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Abstract. Operator precedence languages (OPL) enjoy the local parsabil-
ity property, which essentially means that a code fragment enclosed within
a pair of markers —playing the role of parentheses— can be compiled with
no knowledge of its external context. Such a property has been exploited
to build parallel compilers for languages formalized as OPLs. It has been
observed, however, that when the syntax trees of the sentences have
a linear substructure, its parsing must necessarily proceed sequentially
making it impossible to split such a subtree into chunks to be processed
in parallel. Such an inconvenience is due to the fact that so far much
literature on OPLs has assumed the hypothesis that equality precedence
relation cannot be cyclic. This hypothesis was motivated by the need to
keep the mathematical notation as simple as possible.
We present an enriched version of operator precedence grammars, called
cyclic, that allows to use a simplified version of regular expressions in the
right hand sides of grammar’s rules; for this class of operator precedence
grammars the acyclicity hypothesis of the equality precedence relation is
no more needed to guarantee the algebraic properties of the generated
languages. The expressive power of the cyclic grammars is now fully
equivalent to that of other formalisms defining OPLs such as operator
precedence automata, monadic second order logic and operator prece-
dence expressions. As a result cyclic operator precedence grammars now
produce also unranked syntax trees and sentences with flat unbounded
substructures that can be naturally partitioned into chunks suitable for
parallel parsing.

Keywords: Operator Precedence Languages · Cyclic Precedence Rela-
tions · Parallel Parsing

1 Introduction

Operator precedence languages (OPL) are a “historical” family of languages
invented by R. Floyd [8] to support fast deterministic parsing. Together with
their operator precedence grammars (OPG), they are still used within modernTh
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compilers to parse expressions with operators ranked by priority. The key feature
that makes them well amenable for efficient parsing and compilation is that the
syntax tree of a sentence is determined exclusively by three binary precedence
relations over the terminal alphabet that are easily pre-computed from the
grammar productions. For readers unacquainted with OPLs, we anticipate an
example: the arithmetic sentence a+ b× c does not make manifest the natural
structure (a+(b× c)), but the latter is implied by the fact that the plus operator
yields precedence to the times.

Early theoretical investigation [6], originally motivated by grammar infer-
ence goals, realized that, thanks to the tree structure assigned to strings by
the precedence relations, many closure properties of regular languages hold for
OPLs too, but only after a long intermission, renewed research [5] proved further
algebraic properties of OPLs. Then, in [13] the Operator Precedence automata
(OPA) were defined as a formalism, paired with OPGs as well as pushdown
automata are paired with context-free grammars (CFG), to formalize the recog-
nition and parsing of OPLs. In the same paper a monadic second-order (MSO)
logic characterization of OPLs that naturally extends the classic one for regular
languages was also produced. Furthermore [15] introduced the operator precedence
expressions (OPE) which extend traditional regular expressions in the same way
as the MSO logic for OPLs extends the traditional one for regular languages.
The extension of fundamental algebraic and logic properties of regular languages
to OPLs has been completed in [11] where a characterization of OPLs in terms
of a syntactic congruence with a finite number of equivalence classes is given.

Another distinguishing property of OPLs is their local parsability, i.e. the fact
that a chunk of text included within a pair of symmetric precedence relations can
be deterministically parsed even without knowing its context [3]. This feature was
exploited to produce a parallel parser generator which exhibited high performances
w.r.t. traditional sequential parsers [2].

A different research branch —which however is not the core aspect of this
paper— exploited the algebraic and logic properties of this family to extend to it
the successful verification techniques based on model checking, with comparable
performances with those obtained for regular languages [4]. In summary, this
historical family of languages enjoys properties that allowed relevant modern
applications such as automatic verification and parallel compilation.

It must be pointed out, however, that many —not all— of the algebraic
properties discovered during such a research activity that lasted several decades
were proved by assuming a hypothesis on the precedence relations defined on the
input alphabet. Although from a theoretical point of view this hypothesis slightly
affects the generative power of OPGs —but is not necessary, e.g., for OPAs and
MSO logic so that these two formalisms are a little more powerful than OPGs—,
so far no practical limitation due to it was discovered in terms of formalizing
the syntax of real-life programming and data description languages. Thus, it
has been constantly adopted in the various developments to avoid making the
mathematical notation and technical details too cumbersome.
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Fig. 1. Left-associative syntax tree (left) vs equal-level one (right) of the plus operator.
The left syntax tree imposes a sequential left-to-right parsing and semantic processing
whereas the right one can be split onto several branches to be partially processed
independently and further aggregated.

The recent contribution [12], however, pointed out a weakness of the parallel
compilation algorithm described in [2] which in some cases hampers partitioning
the input to be parsed in well-balanced chunks, so that the benefits of paral-
lelism are affected. Intuitively, the weakness is due to the fact that the “normal”
precedence relation on the arithmetic operator + compels to parse a sequence
thereof by associating them either to the left or to right so that parsing becomes
necessarily sequential in this case. The authors also proposed a special technique
to overtake this difficulty by allowing for an acceptable level of ambiguity, which
in the case of OPGs determines a conflict for some precedence relations on the
terminal alphabet.

Such normal precedence relation, however, which either let + yield precedence
to, or take precedence over itself, has no correspondence with the semantics
of the operation whose result does not depend on the order of association. So,
why not giving the various occurrences of the + operator the same precedence
level as suggested by arithmetic’s laws?4 Figure 1 gives an intuitive idea of the
different structures given to a sequence of + operators by traditional OPGs and
the natural semantics of the sum operation. More precise explanations will be
given in the following sections.

The answer to this question comes exactly from the above mentioned hypothe-
sis: it forbids cyclic sequences of symbols that are at the same level of precedence;
so that + cannot be at the same level of itself. What was a, deemed irrelevant,
theoretical limit hid a conceptual inadequacy which had not practical impact
until OPLs properties have been exploited to build parallel compilers 5 We felt

4 Of course, assuming that the use of parentheses does not alter the normal precedence
between the various operators.

5 It must also be recalled that in programming languages very long arithmetic expres-
sions are quite unusual; not so in data description languages such JSON.
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therefore “compelled” to finally remove this relatively disturbing hypothesis: this
is the object of the present paper.

As often claimed in previous literature, when discussing the impact of for-
bidding cycles of operators all at the same level of precedence, removing such a
restriction requires allowing grammar right hand sides (rhs) to include the Kleene
∗ operator (or the + one which excludes the empty string from its result). Thus,
we introduce the Cyclic operator-precedence grammars (C-OPG) which include
the above feature: whereas such a feature is often used in general context-free
grammars to make the syntax of programming languages more compact but
does not increase their expressive power, we show that C-OPGs are now fully
equivalent to OPAs and other formalisms to define OPLs, such as the MSO logic.
We also show that all results previously obtained under the above hypothesis
still hold by using C-OPGs instead of traditional OPGs. Although the goal of
this paper is not to develop parallel compilation algorithms rooted in C-OPGs,
we show how they naturally overtake the difficulty pointed out by [12] and would
allow to revisit their techniques, or to improve the efficiency of our previous
parallel parser [2].

