ic) 1 € < 0} € [ x p2)? so we use (5)(c) to find o < g + o such that

(%€ < 0) (e, ie) € uq. (3.1)
Remember 6 < |V,1,| < cf(k) and find ¢* < k such that
(Ve <0) S:\u" € SAY" C S\y" C SA\Y™ C Sey\”
We plan to show A C A, . So let n € Ay be arbitrary; we will show n € 4,,,.
Let W C S{\¢*, sup(W) = & be such that
(Vo e W)nld e seto(A(l),(;).

Now we claim

(\V/(S S W)(VOOE < 9) 77{5 € ACe,ieﬁ- (32)
We prove this by induction on § € Sj\¢*.

e 5 > sup(d N Sinc). Then id™(Qy) trivial so in (f) we always really (i.e. not just
modulo id™(Qs)) cover setg (Az’a).

e § =sup(6 N Sinc) and § = sup(6 N S}). By induction hypothesis we have
(Vo € S3N6)(Fe, < 0)(Ve > ) nlo € A¢.i.o
J is inaccessible so in particular regular, hence there exists ¢’ such that
(I €S5Nd) e =¢
and for such o we have
e>e =nlo€ Ao
and by (2)(d) this implies [0 € A¢_;, s

e § = sup(6 N Sinc) but § > sup(d N S}). In this case always really A¢ ;. 5 2

seto (Ag,é) because otherwise § would become a limit in S by (g)(3), see below.
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3.3. Characterizing Additivity and Cofinality

Now combine (3.1) and (3.2) to see
(V5 € W)(Hooe < 9) nlé € ACe,ie,5 N (Cea Ze) € Uq-

Thus n € A,,, and we are done.

How can we carry out the induction?

The only non-explicit part is how to get (g). The idea here is that in (f) we make

some mistake because we only cover seto(A? ;) modulo id~(Qs), i.e.

seto(AZ 5)\A¢, .5 = Xes € id™(Qy).

Let X5 = setg(fag) where 1:675 =(Les0:0€ Ses C6). Soin (g)(3) we want to fix
this mistake by choosing some S# containing both Ses and S¢, and then choosing
7\‘61 with all I'c 5 » added. The problem here of course is that we have to do this for
all 6 € S3 but |S3| = k so fixing the mistake in such a naive way will in general yield
a somewhere-stationary set and more than J-many antichains at level §. Hence we

work as follows: Choose a regressive function f on S2 as in 3.2.6, i.e. such that
(V6 < k) A€ S2\0: fF(\) <0} <6

i.e. f is a regressive but in a very “lazy” way. The problem with fixing our mistakes
earlier was that we tried to do it all at once so let us instead do it lazily as dictated
by f. Thus let let

SE=83U | Ses\(f(9) +1)
5es3

and for § € S let
ALy = A5 U T 5:6°>0> f(5%)}

Now check that S2 is nowhere stationary.

e § <sup(S2N4). Then S2 N4 is disjoint from Se 5\ (f(0") + 1) for every &' € S?
with f(0") > & so by 3.2.6(a) the set S N J is the union of fewer than §-many

non-stationary sets.
e § =sup(S2NJ). Let

SH= U Sea\(f(&)+1)

5'eS3ns
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= U Seo\f(O)+1)NS
§'€53M(k\5)

and clearly
Siné=(SENds)ustu sy,

Let Es be as in 3.2.6 and it is easy to check using 3.2.6(b) that Sé’g is disjoint

from FEjy, i.e. non-stationary.

Sé}* is non-stationary by the argument from the previous point.

Similarly check \Ai sl <. O
Theorem 3.3.17. Let x be Mahlo (or at least Sy, stationary).

(a) add(id™ (Qx)) = min{p1, po}-

(b) add(id(Qx)) = min{p1, pa, p3}-
where

e 1 = add(nstf,).

e p12 = min(add(Ilg) : S € nst},)

o pz = add(id(Qx)/id™ (Qx)).

Proof. The inequality <: Same as “>” in 3.3.16.

The inequality >: We only show (a) which using 1.5.5 easily implies (b).

Let 1 < p11 + po and we are going to show p < add(id(Qx)). So let (A¢ : ¢ < p)
be a family of As € id™(Q,) and we are going to find A € id™(Qx) such that
UC<u A¢ C A. Let A¢ be represented by <A2,5 10 € Sg) and by 3.2.7 we may assume

S¢ € nsty’. Now work inductively for i < w:
1. Let S* € nst}’ be such that ¢ < = Sé C* S (Remember u < i1.)
2. Let AP € ITg: be such that
(V¢ < p)(v0 € %) (Afs € A5)  mod id™(Qs).

(Remember u < ps.)
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3.3. Characterizing Additivity and Cofinality

3. For each { < p work as in 3.3.16 using a regressive function to fix the error
Xl 5= (ALs\AD) € id(Qs):
for 0 € Sé. Le., we find Sé“, (A?’;;1 10 € S’é“) such that:
(a) S C Sé“ € nst}.
(b) 6 €57 = AZH € 1d(Qy).
(c) 0 €St= Af; CAsUsety (AL 1 e € SEF NG)).
Let

s =[5

i<w
For § € S¥, ¢ < p let
o A5 =U,, Als
o AY =, A5
Finally let
o AP =sety ((Ag;: 6 € 5%)).
o A¥ =sety ((AY : 6 € §¥)).

For ¢ < p we claim AS C A¥. Let W = S¥\a* with o* < k large enough that in all
w-many steps of the construction in (1.) and (2.) the “almost all” quantifiers become
“for all”.

We now claim that
(Vo e W) (Vi < w) <77 € Aéjé = (77 €AV (3Tee WNJ) nlee Af)) (3.3)

and clearly this suffices to show A; C A“. So towards contradiction assume there

exists 6* € W such that there exists i < w, n* € 20" with
N € ALge A" € A5 A (Ve € WNE) n'le g AL (3.4)
and let 6* be minimal with this property and without loss of generality
i= min{i: 0" € 5’2}

Now because n* € Aéﬁ* and n* € A%, (thus in particular n* € A%, ) so we have
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(ii) sup(W Nd*) = d*.
By (3.)(c) there exists Wx C W N §* unbounded such that
(Ve e W*) n*le € Aéﬁl

and because W* C §* and we assumed ¢6* to be minimal contradicting formula (3.3)
we have

(Ve € W) (neA:v(aooaeWme) n*[aEA‘;,’)

contradicting the last conjunct of formula (3.4) so we are done.
Intuitively the proof showed: Because x is well ordered we cannot keep pushing

our mistakes in (2.) down for w-many steps. O

Corollary 3.3.18. Let k be Mahlo (or at least Sy, stationary). We get a strength-
ening of the general fact about ideals from 1.5.5.

(a) cf(id(Qx)) = cf(id™ (Qx)) + cf(id(Qx)/id™(Qx))

(b) add(id(Qx)) = min{add(id™(Qx)), add(id(Qx)/id™ (Qx))}
Proof.

(a) By 3.3.16.

(b) By 3.3.17 0

3.4 Strong measure zero sets

Definition 3.4.1. We say X C 2% is a strong measure zero set if for every f € k"

there exists a sequence (1, : @ < k) such that:
1. 1q € 27(@

2' X g Ua<m[na}'

Equivalently we may demand

2‘, X g nﬁ<,{ Ua>ﬁ[77a]‘
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3.4. Strong measure zero sets

Lemma 3.4.2. Let X C 2% be strong measure zero. Then X € id™ (Qy).

Proof. Let S C k be nowhere stationary and let f € x* be such that (f(a) : a < k)
enumerates S. Let (1, : @ < k) be as in 3.4.1 2.” and keep mind that {n,} € id(Qy).

Now easily
X Cseto({({na}:a€S)) €id (Qy).
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CHAPTER 4
id(Qy) in the Qx-Extension

In this section we consider the relation between V and V@, and also more generally
between V and any extension via a strategically closed forcing.

In 4.1 we show that (in contrast to the classical case), the ideal id(Qy) does
not satisfy the Fubini theorem, and in fact violates it in a strong sense. This
allows us to to show cov(Qx) < non(Qy), in analogy to the classical inequality
cov(null)<non(meager). Also, the old reals become a measure zero set in the Q-
extension.

In 4.2, we show that QY is V-completely embedded into QXQ”. This parallels

the classical case, but the proof is necessarily different, as we do not have a measure.

4.1 Asymmetry

In this section we elaborate on the asymmetry of id(Qy) as promised in (Shelah
2017). Anti-Fubini sets (defined below) are called 0-1-counterexamples to the Fubini
property in (Rectaw and Zakrzewski 1999)

Definition 4.1.1. Let X', Y be sets and let i C P(X), j € P(Y) be ideals. We call
aset F C X x Y an anti-Fubini set for (i,j) if:

(a) For all n € 2% we have 2"\F,, € i.

(b) For all v € 2 we have F” € j.
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where:
1. F,={ve2t:(v,n) € F}.
2. F"={ne2":(vn) €F}.
If i = j then we simply call F an anti-Fubini set for i.

Lemma 4.1.2. Let X, Y be sets and leti CPB(X), j C P(Y) be ideals. Let F C X' XY
be such that:

(a) There exists E1 € j such that for all n € 2°\Eq we have 2°\F,, € i.
(b) There exists Eg € i such that for all v € 2°\Ey we have F¥ € i.

Then there exists an anti-Fubini set ¥ for (i,j).

Proof. Let
F - (F U (Eo X (2"‘\E1))>\((2“\E0) X E1>
and check that F’ is as required. ]

Lemma 4.1.3 (Folklore). Let i,j C P(X) be ideals. If there exists an anti-Fubini
set F for (i,j) then cov(i) < non(j).

Proof. Suppose Y C Y, Y & j. We claim that
U{2"\F, :neY}=4X.

Let v € X be arbitrary. Now because F¥ € jand Y ¢ j we have Y\F” # (), so choose
no € Y\F”. We conclude ng ¢ F¥ = (v,m0) ¢ F = v ¢ F,;, sov € U{2"\F,, : n €
Y}.

