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Kurzfassung

In dieser Arbeit veranschaulichen wir, wie (temporal-)epistemische Logik angewendet
werden kann, um byzantinische fehlertolerante asynchrone verteilte Systeme zu unter-
suchen, in denen sich Agenten auf willkürliche ("byzantinische") Weise falsch verhalten
können. Basierend auf unserem Framework zur Modellierung solcher Systeme begin-
nen wir damit, herauszufinden, was Agenten immer wissen können und was Agenten
in Gegenwart byzantinisch-fehlerhafter Agenten niemals wissen können. Da, wie wir
zeigen, Standardwissen für Agenten in den meisten Fällen von Interesse nicht erreichbar
ist, untersuchen wir, wie ihre epistemischen Zustände in verschiedenen Szenarien am
besten erfasst werden können. Im Zuge dessen stoßen wir auf verschiedene epistemische
Modalitäten, insbesondere die “hope” Modalität, und untersuchen sie von einem rein
logischen Standpunkt aus. Genauer gesagt suchen wir nach geeigneten Axiomatisierungen
(d.h. korrekten und vollständigen Axiomatisierungen) für die betreffenden epistemischen
Modalitäten und untersuchen, wie sie miteinander interagieren.

Unser oberstes Ziel ist es jedoch, Einblicke in den Entscheidungsprozess von Agenten in
byzantinischen fehlertoleranten Systemen zu erhalten. Daher verwenden wir (temporal-)
epistemische Logik, basierend auf einigen der neu eingeführten epistemischen Modali-
täten, um ein kanonisches verteiltes Problem namens Firing Rebels with Relay (FRR)
innerhalb des byzantinischen fehlertoleranten asynchronen Modells zu analysieren. Das
FRR-Problem ist im Wesentlichen ein Vereinbarungsproblem, welches erfordert, dass
jeder korrekte Agent eine Aktion namens FIRE ausführt, und zwar auf eine Alles-oder-
Nichts-Weise (aber nicht notwendigerweise gleichzeitig) und nur, wenn mindestens ein
korrekter Agent lokal ein Triggerereignis namens START beobachtet hat. Es ist in der
Distributed Computing Community bekannt, dass im Falle von milden Fehlern (z. B.
solche, bei denen Agenten einfach nichts mehr tun oder Nachrichten verlieren) das Errei-
chen einer Einigung mit bestimmten Formen des allgemeinen Standardwissens verbunden
ist. Interessanterweise stellt sich heraus, dass ein temporal-epistemischer Gruppenbegriff
“hope”, nämlich common eventual hope, im Mittelpunkt jeder Lösung des FRR-Problems
steht.
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Abstract

In this thesis, we illustrate how (temporal-)epistemic logic can be applied to study
byzantine fault-tolerant asynchronous message-passing distributed systems, in which
agents may misbehave in an arbitrary (“byzantine”) way. Based on our framework for
modeling such systems, we start by establishing what agents can always know and what
agents can never know in the presence of byzantine faulty agents. Since, as we show,
standard knowledge is not achievable by agents in most cases of interest, we explore how
to best capture their epistemic states in various scenarios. On that journey, we encounter
different epistemic modalities, in particular, the hope modality, and study them from a
purely logical point of view. More precisely, we search for appropriate axiomatizations
(meaning, sound and complete axiomatizations) for the encountered epistemic modalities
and investigate how they interact with each other.

Our ultimate goal is gaining insight into agents’ decision-making process in byzantine
fault-tolerant systems, however. Therefore, we use (temporal-)epistemic logic based on
some of the newly introduced epistemic modalities to analyze a canonical distributed
computing problem called Firing Rebels with Relay (FRR) within the byzantine fault-
tolerant asynchronous model. The FRR problem is, essentially, an agreement problem
requiring that every correct agent performs an action called FIRE, in an all-or-none
fashion (though not necessarily simultaneously), and only if at least one correct agent
locally observed a trigger event called START. It is well-known in the distributed
computing community that, in case of benign faults (like the ones when agents just
stop operating or lose messages), reaching agreement is connected with certain forms of
standard common knowledge. Interestingly, it turns out that a temporal-epistemic group
notion of hope, namely, common eventual hope, is at the heart of any solution of the
FRR problem.
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CHAPTER 1
Introduction

A distributed system is a collection of networked agents, viewed as abstract processes
(representing computers, for example), that need to actively collaborate in order to
achieve a common goal. A distributed algorithm makes the collaboration among agents
possible, by dictating each and every step agents should take towards their desired
goal. In reality, however, various sources of uncertainty like varying execution speeds,
unpredictable message delays and all kinds of failures make it difficult for agents to
succeed. Moreover, different combinations of distributed systems model assumptions can
lead to vastly different algorithms and, as such, they usually require separate consideration.
Consequently, the literature on distributed algorithms is abundant [Lyn96, AW04].

There are three major categories of different model assumptions considered in the
literature.

I.) Assumptions about the communication means:

a.) message-passing systems (see e.g. [LSP82]), where agents communicate by sending
messages to each other over communication channels;

b.) shared-memory systems (see e.g. [HS99]), where agents store their data in a joint
memory.

II.) Timing assumptions:

a.) asynchronous systems (see e.g. [FLP85, ASW88]), where both agents’ execution
speeds and message delays are unbounded;

b.) synchronous systems (see e.g. [WSS19]), where both agents’ execution speeds and
message delays are bounded (so, in this case agents progress in rounds — a round
is an interval of time during which all agents first send their messages, wait to

1



1. Introduction

receive messages sent by other agents in the same round, and then change their
local memories accordingly);

c.) partially synchronous systems (see e.g. [DLS88, WS07]), which are systems that
behave asynchronously for some finite (but unknown) period of time, and syn-
chronously otherwise.

III.) Assumptions about agent faults:

a.) crash failures (see e.g. [FLP85, HS99]), where (some) agents may stop operating
(possibly without completing their last operating step);

b.) omission failures (see e.g. [PT86]), where (some) agents may fail to send/receive
some messages;

c.) byzantine failures (see e.g. [LSP82]), where (some) agents may misbehave in an
arbitrary way, e.g., by sending inconsistent information to different agents.

The maximal number of faulty agents that can occur during a single execution (run) of
the system is usually denoted by f , while the total number of agents in the system is
usually denoted by n. In general, when allowing faults to happen, 0 < f < n is assumed,
as, obviously, not much can be guaranteed to happen if all agents can become faulty
during any execution. Note that this does not mean that we necessarily treat different
agents differently — what is usually assumed is that any of them can, in principle, become
faulty, but there can never be more than f of them in total during a single execution.

Additional model assumptions include, for example:

• assumptions about the topology of the communication network: fully connected (see
e.g. [LSP82]) versus partially connected communication network (see e.g. [ASW88,
WSS19]);

• assumptions about communication channels: reliable (see e.g. [FLP85]) versus
unreliable communication channels (see e.g. [WSS19]);

• assumptions about agents’ memory capacity: perfect recall (see e.g. [FLP85, HS99])
versus partial memory (see e.g. [ASW88, WSS19]);

• assumptions about the nature of agents: homogenous (which is usually assumed)
versus heterogenous collection of agents (see e.g. [Dij74]).

In this thesis we focus entirely on the byzantine fault-tolerant asynchronous message-
passing model.
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1.1. Epistemic modeling of distributed systems

1.1 Epistemic modeling of distributed systems
At least since the groundbreaking work by Halpern and Moses [HM90], it is well-known
in the distributed computing community that knowledge [Hin62] is a powerful conceptual
abstraction for studying distributed systems. In this section, we will provide an overview
of some of the most important results in the area.

The standard relational semantics of epistemic logic relies on the notion of a Kripke
model M , which consists of all “possible worlds” agents can be in along with accessibility
relations Ri for each agent i (e.g., wRiw

′ means that, when in world w, agent i considers
world w′ possible) and a valuation function determining in which worlds which atomic
propositions (of the logical language being interpreted in the semantics) are true. Finally,
agent i’s knowledge of some formula φ in a world w is captured by a modal knowledge
operator Ki and defined to hold in the following way:

M, w |= Kiφ iff for every w′ with wRiw
′ it holds that M, w′ |= φ.

So, we say that agent i knows formula φ in the world w, if formula φ holds in every world
w′ that is accessible to agent i from the world w.

In the interpreted runs-and-systems framework [HM90, FHMV95], used for analyzing
distributed systems using (temporal-)epistemic logic, the set of all possible runs R of a
system together with a valuation function π for atomic propositions, i.e., an interpreted
system I = (R, π), determines a Kripke model, consisting of pairs (r, t) of a run r ∈ R and
a time t ∈ N0 (representing global states r(t) of the underlying system). Two pairs (r, t)
and (r′, t′) are defined to be indistinguishable for agent i if and only if i has the same local
state in both global states represented by those pairs, formally, if ri(t) = r′

i(t′). Thus, the
indistinguishability relations play the role of accessibility relations in the corresponding
Kripke semantics. We write

(I, r, t) |= Kiφ,

iff for every r′ ∈ R and for every t′ ∈ N0 with ri(t) = r′
i(t′) it holds that (I, r′, t′) |= φ.

Again, we say that agent i knows formula φ at time t in run r (i.e., in (r, t)), if formula
φ holds in every pair (r′, t′) that is indistinguishable from the pair (r, t) for agent i.

Important additional epistemic modalities often used for analyzing distributed systems
are:

1. mutual knowledge EGφ := �
i∈G

Kiφ, which states that every agent in group G

knows φ,

2. common knowledge CGφ, informally expressed as the infinite conjunction EGφ ∧
EGEGφ ∧ . . . , which states that every agent in group G knows φ, and every agent
in group G knows that every agent in group G knows φ, and so on ad infinitum.

3



1. Introduction

The knowledge-based approach has provided a number of fundamental insights about
distributed systems. Most of them rely on the Knowledge of Preconditions principle
(KoP), which has been crisply formulated by Moses [Mos15] as:

KoP: if formula φ is a necessary condition for agent i to perform action α, then Kiφ is
also a necessary condition for i to perform α.

Furthermore, using KoP, it can be shown that performing simultaneous actions requires
common knowledge [HM90, DM90, FHMV95, BZM10, Mos15] and performing actions
in a linear temporal order requires nested knowledge [BZM14, Mos15].

Given a distributed computing problem and a candidate protocol for solving it, showing
that agents act without having attained all the respective necessary knowledge require-
ments can, hence, be used for effectively proving protocol incorrectness. Moreover, KoP
holds regardless of the underlying model of distributed systems, so it is widely applicable.

Over the years, epistemic reasoning has been successfully applied for analyzing various
distributed computing problems, primarily in fault-free systems and systems with crash
and omission failures, however.

In asynchronous message-passing systems, where the absence of communication is indistin-
guishable from delayed communication, agents can gain new knowledge only based on the
messages they receive, as precisely captured by message chains [CM86]. In synchronous
message-passing systems, where message delays are upper-bounded, agents can gain
new knowledge also from the absence of communication (communication-by-time). This
has been already observed by Chandy and Misra in [CM86]: “If there is a global clock
common to all processes, then processes may learn or forget merely by the passage of
time.”

In [BZM14], Ben-Zvi and Moses analyze, using epistemic logic, the Ordered Response
problem (OR), in which temporal linear ordering of agents’ actions is required in response
to a triggering event. They show that nested knowledge about the triggering event
plays a crucial role in achieving such a coordination. They also introduce a causal
structure called centipede, and show that a centipede must exist in every execution of a
protocol solving OR (because its existence is necessary for achieving the required nested
knowledge). Centipedes are defined using two relations: syncausality and bound guarantee.
The former is obtained by augmenting Lamport’s happened-before relation [Lam78] by
causal links indicating no communication within the message delay upper bound to also
capture causality induced via communication-by-time, and the latter is based on the
message delivery time bounds. In the conference version [BZM10] of [BZM14], Ben-Zvi
and Moses also analyze the Simultaneous Response problem (SiR), in which agents must
act simultaneously in response to a triggering event. They show that common knowledge
plays a crucial role in achieving such a coordination. In addition, a variation on the
centipede structure called centibroom is introduced. A centibroom must exist in every
execution of a protocol solving SiR (because its existence is necessary for achieving the

4



1.2. Motivation

required common knowledge). The corresponding epistemic analyses in both [BZM10] and
[BZM14] are performed within the fault-free synchronous model of distributed systems
with reliable communication.
In [GM13], Gonczarowski and Moses analyzed timely coordination, in which explicit
bounds on the relative times at which actions are performed are specified. By defining
the notion of timely common knowledge as a vectorial fixpoint, they characterize both
solvability and optimal solutions of a general class of timely coordination tasks.
In [CGM14], Castañeda, Gonczarowski, and Moses derive the very first unbeatable
protocol for solving consensus by epistemic reasoning. The corresponding epistemic
analysis is performed within the synchronous model of distributed systems restricted to
crash failures.
Simultaneous Byzantine Agreement (SBA) has been studied in [DM90] by Dwork and
Moses. Using common knowledge, they derive an optimal protocol for SBA. The corre-
sponding epistemic analysis is performed within the synchronous model of distributed
systems restricted to crash failures.
A general class of problems involving performing simultaneous actions has been introduced
in [MT86, MT88]. In [MT86, MT88], Moses and Tuttle use common knowledge to study
efficient protocols for solving such problems. The corresponding epistemic analysis is
performed within the synchronous model of distributed systems restricted to omission
failures.
Eventual Byzantine Agreement (EBA) has been studied in [HMW01]. The authors
characterize optimal EBA protocols using continual common knowledge. Interestingly,
continual common knowledge is a stronger group notion of knowledge than common
knowledge. The corresponding epistemic analysis is performed within the synchronous
model of distributed systems restricted to crash and omission failures.
The uncertainty added by byzantine faults severely complicates the already challenging
design and analysis of distributed algorithms. Even though several of the above papers
have “byzantine” in their title, it is nevertheless the case that they solely consider benign
faults, such as crash and omission failures. We are not aware of any attempt to extend
epistemic reasoning to systems with truly byzantine faults, except for [Mic89]. However,
faulty agents considered in [Mic89] may not really behave arbitrarily either, as they are
not allowed to exhibit a behaviour that cannot be observed in some correct execution as
well.

1.2 Motivation
In this thesis, we aim to develop a sound understanding of how agents “reason” and, thus,
make decisions in the presence of byzantine faulty agents in asynchronous message-passing
distributed systems in particular, using (temporal-)epistemic logic. For this purpose, we
perform a careful analysis of a canonical distributed computing problem called Firing
Rebels with Relay (FRR) within our framework for modeling such systems.

5



1. Introduction

The FRR problem is a problem related to the consistent broadcasting primitive, introduced
by Srikanth and Toueg in [ST87b]. Srikanth and Toueg use this communication primitive
to simulate signed communication in order to be able to convert an authenticated fault-
tolerant algorithm into an equivalent non-authenticated fault-tolerant algorithm. This
approach has been applied to byzantine fault-tolerant clock synchronization [DFP+14,
FS12, RS11, ST87a, WS09]. Moreover, FRR is instrumental for the generic reduction
of task solution algorithms for byzantine fault-tolerant systems to algorithms for crash-
resilient systems introduced in [MTH14].

The formulation of FRR first appeared in [Fim18] together with the formulation of Firing
Rebels without Relay, albeit with a different correctness requirement (see below). The
FRR problem assumes that every agent i may observe an event START and may generate
an action FIRE according to the following specification:

Correctness: If at least 2f + 1 agents learn that START occurred at a correct
agent, all correct agents perform FIRE eventually.

Unforgeability: If a correct agent performs FIRE, then START occurred at a
correct agent.

Relay: If a correct agent performs FIRE, all correct agents perform FIRE eventu-
ally.

In [Fim18], the correctness requirement states: if at least f + 1 correct agents observe
START, then all correct agents perform FIRE eventually. Note also that only the
weaker version of Firing Rebels, that is, Firing Rebels without Relay, has been analyzed
in [Fim18].

1.3 Contributions and outline of the thesis
In order to understand and formally reason about the decision-making process of correct
agents in presence of byzantine faulty agents in asynchronous message-passing distributed
systems, we first establish some general results concerning agents’ knowledge limitations
using our framework for modeling such systems. In doing so, we introduce several
epistemic modalities closely related to knowledge, in particular, the hope modality. We
propose an axiomatic system for hope, which we show to be strongly sound and strongly
complete with respect to the K45n class of models satisfying some additional properties.
We also present an alternative axiomatic system for hope that is sound and complete
with respect to the KB4n class of models. Based on it, we then propose a joint system
for (common) hope and (common) knowledge. Using (temporal-)epistemic logic based on
some group notions of hope, namely, mutual eventual hope and common eventual hope,
we perform an in-depth analysis of Firing Rebels with Relay, which represents a canonical
distributed computing problem. We prove that common eventual hope plays a crucial

6



1.3. Contributions and outline of the thesis

role for meeting its relay requirement, instructing agents to act in a non-simultaneous
all-or-none fashion. Moreover, assuming there are sufficiently many agents in the system
who will always stay correct (i.e., never become byzantine faulty), at least 2f + 1 to be
precise, we show how common eventual hope can collapse to one level of mutual eventual
hope. Finally, we also identify conditions that are sufficient for solving FRR.

We now provide a more detailed description of our results contained in individual chapters
of this thesis:

• Chapter 2: We introduce the basic concepts of multi-agent epistemic logic used
throughout the thesis. We also introduce the cornerstones of our framework
for modeling byzantine fault-tolerant asynchronous message-passing distributed
systems, based on

– [KPS+19] R. Kuznets, L. Prosperi, U. Schmid, K. Fruzsa, L. Gréaux. Knowl-
edge in Byzantine Message-Passing Systems I: Framework and the Causal
Cone, Technical Report TUW-260549, TU Wien, 2019.

• Chapter 3: We derive generic results about what asynchronous agents can(not)
know in byzantine fault-tolerant message-passing distributed systems. In our central
result, the Brain-in-a-Vat lemma, we show that no matter what it observed, an
asynchronous agent in a byzantine setting can never rule out the possibility of
those observations being imaginary results of its malfunction. Using this result, we
conclude that the Knowledge of Preconditions principle (according to which any
precondition for action must be known by the acting agent) severely restricts the
kinds of preconditions for actions agents can rely on in such a setting. Consequently,
we investigate how the corresponding adequate preconditions for actions look like,
which gives us insight into the epistemic state of an acting agent in systems with
byzantine faults.
This chapter is based on

– [KPSF19] R. Kuznets, L. Prosperi, U. Schmid, K. Fruzsa. Epistemic Reasoning
with Byzantine-faulty Agents, in: A. Herzig and A. Popescu, editors, Frontiers
of Combining Systems - 12th International Symposium, FroCoS 2019, London,
UK, September 4-6, 2019, Proceedings, volume 11715 of Lecture Notes in
Computer Science, pages 259–276. Springer, 2019.

• Chapter 4: We study the hope modality, introduced in the previous chapter, from
a purely logical point of view. Essentially, we aim to get a better understanding of
individual hope in order to be able to formally introduce relevant group notions of
hope. So, we propose a separate (from knowledge) axiomatization for the individual
hope modality while relying on so-called correctness atoms in the language. We
then provide a detailed proof of strong soundness and strong completess for the
proposed axiom system with respect to a newly designed class of Kripke models that
precisely captures the properties of hope. The resulting logic turns out to violate

7



1. Introduction

the uniform substitution rule, however. In addition, we also provide a proof of
soundness and completeness with respect to the standard S5 models for knowledge
via a suitable translation function.
This part of the chapter is based on

– [Fru21] K. Fruzsa, Hope for Epistemic Reasoning with Faulty Agents!, in: A.
Pavlova, M. Young Pedersen, and R. Bernardi, editors, Selected Reflections in
Language, Logic, and Information - ESSLLI 2019, ESSLLI 2020 and ESSLLI
2021 Student Sessions, Selected Papers, volume 14354 of Lecture Notes in
Computer Science, pages 93–108. Springer, 2021.

Finally, in an entirely new section 4.3, we prove that the proposed logic of hope
has the finite model property as well as that it is decidable.

• Chapter 5: We propose an alternative axiomatization for the hope modality, which
successfully avoids the use of correctness atoms. The resulting new logic of hope
turns out to be a normal multi-agent epistemic logic. We also propose a joint logic
of hope and knowledge as well as a logic extended with notions of common hope
and common knowledge. The proposed systems enable us to logically characterize
the byzantine fault-tolerant model considered throughout the thesis. We provide a
thorough soundness and completeness proof of the axiom system for the joint logic
of common hope and common knowledge. This part of the chapter is based on

– [vDFK22] H. van Ditmarsch, K. Fruzsa, R. Kuznets, A New Hope, in: D.
Fernández-Duque, A. Palmigiano, and S. Pinchinat, editors, Advances in
Modal Logic, AiML 2022, Rennes, France, August 22-25, 2022, pages 349–370.
College Publications, 2022,

with the exception of Section 5.4, which is entirely new.
In an also new section 5.5, we prove that all of the logics presented in the chapter
have the finite model property as well as that they are decidable.
Finally, in the entirely new Section 5.6 as well, we describe a way to define a
particular temporal-epistemic group notion of hope called common eventual hope.
We end the chapter by deriving useful properties of the common eventual hope
modality needed for the epistemic analysis of the Firing Rebels with Relay problem
that is performed in the next chapter.

• Chapter 6: Using epistemic reasoning, we analyze the Firing Rebels with Relay
(FRR) problem using our framework for modeling byzantine fault-tolerant asyn-
chronous message-passing distributed systems. Informally, FRR requires that every
correct agent performs an action called FIRE, in an all-or-none fashion (though not
necessarily simultaneously), and only if at least one correct agent locally observed
a trigger event called START. Through a detailed epistemic analysis, we establish
the necessary epistemic state that needs to be acquired by correct agents in order
to FIRE in every correct solution of the problem. The respective epistemic state

8



1.3. Contributions and outline of the thesis

turns out to involve common eventual hope, which we show to be attained already
by achieving one level of mutual eventual hope in case there are at least 3f + 1
agents in the system in total. Finally, we also identify conditions that are sufficient
for solving FRR.
This chapter is based on

– [FKS21] K. Fruzsa, R. Kuznets, U. Schmid. Fire!, in: J. Y. Halpern and A.
Perea, editors, Proceedings Eighteenth Conference on Theoretical Aspects of
Rationality and Knowledge, TARK 2021, Beijing, China, June 25-27, 2021,
volume 335 of EPTCS, pages 139–153, 2021.

• Chapter 7: Finally, we summarize our main accomplishments from all the previous
chapters and present a brief description of the already existing follow-up work as
well as directions for future research.

Each chapter starts with a concise outline and ends usually with an overview of specific
related work. Moreover, each chapter is written in a self-contained manner (at least, for
the most part), with the exception of Chapter 3 which heavily relies on Chapter 2.
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CHAPTER 2
Preliminaries

In this chapter, we introduce the basic concepts of (multi-agent epistemic) modal logic
as well as the cornerstones of our framework for modeling asynchronous message-passing
distributed systems allowing byzantine faults, that are going to be used throughout the
thesis.

2.1 Multi-agent epistemic logic – basic concepts
Syntax. We start with a nonempty countably infinite set of atomic propositions P and
continue by forming formulas by closing under the Boolean connectives ¬ and ∧ and
under n (unary) modal operators K1, . . . , Kn to obtain the modal language LK , i.e., the
language LK is generated by the following BNF:

φ ::= p | ¬φ | (φ ∧ φ) | Kiφ,

where p ∈ P and i ∈ {1, . . . , n}. We take ⊤ to be an abbreviation for some fixed
propositional tautology, and take ⊥ to be an abbreviation for ¬⊤. Also, we use the
following standard abbreviations from propositional logic: φ ∨ ψ for ¬(¬φ ∧ ¬ψ), φ → ψ
for ¬φ ∨ ψ, and φ ↔ ψ for (φ → ψ) ∧ (ψ → φ).

We will work with the following definition of a normal (multi-agent epistemic) modal
logic (it follows closely the one given in [BdRV01]).

Definition 2.1 (Normal multi-agent epistemic logic). A set of formulas L ⊆ LK forms a
system of a normal multi-agent epistemic logic iff it contains all propositional tautologies
and is closed under the modus ponens inference rule

MP : φ φ → ψ

ψ
,

11



2. Preliminaries

the K axiom scheme

K : Ki(φ → ψ) → (Kiφ → Kiψ),

the necessitation inference rule
Nec : φ

Kiφ
,

and the uniform substitution rule

US : φ

φ[p/ψ] .

Remark 2.2. We note that in many axiom systems, the US rule is built in indirectly
(via axiom schemes).1

Remark 2.3. We will also sometimes call the modality K normal if the underlying
axiom system includes the K axiom scheme and the necessitation inference rule.

Definition 2.4. Let L be an axiomatization in the language LK given by axioms and
inference rules. A L -derivation is a sequence of formulas φ1, . . . , φn ∈ LK such that for
each i ∈ {1, . . . , n}:

• φi is an axiom instance of L , or

• φi follows from φj1 , . . . , φjk
by a k-ary inference rule of L for some j1, . . . , jk < i.

A L -derivation φ1, . . . , φn is a L -derivation for φn. We will write ⊢L φ to denote that
there exists a L -derivation for the formula φ, i.e., that φ is a theorem of L .

Throughout the thesis we will often refer to the axiom system S5n depicted in Figure 2.1
and the axiom system K45n depicted in Figure 2.2.

We define the semantics in terms of possible worlds, which we formalize in terms of
Kripke models.

Definition 2.5 (Kripke model, Kripke frame). A Kripke model is a structure M =
(W, π, K1, . . . , Kn), consisting of:

• W , which is a nonempty set of states or possible worlds representing the domain
of M (we will also sometimes write D(M) to refer to W ),

• π : P → P(W ), which is a valuation function that associates with each atomic
proposition p ∈ P a set of worlds where p is true,

• and Ki, which are binary relations on W called accessibility relations.
1When defining (normal) modal logics, some textbooks such as [Che80] do not mention this rule.
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P : all propositional tautologies
K : Ki(φ → ψ) ∧ Kiφ → Kiψ

T : Kiφ → φ

4 : Kiφ → KiKiφ

5 : ¬Kiφ → Ki¬Kiφ

MP : φ φ → ψ

ψ

Nec : φ

Kiφ

Figure 2.1: Axiom system S5n

P : all propositional tautologies
K : Ki(φ → ψ) ∧ Kiφ → Kiψ

4 : Kiφ → KiKiφ

5 : ¬Kiφ → Ki¬Kiφ

MP : φ φ → ψ

ψ

Nec : φ

Kiφ

Figure 2.2: Axiom system K45n

The structure F = (W, K1, . . . , Kn) is called a Kripke frame. Sometimes we will write
M = (F, π).

Definition 2.6. Let M = (W, π, K1, . . . , Kn) and φ ∈ LK . By M, w |= φ, we denote
the fact that formula φ is satisfied at world w of the model M and define the |= relation
inductively as follows:

• M, w |= p iff w ∈ π(p) for all p ∈ P ,

• M, w |= ¬φ iff M, w |= φ does not hold,

• M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ,

• M, w |= Kiφ iff M, v |= φ for all v ∈ Ki(w),

where Ki(w) := {w′ | wKiw
′}. We will write M, w ̸|= φ to denote that M, w |= φ does

not hold.
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2. Preliminaries

We distinguish between the following different levels of truth:

• M |= φ means that φ is satisfied at all worlds w of model M , i.e., that φ is valid
in model M ,

• F |= φ means that φ is valid in all models (F, π), i.e., that φ is valid in frame F ,

• C |= φ means that φ is valid in all models M from a class of Kripke models C, i.e.,
that φ is valid in class C.

Definition 2.7. A binary relation R on a set S is called

• reflexive if sRs for any s ∈ S,

• symmetric if sRt whenever tRs,

• transitive if sRu whenever sRt and tRu,

• euclidean if tRu whenever sRt and sRu, and

• shift serial if R(t) ̸= ∅ for any t ∈ R(s), s ∈ S.

In addition, we call R an equivalence relation if it is reflexive, symmetric, and transitive.

Throughout the thesis we will often refer to the following class of Kripke models:

Definition 2.8. The class S5n consists of all Kripke models M = (W, π, K1, . . . , Kn)
with equivalence accessibility relations for all i ∈ {1, . . . , n}.

Definition 2.9. The class K45n consists of all Kripke models M = (W, π, K1, . . . , Kn)
with transitive and euclidean accessibility relations for all i ∈ {1, . . . , n}.

Definition 2.10 ((Weak) soundness). Let L be an axiomatization in the language LK .
The axiom system L is (weakly) sound with respect to a class of Kripke models C if, for
any formula φ ∈ LK ,

⊢L φ =⇒ |=C φ.

Definition 2.11 ((Weak) completeness). Let L be an axiomatization in the language
LK . The axiom system L is (weakly) complete with respect to a class of Kripke models
C if, for any formula φ ∈ LK ,

|=C φ =⇒ ⊢L φ.

The proof of the following theorem can be found in [FHMV95] (Theorem 3.1.5, p. 61).

Theorem 2.12. The axiom system S5n is sound and complete with respect to the S5n
class of models.
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2.1. Multi-agent epistemic logic – basic concepts

Similarly, using the well-known fact that axiom 4 characterizes the transitive property of
frames and that axiom 5 characterizes the euclidean property of frames [FHMV95], it is
easy to show that:

Theorem 2.13. The axiom system K45n is sound and complete with respect to the K45n
class of models.

Definition 2.14. A formula φ ∈ LK is derivable from a set of premises Γ ⊆ LK in an
axiom system L — written Γ ⊢L φ — iff

⊢L φ1 ∧ · · · ∧ φn → φ,

for some φ1, . . . , φn ∈ Γ.

Definition 2.15. Let C be a class of Kripke models and let Γ ∪ {φ} ⊆ LK be a set
of formulas. Then Γ |=C φ means that for every model M ∈ C, and for every world
w ∈ D(M),

M, w |= ψ for all ψ ∈ Γ =⇒ M, w |= φ.