2 Background

We assume some familiarity with the classical literature on formal language and
automata theory, e.g., [18,10]. Here, we just list and explain our notations for the
basic concepts we use from this theory. The terminal alphabet is usually denoted
by Σ, and the empty string is ε. For a string, or set, x, |x| denotes the length, or
the cardinality, of x. The character #, not present in the terminal alphabet, is
used as string delimiter, and we define the alphabet Σ# = Σ ∪ {#}.

2.1 Regular languages: automata, regular expressions, logic

A finite automaton (FA) A is defined by a 5-tuple (Q,Σ, δ, I, F ) where Q is
the set of states, δ the state-transition relation (or its graph denoted by −→),
δ ⊆ Q×Σ ×Q; I and F are the nonempty subsets of Q respectively comprising
the initial and final states. If the tuple (q, a, q′) is in the relation δ, the edge

q
a−−→ q′ is in the graph. The transitive closure of the relation is defined as usual.

Thus, for a string x ∈ Σ∗ such that there is a path from state q to q′ labeled with
x, the notation q

x−−→ q′ is equivalent to (q, x, q′) ∈ δ∗; if q ∈ I and q′ ∈ F , then
the string x is accepted by A, and L(A) is the language of the accepted strings.

A regular expression (RE) over an alphabet Σ is a well-formed formula made
with the characters of Σ, ∅, ε, the Boolean operators ∪,¬,∩, the concatenation ·,
and the Kleene star operator ∗. We also use the operator +, and we assume that
its scope is always marked by parentheses. An RE E defines a language over Σ,
denoted by L(E), in the natural way.

Finite automata and regular expressions define the same family of languages
named regular (or rational) languages (REG).
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2.2 Grammars

Definition 1 (Grammar and language). A context-free (CF) grammar is a
tuple G = (Σ,VN , P, S) where Σ and VN , with Σ∩VN = ∅, are resp. the terminal
and the nonterminal alphabets, the total alphabet is V = Σ ∪VN , P ⊆ VN ×V ∗ is
the rule (or production) set, and S ⊆ VN , S ̸= ∅, is the axiom set. For a generic
rule, denoted as A → α, where A and α are resp. called the left/right hand sides
(lhs / rhs), the following forms are relevant:

axiomatic : A ∈ S
terminal : α ∈ Σ+

empty : α = ε
renaming : α ∈ VN

operator : α ̸∈ V ∗VNVNV ∗, i.e., at least one terminal is interposed between
any two nonterminals occurring in α

A grammar is called backward deterministic or a BD-grammar (or invertible)
if (B → α,C → α ∈ P ) implies B = C.

If all rules of a grammar are in operator form, the grammar is called an
operator grammar or O-grammar.

For brevity we give for granted the usual definition of derivation denoted by
the symbols ==⇒

G
(immediate derivation),

∗
==⇒
G

(reflexive and transitive closure of

==⇒
G

),
+
==⇒
G

(transitive closure of ==⇒
G

),
m
==⇒
G

(derivation in m steps); the subscript

G will be omitted whenever clear from the context. We give also for granted the
notion of syntax tree (ST). As usual, the frontier of a syntax tree is the ordered
left to right sequence of the leaves of the tree.

The language defined by a grammar starting from a nonterminal A is LG(A) ={
w | w ∈ Σ∗, A

∗
==⇒
G

w
}
.

We call w a sentence if A ∈ S. The union of LG(A) for all A ∈ S is the
language L(G) defined by G.

Two grammars defining the same language are equivalent. Two grammars
generating the same set of syntax trees are structurally equivalent.

Notation: In the following, unless otherwise explicitly stated, lowercase letters at
the beginning of the alphabet will denote terminal symbols, lowercase letters
at the end of the alphabet will denote strings of terminals, Greek letters at the
beginning of the alphabet will denote strings in V ∗. Capital letters will be used
for nonterminal symbols.

Any grammar can be effectively transformed into an equivalent BD-grammar,
and also into an O-grammar [1,10] without renaming rules and without empty
rules but possibly a single rule whose lhs is an axiom not otherwise occurring in
any other production. From now on, w.l.o.g., we exclusively deal with O-grammars
without renaming and empty rules, with the only exception that, if ε is part of
the language, there is a unique empty rule whose lhs is an axiom that does not
appear in the rhs of any production.
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2.3 Operator precedence grammars

We define the operator precedence grammars (OPGs) following primarily [14].
Intuitively, operator precedence grammars are O-grammars whose parsing

is driven by three precedence relations, called equal, yield and take, included
in Σ# × Σ#. They are defined in such a way that two consecutive terminals
of a grammar’s rhs —ignoring possible nonterminals in between— are in the
equal relation, while the two extreme ones —again, whether or not preceded
or followed by a nonterminal— are preceded by a yield and followed by a take
relation, respectively; in this way a complete rhs of a grammar rule is identified
and can be reduced to a corresponding lhs by a typical bottom-up parsing. More
precisely, the three relations are defined as follows. Subsequently we show how
they can drive the bottom-up parsing of sentences.

Definition 2 ([8]). Let G = (Σ,VN , P, S) be an O-grammar. Let a, b denote
elements in Σ, A,B in VN , C either an element of VN or the empty string ε,
and α, β range over V ∗. The left and right terminal sets of nonterminals are
respectively:

LG(A) =
{
a ∈ Σ | ∃C : A

∗
==⇒
G

Caα
}

and RG(A) =
{
a ∈ Σ | ∃C : A

∗
==⇒
G

αaC
}
.

(The grammar name will be omitted unless necessary to prevent confusion.)
The operator precedence (OP) relations are defined over Σ#×Σ# as follows:

– equal in precedence: a
.
= b ⇐⇒ ∃A → αaCbβ ∈ P

– takes precedence: a⋗ b ⇐⇒ ∃A → αBbβ ∈ P, a ∈ R(B);
a⋗# ⇐⇒ a ∈ R(B), B ∈ S

– yields precedence: a⋖ b ⇐⇒ ∃A → αaBβ ∈ P, b ∈ L(B);
#⋖ b ⇐⇒ b ∈ L(B), B ∈ S.

The OP relations can be collected into a |Σ#|×|Σ#| array, called the operator
precedence matrix of the grammar, OPM(G): for each (ordered) pair (a, b) ∈
Σ# ×Σ#, OPMa,b(G) contains the OP relations holding between a and b.

Consider a square matrix: M = {Ma,b ⊆ { .=,⋖,⋗} | a, b ∈ Σ#}. Such a
matrix is called conflict-free iff ∀a, b ∈ Σ#, 0 ≤ |Ma,b| ≤ 1. A conflict-free matrix
is called total or complete iff ∀a, b ∈ Σ#, |Ma,b| = 1. By convention, if M#,# is
not empty, M#,# = { .

=}. A matrix is =̇-acyclic if the transitive closure of the =̇
relation over Σ ×Σ is irreflexive.