O

Lemma 4.1.4 (Folklore). Let X be a set, let i,j C P(X) be ideals and let @ :
X x X — X be a group operation satisfying for all k € {i,j} and for all X € k:

e X={nezr:zeX}ck
e X '={zl:zeX}eck

where x~! denotes the group inverse for ®. If there exists sets Ag, Ay C 2 such
that:
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(a) Ao €1i.
(b) Ai €].
(c) ApNnA; =0.
(d) AgU Ay =27,
Then:
(1) There exists an anti-Fubini set for (i,j).

(2) There exists an anti-Fubini set for (j,i).

Proof.
(1) Let
F={(n):vene A}
Clearly for any n € 2% we have F,, = n ® A; hence 2°\F, = n ® A € i. For
ve2wehave BV = {n:ven@ A1} ={n:ncveaAt=ve At €j. So
F is an anti-Fubini set for (i,j).
(2) Same proof, interchanging Ay and A;. O

Theorem 4.1.5. Let:
(a) i=(Q,n) is an ideal case, i.e.

(1) Q is a k-strategically closed forcing notion (or at least does not add
bounded subsets of k).

(2) 1 is a Q-name for a k-real.

(8) The name 1 determines i in the following sense: A € i iff there exists
a (definition of ) a k-Borel set B D A such that Q IF“n ¢ B”.

(b) There exists an Borel F C 2% x 2% that is anti-Fubini for i both in V and
V&,

Then:

(1) QIF425)V €i”.
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(2) Q is asymmetric, i.e. if N1 is Q-generic over V. and 1y is QVMl_generic over

Vm]| then ny is not Q-generic over V[na).
(8) cov(i) < non(i).
Proof.

(1) We want to show:
QIFVNF,; =

So let v € 2 N'V. Consider F¥ = {n : v € F,}. Now because F” € i we have
n ¢ F” thus v € Fy.

(2) By (1):
Vi, ne] Em € 2°\Fy,.
(3) By 4.1.3.

O]

Lemma 4.1.6. Assume x = sup(SE ). Then there exists an anti-Fubini set for

(id(Qx), id(Qx))-

Discussion 4.1.7. This is implicitly shown in (Shelah 2017) but we repeat it here

for the convenience of the reader.

Proof. Let (dc : € < k) enumerate S£ and let S = {dcy1:€ < k}. Forne2f e S

define
Fps={p €2 : (¥°C <) p(Q) =n(6+¢).}
Then clearly F, 5 € id(Qs). Let

F, =set; (Fes:0€5))
so 2°\F,, € id™(Qy) by definition. Let
F={(vn) e2"x2":veF,}

and it remains to check F” € id(Qy). Thus let v € 2% and consider F¥ = {n € 2~ :
v € F,} and we want to show Qy IF“v ¢ F;”. Clearly for every ¢ < & the set

{p € Qx: (30 € S\()(Vn € [p]) v10 € Fyy 5}

is a dense subset of Q. so we are done. O
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4.2 Upwards absoluteness of id(Qy)

Lemma 4.2.1 (Mostowski absoluteness). Let P be a strategically k-closed forcing
notion and let T C k<F be a tree, T € V. If T has a branch of height r in VF then
T already has a branch of height k in V.

Proof. Assume there exists ¢ € P such that
q - T has a branch © of height k.

Consider a run of the game €. (P, q) (as defined in 2.1.4) where for i < k the
condition p] decides i = p; and White plays according to a winning strategy.

Easily check:
l.i<k=>p cT.
2. lg(pi) = i.
3. j <i<k=pjQp;. [Why? Because p; > p}.]
So p = U<, pi is a branch of height x of T and p € V. O

Lemma 4.2.2. Let J ={¢; : i < k} C Qx be a mazimal antichain and let P be a

strategically k-closed forcing notion satisfying the k*-c.c. Then
P I+ “7 is a maximal antichain of Qx”.
Proof. Towards contradiction assume there is some p* € P such that
p Ik “¢ € Qu, and (Vi < k) ¢ L ¢”.
Without loss of generality even
p* Ik “g is witnessed by (7, S, K)”.

and even p* decides 1 = n*.
Consider a run of the game €(Q,, p*) where White plays according to a winning

strategy and for j < k we have
PilFeSni=58 A Alj=A".

Let ¢* € Q, be the condition witnessed by (0", U, 5, U, AY). Now ¢* € V
so there is ¢ < k such that ¢* [/ ¢;, so one of the following holds:
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Lotr(g) <n" € g
2. n* <tr(q) € ¢*.

If the first case holds, then “tr(g;) < n* = tr(q) € ¢;” is forced already by p*; if
the second case holds, then for j large enough p’; IF“tr(¢;) € ¢* = tr(g;) € ¢” hence
Py IFn* = tr(¢) Qtr(q;) € ¢”, so in either case we have p; I- ¢ [ g; for some j < .
Contradiction.

Note is easily follows from 2.2.6 that [J S; is not stationary in x so ¢* is indeed

a condition. O

Corollary 4.2.3. Let P be a strategically k-closed forcing notion satisfying the k™ -
c.c. Then for every null set of the form set;, ((As : 6 € S)) in V we also have
P IF‘sety ((As : 6 € S)) €id(Qy)”, or briefly: “null sets remain null in the generic

extension.” O

4.3 Miscellaneous
Theorem 4.3.1. Let k = sup(SE.). Then (25)V is a k-meagre set in VO,

mc

Proof. Let (\; : i < k) be an increasing enumberation of S . We are going to show

mnc*
that

Qx IF “For every v € (2%)V there exists i* < & such that
i >0 =N+ 1, i) V7.

This suffices by 5.1.2.
Fix p € Q, witnessed by (7,51,A) and v € (27)V. We are going to find ¢ < p
and ¢* < k such that

ql-i>d* =nf(\+1, 1) v,

Choose * such that A= > 1g(7). Let So = {A\iy1 : ¢ > ¢*} and for A = \j11 € Sy
and o € ()\Z, >\i+1) let

Tna = {r € Qu: [ tr(r)] > o, tr(r)le, [ tr(r)]) € n}-

Clearly J) . is open dense subset of Q.
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Let 8" =51 US55, let

A/\ A€ 51\52
A/)\: A/\)\LJ{._7)\7CM Ta e ()\i7)\i+1)} A=Xit1 €51 N5
{TIa e (N, A1)} A= Aiy1 € S2\51

and let A’ = (A} : A € ).
Finally let ¢ € Q4 be the condition witnessed by (7,.5’, A’) and easily check that

q is as required. ]
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CHAPTER 5
ZFC-Results

5.1 Cichon’s Diagram

Discussion 5.1.1. In this subsection we establish some results about the relation
between id(Q,) and the ideal of meager sets id(Cohen,;). These theorems are either
quotes of or promised elaborations on results first appearing in (Shelah 2017).

Lemma 5.1.2 (Meager set normal form, (Shelah 2017, 5.1)).

(1) Let X C 2% be k-meager and let S C k be unbounded. Then there exists an

increasing sequence o = {a; 11 < k) of elements of S and n € 2% such that
X C X, 5={re2": (v <r) nlla, aiy1) # viai, aipr) }
Additionally we may require o continuous.

(2) If n € 2% and « is an increasing sequence of ordinals < k then the set X, o

defined as above is k-meager.
Proof.

(1) For i < k let T; € 2<% be a nowhere dense tree such that X C (J,_,.[Ti]. For
a € S\w let € = |29 and let ((Na,e,la,e) : € < €°) enumerate 2% x . Now

inductively construct a vq e, Ba,e for € < € such that:
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/—\

cov(Qy) ‘ non(Cohen,) — cof (Cohen,,) acof (Qg) — 2
I cof (nst})) /
/;add(nstgr)/'///’/ |
kt — add(Qy) / add(Cohen,) — cov(Coheny) - non(Qy)

S

Figure 5.1: The general diagram including nst}', showing results established in this
section. Dashed or dotted arrows have the same meaning as the solid ones but are
intended to make the crossing arrows visually less confusing. To prove the implica-
tions represented by the dashed arrows (those involving add(nsth') and cf(nst}'))
we need to assume that « is Mahlo (or at least S, stationary).

This can easily be done by starting with 8,0 = 0, v4,0 = () and for e limit

letting v4 . = UC <¢ Va,¢- For € successor use that T;, . is nowhere dense.

Construct «;,v; for ¢ < k such that:

(a) a5 € S\w
(b) v; € 2%

(c) j<i=v; 1.

(d) Fori=j+1let e = |2 and let o; = min(S\(aj + B, +1)}. Choose

v; € 2% such that v; TVaje DV
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Check that n = |J,., v and & = (q; : i < k) are as required.

(2) Note that

Xa= U {ve2®:(Vieli",r)) nllos, aiy1) # vy, i) -

<K

so easily X, = is the union of k-many nowhere dense sets. O

Lemma 5.1.3. Let Eﬁ be increasing sequences in Kk of length x such that for every
sufficiently large i < k there exists j < k such that [Bj,5j4+1) € [Vi,Vit1). Then
X -CX, >, for any n € 2.

8 —
Proof. Should be clear. O
Lemma 5.1.4. Forn € k" the set
Y,={ver":v<"n}
s a meager subset of K".

Proof. Similar to 5.1.2 (2). Again easily Y, is the union of k-many nowhere dense
sets. O

Lemma 5.1.5 (Folklore?, (Shelah 2017, 5.3)).
1. cov(Coheny) < 4.
2. b, < non(Coheny).
3. add(Cohen,;) < by.
4. 0, < cf(Cohen,).
Proof.

1. Let (n; : i < 0,) be a dominating family. Remember 5.1.4 and easily (Y, : i <

0,;) is a covering of k".

2. Let A={n;:i < p<by} C k" Find n € k" such that for every i < p we
have n; <* 1. Easily A C Y}, € id(Cohen,).

73



Chapter 5. ZFC-Results

3. Let (fo : a < p) witness b,, = p. For a < p let
o= {0 <n: 18] C 0}

and let Ea = (Ba; : 7 < k) enumerate E,. Let 1y be constantly 0. Towards

contradiction assume that

A= U X3

a<pu=

is meager. So by 5.1.2 there exist n € 27, E € k" increasing continuous such
that A C XW,E' Let f € k" be defined by f(j) = Bj+1. Find a < p such that

Ja £ f. Let
S={j: (B, Bj+1] N Ey} = 0.

and we claim S is unbounded. Indeed if 8; < B4 < Bj41 then 7 < 3; < Bai €
E.. Hence fo(j) < Ba,i < Bj+1 = f(j) so by our choice of a the claim follows.