Definition 2.16 (Strong soundness). Let L be an axiomatization in the language LK .
The axiom system L is strongly sound with respect to a class of Kripke models C if, for
any set of formulas Γ ∪ {φ} ⊆ LK ,

Γ ⊢L φ =⇒ Γ |=C φ.

Remark 2.17. Note that weak soundness is the special case of strong soundness when Γ
is the empty set.

Definition 2.18 (Strong completeness). Let L be an axiomatization in the language
LK . The axiom system L is strongly complete with respect to a class of Kripke models C
if, for any set of formulas Γ ∪ {φ} ⊆ LK ,

Γ |=C φ =⇒ Γ ⊢L φ.

Remark 2.19. Note that weak completeness is the special case of strong completeness
when Γ is the empty set.

Definition 2.20. Let C be a class of Kripke models. A set of formulas Γ ⊆ LK is called
C-satisfiable if there exists a model M ∈ C and a world w ∈ D(M) such that

M, w |= φ for all φ ∈ Γ.

Definition 2.21 (Compact logic). A logic L ⊆ LK defined via validity in a class C of
Kripke models is called compact if for any set of formulas Γ ⊆ L:

Γ is C-satisfiable

⇐⇒
every finite subset of Γ is C-satisfiable.
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Theorem 2.22. Let L be an axiomatization in the language LK . If L is strongly sound
and strongly complete with respect to a class of Kripke models C, then the logic L ⊆ LK

defined via validity in C is compact.

Proof. Assume the opposite towards contradiction: there exists a set of formulas Γ ⊆ L
which is not C-satisfiable, while every finite subset of Γ is C-satisfiable. Since Γ is assumed
to be not C-satisfiable, we have (vacuously)

Γ |=C ⊥.

Therefore, by strong completeness, we also have

Γ ⊢L ⊥.

According to Definition 2.14, it follows that there exist some φ1, . . . , φn ∈ Γ such that
⊢L φ1 ∧ · · · ∧ φn → ⊥. However, for ∆ := {φ1, . . . , φn} ⊆ Γ, ∆ ⊢L ⊥ then holds too.
Using strong soundness, further results in ∆ |=C ⊥, contradicting our assumption that
every finite subset of Γ is C-satisfiable.

A set X is called recursively enumerable if there exists an algorithm which lists all the
elements of X. A set X is called decidable if there exists an algorithm which, given
an element, recognizes whether it belongs to X or not (the algorithm must halt on all
inputs).

The proof of the following proposition can be found in [CZ97] (Proposition 16.1, p. 492).

Proposition 2.23. Suppose Y is a decidable set and X ⊆ Y . Then X is decidable iff
both X and Y \ X are recursively enumerable.

The proof of the following lemma can be found in [CZ97] (Lemma 16.8, p. 495).

Lemma 2.24. Every logic L defined via a recursively enumerable set of axioms is
recursively enumerable.

Definition 2.25 (Finite model property). A logic L defined via an axiom system L has
the finite model property (FMP) if, for every formula φ that is not a theorem of L , there
is a finite model M of L where φ is not valid.

The proof of the following theorem can be found in [BdRV01] (Theorem 6.15, p. 344).

Theorem 2.26. If L is a finitely axiomatizable normal modal logic with the FMP, then
L is decidable.
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2.2 Modeling byzantine fault-tolerant asynchronous
message-passing systems – basic concepts

We use A to denote a (finite) set of agents. Without loss of generality, we assume that
the agents are numbered

A := {1, . . . , n},

for some integer n > 1.

Definition 2.27. Local timestamps, or simply nodes, are identified by pairs

(i, t) ∈ A × N0

of an agent i and a timestamp t.

We group all actions and events taking place after timestamp t and no later than t + 1
into a round, denoted t.5, and treat all actions and events of the round as happening
simultaneously.

Each agent begins in one of its initial states:

Definition 2.28 (Initial states). Σi denotes the set of local initial states of agent i ∈ A.
A joint initial state is a tuple of local initial states from

G (0) :=
�
i∈A

Σi.

Actions and Events
An agent’s state can be modified due to internal actions of the agent itself and/or external
events triggered by the environment, represented as a designated agent ϵ, that is not
considered a member of A.

Definition 2.29 (Local internal actions and local external events). Inti denotes the
set of all local internal actions of agent i ∈ A. Exti denotes the set of all local external
events of agent i ∈ A. We use

• a, a′, a′′, . . . , a1, a2, . . . , for local internal actions,

• e, e′, e′′, . . . , e1, e2, . . . , for local external events, and

• o, o′, o′′, . . . , o1, o2, . . . , as a generic notation for both.

We consider message-passing systems whereby agents communicate exclusively via mes-
sages.
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Definition 2.30 (Messages). We denote by Msgs the (possibly infinite) set of messages
that agents can send to each other. For any two agents i, j ∈ A, a message µ ∈ Msgs
can be:

• sent by agent i to agent j (possibly in multiple copies during the round), which
constitutes an internal action of i and is recorded2 in i’s history as send(j, µk) for
the kth copy of message µ3; we consider send(j, µ0) to be the master copy and
denote it simply by send(j, µ) when multiple copies are not necessary;

• received by agent j from agent i, which constitutes an external event for j and is
recorded in j’s history as recv(i, µ) (j is not aware whether multiple copies of µ have
been sent by i to it during the round and cannot tell which copy it has received).

Remark 2.31. It is possible that two copies of the same message, possibly sent in
different rounds, arrive simultaneously (the receiving agent j would only know that the
message µ from agent i is received without being aware of its copies).

The environment, which also plays the role of the delivery system, is able to distinguish
among the multiple copies of the same message. This is modelled by a global message
identifier id ∈ N0, or simply GMI, which can be compared to a tracking number used by
the environment to uniquely identify each copy of a message. Agents never observe the
GMI.

Definition 2.32 (Global message identifier function). We fix a function for computing
GMIs to be any computable one-to-one total function id : A × A × Msgs ×N0 ×N0 → N0.4

Further, while an agent only observes the messages sent by itself and its own performed
actions and observed events, the environment distinguishes between a message µ sent to j
from i and the same message µ sent to j by another agent i′, between action a performed
by i and the same action a performed by j, between event e observed by i and the same
event e observed by j.

Definition 2.33 (Global view). The environment represents

• copy k ∈ N0 of a message µ ∈ Msgs when sent from i ∈ A to j ∈ A in the format
gsend(i, j, µ, id) with the copy number k transferred to the GMI id ∈ N0;

• copy k ∈ N0 of a message µ ∈ Msgs when received by j ∈ A from i ∈ A in the
format grecv(j, i, µ, id) with the copy number k transferred to the GMI id ∈ N0;

2The exception is the case when sending of the message was a byzantine action. Then the record of
sending can be missing or corrupted, in particular, it can look like another action (see Definition 2.36).

3There is no obligation to use consecutive numbers for copies nor to always use a fresh copy number
in following rounds. However, within one round each new copy requires a fresh number. Otherwise, it
will be conflated with the same-numbered copy because messages form a set.

4A simple though not necessarily the most efficient possibility is to use 2i · 3j · 5⌈µ⌉ · 7k · 11t, where
⌈µ⌉ represents the numerical code of the message µ according to some arbitrary but fixed coding scheme.
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• action a ∈ Inti performed by i ∈ A in the format A = internal (i, a);

• event e ∈ Exti observed by i ∈ A in the format E = external (i, e).

We use

• A, A′, A′′, . . . , A1, A2, . . . , for globally presented local internal actions,

• E, E′, E′′, . . . , E1, E2, . . . , for globally presented local external events, and

• O, O′, O′′, . . . , O1, O2, . . . , as a generic notation for both.

Definition 2.34 (Internal actions). From the point of view of agent i ∈ A, its correct
internal actions consist of the send actions from Definition 2.30 and local internal actions
a ∈ Inti from Definition 2.29:

Actionsi := {send(j, µk) | j ∈ A, µ ∈ Msgs , k ∈ N0} ⊔ Inti.

The same actions from the point of view of the environment look like:

GActionsi := {gsend(i, j, µ, id) | j ∈ A, µ ∈ Msgs , id ∈ N0} ⊔ {internal (i, a) | a ∈ Inti}.

In addition, we abbreviate:

Actions :=
�
i∈A

Actionsi,

GActions :=
�
i∈A

GActionsi.

The overline in Actionsi, GActionsi, Actions , and GActions is used to indicate that the
set of considered actions is correct (non-byzantine).

Definition 2.35 (External events). From the point of view of agent i ∈ A, the correct
external events that it can observe consist of the recv events from Definition 2.30 and
local external events e ∈ Exti from Definition 2.29:

Eventsi := {recv(j, µ) | j ∈ A, µ ∈ Msgs} ⊔ Exti.

The same events from the point of view of the environment look like:

GEventsi := {grecv(i, j, µ, id) | j ∈ A, µ ∈ Msgs , id ∈ N0} ⊔ {external (i, e) | e ∈ Exti}.

In addition, we abbreviate:

Events :=
�
i∈A

Eventsi,

GEvents :=
�
i∈A

GEventsi.

Just like for actions, the overline in Eventsi, GEventsi, Events , and GEvents is used to
indicate that the set of considered events is correct (non-byzantine).
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Definition 2.36 (Modeling byzantine behaviour). For each correct external event E ∈
GEventsi of agent i ∈ A, we define a matching byzantine external event

fake (i, E)

representing agent i being mistaken about observing the (local version of the) event E.

For A, A′ ∈ {noop} ⊔ GActionsi, each of which is either a correct global action of agent
i or a no-op operation noop, we define a matching byzantine external event

fake
�
i, A �→ A′�

representing the situation when agent i ∈ A performs (the local version of the) action A
but “thinks” (and therefore records) that it performed (the local version of the) action A′.

When agent i faithfully records the performed byzantine action, we abbreviate

fake (i, A) := fake (i, A �→ A).

Note that fake (i, noop) acts as a malfunction without any action or any trace in the
local history. Hence, we abbreviate

fail (i) := fake (i, noop).

In addition, we define the following set:

BEventsi := {fake (i, E) | E ∈ GEventsi}⊔
{fake

�
i, A �→ A′� | A, A′ ∈ {noop} ⊔ GActionsi}.

Remark 2.37. We do not impose any a priori restrictions on E, A, or A′, i.e., a
byzantine faulty agent can mistakenly observe any event, mistakenly perform any action,
and mistake any performed action or inaction for any other action or for inaction.

Remark 2.38 (GMIs for byzantine messages). For byzantine received messages, the
environment creates the message “out of thin air”. Such a message will be supplied with
a GMI for uniformity’s sake but it is not assumed to carry any information. Similarly, a
byzantine sent message is created already with a well-formed GMI (unlike the correctly
sent messages, which are supplied with a GMI in a separate step after creation). At the
same time, if the agent is mistaken about having sent a message, its GMI is immaterial
as the environment will never deliver this “message”.

Definition 2.39 (System events). For agent i ∈ A, we define the set of system events

SysEventsi := {go(i), sleep (i), hibernate (i)},

where:

• go(i) wakes i up and prompts it to act according to its protocol;
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• sleep (i) wakes i up but prevents it from acting and makes it byzantine faulty;

• hibernate (i) prevents i from acting or from waking up and makes it byzantine
faulty.

For each round, the environment determines whether an agent is to be awoken to follow
its protocol and/or observe some external events or is to skip the round.

Remark 2.40. None of the system events are recorded by the agents.

We abbreviate
FEventsi := BEventsi ⊔ {sleep (i), hibernate (i)}.

The complete set of events affecting agent i ∈ A is:

GEventsi := GEventsi ⊔ BEventsi ⊔ SysEventsi.

In addition, we abbreviate:

GEvents :=
�
i∈A

GEventsi.

Protocols

Definition 2.41 (Local states). A local history hi of agent i ∈ A, or its local state, is a
nonempty sequence

hi = [λm, . . . , λ1, λ0],
for some m ≥ 0, such that λ0 ∈ Σi and ∀j ∈ {1, . . . , m} we have λj ⊂ Actionsi ⊔ Eventsi.
In this case, m is called the length of the history hi and is denoted |hi|.
In addition, we use Li to denote the set of local states of agent i ∈ A, i.e., the set of all
local histories of agent i ∈ A.

Remark 2.42. Note that agents’ local states consist of correct internal actions and
correct external events — whether or not those actions and events have been actually
performed/observed in a byzantine fashion is visible only in the history of the environment.

Remark 2.43 (Perfect recall). We consider agents capable of perfect recall. Perfect recall
is the assumption that at all times an agent remember everything, or in other words, that
at any time the local state of an agent contains a record of all its previous local states.

Definition 2.44 (Global state). A global history h of the system, or the global state, is
a tuple

h := (hϵ, h1, . . . , hn),
where the history of the environment ϵ is a sequence

hϵ = [Λm, . . . , Λ1, Λ0],
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for some m ≥ 0, such that ∀j ∈ {1, . . . , m} we have Λj ⊆ GActions ⊔ GEvents and hi is
a local state of each agent i ∈ A. In this case m is called the length of the history h and
is denoted |h| := |hϵ|.
In addition, we use Lϵ to denote the set of all histories of the environment, and G to
denote the set of global states, i.e., the set of all global histories of the system.

Definition 2.45. A (non-deterministic) protocol for agent i ∈ A is any function

Pi : Li → 22Actionsi \ {∅}.

By P = (P1, . . . , Pn) we denote agents’ joint protocol.

Remark 2.46. Agent i’s protocol Pi can only rely on i’s local state at any given moment.
In particular, it is crucial for modeling asynchronous agents that agent i’s protocol Pi

does not use a timestamp t as a parameter.

Note that, for a local state hi ∈ Li of agent i ∈ A, each member S ∈ Pi (hi) is a subset
of Actionsi and represents one of the non-deterministic choices for i’s actions. In case of
multiple options, the choice is up to the adversary part of the environment. Pi (hi) ̸= ∅
means that there is always at least one such choice S for i, which might be to perform
no actions if S = ∅.

Definition 2.47 (Coherent sets of events). Let t ∈ N0 be a timestamp. A set S ⊂
GEvents of events is called t-coherent if it satisfies the following conditions:

1. for any fake (i, gsend(i, j, µ, id) �→ A) ∈ S, the GMI id = id(i, j, µ, k, t) for some
k ∈ N05;

2. for any i ∈ A, at most one of system events go(i), sleep (i), and hibernate (i) is
present in S;

3. for any i ∈ A and any e ∈ Exti, at most one of events external (i, e) and
fake (i, external (i, e)) is present in S;

4. for any grecv(i, j, µ, id1) ∈ S, no event of the form fake (i, grecv(i, j, µ, id2)) belongs
to S for any id2 ∈ N0;

5. for any fake (i, grecv(i, j, µ, id1)) ∈ S, no event of the form grecv(i, j, µ, id2) belongs
to S for any id2 ∈ N0;

Remark 2.48. We assume that the environment never attempts simultaneously a correct
and fake external event that leave the same trace in agent’s local history.

5We assume that all messages actually sent, whether correctly or otherwise, are treated by the
environment in the same way, i.e, the environment always assigns a GMI.
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Definition 2.49. A (non-deterministic) protocol for the environment is any function

Pϵ : N0 −→ 22GEvents \ {∅}

such that every set S ∈ Pϵ (t) is t-coherent.

Remark 2.50. The dependence of the environment’s protocol Pϵ on time enables modeling
of time-sensitive actions. For instance, we become able to model global prohibition on
message delivery during designated quiet time. At the same time, the environment’s
protocol Pϵ should not depend on the global state at any given moment to preserve the
unbiased representation of the physical laws.

Note that, for each t ∈ N0, each member S ∈ Pϵ (t) is a t-coherent subset of GEvents,
i.e.,

S ⊂ {grecv(i, j, µ, id) | i, j ∈ A, µ ∈ Msgs , id ∈ N0} ⊔ {go(i) | i ∈ A} ⊔
{external (i, e) | i ∈ A, e ∈ Exti} ⊔ {sleep (i) | i ∈ A} ⊔

{fake (i, E) | i ∈ A, E ∈ GEventsi} ⊔ {hibernate (i) | i ∈ A} ⊔
{fake

�
i, A �→ A′� | i ∈ A, A, A′ ∈ {noop} ⊔ GActionsi},

and represents one of the non-deterministic choices for the events to be imposed by the
environment. In case of multiple options, the choice is up to the adversary part of the
environment. Pϵ (t) ≠ ∅ means that there is always at least one such choice S for the
environment, which might be to impose no events if S = ∅.

Different types of agents
In our framework, we distinguish between a number of types of agents. We list below the
ones that appear in this thesis:

Definition 2.51. Environment’s protocol Pϵ makes an agent i ∈ A:

1. delayable if for any X ∈ Pϵ (t),

X \ GEventsi ∈ Pϵ (t) .

In other words, all activities of a delayable agent can be correctly postponed at any
time.

2. fallible if for any X ∈ Pϵ (t),

X ∪ {fail (i)} ∈ Pϵ (t) .

In other words, a fallible agent can fail at any time (which implies that it can
become byzantine faulty at any time).
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3. gullible if for any Y ⊆ FEventsi, and any X ∈ Pϵ (t),

Y ⊔ (X \ GEventsi) ∈ Pϵ (t) , whenever Y ⊔ (X \ GEventsi) is t-coherent.

In other words, all activities of a gullible agent can be replaced with an arbitrary
set of faulty events at any time (which implies that it can become byzantine faulty
at any time).

Labeling functions

Definition 2.52. For an agent i ∈ A, we define a labeling function

labeli : Actionsi × N −→ GActionsi

converting the local format of i’s actions into the global format as follows:

labeli (a, t) :=
�

gsend(i, j, µ, id(i, j, µ, k, t)) if a = send(j, µk)
internal (i, a) if a ∈ Inti

We collect all these functions into one tuple label := (label1, . . . , labeln).

We also define the “reverse” labeling function label−1:

Definition 2.53. The “reverse” labeling function label−1

label−1 : GActions ⊔ GEvents −→ Actions ⊔ Events

is defined as follows:

label−1 (U) :=

��������������

send(j, µk) if U = gsend(i, j, µ, id(i, j, µ, k, t))
send(j, µ0) if U = gsend(i, j, µ, M) and M ̸= id(i, j, µ, k, t) k, t ∈ N0

recv(j, µ) if U = grecv(i, j, µ, id)
a if U = internal (i, a)
e if U = external (i, e)

The function label−1 extends to sets in the standard way:

label−1(X) := {label−1(U) | U ∈ X}.

Remark 2.54. Note that the labeling functions deal with correct internal actions and
correct external events only. This is because byzantine behaviour was defined only using
the global format.

Remark 2.55. The injectivity of the function id used in labeli ensures that each message
is unique from the point of view of the environment.
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Remark 2.56. The second clause in the definition of label−1 (U) is mostly cosmetic: we
make GMIs id unforgeable, and, hence, this clause will never be used. It is added solely
to make the function label−1 (U) total, thus, avoiding irrelevant complications stemming
from the use of potentially partial functions.

Given a timestamp t ∈ N0, a global history h = (hϵ, h1, . . . , hn) ∈ G and protocols Pϵ

for the environment and P1, . . . , Pn for the agents, the sets of actions and events to be
attempted in round t.5 are obtained as described below:

1. Events to be imposed by the environment form a t-coherent set

αt
ϵ := Xϵ (2.1)

for some set Xϵ ∈ Pϵ (t) non-deterministically chosen by the adversary.

2. Actions to be performed by agent i ∈ A form a set

αh,t
i := labeli (Xi, t) (2.2)

for some set Xi ∈ Pi (hi) non-deterministically chosen by the adversary.

3. The choices from 1. and 2. are combined in the joint attempted actions/events

αh,t := (αt
ϵ , αh,t

1 , . . . , αh,t
n ).

Among the events αt
ϵ we distinguish between the following subsets:

• Correct external events (to be imposed by the environment) for agent i ∈ A

αt
ϵi

:= αt
ϵ ∩ GEventsi = {grecv(i, j, µ, id) ∈ αt

ϵ | j ∈ A, µ ∈ Msgs , id ∈ N0}⊔
{external (i, e) ∈ αt

ϵ | e ∈ Exti}, (2.3)

• Instructions regarding waking up agent i ∈ A
αt

gi
:= αt

ϵ ∩ SysEventsi, (2.4)

• Byzantine external events (to be imposed by the environment) for agent i ∈ A

αt
bi

:= αt
ϵ ∩ BEventsi =

�
fake

�
i, A �→ A′� ∈ αt

ϵ | A, A′ ∈ {noop} ⊔ GActionsi

�
⊔

{fake (i, E) ∈ αt
ϵ | E ∈ GEventsi}, (2.5)

• Instructions making agent i ∈ A byzantine faulty

αt
fi

:= αt
bi

⊔

αt

ϵ ∩ {sleep (i), hibernate (i)}

. (2.6)
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Remark 2.57. Note that sleep (i) and hibernate (i) may be present in both αt
gi

and αt
fi

.

In addition, we abbreviate:

αt
ϵ :=

�
i∈A

αt
ϵi

,

αt
g :=

�
i∈A

αt
gi

,

αt
b :=

�
i∈A

αt
bi

,

αt
f :=

�
i∈A

αt
fi

.

Filter functions
We assume that the environment does not create impossible situations. Most of them
are implicitly prohibited by the definition of the environment’s protocol (via t-coherent
sets). There is, however, one common type of causal impossibility that is not excluded
by definition: a message cannot be delivered correctly without being previously6 sent.
Since the environment’s protocol is independent of the global history, the environment
cannot check whether the message in question was actually sent. Therefore, we create a
special filter function that weeds out such situations.

Firstly, to simplify notation, we introduce the following abbreviations:

Definition 2.58 (Active/passive, aware/unaware). For a set X ⊆ GEvents, we define

active(i, X) :=
�

t if X ∩ SysEventsi = {go(i)},

f otherwise.

aware(i, X) :=
�

t if ∅ ̸= X ∩ SysEventsi ∈ �{go(i)}, {sleep (i)}	
,

f otherwise.

For readability’s sake we write active(i, X) instead of active(i, X) = t and passive(i, X)
instead of active(i, X) = f , as well as aware(i, X) instead of aware(i, X) = t and
unaware(i, X) instead of aware(i, X) = f .

Definition 2.59 (Byzantine filter functions). We define the byzantine event filter function

filterB
ϵ

7 : G × 2GEvents × 2GActions1 × · · · × 2GActionsn −→ 2GEvents

6Here previously sent means sent in one of the preceding rounds or in the same round (based in part
on the actions chosen by the adversary for the sending agent, the presence of the go command for it, and
other events imposed on this agent), whether correctly or in a byzantine fashion.

7We use ‘B’ to indicate that the event filter function in question is byzantine.
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as follows: for a a global history h = (hϵ, h1, . . . , hn) ∈ G , a set Xϵ ⊂ GEvents, and sets
Xi ⊂ GActionsi for each agent i ∈ A, we define

filterB
ϵ (h, Xϵ, X1, . . . , Xn) :=

Xϵ \
�

grecv(j, i, µ, id) | gsend(i, j, µ, id) /∈ hϵ ∧
(∀A ∈ {noop} ⊔ GActionsi) fake (i, gsend(i, j, µ, id) �→ A) /∈ hϵ ∧

(gsend(i, j, µ, id) /∈ Xi ∨ passive(i, Xϵ)) ∧
(∀A ∈ {noop} ⊔ GActionsi) fake (i, gsend(i, j, µ, id) �→ A) /∈ Xϵ

�
. (2.7)

In addition, we define the byzantine action filter function for agent i ∈ A
filterB

i
8 : 2GActions1 × · · · × 2GActionsn × 2GEvents −→ 2GActionsi

as follows: for sets Xj ⊂ GActionsj for each agent j ∈ A and a set Xϵ ⊂ GEvents, we
define

filterB
i (X1, . . . , Xn, Xϵ) =

�
Xi if active(i, Xϵ)
∅ otherwise

. (2.8)

Thus, after the adversary chose the collection αt
ϵ (2.1) of events to be imposed by the

environment and collections αh,t
i (2.2) of actions to be performed by each agent i ∈ A,

the filter functions determine which of these actions and events are to actually happen
during the round t.5. For this second stage, the resulting sets are called β-sets by analogy
with α-sets.

Definition 2.60. For a global history h ∈ G , a timestamp t ∈ N0, a tuple of joint
attempted actions/events αh,t = (αt

ϵ , αh,t
1 , . . . , αh,t

n ), and agent i ∈ A:

1. βh,αh,t

ϵ := filterB
ϵ


h, αt

ϵ , αh,t
1 , . . . , αh,t

n


;

2. βh,αh,t

i := filterB
i


αh,t

1 , . . . , αh,t
n , βh,αh,t

ϵ


;

3. βh,αh,t := (βh,αh,t

ϵ , βh,αh,t

1 , . . . , βh,αh,t

n ).

As for αt
ϵ , we also distinguish between the following subsets of βh,αh,t

ϵ :

1. Correct external events for agent i ∈ A

β
h,αh,t

ϵi
:= βh,αh,t

ϵ ∩ GEventsi =

{grecv(i, j, µ, id) ∈ βh,αh,t

ϵ | j ∈ A, µ ∈ Msgs , id ∈ N0}⊔
{external (i, e) ∈ βh,αh,t

ϵ | e ∈ Exti} ⊂ αt
ϵi

, (2.9)
8We use ‘B’ to indicate that the action filter function in question is byzantine.
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2. Instructions regarding waking up agent i ∈ A

βh,αh,t

gi
:= βh,αh,t

ϵ ∩ SysEventsi ⊂ αt
gi

, (2.10)

3. Byzantine external events for agent i ∈ A

βh,αh,t

bi
:= βh,αh,t

ϵ ∩ BEventsi =

{fake
�
i, A �→ A′� ∈ βh,αh,t

ϵ | A, A′ ∈ {noop} ⊔ GActionsi}⊔
{fake (i, E) ∈ βh,αh,t

ϵ | E ∈ GEventsi} ⊂ αt
bi

, (2.11)

4. Instructions making agent i ∈ A byzantine faulty

βh,αh,t

fi
:= βh,αh,t

bi
⊔


βh,αh,t

ϵ ∩ {sleep (i), hibernate (i)}


⊂ αt
fi

. (2.12)

Remark 2.61. Note that sleep (i) and hibernate (i) may be present in both βh,αh,t

gi

and βh,αh,t

fi
.

In addition, we abbreviate:

β
h,αh,t

ϵ :=
�
i∈A

β
h,αh,t

ϵi
⊂ αt

ϵ ,

βh,αh,t

g :=
�
i∈A

βh,αh,t

gi
⊂ αt

g ,

βh,αh,t

b :=
�
i∈A

βh,αh,t

bi
⊂ αt

b ,

βh,αh,t

f :=
�
i∈A

βh,αh,t

fi
⊂ αt

f .

Update functions
One of our central assumptions is that the agents are not able to tell the difference
between correct and byzantine actions and events. For example, they are not able to
tell the difference between observing an external event E and (mistakenly) thinking they
have observed E, as represented by fake (i, E), nor between performing an internal action
A′ and thinking they have performed A′ when A was the internal action they actually
performed, as represented by fake (i, A �→ A′).

Formally, agents’ local states are purged of

(1) fake modifiers,

(2) GMIs,

(3) system commands go(i), sleep (i), and hibernate (i).
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This is performed by the localization function σ:

Definition 2.62 (Localization function). The function

σ : 2GActions⊔GEvents −→ 2Actions⊔Events

is defined as follows:

σ
�
X

�
:= label−1

�
X ∩ (GActions ⊔ GEvents)

� ∪
{E | (∃i) fake (i, E) ∈ X} ∪

{A′ ̸= noop | (∃i)(∃A) fake
�
i, A �→ A′� ∈ X}


,

where label−1 is the “reverse” labeling function defined in Definition 2.53.

Remark 2.63. Note that byzantine external events of the form fake (i, A �→ noop) leave
no trace in i’s local state.

Finally, we define state update functions that record the performed actions and events of
a round into all the histories:

Definition 2.64 (State update functions). Given a global history h = (hϵ, h1, . . . , hn) ∈
G , and a tuple of performed actions and events X := (Xϵ, X1, . . . , Xn) ∈ 2GEvents ×
2GActions1 × . . . × 2GActionsn, agent i’s state update function

updatei : Li × 2GActionsi × 2GEvents → Li

outputs a new local history from Li based on i’s performed actions Xi and events Xϵ as
follows:

updatei (hi, Xi, Xϵ) :=

hi if σ(Xϵi) = ∅ and unaware(i, Xϵ)

σ

�
Xi ⊔ Xϵi

��
: hi otherwise

,

where Xϵi
:= Xϵ ∩ GEventsi, and : represents sequence concatenation.

Similarly, the environment’s state update function

updateϵ : Lϵ × 2GEvents × 2GActions1 × . . . × 2GActionsn → Lϵ

outputs a new history of the environment from Lϵ based on all performed actions and
events X = (Xϵ, X1, . . . , Xn):

updateϵ (hϵ, X) := (Xϵ ⊔ X1 ⊔ . . . ⊔ Xn) : hϵ.

Thus, the global state is modified as follows:

update (h, X) :=

updateϵ (hϵ, X) , update1 (h1, X1, Xϵ) , . . . , updaten (hn, Xn, Xϵ)


.
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Transition function

Definition 2.65 (Byzantine transition function). For an agents’ joint protocol P =
(P1, . . . , Pn) and a protocol Pϵ of the environment, we define a byzantine transition
function

τB
Pϵ,P

9 : 2GEvents × 2GActions1 × . . . × 2GActionsn → (G → G )
as a function that outputs a global state transformer function

τB
Pϵ,P (Y ) : G → G

from global states to global states given joint attempted actions/events

Y ∈ 2GEvents × 2GActions1 × . . . × 2GActionsn

defined as follows: for a global state h = (hϵ, h1, . . . , hn) ∈ G , we consider two possibilities

• if Y = αh,|h| =

α

|h|
ϵ , α

h,|h|
1 , . . . , α

h,|h|
n


for some α

|h|
ϵ ∈ Pϵ (|h|) and some Xi ∈

Pi (hi) for each i ∈ A such that α
h,|h|
i = labeli (Xi, |h|), we define

τB
Pϵ,P (Y )(h) := update


h, βh,αh,|h|

, (2.13)

where the β-sets are computed from αh,|h| according to Definition 2.60;

• otherwise, we define τB
Pϵ,P (Y )(h) = h.10

Remark 2.66. By a slight abuse of notation, we write h′ ∈ τB
Pϵ,P (h) to mean that there

is a protocol-conformant set of joint attempted actions/events αh,|h| satisfying the first
clause of the above definition such that τB

Pϵ,P (αh,|h|)(h) = h′.