We extend the set inclusion relations and the Boolean operations in the
obvious cell by cell way, to any two matrices having the same terminal alphabet.
Two matrices are compatible iff their union is conflict-free.

Definition 3 (Operator precedence grammar). A grammar G is an op-
erator precedence grammar (OPG) iff the matrix OPM(G) is conflict-free, i.e.
the three OP relations are disjoint. An OPG is =̇-acyclic if OPM(G) is so. An
operator precedence language (OPL) is a language generated by an OPG.
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Figure 2 (left) displays an OPG,GAE , which generates simple, unparenthesized
arithmetic expressions and its OPM (center). The left and right terminal sets
of GAE ’s nonterminals E, T and F are, respectively: L(E) = {+,×, n}, L(T ) =
{×, n}, L(F ) = {n}, R(E) = {+,×, n}, R(T ) = {×, n}, and R(F ) = {n}.
Remark. If the relation =̇ is acyclic, then the length of the rhs of any rule of G is
bounded by the length of the longest =̇-chain in OPM(G).

GAE : S = {E}
E → E + T | T × F | n
T → T × F | n
F → n

+ × n #

+ ⋗ ⋖ ⋖ ⋗
× ⋗ ⋗ ⋖ ⋗
n ⋗ ⋗ ⋗
# ⋖ ⋖ ⋖

N

# N

N

N

n

+ N

N

n

× N

n

+ N

n

#

Fig. 2. GAE (left), its OPM (center), and the syntax tree of n+ n× n+ n according to
the OPM (right).

Unlike the arithmetic relations having similar typography, the OP relations
do not enjoy any of the transitive, symmetric, reflexive properties. We kept
the original Floyd’s notation but we urge the reader not to be confused by the
similarity of the two notations.

It is known that the family of OPLs is strictly included within the deter-
ministic and reverse-deterministic CF family, i.e., the languages that can be
deterministically parsed both from left to right and from right to left.

The key feature of OPLs is that a conflict-free OPM M defines a universe
of strings compatible with M and associates to each of them a unique syntax
tree whose internal nodes are unlabeled and whose leaves are elements of Σ, or,
equivalently, a unique parenthesization. We illustrate such a feature through
a simple example and refer the reader to previous literature for a thorough
description of OP parsing [9,14].

Example 4. Consider the OPM(GAE) of Figure 2 and the string n+ n× n+ n.
Display all precedence relations holding between consecutive terminal characters,
including the relations with the delimiters # as shown below:

#⋖ n⋗+⋖ n⋗×⋖ n⋗+⋖ n⋗#

each pair ⋖,⋗ (with no further ⋖,⋗ in between) includes a possible rhs of a
production of any OPG sharing the OPM with GAE , not necessarily a GAE

rhs. Thus, as it happens in typical bottom-up parsing, we replace —possibly in
parallel— each string included within the pair ⋖,⋗ with a dummy nonterminal
N ; this is because nonterminals are irrelevant for OPMs. The result is the
string #N + N × N + N#. Next, we compute again the precedence relation
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between consecutive terminal characters by ignoring nonterminals: the result is
#⋖N +⋖N ×N ⋗+N ⋗#.

This time, there is only one pair ⋖,⋗ including a potential rhs determined
by the OPM (the fact that the external ⋖ and ⋗ “look matched” is coincidental
as it can be easily verified by repeating the previous procedure with the string
n + n × n + n + n). Again, we replace the pattern N × N , with the dummy
nonterminal N ; notice that there is no doubt about associating the two N to the
× rather than to one of the adjacent + symbols: if we replaced, say, just the ×
with an N we would obtain the string N +NNN +N which cannot be derived
by an O-grammar. By recomputing the precedence relations we obtain the string
#⋖N +N ⋗+N ⋗#. Finally, by applying twice the replacing of N +N by N
we obtain #N#.

The result of the whole bottom-up reduction procedure is synthetically rep-
resented by the syntax tree of Figure 2 (right) which shows the precedence of
the multiplication operation over the additive one in traditional arithmetics. It
also suggests a natural association to the left of both operations: if we reverted
the order of the rhs of the rules rewriting E and T , the structure of the tree
would have suggested associativity to the right of both operations which would
not have altered the semantics of the two operations which can indifferently be
associated to the left and to the right; not so is we dealt with, say, subtraction
or division which instead impose association to the left.

Notice that the tree of Figure 2 has been obtained —uniquely and determin-
istically— by using exclusively the OPM, not the grammar GAE although the
string n+ n× n+ n ∈ L(GAE)

6.
Obviously, all sentences of L(GAE) can be given a syntax tree by OPM(GAE),

but there are also strings in Σ∗ that can be parsed according to the same OPM but
are not in L(GAE). E.g., the string +++ is parsed according to the OPM(GAE)
as a ST that associates the + characters to the left. Notice also that, in general,
not every string in Σ∗ is assigned a syntax tree by an OPM; e.g., in the case of
OPM(GAE) the parsing procedure applied to nn is immediately blocked since
there is no precedence relation between n and itself.

The following definition synthesizes the concepts introduced by Example 4.

Definition 5 (OP-alphabet and Maxlanguage).

– A string in Σ∗ is compatible with an OPM M iff the procedure described in
Example 4 terminates by producing the pattern #N#. The set of all strings
compatible with an OPM M is called the maxlanguage or the universe of M
and is simply denoted as L(M).

– Let M be a conflict-free OPM over Σ# × Σ#. We use the same identifier
M to denote the —partial— function M that assigns to strings in Σ∗ their
unique ST as informally illustrated in Example 4.

6 The above procedure that led to the syntax tree of Figure 2 could be easily adapted
to become an algorithm that produces a new syntax tree whose internal nodes are
labeled by GAE ’s nonterminals. Such an algorithm could be made deterministic by
transforming GAE into an equivalend BD grammar (sharing the same OPM).
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– The pair (Σ,M) where M is a conflict-free OPM over Σ# ×Σ#, is called an
OP-alphabet. We introduce the concept of OP-alphabet as a pair to emphasize
that it defines a universe of strings on the alphabet Σ —not necessarily
covering the whole Σ∗— and implicitly assigns them a structure univocally
determined by the OPM, or, equivalently, by the function M .

– The class of (Σ,M)-compatible OPGs and OPLs are:

GM = {G | G is an OPG and OPM(G) ⊆ M}, LM = {L(G) | G ∈ GM}.

Various formal properties of OPGs and OPLs are documented in the literature,
e.g., in [6,5,14]. The next proposition recalls those that are relevant for this article.

Proposition 6 (Algebraic properties of OPGs and OPLs).

1. If an OPM M is total, then the corresponding homonymous function is total
as well, i.e., L(M) = Σ∗.

2. Let (Σ,M) be an OP-alphabet where M is =̇-acyclic. The class GM contains
an OPG, called the maxgrammar of M , denoted by Gmax,M , which generates
the maxlanguage L(M). For all grammars G ∈ GM , L(G) ⊆ L(M).