Let S C S such that j € 8" = j+1 & S and let v € 2% be such that
v[(Bj, Bix1] = nl(Bj, Bj+1] for j € S’ and constantly 1 otherwise. Easily v €

X = \X - Contradiction to A C X —.
n0,8a " n,B8 .8

4. Let (Aq : a < p) be cofinal in id(Cohen,,). For o < p use 5.1.2 to find 74, fa
such that A, € X - . Let

NesPa

E,={0:i<6= i <0}

Towards contradiction assume that 9, > . Then by 5.2.4 there exists a club
FE such that for every a we have E, €* E. Let ng € 2 and let 5 enumerate

E. Consider X -—and find aw such that X -C X —.
70,53 70,83 Na,Ba

If § € E,\E we have € = sup(E N ) < 0 because E is club. Let i = e + 1
and note that S,,; < . Hence (Bq,i,8] N E = 0 so argue as in (3.) to get a

contradiction. O
Fact 5.1.6 (Folklore?, (Shelah 2017, 5.3)).
1. add(Cohen,) = min(b,, cov(Cohen,)).

2. cf(Cohen,) = max(0,, non(Cohen,)).
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5.1. Cichon’s Diagram

Proof.

1. By 5.1.5 2. and 3. it suffices to show
add(Cohen,;) > min{b,, cov(Coheny)}.

Let pn = add(Coheny ) and towards contradiction assume p < b, u < cov(Coheny).

Let A= {A, : v, u} be a family of meager sets such that |JA ¢ id(Cohen,).
For v < p let ny, 3y be such that A, C Xn 3 (as in 5.1.2). Let let

Py

E,={a<k:(Vi<a) By <a}l

Use p < by, to find a club E C & such that £ C* E, for all v < p (remember

5.2.3) and let E = (B; : i < k) enumerate E. By 5.1.3 we have A, C Xn 3 -
VoY

B
Using p < cov(Cohen) we find v € 2" such that:

(Vy <) Z, ={j < k:ny[[Bj, Bi+1) = v[B;j, Bj+1)} is cofinal in k.
Use p < by, to find & such that
(Vy < p) (Vi < k) Zy N [y, 1) # 0.

Let for i < K, 6; = B, easily for each v < p we have X 3 C Xl,,g. Contra-

"77,
diction.

2. By 5.1.5 1. and 4. is suffices to show
cf(Coheny) < 9,; + non(Cohen,,).

Let p = non(Coheny).
Let {og : B < p} C K" be such that

(Vv € k%) (38 < p) (3% < k) 0p(i) = v(i).

[Why possible? For p € 2" let v, € k" such that for i < &, v,(7) is the minimal
v < k such that p(i +v) = 1 if such v exists, otherwise v,(i) = 0. Let 1y € k"
be constantly 0. Let M C 2% be a non-meager set of cardinality u. Recalling
5.1.2 the set {v, : p € N} U {1y} is as required.]

75



Chapter 5. ZFC-Results

Let (E, : v < 0x) be a sequence of clubs witnessing 0, in the sense of 5.2.4.
Let ay = (@ : i < k) enumerate E.,.

Let (p; : i < k) enumerate | J{2V%) : j < k < k} For (8,7,€) € it X 0, X 0y, let
Apre = Xgs.¢ as in 5.1.2 where for 8 < p,y < 9, we let gg, be such that
08~ 1[0ty,i5 y,i+1) is equal to Pos(i) i Posi) € 2[a%i,a%i+1), otherwise g3, is

constantly 0.

Let A = {Agye @ (B,7,&) € p x 0, x 0} and we claim A is cofinal in
id(Coheny). Clearly |A| = p + 0, so this suffices. To prove the claim let
A € id(Coheny,) and let n € 2%, a € k* be such that A C X, 5

Find (1) < 9, such that
B,y CH{a<k: (Vi<a) o <a}

and clearly A C X, & C X, & (by 5.1.3). Let ¢ € k" be such that for i < k&,

= MOy(1)
pc(i)) = nllay 1), y(1),i41)- Find B < psuch that B = {i <k : 0(i) = 0p(i)}
is cofinal in k. Find 7(2) < 9, such that

E’Y(2) - {a S E'y(l) : (VZ < Ii) Ay (1)) < a}
and [ovy(9) 4, Ay (2),i+1) N B # 0. Now check that indeed A C Ag (1) 4(2)- O

Theorem 5.1.7 ((Shelah 2017, 3.8)). Let k = sup(Sf.). Then there exist sets

mc

N, M C 2% such that N € id(Qy), M € id(Cohen,), NN M = and N UM = 2~.

Proof. Let (\; : i < k) be an increasing enumberation of S . For i < \ let

Tnia = {p € Quy, 2 1(tr(p)) > N Atr(p) I[N, 1g(tr(p))) is not constantly 0}.

For n € 2<% let p, € Q. be the condition witnessed by

(777 {>‘i+1 11 <K, )‘i+1 > lg(n)}a <{D)\i+1} 11 < Hv)‘i-i-l > lg<77)>)

It is easy to see that [p,] is a nowhere dense subset of 2. Hence for
M = U [pn]
ne2<r
we have M € id(Cohen,,).
Let N = 2"\ M. It remains to check that N € id(Qy). Indeed for any p € Q, let
n = tr(p) and let ¢ be a lower bound for p,p,. Now ¢ I-“n € [¢] C [p,] € M?”, i.e.

g4 ¢ N7
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Corollary 5.1.8. Let k = sup(Sf.). Then:

mc

(1) cov(Cohen,) < non(Qy).
(2) cov(Qy) < non(Coheny).

Proof. Let @& be pointwise addition modulo 2. In by 5.1.7 for k = sup(S.) there

mc

exist sets N € id(Q,), M € id(Cohen,,) satisfying 4.1.4(a)—(d) so the conclusion
follows by 4.1.3. ]

Corollary 5.1.9. Let k = sup(Sf.). Then:

(1) cov(id™(Qx)) < non(id(Qy))
(2) and in particular cov(Q,) < non(Qy).

Proof. By 4.1.5 and 4.1.6. 0

Lemma 5.1.10. Let k be inaccessible (or k = w). Then there exists a partition
(A; i < |2F]) such that each A; is non-meager and for every n € 2<% also A; N [n]

18 mon-meager.

Proof. First note that because k is inaccessible we have [2<%| = k. Thus let (n :
k < k) be an enumeration of 2<%. Let ¢, = |27|. Let (X : j < ¢,) be an enumeration
of all closed nowhere dense subsets of 2. Let ((ie, je, ke) : € < ¢x) be an enumeration

of ¢, X ¢ X K. Now for € < ¢, inductively choose v, € 2" such that
1. ve & Uc<e{l/(}'
2. ve € X,
3. Ve € k]

[Why can we carry out this construction? Because for every nowhere dense set X

and every 7 € 2" there exists i’ &> 7 such that [r] and X are disjoint and of course

)] = ¢x.]
Let Ag = {ve:ie =0} U (2°\{ve 1 e < k}). For i > 01let A; = {v.:i. = i}. Now
check that by construction (4; : i < ¢) is as required. O

Theorem 5.1.11 ((Shelah 2017, 5.5)). If b, > add(Coheny) then cov(Q,) <
add(Coheny,).
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Chapter 5. ZFC-Results

Proof. If k > sup(Sk ) then cov(Q,) = cov(Coheny).

So assume k = sup(Sh.). Let © = cov(Cohen,) and assume towards contradic-
tion that pu < cov(Qy).

Let (X, 5 :€<pu) bea covering of 27 (remember 5.1.2).

Our first goal is to find a single a such that X nea. © Xp o for every € < pu. We
define fc such that fe(i) = a(ji + 1) where j; = min{j < k : a.(j) > i}, hence
[ae (i), e (Ji + 1)) C [i, fe(i)). By our assumption pu < b, we find f >* fe for every
€ < p. So for every € < p and 4 sufficiently large we [ae (i), ae(ji + 1)) C [4, fe(i)) €

i, £(7)). Thus define a inductively by
1. ap = 0

2. ajr1 = flay)
3. a; = sup,; a; for ¢ limit.

Now « is indeed as required by 5.1.3.
Our second goal is to find an increasing sequence 6 = (0. : € < k) such that there

is YT CJ]...0 =110, |Y| = p such that

<k
(Y € TI6) (3p € T) (V2 < ) w(6) # o).

Without loss of generality « satisfies

i < j - |2leer)] < 2lacaci)|

otherwise inductively join sufficiently many intervals (and use 5.1.3). Let 6, =

2leccer)| and let mr, : 2[@®<+1) — g, be one-to-one. Now it is easy to see that

T = {(me(mllae ace)) € < K 10 < )

is as required.

By induction on ¢ < x we choose a an increasing sequence of inaccessibles A,
such that A\, > 6. and sup(Si)‘rfC) < e

Next for € < k let (A¢; i < 6c) be a partition of 22 as in 5.1.10.

Let 7 € k* be a name for the such v(e) is the unique i < 6. such that n[\; € A ;.
(As always 7 is the name for the generic real added by Q). Note v is well defined

because Q is s-strategically closed, hence (2*)V = (2X)VIQx],
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5.1. Cichon’s Diagram

We claim that for p € 11§ we have
Qx IF (3%€e < k) (e) = p(e).

Let a < K, p € Qg, 7 = tr(p). We find € < k such that € > a,\c > lg(7). 7’ €
9sup (i) N p. Choose 7" € [7'] N A pe) N p. [Why does 7" exist? Trivial if A € 5.
If \e € Sp then Z = seto(Ap),) is Ac-meager hence Z N [7'] is Ac-meager hence
ZNr'#[TINA,

Thus for p € T, o < K the set

()-] Clearly P IF i (€) = p(e). The claim easily follows.

Lo ={p€Qx: (e <r) a< A <lgtr(p) Atr(p)[Ae € Ac po)}

is open dense.