More generally:

Definition 2.67 (Transition template and transition function). Let Cϵ be the set of
all environment protocols and C be the set of all agents’ joint protocols. A transition
template

τ : Cϵ × C →

2GEvents × 2GActions1 × · · · × 2GActionsn → (G → G )


is a two-place function that takes a protocol Pϵ ∈ Cϵ of the environment and an agents’
joint protocol P ∈ C and outputs a transition function τ(Pϵ, P ), which we denote by
τPϵ,P

τPϵ,P : 2GEvents × 2GActions1 × · · · × 2GActionsn → (G → G ).

Thus, τB
Pϵ,P is only an instance of a transition function.

9We use ‘B’ to indicate that the transition function in question is byzantine.
10The latter case will never be used and is only provided to make the transition function total.
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Transitional runs

Definition 2.68 (Run). A run is a function that assigns a global state to each timestamp

r : N0 −→ G .

We denote the set of all possible runs by R.

The part of a run r ∈ R that an agent i ∈ A can see is called i’s local view. It is a
function that assigns i’s local state to each timestamp

ri : N0 −→ Li.

Similarly, we define the environment’s view to be a function that assigns the environment’s
history to each timestamp

rϵ : N0 −→ Lϵ.

Given an agents’ joint protocol P and an environment’s protocol Pϵ, we are usually
interested in runs r ∈ R that are built according to these protocols by a transition
function τPϵ,P defined in Definition 2.67.

Definition 2.69 (Transitional run). A run r ∈ R is called τPϵ,P -transitional, or simply
transitional if, for each timestamp t ∈ N0:

r (t + 1) ∈ τPϵ,P (r (t)) .

For a transitional run r, we denote its initial state by r (0) and the global state after the
round (t − 1).5 by r (t).

One step of a τB
Pϵ,P -transition for runs

In the interest of generality and modularity of concepts, we defined the byzantine
transition function (see Definition 2.65) in terms of arbitrary histories. For the case of
histories comprising a transitional run, the notation can be simplified, as we will see
below.

Figure 2.3 represents one step of a transition according to τB
Pϵ,P , which consists of the

following five consecutive phases:

1. Protocol phase (note that the protocols are explicit arguments to the transition
template τ): First, the protocol Pi for each agent i ∈ A lays out a range Pi (ri (t)) of
possible sets of i’s actions for the round t.5 based on i’s local state ri (t). Similarly,
the protocol Pϵ of the environment lays out a range Pϵ (t) of possible (t-coherent)
sets of events for the round t.5 based on time t.
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Figure 2.3: Details of round t.5 of a τB
Pϵ,P -transitional run r.

2. Adversary phase (note that this phase is stable: it does not change from template
to template or from protocols to protocols): The adversary non-deterministically
picks one set

Xi ∈ Pi (ri (t)) (2.14)

of actions for each agent i ∈ A and a set

Xϵ ∈ Pϵ (t) (2.15)

of events for the environment. These are the actions the agents intend to perform
and the events the environment intends to impose in the round t.5.

Note that Xi ⊂ Actionsi and Xϵ ⊂ GEvents .

3. Labeling phase (note that this phase is stable: it does not change from template to
template or from protocols to protocols): The environment processes the intended
actions Xi of each agent i ∈ A by converting them into their corresponding global
formats, in particular, it assigns GMIs to message send requests.
We denote the resulting sets in the following way:

αt
i (r) := labeli (Xi, t) , (2.16)

where labeli is the labeling function defined in Definition 2.52. The set of intended
events Xϵ of the environment is already in the global format and requires no
converting:

αt
ϵ (r) := Xϵ. (2.17)

Note that αt
i (r) ⊂ GActionsi and αt

ϵ (r) ⊂ GEvents .

4. Filtering phase (note that this phase depends on the filtering functions filterB
ϵ

and filterB
i , which are considered to be part of the template): In this phase, the

intended actions of the agents and events of the environment that are deemed
“causally impossible” are filtered out.
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The filtering phase is divided into two subphases:

a) first, impossible intended events of the environment are filtered out by the
byzantine event filter function filterB

ϵ defined in Definition 2.59 (based on
αt

ϵ (r) and αt
i (r) for each i ∈ A), resulting in set βt

ϵ (r):

βt
ϵ (r) := filterB

ϵ


r (t) , αt

ϵ (r), αt
1 (r), . . . , αt

n (r)


, (2.18)

b) then, for each agent i ∈ A, the byzantine action filter function filterB
i defined

in Definition 2.59 performs the same task on agents’ intended actions by taking
into account the already filtered out events, resulting in set βt

i (r):

βt
i (r) := filterB

i


αt

1 (r), . . . , αt
n (r), βt

ϵ (r)


. (2.19)

Note that βt
i (r) ⊂ αt

i (r) ⊂ GActionsi and βt
ϵ (r) ⊂ αt

ϵ (r) ⊂ GEvents .

In compliance with (2.9), (2.10), (2.11), and (2.12), we denote by:

• β
t
ϵi

(r) the correct external events observed by agent i ∈ A, i.e.,

β
t
ϵi

(r) := βt
ϵ (r) ∩ GEventsi; (2.20)

• βt
gi

(r) the system events imposed on agent i ∈ A, i.e.,

βt
gi

(r) := βt
ϵ (r) ∩ SysEventsi; (2.21)

• βt
bi

(r) the byzantine external events for agent i ∈ A, i.e.,

βt
bi

(r) := βt
ϵ (r) ∩ BEventsi; (2.22)

• βt
fi

(r) the faulty events observed/imposed specifically by/on agent i ∈ A, i.e.,

βt
fi

(r) := βt
ϵ (r) ∩ FEventsi. (2.23)

5. Updating phase (note that this phase is stable: it does not change from template
to template or from protocols to protocols): The actions βt

i (r) and events βt
ϵ (r)

actually happening in the round t.5 are faithfully recorded into the environment’s
history and are translated into their local format for being recorded into agents’
local histories using state update functions defined in Definition 2.64.
Once again, the local state of each agent i ∈ A is only affected by the actions βt

i (r)
it performs and the events βt

ϵi
(r) it observes, whereas the global state is modified
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based on the complete information about all actions and events performed in the
round t.5.
Therefore:

ri (t + 1) := updatei


ri (t) , βt

i (r), βt
ϵ (r)


, (2.24)

βt (r) :=

βt

ϵ (r), βt
1 (r), . . . , βt

n (r)


, (2.25)

rϵ (t + 1) := updateϵ


rϵ (t) , βt (r)


. (2.26)

Agent-context
While it is preferrable to directly build the desired properties of runs into the transition
functions, in a manner of speech, to hardwire them, there are properties that cannot
be implemented on a round-by-round basis. For example, liveness conditions, which
require that something happens eventually in a run, cannot be translated into local
terms because they are properties of the whole (infinite) run. Therefore, to enforce such
properties, we restrict the set of runs being considered using admissibility conditions:

Definition 2.70 (Admissibility condition). An admissibility condition Ψ is any subset
of the set of all runs R.

Definition 2.71 (Context). A context γ = (Pϵ, G (0), τ , Ψ) consists of

• an environment protocol Pϵ,

• a set of joint initial states G (0),

• a transition template τ , and

• an admissibility condition Ψ.

Definition 2.72 (Agent-context). Given a context γ and an agents’ joint protocol P ,
we combine them in an agent-context χ = (γ, P ).

Definition 2.73 (Consistency). For a context γ = (Pϵ, G (0), τ , Ψ) and an agents’ joint
protocol P , we define the set of runs weakly consistent with P in γ (or weakly consistent
with χ = (γ, P )), denoted Rwχ = Rw(γ,P ), to be the set of τPϵ,P -transitional runs that
start at some joint initial state from G (0):

Rw(γ,P ) := {r ∈ R | r (0) ∈ G (0) and (∀t ∈ N0) r (t + 1) ∈ τPϵ,P (r (t))}.

A run r is called strongly consistent, or simply consistent, with P in γ (or with χ = (γ, P ))
if it is weakly consistent with P in γ and, additionally, satisfies the admissibility condition,
i.e., r ∈ Ψ.

We denote the system of all runs consistent with P in γ by

Rχ = R(γ,P ) := Rw(γ,P ) ∩ Ψ.
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Furthermore, we say that an agent-context χ = (γ, P ) is non-excluding, if any prefix of
a run that is weakly consistent with P in γ can be extended to a run that is strongly
consistent with P in γ:

Definition 2.74 (Non-excluding agent-context). For any agent-context χ, χ is non-
excluding iff

Rχ ̸= ∅ and (∀r ∈ Rwχ)(∀t ∈ N0)(∃r′ ∈ Rχ)(∀t′ ≤ t) r′ �
t′� = r

�
t′� .
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CHAPTER 3
Epistemic analysis

In this chapter, we demonstrate how, using the framework for modeling asynchronous
byzantine fault-tolerant distributed systems, introduced in Chapter 2, one can obtain
insights into the properties of such systems by performing epistemic analysis. By
associating a Kripke model with a given set of runs, various tools from (temporal)-
epistemic logic can be used to study the system corresponding to those runs. Such an
analysis proved to be particularly useful for obtaining impossibility results, for example:
if the necessary epistemic states for performing actions of interest cannot be reached
by agents in the given system, the underlying problem is not solvable in that system.
Our central result in this chapter, the Brain-in-a-Vat lemma, enables us to precisely
capture epistemic dilemmas agents often find themselves in when performing actions
in asynchronous byzantine fault-tolerant systems. As we shall see, one of the main
consequences of the Brain-in-a-Vat lemma is that an agent in such a setting cannot know
if an event really happened. In other words, even if an agent is correct, it cannot rule out
the possibility of an alternative reality — alternative execution of the system — in which
the event in question has not happened. This leads us to investigate how agents can
make decisions in these systems since, as preconditions for actions, usually occurrences
of events are used.

Chapter organization

We start by defining interpreted systems and showing how one can associate a Kripke
model with an arbitrary interpreted system in Section 3.1. In addition, we introduce a
language enriched with special atomic propositions enabling us to reason about correctness
of agents, occurrences of events in the system, as well as about agents’ actions. In
Section 3.2, by introducing a method for run modifications, we model the above mentioned
brain-in-a-vat-like scenarios occurring in asynchronous byzantine systems. This allows
us to expose various limitations of agents’ knowledge in such systems elegantly, i.e., as
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3. Epistemic analysis

theorems. Finally, we discuss the consequences of these findings by figuring out how the
preconditions of agents’ actions are affected in Section 3.3.

3.1 Obtaining Kripke models
First of all, we fix the following set of atomic propositions (atoms):

P := Prop ∪ {correcti | i ∈ A} ∪
{fake(i,t) (o) | (i, t) ∈ A × N0, o ∈ Actions ⊔ Events} ∪
{occurred(i,t)(o) | (i, t) ∈ A × N0, o ∈ Actions ⊔ Events} ∪
{occurredi(o) | i ∈ A, o ∈ Actions ⊔ Events} ∪
{occurredi(o) | i ∈ A, o ∈ Actions ⊔ Events},

where Prop is a nonempty countably infinite set of atoms.

Syntax. We start with P and continue by forming formulas by closing under the Boolean
connectives ¬ and ∧ and under the (unary) modal operators K1, . . . , Kn to obtain the
language L, i.e., the language L is generated by the following BNF:

φ ::= p | ¬φ | (φ ∧ φ) | Kiφ,

where p ∈ P and i ∈ A. We take ⊤ to be an abbreviation for some fixed propositional
tautology, and take ⊥ to be an abbreviation for ¬⊤. Also, we use the following standard
abbreviations from propositional logic: φ ∨ ψ for ¬(¬φ ∧ ¬ψ), φ → ψ for ¬φ ∨ ψ, and
φ ↔ ψ for (φ → ψ) ∧ (ψ → φ).

Remark 3.1. Just like before, the overline in occurred(i,t)(o) and occurredi(o) is used to
indicate that the occurrence of o is correct (non-byzantine).

Definition 3.2 (Interpreted system). An interpreted system is a pair (R, π), consisting
of a set of runs R and a valuation function π : P → P(R × N0).

To reason epistemically via interpreted systems, we associate with a given interpreted
system I = (R, π) a special Kripke model

MI := (R × N0, π, ∼1, . . . , ∼n) ∈ S5n,

where
(r, t) ∼i (r′, t′) iff ri(t) = r′

i(t′).

A pair (r, t) ∈ R × N0 will be called a point.

Definition 3.3. By (I, r, t) |= φ we denote the fact that formula φ is satisfied at the
point (r, t) and define the |= relation as follows:

(I, r, t) |= φ iff MI , (r, t) |= φ.
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Therefore, we obtain:

1. For an atom p, (I, r, t) |= p iff (r, t) ∈ π(p),

2. (I, r, t) |= ¬φ iff (I, r, t) |= φ does not hold,

3. (I, r, t) |= φ ∧ ψ iff (I, r, t) |= φ and (I, r, t) |= ψ,

4. (I, r, t) |= Kiφ iff (I, r′, t′) |= φ for all (r′, t′) such that ri(t) = r′
i(t′).

We will write (I, r, t) ̸|= φ to denote that (I, r, t) |= φ does not hold. By I |= φ we
denote the fact that φ is satisfied at all the points (r, t), i.e., that φ is valid in I.

Definition 3.4. Let i ∈ A, t, t′ ∈ N0 such that t ≤ t′, and o ∈ Actions ⊔ Events. For
the atoms from P \ Prop, the truth value is determined in the following way:

• correcti is true at (r, t′) iff no faulty event happened to i yet, i.e., no event from
FEventsi appears in rϵ(t′):

(r, t′) ∈ π(correcti) iff (∀t′′ ≤ t′)(Λt′′ ∩ FEventsi = ∅),

where rϵ(t′) = [Λt′ , . . . , Λ1, Λ0] is the history of the environment at t′ defined in
Definition 2.44 and FEventsi = {fake (i, E) | E ∈ GEventsi} ⊔ {fake (i, A �→ A′) |
A, A′ ∈ {noop} ⊔ GActionsi} ⊔ {sleep (i), hibernate (i)}.

• fake(i,t) (o) is true at (r, t′) iff i has a faulty reason to believe that o ∈ Actions ⊔
Events occurred in round (t − 1).5, i.e., o ∈ ri(t) because (at least in part) of some
O ∈ βt−1

bi
(r), i.e.,

(r, t′) ∈ π(fake(i,t) (o)) iff t ≥ 1 and o ∈ σ

βt−1

bi
(r)


,

where σ is the localization function defined in Definition 2.62 and βt−1
bi

(r) is the
set of all byzantine external events of agent i in run r until t − 1 defined in (2.22).

• occurred(i,t)(o) is true at (r, t′) iff i has a correct reason to believe that o ∈ Actions ⊔
Events occurred in round (t − 1).5, i.e., o ∈ ri(t) because (at least in part) of some
O ∈ βt−1

i (r) ⊔ β
t−1
ϵi

(r). i.e.,

(r, t′) ∈ π(occurred(i,t)(o)) iff t ≥ 1 and o ∈ label−1

βt−1

i (r) ⊔ β
t−1
ϵi

(r)


,

where label−1 is the “reverse” labeling function defined in Definition 2.53 and
β

t−1
ϵi

(r) is the set of all correct external events observed by agent i in run r until
t − 1 defined in (2.20).
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• occurredi(o) is true at (r, t′) iff at least one of occurred(i,m)(o) for 1 ≤ m ≤ t′ is;
also occurred (o) := �

i∈A occurredi(o), i.e.,

(r, t′) ∈ π(occurredi(o)) iff (∃t < t′) such that o ∈ label−1

βt

i (r) ⊔ β
t
ϵi

(r)


,

where label−1 is the “reverse” labeling function defined in Definition 2.53 and β
t
ϵi

(r)
is the set of all correct external events observed by agent i in run r until t defined
in (2.20).

• occurredi(o) is true at (r, t′) iff either occurredi(o) is or at least one of fake(i,m) (o)
for 1 ≤ m ≤ t′ is, i.e.,

(r, t′) ∈ π(occurredi(o)) iff o ∈ ri
�
t′� .

Definition 3.5. A formula φ ∈ L is called localized for an agent i ∈ A within an
agent-context χ iff

ri(t) = r′
i(t′) implies (I, r, t) |= φ ⇐⇒ (I, r′, t′) |= φ,

for any interpreted system I = (Rχ, π), runs r, r′ ∈ Rχ, and timestamps t, t′ ∈ N0.

The proof of the following lemma follows immediately:

Proposition 3.6. The following statements are valid for any formula φ ∈ L localized
for an agent i ∈ A within an agent-context χ and any interpreted system I = (Rχ, π):

I |= φ ↔ Kiφ and I |= ¬φ ↔ Ki¬φ.

The Knowledge of Preconditions principle [Mos15] postulates that, in order to be able
to act on a precondition φ, an agent must know φ. Thus, the preceding lemma shows
that formulas localized for i can always be used as preconditions for actions. Our first
observation is that agent’s perceptions of a run are one example of such epistemically
acceptable (though not necessarily reliable) preconditions:

Proposition 3.7. For any agent-context χ, agent i ∈ A, and o ∈ Actions ⊔ Events, the
formula occurredi(o) is localized for i within χ.

Proof. Let χ be an arbitrary agent-context, i ∈ A and o ∈ Actions ⊔ Events. Assume
further that (I, r, t) |= occurredi(o) for some I = (Rχ, π), r ∈ Rχ and t ∈ N0. According
to Definition 3.4, this is equivalent to o ∈ ri(t). Take now an arbitrary r′ ∈ Rχ and t′ ∈ N0
such that ri(t) = r′

i(t′). We immediately get that o ∈ r′
i(t′) must hold as well, which in turn

is equivalent to (I, r′, t′) |= occurredi(o) (again according to Definition 3.4). Therefore,
by Definition 3.5, we can conclude that the formula occurredi(o) is indeed localized for i
within χ since we have obtained (I, r, t) |= occurredi(o) ⇐⇒ (I, r′, t′) |= occurredi(o) by
assuming ri(t) = r′

i(t′).
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3.2. Modeling the brain-in-a-vat scenario

3.2 Modeling the brain-in-a-vat scenario
By contrast, as we will demonstrate, correctness of agent’s perceptions is not localized. In
fact, such correctness can never be established by an agent. We prove such impossibility
results by means of controlled run modifications.

Definition 3.8. A function

ρ : Rχ −→ P(GActionsi) × P(GEventsi)

is called an i-intervention for an agent-context χ and agent i ∈ A. A joint intervention

B = (ρ1, . . . , ρn)

consists of i-interventions ρi for each agent i ∈ A. An adjustment

[Bt; . . . ; B0]

is a sequence of joint interventions B0 . . . , Bt to be performed in rounds from 0.5 to t.5
for some timestamp t ∈ N0.

An i-intervention ρ(r) = (X, Xϵ) applied to a round t.5 of a given run r can be seen as a
meta-action modifying the results of this round for i in such a way that

βt
i

�
r′� = X

and
βt

ϵi

�
r′� = βt

ϵ

�
r′� ∩ GEventsi = Xϵ

in the artificially constructed new run r′.

Given an i-intervention ρ(r) = (X, Xϵ), we denote aρ(r) := X and eρ(r) := Xϵ. Accord-
ingly, a joint intervention (ρ1, . . . , ρn) prescribes actions βt

i (r′) = aρi(r) for each agent i
and events βt

ϵ (r′) = �
i∈A

eρi(r) for the round t.5. Thus, an adjustment [Bt; . . . ; B0] fully

determines actions and events in the initial t + 1 rounds of run r′.

Definition 3.9. Let
adj = [Bt; . . . ; B0]

be an adjustment where
Bm = (ρm

1 , . . . , ρm
n )

for each 0 ≤ m ≤ t and each ρm
i is an i-intervention for an agent-context χ =

((Pϵ, G (0), τB, Ψ), P ). A run r′ is obtained from r ∈ Rχ by adjustment adj iff for
all t′ ≤ t, all T > t, and all i ∈ A:

1. r′ (0) := r (0),
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2. r′
i (t′ + 1) := updatei(r′

i (t′) , aρt′
i (r), �

i∈A
eρt′

i (r)),

3. r′
ϵ (t′ + 1) := updateϵ(r′

ϵ (t′) ,
�

i∈A
eρt′

i (r), aρt′
1 (r), . . . , aρt′

n(r)),

4. r′(T + 1) ∈ τB
Pϵ,P (r′(T )).

We denote by R

τB

Pϵ,P , r, adj


the set of all runs obtained from r by adj.

Remark 3.10. The last property ensures that beyond its adjusted segment, run r′ extends
in a τB

Pϵ,P -transitional manner.

Remark 3.11. Note that, even though run r is assumed to be τB
Pϵ,P -transitional (since

r ∈ Rχ), the adjusted runs obtained from it need not be, i.e., they need not obey the last
property also for t′ ≤ t.

To demonstrate the impossibility of establishing knowledge about perception correctness,
we use several adjustment types to formalize the infamous brain in a vat scenario1, where
one agent, the “brain”, is to experience a fabricated, i.e., faulty, version of its local history,
whereas all other agents are to remain in their initial states (and made byzantine faulty
or not at will). This is achieved by using interventions

(a) Fakei for brain i,

(b) CFreeze for other agents j that are to be correct, and

(c) BFreezej for other agents j that are to be byzantine faulty.

Definition 3.12. For an agent i ∈ A, an agent-context χ, and a run r ∈ Rχ, we define
the following i-interventions:

CFreeze (r) := (∅,∅),
BFreezei (r) := (∅, {fail (i)}),

Faket
i (r) := (∅, {fail (i)} ∪ βt

bi
(r) ∪ {fake (i, E) | E ∈ β

t
ϵi

(r)}∪
{fake (i, noop �→ A) | A ∈ βt

i (r)} ∪ {sleep (i) | aware(i, βt
ϵi

(r))}).

Remark 3.13. Note that interventions CFreeze and BFreezei are constant, i.e., the
modifications they impose are run-independent.

The following lemma will prove to be particularly useful when proving Lemma 3.15.

Lemma 3.14. Let i ∈ A, t ∈ N0, and r ∈ Rχ, where χ is an agent-context. Then
1For connections to the semantic externalism and a survey of philosophical literature on the subject,

see [PG96].
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1. aFaket
i (r) = ∅, i.e., Faket

i removes all actions.

2. go(i) /∈ eFaket
i (r), i.e., Faket

i never lets agent i act.

3. σ(aFaket
i (r) ⊔ eFaket

i (r)) = σ(eFaket
i (r)) = σ(βt

i (r) ⊔ βt
ϵi

(r)), i.e., actions and
events to be appended to the local history of agent i as a result of round t.5 after the
i-intervention Faket

i (r) are the same as before it in the same round of the original
run r.

4. aware(i, eFaket
i (r)) = t iff aware(i, βt

ϵi
(r)) = t, i.e., agent i’s awareness of the

passing of round t.5 is not changed by Faket
i (r).

Proof. 1. From Definition 3.12, we immediately obtain

aFaket
i (r) = a(∅, {fail (i)} ∪ βt

bi
(r) ∪ {fake (i, E) | E ∈ β

t
ϵi

(r)}∪
{fake (i, noop �→ A) | A ∈ βt

i (r)} ∪ {sleep (i) | aware(i, βt
ϵi

(r))})
= ∅.

2. From Definition 3.12,

eFaket
i (r) = e(∅, {fail (i)} ∪ βt

bi
(r) ∪ {fake (i, E) | E ∈ β

t
ϵi

(r)}∪
{fake (i, noop �→ A) | A ∈ βt

i (r)} ∪ {sleep (i) | aware(i, βt
ϵi

(r))})

= {fail (i)} ∪ βt
bi

(r) ∪ {fake (i, E) | E ∈ β
t
ϵi

(r)}∪
{fake (i, noop �→ A) | A ∈ βt

i (r)} ∪ {sleep (i) | aware(i, βt
ϵi

(r))},

follows. Now, it is obvious that go(i) /∈ eFaket
i (r).

3. It follows from Definition 2.62 and Definition 3.12, since

σ({fake (i, E) | E ∈ β
t
ϵi

(r)}) = σ({E | E ∈ β
t
ϵi

(r)}) = σ(βt
ϵi

(r))

and

σ({fake (i, noop �→ A) | A ∈ βt
i (r)}) = σ({A | A ∈ βt

i (r)}) = σ(βt
i (r)).

4. From Definition 2.58 and Definition 3.12, we get

aware(i, eFaket
i (r)) = t iff eFaket

i (r) ∩ {go(i), sleep (i)} ≠ ∅
iff eFaket

i (r) ∩ {sleep (i)} ≠ ∅
iff aware(i, βt

ϵi
(r)) = t.

Recall that (see Definition 2.51): the environment’s protocol Pϵ makes an agent i ∈ A
delayable if for any X ∈ Pϵ (t), X\GEventsi ∈ Pϵ (t); the environment’s protocol Pϵ makes
an agent i ∈ A fallible if for any X ∈ Pϵ (t), X ∪ {fail (i)} ∈ Pϵ (t); the environment’s
protocol Pϵ makes an agent i ∈ A gullible if for any Y ⊆ FEventsi, and any X ∈ Pϵ (t),
Y ⊔ (X \ GEventsi) ∈ Pϵ (t), whenever Y ⊔ (X \ GEventsi) is t-coherent.
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Lemma 3.15 (Brain in a Vat). For an agent i ∈ A, for an agent-context χ =
((Pϵ, G (0), τB, Ψ), P ) such that Pϵ makes i gullible and every j ̸= i delayable and fallible,
for a set Byz ⊆ A \ {i} such that f ≥ 1 + |Byz|, for a run r ∈ Rχ, and for a timestamp
t > 0, we consider an adjustment

adj = [Bt−1; . . . ; B0] such that Bm = (ρm
1 , . . . , ρm

n )

with

ρm
i = Fakem

i , ρm
j = BFreezej for j ∈ Byz, and ρm

j = CFreeze for j /∈ {i} ⊔ Byz

for all 0 ≤ m ≤ t − 1. Then each run r′ ∈ R

τB

Pϵ,P , r, adj


satisfies the following
properties:

1. r′ ∈ Rwχ;

2. (∀m ≤ t) r′
i (m) = ri (m);

3. (∀m ≤ t) (∀j ̸= i) r′
j (m) = r′

j (0);

4. agents from A \ ({i} ⊔ Byz) remain correct until t;

5. agent i and all agents from Byz become byzantine faulty already in round 0.5;

6. (∀m < t) (∀j ̸= i) βm
ϵj

(r′) ⊆ {fail (j)}. More precisely,

βm
ϵj

�
r′� = ∅ iff ρm

j = CFreeze and βm
ϵj

�
r′� = {fail (j)} iff ρm

j = BFreezej ;

7. (∀m < t) βm
ϵi

(r′) \ FEventsi = ∅;

8. (∀m < t)(∀j ∈ A) βm
j (r′) = ∅.

Proof. Let r′ ∈ R

τB

Pϵ,P , r, adj

.

For property 5, using Definition 3.4, we immediately obtain (r′, 1) ̸∈ π(correcti) since the
intervention Fake0

i is performed in round 0.5, i.e.,

Λ′
1 ∩ FEventsi = FEventsi ̸= ∅,

where r′
ϵ(1) = [Λ′

1, Λ′
0].

Similarly, for j ∈ Byz, (r′, 1) ̸∈ π(correctj) since the intervention BFreezej is already
performed in round 0.5.

For property 6, let m < t. According to Definition 3.12, for j /∈ {i} ⊔ Byz, we have

βm
ϵj

�
r′� = eρm

j = eCFreeze = e(∅,∅) = ∅,
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and, for j ∈ Byz, we have

βm
ϵj

�
r′� = eρm

j = eBFreezej = e(∅, {fail (j)}) = {fail (j)}.

For property 7, let m < t. According to Definition 3.12, we have

βm
ϵi

�
r′� = eρm

i

= eFakem
i (r)

= e(∅, {fail (i)} ∪ βm
bi

(r) ∪ {fake (i, E) | E ∈ β
m
ϵi

(r)}∪
{fake (i, noop �→ A) | A ∈ βm

i (r)} ∪ {sleep (i) | aware(i, βm
ϵi

(r))})
= {fail (i)} ∪ βm

bi
(r) ∪ {fake (i, E) | E ∈ β

m
ϵi

(r)}∪
{fake (i, noop �→ A) | A ∈ βm

i (r)} ∪ {sleep (i) | aware(i, βm
ϵi

(r))}
⊆ FEventsi,

since FEventsi = {fake (i, E) | E ∈ GEventsi} ⊔ {fake (i, A �→ A′) | A, A′ ∈ {noop} ⊔
GActionsi} ⊔ {sleep (i), hibernate (i)}. Thus, βm

ϵi
(r′) \ FEventsi = ∅ indeed holds.

For property 8, let m < t. According to Definition 3.12, we have

• βm
j (r′) = aCFreeze = a(∅,∅) = ∅, for j /∈ {i} ⊔ Byz,

• βm
j (r′) = aBFreezej = a(∅, {fail (j)}) = ∅, for j ∈ Byz,

• βm
i (r′) = aFakem

i (r) = ∅, for agent i, by Lemma 3.14.

According to Definition 2.73, in order to prove property 1, we need to show

r′(0) ∈ G (0)

and
r′(m + 1) ∈ τB

Pϵ,P (r′(m)). (3.1)

According to Definition 3.9, r′(0) = r(0). Therefore, r′(0) ∈ G (0) indeed holds.