3. The closure properties of the family LM of (Σ,M)-compatible OPLs defined
by a total OPM are the following:
– LM is closed under union, intersection and set-difference, therefore also

under complement (if a maxgrammar of M exists).
– LM is closed under concatenation.
– if M is =̇-acyclic, LM is closed under Kleene star.

Remark. Thanks to the fact that a conflict-free OPM assigns to each string at
most one ST —and exactly one if the OPM is complete— the above closure
properties of OPLs w.r.t. Boolean operations automatically extend to sets of their
STs. The same does not apply to the case of concatenation which in general may
produce significant reshaping of the original STs [5]. Furthermore, any complete,
conflict-free, =̇-acyclic OPM defines a universe of STs whose frontiers are Σ∗.

2.4 Chains and Operator Precedence Automata (OPA)

The notion of chain introduced next is an alternative way to represent STs where
internal nodes are irrelevant and “anonymized”.

Definition 7 (Chains). Let (Σ,M) be an OP-alphabet.

– A simple chain is a word a0a1a2 . . . anan+1, written as a0 [a1a2 . . . an]
an+1 ,

such that: a0, an+1 ∈ Σ ∪ {#}, ai ∈ Σ for every i : 1 ≤ i ≤ n, Ma0an+1
≠ ∅,

and a0 ⋖ a1
.
= a2 . . . an−1

.
= an ⋗ an+1.

– A composed chain is a word a0x0a1x1a2 . . . anxnan+1, with xi ∈ Σ∗, where
a0 [a1a2 . . . an]

an+1 is a simple chain, and either xi = ε or ai [xi]
ai+1 is a chain

(simple or composed), for every i : 0 ≤ i ≤ n. Such a composed chain will be
written as a0 [x0a1x1a2 . . . anxn]

an+1 .
– The body of a chain a[x]b, simple or composed, is the word x.
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– Given a chain a[x]b the depth d(x) of its body x is defined recursively: d(x) = 1
if the chain is simple, whereas d(x0a1x1 . . . anxn) = 1+maxi d(xi). The depth
of a chain is the depth of its body.

For instance, the ST of Figure 2 (right) is biunivocally represented by the
composed chain #[x0 + x1]

#, where, in turn x0 is the body of the composed
chain #[y0 + y1]

+, y0 is the body of the simple chain #[e]+, y1 is the body of the
composed chain +[z0 × z1]

+, etc. The depth of the main chain is 5.
As well as an OPG selects a set of STs within the universe defined by its

OPM, an operator precedence automaton (OPA) selects a set of chains within
the universe defined by an OP-alphabet.

Definition 8 (Operator precedence automaton). A nondeterministic op-
erator precedence automaton (OPA) is given by a tuple: A = ⟨Σ,M,Q, I, F, δ⟩
where:

– (Σ,M) is an operator precedence alphabet,
– Q is a set of states (disjoint from Σ),
– I ⊆ Q is a set of initial states,
– F ⊆ Q is a set of final states,
– δ, named transition function, is a triple of functions:

δshift : Q×Σ → ℘(Q) δpush : Q×Σ → ℘(Q) δpop : Q×Q → ℘(Q)

We represent a nondeterministic OPA by a graph with Q as the set of vertices
and Σ ∪Q as the set of edge labelings. The edges of the graph are denoted by
different shapes of arrows to distinguish the three types of transitions: there is an
edge from state q to state p labeled by a ∈ Σ denoted by a dashed (respectively,
normal) arrow if and only if p ∈ δshift(q, a) (respectively, p ∈ δpush(q, a)) and
there is an edge from state q to state p labeled by r ∈ Q and denoted by a double
arrow if and only if p ∈ δpop(q, r).

To define the semantics of the automaton, we introduce some notations.
We use letters p, q, pi, qi, . . . to denote states in Q. Let Γ be Σ×Q and let Γ ′

be Γ ∪ {⊥}; we denote symbols in Γ ′ as [a, q] or ⊥. We set symbol([a, q]) = a,
symbol(⊥) = #, and state([a, q]) = q. Given a string Π = ⊥π1π2 . . . πn, with
πi ∈ Γ , n ≥ 0, we set symbol(Π) = symbol(πn), including the particular case
symbol(⊥) = #.

A configuration of an OPA is a triple C = ⟨Π, q, w⟩, where Π ∈ ⊥Γ ∗, q ∈ Q
and w ∈ Σ∗#. The first component represents the contents of the stack, the
second component represents the current state of the automaton, while the third
component is the part of input still to be read.

A computation or run of the automaton is a finite sequence of moves or
transitions C1 ⊢ C2; there are three kinds of moves, depending on the precedence
relation between the symbol on top of the stack and the next symbol to read:

push move: if symbol(Π) ⋖ a then ⟨Π, p, ax⟩ ⊢ ⟨Π[a, p], q, x⟩, with q ∈
δpush(p, a);

shift move: if a
.
= b then ⟨Π[a, p], q, bx⟩ ⊢ ⟨Π[b, p], r, x⟩, with r ∈ δshift(q, b);
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pop move: if a⋗ b then ⟨Π[a, p], q, bx⟩ ⊢ ⟨Π, r, bx⟩, with r ∈ δpop(q, p).

Notice that shift and pop moves are never performed when the stack contains
only ⊥.

Push and shift moves update the current state of the automaton according
to the transition function δpush and δshift, respectively: push moves put a new
element on the top of the stack consisting of the input symbol together with the
current state of the automaton, whereas shift moves update the top element of
the stack by changing its input symbol only. The pop move removes the symbol
on the top of the stack, and the state of the automaton is updated by δpop on
the basis of the pair of states consisting of the current state of the automaton
and the state of the removed stack symbol; notice that in this move the input
symbol is used only to establish the ⋗ relation and it remains available for the
following move.

A configuration ⟨⊥, qI , x#⟩ is initial if qI ∈ I; a configuration ⟨⊥, qF , #⟩
is accepting if qF ∈ F . The language accepted by the automaton is:

L(A) =

{
x | ⟨⊥, qI , x#⟩

∗
⊢ ⟨⊥, qF , #⟩, qI ∈ I, qF ∈ F

}
.

Example 9. The OPA depicted in Figure 3 (top, left) based on the OPM at
the (top, right) accepts the language of arithmetic expressions enriched w.r.t
L(GAE) in that it introduces the use of explicit parentheses to alter the natural
precedence of arithmetic operations. The same figure (bottom) also shows an
accepting computation on input n+ n× Ln+ nM.

Definition 10. Let A be an OPA. A support for a simple chain a0 [a1a2 . . . an]
an+1

is any path in A of the form

q0
a1−→ q1 99K . . . 99K qn−1

an
99K qn

q0
=⇒ qn+1 (1)

Notice that the label of the last (and only) pop is exactly q0, i.e. the first state of
the path; this pop is executed because of relations a0 ⋖ a1 and an ⋗ an+1.