By our assumption |Y| = p < cov(Q,) there exists

n e ﬂ set1({Zpa 1 @ < K}).
peEYT

Let v € 116 be such that for € < x we have n[A. € A, (). Note by our choice of v
and p € T we have
(3% < k) Nl = Ac p(e))-

Thus
(Fv € 1IO)(Vp € T)(F% < k) v(e) = p(e).

Contradiction. O

non(Cohen,) — cof(Cohen,) cof (Qx) — 2°

| |

by —————— 0

# |

kT — add(Q) — cov(Q,) — add(Cohen,) — cov(Cohen,) — non(Qy)

Figure 5.2: The diagram for add(Cohen,) < by, by 5.1.11.

Theorem 5.1.12 ((Shelah 2017, 5.7)). If 9,, < cf(Cohen,) then cf(Cohen,) <
non(Qy).
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Proof. If k > sup(Sf

mc

) then non(Q,) = non(Cohen).

So assume r = sup(Sf.). For 0 = (0 : € < K), B < Kk increasing with ¢, find

(Moe:€<k)and (Agc;:i<0O) asinb.1.11.
For 6 as above, n € 2 let vy, € 110 be such that for every ¢ < xk we have

77”‘9,6 € A@,e,ugm(e)' N
Let T C 2%, |T| = non(Qy). For any 6 as above let Tg = {vg,, : n € T} C II6.
Clearly |Ty| < non(Qy).

We claim that for every
(Vp € 110)(Fv € Tp) (37 < k) p(e) = v(e).
So fix p € 116 and let

Lo = {p € @n : (36 < H) a < )\9,6 < lg(tr(p)) N tr(p) r)\G,e € Ae,e,p(e)}'

Because T ¢ id(Q,;) we can find n € T Nset1({Zy : @ < k}). Now
(3% < 1) vo(e) = ple)

which proves the claim.
Find {ag : £ < 0.} such that:

(a) For £ < 0, the sequence a¢ = (ac, : € < k) is continuous increasing.
(b) If (a; : i < k) is an increasing sequence then there is £ < 9, such that

(Ve < k)(Fi < k) age < o < Qi1 < Qg ei1-

For £ <0, let 55 = (0. : € < k) be such that 0, = [2[@¢2¢)|. As in 5.1.11 let
Tee: Oce — 2log.e.0¢.) he one-to-one. For v € I10¢ let

Te, = U mee(v(e)) € 27,
<K
Let
H:{x§7,,:§<0,.@/\ue’f9£}

and we claim H ¢ id(Cohen,). Towards contradiction assume that there exists
n € 2% a = (a; 1 i < k) increasing continuous such that H C X, & (remember
5.1.7). Let & < 0, be given by (b) for a. Let p € IIf; be such that 7 (p(€)) =
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Nllcge; g er1). So there exists v € Ty, such that (3%°e < k) p(e) = v(e). Thus
(3% < k) zepl[age, ager1) = Nl[ag.e, ¢ e1) and finally (by our choice of §) (3% <
K) Tepllago, 0 or1) = Nlagi, agiv1). Contradiction to x¢, € X, 5
Thus by
0, < non(Coheny) < |H| < non(Qy) + 0,

we conclude non(Cohen,) < non(Qy). O

cov(Qy) — non(Cohen,) — cof(Cohen,) — non(Q,) — cof (Q,) — 2~

T #

by ———— 0

1 |

xt — add(Q,)  add(Cohen,) — cov(Coheny)

Figure 5.3: The diagram for 9,, < cof(Cohen),, by 5.1.12.

5.2 On add(Q,) < add(Coheny)

Discussion 5.2.1. For the classical case (k = w) the Bartoszynski-Raisonnier-Stern
theorem states that add(null) < add(meager). By 5.1.11 we know that add(Qy) <
add(Coheny) for large b,, and dually cf(Cohen,) < add(Qy) for small d,,. But what
about small by, i.e. add(Cohen,) = b, and large d, i.e. 9, = cf(Coheny)?

The original plan for this case was to first prove add(Q,) < add(nsty") (see 3.3.6)
and show that add(nst}' ) < b,. We conjecture that this second inequality does not
hold (see 5.2.13). In (Shelah 2017) it was shown that we have it at least for sufficiently
weak  (there exists a stationary non-reflecting subset of k) and here we elaborate
on this result as promised.

Furthermore we offer a consolation prize: we show that at least add(Qy) < 04
for k Mahlo and dually b, < cf(Qy).

We begin by establishing a characterization of b, and ?, via characteristics of
the club filter of .

Lemma 5.2.2. Consider A = (k*,<*) and B = (club,, 2*). Then there exist maps
¢T : k" — club, and ¢~ : club, — k® such that
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1. (¢=,¢™") is a morphism from A to B, i.e. if f € k™ and E € club, then:
o (E)<"f = E2"¢(f)

2. (¢F,¢7) is a morphism from B to A, i.e. if f € k® and E € cluby then:
O 2E = [<To(B)

Proof. For f € k™ let
¢ (f) ={0 <r: flo] C o}

For E € cluby let
¢~ (E) =i [i+1]F = min(E\(i + 2)).

1. Let f € k", E' € club,. Let E = ¢*(f), f/ = ¢ (F'). Assume E' 2* E.
So there exist k-many 6 € E\E'. Now for any such 4: Because E’ is club
e = sup(E'Nd) < 4. Consider i € (e, §). By definition of E we have f(i) < § but
because (d,€¢] N E' = () by definition of f" we have f’(i) > 6. Thus f/(i) > f(4)

and because there are unboundedly many such ¢ we have f/ £* f.

2. Let E € k", f' € club,. Let E' = ¢T(f'), f = ¢ (E). Assume E' O* E.
Consider i < k large enough. Then f(i) € E implies f(i) € E'. By definition
of E' we have f(i) < f(i). Hence f' <* f.

Lemma 5.2.3.

(1) Let (Eq:a < p < by) be a sequence of clubs of k. Then there exists a club E
of k such that « < = E C* E,,.

(2) There exists a sequence (E, : o < by) of clubs of k such that for no club E
of k we have a < by, = E C* E,.

(3) b, = add(NS,), where NS, is the ideal of non-stationary subsets of k, ordered

by eventual containment C*.

Proof. By 5.2.2. O
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Lemma 5.2.4.

(1) Let (Eq:a < p <0y) be a sequence of clubs of k. Then there exists a club E
of k such that for no a < 0, we have Fy C* E.

(2) There exists a sequence (Eqy : o < 0y) of clubs of k such that for all clubs E
of k there exists a < 0y such that B, C* F.

(8) 0, = cf(NS,).
Proof. By 5.2.2. O
Theorem 5.2.5. Let k be Mahlo (or just Sy, stationary, see 1.4.3). Then
b, < cf(nsthh).

Proof. Towards contradiction assume p = cf(nst)') < b, and let (W, : @ < u) be a
sequence of nowhere stationary subsets of Sk witnessing u = cf(nsth'). For a < p
let £, C k be a club disjoint from W,. Now we use 5.2.3 to find a club F such
that E' C* F, for every a. Now because Sp, is stationary the closure of £ N S, is
a club too so without loss of generality W = nacc(E) C Sf,. Clearly W is nowhere
stationary so there exists a < p such that W C* W,.

Now because £ C* E, and W, N E, = 0 we have W, N E is bounded. On the
other hand because W is an unbounded subset of £ and W C W, we have W, NFE

is unbounded. Contradiction. O]

Corollary 5.2.6. b, < cf(Qy).

Proof. Combine 5.2.5 and 3.3.7 O
Theorem 5.2.7. Let k be Mahlo (or just Sy, stationary). Then
add(nstl’) <0,.

Proof. Let (Eq : o < p) witness 9, = p in the sense of 5.2.4, i.e. for every club
E of k there is o« < p such that E, C* E. If we restrict ourself to clubs E such
that nacc(FE) C Sf, then we may also assume that W, = nacc(Eq) C Sp,. Towards
contradiction assume add(nstﬁr) > p and let W € nst" such that o < p = W, C*
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W. Choose a club E disjoint from W such that nacc(E) C Sp,. Now there exists
a < i such that E, C* E hence

SUp(E \E) <6 eW,CE,=0€ E= 0§ ¢&W,.

Contradiction.

O
Corollary 5.2.8. add(Qy) < 0.
Proof. Combine 5.2.7 and 3.3.7 O

Theorem 5.2.9. Let  be inaccessible and let S C S, be stationary non-reflecting.
Then

(1) add(nsth’) < b,.
(2) add(nsty g) = by.

Remark 5.2.10. Note that under these assumptions, by (Shelah 2017, Claim 6.9)
the forcing Q, adds a x-Cohen real.

Proof. First note that because S is not reflecting we have W C S is nowhere sta-
tionary iff W is not stationary.

Recall 5.2.3 and let (E, : a < by) be set of clubs of k such that for no club
for every club E of k there exist @ < by such that =(E C* E,). So the family
(S\Eq : o < by) is a set of nowhere stationary subsets of Sf, with no upper bound
in nstﬁfs (and in particular not in nstk’).

Conversely let (W, : a < ) witness add(nst] ) = p and let E, be club disjoint
from W,. Then (F, : @ < p is an unbounded family in the sense of 5.2.3. O

Theorem 5.2.11. Let k be inaccessible and let S C Sp, be stationary non-reflecting.
Then

(1) 0, < cf(nstl’).
(2) v = cf(nstyg).
Proof. Dual of 5.2.10. 0

We summarize the results of this section in the following corollary.
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Corollary 5.2.12. If at least one of the following conditions is satisfied:

(1) K > sup(Sf

1nc) or

(2) There exists a stationary non-reflecting S C ST, or

(8) b, > add(Cohen,,).
Then Bartoszyriski- Raisonnier-Stern theorem holds, i.e. we have

add(Q,) < add(Coheny).