Property (3.1) for m > t directly follows from Definition 3.9. We prove that it holds for
m ≤ t as well based on the gullibility of i and delayability and fallibility of all other j ≠ i:

Let m ≤ t. Consider αm
ϵ (r) ∈ Pϵ (m) from the original run r. The set αm

ϵ (r) is m-
coherent by Definition 2.49. Note that αm

ϵ (r) ⊂ GEvents = �
i∈A

GEventsi. Thus, by the

delayability of all j ̸= i,

αm
ϵi

(r) := αm
ϵ (r) ∩ GEventsi = αm

ϵ (r) \
�
j ̸=i

GEventsj ∈ Pϵ (m) ,
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3. Epistemic analysis

since αm
ϵ (r) ∈ Pϵ (m). Note also that for any Z ⊆ FEventsi, Z ⊔


αm

ϵi
(r) \ GEventsi


=

Z ⊔ ∅ = Z because αm
ϵi

(r) ⊆ GEventsi. Thus, by the gullibility of i,

αm
ϵi

�
r′� := {fail (i)} ∪ βm

bi
(r) ∪ {fake(i, E) | E ∈ β

m
ϵi

(r)}∪
{fake (i, noop �→ A) | A ∈ βm

i (r)} ⊔ {sleep (i) | aware(i, βt
ϵi

(r))} ∈ Pϵ (m) ,

since αm
ϵ (r) ∈ Pϵ (m). The set αm

ϵi
(r′) is m-coherent because it contains no correct events

and neither go(i) nor hibernate (i). Finally, by the fallibility of all agents j ∈ Byz,

αm
ϵ

�
r′� := αm

ϵi

�
r′� ⊔ {fail (j) | j ∈ Byz} ∈ Pϵ (m) ,

since αm
ϵi

(r′) ∈ Pϵ (m). The set αm
ϵ (r′) is m-coherent because αm

ϵi
(r′) is.

It remains to show that filtering turns the sets αm
ϵ (r′), αm

1 (r′), . . . , αm
n (r′) into the exact

β-sets prescribed by the adjustment adj. Let us abbreviate:

Υ := filterB
ϵ

�
r′(m), αm

ϵ

�
r′�, αm

1
�
r′�, . . . , αm

n

�
r′��

,

Ξj := filterB
j

�
αm

1
�
r′�, . . . , αm

n

�
r′�, Υ

�
.

Our goal is to show that

Υj := Υ ∩ GEventsj = βm
ϵj

�
r′�,

and
Ξj = βm

j

�
r′�,

for each j ∈ A.

The set αm
ϵ (r′) is unaffected by filterB

ϵ (there are no correct receives in αm
ϵ (r′) to be

filtered out). So, according to Definition 2.59, after the filtering phase, we have the
following:

Υi = αm
ϵ

�
r′� ∩ GEventsi = αm

ϵi

�
r′�,

the latter being exactly βm
ϵi

(r′) as shown above for property 7, and

Υj = αm
ϵ

�
r′� ∩ GEventsj =

�
∅ if j ̸∈ Byz

{fail (j)} if j ∈ Byz
=

�
∅ if ρm

j = CFreeze
{fail (j)} if ρm

j = BFreezej

the latter being exactly βm
ϵj

(r′) by property 6.

Since go(j) /∈ Υ for any j ∈ A, we also have that

Ξj = ∅ = βm
j

�
r′�,

according to Definition 2.59.

Properties 2–4 depend solely on rounds from 0.5 to (t − 1).5 of r′. We prove them for
m ≤ t by induction on m.
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3.2. Modeling the brain-in-a-vat scenario

Base case: m = 0. Property 2 follows from Definition 3.9. Properties 3–4 follow
immediately.

Step from m to m + 1.

For the induction step for property 2, we have the following cases:

1. If σ

βm

ϵi
(r)


̸= ∅, then using (2.24), Definition 2.64, IH, Lemma 3.14 (3), and

Definition 3.9, we obtain

ri (m + 1) = updatei
�
ri (m) , βm

i (r), βm
ϵ (r)

�
= σ

�
βm

i (r) ⊔ βm
ϵi

(r)
�
: ri (m)

= σ
�
βm

i (r) ⊔ βm
ϵi

(r)
�
: r′

i (m)
= σ

�
βm

i

�
r′� ⊔ βm

ϵi

�
r′��

: r′
i (m)

= updatei
�
r′

i (m) , βm
i

�
r′�, βm

ϵ

�
r′��

= r′
i (m + 1) .

2. If σ

βm

ϵi
(r)


= ∅, but aware(i, βm

ϵi
(r)) = t, then using (2.24), Definition 2.64, IH,

Lemma 3.14 (3–4), and Definition 3.9, we obtain

ri (m + 1) = updatei
�
ri (m) , βm

i (r), βm
ϵ (r)

�
= σ

�
βm

i (r) ⊔ βm
ϵi

(r)
�
: ri (m)

= σ(βm
i (r)) : ri (m)

= σ(βm
i (r)) : r′

i (m)
= σ

�
βm

i

�
r′� ⊔ βm

ϵi

�
r′��

: r′
i (m)

= updatei
�
r′

i (m) , βm
i

�
r′�, βm

ϵ

�
r′��

= r′
i (m + 1) .

3. If σ

βm

ϵi
(r)


= ∅ and unaware(i, βm

ϵi
(r)) = t, then using (2.24), Definition 2.64,

IH, Lemma 3.14 (4), and Definition 3.9, we obtain

ri (m + 1) = updatei
�
ri (m) , βm

i (r), βm
ϵ (r)

�
= ri (m)
= r′

i (m)
= updatei

�
r′

i (m) , βm
i

�
r′�, βm

ϵ

�
r′��

= r′
i (m + 1) .

This completes the proof of the induction step for property 2.
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For the induction step for property 3, using Definition 3.9, Definition 2.64, property 6,
Definition 2.62, and IH, we obtain

r′
j (m + 1) = updatej


r′

j (m) , βm
j

�
r′�, βm

ϵ

�
r′�

= r′
j (m)

= r′
j (0) .

For the induction step for property 4, using the fact that, for j /∈ {i} ⊔ Byz, βm
ϵj

(r′) = ∅
by property 6, and IH, we obtain that such agents j remain correct after the round m.5,
i.e,

Λ′
m+1 ∩ FEventsj = ∅,

where r′
ϵ(m + 1) = [Λ′

m+1, . . . , Λ′
1, Λ′

0].

Remark 3.16. The previous lemma states that for a designated agent i ∈ A in an
arbitrary local state ri(t) in run r there is always an i-indistinguishable local state r′

i(t) in
an alternative (transitional) run r′ such that all other agents are yet to leave their initial
local states, with i definitely byzantine faulty while other agents can be made byzantine
faulty or correct at will. We call this the Brain-in-the-Vat lemma because agent i attains
this indistinguishable local state by “imagining” that all actions and events from the
original run r happened to it without any participation of other agents.

Corollary 3.17. If χ is non-excluding, then for any timestamp t > 0 there is a run
r′ ∈ Rχ constructed according to Lemma 3.15, such that for any I = (Rχ, π), o ∈
Actions ⊔ Events, j ∈ {i} ⊔ Byz, and k /∈ {i} ⊔ Byz:

(I, r′, t) ̸|= occurred (o), (I, r′, t) ̸|= correctj , (I, r′, t) |= correctk . (3.2)

The ability to construct a Brain-in-a-Vat run r′ in Lemma 3.15 and its properties in
Corollary 3.17 enable us to prove that asynchronous agents in byzantine settings are not
able to learn that a particular event actually happened, nor that they are not byzantine
faulty:

Theorem 3.18. Let i ∈ A, let χ = ((Pϵ, G (0), τB, Ψ), P ) be a non-excluding agent-
context such that f ≥ 1 and Pϵ makes agent i gullible and every other agent k ̸= i
delayable and fallible, and let I = (Rχ, π) be an arbitrary interpreted system. Then for
any o ∈ Actions ⊔ Events, r ∈ Rχ, and t > 0:

(I, r, t) |= ¬Kioccurred (o), (I, r, t) |= ¬Kicorrecti , (I, r, t) |= ¬Ki¬correctk .

Proof. For arbitrary r ∈ Rχ and t > 0, by Lemma 3.15 with Byz = ∅ and non-
excludingness of χ, there exists r′ ∈ Rχ such that (3.2) holds for j = i and k ̸= i by
Corollary 3.17. Therefore,

(I, r, t) |= ¬Kioccurred (o) ∧ ¬Kicorrecti ∧ ¬Ki¬correctk

follows according to Definition 3.3 since ri(t) = r′
i(t) by Lemma 3.15 (2).
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3.3. Relativizing the preconditions of actions

Remark 3.19. While agent i can never learn that it is correct or that another agent k is
byzantine faulty, agent i might be able to detect its own faults, for instance, by comparing
actions prescribed by its protocol against actions recorded in its local history.

The case of f = 0 corresponds to a system without byzantine faults, where correctness of
all agents, actions, and events is common knowledge among agents. When f = 1, in view
of Remark 3.19, the byzantine faulty agent may be able to conclude that all other agents
are correct. However, for f ≥ 2 this is not possible either:

Theorem 3.20. Let i ∈ A, let χ = ((Pϵ, G (0), τB, Ψ), P ) be a non-excluding agent-context
such that f ≥ 2 and Pϵ makes agent i gullible and every other agent k ̸= i delayable and
fallible, and let I = (Rχ, π) be an interpreted system. Then for any r ∈ Rχ and t > 0:

(I, r, t) |= ¬Kicorrectk .

Proof. For arbitrary r ∈ Rχ and t > 0, by Lemma 3.15 with Byz = {k} and non-
excludingness of χ, there exists r′ ∈ Rχ such that (I, r′, t) ̸|= correctj holds for j ∈ {i, k}
by Corollary 3.17. Therefore,

(I, r, t) |= ¬Kicorrectk

follows according to Definition 3.3 since ri(t) = r′
i(t) by Lemma 3.15 (2).

3.3 Relativizing the preconditions of actions
The results of the previous section clearly show that occurrences of trigger events alone
cannot be used as preconditions for actions in asynchronous byzantine settings. The
knowledge of a precondition requirement stated in [Mos15], i.e., that an agent acts on
φ only when the agent knows φ, would typically lead (for such simple preconditions)
to no actions being taken at all — even when an asynchronous agent is correct (at the
current time in the current run), it can never discount the scenario of being a “brain in
a vat”. This first led us to consider the following notion of belief (belief as defeasible
knowledge [MS93])

Biφ := Ki(correcti → φ)2 (3.3)

as the adequate epistemic state of an acting agent in this settings. According to it, while
φ is the desired property, agent i acts on the precondition correcti → φ.

We believe that (3.3) can be further improved in at least two directions:

i.) Firstly, a typical problem specification for a byzantine fault-tolerant system does not
impose any restrictions on the actions the byzantine faulty agents perform (for instance,

2Note that, if instead Ki(correcti → φ) we require correcti → Kiφ, it would not be helpful since, as
we saw, in Theorem 3.18, Kioccurred (o) fails to hold even when agent i is correct at the current time
in the current run — it is the fact that we can construct (at any given time) an indistinguishable to i
brain-in-a-vat run that renders it impossible for i to gain such knowledge.
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3. Epistemic analysis

in case of distributed consensus, all correct agents must agree on a common value, whereas
the byzantine faulty agents are completely exempted from this). Consequently, what is
of actual interest here is that Biφ is satisfied for the correct agents. By this reasoning,
we arrived at the notion of, what we call hope (see Remark 3.22),

Hiφ := correcti → Ki(correcti → φ). (3.4)

Moreover, Hiφ neatly encapsulates the epistemic state of an acting agent in a uniform
way — be it a correct agent acting or a faulty one. This is because (3.4) is automatically
satisfied for faulty agents, so it captures the fact that the (malicious) byzantine faulty
agents can act irrespective of any preconditions, while for correct agents it simply collapses
to belief.

ii.) Secondly, per Remark 3.19, the possibility that an agent can learn that it is byzantine
faulty is not excluded completely. Assuming the byzantine faulty agent in question
is malfunctioning rather than malicious, its knowledge about its faults could be used
to minimize the effects of them on the system as a whole and it would be of crucial
importance in scenarios where self-correction is possible. Therefore, for such cases, we
propose the following notion of, what we call credence,

Cr iφ := ¬Ki¬correcti ∧ Ki(correcti → φ), (3.5)

as the adequate necessary epistemic state for acting.

Remark 3.21. We note that generalized versions such that instead of correcti there
can be (almost) any formula α of both belief Biφ = Ki(correcti → φ) and credence
Cr iφ = ¬Ki¬correcti ∧ Ki(correcti → φ) have been studied in [MS93] (in the single-agent
case, however).

Remark 3.22. As we saw in Theorem 3.18, an agent itself can never ascertain its own
correctness. So, Hiφ can be read as the following from the point of view of agent i:
“Unless I am incorrect, I believe φ to be the case.” Moreover, in Theorem 3.20, we saw
that an agent itself can also never ascertain the correctness of another agent (assuming
f ≥ 2). This observation becomes of crucial importance in situations where agent i has
to reason about the epistemic state of some other agent j. As we will see in the epistemic
analysis of the FRR problem in Chapter 6, instead of Ki(correcti → Kj(correctj → φ)),
i.e., BiBjφ, what we often have is actually Ki(correcti → (correctj → Kj(correctj → φ))),
i.e., BiHjφ, which can be read as the following from the point of view of agent i: “I
believe that, unless j is incorrect, j believes φ to be the case.” It is these specific readings
that inspired the name “hope” of the Hi modality since hope can be thought of as allowing
more room for uncertainty than belief.3

In the following proposition we establish some basic connections between the proposed
modalities.

3While we do not attempt to study the true meaning of hope here, hope has been subject of rigorous
analysis (especially in relation to belief) by many philosophers, see [BS22] for an overview.
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3.3. Relativizing the preconditions of actions

Proposition 3.23. For any formula φ ∈ L, any agent i ∈ A, the following formulas are
valid in every interpreted system:

|= Kiφ → Biφ |= correcti → (Cr iφ → φ)
|= Cr iφ → Biφ |= correcti → (Biφ → φ)
|= Biφ → Hiφ |= correcti → (Hiφ → φ)
|= correcti → (Hiφ → Cr iφ) |= Biφ → KiBiφ

|= ¬correcti → Hiφ |= Cr iφ → KiCr iφ

|= Kiφ → φ |= Kicorrecti → (Hiφ → Kiφ)

Proof. Let φ ∈ L be an arbitrary formula and i ∈ A be an arbitrary agent.

The proofs of |= Kiφ → Biφ, |= Cr iφ → Biφ and |= Biφ → Hiφ follow immediately
from the definitions of Biφ, Cr iφ and Hiφ.

Let us show |= correcti → (Hiφ → Cr iφ). Take an arbitrary interpreted system
I = (R, π) and let r ∈ R and t ∈ N0. Assume that (I, r, t) |= correcti ∧ Hiφ. We
need to show (I, r, t) |= Cr iφ, i.e., (I, r, t) |= ¬K¬correcti ∧ Ki(correcti → φ). Using
(I, r, t) |= correcti ∧ Hiφ, that is, (I, r, t) |= correcti ∧ (correcti → Ki(correcti → φ)),
we immediately get (I, r, t) |= Ki(correcti → φ). Using (I, r, t) |= correcti , we obtain
(I, r, t) |= ¬K¬correcti . Thus, (I, r, t) |= Cr iφ indeed holds.

The proof of |= ¬correcti → Hiφ follows using propositional reasoning.

The proof of |= Kiφ → φ is well-known. The proofs of |= correcti → (Cr iφ → φ),
|= correcti → (Biφ → φ) and |= correcti → (Hiφ → φ) are straightforward.

The proofs of |= Biφ → KiBiφ and |= Cr iφ → KiCr iφ follow using the positive and
negative introspection properties of knowledge.

Finally, we show |= Kicorrecti → (Hiφ → Kiφ). Take an arbitrary interpreted system
I = (R, π) and let r ∈ R and t ∈ N0. Assume that (I, r, t) |= Kicorrecti ∧ Hiφ.
We need to show (I, r, t) |= Kiφ. Take r′ ∈ R and t′ ∈ N0 such that ri(t) = r′

i(t′).
We need to show (I, r′, t′) |= φ. First of all, from (I, r, t) |= Kicorrecti ∧ Hiφ, that is,
(I, r, t) |= Kicorrecti ∧(correcti → Ki(correcti → φ)), follows (I, r, t) |= Ki(correcti → φ).
Therefore, we have (I, r′, t′) |= correcti → φ. Finally, using (I, r, t) |= Kicorrecti , we
obtain (I, r′, t′) |= correcti and hence (I, r′, t′) |= φ.

As follows from the preceding lemma, credence is stronger than belief, which is stronger
than hope, while knowledge is stronger than belief. However, for a correct agent, credence,
belief, and hope all become equivalent, while knowledge generally remains stronger (note
that for fault-free systems they all collapse to the standard notion of knowledge). At the
same time, all four modalities are factive for correct agents (knowledge is factive for all
agents). Finally, belief and credence satisfy the “self-awareness” condition. On the other
hand, hope does not generally satisfy Hiφ → KiHiφ, as we show below.
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Let M =
�
W, K1, . . . , Kn, π

�
be such that:

• W = {G, B},

• Kj = W × W for all j ∈ A,

• π(correcti) = {G}, and

• π(p) = W , for all atoms p ̸= correcti .

Thus, we have the following situation for agent i, in particular:

correcti

G B

Ki Ki

Ki

It is easy to see now from the picture above that

M, B ̸|= (correcti → Ki(correcti → ⊥)) → Ki(correcti → Ki(correcti → ⊥)),

that is,
M, B ̸|= Hi⊥ → KiHi⊥,

since M, B ̸|= correcti and M, G ̸|= Ki(correcti → ⊥).

3.4 Related work
Interestingly, the possibility to model the brain-in-a-vat scenario later turned out to be
a widespread phenomenon in systems with byzantine faults. Not only that it can be
modeled in systems with synchronous agents as well, but even the perfectly synchronized
clocks available in lockstep synchronous systems cannot be used to avoid it [SSK20].
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CHAPTER 4
A modal logic of hope

In this chapter, we aim to obtain a better understanding of the hope modality, introduced
in Chapter 3. For this purpose, we try to capture all its essential properties via an
independent logical system. Thus, we propose a separate axiomatization for it, which we
prove to be sound and complete with respect to a class of Kripke models designed for hope.
The corresponding completeness proof relies on the standard method of canonical model
construction, albeit the canonical model itself is non-standard in that its accessibility
relations depend on the valuations of correctness atoms. In other words, some of the
axioms for hope are not purely frame characterizable. For example, whether or not a
certain world (in the Kripke model) has any accessible worlds heavily depends on the
correctness status of agents in it. The proposed axiom system also turns out to be strongly
sound and strongly complete with respect to the same class of Kripke models. This in
turn allows us to conclude that the logic of hope is compact. We also provide a proof of
soundness and completeness with respect to the standard S5 models for knowledge via a
suitable translation function. Finally, we show that the proposed logic of hope has the
finite model property and is decidable.

Chapter organization

We start by introducing the relevant syntax as well as the axiom system for the hope
modality in Section 4.1. The soundness and completeness results are all grouped together
in Section 4.2: we prove both weak and strong completeness with respect to special
models for hope, as well as completeness with respect to the standard S5 models for
knowledge via a suitable translation function. Finally, in Section 4.3, we prove (using
the same translation) that the proposed logic of hope has the finite model property as
well as that it is decidable.
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4. A modal logic of hope

4.1 Towards a logic of hope
First of all, we fix:

• a finite set A := {1, . . . , n} of agents,

• a nonempty countably infinite set Prop of atomic propositions (atoms),

• a finite set Co := {correcti | i ∈ A} of designated correctness atoms.

Syntax. We start with Prop ∪ Co and continue by forming formulas by closing under
the Boolean connectives ¬ and ∧ and under the unary modal operators (one for each
agent) H1, . . . , Hn to obtain the language Lco

H , i.e., the language Lco
H is generated by the

following BNF:
φ ::= p | ¬φ | (φ ∧ φ) | Hiφ,

where p ∈ Prop ∪ Co and i ∈ A. We take ⊤ to be an abbreviation for some fixed
propositional tautology, and take ⊥ to be an abbreviation for ¬⊤. Also, we use the
following standard abbreviations from propositional logic: φ ∨ ψ for ¬(¬φ ∧ ¬ψ), φ → ψ
for ¬φ∨ψ, and φ ↔ ψ for (φ → ψ)∧ (ψ → φ). In addition, for each i ∈ A, we abbreviate
faultyi := ¬correcti .

Remark 4.1. We use K1, . . . , Kn modalities instead of H1, . . . , Hn modalities in the
above BNF to obtain the language Lco

K .

The axiom system Hco is depicted in Figure 4.1.

P : all propositional tautologies
KH : Hi(φ → ψ) ∧ Hiφ → Hiψ

4H : Hiφ → HiHiφ

5H : ¬Hiφ → Hi¬Hiφ

T ′H : correcti → (Hiφ → φ)
H : Hicorrecti

F : faultyi → Hiφ

MP : φ φ → ψ

ψ

NecH : φ

Hiφ

Figure 4.1: Axiom system Hco
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4.2. Soundness and completeness results

Remark 4.2. Axioms P , KH , 4H , and 5H , along with inference rules MP and NecH

represent the standard K45n axiom system (see Figure 2.2). Axiom T ′H is axiom T
restricted to correct agents; axiom H states that agents always hope to be correct; axiom
F means that the hopes of byzantine faulty agents are unrestricted and all encompassing,
in particular, alongside tautologies they also hope for contradictions, making their hopes
inconsistent.

Recall that (see Definition 2.1): a set of formulas forms a system of a normal multi-agent
epistemic logic if and only if it contains all propositional tautologies and is closed under
the modus ponens inference rule, the K axiom scheme, the necessitation inference rule,
and the uniform substitution rule.

Proposition 4.3. The logic of Hco is not a normal multi-agent epistemic logic.

Proof. The uniform substitution rule is violated because of axiom H.

4.2 Soundness and completeness results
Soundness with respect to S5 models via translation

Definition 4.4. For any φ, ψ ∈ Lco
H , any p ∈ Prop ∪ Co, and any i ∈ A, the translation

function t : Lco
H → Lco

K is defined recursively in the following way:

• t(p) := p;

• t(¬φ) := ¬t(φ);

• t(φ ∧ ψ) := t(φ) ∧ t(ψ);

• t(Hiφ) := correcti → Ki(correcti → t(φ)).

Lemma 4.5. For all MK ∈ S5n, all w ∈ D(MK), all φ, ψ ∈ Lco
H , and all i ∈ A holds

the following:

1. If φ is an instance of a propositional tautology, then MK |= t(φ);

2. S5n |= t(Hi(φ → ψ) ∧ Hiφ → Hiψ);

3. S5n |= t(Hiφ → HiHiφ);

4. S5n |= t(¬Hiφ → Hi¬Hiφ);

5. S5n |= t(correcti → (Hiφ → φ));

6. S5n |= t(faultyi → Hiφ);
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7. S5n |= t(Hicorrecti);

8. If MK , w |= t(φ) and MK , w |= t(φ → ψ), then MK , w |= t(ψ);

9. if MK |= t(φ), then MK |= t(Hiφ).

Proof. 1. This follows immediately from the fact that if φ is an instance of a proposi-
tional tautology, then t(φ) is also an instance of a propositional tautology.

2. By applying the translation function from Definition 4.4, we obtain

t(Hi(φ → ψ) ∧ Hiφ → Hiψ) = (correcti → Ki(correcti → t(φ → ψ)))∧
(correcti → Ki(correcti → t(φ))) → (correcti → Ki(correcti → t(ψ))).

Take an arbitrary model MK = (W, π, K1, . . . , Kn) ∈ S5n and an arbitrary state
w ∈ W . We need to show that

MK , w ̸|= (correcti → Ki(correcti → t(φ → ψ))) ∧ (correcti → Ki(correcti →
t(φ))) or MK , w |= (correcti → Ki(correcti → t(ψ)))

holds. Assume

MK , w |= (correcti → Ki(correcti → t(φ → ψ)))∧(correcti → Ki(correcti → t(φ))).

This means that either MK , w ̸|= correcti or

MK , w |= Ki(correcti → t(φ → ψ)) and MK , w |= Ki(correcti → t(φ)).

If MK , w ̸|= correcti , then MK , w |= correcti → Ki(correcti → t(ψ)) immedi-
ately follows. So, assume MK , w |= Ki(correcti → t(φ → ψ)) and MK , w |=
Ki(correcti → t(φ)). Take an arbitrary w′ ∈ W such that (w, w′) ∈ Ki. Now, by
assumption, MK , w′ |= correcti → t(φ → ψ) and MK , w′ |= correcti → t(φ). By
propositional reasoning, from this we get that MK , w′ |= correcti → t(ψ) must
also hold. Since w′ ∈ W such that (w, w′) ∈ Ki was chosen arbitrarily, MK , w |=
Ki(correcti → t(ψ)) follows. Therefore, MK , w |= correcti → Ki(correcti → t(ψ))
follows in this case too.

3. By applying the translation function from Definition 4.4, we obtain

t(Hiφ → HiHiφ) = (correcti → Ki(correcti → t(φ))) →
(correcti → Ki(correcti → (correcti → Ki(correcti → t(φ))))).

Take an arbitrary model MK = (W, π, K1, . . . , Kn) ∈ S5n and an arbitrary state
w ∈ W . We need to show that
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MK , w ̸|= correcti → Ki(correcti → t(φ)) or MK , w |= correcti → Ki(correcti →
(correcti → Ki(correcti → t(φ))))

holds.
Let us assume MK , w |= correcti → Ki(correcti → t(φ)). This means that either
MK , w ̸|= correcti or MK , w |= Ki(correcti → t(φ)). If MK , w ̸|= correcti , then

MK , w |= correcti → Ki(correcti → (correcti → Ki(correcti → t(φ))))

immediately follows. So, assume that MK , w |= Ki(correcti → t(φ)) holds. Us-
ing the positive introspection property of knowledge, we obtain that MK , w |=
KiKi(correcti → t(φ)) must also hold. Take an arbitrary w′ ∈ W such that
(w, w′) ∈ Ki. Now, MK , w′ |= Ki(correcti → t(φ)) follows. Consequently,

MK , w′ |= correcti → (correcti → Ki(correcti → t(φ)))

also follows. Since w′ ∈ W such that (w, w′) ∈ Ki was chosen arbitrarily, we obtain
MK , w |= Ki(correcti → (correcti → Ki(correcti → t(φ)))). Finally, this implies

MK , w |= correcti → Ki(correcti → (correcti → Ki(correcti → t(φ)))).

4. By applying the translation function from Definition 4.4, we obtain

t(¬Hiφ → Hi¬Hiφ) = ¬(correcti → Ki(correcti → t(φ))) →
(correcti → Ki(correcti → ¬(correcti → Ki(correcti → t(φ))))).

Take an arbitrary model MK = (W, π, K1, . . . , Kn) ∈ S5n and an arbitrary state
w ∈ W . We need to show that

MK , w ̸|= ¬(correcti → Ki(correcti → t(φ))) or MK , w |= correcti →
Ki(correcti → ¬(correcti → Ki(correcti → t(φ))))

holds.
Let us assume MK , w |= ¬(correcti → Ki(correcti → t(φ))). This means that
MK , w |= correcti and MK , w ̸|= Ki(correcti → t(φ)). It is enough to show

MK , w |= Ki(correcti → ¬(correcti → Ki(correcti → t(φ)))),

that is, MK , w |= Ki(correcti → ¬Ki(correcti → t(φ))), since we have MK , w |=
correcti .
From MK , w ̸|= Ki(correcti → t(φ)), using the negative introspection property of
knowledge , we obtain MK , w |= Ki¬Ki(correcti → t(φ)). Take an arbitrary w′ ∈
W such that (w, w′) ∈ Ki. Now, by assumption, MK , w′ |= ¬Ki(correcti → t(φ)).
Consequently,

MK , w′ |= correcti → ¬Ki(correcti → t(φ))
also follows. Since w′ ∈ W such that (w, w′) ∈ Ki was chosen arbitrarily, we obtain
MK , w |= Ki(correcti → ¬Ki(correcti → t(φ))).
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5. By applying the translation function from Definition 4.4, we obtain

t(correcti → (Hiφ → φ)) = correcti → ((correcti → Ki(correcti → t(φ))) → t(φ)).

Take an arbitrary model MK = (W, π, K1, . . . , Kn) ∈ S5n and an arbitrary state
w ∈ W . We need to show that

MK , w ̸|= correcti or MK , w |= (correcti → Ki(correcti → t(φ))) → t(φ)

holds. Let us assume MK , w |= correcti . We now need to show

MK , w |= (correcti → Ki(correcti → t(φ))) → t(φ),

that is, MK , w ̸|= correcti → Ki(correcti → t(φ)) or MK , w |= t(φ). Let us assume
MK , w |= correcti → Ki(correcti → t(φ)). By combining this with MK , w |=
correcti , we get MK , w |= Ki(correcti → t(φ)). Using the factivity property of
knowledge, we get that MK , w |= correcti → t(φ) must hold. Finally, using the
assumption MK , w |= correcti one more time, we obtain MK , w |= t(φ).

6. By applying the translation function from Definition 4.4, we obtain

t(faultyi → Hiφ) = faultyi → (correcti → Ki(correcti → t(φ))).

Further, take an arbitrary MK = (W, π, K1, . . . , Kn) ∈ S5n and an arbitrary w ∈ W .
Since faultyi = ¬correcti , we immediately obtain

MK , w |= faultyi → (correcti → Ki(correcti → t(φ)))

because the translated formula is an instance of a propositional tautology.

7. By applying the translation function from Definition 4.4, we obtain

t(Hicorrecti) = correcti → Ki(correcti → correcti).

Further, take an arbitrary MK = (W, π, K1, . . . , Kn) ∈ S5n and an arbitrary
w ∈ W . Since correcti → correcti is an instance of a propositional tautology,
MK , w |= Ki(correcti → correcti) holds (agents know all propositional tautologies).
Thus, MK , w |= correcti → Ki(correcti → correcti) also holds.