A support for the composed chain a0 [x0a1x1a2 . . . anxn]
an+1 is any path in A of

the form

q0
x0⇝ q′0

a1−→ q1
x1⇝ q′1

a2
99K . . .

an
99K qn

xn⇝ q′n
q′0=⇒ qn+1 (2)

where for every i : 0 ≤ i ≤ n:

– if xi ̸= ε, then qi
xi⇝ q′i is a support for the (simple or composed) chain

ai [xi]
ai+1

– if xi = ε, then q′i = qi.

Notice that the label of the last pop is exactly q′0.

The support of a chain with body x will be denoted by q0
x
⇝ qn+1.
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q0 q1

q2 q3

n

L

q0, q1+,×

n
L

q0, q1, q2, q3+,×

M

+ × L M n #

+ ⋗ ⋖ ⋖ ⋗ ⋖ ⋗
× ⋗ ⋗ ⋖ ⋗ ⋖ ⋗
L ⋖ ⋖ ⋖ .

= ⋖
M ⋗ ⋗ ⋗ ⋗
n ⋗ ⋗ ⋗ ⋗
# ⋖ ⋖ ⋖ ⋖

stack state current input
⊥ q0 n + n × Ln + nM#
⊥[n, q0] q1 +n × Ln + nM#
⊥ q1 +n × Ln + nM#
⊥[+, q1] q0 n × Ln + nM#
⊥[+, q1][n, q0] q1 ×Ln + nM#
⊥[+, q1] q1 ×Ln + nM#
⊥[+, q1][×, q1] q0 Ln + nM#
⊥[+, q1][×, q1][L, q0] q2 n + nM#
⊥[+, q1][×, q1][L, q0][n, q2] q3 +nM#
⊥[+, q1][×, q1][L, q0] q3 +nM#
⊥[+, q1][×, q1][L, q0][+, q3] q2 nM#
⊥[+, q1][×, q1][L, q0][+, q3][n, q2] q3 M#
⊥[+, q1][×, q1][L, q0][+, q3] q3 M#
⊥[+, q1][×, q1][L, q0] q3 M#
⊥[+, q1][×, q1][M, q0] q3 #
⊥[+, q1][×, q1] q3 #
⊥[+, q1] q3 #
⊥ q3 #

Fig. 3. An OPA (top, left), its OPM (top, right) and an example of computation for
the language of Example 9 (bottom). Arrows −→ , 99K and =⇒ denote push, shift
and pop transitions, respectively. To avoid confusion with the overloaded parenthesis
symbols, the parentheses used as terminal symbols are denoted as L and M.

Notice that the context a, b of a chain a[x]b is used by the automaton to
build its support only because a⋖ x and x⋗ b; thus, the chain’s body contains
all information needed by the automaton to build the subtree whose frontier is
that string, once it is understood that its first move is a push and its last one is
pop. This is a distinguishing feature of OPLs, not shared by other deterministic
languages: we call it the locality principle of OPLs, which has been exploited to
build parallel and/or incremental OP parsers [3].

3 Cyclic Operator Precedence Grammars (C-OPGs) and
their equivalence with OPAs

Proposition 6 shows that some, but not all, of the algebraic properties of OPLs
depend critically on the =̇-acyclicity hypothesis. This is due to the fact that
without such a hypothesis the rhs of an OPG have an unbounded length but
cannot be infinite: e.g., no OPG can generate the language {a, b}∗ if a

.
= b and

b
.
= a. In most cases cycles of this type can be “broken” as it has been done up
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to now, e.g., to avoid the +
.
= + relation in arithmetic expressions by associating

the operator indifferently to the right or to left. Thus, although it is known that,
from a theoretical point of view, the =̇-acyclicity hypothesis affects the expressive
power of OPGs,7 we accepted so far the =̇-acyclicity hypothesis to keep the
notation as simple as possible. Recently, however, it has been observed [12] that
such a restriction may hamper the benefits achievable by the parallel compilation
techniques that exploit the local parsability property of OPLs [2]. Thus, it is time
to introduce the necessary extension of OPGs so that the =̇-acyclicity hypothesis
can be avoided and they become fully equivalent to other formalisms to define
OPLs.

Definition 11 (Cyclic Operator Precedence Grammar).

– A +-O-expression on V ∗ is an expression obtained from the elements of V by
iterative application of concatenation and the usual + operator 8, provided
that any substring thereof has no two adjacent nonterminals; for convenience,
and w.l.o.g., we assume that all subexpressions that are argument of the +

operator are terminated by a terminal character.
– A Cyclic O-grammar (C-OG) is an O-grammar whose production rhs are

+-O-expressions.
– For a grammar rule A → α of an C-OG, the ==⇒

G
(immediate derivation)

relation is defined as βAγ ==⇒ βζγ iff ζ is a string belonging to the language
defined by the +-O-expression α, L(α).

– The equal in precedence relation is redefined as a
.
= b iff ∃A → α ∧ ∃ζ =

ηaBbθ | (B ∈ VN ∪ {ε} ∧ ζ ∈ L(α)). The other precedence relations remain
defined as for non-cyclic O-grammars.

– A C-OG is a cyclic operator precedence grammar (C-OPG) iff its OPM is
conflict-free.

As a consequence of the definition of the immediate derivation relation for C-
OPGs the syntax-trees derived therefrom can be unranked, i.e., their internal
nodes may have an unbounded number of children.

Example 12. The C-OPG depicted in Figure 4 with its OPM generates a fairly
complete language of —not necessarily fully— parenthesized arithmetic expres-
sions involving the four basic operations: as usual the multiplicative operations
take precedence over the additive ones; furthermore subtraction takes precedence
over sum and division over multiplication. The key novelty w.r.t. the traditional
way of formalizing arithmetic expressions by means of OPGs are the +

.
= +

and × .
= × OP relations; on the contrary we kept the structure that associates

subtraction and division to the left, so that the grammar’s STs —an example
thereof is given in Figure 5— now fully reflect the semantics of the arithmetic
operations.

7 The language {an(bc)n} ∪ {bn(ca)n} ∪ {cn(ab)n} ∪ (abc)+ cannot be generated by an
OPG because the a

.
= b

.
= c

.
= a relations are necessary [7].

8 For our purposes + is more convenient than ∗ without affecting the generality.
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GA-AE :

S = {P, T,M,N, F,D,E}
P → (T+)+T
T → (F×)+F | M −N | D/E
M → M −N | (F×)+F | D/E
N → (F×)+F | D/E
F → D/E
D → D/E
{P, T,M,N, F,D,E} → L{P, T,M,N, F,D,E}M | n

+ − × / L M n #

+
.
= ⋖ ⋖ ⋖ ⋖ ⋗ ⋖ ⋗

− ⋗ ⋗ ⋖ ⋖ ⋖ ⋗ ⋖ ⋗
× ⋗ ⋗ .

= ⋖ ⋖ ⋗ ⋖ ⋗
/ ⋗ ⋗ ⋗ ⋗ ⋖ ⋗ ⋖ ⋗
L ⋖ ⋖ ⋖ ⋖ ⋖ .