Likewise if we let

(8°) v, < cf(Coheny).
then (1) Vv (2) V (3') implies

cf(Coheny) < cf(Qy)

Finally: if (1)V(2)V((3) A (3')), then the Cichori diagram for id(Qy) and id(Cohen,)

looks like the classical diagram. O

Conjecture 5.2.13. There exists a model V such that
V = add(Qx) > add(Coheny)
for some sufficiently strong cardinal k. Note that by 5.1.11 we necessarily have
V = b, = add(Coheny)

so we really conjecture

CON(add(Q,) > by).
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CHAPTER 6
Models

We follow the notation of (Bartoszyriski and Judah 1995): Let O = v+, B = g+,
This will allow us to graphically represent the values of the cardinal characteristics
in Figure 5.1. E.g. O in the top left corner means cov(Q,) = 0. Note that in all
diagrams of this section we have 2° = B = k™.

For visual clarity we omit the diagonal arrow from cov(Q,) to non(Qy), see 5.1.8.
Note again that the dashed arrows representing add(Q,) < 9,; and b, < cf(Q,) need
K is Mahlo (or at least Sp, stationary).

If we would like Q4 to be x"-bounding, i.e want x weakly compact, we may use
Laver preparation to preserve supercompactness (so in particular weak compactness)
in the forcing extension, see (Laver 1978). Note that all forcing notions in this section,
with the exception of Amoeba forcing, are <s-directed closed and Amoeba forcing

may be included in the preparation as well by 6.6.4.

6.1 The Cohen Model

Definition 6.1.1. Let
C, =2%F

and for p,q € C, define g to be stronger than p if p < q. We call C,; the x-Cohen
forcing. If G is a Cy-generic filter then we call 7 = |, s the generic xk-Cohen real (of

V|[G]). Conversely we say v € 27 is a k-Cohen real (over V) if G = {s € 2<% : s<av}
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is a Cy-generic filter.

Fact 6.1.2. Let v € 2%, Then v is a k-Cohen real over V iff it is not contained in

any meager set of V. O
Lemma 6.1.3.

1. C, is <k-directed closed.

2. C, is k-centered,.

3. Cy satisfies (x).
Proof. (1.) and (2.) are trivial. Then (3.) easily follows from 2.1.5, 2.3.2, 2.2.9. [

Definition 6.1.4. Let p be an ordinal. Let C, ,, be the limit of the <s-support
iteration (CH,Q,RQ ta < p) where Cy, o 4R, = C,.” for every o < 1.

It is easy to check that [],_, C, can be canonically embedded as a dense subset

i<p
into Cy 4.

Lemma 6.1.5. Let 1 be an ordinal. Then C, , satisfies the stationary x*-Knaster

condition and in particular Cy , satisfies the Kt -c.c.

Proof. By 6.1.3, 2.2.8, 2.2.3. O

Figure 6.1: Cohen model

Theorem 6.1.6. Let V |= 2% = kt. Then VECertt satisfies:

1. non(Coheny) = k.
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2. cov(Cohen,) = ™.

3. 28 = gtT.
We call VExrt+ the k-Cohen model.
Proof.

1. This is a standard argument from the classical case but we give details.

Let M = {5y : o < KT} where 1, is a name for the xk-Cohen real added by
R,. We claim Cy o+ I-“M is a nonmeager set”. Towards contradiction assume
that there are (A; : i < k) where A; is a C,, x++-name for a closed, nowhere
dense set and there exists p € C,; ,++ such that p I-“M C Uicr A7 It is easy
to see that any closed nowhere dense set 4; € VE=rt+ is decided by |2<F| = k-
many antichains (J; s : s € 2<%) where Ji,s decides the hole of A; above s, i.e.

decides ii,s > s such that [¢; ;] N A; = 0. Remember 6.1.5 and let

a € I€+\< U U supp(ps,i))

1<K s€2<K

Remember 6.1.4 and let 1I be the range of the dense embedding of Hi<n+“' C.
into C,, .++. Without loss of generality J; ; C II for all i < x and all s € 2<"
and also p € II. Find p’ < p such that p’ € II and let s = p(«). Now for
arbitrary ¢ < k we can find r € J; 5, r £ p’ and let p” =r A p’. Now because
p/,r € II we have p”(a)) = s and p” decides t5 > s to be missing from A;. Thus
define p” < p” such that p"”'(a) = ts and p"”(8) = p”(B) for B € kTT\{a}.
Clearly 7o > ts thus p” IF¢n, & A;”. Clearly p"” < p hence contradicting
p I C U, A

2. Same argument as in 6.2.7.

3. Should be clear using nice names. O

6.2 The Hechler Model

Definition 6.2.1. Let

Hn — K‘,<K % [,{H]<n

and for p1 = (p1, X1),p2 = (p2, X2) € Hy, define p2 to be stronger than p; if:
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L. p2 & p1.
2. X9 2 Xj.
3. For all i € dom(p2)\ dom(p;) and for all f € X; we have pa(i) > f(i).

We call Hy the s-Hechler forcing. If G is a Hy-generic filter then we call n =
U( p.x)ec P the generic k-Hechler real.

The intended meaning of a condition (p, X) is the promise that the x-Hechler real
will start with p and from now on (i.e. past the length of p) dominate all functions

in X.

Fact 6.2.2. Let n a k-Hechler real over V. Then for every v € k" NV we have
v <*n. O

Fact 6.2.3. Let 1 a k-Hechler real over V. Let v € 2% be such that for all ¢ < &
v(i) =n(i) mod 2.

Then v is a k-Cohen real over V. O
Lemma 6.2.4.

1. H,, is <k-directed closed.

2. Hy is k-centered.,,.

3. Hy satisfies (x),;. O
Proof.

1. Let D C Hy, |D| < k,p,g € D=p/LqIfp=(p1,X1),q = (p2,X2) € D
then because p, ¢ are compatible we have p; < pa V pa < p1. Hence (p*, X™*) is
a lower bound for D where p* = J, xep £» X* = U, x)ep X-

2. Hfi = Upe/{<*€({p} X [KH]<H)'
3. By (1), (2.), 2.1.5, 2.3.2, 2.2.9. 0

Definition 6.2.5. Let p be an ordinal. Let Hy , be the limit of the <s-support
iteration (Hy o, Ry:a < p) where Hy, o IF“R, = H,.” for every a < fb-
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Lemma 6.2.6. . Let u be an ordinal. Then:

1. Hy , satisfies the stationary k™ -Knaster condition and in particular Hy ,, sat-

isfies the kK -c.c.
2. If p < (2%)* then H, , is k-centered<,.
Proof.
1. By 6.2.4, 2.2.8, 2.2.3.

2. Remember 6.2.4(2.). Easily check that H , is finely <x-closed so use 2.3.7. [

Figure 6.2: Hechler model

Theorem 6.2.7. Let V |= 25 = k. Then VEert+ satisfies:
1. cov(Qx) = kT
2. b, =kTt.
3. cov(Cohen,) = k™.
4. add(Cohen,) = 1.
5. 28 = kT,
We call VEert+ the r-Hechler model.

Proof. We use the iteration theorems from section 2 so the following proofs become

standard arguments from the classical case.
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1. We claim that H,, ,++ does not add Qx-generic reals. Remember 6.2.6(1.) so if
we have a nice H, ,.++-name 7 for a x-real the antichains deciding 7 are already
antichains of Hy , for some o < x. Note that if we show that Hy , does not

add Qg-generic reals for any o < k™ we are done:

If n € VHre is not Q,-generic over V then there is a Borel code ¢ € V of an
id(Qy)-set AB. such that n € B.. The same is still true in VH&W*, see 1.2.7.

By 6.2.6 (2.) Hy , is a s-centered<, forcing notion for each o < k1 and thus
by 2.3.9 does not add a Q,-generic real. In V there exists a covering of id(Qy)
of size k™ and because H; ,.++ does not add Q-generic reals this covering

. .. xsH
remains a covering in V' rstt

2. Assume there exists an unbounded family of size k™ in Vit Argue as
above to see that this family already appears in some Ve, But by 6.2.2 R,

adds a bound. Contradiction.

3. Assume there exists an covering of id(Cohen,) of size x* in VFxst+  Again
this family already appears in some V= But by 6.2.3 R, adds a x-Cohen

real hence the covering is destroyed. Contradiction.
4. Remember 5.1.6 so this follows from (2.) and (3.).

5. Should be clear. O

6.3 The Short Hechler Model

Figure 6.3: Short Hechler model
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Theorem 6.3.1. Let V = k is weakly compact. Let V |= non(Q,) = «*1 (e.g.
V=V,

Let H;, .+ be the <r-support iteration of length kT of Hechler reals (see 6.2.5).
Then Vet satisfies:

1. non(Q,) = x*T.
2. 0. =kT.
3. non(Cohen,) = ™.
4. cf(Coheny) = k™.
5. 28 = KT,
Proof.
1. Follows by 2.3.7 and 2.3.13.

2. Remember 6.2.2 so {n. : ¢ < kT} is a dominating family where 7. is the
rk-Hechler real added by R..

3. We claim {v, : ¢ < k*} & id(Cohen,) were v, € 2 is the canonical x-Cohen
real added by R, (see 6.2.3). Argue as in 6.1.6 but instead of using the product

we find « greater than the support of all antichains.
4. Remember 5.1.6 so this follows from (2.) and (3.).

5. Should be clear. O

6.4 Amoeba forcing, part 1

Definition 6.4.1. Let Q™! be the forcing consisting of tuples (¢, S, E) where:

1. ee SF

mc’

2. 5CSE

. is nowhere stationary.

3. E C k is a club disjoint from S.

For p € Q™! we will write €, SP, EP for the respective components of p.
For p = (€, 5p,Ep),q = (€g,5q¢, Ey) we define ¢ < p (¢ stronger than p) iff
either ¢ = p, or:
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1. €, < €4, and moreover the set E, meets the interval (e, ;).
2. SpNep=5,N¢g

3. Sp\ep € Sg\ep.

4. EpNep = EyNep.

5. E, D E,.

The intended meaning of a condition (e, S, E) is the promise to cover S from now on
above € but not tamper with it below € (to preserve the fact that S N e is nowhere
stationary in €). The purpose of E is to ensure that the generic set will not be

stationary in k.
Lemma 6.4.2. Let G be a Q2™ -generic filter and let
S*=U{S:(Ipe G) S = 5P},
E*=n{E:(3IpeG) E = EP}.
Then:
1. E* is a club of k disjoint from S*.
2. S* is a nowhere stationary subset of k.