8. Assume MK , w |= t(φ) and MK , w |= t(φ → ψ). The latter implies MK , w |=
t(φ) → t(ψ), which combined with MK , w |= t(φ) implies that MK , w |= t(ψ)
indeed holds.

9. Assume MK |= t(φ). in order to show MK |= t(Hiφ), take an arbitrary w ∈ D(MK)
and an arbitrary w′ ∈ D(MK) such that (w, w′) ∈ Ki. Since MK |= t(φ), it follows
that MK , w′ |= t(φ) holds. Consequently, MK , w′ |= correcti → t(φ) also holds.
Since w′ ∈ D(MK) was chosen arbitrarily, MK , w |= Ki(correcti → t(φ)) follows.
Therefore, we get that MK , w |= correcti → Ki(correcti → t(φ)), i.e., MK |= t(Hiφ)
also follows.

58



4.2. Soundness and completeness results

Theorem 4.6 (Soundness via translation). For any formula φ ∈ Lco
H holds the following:

⊢Hco φ =⇒ S5n |= t(φ).

Proof. We proceed by induction on the length of the derivation of φ in Hco. Let
φ1, φ2, . . . , φk be a proof of the formula φ in Hco. If k = 1, then φ is an instance of an
axiom in Hco. Therefore, according to Lemma 4.5 (1-7), it immediately follows that φ is
valid with respect to S5n models. Assume now that the desired statement holds for every
formula which has a proof of length shorter than k and consider the formula φ which has
a proof of length k. This means that the last formula in the proof is φ. There are two
possibilities: either φ is an instance of some axiom in Hco, or φ follows by an application
of an inference rule. We already dealt with the first possibility in the base case, so we
consider the second possibility:

• φ follows by an application of modus ponens to some formulas, for example φi

and φi → φ. Since these two formulas are earlier in the proof, they have proofs
whose lengths are shorter than k. After applying the induction hypothesis on them
we get S5n |= t(φi) and S5n |= t(φi → φ). Using Lemma 4.5 (8), we obtain that
S5n |= t(φ) indeed holds.

• φ follows by an application of necessitation to some formula, for example φi,
meaning φ is of the form Hjφi, for some j ∈ A. Since φi is earlier in the proof it
has a proof whose length is shorter than k, which means that we can apply the
induction hypothesis on it and get S5n |= t(φi). Using Lemma 4.5 (9), we obtain
that S5n |= t(Hjφi) indeed holds.

Soundness and completeness with respect to special models
Just like before, after establishing Lemma 4.9, soundness follows by an easy induction
(see Theorem 4.10). The not-so-easy part is proving completeness, as usual. Luckily, the
standard method of canonical model construction [FHMV95, BdRV01] can be carried out
quite smoothly even though some of the axioms of Hco are not purely frame characterizable
(see Definition 4.7). The idea is as follows: we construct one large model for Hco by
taking all maximal consistent (with respect to Hco) sets of formulas (see Definition 4.11
and Correctness lemma 4.17) to be the worlds of the model and by defining the valuation
function and the accessibility relations in terms of membership of formulas to such sets
(see Definition 4.15). This way, using the properties of maximal consistent sets and
the Lindenbaum lemma 4.14, we obtain the key result: a formula φ ∈ Lco

H belongs to a
maximal consistent set Γ if and only if it is satisfied in the world wΓ corresponding to
it (see Truth lemma 4.16). Finally, using all these results, we obtain completeness by
contraposition (see Theorem 4.18).

Recall that K45n is the class of models with transitive and euclidean accessibility relations
(see Definition 2.9).
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Definition 4.7. The class K45co
n of models consists of all Kripke models of the form

MH = (W, π, H1, . . . , Hn) ∈ K45n,

where for every i ∈ {1, . . . , n}, and every w, w′ ∈ W :

• if MH , w |= correcti , then w ∈ Hi(w),

• if MH , w |= faultyi , then Hi(w) = ∅, and

• for all w′ ∈ Hi(w), it is the case that MH , w′ |= correcti ,

where Hi(w) := {w′ : (w, w′) ∈ Hi}.

Remark 4.8. Note that the class K45co
n is not based on any class of Kripke frames.

We first show that the axioms and inference rules of Hco from Figure 4.1 are satisfied on
this class of Kripke models.

Lemma 4.9. For all MH ∈ K45co
n , all w ∈ D(MH), all φ, ψ ∈ Lco

H , and all i ∈ A holds
the following:

1. if φ is an instance of a propositional tautology, then MH |= φ;

2. K45co
n |= Hiφ ∧ Hi(φ → ψ) → Hiψ;

3. K45co
n |= Hiφ → HiHiφ;

4. K45co
n |= ¬Hiφ → Hi¬Hiφ;

5. K45co
n |= correcti → (Hiφ → φ);

6. K45co
n |= faultyi → Hiφ;

7. K45co
n |= Hicorrecti ;

8. If MH , w |= φ and MH , w |= φ → ψ, then MH , w |= ψ;

9. if MH |= φ, then MH |= Hiφ.

Proof. 1. This follows immediately from the fact that the interpretation of ∧ and ¬
in the definition of the |= relation is the same as in propositional logic.

2. Take an arbitrary model MH = (W, π, H1, . . . , Hn) ∈ K45co
n and an arbitrary state

w ∈ W . Assume MH , w |= Hiφ ∧ Hi(φ → ψ). This means that for all w′ ∈ W
such that (w, w′) ∈ Hi, we have both MH , w′ |= φ and MH , w′ |= φ → ψ. By
the definition of the |= relation, we have that MH , w′ |= ψ must then also hold.
Therefore, MH , w |= Hiψ indeed holds.
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3. Take an arbitrary model MH = (W, π, H1, . . . , Hn) ∈ K45co
n an an arbitrary state

w ∈ W . Assume MH , w |= Hiφ. Consider an arbitrary w′ ∈ W such that
(w, w′) ∈ Hi and an arbitrary w′′ ∈ W such that (w′, w′′) ∈ Hi. Since Hi is
transitive according to Definition 4.7, we also have (w, w′′) ∈ Hi. Therefore,
MH , w′′ |= φ must hold, by assumption. Since w′′ ∈ W was chosen arbitrarily, now
MH , w′ |= Hiφ follows. Finally, since w′ ∈ W was also chosen arbitrarily, we obtain
MH , w |= HiHiφ.

4. Take an arbitrary model MH = (W, π, H1, . . . , Hn) ∈ K45co
n and an arbitrary state

w ∈ W . Assume MH , w |= ¬Hiφ. This means that there exists some w′ ∈ W
such that (w, w′) ∈ Hi and MH , w′ ̸|= φ. Consider now an arbitrary w′′ ∈ W such
that (w, w′′) ∈ Hi. Since Hi is euclidean according to Definition 4.7, we have that
(w′′, w′) ∈ Hi holds too in this case. Thus, MH , w′′ |= ¬Hiφ. Since this is true for
all w′′ ∈ W such that (w, w′′) ∈ Hi, MH , w |= Hi¬Hiφ follows.

5. Take an arbitrary model MH = (W, π, H1, . . . , Hn) ∈ K45co
n and an arbitrary state

w ∈ W . Assume MH , w |= correcti . According to Definition 4.7, it follows that
w ∈ Hi(w), i.e., (w, w) ∈ Hi. Now suppose that MH , w |= Hiφ holds as well. This
means that, for any w′ ∈ W such that (w, w′) ∈ Hi, MH , w′ |= φ holds. Since we
do have that (w, w) ∈ Hi, it follows that MH , w |= φ holds, as desired.

6. Take an arbitrary model MH = (W, π, H1, . . . , Hn) ∈ K45co
n and an arbitrary

state w ∈ W . Assume MH , w |= faultyi . According to Definition 4.7, it follows
that Hi(w) = ∅, i.e., there exists no w′ ∈ W such that (w, w′) ∈ Hi. To prove
MH , w |= Hiφ, we have to show that MH , w′ |= φ holds for all w′ ∈ W such
that (w, w′) ∈ Hi. Since there are no such w′ ∈ W , we have that MH , w |= Hiφ
vacuously holds.

7. Take an arbitrary model MH = (W, π, H1, . . . , Hn) ∈ K45co
n and an arbitrary state

w ∈ W . To prove MH , w |= Hicorrecti , we need to show that MH , w′ |= correcti
holds for all w′ ∈ W such that (w, w′) ∈ Hi. But this follows immediately from
Definition 4.7.

8. This follows immediately from the fact that the interpretation of ∧ and ¬ in the
definition of the |= relation is the same as in propositional logic.

9. If MH |= φ, then MH , w′ |= φ holds for all states w′ ∈ W. In particular, for any
state w ∈ W , it follows that MH , w′ |= φ for all w′ ∈ W such that (w, w′) ∈ Hi.
Thus, we have MH , w |= Hiφ for all w ∈ W . Hence, MH |= Hiφ.

Theorem 4.10 (Soundness). The axiom system Hco is sound with respect to the K45co
n

class of models.

Proof. For an arbitrary φ ∈ Lco
H , using the close correspondence of Lemma 4.9 and

Figure 4.1, it is straightforward to prove, by induction on the length of the derivation of
φ in Hco, that if φ is Hco-provable, then it is also valid with respect to class K45co

n .
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Definition 4.11. A formula φ ∈ Lco
H is consistent with respect to Hco if ¬φ is not Hco-

provable, i.e., there does not exist a proof of ¬φ in Hco. A finite set {φ1, . . . , φk} ⊆ Lco
H

of formulas is consistent with respect to Hco exactly if φ1 ∧ · · · ∧ φk is consistent with
respect to Hco, and an infinite set of formulas is consistent with respect to Hco exactly if
all of its finite subsets are consistent with respect to Hco. Furthermore, a set Γ ⊆ Lco

H of
formulas is maximal consistent with respect to Hco if

• Γ is consistent with respect to Hco, and

• for all φ in Lco
H but not in Γ, the set Γ ∪ {φ} is not consistent with respect to Hco.

The following technical lemma will prove to be useful when proving various results
throughout the chapter:

Lemma 4.12. Let φ, ψ ∈ Lco
H and Γ ⊆ Lco

H be a maximal consistent set with respect to
Hco. Then the following holds:

1. ⊢Hco φ =⇒ φ ∈ Γ;

2. φ ∈ Γ ⇐⇒ ¬φ ̸∈ Γ;

3. φ ∧ ψ ∈ Γ ⇐⇒ φ ∈ Γ and ψ ∈ Γ.

Proof. 1. Let ⊢Hco φ. Assume towards a contradiction that φ ̸∈ Γ. Given the
assumption that Γ is maximal consistent with respect to Hco, we get that Γ ∪ {φ}
must be inconsistent with respect to Hco. This means that there exists a finite set
of formulas

{θ1, . . . , θk} ⊆ Γ ∪ {φ}
such that

⊢Hco ¬(θ1 ∧ · · · ∧ θk).
Since Γ is assumed to be consistent with respect to Hco, it follows that φ ≡ θi

must hold for some i ∈ {1, . . . , k}. Using propositional reasoning, we, thus, further
obtain ⊢Hco φ → ¬(θ1 ∧ . . . θi−1 ∧ θi+1 ∧ · · · ∧ θk), which, combined with ⊢Hco φ,
results in ⊢Hco ¬(θ1 ∧ . . . θi−1 ∧ θi+1 ∧ · · · ∧ θk), contradicting the consistency of Γ
with respect to Hco.

2. (=⇒): Let φ ∈ Γ. Assume towards a contradiction that ¬φ ∈ Γ. Given that
{φ, ¬φ} ⊆ Γ is inconsistent with respect to Hco, we obtain a contradiction
with the assumption that Γ is consistent with respect to Hco.
(⇐=): Let ¬φ ̸∈ Γ. Assume towards a contradiction that φ ̸∈ Γ. Given the
assumption that Γ is maximal consistent with respect to Hco, we get that
Γ ∪ {¬φ} and Γ ∪ {φ} must be inconsistent with respect to Hco. This means
that there exist finite sets of formulas

{θ1, . . . , θk} ⊆ Γ ∪ {¬φ}

62



4.2. Soundness and completeness results

and
{θ′

1, . . . , θ′
l} ⊆ Γ ∪ {φ}

such that
⊢Hco ¬(θ1 ∧ · · · ∧ θk)

and
⊢Hco ¬(θ′

1 ∧ · · · ∧ θ′
l).

Since Γ is assumed to be consistent with respect to Hco, it follows that
¬φ ≡ θi and φ ≡ θj must hold for some i ∈ {1, . . . , k} and j ∈ {1, . . . , l}.
Thus, we have ⊢Hco ¬(θ1 ∧ · · · ∧ θi−1 ∧ ¬φ ∧ θi+1 ∧ · · · ∧ θk) and ⊢Hco ¬(θ′

1 ∧
· · · ∧ θ′

j−1 ∧ φ ∧ θ′
j+1 ∧ · · · ∧ θ′

j). Let ξ := θ1 ∧ · · · ∧ θi−1 ∧ θi+1 ∧ · · · ∧ θk and
ξ′ := θ′

1 ∧· · ·∧θ′
j−1 ∧θ′

j+1 ∧· · ·∧θ′
j . So, now ⊢Hco ¬(ξ ∧¬φ) and ⊢Hco ¬(ξ′ ∧φ).

From this, using the propositional tautology ¬(ξ ∧ ¬φ) ∧ ¬(ξ′ ∧ φ) → ¬(ξ ∧ ξ′),
we obtain ⊢Hco ¬(ξ ∧ ξ′), i.e, ⊢Hco ¬(θ1 ∧ · · · ∧ θi−1 ∧ θi+1 ∧ · · · ∧ θk ∧ θ′

1 ∧ · · · ∧
θ′

j−1 ∧ θ′
j+1 ∧ · · · ∧ θ′

j) contradicting the consistency of Γ with respect to Hco.

3. (=⇒): Let φ ∧ ψ ∈ Γ. Assume towards a contradiction that φ ̸∈ Γ. From 2.,
¬φ ∈ Γ follows. Given that the set {φ∧ψ, ¬φ} ⊆ Γ is inconsistent with respect
to Hco, we obtain a contradiction with the assumption that Γ is consistent
with respect to Hco. We prove that ψ ∈ Γ holds analogously.
(⇐=): Let φ ∈ Γ and ψ ∈ Γ. Assume towards a contradiction that φ ∧ ψ ̸∈ Γ.
From 2., ¬(φ ∧ ψ) ∈ Γ follows. Given that the set {φ, ψ, ¬(φ ∧ ψ)} ⊆ Γ is
inconsistent with respect to Hco, we obtain a contradiction with the assumption
that Γ is consistent with respect to Hco.

Lemma 4.13. Let φ, ψ ∈ Lco
H and Γ ⊆ Lco

H be a maximal consistent set with respect to
Hco. If φ ∈ Γ and φ → ψ ∈ Γ, then ψ ∈ Γ.

Proof. Let φ ∈ Γ and φ → ψ ∈ Γ. Assume towards a contradiction that ψ ̸∈ Γ. From
Lemma 4.12 (2), ¬ψ ∈ Γ follows. Given that the set {φ, φ → ψ, ¬ψ} ⊆ Γ is inconsistent
with respect to Hco, we obtain a contradiction with the assumption that Γ is consistent
with respect to Hco.

Lemma 4.14 (Lindenbaum lemma). Let Γ ⊆ Lco
H . If Γ is consistent with respect to Hco,

then there exists a set Γ∗ ⊇ Γ such that Γ∗ is maximal consistent with respect to Hco.

Proof. Assume that Γ is consistent with respect to Hco. First, let us enumerate all
formulas from Lco

H (without repetitions): φ0, φ1, . . . , φn, . . . Next, we define recursively
the following infinite sequence of sets ∆i:

∆0 := Γ,

∆i+1 :=
�

∆i ∪ {φi}, if ∆i ∪ {φi} is consistent with respect to Hco,

∆i, otherwise.
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Let Γ∗ :=
∞�

i=0
∆i. Obviously, Γ∗ ⊇ Γ. Each set ∆i is consistent with respect to Hco,

by construction. To show that Γ∗ too is consistent with respect to Hco, assume the
opposite towards a contradiction: there exists a finite set Γ′ ⊆ Γ∗ such that Γ′ is
inconsistent with respect to Hco. Therefore, Γ′ ⊆ ∆j , for some j ∈ N0, must hold since
∆0 ⊆ ∆1 ⊆ · · · ⊆ ∆n ⊆ . . . . However, this now contradicts the consistency of ∆j . To
show that Γ∗ is maximal as well, assume the opposite towards a contradiction: there exists
φj ∈ Lco

H such that φj ̸∈ Γ∗ and Γ∗ ∪{φj} is consistent with respect to Hco. It follows that
∆j ∪{φj} must be inconsistent with respect to Hco (by the definition of sets ∆i). However,
this now contradicts the consistency of Γ∗ ∪ {φj} since ∆j ∪ {φj} ⊆ Γ∗ ∪ {φj}.

Definition 4.15 (Canonical model). We define the so-called canonical Kripke model

M c = (W c, πc, Hc
1, . . . , Hc

n)

of Hco in the following way:

W c = {wΓ : Γ is some maximal consistent set with respect to Hco},
πc(p) = {wΓ ∈ W c | p ∈ Γ},

Hc
i = {(wΓ, w∆) : Γ/Hi ⊆ ∆},

where Γ/Hi = {φ : Hiφ ∈ Γ}.

Lemma 4.16 (Truth lemma). For any formula φ ∈ Lco
H , and any maximal consistent

set Γ with respect to Hco,

φ ∈ Γ ⇐⇒ M c, wΓ |= φ.

Proof. We proceed by induction on the structure of φ.

Base case: If φ is p ∈ Prop ∪ Co, then the statement of the lemma follows immediately
from the definition of πc.

Induction step:

1. If φ is of the form ¬ψ, then φ ∈ Γ is equivalent to ¬ψ ∈ Γ, which is further
equivalent to ψ ̸∈ Γ by Lemma 4.12 (2). By the induction hypothesis, this is now
equivalent to M c, wΓ ̸|= ψ, i.e., M c, wΓ |= ¬ψ, i.e., M c, wΓ |= φ.

2. If φ is of the form ψ1 ∧ ψ2, then φ ∈ Γ is equivalent to ψ1 ∧ ψ2 ∈ Γ which is further
equivalent to ψ1 ∈ Γ and ψ2 ∈ Γ by Lemma 4.12 (3). By the induction hypothesis,
this is now equivalent to M c, wΓ |= ψ1 and M c, wΓ |= ψ2, i.e., M c, wΓ |= ψ1 ∧ ψ2,
i.e., M c, wΓ |= φ.

3. Assume that φ is of the form Hiψ.
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(=⇒): Let Hiψ ∈ Γ. Take an arbitrary w∆ ∈ W c such that (wΓ, w∆) ∈ Hc
i . We now

have that ψ ∈ ∆ must hold according to the definition of Hc
i . By applying

the induction hypothesis, we obtain M c, w∆ |= ψ. Therefore, M c, wΓ |= Hiψ
indeed holds.

(⇐=): Let M c, wΓ |= Hiψ. It follows that the set (Γ/Hi) ∪ {¬ψ} must be inconsistent
with respect to Hco, because otherwise there would exist a maximal consis-
tent set ∆ with respect to Hco extending it (according to the Lindenbaum
lemma 4.14), and, by construction, we would have (wΓ, w∆) ∈ Hc

i . Using the in-
duction hypothesis, we would then obtain M c, w∆ ̸|= ψ, and so M c, wΓ ̸|= Hiψ,
contradicting our original assumption. Since (Γ/Hi) ∪ {¬ψ} is hence indeed
inconsistent with respect to Hco, some finite subset, say {φ1, . . . φk, ¬ψ}, must
be inconsistent with respect to Hco. This means that ¬(φ1 ∧ · · · ∧ φk ∧ ¬ψ) is
Hco-provable. Thus, by propositional reasoning, we have

⊢Hco φ1 → (φ2 → (· · · → (φk → ψ) . . . )),

and by necessitation,

⊢Hco Hi(φ1 → (φ2 → (· · · → (φk → ψ) . . . ))).

By induction on k, using axiom KH and propositional reasoning, it is straight-
forward to prove

⊢Hco Hi(φ1 → (φ2 → (· · · → (φk → ψ) . . . ))) →
(Hiφ1 → (Hiφ2 → (· · · → (Hiφk → Hiψ) . . . ))).

Now, by modus ponens, we finally get

⊢Hco Hiφ1 → (Hiφ2 → (· · · → (Hiφk → Hiψ) . . . )).

It follows that the set {Hiφ1, . . . , Hiφk, ¬Hiψ} is inconsistent with respect
to Hco as well. By the definition of Γ/Hi, since φ1, . . . , φk ∈ Γ/Hi, it
must be Hiφ1, . . . , Hiφk ∈ Γ. As either Hiψ or ¬Hiψ is in Γ according
to Lemma 4.12 (2), we must in fact have Hiψ ∈ Γ or else Γ would not be
consistent with respect to Hco.

Lemma 4.17 (Correctness lemma). M c ∈ K45co
n .

Proof. We need to show that the four conditions from Definition 4.7 are satisfied for
M c = (W c, πc, Hc

1, . . . , Hc
n)1.

1Note that W c ̸= ∅ since any consistent set (for example, the set {⊤}, which we know is consistent
with respect to Hco because ⊬Hco ¬⊤ by Theorem 4.10) with respect to Hco can be extended to a
maximal consistent with respect to Hco, according to Lindenbaum lemma 4.14.
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1. Assume (wΓ, w∆) ∈ Hc
i and φ ∈ Γ/Hi. Then Hiφ ∈ Γ, according to the definition

of Γ/Hi. Axiom 4H , Lemma 4.12 (1), and Lemma 4.13 imply HiHiφ ∈ Γ, which
further implies Hiφ ∈ Γ/Hi. Using the definition of Hc

i , we also obtain Hiφ ∈ ∆.
Thus, φ ∈ ∆/Hi follows, which implies that Γ/Hi ⊆ ∆/Hi holds. Assume now
φ ̸∈ Γ/Hi. Then Hiφ /∈ Γ, according to the definition of Γ/Hi. Axiom 5H ,
Lemma 4.12 (1–2), and Lemma 4.13 imply Hi¬Hiφ ∈ Γ, which further implies
¬Hiφ ∈ Γ/Hi. Using the definition of Hc

i , we also get ¬Hiφ ∈ ∆. Since ∆ is
a maximal consistent set with respect to Hco, we now have Hiφ /∈ ∆ according
to Lemma 4.12 (2). Thus, φ ̸∈ ∆/Hi follows, which implies that ∆/Hi ⊆ Γ/Hi

holds as well. Transitivity and euclideanity now easily follow using the fact that
(wΓ, w∆) ∈ Hc

i implies Γ/Hi = ∆/Hi: For transitivity, assume (wΓ, w∆) ∈ Hc
i and

(w∆, wU ) ∈ Hc
i . By definition, ∆/Hi ⊆ U follows (Γ/Hi ⊆ ∆ follows as well). From

∆/Hi ⊆ U and Γ/Hi = ∆/Hi we obtain Γ/Hi ⊆ U , which implies (wΓ, wU ) ∈ Hc
i ,

as desired. The proof of euclideanity is similar.

2. Let wΓ ∈ W c be a state satisfying M c, wΓ |= correcti and let φ ∈ Γ/Hi, that
is, Hiφ ∈ Γ. Using Lemma 4.16, we obtain correcti ∈ Γ. From axiom T ′H ,
Lemma 4.12 (1), and Lemma 4.13, φ ∈ Γ follows. Since φ was chosen arbitrarily,
this means that Γ/Hi ⊆ Γ holds. By the definition of Hc

i , this implies wΓ ∈ Hc
i (wΓ).

3. Let wΓ ∈ W c be a state satisfying M c, wΓ |= faultyi . Using Lemma 4.16, we obtain
faultyi ∈ Γ. From axiom F , Lemma 4.12 (1), and Lemma 4.13, Hiφ ∈ Γ follows for
any φ. This means that the set Γ/Hi contains all formulas. Since there does not
exist a maximal consistent set ∆ with respect to Hco such that Γ/Hi ⊆ ∆ holds,
we obtain Hc

i (wΓ) = ∅.

4. Let (wΓ, w∆) ∈ Hc
i . Since Hicorrecti is axiom H, from Lemma 4.12 (1) we get

Hicorrecti ∈ Γ and, consequently, correcti ∈ Γ/Hi. Using the definition of Hc
i ,

we conclude that correcti ∈ ∆ holds as well. Using Lemma 4.16, we thus obtain
MH , w∆ |= correcti .

Theorem 4.18 (Completeness). The axiom system Hco is complete with respect to the
K45co

n class of models.

Proof. We prove the contrapositive. Assume ⊬Hco φ. Therefore, {¬φ} must be consistent
with respect to Hco. Using the Lindenbaum lemma 4.14, we obtain that {¬φ} is contained
in some maximal consistent set Γ with respect to Hco. According to Lemma 4.16, it
thus follows M c, wΓ |= ¬φ, i.e., M c, wΓ ̸|= φ, where M c is the canonical Kripke model
for Hco defined in Figure 4.1. Therefore, K45co

n ̸|= φ since M c ∈ K45co
n as shown in

Lemma 4.17.

Corollary 4.19. The axiom system Hco is sound and complete with respect to the K45co
n

class of models.
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Completeness with respect to S5 models via translation

Lemma 4.20. For any model MH = (W, π, H1, . . . , Hn) ∈ K45co
n , there exists a corre-

sponding model MK = (W, π, K1, . . . , Kn) ∈ S5n, such that the following holds for any
formula φ ∈ Lco

H and any state w ∈ W :

MH , w |= φ iff MK , w |= t(φ).

Proof. Let MH = (W, π, H1, . . . , Hn) ∈ K45co
n . The corresponding model is constructed

by taking
Ki := Hi ∪ {(w, w) | MK , w |= faultyi} (4.1)

for all i ∈ {1, . . . , n}. We proceed by induction on the structure of φ.

Base case: If φ is p ∈ Prop ∪ Co, then t(p) = p according to Definition 4.4. Now, the
statement of the lemma immediately follows as π is same in MH and MK .

Induction step:

1. If φ is of the form ¬ψ, then t(¬ψ) = ¬t(ψ) according to Definition 4.4. Using the
induction hypothesis, we obtain MH , w |= φ iff MH , w |= ¬ψ iff MH , w ̸|= ψ iff
MK , w ̸|= t(ψ) iff MK , w |= ¬t(ψ) iff MK , w |= t(¬ψ) iff MK , w |= t(φ).

2. If φ is of the form ψ1 ∧ψ2, then t(ψ1 ∧ψ2) = t(ψ1)∧t(ψ2) according to Definition 4.4.
Using the induction hypothesis, we obtain MH , w |= φ iff MH , w |= ψ1 ∧ ψ2
iff MH , w |= ψ1 and MH , w |= ψ2 iff MK , w |= t(ψ1) and MK , w |= t(ψ2) iff
MK , w |= t(ψ1) ∧ t(ψ2) iff MK , w |= t(ψ1 ∧ ψ2) iff MK , w |= t(φ).

3. Assume that φ is of the form Hiψ. We need to show

MH , w |= Hiψ iff MK , w |= correcti → Ki(correcti → t(ψ)).

(⇒): Assume MH , w |= Hiψ. This means that for all w′ ∈ W such that (w, w′) ∈ Hi,
MH , w′ |= ψ holds. Assume now MK , w |= correcti . Take an arbitrary w′ ∈ W
such that (w, w′) ∈ Ki. By (4.1), this means that either (w, w′) ∈ Hi or w′ ≡ w
and MK , w |= faultyi . Since, by assumption, MK , w |= correcti (i.e., MK , w ̸|=
faultyi), it follows that (w, w′) ∈ Hi must hold. Therefore, MH , w′ |= ψ follows
by assumption. From this, by applying the induction hypothesis, we obtain
MK , w′ |= t(ψ). Consequently, MK , w′ |= correcti → t(ψ) also holds. Since
w′ ∈ W was chosen arbitrarily, we get MK , w |= Ki(correcti → t(ψ)). Thus,
MK , w |= correcti → Ki(correcti → t(ψ)), i.e., MK , w |= t(Hiψ) indeed holds.

(⇐): Assume MK , w |= t(Hiψ) = correcti → Ki(correcti → t(ψ)). Therefore, either
MK , w ̸|= correcti or MK , w |= Ki(correcti → t(ψ)). If MK , w ̸|= correcti ,
then MH , w ̸|= correcti , i.e., MH , w |= faultyi follows as shown in the base
case. Thus, we get MH , w |= Hiψ using Lemma 4.9. Assume now that
MK , w |= Ki(correcti → t(ψ)). This means that for all w′ ∈ W such that
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4. A modal logic of hope

(w, w′) ∈ Ki, we have that MK , w′ |= correcti → t(ψ) holds, that is, either
MK , w′ ̸|= correcti or MK , w′ |= t(ψ). In particular, for all w′ ∈ W such
that (w, w′) ∈ Hi, either MK , w′ ̸|= correcti or MK , w′ |= t(ψ). If MK , w′ ̸|=
correcti , then MH , w′ ̸|= correcti , i.e., MH , w′ |= faultyi holds too as shown
in the base case. Since there exists no w′ ∈ W such that (w, w′) ∈ Hi and
MH , w′ |= faultyi according to Definition 4.7, it follows that for all w′ ∈ W
such that (w, w′) ∈ Hi, MK , w′ |= t(ψ) holds. By applying the induction
hypothesis now, we obtain that MH , w′ |= ψ holds for all w′ ∈ W such that
(w, w′) ∈ Hi. Thus, MH , w |= Hiψ indeed holds.

It remains to show that MK ∈ S5n, i.e., it remains to show that the relations Ki are
reflexive, transitive and euclidean. Transitivity and euclideanity follow based on the fact
that Hi satisfy these properties. To show reflexivity, let w ∈ W . If MK , w |= correcti ,
then MH , w |= correcti holds too, thus (w, w) ∈ Hi follows by Definition 4.7. Therefore,
(w, w) ∈ Ki holds too according to the definition of Ki. If MK , w |= faultyi , then
(w, w) ∈ Ki immediately follows from the definition of Ki.