= ⋖
M ⋗ ⋗ ⋗ ⋗ ⋗ ⋗
n ⋗ ⋗ ⋗ ⋗ ⋗ ⋗
# ⋖ ⋖ ⋖ ⋖ ⋖ ⋖

Fig. 4. A C-OPG (left) and its OPM (right). The notation {P, T,M,F,D,E} →
L{P, T,M,N, F,D,E}M is an abbreviation meaning that anyone of the nonterminals
at the left can be rewritten as a pair of parentheses enclosing anyone of the same
nonterminals.

P

T

M

M

n

− N

n

− N

F

n

× F

n

+ T

n

+ T

F

n

× F

D

n

/ E

n

× F

n

+ T

D

L P

T

n

+ T

n

M

/ E

n

+ T

n

+ T

n

Fig. 5. A ST generated by the C-OPG of Figure 4.
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Notice that GA-AE is purposely ambiguous to keep it compact. To sup-
port deterministic parsing it should be transformed into a BD —and therefore
unambiguous— form.

By looking at the ST of Figure 5 and comparing it with the original Figure 1,
one can get a better envision of why the introduction of cyclic

.
= can support

more effective parallel compilation algorithms for OPLs. Parallel parsing and
compilation for OPLs is rooted in the local parsability property of this family:
thanks to this property any fragment of input string enclosed within a pair of
corresponding ⋖ and ⋗ OP relations can be processed in parallel with other
similar fragments. However, if, say, the + operator is associated to the left (or
right) as in the case of the left ST of Figure 1 the parsing of a sequence of
+ must necessarily proceed sequentially from left to right. Conversely, if the
ST has a structure like that of the right tree of Figure 1 the sequence of +
—whether intermixed or not with other subtrees— can be arbitrarily split into
several branches which can be parsed and compiled in parallel and, after that,
can be joined into a unique subtree as imposed by the

.
= OP relation between

the corresponding extreme terminals of contiguous branches.

3.1 Equivalence between C-OPGs and OPAs

The equivalence is obtained by a slight modification of the analogous proof given
in [13] where the additional hypothesis of M being =̇-acyclic was exploited.

First, we describe a procedure to build an OPA equivalent to a C-OPG. Then,
we provide the converse construction.

Theorem 13 (From C-OPGs to OPAs). Let (Σ,M) be an OP-alphabet. For
any C-OPG defined thereon an equivalent OPA can be effectively built.

Proof. A nondeterministic OPA9 A = ⟨Σ,M,Q, I, F, δ⟩ from a given C-OPG G
with the same precedence matrix M as G is built in such a way that a successful
computation thereof corresponds to building bottom-up a syntax tree of G: the
automaton performs a push transition when it reads the first terminal of a new
rhs; it performs a shift transition when it reads a terminal symbol inside a rhs, i.e.
a leaf with some left sibling leaf. It performs a pop transition when it completes
the recognition of a rhs, then it guesses (nondeterministically) the nonterminal
at the lhs. Each state contains two pieces of information: the first component
represents the prefix of the rhs under construction, whereas the second component
is used to recover the rhs previously under construction (see Figure 6) whenever
all rhs nested below have been completed. Precisely, the construction of A is
defined as follows.

Let P̂ be the set of rhs γ where all + and related parentheses have been
erased. Let P̃ be the set of strings γ̃ ∈ V + belonging to the language of some rhs
γ of P that is inductively defined as follows:
if (η)+ is a subexpression of γ such that η is a single string ∈ V + then η̃ = {η, ηη};
9 Any nondeterministic OPA can be transformed into a deterministic one at the cost
of quadratic exponential increase in the size of the state space [13].
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. . .

. . . . . . . . . B

. . .

A

. . . . . . . . .

β

α

. . .

. . . . . . . . . A

. . . . . . . . .
β

α

Fig. 6. When parsing α, the prefix previously under construction is β.

if η = α1(β1)
+α2(β2)

+ . . . αn where αi ∈ V ∗, then η̃ = {η1, η1η1} where η1 =
α1β̃1α2β̃2 . . . αn.

E.g., let η be (Ba(bc)+)+; then η̃ = {Babc,Babcbc,BabcBabc,BabcbcBabc,
BabcBabcbc,BabcbcBabcbc} and η̂ = {Babc}

Let P = {α ∈ V ∗Σ | ∃A → η ∈ P ∧ ∃α, β | αβ ∈ η̃} be the set of prefixes,
ending with a terminal symbol, of strings ∈ P̃ ; define Q = {ε} ∪ P ∪ N , Q =
Q × ({ε} ∪ P), I = {⟨ε, ε⟩}, and F = S × {ε} ∪ {⟨ε, ε⟩ if ε ∈ L(G)}. Note that
|Q| = 1+ |P|+ |N | is O(mh) where m is the maximum length of the rhs in P , and
h is the maximum nesting level of + operators in rhs; therefore |Q| is O(m2h).

The transition functions are defined by the following formulas, for a ∈ Σ and
α, α1, α2 ∈ Q, β, β1, β2 ∈ {ε} ∪ P, and where for any expression ξ, ξ̄ is obtained
from ξ by erasing parentheses and + operators:

– δshift(⟨α, β⟩, a) ∋



if α ̸∈ N :

⟨η̄ζ̄, β⟩ if

(
∃A → γ | γ = η(ζ)+θ∧
αa = η̄ζ̄ ζ̄, αaθ̄ ∈ L(γ) ∩ P̃

)
⟨αa, β⟩ otherwise

if α ∈ N :

⟨η̄ζ̄, β⟩ if

(
∃A → γ | γ = η(ζ)+θ∧
βαa = η̄ζ̄ ζ̄, αaθ̄ ∈ L(γ) ∩ P̃

)
⟨βαa, β⟩ otherwise

– δpush(⟨α, β⟩, a) ∋
{
⟨a, α⟩ if α ̸∈ N
⟨αa, β⟩ if α ∈ N

– δpop(⟨α1, β1⟩, ⟨α2, β2⟩) ∋ ⟨A, γ⟩

for every A such that

[
if α1 /∈ N : A → α ∈ P ∧ α1 ∈ L(α) ∩ P̂

if α1 ∈ N : A → δ ∈ P ∧ β1α1 ∈ L(δ) ∩ P̂

and γ =

{
α2 if α2 /∈ N
β2 if α2 ∈ N.

The states reached by push and shift transitions have the first component in
P. If state ⟨α, β⟩ is reached after a push transition, then α is the prefix of the rhs
(deprived of the + operators) that is currently under construction and β is the
prefix previously under construction; in this case α is either a terminal symbol
or a nonterminal followed by a terminal one.
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If the state is reached after a shift transition, and the α component of the
previous state was not a single nonterminal, then the new α is the concatenation
of the first component of the previous state with the read character. If, instead,
the α component of the previous state was a single nonterninal —which was
produced by a pop transition— then the new α also includes the previous β (see
Figure 6) and β is not changed from the previous state. However, if the new α
becomes such that a suffix thereof is a double occurrence of a string ζ ∈ L((ζ)+)
—hence α ∈ P— then the second occurrence of ζ is cut from the new α, which
therefore becomes a prefix of an element of P̂ .