3. For any nowhere stationary set S C k, S € V we have VR =S C*S* (ie.,
the set S\S* is bounded.

We call S* the generic nowhere stationary set.

Proof.

1. Assume that (¢, 5, E) IF“E* Ca < k”. Find g € E, v € SE . with a < § < 7.

Then (v, S, F) < (a, S, E) and (v, S, E) I 5 € E*, contradicting what (e, S, S)

forced. So E* is unbounded.

As an intersection of closed sets, E* must be closed. E* is disjoint from S* by

definition.

2. To see S* N « is non-stationary for o € Sf_ argue as in (1.). To see S* is

non-stationary in x, remember that E* is a club disjoint from S* by (1.).
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3. Let p= (¢, 5, FE) € Q! and let S’ € V be nowhere stationary and let E’ be

a club disjoint from S’. Then (e, SU(S"\€), EN(E'Ue)) < p forces S C S* Ue,

hence also S C* S*. As p was arbitrary we are done. O

Lemma 6.4.3.

1. Q¥ s <k-closed.

2. Q¥ s k-linked.

3. Qaml satisfies ().

Proof.

1. Let (p; : © < 0) be a strictly decreasing sequence, § < £ a limit ordinal, and

let p; = (&, Si, E;). Hence the sequence (¢; : i < 0) is strictly increasing, so in

particular ¢; > i:

We define a condition p* = (e*, 5*, E*) as follows:

(a) € =supj5€;. (So € >4)
(b) S* =U, <555
(c) B* =<5 Ej-

Clearly E* is club in x and disjoint to S*, so S* is nonstationary.

For §' < § the sequence (S; N¢' : i < §) is eventually constant with value
Ss1 Mo, s0 S* N ¢’ is nonstationary in ¢’

For ¢’ > § the set S* N ¢’ is the union of a small number of nonstationary sets,

hence is nonstationary.

We have to check that S* N is nonstationary in ¢ (if § is inaccessible).

Case 1 €* = 4. Then E* N (€;,€+1) = Eir1 N (€, €.41) is nonempty for all i < 4,

so E is unbounded (hence club) in €*. Hence S is nonstationary in €*.

Case 2 €¢* > 4. Then we can find ¢ < § with ¢; > §, and we see that S*Ne; = 5;Ne;,

so also S* Nd = 5; NI is nonstationary.

Finally we show that p* < p: The main point is that (Vj >4) S;Nd; = S; Ny,
so also S*NJ; = 5; N6;.
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2. Consider f: Q¥ — K x 2<% x 2<% where f(¢,S,E) = (,SNe, ENe¢). Now
check that for p,q € Q™! we have f(p) = f(q) = p L q.

3. By (1.), (2.) and 2.2.9.
0

We want to iterate Amoeba forcing (together with the forcing in the next sub-
section, and possibly other forcings) and not lose the weak compactness of . So we
will start in a model where k is supercompact, and this supercompactness is not
destroyed by <k-directed closed forcing, and also not by our Amoeba forcings.

As Amoeba forcing is not <k-directed closed, we cannot use Laver’s theorem
directly. However, it is well known that a slightly weaker property is also sufficient.

The following definition is copied from (Konig 2006).

Definition 6.4.4. If P is a partial ordering then we always let § = p be the least
regular cardinal such that P € Hy. Say that a set X € B, (Hy) is P-complete if
every (X, P)-generic filter has a lower bound in P.

Define H(P) := {X € P.(Hp) | X is P-complete}.

Then a partial ordering P is called almost x-directed-closed if P is strategically

r-closed and H(P) is in every supercompact ultrafilter on .. (Hp).

We will show that for the forcings P we consider, the set H(P) contains all
small elementary submodels of Hy, is therefore closed unbounded, hence an element
of every (fine) normal ultrafilter on B, (Hy). (See (Kanamori 1994, chap. 22 and
25.4).)

Definition 6.4.5. Let G; € Q™™ !, We call a triple (61, S1, E1) a pivot for Gy if the

following hold (where we write dy for the first inaccessible above d1):
e 1 < £ (usually a limit ordinal).

e 51, B are disjoint subsets of d1, F1 is club in &1, S1 is nowhere stationary in
01.

e G C sz’l, ‘Gl‘ < 6§92, (31 is a filter.
e For all p= (¢, 5, F) € Gy, (51, E1) is “stronger” than p in the following sense:

— €< 1.
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6.5. Amoeba forcing, part 2

— SNe=5S1Ne, ENe=FEj|Ne.
- 5N C 5.
— ENd D Es.

Note: When we say that GG has a pivot, it is implied that G is a filter of small

cardinality.

Lemma 6.4.6 (Master conditions in Qﬁm’l). Assume that G1 C Qim’l has a pivot.
Then Gy has a lower bound in Q™ i.e., (Ip* € Q¥™) (Vp € G1) p* < p.

Proof. Let (61,51, E1) be a pivot for Gy.
We let p* := (01, 5%, E*), where

o S N3 =S N3y
« B N6 =B N3y

o 561 = Ur.s.mec, S\or.
o B\61 = Nieszrea, E\L-

Note that the ideal of nowhere stationary subsets of [0y, k) is da-closed, so S* is
indeed nowhere stationary above d1. (Also nowhere stationary below and up to dy,
because S had this property.)

Hence p* is indeed a condition. It is clear that p* is stronger than all p € Gy. O

Corollary 6.4.7. Let N < Hy, N € B,.(Hy), Q2™ € N, NN € k.
Then N € H(Q¥™') (see Definition 6.4.4).

Proof. Let G C Q™1 N N be (N, Qim’l)—generic. Let 61 := N Nk, and let (S, Eq)
be the generic object determined by G as in 6.4.2. Then (41,51, F1) is a pivot for G,
so by 6.4.6 we can find a lower bound for G in Q™. O

6.5 Amoeba forcing, part 2

Definition 6.5.1. Let S C SF

mnc’

Let Qzl’%z to be the forcing consisting of pairs (e, ff)

where:

1. e<k
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—

2. A=(A5:0€8) € Jl5cqid(Qs).
For p = (ep,ffp), q = (g, /Tq) we define g < p iff either ¢ = p or:
1. € < ¢
2. A,I(SNe) = Agl(SNep)
3. Forall 6 € S A,(0) C Ay(9).

Lemma 6.5.2. Let G be a Qif%?—generic filter, let

A =(A5:6e8) = |J Ale e J[id@y)

(e,A)eq 6es

Then:

1. For all (Bs : 6 € S), where each Bs C 2° is in id(Qs), we have IF (VY®68) Bs C
A

2. For all B € id; (Qx,s) we have B C Seta(ff*).
Proof. 1. Let p= (e,fT) € fog. Find (e, [l") € Qzlfé‘? be such that:

(a) AN(SNe)=A(SNe).
(b) For all 6 € S with 6 > € let A5 = A5 U B;.

Now check that A C set, (A") C setg (A%)

Because p was arbitrary we are done.
2. Follows from 1. O

Lemma 6.5.3. Let S C SF . Then:

inc*
1. Q¥™2 s k-strategically closed.
2. Qa2 js k-linked.

3. Q2 satisfies (% ).

Proof. Similar to 6.4.3. ]
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Definition 6.5.4. Let Q3™ := szl*(@if%% where S* is the generic object from Q™!
as in 6.4.2.

Discussion 6.5.5. Note that Q%™ here is not the same as the amoeba forcing Q%™
defined in (Shelah 2017). But as we see in 6.5.6 it is a modularized variant.

Lemma 6.5.6. There exists A* € id~(Q) N V@™ such that:
1. For every A € VNid™ (Qy) we have A C A*.
2. If k is weakly compact then for every A € V Nid(Qx) we have A C A*.
Proof.
1. Combine 6.4.2 and 6.5.2 and check that A* = set, ((Aj : 6 € S*)) is as required.
2. By (1.) and 3.2.5. O

The generic null set added by Amoeba forcing will cover all ground model sets
sets in id ™. If k is weakly compact, then we also cover all id sets. So we are interested

in keeping x weakly compact after our Amoeba iteration.

Definition 6.5.7. Let S C SF

mc

We call a pair (41, ffl) a pivot for G if the following hold

. 2
be nowhere stationary, and let G C erg )

e 0 €85F

mc

e Aj=(415:6€5n0d) € [Tscsns, id(Qs)

\S.

e G C ané,z’ |G1] < 02, G is a filter (where again 09 is the smallest inaccessible
> 51)

e For all p := (e, B) € Gy:
€ < 41, and (07, A}) is “stronger” than p in the sense that:
— (V6 < d1) Bs C Ay
- (V(S < 6) Bs = A175.

Lemma 6.5.8 (Master conditions in Q*"%%). Assume that S is nowhere stationary,
and G1 C Qiﬁgg has a pivot. Then the set G1 has a lower bound in Qiﬁ;?, i.e.,

(TIp* € QM%) (Vp € Gi) p* < p.
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Proof. Similar to the proof of Lemma 6.4.6.
Let (81, A1) be a pivot. We define a condition p* = (J1, A*) as follows:

o (V6 €SNG) A; = Ars.
o (V6 e S\61) A; := U(e,fT)eG1 As.

Why is p condition? Because for all § € x\d1, the ideal id(Qj) is d;-complete, so the
set U(c)eq, ¥(0) is in the ideal.
It is clear that p* < p for all p € G;. O

Corollary 6.5.9. Let N < Hy, N € B..(Hp), Qe N, NNk € k.
Then N € H(Q) (see Definition 6.4.4). O

6.6 Iterated Amoeba Forcing

Notation 6.6.1. For every forcing notion P we write I'p for the canonical name of

the generic filter on P.
Definition 6.6.2.
1. Let p be an ordinal and let P be the limit of a <k-support iteration P =

(P, Ro : < pu).

We call the iteration P and its limit P relevant, if the following hold: For every

a < i we have either

(a) Py IF“Ry = QE™ or
(b) Py IF“Ry = Q™57 for some nowhere stationary S C S% 7 or

K,S inc

(¢) Py IF“R, is <r-directed closed”.