Hence, we can show:

Theorem 4.21 (Completeness via translation). For any formula φ ∈ Lco
H ,

S5n |= t(φ) =⇒ ⊢Hco φ.

Proof. We prove the contrapositive. Let ⊬Hco φ. Corollary 4.19 now implies that K45co
n ̸|=

φ must also hold. This means that there exists a model MH ∈ K45co
n such that MH ̸|= φ.

We now have that there exists a state w ∈ D(MH) such that MH , w ̸|= φ. According to
Lemma 4.20, there exists a corresponding model MK ∈ S5n such that MK , w ̸|= t(φ).
Therefore, MK ̸|= t(φ) holds as well. Finally, we obtain S5n ̸|= t(φ), as desired.

We gather the results stated in Theorem 4.6 and Theorem 4.21 in the following corollary.

Corollary 4.22. For any formula φ ∈ Lco
H ,

⊢Hco φ ⇐⇒ S5n |= t(φ).

which finally allows us to conclude the following:

K45co
n |= φ ⇐⇒ ⊢Hco φ ⇐⇒ S5n |= t(φ) ⇐⇒ ⊢S5n t(φ).

Strong soundness and strong completeness
We will now show that the axiom system Hco is also strongly sound and strongly complete
with respect to the K45co

n class of models.

First, we need to know how to derive a formula from a set of premises.
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Definition 4.23. A Hco-derivation from premises Γ ⊆ Lco
H is a sequence of formulas

φ1, . . . , φk ∈ Lco
H such that for each i = 1, . . . , k:

• φi = Ham . . . Ha1ξ for some m ≥ 0 and some (instance of an) axiom ξ of Hco, or

• φi follows from φj1 = φj2 → φi and φj2 by modus ponens for some j1, j2 < i, or

• φi ∈ Γ.

A Hco-derivation (from Γ ⊆ Lco
H ) φ1, . . . , φk is a Hco-derivation (from Γ ⊆ Lco

H ) for φk.

We will write Γ ⊢Hco φ to denote the fact that φ can be derived from Γ in Hco.

Remark 4.24. Note that necessation is omitted in the second clause of the Definition 4.23.
Therefore, we do not allow derivations of the form

φ ⊢Hco Hiφ. (4.2)

This is because (4.2) combined with the Deduction theorem 4.29 would lead to ⊢Hco φ →
Hiφ (and we know that ⊬Hco φ → Hiφ holds since K45co

n ̸|= φ → Hiφ).

The following lemma states that ⊢Hco is closed with respect to modus ponens.

Lemma 4.25. Let Γ ⊆ Lco
H and φ, ψ ∈ Lco

H . If Γ ⊢Hco φ and Γ ⊢Hco φ → ψ, then
Γ ⊢Hco ψ.

Proof. Follows immediately according to Definition 4.23.

Theorem 4.26. For any φ ∈ Lco
H ,

⊢Hco φ ⇐⇒ ∅ ⊢Hco φ.

Proof. Let φ ∈ Lco
H .

(=⇒): Assume ⊢Hco φ. We proceed by induction on the length of the derivation of φ in
Hco. Let φ1, φ2, . . . , φk be a proof of the formula φ in Hco. If k = 1, then φ is an
instance of an axiom in Hco. Therefore, according to Definition 4.23, it immediately
follows that ∅ ⊢Hco φ. Assume now that the desired statement holds for every
formula which has a proof of length shorter than k and consider the formula φ
which has a proof of length k. There are two possibilities: either φ is an instance
of some axiom in Hco, or φ follows by an application of an inference rule. We
already dealt with the first possibility in the base case, so we consider the second
possibility.
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– Let us assume that φ follows by an application of modus ponens to some
formulas, for example φi and φi → φ. Since these two formulas are earlier in
the proof, they have proofs whose lengths are shorter than k. After applying
the induction hypothesis on them we get ∅ ⊢Hco φi and ∅ ⊢Hco φi → φ.
Using Lemma 4.25, we obtain that ∅ ⊢Hco φ indeed holds.

– Let us assume that φ follows by an application of necessitation to some formula,
for example φi, meaning φ is of the form Haj φi, for some aj ∈ A. Since φi

is earlier in the proof it has a proof whose length is shorter than k, which
means that we can apply the induction hypothesis on it and get ∅ ⊢Hco φi.
We proceed by induction on the length of the derivation of φi in Hco from
the empty set of premises. Let ψ1, ψ2, . . . , ψl be a proof of φi in Hco from the
empty set of premises. If l = 1, it means that φi = Ham . . . Ha1ξ for some
m ≥ 0 and some (instance of an) axiom ξ of Hco. In this case, according to
Definition 4.23, ∅ ⊢Hco Haj Ham . . . Ha1ξ, that is, ∅ ⊢Hco Haj φi, immediately
follows. Assume now that the desired statement holds for every formula which
has a proof of length shorter than l and consider the formula φi which has
a proof of length l. There are two possibilities: either φi = Ham . . . Ha1ξ
for some m ≥ 0 and some (instance of an) axiom ξ of Hco, or φi follows by
an application of modus ponens. We already dealt with the first possibility
in the base of the induction, so we consider the second possibility. Let us
assume that φi follows by an application of modus ponens to some formulas
ψh and ψh → φi. Since these two formulas are earlier in the proof, they
have proofs whose lengths are shorter than l. After applying the induction
hypothesis on them we get ∅ ⊢Hco Haj ψh and ∅ ⊢Hco Haj (ψh → φi). We
know that ∅ ⊢Hco Haj (ψh → φi) → (Haj ψh → Hjφi) holds because it
is an instance of the K axiom. Thus, from ∅ ⊢Hco Haj (ψh → φi) and
∅ ⊢Hco Haj (ψh → φi) → (Haj ψh → Hjφi), using Lemma 4.25, we obtain
∅ ⊢Hco Haj ψh → Hjφi. Finally, from ∅ ⊢Hco Haj ψh and ∅ ⊢Hco Haj ψh →
Hjφi, by applying Lemma 4.25 again, we obtain ∅ ⊢Hco Haj φi, as desired.

(⇐=): Assume ∅ ⊢Hco φ. We proceed by induction on the length of the derivation of φ in
Hco from the empty set of premises. Let φ1, φ2, . . . , φk be a proof of the formula φ
in Hco from the empty set of premises. If k = 1, then φ = Ham . . . Ha1ξ for some
m ≥ 0 and some (instance of an) axiom ξ of Hco:

– If m = 0, that is φ = ξ, then we immediately obtain ⊢Hco φ,
– If m > 0, then, by applying necessitation m times on ⊢Hco ξ, we obtain

⊢Hco Ham . . . Ha1ξ, that is, ⊢Hco φ, as desired.

Assume now that the desired statement holds for every formula which has a proof
of length shorter than k and consider the formula φ which has a proof of length
k. There are two possibilities: either φ = Ham . . . Ha1ξ for some m ≥ 0 and some
(instance of an) axiom ξ of Hco, or φ follows by an application of modus ponens. We
already dealt with the first possibility in the base of the induction, so we consider
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the second possibility. Let us assume that φ follows by an application of modus
ponens to some formulas φi and φi → φ. Since these two formulas are earlier in
the proof, they have proofs whose lengths are shorter than k. After applying the
induction hypothesis on them we get ⊢Hco φi and ⊢Hco φi → φ. By applying modus
ponens, we obtain ⊢Hco φ, as desired.

Corollary 4.27. Let Γ ⊆ Lco
H and φ ∈ Lco

H . Then,

⊢Hco φ =⇒ Γ ⊢Hco φ.

Using this result, we can now prove:

Lemma 4.28. Let Γ ⊆ Lco
H . If Γ is inconsistent with respect to Hco, then Γ ⊢Hco ⊥.

Proof. Assume that Γ is inconsistent with respect to Hco. According to Definition 4.11,
this means that there exists a finite set of formulas

{θ1, . . . , θk} ⊆ Γ

such that
⊢Hco ¬(θ1 ∧ · · · ∧ θk)

Using the previous corollary, we obtain that

Γ ⊢Hco ¬(θ1 ∧ · · · ∧ θk)

holds as well. However, since {θ1, . . . , θk} ⊆ Γ, we have Γ ⊢Hco θ1 ∧ · · · ∧ θk according to
Definition 4.23. Thus, Γ ⊢Hco ⊥ indeed follows.

Theorem 4.29 (Deduction theorem). Let Γ ⊆ Lco
H and φ, ψ ∈ Lco

H . Then,

Γ ∪ {ψ} ⊢Hco φ =⇒ Γ ⊢Hco ψ → φ.

Proof. We proceed by induction on the length of the derivation of φ from Γ ∪ {ψ} in
Hco. Let φ1, . . . , φk be a proof of the formula φ from Γ ∪ {ψ} in Hco. If k = 1, then we
have the following three possibilities:

• φ = Ham . . . Ha1ξ for some m ≥ 0 and some (instance of an) axiom ξ of Hco.
Using the fact that φ → (ψ → φ) is an instance of a propositional tautology
and Definition 4.23, we obtain Γ ⊢Hco φ → (ψ → φ). By applying Lemma 4.25,
Γ ⊢Hco ψ → φ follows.

• φ ∈ Γ. Analogously to the previous case, we obtain Γ ⊢Hco ψ → φ.

• φ = ψ. Using the fact that ψ → ψ is an instance of a propositional tautology and
Definition 4.23, we obtain Γ ⊢Hco ψ → φ.
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Assume now that the desired statement holds for every formula which has a proof of
length shorter than k and consider a formula φ which has a proof of length k. This means
that the last formula in the proof is φ. There are four possibilities: φ = Ham . . . Ha1ξ for
some m ≥ 0 and some (instance of an) axiom ξ of Hco, or φ ∈ Γ, or φ = ψ, or φ follows
by an application of modus ponens. We already dealt with the first three possibilities in
the base case, so let us consider the remaining possibility: φ follows by an application of
modus ponens to some formulas, for example φi and φi → φ. Since these two formulas
are earlier in the proof, they have proofs whose lengths are shorter than k. By applying
the induction hypothesis on them, we get Γ ⊢Hco ψ → φi and Γ ⊢Hco ψ → (φi → φ).
Using Lemma 4.25 and propositional reasoning, we obtain Γ ⊢Hco ψ → φ.

Next, we need to know when a formula is a logical consequence of a set of formulas.

Definition 4.30. Let C be a collection of Kripke models. Let Γ ⊆ Lco
H and φ ∈ Lco

H . We
say that φ is a local logical consequence of Γ and write Γ |=C φ if, for any M ∈ C and
any w ∈ D(M), we have

M, w |= ψ for all ψ ∈ Γ =⇒ M, w |= φ.

We will now prove that |=K45con is closed too with respect to modus ponens:

Lemma 4.31. Let Γ ⊆ Lco
H and φ, ψ ∈ Lco

H . If Γ |=K45con φ and Γ |=K45con φ → ψ, then
Γ |=K45con ψ.

Proof. Assume that Γ |=K45con φ and Γ |=K45con φ → ψ hold. Take an arbitrary MH =
(W, π, H1, . . . , Hn) ∈ K45co

n and an arbitrary w ∈ W . Let MH , w |= ξ, for all ξ ∈ Γ.
Since Γ |=K45con φ, MH , w |= φ follows. Since Γ |=K45con φ → ψ, MH , w |= φ →
ψ follows too. Consequently, we obtain MH , w |= ψ, as desired. Since MH =
(W, π, H1, . . . , Hn) ∈ K45co

n and w ∈ W were chosen arbitrarily, Γ |=K45con ψ follows.

Finally, we have all the necessary pieces to prove the following theorem.

Theorem 4.32 (Strong soundness and strong completeness). Let Γ ⊆ Lco
H and φ ∈ Lco

H .
Then

Γ ⊢Hco φ ⇐⇒ Γ |=K45con φ.

Proof. Strong soundness: Follows by induction on the length of the derivation of φ from
Γ in Hco.

Strong completeness: We prove the contrapositive. Assume Γ ⊬Hco φ. Then it is easy
to prove that Γ ∪ {¬φ} must be consistent with respect to Hco: Assume the opposite,
i.e., Γ ∪ {¬φ} is inconsistent with respect to Hco. Therefore, according to Lemma 4.28,
Γ∪{¬φ} ⊢ ⊥. Deduction theorem 4.29 now implies Γ ⊢Hco ¬φ → ⊥. Using propositional
reasoning, from this we further obtain Γ ⊢Hco φ, contradicting our original assumption.
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Since Γ ∪ {¬φ} is indeed consistent with respect to Hco, it is contained in some maximal
consistent set ∆ with respect to Hco according to the Lindenbaum lemma 4.14. From
Lemma 4.16, we thus obtain

M c, w∆ |= ¬φ and M c, w∆ |= ψ for all ψ ∈ Γ,

where M c is the canonical Kripke model for Hco defined in Definition 4.15. However,
M c, w∆ |= ¬φ means that M c, w∆ |= φ does not hold. Therefore, Γ ̸|=K45con φ.

Therefore, using Theorem 2.22, we immediately get:

Corollary 4.33. The logic of hope is compact.

4.3 Finite model property and decidability
For the translation t : Lco

H → Lco
K stated in Definition 4.4, we can prove the converse of

Lemma 4.20:

Lemma 4.34. For any model MK = (W, π, K1, . . . , Kn) ∈ S5n, there exists a corre-
sponding model MH = (W, π, H1, . . . , Hn) ∈ K45co

n , such that the following holds for any
formula φ ∈ Lco

H and any state w ∈ W :

MH , w |= φ iff MK , w |= t(φ).

Proof. Let MK = (W, π, K1, . . . , Kn) ∈ S5n. The corresponding model is constructed by
taking

Hi := {(w, w′) ∈ Ki | MH , w |= correcti and MH , w′ |= correcti}. (4.3)

for all i ∈ {1, . . . , n}. We proceed by induction on the structure of φ.

Base case: If φ is p ∈ Prop ∪ Co, then t(p) = p according to Definition 4.4. Now, the
statement of the lemma immediately follows as π is same in MH and MK .

Induction step:

1. If φ is of the form ¬ψ, then t(¬ψ) = ¬t(ψ) according to Definition 4.4. Using the
induction hypothesis, we obtain MH , w |= φ iff MH , w |= ¬ψ iff MH , w ̸|= ψ iff
MK , w ̸|= t(ψ) iff MK , w |= ¬t(ψ) iff MK , w |= t(¬ψ) iff MK , w |= t(φ).

2. If φ is of the form ψ1 ∧ψ2, then t(ψ1 ∧ψ2) = t(ψ1)∧t(ψ2) according to Definition 4.4.
Using the induction hypothesis, we obtain MH , w |= φ iff MH , w |= ψ1 ∧ ψ2
iff MH , w |= ψ1 and MH , w |= ψ2 iff MK , w |= t(ψ1) and MK , w |= t(ψ2) iff
MK , w |= t(ψ1) ∧ t(ψ2) iff MK , w |= t(ψ1 ∧ ψ2) iff MK , w |= t(φ).

3. Assume that φ is of the form Hiψ. We need to show

MH , w |= Hiψ iff MK , w |= correcti → Ki(correcti → t(ψ)).
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(⇒): Assume MH , w |= Hiψ. This means that for all w′ ∈ W such that (w, w′) ∈ Hi,
MH , w′ |= ψ holds. That is, according to (4.3), for all w′ ∈ W such that
(w, w′) ∈ Ki and MH , w |= correcti and MH , w′ |= correcti , MH , w′ |= ψ holds.
Assume now MK , w |= correcti . Therefore, MH , w |= correcti as shown in the
base case. Take an arbitrary w′ ∈ W such that (w, w′) ∈ Ki. Assume further
MK , w′ |= correcti . Therefore, MH , w′ |= correcti holds too as shown in the
base case. Consequently, MH , w′ |= ψ, by assumption. From this, by applying
the induction hypothesis, we obtain MK , w′ |= t(ψ), as desired.

(⇐): Assume MK , w |= t(Hiψ) = correcti → Ki(correcti → t(ψ)). Therefore, either
MK , w ̸|= correcti or MK , w |= Ki(correcti → t(ψ)). If MK , w ̸|= correcti ,
then MH , w ̸|= correcti as shown in the base case. Thus, according to (4.3),
H(w) = ∅, so MH , w |= Hiψ vacuously holds. Assume now that MK , w |=
Ki(correcti → t(ψ)). This means that for all w′ ∈ W such that (w, w′) ∈ Ki,
we have that MK , w′ |= correcti → t(ψ) holds. Take an arbitrary w′ ∈ W
such that (w, w′) ∈ Hi. According to (4.3), this means that (w, w′) ∈ Ki and
MH , w |= correcti and MH , w′ |= correcti . Therefore, MK , w′ |= correcti holds
too, in particular, as shown in the base case. Consequently, MK , w′ |= t(ψ),
by assumption. From this, by applying the induction hypothesis, we obtain
MH , w′ |= ψ, as desired.

It remains to note that MH ∈ K45co
n :

• Transitivity and euclideanity of Hi follow easily since Ki satisfies these properties.

• If MH , w |= correcti , then w ∈ Hi(w) follows easily since Ki is reflexive,

• If MH , w |= faultyi , that is, MH , w ̸|= correcti , then Hi(w) = ∅ follows immediately,

• For all w′ ∈ Hi(w), according to (4.3), it is the case that MH , w′ |= correcti .

It is well-known [FHMV95] (Theorem 3.2.4, p. 69) that:

Theorem 4.35. The logic of S5n has the FMP.

Therefore, we can easily show that:

Theorem 4.36. The logic of Hco has the FMP.

Proof. Take an arbitrary φ ∈ Lco
H . If ⊬Hco φ, then ⊬S5n t(φ) by Corollary 4.22. According

to Theorem 4.35, there exists a finite model MK ∈ S5n of S5n such that MK ̸|= t(φ).
Therefore, there exists a world w ∈ D(MK) such that MK , w ̸|= t(φ). According to
Lemma 4.34, there exists a model MH ∈ K45co

n such that MH , w ̸|= φ holds. Therefore,
MH ̸|= φ also holds. It remains to note that MH is finite since it has the same exact
domain as MK .
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Similarly, it is well-known [FHMV95] (Corollary 3.2.5, p. 70) that:

Theorem 4.37. The logic of S5n is decidable.

Using this result, we can obtain:

Theorem 4.38. The logic of Hco is decidable.

Proof. Since the logic of Hco is finitely axiomatizable, it follows that it is recursively
enumerable according to Lemma 2.24. It remains to show that the complement of the
logic of Hco is also recursively enumerable (see Proposition 2.23). By Theorem 4.37,
the logic of S5n is decidable, so we know that the set of all S5n-refutable formulas
is recursively enumerable, in particular. Combining this with Corollary 4.22 and the
fact that for each formula φ ∈ Lco

K such that S5n ⊬ φ it is easy to write an algorithm
that checks (in finite time) whether there exists a formula φ∗ ∈ Lco

H such that t(φ∗) = φ
for t : Lco

H → Lco
K as defined in Definition 4.4, allows us to conclude that the set of all

Hco-refutable formulas is recursively enumerable as well. Therefore, decidability of the
logic of Hco follows.2

4.4 Related work
Moses and Shoham [MS93] introduce three binary modal operators describing single
agent’s beliefs as a form of knowledge relativized to an assumption (without committing
to any type of knowledge). The most relevant of the three for us is the first one
Bα

1 φ := K(α → φ)3, where α is any formula in the bi-modal language restricted to
formulas that don’t contain any belief operators, i.e., to formulas that can contain
only knowledge operators. Thus, dropping the agent subscript for a single agent, our
notion of belief Bφ = K(correct → φ), introduced in Section 3.3, coincides with their
Bcorrect

1 φ. The authors also provide independent (from knowledge) sound and complete
axiomatizations for all three belief operators. In particular, they show that Bα

1 is a
K45-type of modality (satisfying two extra properties), assuming K is of type S5.

In [BvDH+16], Bolander et al. consider a version of public announcement logic, called
attention-based announcement logic, where agents need not pay attention to a public
announcement. Not being attentive (which could be viewed as a special type of fault) is
modeled by designated atoms hi for each agent i (thus, much like the knowledge of our
agents depends on whether they are correct, i.e., whether correcti is true, the knowledge
of their agents after a public announcement depends on whether hi is true). With respect
to introspective properties, the authors consider systems for both non-fault-introspective
and fault-introspective agents, the latter stipulating the attention introspection property:
an attentive agent believes to be attentive, hi → Bihi, and an inattentive agent believes
to be inattentive, ¬hi → Bi¬hi. This results in logic Kn for non-fault-introspective agents

2Alternatively, a direct proof can be obtained using techniques from [Kuz08].
3Here subscript 1 means “first operator out of three” rather than agent 1.
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and a specific extension of logic K45n for fault-introspective ones. Note that, by the very
nature of their work, [BvDH+16] deals with dynamic epistemic notions. The authors
also introduce an adaptation of relativized common belief [bBvEK06] called attentive
relativized common belief defined as the greatest fixpoint of the equation x = Eχ

A(φ ∧ x),
where Eχ

A := �
i∈A

�
hi → Bi(χ → φ)

�
is called attentive relativized shared belief and χ is

the relativizing formula. This closely resembles a group notion of hope called mutual
hope EH

A := �
i∈A

(correcti → Ki
�
correcti → φ)

�
.
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CHAPTER 5
A new hope

In this chapter, we introduce an alternative axiomatization for the hope modality by
removing the reliance on designated atoms denoting correctness of individual agents
and show that hope can be viewed as a KB4 type of a modality. We also combine hope
modalities with knowledge modalities in a joint logic and present a logic enriched with
both common knowledge and common hope. In these logics we formalize as frame-
characterizable axioms some of the main properties of byzantine fault-tolerant distributed
systems: bounds on the number of byzantine faulty agents and the epistemic limitations
due to agents’ inability to rule out brain-in-a-vat scenarios. All of the logics presented in
the chapter have the finite model property and are decidable. In addition, we describe a
way to define the notion of common eventual hope, which is needed for the epistemic
analysis of the Firing Rebels with Relay problem in the next chapter.

Chapter organization

In Section 5.1 we propose a new axiomatization of the hope modality. One of the
advantages of this new axiomatization is that the resulting logic is a normal multi-agent
epistemic logic. We then proceed by providing a joint system for hope and knowledge
in Section 5.2. In this joint system, we characterize the brain-in-a-vat-like properties of
agents, discussed in Chapter 3, by purely modal logical means. We then enrich the joint
logic with both common hope modality and comon knowledge modality in Section 5.3.
The resulting axiom system turns out to be sound and complete with respect to the
KB4n class of models. A thorough soundness and completeness proof is also included in
this section. In Section 5.5, we prove that all of the logics presented in the chapter have
the finite model property as well as that they are decidable. Finally, in Section 5.6, we
describe a way to introduce common eventual hope and prove some of its basic properties.
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5. A new hope

5.1 Axiomatizing hope (again)
Our first result in this chapter is an alternative axiomatization for hope that deals away
with the designated atoms correcti .

This is achieved by adopting the definition

correcti := ¬Hi⊥ (5.1)

in the language
LH := Lco

H |Prop,

where the language Lco
H has been introduced in Section 4.1. It turns out that the logic of

hope in this language is the logic of the class KB4n of all transitive and symmetric Kripke
frames and is axiomatized by the axiom system H = KB4n (depicted in Figure 5.1).

P : all propositional tautologies
KH : Hi(φ → ψ) ∧ Hiφ → Hiψ

BH : φ → Hi¬Hi¬φ

4H : Hiφ → HiHiφ

MP : φ φ → ψ

ψ

NecH : φ

Hiφ

Figure 5.1: Axiom system H

Remark 5.1. We will write H +Ax1 + · · ·+Axn to represent the axiom system obtained
by adding the axioms Ax1, . . . , Axn to the axioms of H without changing the inference
rules of H .

Recall that (see Definition 2.1): a set of formulas forms a system of a normal multi-agent
epistemic logic if and only if it contains all propositional tautologies and is closed under
the modus ponens inference rule, the K axiom scheme, the necessitation inference rule,
and the uniform substitution rule.

Therefore, we immediately obtain:

Proposition 5.2. The logic of H is a normal multi-agent epistemic logic.

Remark 5.3. The new axiomatization makes it easier to see how hope is different from
the usual notion of belief. Indeed, belief is quite often assumed to be consistent, i.e.,
satisfying axiom ¬Bi⊥ (called axiom D in the literature), which fails for hope due to
inconsistent hopes of byzantine faulty agents. On the other hand, axiom BH is typically
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5.1. Axiomatizing hope (again)

invalid for belief because, together with 4H , it would preclude agents from having consistent
but false beliefs.

Using the well-known fact that axiom B characterizes the symmetric property of
frames [BdRV01], it is easy to show:

Theorem 5.4. The axiom system H is sound and complete with respect to the KB4n

class of models.

We now show that H is equivalent to Hco (see Figure 4.1) modulo abbreviation (5.1):

Theorem 5.5. i.) H ⊢ φ implies Hco ⊢ φ for all φ ∈ LH .

ii.) Hco ⊢ φ implies H ⊢ φ†, where φ† ∈ LH is the result of replacing each correcti in
φ ∈ Lco

H with ¬Hi⊥, according to (5.1).

Proof. i.) It is sufficient to show Hco ⊢ BH . Using faultyi → Hi¬Hi¬φ, which is an
instance of axiom F , we get Hco ⊢ faultyi → (φ → Hi¬Hi¬φ) by propositional
reasoning. Similarly, using correcti → (Hi¬φ → ¬φ), which is an instance of
axiom T ′H , we get Hco ⊢ correcti → (φ → ¬Hi¬φ). Combining this further
with ¬Hi¬φ → Hi¬Hi¬φ, which is an instance of axiom 5H , results now in
Hco ⊢ correcti → (φ → Hi¬Hi¬φ). Finally, given that correcti ∨ faultyi is an
instance of a propositional tautology, we obtain Hco ⊢ φ → Hi¬Hi¬φ.

ii.) It is sufficient to show that axiom 5H , as well as the †-translations of axioms T ′H ,
F , and H are derivable in H .

• That 5H can be derived from 4H and BH is a well-known fact (any transitive
and symmetric relation is euclidean).

• The †-translation of T ′H is ¬Hi⊥ → (Hiψ → ψ) for ψ = φ†. It is suf-
ficient to show that H ⊢ ¬(Hiψ → ψ) → Hi⊥ holds (the contraposi-
tive). Firstly, ¬(Hiψ → ψ) → Hiψ ∧ ¬ψ is an instance of a proposi-
tional tautology. Further, Hiψ → HiHiψ is an instance of axiom 4H and
H ⊢ ¬ψ → Hi¬Hiψ follows by axiom BH and propositional reasoning. There-
fore, H ⊢ ¬(Hiψ → ψ) → HiHiψ ∧ Hi¬Hiψ follows. It remains to use the
normality of Hi and propositional reasoning to replace HiHiψ ∧ Hi¬Hiψ first
with Hi(Hiψ ∧ ¬Hiψ) and finally with Hi⊥.

• The †-translation of F is (modulo a double negation) Hi⊥ → Hiψ for ψ = φ†,
which follows by the normality of Hi and propositional reasoning from ⊥ → ψ.

• The †-translation of axiom H is Hi¬Hi⊥, which is straightforward to obtain
from ¬⊥ → Hi¬Hi¬¬⊥, which is an instance of axiom BH , by propositional
reasoning.
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5. A new hope

Recall that we use 0 ≤ f < n to denote the maximal number of byzantine faulty
agents occurring in a single execution of the system. We demonstrate the utility of the
reformulation of the logic of hope, presented in this chapter, by encoding this assumption
in LH as a frame-characterizable property:

Byzf :=
�

G⊆A
|G|=n−f



i∈G

¬Hi⊥.

Remark 5.6. Byz0 = �
i∈A

¬Hi⊥ simply states that all n agents are correct.

Proposition 5.7 (Characterizing ≤ f byzantine faulty agents). Byzf is characterized
by the all-but-f -seriality property of Kripke frames F = (W, H1, . . . , Hn) requiring each
world to have outgoing arrows for all but f agents:

(∀w ∈ W )(∃G ⊆ A)

|G| = n − f ∧ (∀i ∈ G)Hi(w) ̸= ∅


.

Proof. Take an arbitrary Kripke frame F = (W, H1, . . . , Hn) for the language LH . We
need to show

F |= Byzf ⇐⇒ F is all-but-f -serial.

(=⇒): We prove the contrapositive. If F is not all-but-f -serial, then there is some world
w ∈ W such that any group G ⊆ A of n − f agents has some agent iG ∈ G
such that HiG(w) = ∅. Independent of a valuation π, we can conclude that
(F, π), w ̸|= ¬HiG⊥ holds for all these agents. Hence, we get (F, π), w ̸|= Byzf (for
any π). Consequently, F ̸|= Byzf follows.

(⇐=): Let F be all-but-f -serial. Take an arbitrary world w ∈ W . It follows that
there is a group G ⊆ A of n − f agents such that Hi(w) ̸= ∅ for all i ∈ G.
Independent of a valuation π, we can conclude (F, π), w |= �

i∈G ¬Hi⊥. Hence, we
get (F, π), w |= Byzf (for any π). This completes the proof that Byzf is valid in
F .

Definition 5.8. The class KB4n−f
n of models consists of all Kripke models from KB4n

with all-but-f -serial Kripke frames.

Using Proposition 5.7, we immediately obtain:

Corollary 5.9. The axiom system H + Byzf is sound and complete with respect to the
KB4n−f

n class of models.
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5.2 Individual hope and individual knowledge
Syntax. We start with Prop and continue by forming formulas by closing under the
Boolean connectives ¬ and ∧ and under the unary modal operators (one for each agent)
H1, . . . , Hn and K1, . . . , Kn to obtain the language LKH , i.e., the language LKH is
generated by the following BNF:

φ ::= p | ¬φ | (φ ∧ φ) | Kiφ | Hiφ,

where p ∈ Prop and i ∈ A. We take ⊤ to be an abbreviation for some fixed propositional
tautology, and take ⊥ to be an abbreviation for ¬⊤. Also, we use the following standard
abbreviations from propositional logic: φ ∨ ψ for ¬(¬φ ∧ ¬ψ), φ → ψ for ¬φ ∨ ψ, and
φ ↔ ψ for (φ → ψ) ∧ (ψ → φ).