The states reached by a pop transition have the first component in N : if ⟨A, γ⟩
is such a state, then A is the corresponding lhs, and γ is the prefix previously
under construction.

For instance, imagine that a C-OPG contains the rules A → (Ba(bc)+)+a
and B → h and that the corresponding OPA A parses the string habcbchabca:
after scanning the prefix habcb A has reduced h to B and has Babcb as the first
component of its state; after reading the new c it recognizes that the suffix of the
first state component would become a second instance of bc belonging to (bc)+;
thus, it goes back to Babc. Then, it proceeds with a new reduction of h to B
and, when reading with a shift the second a appends Ba to its current β which
was produced by the previous pop so that the new α becomes BabcBa; after
shifting b it reads c and realizes that its new α would become BabcBabc, i.e., an
element of (Ba(bc)+)+ and therefore “cuts” it to the single instance thereof, i.e.,
Babc. Finally, after having shifted the last a it is ready for the last pop.

Notice that the result of δshift and δpush is a singleton, whereas δpop may
produce several states, in case of repeated rhs. Thus, if G is BD, the corresponding
A is deterministic.

The equivalence between G and A derives from the following Lemmas 14 and
15, when β = γ = ε, Π = ⊥ and A is an axiom. Their statements are identical
to Lemmas 3.2 and 3.3 given in [13] for the original construction applied to
non-C-OPGs.

Lemma 14. Let x be the body of a chain and β, γ ∈ P ∪ {ε}. Then ⟨β, γ⟩ x
⇝ q

implies the existence of A ∈ N such that A
∗⇒ x in G and q = ⟨A, β⟩.

Lemma 15. Let x be the body of a chain and A ∈ N . Then, A
∗⇒ x in G

implies ⟨β, γ⟩ x
⇝ ⟨A, β⟩ for every β, γ ∈ P ∪ {ε}.

The proof of the above lemmas is based on a natural induction on the depth
h of the chains visited by the OPA and is not repeated here. We simply point out
the only key difference due to the fact that simple chains generated by C-OPGs
can have unbounded length.

During a series of shift transitions scanning a simple chain the β component
of the state remains unchanged, whereas the α component at each transition
appends the read character —always under the constraint that it belongs to P—
up to the point where the last append would repeat a suffix of α —say a string y
in case of simple chains— identically; if y occurs under the + operator of a rhs of
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stack state current input
⊥ ⟨ε, ε⟩ n + n + n/n/n + n + n#
⊥[n, ⟨ε, ε⟩] ⟨n, ε⟩ +n + n/n/n + n + n#
⊥ ⟨T, ε⟩ +n + n/n/n + n + n#
⊥[+, ⟨T, ε⟩] ⟨T+, ε⟩ n + n/n/n + n + n#
⊥[+, ⟨T, ε⟩][n, ⟨T+, ε⟩] ⟨n, T+⟩ +n/n/n + n + n#
⊥[+, ⟨T, ε⟩] ⟨T, T+⟩ +n/n/n + n + n#
⊥[+, ⟨T, ε⟩] ⟨T+,T+⟩ n/n/n + n + n#
⊥[+, ⟨T, ε⟩][n, ⟨T+, T+⟩] ⟨n, T+⟩ /n/n + n + n#
⊥[+, ⟨T, ε⟩] ⟨D,T+⟩ /n/n + n + n#
⊥[+, ⟨T, ε⟩][/, ⟨D,T+⟩] ⟨D/, T+⟩ n/n + n + n#
⊥[+, ⟨T, ε⟩][/, ⟨D,T+⟩][n, ⟨/,D⟩] ⟨n,D/⟩ /n + n + n#
⊥[+, ⟨T, ε⟩][/, ⟨D,T+⟩] ⟨E,D/⟩ /n + n + n#
⊥[+, ⟨T, ε⟩] ⟨D,T+⟩ /n + n + n#
⊥[+, ⟨T, ε⟩][/, ⟨D,T+⟩] ⟨D/, T+⟩ n + n + n#
⊥[+, ⟨T, ε⟩][/, ⟨D,T+⟩][n, ⟨D/, T+⟩] ⟨n,D/⟩ +n + n#
⊥[+, ⟨T, ε⟩][/, ⟨D,T+⟩] ⟨E,D/⟩ +n + n#
⊥[+, ⟨T, ε⟩] ⟨T, T+⟩ +n + n#
⊥[+, ⟨T, ε⟩] ⟨T+,T+⟩ n + n#
⊥[+, ⟨T, ε⟩][n, ⟨T+, T+⟩] ⟨n, T+⟩ +n#
⊥[+, ⟨T, ε⟩] ⟨T, T+⟩ +n#
⊥[+, ⟨T, ε⟩] ⟨T+,T+⟩ n#
⊥[+, ⟨T, ε⟩][n, ⟨T+, T+⟩] ⟨n, T+⟩ #
⊥[+, ⟨T, ε⟩] ⟨T, T+⟩ #
⊥ ⟨P, ε⟩ #

Fig. 7. A run of the OPA built from the C-OPG of Figure 4 accepting the sentence
n+ n+ n/n/n+ n+ n. The states truncated by erasing a repeated suffix ζ occurring
under the scope of a + operator are emphasized in boldface.

which α is a prefix then the second occurrence of y is erased and the state is the
same as after reading its first occurrence, thus closing a loop in the same way
as it happens with finite state machines. As a consequence the OPA can repeat
the loop reading y any number of times just as the C-OPG can generate, in an
immediate derivation, any number of occurrences of y thanks to the + operator.

The converse statement that if A ==⇒ x then ⟨β, γ⟩ x
⇝ ⟨A, β⟩ for every

β, γ ∈ P ∪ {ε} follows directly from the construction of A.
The generalization of the above reasoning to the case of composed chains

perfectly parallels the induction step of the corresponding lemmas of [13].

Example 16. Figure 7 displays a run of the OPA obtained from the C-OPG of
Figure 4 accepting the sentence n+ n+ n/n/n+ n+ n.

The construction of a C-OPG equivalent to a given OPA is far simpler than
the converse one, thanks to the explicit structure associated to words by the
precedence matrix. The key difference w.r.t. the analogous construction given in
[13] is that even simple chains can have unbounded length due to the fact that
the

.
= relation may be circular.
First, in analogy with the definition of P̃ , we define essential supports for both

simple and composed chains, as those supports where possible cyclic behaviors of
the OPA along a sequence of terminals —whether with interposing nonterminals
or not— occur exactly twice.
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Definition 17. (Essential chain supports) An essential support of a simple chain
a0 [a1a2 . . . an]

an+1 is any path in A of the form

q0
a1−→ q1 99K . . . 99K qn−1

an
99K qn

q0
=⇒ qn+1 (3)

where any cycle qiai1...aikqi is repeated exactly twice.
Essential supports for composed chains are defined similarly.