(In particular, any <k-directed closed forcing is an example of a relevant iter-

ation.)

2. Let Go C P be a filter. For a < pu we will write G [« for the set {pla: p € Gy},
and Go(a) will be a Py-name for the set {p(a) : p € Gop}.

We remark that Go[(a+ 1) is a subset of P, * R,, so the empty condition of
P, forces “If Golaw C I'p,,, then Go(a) C R,.”
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3. Let Go C P be a filter. A sequence (1, : a < ) (where each 7, is a Po-name)

is called a pivot for Gy if for all o < p the following statement is forced:

If Go|P, C I'p,,, then:
o R, is <k-directed closed, n(a) = 0.

e or: n(a) is a pivot (in the sense of Definitions 6.4.5 or 6.5.7,
respectively) for Go(a) C R,,.

Lemma 6.6.3 (Existence of master conditions in iterations). Assume that P is the
limit of a relevant iteration. Let Gy C P be a filter, and assume that there is a pivot
for Gj.

Then there exist p* € P such that

(Vp € Go) p* < p.

Proof. We will define p* by induction, in each coordinate appealing to Lemma 6.4.6
or 6.5.8, as appropriate. (Note that fewer than x coordinates appear in the conditions

in Gy, so the resulting condition will have support of size < k.) ]

Corollary 6.6.4. Let N < Hy, N € B.(Hy), NNk € k. Let P € N be a relevant
iteration.

Then N € H(P) (see Definition 6.4.4).

Hence by (Kéonig 2006, Theorem 9): If k is supercompact, then after forcing with
a modified Laver preparation we obtain a model in which k is not only supercompact,
but moreover this supercompactness cannot be destroyed by almost k-directed closed

forcing, so in particular not by relevant iterations. O

Definition 6.6.5. Let p be an ordinal. Let A, be the limit of the <s-support

iteration <A,€7a,Ra : oo < py where for every o < p we have:

am
Ao lF Ry = Q%" o even
H,. o odd.
Fact 6.6.6. A, , is an iteration satisfying the requirements of 6.6.3. O

Lemma 6.6.7. Let u be an ordinal. Then A, satisfies the stationary x*-Knaster

condition and in particular A, , satisfies the Kt -c.c.

Proof. By 6.4.3, 6.5.3, 2.2.8, 2.2.3. O
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Figure 6.4: Amoeba model

Theorem 6.6.8. Let V = 2% = kT and let k be supercompact, indestructible in the
sense of 6.4.4. Then VAt satisfies:

1. 28 = gHTF

2. add(Qy) = kT

3. add(Coheny) = k*7,
Proof.

1. Should be clear.

2. By (1.) is suffices to show add(Q,) > xTT. So towards contradiction assume
add(Qx) = x* and let (B; : i < k') witness it. Remember A, ,++ satisfies
the kT-c.c. by 6.6.7. So there exists a < T+ such that B; € VP for every
i < kT. But by 6.5.6 there exists A € VFe+2 Nid(Q,) such that B; C A for
every i < k7. By 4.2.2 also V*«*+ = A € id(Q,). Contradiction.

3. Argue as in 6.2.7. O

6.7 The Short Amoeba Model

Theorem 6.7.1. Let V = 2% = kT and let k be supercompact, indestructible in the
sense of 6.4.4. Let i = k1T - k™. Then VA satisfies:

1. 26 = g+t
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Figure 6.5: Short Amoeba model

2. cf(Qy) = kKT.

3. 0., =kKT.

4. cf(Coheny) = k.

Proof.

1. Should be clear.

2. Let (u; : i < k™) be a cofinal sequence in p such that for each i < k™ we have
w; is even. Let A; be the null set added by Rm- Easily by 6.5.6 the sequence
(A; i < k) is cofinal in id(Qj).

3. Let n; be the Hechler real added by RMH. Easily by 6.2.2 the sequence (n; :
i < k1) is dominating.

4. Assume cf(Cohen,) > k*. Then by (3.) and 5.1.12 and (2.) cf(Cohen,) <

non(Qy) < cf(Q,) = . Contradiction. O

6.8 Cohen-Amoeba Forcing

Definition 6.8.1. Let C2™ be the set of all pairs (a, A) such that:

1. o < k.

2. A C 2<F is a tree.

3. [A] C 2% is non-empty nowhere dense.
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For p = (ap, 4p), ¢ = (ag, Ag), P, q € CZ™ we define ¢ stronger than p if:
1. ag > ap.
2. A; D A,
3. Aylay = Aplay,.

We call C2™ the Cohen-Amoeba forcing.
Note that C&™ is a straightforward generalization of the universal meager forcing
defined in (Bartoszynski and Judah 1995, 3.1.9).

Lemma 6.8.2. Let (4; : i < i* < k) be a family of nowhere dense subsets of 2".

Then A =J,_;+ A;i is nowhere dense.

i<i
Proof. For i < i*,s € 2" let t(i,s) € 2<% be such that

1. s <t(i,s).

2. A;N[t@i,s)] = 0.
Let s € A and we define an increasing sequence (7; : @ < i*) as such that:

1. ng = s.

2. 0= j+1=m=t(j,m).

3. If ¢ is a limit ordinal then n; = {J;; 1;.
Let n = {J;,;+ m and check:

1. sdn.

2. Ann =0.
Because s was arbitrary we are done. O
Lemma 6.8.3.

1. C¥™ 4s <k-directed closed.

2. Ci™ is k-linked.

3. C&™ satisfies (*).
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Proof.
1. Easy using 6.8.2.
2. Should be clear.

3. By (1), (2), and 2.2.9. O
Lemma 6.8.4. Let G be generic for CI™ and let N = U(a,A)eG A. Then for the set
M={ne2":(3ve N)v="n}

we have:
1. M is meager.

2. M covers every meager set X € V.
More precisely: for every family (X; : i < k) € V of nowhere dense trees it is
forced that (Vi < k) [X;] € M holds.

Proof.

1. Tt suffices to show that M is nowhere dense. We check that for each s € 2<F
the set
Ds={qeCi™ . (Ft>s)qlk “NN[t]=0"}

is dense in C2™. Indeed for any (o, A) € C2™ there exists ¢ > s such that
AN|t] = 0. Now easily (max(a, |t]), A) € Ds.

2. Let X C 2<% such that [X] is nowhere dense and let (a, A) € C2™. Without
loss of generality we may assume |X N 2% =1 (otherwise we just split up X).
Now find p € AN 2% and let

X' ={ne2t:(3FveX)n="v,nla=p}
Easily ¢ = (o, AU X’) € C2™ and ¢ forces X to be covered by M. O]

Theorem 6.8.5. . Let V = 2° = xT. Let P = {P;,R; : i < p) be the limit of
a <k-support iteration such that that P; I+ *“R; = C¥™” for each i < p. Then VT

satisfies:

1. If p= K™t then add(Cohen,) = k7.
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2. If cf(p) = k™ then cf(Cohen,) = k™.
Proof.
1. Use 6.8.4 and argue as in 6.6.8(2.).
2. Use 6.8.4 and argue as in 6.7.1(2.). O

Corollary 6.8.6. We could use C¥™ instead of H,, for odd iterants in the definition
of Ag, n 6.6.5 to achieve the same results in 6.6.8 and 6.7.1 in regard to the

characteristics of the diagram.

6.9 Bounded Perfect Tree Forcing

We give a k-support alternative to the short Hechler model.

Figure 6.6: Bounded perfect tree model

Definition 6.9.1. Let:
1. 8 C KN Sipe, sup(S) =k, 0 € S = 9 > sup(9d N Sine)
2. (0 : € < k) enumerates S in increasing order.
3. 0. = 2% for € < k.
4. T =U¢e, Tc where T = J[ (.

We define ']TE to be the set of all p C T such that:

(a) For all n € p we have v I = v € p.
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(b) There exists a club E' C  such that for all n € p:

ng(n) if lg(n) ekl

={i <Ogu):n i E€p}=
sucy(n) = {i < gty "0 € } {{p’“i*} if 1g(n) ¢ E, for some i* < Oy,

(c) No branches die out in p. Le. If ¢ is a limit ordinal and n € T, then:
nepe (Ve< () nle€p.

So T¥ is the forcing of all subtrees of T that split fully on a club E C & of levels and
otherwise do not split. The order is defined the usual way, i.e. for p, ¢ € T we have
q stronger than p iff ¢ C p. Because for our purposes every S works we will simply

write T, instead of T%.

Definition 6.9.2. Let T, ,, be the limit of the x-support iteration (Ty o, Ra : o0 < 1)
where T, o II—“Ra =T,” for every a < p.

Lemma 6.9.3.
1. Ty is <k-directed closed.

2. T, o+ 1s <r-directed closed.
Proof.

1. Let D be a directed subset of T, of size < k. Intersecting the club sets asso-
ciated with each p € D will give us a club set E. Letting ¢ be the intersection
of all p € D, we claim that ¢ is a condition. It is then clear that ¢ is a lower
bound for D.

Clearly ¢ is nonempty and satisfies condition 6.9.1 (a), (c). It remains to verify
(b). Let n € q.
Case 1:1g(n) € E. Solg(n) € E), for all p € D, hence sucy(n) = (e p sucy(n) =

Org(n)-

Case 2: 1g(n) ¢ E. So there is some p* € D and some * such that suc,«(n) =
{i*}. As D is directed, and n € p for all p € D, we also have n™i* € p for all
p € D. Hence sucy(n) = [, psucy(n) = {i"}, as required.

2. By 2.1.6. O
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Definition 6.9.4. Let o < k, p,q € Ty and let (e; : i < k) be an enumeration of
the club of splitting levels of p. We define

g<ap if g<pAgn25e =pn2asce,

Lemma 6.9.5. Let p = (p; : i < k) be a sequence of conditions in Ty such that

1< jJ<k=Dpj<iDi. Then p has a lower bound q € T.

Proof. 1t is easy to check that ¢ = (), p; is a condition in T, and a lower bound
for p. O

Definition 6.9.6. We refer to sequences as in 6.9.5 as fusion sequences.
Lemma 6.9.7.

(a) White has a winning strategy for §y(Tw,p) for every p € T.