Recall that agent i’s hope of φ was initially defined in the following way:

Hiφ ↔ �
correcti → Ki(correcti → φ)

�
,

in Chapter 3. Using (5.1), we now get:

Hiφ ↔ �¬Hi⊥ → Ki(¬Hi⊥ → φ)
�
.

We denote this formula by KH .

Recall also that a relation R on a set S is called shift serial if R(t) ̸= ∅ for any t ∈ R(s),
s ∈ S (see Definition 2.7).

Our new language enables us to (almost) characterize formula KH by two frame properties
for the two directions of the equivalence in the following way:

Proposition 5.10 (Characterizing knowledge-to-hope connection). Formula

KH ← :=
�¬Hi⊥ → Ki(¬Hi⊥ → φ)

� → Hiφ

is characterized by the HinK property of Kripke frames F = (W, K1, . . . , Kn, H1, . . . , Hn)
with shift serial Hi:

HinK : Hi ⊆ Ki.

Proof. Take an arbitrary Kripke frame F = (W, K1, . . . , Kn, H1, . . . , Hn) for the language
LKH with shift serial Hi. We need to show

F |= KH ← ⇐⇒ F satisfies HinK.

(=⇒): We prove the contrapositive. If F violates HinK, then there are worlds w, v ∈ W
with wHiv but not wKiv. Consider a valuation π such that π(p) = W \{v} for some
atom p. We now have (F, π), w |= Ki(¬Hi⊥ → p) because Ki(w) ⊆ W \ {v} = π(p).
Therefore, we also have that (F, π), w |= ¬Hi⊥ → Ki(¬Hi⊥ → p). However, clearly
(F, π), w ̸|= Hip because of v. Thus, we have shown (F, π), w ̸|= KH ← for φ = p.
Consequently, F ̸|= KH ← follows. Note that this direction does not rely on the
shift seriality of Hi.
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5. A new hope

(⇐=): Let us assume that F satisfies HinK. Let the antecedent in KH ← hold at an
arbitrary world w ∈ W for an arbitrary valuation π. In order to show that
(F, π), w |= Hiφ holds, it is sufficient to show (F, π), v |= φ for all v ∈ Hi(w).
It is vacuously true if Hi(w) = ∅. Otherwise, take any such world v. We have
(F, π), w |= ¬Hi⊥ because Hi(w) ̸= ∅, thus, (F, π), w |= Ki(¬Hi⊥ → φ) by
assumption. Since Hi(w) ⊆ Ki(w) due to HinK, we now get (F, π), v |= ¬Hi⊥ → φ.
It remains to make use of Hi(v) ̸= ∅, which we know to be true due to the shift
seriality of Hi. Therefore (F, π), v |= φ indeed holds. This completes the proof that
KH ← is valid in F .

Proposition 5.11 (Characterizing hope-to-knowledge connection). Formula

KH → := Hiφ → �¬Hi⊥ → Ki(¬Hi⊥ → φ)
�

is characterized by the oneH property of Kripke frames F = (W, K1, . . . , Kn, H1, . . . , Hn):

oneH : (∀w, v ∈ W )
�Hi(w) ̸= ∅ ∧ Hi(v) ̸= ∅ ∧ wKiv =⇒ wHiv

�
.

Proof. Take an arbitrary Kripke frame F = (W, K1, . . . , Kn, H1, . . . , Hn) for the language
LKH . We need to show

F |= KH → ⇐⇒ F satisfies oneH.

(=⇒): We prove the contrapositive. If F violates oneH, then there are worlds w, v ∈ W
with Hi(w) ̸= ∅, Hi(v) ̸= ∅, wKiv, but not wHiv. Consider a valuation π such that
π(p) = Hi(w) for some atom p. Clearly, (F, π), w |= Hip and (F, π), w |= ¬Hi⊥.
However, (F, π), w ̸|= Ki(¬Hi⊥ → p) since (F, π), v ̸|= ¬Hi⊥ → p. Thus, we have
shown (F, π), w ̸|= KH → for φ = p. Consequently, F ̸|= KH → follows.

(⇐=): Let us assume that F satisfies oneH. Let Hiφ hold at an arbitrary world w ∈ W for
an arbitrary valuation π. The case of Hi(w) = ∅ is trivial since (F, π), w |= Hi⊥
makes the succedent in KH → true at w. Otherwise, Hi(w) ̸= ∅. Similarly, for
any v ∈ Ki(w) with Hi(v) = ∅, we have (F, π), v |= ¬Hi⊥ → φ. Finally, for any
v ∈ Ki(w) with Hi(v) ̸= ∅, we have v ∈ Hi(w) by oneH. Hence, (F, π), v |= φ
follows by assumption. This now further implies (F, π), v |= ¬Hi⊥ → φ. We have
shown that ¬Hi⊥ → φ is true in all worlds from Ki(w) and can again conclude
that the succedent in KH → is true at w. This completes the proof that KH → is
valid in F .

Definition 5.12. The class KH of models for knowledge and hope consists of all Kripke
models

M = (W, K1, . . . , Kn, H1, . . . , Hn, π)

where:

• every Ki is an equivalence relation,
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P : all propositional tautologies
H† : Hi¬Hi⊥ KK : Ki(φ → ψ) ∧ Kiφ → Kiψ

4K : Kiφ → KiKiφ
5K : ¬Kiφ → Ki¬Kiφ
T K : Kiφ → φ

MP: φ φ → ψ

ψ
NecK : φ

Kiφ
KH : Hiφ ↔ �¬Hi⊥ → Ki(¬Hi⊥ → φ)

�
Figure 5.2: Axiom system KH

• every Hi is shift serial, and

• properties HinK and oneH are satisfied.

Proposition 5.13. For all models M = (W, K1, . . . , Kn, H1, . . . , Hn, π) ∈ KH, each
accessibility relation Hi is symmetric and transitive.

Proof. To prove transitivity of Hi, assume wHiv and vHiu. We get wKiv and vKiu by
HinK. Therefore, we also have wKiu since Ki is transitive. Hi(w) ∋ v is not empty, and
so is Hi(u) ̸= ∅, by the shift seriality of Hi because vHiu. Hence, wHiu by oneH.

To prove symmetry of Hi, assume wHiv. We get wKiv by HinK. Therefore, we also
have vKiw since Ki is symmetric. As before, Hi(w) ∋ v is not empty, and Hi(v) ̸= ∅, by
the shift seriality of Hi because wHiv. Hence, vHiw by oneH.

Remark 5.14. A partial equivalence relation is any transitive and symmetric binary
relation [MM91]. Hence, Hi are partial equivalence relations, so that oneH can be
described as “no Ki-equivalence class contains more than one Hi-partial-equivalence class.”

A natural way of obtaining the combined logic of hope and knowledge would be to combine
the axioms and rules for hope, axioms and rules for knowledge, and KH as a connection
axiom. Proposition 5.13, however, indicates that this would create redundancies. As we
now show, in the presence of KH , KB4 properties of hope originate from S5 properties
of knowledge, albeit with the help of the translation of axiom H = Hicorrecti from Hco
into language LKH . This translation H† = Hi¬Hi⊥ can be called necessary consistency
for hope and is known to be characterized by shift seriality. The resulting simplified
axiom system is depicted in Figure 5.2.

Remark 5.15. As before, we will write KH + Ax1 + · · · + Axn to represent the axiom
system obtained by adding the axioms Ax1, . . . , Axn to the axioms of KH without
changing the inference rules of KH .

Proposition 5.16. For any i ∈ A and any φ, ψ ∈ LKH :

1. KH ⊢ Kiφ → Hiφ,
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2. KH ⊢ Hi(φ → ψ) ∧ Hiφ → Hiψ,

3. if KH ⊢ φ, then KH ⊢ Hiφ,

Proof.

1. 1. φ → (¬Hi⊥ → φ) prop. tautology
2. Ki

�
φ → (¬Hi⊥ → φ)

�
by NecK from 1.

3. Ki
�
φ → (¬Hi⊥ → φ)

� → �
Kiφ → Ki(¬Hi⊥ → φ)

�
axiom KK

4. Kiφ → Ki(¬Hi⊥ → φ) by MP from 2. and 3.
5. Ki(¬Hi⊥ → φ) → �¬Hi⊥ → Ki(¬Hi⊥ → φ)

�
prop. tautology

6.
�¬Hi⊥ → Ki(¬Hi⊥ → φ)

� → Hiφ KH ←

7. Kiφ → Hiφ by syllogism from 4–6.

2. 1.
�¬Hi⊥ → (φ → ψ)

� → �
(¬Hi⊥ → φ) → (¬Hi⊥ → ψ)

�
prop. tautology

2. Ki

�¬Hi⊥ → (φ → ψ)
� → �

(¬Hi⊥ → φ) → (¬Hi⊥ → ψ)
�

by NecK from 1.

3. Ki

�¬Hi⊥ → (φ → ψ)
� → �

(¬Hi⊥ → φ) → (¬Hi⊥ → ψ)
�

→

Ki

�¬Hi⊥ →
(φ → ψ)

� → Ki
�
(¬Hi⊥ → φ) → (¬Hi⊥ → ψ)

�
axiom KK

4. Ki
�¬Hi⊥ → (φ → ψ)

� → Ki
�
(¬Hi⊥ → φ) → (¬Hi⊥ → ψ)

�
by MP from 2. and 3.

5. Ki
�
(¬Hi⊥ → φ) → (¬Hi⊥ → ψ)

� → �
Ki(¬Hi⊥ → φ) →

Ki(¬Hi⊥ → ψ)
�

axiom KK

6. Ki
�¬Hi⊥ → (φ → ψ)

� → �
Ki(¬Hi⊥ → φ) → Ki(¬Hi⊥ → ψ)

�
by syllogism from 4. and 5.

7. Hi(φ → ψ) →

¬Hi⊥ → Ki

�¬Hi⊥ → (φ → ψ)
�

KH →

8. Hiφ → �¬Hi⊥ → Ki(¬Hi⊥ → φ)
�

KH →

9. Hi(φ → ψ) →

¬Hi⊥ → �

Ki(¬Hi⊥ → φ) → Ki(¬Hi⊥ → ψ)
�

by prop. reasoning from 6. and 7.

10. Hi(φ → ψ) →

Hiφ → �

(¬Hi⊥ → (Ki(¬Hi⊥ → φ) → Ki(¬Hi⊥ → ψ))) ∧
(¬Hi⊥ → Ki(¬Hi⊥ → φ))

�
by prop. reasoning from 8. and 9.

11.
�¬Hi⊥ → (Ki(¬Hi⊥ → φ) → Ki(¬Hi⊥ → ψ))

� ∧ �¬Hi⊥ → Ki(¬Hi⊥ →
φ)

�
→


¬Hi⊥ → (Ki(¬Hi⊥ → ψ))


prop. tautology
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12. Hi(φ → ψ) →

Hiφ → �¬Hi⊥ → Ki(¬Hi⊥ → ψ)

�
by prop. reasoning from 10. and 11.

13.
�¬Hi⊥ → Ki(¬Hi⊥ → ψ)

� → Hiψ KH ←

14. Hi(φ → ψ) ∧ Hiφ → Hiψ by prop. reasoning from 12. and 13.

3. 1. φ assumption
2. Kiφ by NecK from 1.
3. Kiφ → Hiφ Lemma 5.16 (1).
4. Hiφ by MP from 2. and 3.

Remark 5.17. Given that Kiφ → Hiφ is also known to characterize frame property
HinK, one might ask whether KH ← is equivalent to Kiφ → Hiφ. The answer is negative,
because KH ← only characterizes HinK under the additional assumption of Hi being shift
serial. For instance, consider a model M with

• W = {w, v},

• Kj = W × W for all j ∈ A,

• Hj = W × W for all j ̸= i,

• non-shift-serial Hi = {(w, v)},

• π(p) = {w} for some atom p, and

• π(q) = W for all atoms q ̸= p.

Thus, we have the following situation for agent i, in particular:

p

w v

Ki Ki

Ki

Hi

It is easy to see now from the picture above that

M, w ̸|= �¬Hi⊥ → Ki(¬Hi⊥ → p)
� → Hip,

but
M, w |= Kip → Hip.
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Theorem 5.18. The axiom system KH is sound and complete with respect to the KH
class of models.

Proof. It is straightforward to prove using the standard canonical model construction.

Corollary 5.19. For all i ∈ A and all φ ∈ LKH :

1. KH ⊢ Hiφ → HiHiφ;

2. KH ⊢ φ → Hi¬Hi¬φ.

Proof. The proofs follow immediately from Theorem 5.18 and Proposition 5.13.

Proposition 5.20. KH ⊢ ¬Hi⊥ → (Hiφ → φ), for all i ∈ A and all φ ∈ LKH .

Proof.

1. ¬(Hiφ → φ) → (Hiφ ∧ ¬φ) prop. tautology

2. Hiφ → HiHiφ Corollary 5.19 (1)

3. (Hiφ → HiHiφ) → ((Hiφ ∧ ¬φ) → (HiHiφ ∧ ¬φ)) prop. tautology

4. (Hiφ ∧ ¬φ) → (HiHiφ ∧ ¬φ) by MP from 2. and 3.

5. ¬φ → Hi¬Hiφ Corollary 5.19 (2)

6. (¬φ → Hi¬Hiφ) → ((HiHiφ ∧ ¬φ) → (HiHiφ ∧ Hi¬Hiφ)) prop. tautology

7. (HiHiφ ∧ ¬φ) → (HiHiφ ∧ Hi¬Hiφ) by MP from 5. and 6.

8. (Hiφ ∧ ¬φ) → (HiHiφ ∧ Hi¬Hiφ) by syllogism from 4. and 7.

9. ¬(Hiφ → φ) → Hi(Hiφ ∧ ¬Hiφ) by syllogism from 1. and 8.

10. ¬(Hiφ → φ) → Hi⊥ by prop. reasoning from 9.

11. (¬(Hiφ → φ) → Hi⊥) → (¬Hi⊥ → (Hiφ → φ)) prop. tautology

12. ¬Hi⊥ → (Hiφ → φ) by MP from 10. and 11.

Definition 5.21. Class KHn−f consists of all Kripke models from KH that have all-but-
f -serial Kripke frames with respect to Hi relations.

Using Proposition 5.7, we immediately obtain the following corollary.
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5.2. Individual hope and individual knowledge

Corollary 5.22. The axiom system KH + Byzf is sound and complete with respect to
the KHn−f class of models.

The following two propositions outline the epistemic attitudes of agents who found out
that they are byzantine faulty and agents who know that they are correct.

Proposition 5.23. KH ⊢ KiHi⊥ → Hiφ for all i ∈ A and all φ ∈ LKH .

Proof.

1. ⊥ → φ prop. tautology

2. Hi(⊥ → φ) by Lemma 5.16 (3) from 1.

3. Hi(⊥ → φ) ∧ Hi⊥ → Hiφ Lemma 5.16 (2)

4. Hi⊥ → Hiφ by MP from 2. and 3.

5. KiHi⊥ → Hi⊥ axiom T K

6. KiHi⊥ → Hiφ by syllogism from 5. and 4.

Proposition 5.24. KH ⊢ Ki¬Hi⊥ → (Hiφ ↔ Kiφ) for all i ∈ A and all φ ∈ LKH .

Proof. KH ⊢ Ki¬Hi⊥ → (Kiφ → Hiφ) is an easy corollary of Lemma 5.16 (1). Let us
derive Ki¬Hi⊥ → (Hiφ → Kiφ):

1. Ki¬Hi⊥ → ¬Hi⊥ axiom T K

2. Hiφ → �¬Hi⊥ → Ki(¬Hi⊥ → φ)
�

KH →

3. Ki¬Hi⊥ → �
Hiφ → Ki(¬Hi⊥ → φ)

�
by prop. reasoning from 1. and 2.

4. Ki(¬Hi⊥ → φ) → (Ki¬Hi⊥ → Kiφ) axiom KK

5. Ki¬Hi⊥ → �
Hiφ → (Ki¬Hi⊥ → Kiφ)

�
by syllogism from 3. and 4.

6. Ki¬Hi⊥ → (Hiφ → Kiφ) by prop. reasoning from 5.

Proposition 5.25. For all i ∈ A:

1. KH + Byzf ⊢ KiByzf ;
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5. A new hope

2. KHn−f |= KiByzf .

Proof. The proofs follow immediately using NecK and Corollary 5.22.

Corollary 5.26 (In fault-free systems, hope is knowledge). Recall that axiom Byz0 rules
out the presence of byzantine faulty agents. For any i ∈ A,

KH + Byz0 ⊢ Hiφ ↔ Kiφ.

Proof. Follows from Remark 5.6 and Propositions 5.24 and 5.25.

Proposition 5.23 can be strengthened because a byzantine faulty agent hopes for anything
even without knowing that it is byzantine faulty, i.e., KH ⊢ Hi⊥ → Hiφ (as obtained in
step 4. in the proof). By contrast, in Proposition 5.24, the knowledge modality cannot be
dropped: for a correct agent, hope does not yet mean knowledge, i.e., KH ⊬ ¬Hi⊥ →
(Hiφ ↔ Kiφ). Instead, for a correct agent, hope is equivalent to

Biφ := Ki(¬Hi⊥ → φ),

which is a notion of belief that was introduced in Chapter 3 as Biφ := Ki(correcti → φ)
in a language where correcti is an atomic proposition.

Proposition 5.27. For all i ∈ A and φ ∈ LKH :

KH ⊢ ¬Hi⊥ → (Hiφ ↔ Biφ). (5.2)

Proof. Follows from axiom KH by propositional reasoning.

Let us introduce the following abbreviations for mutual belief EB
G and mutual hope EH

G

among a group ∅ ̸= G ⊆ A of agents:

EB
Gφ :=



i∈G

Biφ,

EH
G φ :=



i∈G

Hiφ.

It is easy to see that mutual belief among some agents can be “extracted” from mutual
hope among all agents in systems with at most 0 ≤ f < n byzantine faulty agents:

Proposition 5.28. KH + Byzf ⊢ EH
A φ → �

G⊆A
|G|=n−f

EB
Gφ.

Proof. Follows from (5.2) and axiom Byzf .
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5.2. Individual hope and individual knowledge

Hope, generally, creates neither knowledge of hope nor hope of knowledge, as we show in
the following proposition.

Proposition 5.29 (Knowledge and hope do not mix). For any i ∈ A:

• it is not the case that KH |= Hiφ → HiKiφ for all φ ∈ LKH ,

• it is not the case that KH |= Hiφ → KiHiφ for all φ ∈ LKH .

Proof. We use the same countermodel to refute both statements but refute them for
different formulas φ. Let M = (W, K1, . . . , Kn, H1, . . . , Hn, π) ∈ KH be such that:

• W = {G, B},

• Kj = W × W for all j ∈ A,

• Hj = W × W for all j ̸= i,

• Hi = {(G, G)}, and

• π is arbitrary.

Thus, we have the following situation for agent i, in particular:

G B

Ki, Hi Ki

Ki

Clearly, agent i is correct in world G, i.e., Hi(G) ̸= ∅, and byzantine faulty in world B,
i.e., Hi(B) = ∅. It is easy to see now from the picture above that

M, G ̸|= Hi¬Hi⊥ → HiKi¬Hi⊥

and
M, B ̸|= Hi⊥ → KiHi⊥.

Corollary 5.30. For any i ∈ A and any f > 0:

• it is not the case that KHn−f |= Hiφ → HiKiφ for all φ ∈ LKH ,

• it is not the case that KHn−f |= Hiφ → KiHiφ for all φ ∈ LKH .
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5. A new hope

Modal representation of the consequences of the brain-in-a-vat scenario
The goal of this section is to show the utility of the joint axiom system KH by providing
axiomatic descriptions of some of the properties of byzantine fault-tolerant distributed
systems that originate from earlier epistemic analyses presented in Chapter 3, such as
the following:

• Agents cannot reliably establish their own correctness (Theorem 3.18), as formalized
by the formula, for all i ∈ A,

iByz := ¬Ki¬Hi⊥.

• A byzantine faulty agent lacks any reliable information about other agents. In
particular, a byzantine faulty agent has no reliable information to decide whether
any other agent is correct or byzantine faulty, as formalized by the formula, for all
i ̸= j,

BiV := Hi⊥ → ¬KiHj⊥ ∧ ¬Ki¬Hj⊥.

From these two principles we can derive that no agent knows whether other agents are
correct or byzantine faulty (Theorem 3.18 and Theorem 3.20):

Proposition 5.31. KH + iByz + BiV ⊢ anyByz ij ∧ anyCor ij for all i ̸= j, where

anyByz ij : ¬Ki¬Hj⊥; anyCor ij : ¬KiHj⊥.

Proof. Let us derive anyCor ij . The derivation of anyByz ij is similar.

1. Hi⊥ → ¬KiHj⊥ ∧ ¬Ki¬Hj⊥ BiV

2. Hi⊥ → ¬KiHj⊥ by prop. reasoning from 1.

3. KiHj⊥ → ¬Hi⊥ by prop. reasoning from 2.

4. Ki(KiHj⊥ → ¬Hi⊥) by NecK from 3.

5. Ki(KiHj⊥ → ¬Hi⊥) → (KiKiHj⊥ → Ki¬Hi⊥) axiom KK

6. KiKiHj⊥ → Ki¬Hi⊥ by MP from 4. and 5.

7. ¬Ki¬Hi⊥ → ¬KiKiHj⊥ by prop. reasoning from 6.

8. KiHj⊥ → KiKiHj⊥ axiom 4K

9. ¬KiKiHj⊥ → ¬KiHj⊥ by prop. reasoning from 8.

10. ¬Ki¬Hi⊥ → ¬KiHj⊥ by syllogism from 7. and 9.

11. ¬Ki¬Hi⊥ iByz
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5.2. Individual hope and individual knowledge

12. ¬KiHj⊥ by MP from 10. and 11.

Proposition 5.32. Formula iByz is characterized by the i-may-aseriality property of
Kripke frames F = (W, K1, . . . , Kn, H1, . . . , Hn):

(∀w ∈ W )
�∃w′ ∈ Ki(w)

� Hi(w′) = ∅.

Proof. Take an arbitrary Kripke frame F = (W, K1, . . . , Kn, H1, . . . , Hn) for the language
LKH . We need to show

F |= iByz ⇐⇒ F is i-may-aserial.

(=⇒): We prove the contrapositive. If F is not i-may-aserial, there is some world w ∈ W
such that Hi(w′) ̸= ∅ for all w′ ∈ Ki(w). Independent of a valuation π, we
can conclude that (F, π), w′ |= ¬Hi⊥ holds for all w′ ∈ Ki(w). Hence, we get
(F, π), w |= Ki¬Hi⊥ (for any π). Consequently, F ̸|= iByz follows.

(⇐=): Let F be i-may-aserial. Take an arbitrary world w ∈ W . It now follows that there
is w′ ∈ Ki(w) such that Hi(w′) = ∅. Independent of a valuation π, we can conclude
that (F, π), w |= ¬Ki¬Hi⊥ holds since (F, π), w′ |= Hi⊥ for any π. Hence, we get
(F, π), w |= iByz (for any π). This completes the proof that iByz is valid in F .

Proposition 5.33. Formula BiV is characterized by the BiValence property of Kripke
frames F = (W, K1, . . . , Kn, H1, . . . , Hn):

(∀w ∈ W )

Hi(w) = ∅ =⇒ �∃w′, w′′ ∈ Ki(w)

��Hj(w′) ̸= ∅ ∧ Hj(w′′) = ∅
�

.

Proof. Take an arbitrary Kripke frame F = (W, K1, . . . , Kn, H1, . . . , Hn) for the language
LKH . We need to show

F |= BiV ⇐⇒ F is BiValent.

(=⇒): We prove the contrapositive. If F is not BiValent, there is some world w ∈ W
such that Hi(w) = ∅ but either Hj(w′) = ∅ for all w′ ∈ Ki(w) or Hj(w′′) ̸= ∅ for
all w′′ ∈ Ki(w). Independent of a valuation π, we can conclude that (F, π), w |=
Ki¬Hj⊥ ∨ KiHj⊥ holds despite M, w |= Hi⊥. Hence, we get (F, π), w ̸|= BiV (for
any π). Consequently, F ̸|= BiV follows.

(⇐=): Let F be BiValent. Take an arbitrary world w ∈ W such that Hi(w) = ∅. It
now follows that there are w′ ∈ Ki(w) such that Hj(w′) ̸= ∅ and w′′ ∈ Ki(w)
such that Hj(w′′) = ∅. Independent of a valuation π, we can conclude that
(F, π), w |= ¬KiHj⊥ ∧ ¬Ki¬Hj⊥ holds whenever (F, π), w |= Hi⊥. Hence, we get
(F, π), w |= BiV (for any π). This completes the proof that BiV is valid in F .
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We can also easily derive that brain-in-a-vat scenarios are not compatible with fault-free
systems:

Proposition 5.34. If no agent can become byzantine faulty, then all agents can establish
their own correctness: for all i ∈ A,

KH + Byz0 ⊢ ¬iByz .

Proof. By Proposition 5.25 and the normality of Ki, given that Byz0 → ¬Hi⊥ is an
instance of a propositional tautology, we have KH +Byz0 ⊢ Ki¬Hi⊥ for i ∈ A. Deriving
¬iByz is now a matter of propositional reasoning.

Another interesting special case is f = 1 (with n > 1):

Proposition 5.35. If any agent but no more than one can become byzantine faulty, the
inability of an agent to establish its own correctness leads to its inability to establish
faultiness of somebody else: for all i ̸= j ∈ A,

KH + Byz1 + iByz ⊢ ¬KiHj⊥.

Proof. We have Hj⊥ → ¬Hi⊥ by Byz1 for any j ̸= i. Thus, we can conclude KiHj⊥ →
Ki¬Hi⊥ by the normality of Ki, which further implies ¬Ki¬Hi⊥ → ¬KiHj⊥. Since
¬Ki¬Hi⊥ is axiom iByz , we conclude ¬KiHj⊥ by MP.

Proposition 5.36. If any agent but no more than one can become byzantine faulty, the
inability of a byzantine faulty agent to establish correctness of somebody else leads to its
inability to establish its own faultiness: for all i ̸= j ∈ A,

KH + Byz1 + (Hi⊥ → ¬Ki¬Hj⊥) ⊢ ¬KiHi⊥.

Proof. A correct agent i considers its own correctness possible by T K , i.e., ¬Hi⊥ →
¬KiHi⊥. Formula Hi⊥ → ¬Ki¬Hj⊥ for at least one j ̸= i is an assumption. At the same
time, Hi⊥ → ¬Hj⊥ by Byz1. As before, ¬Ki¬Hj⊥ → ¬KiHi⊥ follows by the normality
of Ki, yielding implication Hi⊥ → ¬KiHi⊥ by syllogism. Since we have derived ¬KiHi⊥
from both ¬Hi⊥ and Hi⊥, we get ¬KiHi⊥ by propositional reasoning.

Remark 5.37. Intuitively, for f = 1, if an agent establishes its own faultiness, which
does not run afoul of iByz, then it will thereby establish the correctness of all other agents.
It seems wrong to prohibit this by adopting the respective half of BiV , whereas the other
half is derivable anyway. We, therefore, propose using

KH + Byzf + BiV + iByz

for f ≥ 2, but
KH + Byz1 + iByz

for f = 1. (The case of f = 0, which can be axiomatized by KH + Byz0, is more
efficiently dealt with in the standard epistemic language.)
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5.3 Common hope and common knowledge
In this section, we introduce the common hope modality by analogy with the common
knowledge modality and explore their relationship.

We start by extending the language LKH with the unary modal operator CH
G for common

hope and the unary modal operator CK
G for common knowledge, where ∅ ̸= G ⊆ A is an

arbitrary group of agents. We denote this extended language by LC
KH .

Let ∅ ̸= G ⊆ A. By common hope of φ (in G) we intuitively mean mutual hope of φ (in
G) and mutual hope of mutual hope of φ (in G), etc.:

CH
G ↭ EH

G φ ∧ EH
G EH

G φ ∧ EH
G EH

G EH
G φ ∧ . . . ,

just like by common knowledge of φ (in G) we intuitively mean mutual knowledge of φ
(in G) and mutual knowledge of mutual knowledge of φ (in G), etc.

Definition 5.38. Axiom system KH C consists of all the axioms and inference rules
of KH (formulated for LC

KH formulas) plus the following axioms and inference rules for
all ∅ ̸= G ⊆ A and all formulas φ, ψ ∈ LC

KH :

MixH : CH
G φ → EH

G (φ ∧ CH
G φ); MixK : CK

G φ → EK
G (φ ∧ CK

G φ);

IndH : ψ → EH
G (φ ∧ ψ)

ψ → CH
G φ

; IndK : ψ → EK
G (φ ∧ ψ)

ψ → CK
G φ

.

In Section 5.4, we will prove that KH C is sound and complete with respect to KH.

That common S5 knowledge has the properties of individual S5 knowledge is well-
known [FHMV95, vDvdHK08]. Still, it may be surprising that common hope has the
properties of individual hope. (Recall that common KD45 belief does not have the
properties of individual KD45 belief as it lacks negative introspection.)