For instance, with reference to the OPA built from the C-OPG of Figure 4
an essential support of the chain #[n+ n+ n+ n+ n]# is:

⟨ε, ε⟩ n
⇝ ⟨T, ε⟩ +−→ ⟨T+, ε⟩ n

⇝ ⟨T, T+⟩ +
99K ⟨T+, T+⟩ n

⇝ ⟨T, T+⟩ +
99K

⟨T+, T+⟩ n
⇝ ⟨T, T+⟩ ⟨T,ε⟩

=⇒ ⟨P, ε⟩

Lemma 18. The essential supports of simple chains of any OPA have an effec-
tively computable bounded length.

Theorem 19 (From OPAs to C-OPGs). Let (Σ,M) be an OP-alphabet. For
any OPA defined thereon an equivalent C-OPG can be effectively built.

Proof. Given an OPA A = ⟨Σ,M,Q, I, F, δ⟩, we show how to build an equivalent
OPG G having operator precedence matrix M. The equivalence between A and
G should then be rather obvious.

G’s nonterminals are the 4-tuples (a, q, p, b) ∈ Σ × Q × Q × Σ, written as
⟨ap, qb⟩. G’s rules are built as follows:

– for every essential support of a simple chain, the rule

⟨a0q0, qn+1
an+1⟩ −→ a1a2 . . . an ;

where every double sequence ai1...aikai1...aik is recursively replaced by
(ai1...aik)

+ by proceeding from the innermost cycles to the outermost ones,
is in P ; furthermore, if a0 = an+1 = #, q0 is initial, and qn+1 is final, then
⟨#q0, qn+1

#⟩ is in S;

– for every essential support of a composed chain, add the rule

⟨a0q0, qn+1
an+1⟩ −→ Λ0a1Λ1a2 . . . anΛn ;

where, for every i = 0, 1, . . . , n, Λi = ⟨aiqi, q
′
i
ai+1⟩ if xi ≠ ε and Λi = ε

otherwise, by replacing double cyclic sequences αiαi with (αi)
+ in the same

way as for simple chains; furthermore, if a0 = an+1 = #, q0 is initial, and
qn+1 is final, then add ⟨#q0, qn+1

#⟩ to S, and, if ε is accepted by A, add
A → ε, A being a new axiom not otherwise occurring in any other rule.

Notice that the above construction is effective thanks to Lemma 18 and to
the fact that subchains of composed chains are replaced by nonterminals Λi.
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Remark. The definition of C-OPG and the constructions of Theorems 13 and 19
have been given with the same approach as used in [13], i.e., avoiding possible
optimizations to keep technical details as simple and essential as possible. For
instance, we allowed only the + operator in grammar’s rhs as the minimum
necessary extension to obtain the expressive power of OPAs: allowing, e.g., to
use set union within the scope of a + operator would have allowed in some cases
more compact grammars but such a choice would have also caused an explosion
of the cardinality of the P̃ set. For the same reason we excluded a priori renaming
and ε-rules in our grammars.

4 Other equivalences among OPL formalisms

Legend
All boxes denote classes of OPLs with a common OPM:

– MSO denotes OPLs defined through MSO formulas
– OPA denotes OPLs defined through OP automata [13]
– OPSC denotes OPLs defined through a Syntactic Congruence with

a finite number of equivalence classes [11]
– OPE denotes OPLs defined through OPEs [16]

Arrows between boxes denote language family inclusion; they are

labeled by the reference pointing to paper where the property has been

proved (1 is [13], 2 is [16], 3 is [11]).

Fig. 8. The relations among the various characterizations of OPLs.

Figure 8 displays the five equivalent formalisms introduced in the literature
to define OPLs. The reciprocal inclusions between MSO and OPA, between OPA
and the finite equivalence classes of OPL syntactic congruence, and the inclusion
of MSO in OPE have been proved without the hypothesis of non-circularity of
the

.
= relation; the reciprocal inclusions between C-OPG and OPA have been

restated in Section 3; it remains to consider the inclusion of OPE in OPG which
was proved in [15] under the restrictive hypothesis. The proof used the claim
that deriving an OPG from an OPE may exploit the closure properties of OPLs,
in particular, w.r.t. the Kleene ∗ operator; such a closure, however, was proved
in [5] by using OPGs, again, under the restrictive hypothesis.

Although we will see, in the next section, that all closure properties of OPLs
still hold even when there are circularities in the

.
= relation, here it is convenient to

consider the case of the Kleene ∗ operator of OPEs separately. The reason is that
in OPEs the Kleene ∗ operator is now applied to subexpressions independently
on the OP relations between their last and first terminal character.

Thus, it is first convenient to rewrite the OPE in a normal form using the +

operator instead of the ∗ one to avoid having to deal explicitly with the case of
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the ε string. Then, subexpressions of type (α)+ where the last terminal of α is
not in relation

.
= with the first one are replaced by the same procedure defined

in [5] to prove effectively the closure w.r.t. the ∗ operator. The new rules will
produce a right or left-linear subtree of the occurrences of α depending on the
OP relation between the two extreme terminals of α and will avoid the use of
the ∗ and + operators which are not permitted in the original OPGs.

The remaining substrings including the + operator are the new rhs of the
C-OPG. The other technicalities of the construction of an OPG equivalent to an
OPE are identical to those given in [15] and are not repeated here.

5 OPLs closure properties revisited

All major closure properties of OPLs have been originally proved by referring
to their generating OPGs and some of them, in particular the closure w.r.t. the
Kleene∗ operator, required the

.
=-acyclicity hypothesis. Thus, it is necessary to

prove them again. However, since some of those proofs are technically rather
involved, here we simply observe that it is easier to restate the same properties
by exploiting OPAs which are now fully equivalent to C-OPGs.

Observe, in fact, that, thanks to the determinization of nondeterministic
OPAs, closure w.r.t. boolean operations is “for free”. Closure w.r.t. concatenation
can be seen as a corollary of the closure proved in [13] of the concatenation
between an OPL whose strings have finite length and an ω-OPL, i.e., a language
of infinite strings. The construction is based on a nondeterministic guess of
the position where a string of the first language could end —and a nontrivial
technique to decide whether it could accepted even in the absence of the #
delimiter—. Then, the closure w.r.t. Kleene ∗ is obtained simply by allowing the
OPA to repeat such a guess any number of times until the real # is found.

6 Conclusion

We have filled up a longstanding “hole” in the theory of OPLs under the pressure
of recent practical applications in the field of parallel compilation that showed how
such a hole could hamper the benefits of parallelism [12]. The new grammatical
formalism of C-OPGs, now fully equivalent to OPAs, MSO-logic, and OPEs in the
definition of OPLs, can therefore be exploited to revisit the parallel compilation
techniques of [12] (a rather unusual case where theory comes after its motivating
application) or to improve the efficiency of techniques based on the less powerful
OPGs [2].

Other algebraic and logic properties of OPLs, e.g., aperiodicity, star-freeness,
first-order definability [17,15] can be re-investigated at the light of this general-
ization.
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