(b) White has winning strategy for Fx(Ty .++,p) for everyp € Ty ,.++.
Proof.

(a) We are going to construct a fusion sequence (p¢ : ( < k) and a winning

strategy for White such that

(1) po=p-
(2) In the ¢-round White plays p¢ = |pc N Ts| and pc; = pl"eil where
(n¢,i =4 < p¢) enumerates pc N Tz and 3 is the (-th splitting level of pe.

(3) pey1 = Ui<ug p;; where p; ; are the moves played by Black.
(4) For ¢ a limit ordinal ps = (5 -

Now use 6.9.5 and check that ¢ = ﬂ( < P¢ Witnesses that White wins.
(b) By 2.4.8. O
Lemma 6.9.8.
(a) Ty ++ does not collapse k™

(b) Let N be a k-meager set in V8srt+ . Then there exists a rk-meager set M € V
such that N C M.
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(¢) In particular: If V |= 25 = kT then V' st = cov(Cohen,) = k.
Proof. By 6.9.7, 2.4.7. 0
Lemma 6.9.9. If V = 2% = kT then:

(a) T, satisfies the k™1 -c.c.

(b) T, ++ satisfies the k™t -c.c.
Proof.

(a) By our assumption: |T.| = 7.

(b) By 6.9.7, 2.5.9. O
Lemma 6.9.10.

(a) Ty Ik (25)Y €id™ (Qy).

() VTt = non(id™ (@) > #*+.

(¢) VIrett = non(id(Qy)) > wt.
Proof.

(a) Let (Ac; : i < 0) be a covering sequence in id(Qp,). Let 7 be a name for
the generic k-real added by T, and define A = (Ay : 9 € S) such that
seto(Ag,) = A p(e)- Now A witnesses (2%)V € id™(Qx) in V.

(b) Remember that by 6.9.9 all Borel sets appear in VT=a for some o < x*+. So
(b) follows from (a), remembering 6.9.3, 2.1.5, 4.2.2.

(¢) Remember id™(Q,) C id(Qx) hence non(id™(Qx)) < non(id(Qy)). So this
follows from (b). O

Discussion 6.9.11. The coverings in 6.9.10 could be just be sequences of singletons.
So we could say that the lemma speaks on some ideal id™~ that is defined similar
to id™ just with singletons (or maybe sets of size at most x) instead of id(Qs)-sets

on each level. So we really show non(id™~(Qy)) > ™.

Theorem 6.9.12. If V |= 2% = g1 then Virrtt = 25 = g+, O
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CHAPTER 7

Slaloms

It is well known that slaloms can be used to characterize the additivity and cofinality
of measure in the classical case, see for example (Bartoszynski and Judah 1995).
In (Brendle, Brooke-Taylor, Friedman, and Montoya 2018) this result motivates a
definition: The cardinals add(null) and cof(null) are replaced by the appropriate
additivity and covering numbers for slaloms.

This raises the question how the characteristics introduced there related to the
characteristics of id(Qy) discussed here. In particular one might wonder if the gener-
alized characterization of the additivity of null by slaloms is equal to the additivity
of id(Qy). It turns out that for partial slaloms the answer is negative. We conjecture

that for total slaloms the answer is negative too, see 7.2.4 and 7.3.1 respectively.

7.1 Recapitulation

Let us start with some results and definitions from (Brendle, Brooke-Taylor, Fried-
man, and Montoya 2018) (for more details and proofs see there). Since there also
successor cardinals k are considered, let us remind the reader of that in this paper

the cardinal x is always (at least) inaccessible.

Definition 7.1.1. Let A € k" be an unbounded function. We define

Ch = {9 € ([s]™)" : (Vi < &) ¢(i) € []"ON}.
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For ¢ € Cp,, f € k™ we define
feto o (VFi<r) fi) € (i)
Finally let:
1. add(h-slalom) = min{|F| : F C &*,(V¢ € C,)3f € F) f ¢* ¢}.
2. cf(h-slalom) = min{|®| : & C Cy, (Vf € k) (3¢ € ) f €* $}.

Definition 7.1.2. We may also consider partial slaloms. Let i € x* be unbounded
and define

pCh ={¢: (3¥ € Ch) ¢ C ¢, |dom(e)| = x}.
Again for ¢ € pCh, f € K" we define
fpe o & (vriedom()) f(i) € 6(i).
Finally let:
1. addP®Yal(h_slalom) = min{|F| : F C &%, (V¢ € pCh)(3f € F) fpg*o}.
2. cfPrtial(p_glalom) = min{|®| : ® C pCh, (Vf € k%) (3p € ®) fpe ¢}

Discussion 7.1.3. Note that in (Brendle, Brooke-Taylor, Friedman, and Montoya
2018) the notation add(h-slalom) = by(€"), cf(h-slalom) = 0;,(€") and similarly
addPar¥al(h_slalom) = by, (pe”), cfP4al(h-slalom) = 0, (p€”) is used.

Lemma 7.1.4. Let h € k" be unbounded. Then:

e add(h-slalom) < addP®%2!(h-slalom) < add(Cohen,).

e cf(h-slalom) > cfP"8l(h_slalom) > cf(Cohen,). O
Lemma 7.1.5. Let h,g € k" be unbounded. Then:

o addP®l(h_glalom) = addP*a!(g-slalom).

o cfPtial(_glalom) = cfPrHal(g_slalom). O

Discussion 7.1.6. So for partial slaloms we may ignore h and write addPartial(x)

instead of addP®#!(h-slalom) and similarly cfP"8l(x) instead of cfP ! (h-slalom).
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7.1. Recapitulation

COV(QK) -

addpartial (K))

kT ——— add(h-slalom)

ial (

K)

cf(h-slalom) —— 2~

e cof(@)

Figure 7.1: The combined diagram: characteristics related to slaloms and id(Qy).
Remember that the dashed lines connected to by, 0, require x Mahlo (or at least

Shy stationary).
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7.2 Separating Partial Slaloms from id(Q,)

The following forcing is used in (Brendle, Brooke-Taylor, Friedman, and Montoya
2018) to show CON(add(h-slalom) < addP®al(k)). We are going to investigate its
effect on id(Qy).

Definition 7.2.1. Consider the forcing pL, consisting of all pairs (¢, A) such that
1. ¢ € pCly.
2. ACK", |A| < k.

For p = (¢p, Ap),q = (¢q, Aq), p,q € pL, we define ¢ stronger than p if:

1. ¢ 2 .

2. (supp(¢g)\ supp(¢p)) N sup(supp(gp)) = 0.

3. A, D A,

4. i€ (supp(¢g)\supp(¢p)), f € Ay = f(i) € B4(i).

If G is a pLL,; generic filter then

is a partial slalom and we call ¢ a generic partial slalom. So the intended meaning

of (¢, A) € pLL is the promise that the generic partial slalom ¢* will satisfy:
L ¢od¢"
2. fpe’ ¢* for every f € A.

Lemma 7.2.2. Let P be the limit of the <k-support iteration (IP’i,Ri s < KT

where for each i < k we have:
P; IF R; = pL,.
Then:

1. P satisfies (x),..
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7.2. Separating Partial Slaloms from id(Qy)

2. For each i < k' the forcing P; is k-centered.

Proof.
1. Check that plL, satisfies (*), and use 2.2.8.

2. Check that
oo = | {(6,4): A [5]<}

peEPCH

and use 2.3.7. UJ

L]

Figure 7.2: Partial slalom model

Theorem 7.2.3. Let V |= 2% = k. Then V¥ satisfies:
1. cov(Q,) = rT
2. addP¥tial(g) = g+t

3. add(h-slalom) = k™
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4. add(Cohen,) = 1+
5. 28 = KT,

Proof.
1. Argue as in 6.2.7.

2. Assume |F| witnesses addP®'8l(x) = k. Then by the xT-c.c. F already ap-
pears in some V, and the generic partial slalom added by R, covers every
f € F. Contradiction.

3. This is shown in (Brendle, Brooke-Taylor, Friedman, and Montoya 2018). The
argument there is similar to (1.) in the sense that it is shown that x-centered

forcings do not increase add(h-slalom) = x*.
4. By (3.) and 7.1.4.
5. Should be clear. O
Corollary 7.2.4.
1. CON (add(Qx) < addP*til(k) ).

2. add(Q,) = addP*"al(x) is not a ZFC-theorem. O

7.3 On Total Slaloms and id(Qy)

The next conjecture follows from conjecture 5.2.13 (and may be easier to prove):
Conjecture 7.3.1.

1. CON (add(Qy) > addP™(k)).

2. In particular also CON ( (Vh € £*) add(Qy) > add(h-slalom) ).

3. (3h € k) add(Qx) = add(h-slalom) is not a ZFC-theorem. O

Question 7.3.2. Is add(Q,) < add(h-slalom)) consistent? For a very partial answer
see 7.3.4.

Lemma 7.3.3. Let S C SF

. be nowhere stationary. Then we have add(h-slalom) <
add(id~(Qu.s)) if
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1. e < k= h(e) <min(S\(e+ 1))
2. or at least the above holds on club E C k\S.

Proof. Let
AC{{As:6€8): As €id(Qs)}

and such that |A| < add(h-slalom). We are going to find an upper bound for A. Let
(€ 11 < K), €0 = 0, increasingly enumerate a club disjoint from S.
For A € A we define fa: k — & such that f(e) codes A[(€;,¢€i+1). Now by our

assumption there exists a slalom ¢ such that covers all f4 i.e.
(V%0 < k) fale) € d(e).
For § € (€, €;4+1) define

A5 = U{X : a code of a sequence (A, : 0 € SN (€,€i+1))
such that X = As appears in ¢(¢;)}.

By our assumption on h we have ¢; < min(S\(¢; + 1)) < d so Aj is the union of at
most 6-many elements of id(Qs) hence Aj € id(Qs) and (Af : 6 € S) is an upper
bound for A. O

Corollary 7.3.4. If all of the following holds:
1. k s weakly compact.
2. add(nsty’) > add(Qy).
3. hisasin 7.5.5.

Then add(Q,) < add(h-slalom).

Proof. By 7.3.3, 3.2.5 and 3.3.9. O
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