Proposition 5.39. For any ∅ ̸= G ⊆ A and any φ, ψ ∈ LC
KH :

KH C ⊢ CH
G (φ → ψ) ∧ CH

G φ → CH
G ψ KH C ⊢ CK

G (φ → ψ) ∧ CK
G φ → CK

G ψ

KH C ⊢ CH
G φ → CH

G CH
G φ KH C ⊢ CK

G φ → CK
G CK

G φ

KH C ⊢ ¬CK
G φ → CK

G ¬CK
G φ

KH C ⊢ φ =⇒ KH C ⊢ CH
G φ KH C ⊢ φ =⇒ KH C ⊢ CK

G φ

KH C ⊢ φ → CH
G ¬CH

G ¬φ KH C ⊢ CK
G φ → φ

Proof. We only prove the properties for the common hope operator:

KH C ⊢ CH
G (φ → ψ) ∧ CH

G φ → CH
G ψ

1. CH
G φ → EH

G (φ ∧ CH
G φ) axiom MixH
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2. CH
G φ → EH

G φ by normality of EH
G and prop. reasoning from 1.

3. CH
G (φ → ψ) → EH

G ((φ → ψ) ∧ CH
G (φ → ψ)) axiom MixH

4. CH
G (φ → ψ) → EH

G (φ → ψ) by normality of EH
G and prop. reasoning from 3.

5. CH
G (φ → ψ) ∧ CH

G φ → EH
G (φ → ψ) ∧ EH

G φ by prop. reasoning from 2. and 4.

6. EH
G (φ → ψ) ∧ EH

G φ → EH
G ψ theorem of H

7. CH
G (φ → ψ) ∧ CH

G φ → EH
G ψ by syllogism from 5. and 6.

8. CH
G φ → EH

G CH
G φ by normality of EH

G and prop. reasoning from 1.

9. CH
G (φ → ψ) → EH

G CH
G (φ → ψ) by normality of EH

G and prop. reasoning from 3.

10. CH
G (φ → ψ) ∧ CH

G φ → EH
G CH

G (φ → ψ) ∧ EH
G CH

G φ
by prop. reasoning from 8. and 9.

11. CH
G (φ → ψ) ∧ CH

G φ → EH
G (ψ ∧ CH

G (φ → ψ) ∧ CH
G φ)

by normality of EH
G and prop. reasoning from 7. and 10.

12. CH
G (φ → ψ) ∧ CH

G φ → CH
G ψ by IndH from 11.

KH C ⊢ CH
G φ → CH

G CH
G φ

1. CH
G φ → EH

G (φ ∧ CH
G φ) axiom MixH

2. CH
G φ → EH

G CH
G φ by normality of EH

G and prop. reasoning from 1.

3. CH
G φ → CH

G CH
G φ by IndH from 2.

KH C ⊢ φ → CH
G ¬CH

G ¬φ

1. φ → Hi¬Hi¬φ axiom BH

2. φ → EH
G ¬EH

G ¬φ by normality of Hi and prop. reasoning from 1.

3. CH
G ¬φ → EH

G (¬φ ∧ CH
G ¬φ) axiom MixH

4. CH
G ¬φ → EH

G ¬φ by normality of EH
G and prop. reasoning from 3.

5. (CH
G ¬φ → EH

G ¬φ) → (¬EH
G ¬φ → ¬CH

G ¬φ) prop. tautology

6. ¬EH
G ¬φ → ¬CH

G ¬φ by MP from 4. and 5.

7. EH
G (¬EH

G ¬φ → ¬CH
G ¬φ) by NecH and prop. reasoning from 6.

8. EH
G (¬EH

G ¬φ → ¬CH
G ¬φ) → (EH

G ¬EH
G ¬φ → EH

G ¬CH
G ¬φ) theorem of H
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9. EH
G ¬EH

G ¬φ → EH
G ¬CH

G ¬φ by MP from 7. and 8.

10. EH
G ¬EH

G ¬φ → EH
G EH

G ¬EH
G ¬φ theorem of H

11. EH
G ¬EH

G ¬φ → EH
G (¬CH

G ¬φ ∧ EH
G ¬EH

G ¬φ)
by normality of EH

G and prop. reasoning from 9. and 10.

12. EH
G ¬EH

G ¬φ → CH
G ¬CH

G ¬φ by IndH from 11.

13. φ → CH
G ¬CH

G ¬φ by syllogism from 2. and 12.

KH C ⊢ φ =⇒ KH C ⊢ CH
G φ

1. φ assumption

2. EH
G φ by NecH and prop. reasoning from 1.

3. EH
G φ → (⊤ → EH

G φ) prop. tautology

4. ⊤ → EH
G φ by MP from 2. and 3.

5. ⊤ → CH
G φ by IndH from 4.

6. CH
G φ by MP from ⊤ and 5.

Proposition 5.40. KH C ⊢ CK
G φ → CH

G φ for all ∅ ̸= G ⊆ A and all φ ∈ LC
KH .

Proof.

1. CK
G φ → EK

G (φ ∧ CK
G φ) axiom MixK

2. EK
G (φ ∧ CK

G φ) → EH
G (φ ∧ CK

G φ) follows from Lemma 5.16 (1)

3. CK
G φ → EH

G (φ ∧ CK
G φ) by syllogism from 1. and 2.

4. CK
G φ → CH

G φ by IndH from 3.

Formulas of LC
KH are also evaluated on models from KH, with the new clauses for common

knowledge and common hope stated in the following definition.
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Definition 5.41. For a model (W, K1, . . . , Kn, H1, . . . , Hn, π) ∈ KH, let

KC
G :=

 �
i∈G

Ki

�+

, HC
G :=

 �
i∈G

Hi

�+

,

where R+ is the transitive (but not reflexive) closure of a relation R. Then we define

M, w |= CK
G φ iff M, v |= φ for all v ∈ KC

G(w)

and
M, w |= CH

G φ iff M, v |= φ for all v ∈ HC
G(w).

So far, by and large, the relationship between common knowledge and common hope
exhibited the same traits as the relationship between their individual variants. But
the naive generalization of connection axiom KH is invalid for the common modalities
(for |G| ≥ 2). We recall that KH → corresponds to property oneH that each knowledge
equivalence class contains at most one hope partial equivalence class. It is easy to see
that when lifted to the common modalities, each common knowledge equivalence class
may contain more than one common hope partial equivalence class, thus, invalidating
the generalization. The proof of the proposition below provides a simple four-world
countermodel that demonstrates this fact:

Proposition 5.42. For any ∅ ̸= G ⊆ A such that |G| ≥ 2, it is not the case that
KH |= CH

G φ ↔ �¬CH
G ⊥ → CK

G (¬CH
G ⊥ → φ)

�
for all φ ∈ LC

KH .

Proof. To show this, we construct a countermodel from KH. Let i ̸= j ∈ G.

Consider a model M = (W, K1, . . . , Kn, H1, . . . , Hn, π) ∈ KH such that

• W = {G′, G′′, B′, B′′};

• Ki = {(G′, G′), (G′, B′), (B′, G′), (B′, B′), (G′′, G′′), (G′′, B′), (B′, G′′), (B′, B′)}, that is,
Ki splits W into equivalence classes {G′, B′} and {G′′, B′′};

• Kj = {(G′, G′), (G′, B′′), (B′′, G′), (B′′, B′′), (G′′, G′′), (G′′, B′), (B′, G′′), (B′, B′)}, that
is, Kj splits W into equivalence classes {G′, B′′} and {G′′, B′};

• Kl = Ki for all l ∈ G \ {i, j};

• Hl = {(G′, G′), (G′′, G′′)}, for all l ∈ G;

• π(p) = {G′} for some atom p, and

• π(q) = W for all atoms q ̸= p.
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Thus, we have the following situation for hope relations of all agents l ∈ G, in particular
(we omit the knowledge relations for the sake of clarity):

p

G′

G′′

B′

B′′

Hl

Hl

Clearly all agents from G are correct in G′ and G′′, i.e., Hl(G′) ̸= ∅ and Hl(G′′) ̸= ∅, and
byzantine faulty in B′ and B′′, i.e., Hl(B′) = ∅ and Hl(B′′) = ∅. On the one hand,

M, G′ |= CH
G p.

On the other hand, M, w |= CH
G ⊥ iff w ∈ {B′, B′′}. In particular, we have M, G′ |=

¬CH
G ⊥ and M, G′′ |= ¬CH

G ⊥. Now, M, G′′ ̸|= ¬CH
G ⊥ → p and, consequently, M, G′ ̸|=

CK
G (¬CH

G ⊥ → p). Overall, we can conclude that

M, G′ ̸|= ¬CH
G ⊥ → CK

G (¬CH
G ⊥ → p).

Therefore, KH ̸|= CH
G p ↔ �¬CH

G ⊥ → CK
G (¬CH

G ⊥ → p)
�
.

It turns out that even though we can “extract” mutual belief (among some agents) from
mutual hope (among all agents), as per Proposition 5.28, we cannot do the same in case
of common belief and common hope:

Proposition 5.43. Let n > 2. For any 0 < f < n, it is not the case that KHn−f |=
CH

A φ → �
G⊆A

|G|=n−f

CB
G φ, for all φ ∈ LC

KH .

Proof. Let us construct a countermodel from KHn−1 for f = 1.

Consider a model M = (W, K1, . . . , Kn, H1, . . . , Hn, π) ∈ KHn−1 such that

• W = {w, v1, . . . , vn, u1, . . . , un};
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• for all i ∈ A, the relation Ki splits W into the following equivalence classes:

{w} ∪ (V \ {vi}), {vi, ui}, and U \ {ui},

where V := {v1, . . . , vn} and U := {u1, . . . , un};

• Hi = Ki \ {(vi, vi), (vi, ui), (ui, vi)}, for all i ∈ A (therefore, for any i ∈ A, agent i
is byzantine faulty in world vi since Hi(vi) = ∅);

• π(p) = {w, v1, . . . , vn} for some atom p, and

• π(q) = W for all atoms q ̸= p.

Thus, we have the following situation for hope relations, in particular (we omit the
knowledge relations for the sake of clarity):

pv1 p

v2

p vn

pw

u1

u2

un

Hi ̸=1 Hi ̸=2
Hi ̸=n

Hi

Hi ̸=1 Hi ̸=2 Hi ̸=n

Hi Hi Hi

Hi ̸=1,2 . . .

Hi ̸=1,2 . . .

On the one hand,
M, w |= CH

A p

because M, w′ |= p for all w′ ∈ HC
A(w) = {w} ∪ V .

On the other hand, for any G ⊆ A such that |G| ≥ 2 we have

M, w ̸|= CB
G p
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since M, w ̸|= BjBip for any j ̸= i ∈ A (as M, vi ̸|= Bip). Therefore, M, w ̸|= CB
G p for all

G ⊆ A such that |G| = n − 1, in particular.

Similar countermodels can be constructed for all 1 < f < n.

As we will now see, there is also a way to define common hope using knowledge relations:

Definition 5.44. For any M = (W, π, K1, . . . , Kn, H1, . . . , Hn) ∈ KH and any i ∈ A, we
define

K¬Hi⊥
i := {(w, v) ∈ Ki | M, w |= ¬Hi⊥ and M, v |= ¬Hi⊥}.

Proposition 5.45. For M = (W, π, K1, . . . , Kn, H1, . . . , Hn) ∈ KH and any i ∈ A,

Hi = K¬Hi⊥
i .

Proof. (⊆): Assume (w, v) ∈ Hi. Therefore, M, w |= ¬Hi⊥ holds. Since Hi is symmetric,
we also have (v, w) ∈ Hi. Therefore, M, v |= ¬Hi⊥ holds too. By HinK, (w, v) ∈ Ki

follows. Thus, (w, v) ∈ K¬Hi⊥
i .

(⊇): Assume (w, v) ∈ K¬Hi⊥
i . This means (w, v) ∈ Ki, M, w |= ¬Hi⊥ and M, v |= ¬Hi⊥.

That is, (w, v) ∈ Ki, Hi(w) ̸= ∅ and Hi(v) ̸= ∅. Now, by oneH, (w, v) ∈ Hi

follows.

Corollary 5.46. For any M = (W, π, K1, . . . , Kn, H1, . . . , Hn) ∈ KH and any ∅ ̸= G ⊆
A,

M, w |= CH
G φ iff M, v |= φ for all v ∈ W such that (w, v) ∈ (

�
i∈G

K¬Hi⊥
i )+.

5.4 Soundness and completeness of KH C with respect to
KH

It is well-known that constructing one uniform-for-all-formulas canonical model does not
work when common knowledge is added to the standard epistemic language [FHMV95,
vDvdHK08]. The same is the case for the language LC

KH , where in addition to common
knowledge we also have common hope. Therefore, for each formula φ ∈ LC

KH , we construct
a canonical φ-model of KH C based on the Fischer-Ladner closure of φ, i.e., cl(φ) (see
Definition 5.52). The main tools used in this case are maximal φ-consistent sets, which are,
in contrast to before, finite sets (since they are contained in cl(φ), see Definition 5.55).
The idea is standard: we take all maximal φ-consistent (with respect to Hco) sets
of formulas to be the worlds of the model and define the valuation function and the
accessibility relations in terms of membership of formulas to such sets (see Definition 5.58).
This way, using the properties of maximal φ-consistent sets (see Lemma 5.56) and the
Lindenbaum lemma 5.57, we obtain the Truth lemma 5.63, according to which a formula
ψ ∈ cl(φ) belongs to a maximal φ-consistent set Γ if and only if it is satisfied in the
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world Γ. Finally, just like before, we then obtain completeness by contraposition (see
Theorem 5.64). The “only” challenge lies in defining the Fischer-Ladner closure of a
formula φ ∈ LC

KH appropriately.

Theorem 5.47. The logic of common hope and common knowledge is not compact.

Proof. Follows immediately from the well-known fact that the logic of common knowledge
is not compact [vDvdHK08].

Therefore, using Theorem 2.22, we immediately get:

Corollary 5.48. No axiomatization of common hope and common knowledge is strongly
sound and strongly complete.

Definition 5.49. For all sets of formulas Γ ⊆ LC
KH and all formulas φ ∈ LC

KH we define

Γ ⊢KH C φ iff ⊢KH C ψ1 ∧ · · · ∧ ψn → φ,

for some ψ1, . . . , ψn ∈ Γ.

Theorem 5.50 (Deduction theorem). For all sets of formulas Γ ⊆ LC
KH and all formulas

φ, ψ ∈ LC
KH :

Γ ∪ {ψ} ⊢KH C φ ⇐⇒ Γ ⊢KH C ψ → φ.

Proof. Let Γ ⊆ LC
KH and φ, ψ ∈ LC

KH .

(=⇒): Assume Γ ∪ {ψ} ⊢KH C φ. According to the previous definition, this means that
there exist some ψ1, . . . , ψn ∈ Γ ∪ {ψ} such that

⊢KH C ψ1 ∧ · · · ∧ ψn → φ.

• If ψ ≡ ψi for some i ∈ {1, . . . , n}, then, using propositional reasoning, we can
rewrite the above in the following way:

⊢KH C ψ1 ∧ . . . ψi−1 ∧ ψi+1 ∧ · · · ∧ ψn → (ψ → φ).

So, we can conclude that indeed Γ ⊢KH C ψ → φ.

• If ψ ̸∈ {ψ1, . . . , ψn}, using ⊢KH C φ → (ψ → φ) and propositional reasoning we
obtain:

⊢KH C ψ1 ∧ · · · ∧ ψn → (ψ → φ).

Again, we can conclude that indeed Γ ⊢KH C ψ → φ.
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(⇐=): Assume Γ ⊢KH C ψ → φ. According to the previous definition, this means that
there exist ψ1, . . . , ψn ∈ Γ such that

⊢KH C ψ1 ∧ · · · ∧ ψn → (ψ → φ).

Using propositional reasoning, we can rewrite the above in the following way:

⊢KH C ψ1 ∧ · · · ∧ ψn ∧ ψ → φ.

This now means that Γ ∪ {ψ} ⊢KH C φ indeed holds.

Recall that the language LC
KH is generated by the following BNF:

φ ::= p | ¬φ | (φ ∧ φ) | Kiφ | Hiφ | CK
G φ | CH

G φ,

where p ∈ Prop, i ∈ A and G ⊆ A.

Definition 5.51. Let φ ∈ LC
KH . The set Sub(φ) of subformulas of φ is defined by

induction on the construction of φ in the following way:

Sub(p) := {p};
Sub(¬ψ) := {¬ψ} ∪ Sub(ψ);

Sub(ψ1 ∧ ψ2) := {ψ1 ∧ ψ2} ∪ Sub(ψ1) ∪ Sub(ψ2);
Sub(Kiψ) := {Kiψ} ∪ Sub(ψ);
Sub(Hiψ) := {Hiψ} ∪ Sub(ψ);

Sub(CK
G ψ) := {CK

G ψ} ∪ Sub(ψ);
Sub(CH

G ψ) := {CH
G ψ} ∪ Sub(ψ).

The Fischer-Ladner closure of formula φ ∈ LC
KH , i.e., cl(φ), is defined in the following

way:

Definition 5.52. We define the following six sets for φ ∈ LC
KH :

1. cl0(φ) is the smallest set closed with respect to following rules

• φ ∈ cl0(φ);
• Hi¬Hi⊥ ∈ cl0(φ) for all i ∈ A;
• if ψ ∈ cl0(φ) and θ ∈ Sub(ψ), then θ ∈ cl0(φ);
• if CK

G ψ ∈ cl0(φ), then EK
G (ψ ∧ CK

G ψ) ∈ cl0(φ);
• if CH

G ψ ∈ cl0(φ), then EH
G (ψ ∧ CH

G ψ) ∈ cl0(φ);

2. cl1(φ) := cl0(φ) ∪ {¬ψ | ψ ∈ cl0(φ) and ψ is not a negation1};
1That is, ψ does not start with the ¬ operator.
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3. cl2(φ) := cl1(φ) ∪ {Hiψ, Ki(¬Hi⊥ → ψ), Hi(¬Hi⊥ → ψ), ¬Hi⊥ → ψ | Kiψ ∈
cl1(φ)};

4. cl3(φ) := cl2(φ) ∪ {¬ψ | ψ ∈ cl2(φ) and ψ is not a negation};

5. cl4(φ) := cl3(φ) ∪ {KiKiψ, HiKiψ | Kiψ ∈ cl3(φ)} ∪ {Ki¬Kiψ, Hi¬Kiψ | ¬Kiψ ∈
cl3(φ)};

6. cl(φ) := cl4(φ) ∪ {¬ψ | ψ ∈ cl4(φ) and ψ is not a negation}.

Lemma 5.53. For any formula φ ∈ LC
KH , cl(φ) is finite.

Proof. First of all, cl(Hi¬Hi⊥) = {Hi¬Hi⊥, ¬Hi⊥, Hi⊥, ⊥, ¬Hi¬Hi⊥, ¬⊥} is evidently
finite. We proceed by induction on the structure of φ.

Base case: If φ = p, then cl(φ) = {p, ¬p} ∪ cl(Hi¬Hi⊥), which is finite.

Induction step:

1. φ is of the form ¬ψ. Then

cl(φ) = {¬ψ} ∪ cl(ψ) ∪ cl(Hi¬Hi⊥).

Since cl(ψ) is finite according to the induction hypothesis, it follows that cl(φ) is
finite as well.

2. φ is of the form ψ1 ∧ ψ2. Then

cl(φ) = {ψ1 ∧ ψ2, ¬(ψ1 ∧ ψ2)} ∪ cl(ψ1) ∪ cl(ψ2) ∪ cl(Hi¬Hi⊥).

Since cl(ψ1) and cl(ψ2) are finite according to the induction hypothesis, it follows
that cl(φ) is finite as well.

3. φ is of the form Kiψ. Then

cl(φ) = {Kiψ, ¬Kiψ, KiKiψ, ¬KiKiψ, Ki¬Kiψ, ¬Ki¬Kiψ, HiKiψ, ¬HiKiψ,

Hi¬Kiψ, ¬Hi¬Kiψ, Hiψ, ¬Hiψ, Ki(¬Hi⊥ → ψ), ¬Ki(¬Hi⊥ → ψ),
Hi(¬Hi⊥ → ψ), ¬Hi(¬Hi⊥ → ψ), ¬Hi⊥ → ψ, ¬(¬Hi⊥ → ψ)} ∪ cl(ψ)∪
cl(Hi¬Hi⊥).

Since cl(ψ) is finite according to the induction hypothesis, it follows that cl(φ) is
finite as well.

4. φ is of the form Hiψ. Then

cl(φ) = {Hiψ, ¬Hiψ} ∪ cl(ψ) ∪ cl(Hi¬Hi⊥).

Since cl(ψ) is finite according to the induction hypothesis, it follows that cl(φ) is
finite as well.
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5. φ is of the form CK
G ψ. Then

cl(φ) ={CK
G ψ, EK

G (ψ ∧ CK
G ψ), ψ ∧ CK

G ψ, ¬CK
G ψ, ¬EK

G (ψ ∧ CK
G ψ),

¬(ψ ∧ CK
G ψ)} ∪ cl(ψ) ∪ cl(Hi¬Hi⊥).

Since cl(ψ) is finite according to the induction hypothesis, it follows that cl(φ) is
finite as well.

6. φ is of the form CH
G ψ. Then

cl(φ) ={CH
G ψ, EH

G (ψ ∧ CH
G ψ), ψ ∧ CH

G ψ, ¬CH
G ψ, ¬EH

G (ψ ∧ CH
G ψ),

¬(ψ ∧ CH
G ψ)} ∪ cl(ψ) ∪ cl(Hi¬Hi⊥).

Since cl(ψ) is finite according to the induction hypothesis, it follows that cl(φ) is
finite as well.

Lemma 5.54. For any formula φ, ψ ∈ LC
KH :

1. if ψ ∈ cl(φ) is not a negation, then ¬ψ ∈ cl(φ),

2. if ψ ∈ cl(φ), then Sub(ψ) ⊆ cl(φ).

Proof. 1. Let ψ ∈ cl(φ). If ψ is not a negation, then ψ ∈ cl4(φ) according to Defini-
tion 5.52. Now it immediately follows that ¬ψ ∈ cl(φ) according to Definition 5.52.

2. Let ψ ∈ cl(φ). We proceed by induction on the structure of ψ.

Base case: If ψ = p, then Sub(ψ) = {p} ⊆ cl(φ) since p ∈ cl(φ) by assumption.

Induction step:

1. ψ is of the form ¬θ. According to Definition 5.52, ¬θ ∈ cl(φ) means that either
¬θ ∈ cl4(φ) or θ ∈ cl4(φ). Once we unfold this, we get that either ¬θ ∈ cl0(φ)
or θ ∈ cl0(φ) or θ ∈ cl2(φ) or θ ∈ cl4(φ). In all these cases θ ∈ cl(φ) follows.
Thus, using Definition 5.51 and the induction hypothesis, we obtain Sub(ψ) =
{¬θ} ∪ Sub(θ) ⊆ cl(φ).

2. ψ is of the form θ1 ∧ θ2. According to Definition 5.52, θ1 ∧ θ2 ∈ cl(φ) means that
θ1 ∧θ2 ∈ cl0(φ), so θ1 ∈ cl(φ) and θ2 ∈ cl(φ) follow. Thus, using Definition 5.51 and
the induction hypothesis, we obtain Sub(ψ) = {θ1 ∧θ2}∪Sub(θ1)∪Sub(θ2) ⊆ cl(φ).

3. ψ is of the form Kiθ. According to Definition 5.52, Kiθ ∈ cl(φ) means that either:

• Kiθ ∈ cl0(φ), in which case θ ∈ cl0(φ) immediately follows.
• Kiθ ∈ cl2(φ) \ cl0(φ), in which case θ = ¬Hi⊥ → θ′, for Kiθ

′ ∈ cl1(φ). Hence
¬Hi⊥ → θ′ = θ ∈ cl2(φ) follows.
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• Kiθ ∈ cl4(φ) \ cl2(φ), in which case either:
– θ = Kiθ

′, for Kiθ
′ ∈ cl3(φ).

– θ = ¬Kiθ
′, for ¬Kiθ

′ ∈ cl3(φ).

Regardless of the case, θ ∈ cl(φ) follows. Thus, using Definition 5.51 and the
induction hypothesis, we obtain Sub(ψ) = {Kiθ} ∪ Sub(θ) ⊆ cl(φ).

4. ψ is of the form Hiθ. According to Definition 5.52, Hiθ ∈ cl(φ) means that either:

• Hiθ ∈ cl0(φ), in which case θ ∈ cl0(φ) immediately follows.
• Hiθ ∈ cl2(φ) \ cl0(φ), in which case either:

– Kiθ ∈ cl1(φ), in which case θ ∈ cl0(φ) immediately follows.
– θ = ¬Hi⊥ → θ′, for Kiθ

′ ∈ cl1(φ). Hence ¬Hi⊥ → θ′ = θ ∈ cl2(φ)
follows.

• Hiθ ∈ cl4(φ) \ cl2(φ), in which case either:
– θ = Kiθ

′, for Kiθ
′ ∈ cl3(φ).

– θ = ¬Kiθ
′, for ¬Kiθ

′ ∈ cl3(φ).

Regardless of the case, θ ∈ cl(φ) follows. Thus, using Definition 5.51 and the
induction hypothesis, we obtain Sub(ψ) = {Hiθ} ∪ Sub(θ) ⊆ cl(φ).

5. ψ is of the form CK
G θ. According to Definition 5.52, CK

G θ ∈ cl(φ) means that
CK

G θ ∈ cl0(φ), so θ ∈ cl(φ) follows. Thus, using Definition 5.51 and the induction
hypothesis, we obtain Sub(ψ) = {CK

G θ} ∪ Sub(θ) ⊆ cl(φ).

6. ψ is of the form CH
G θ. According to Definition 5.52, CH

G θ ∈ cl(φ) means that
CH

G θ ∈ cl0(φ), so θ ∈ cl(φ) follows. Thus, using Definition 5.51 and the induction
hypothesis, we obtain Sub(ψ) = {CH

G θ} ∪ Sub(θ) ⊆ cl(φ).

Definition 5.55. Let Γ ⊆ LC
KH and φ ∈ LC

KH . We say that Γ is φ-consistent with respect
to KH C if:

• Γ ⊂ cl(φ) and

• Γ ⊬KH C ⊥.

Furthermore, we say that Γ is maximal φ-consistent with respect to KH C if:

• Γ is φ-consistent with respect to KH C and

• for any Γ ⊂ Γ′ ⊆ cl(φ), we have Γ′ ⊢KH C ⊥.

The following lemma will prove to be particularly useful.
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Lemma 5.56. Let φ, ψ, θ ∈ LC
KH and Γ ⊆ LC

KH be a maximal φ-consistent set with
respect to KH C . Then the following holds:

1. If ψ ∈ cl(φ), then Γ ⊢KH C ψ =⇒ ψ ∈ Γ.

2. If ¬ψ ∈ cl(φ), then ψ ∈ Γ ⇐⇒ ¬ψ ̸∈ Γ.

3. If ψ ∧ θ ∈ cl(φ), then ψ ∧ θ ∈ Γ ⇐⇒ ψ ∈ Γ and θ ∈ Γ.

Proof. 1. Let ψ ∈ cl(φ) and Γ ⊢KH C ψ. Assume towards a contradiction that
ψ ̸∈ Γ. Given the assumption that Γ is a maximal φ-consistent set with respect to
KH C , now we get Γ ∪ {ψ} ⊢KH C ⊥. According to the Deduction theorem 5.50,
Γ ⊢KH C ψ → ⊥ follows. By propositional reasoning, we obtain Γ ⊢KH C ⊥,
contradicting the φ-consistency of Γ.

2. Let ¬ψ ∈ cl(φ).

(=⇒): Let ψ ∈ Γ. Assume towards a contradiction that ¬ψ ∈ Γ. We now
obtain Γ ⊢KH C ⊥, contradicting the φ-consistency of Γ.

(⇐=): Let ¬ψ ̸∈ Γ. Given the assumption that Γ is a maximal φ-consistent set
with respect to KH C , we get Γ∪{¬ψ} ⊢KH C ⊥. According to the Deduction
theorem 5.50, Γ ⊢KH C ¬ψ → ⊥ follows. By propositional reasoning, we obtain
Γ ⊢KH C ψ. From this, using 1., we now obtain ψ ∈ Γ (note that ψ ∈ cl(φ)
according to Lemma 5.54).

3. Let ψ ∧ θ ∈ cl(φ).

(=⇒): Let ψ ∧ θ ∈ Γ. Assume towards a contradiction that ψ ̸∈ Γ. From
2. it follows that ¬ψ ∈ Γ (note that ¬ψ ∈ cl(φ) according to Lemma 5.54).
However, using ψ ∧ θ ∈ Γ and ¬ψ ∈ Γ, we obtain Γ ⊢KH C ⊥, contradicting
the φ-consistency of Γ. We prove that θ ∈ Γ holds analogously.

(⇐=): Let ψ ∈ Γ and θ ∈ Γ. Assume towards a contradiction that ψ ∧ θ ̸∈ Γ.
From 2. it now follows that ¬(ψ ∧θ) ∈ Γ (note that ¬(ψ ∧θ) ∈ cl(φ) according
to Lemma 5.54). However, from ψ ∈ Γ, θ ∈ Γ and ¬(ψ ∧ θ) ∈ Γ it follows
Γ ⊢KH C ⊥, contradicting the φ-consistency of Γ.

Lemma 5.57 (Lindenbaum lemma). Let Γ ⊆ LC
KH and φ ∈ LC

KH . If Γ is φ-consistent
with respect to KH C , then there exists a set Γ∗ ⊇ Γ such that Γ∗ is maximal φ-consistent
with respect to KH C .

Proof. Assume that Γ is φ-consistent with respect to KH C . Let |cl(φ)| = n. First, let
us enumerate all formulas from cl(φ) (without repetitions): θ0, θ1, . . . , θn−1. Next, we
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define recursively the following sequence of sets ∆i:

∆0 := Γ,

∆i+1 :=
�

∆i ∪ {θi}, if ∆i ∪ {θi} is φ-consistent with respect to KH C

∆i, otherwise

Obviously, Γ ⊆ ∆n. Each set ∆i is φ-consistent with respect to KH C , by construction.
In particular, ∆n is φ-consistent with respect to KH C . We show that ∆n is maximal
too. Assume the opposite towards a contradiction: let ∆′ be a φ-consistent set with
respect to KH C such that ∆n ⊂ ∆′. Therefore, there exists a formula θl ∈ ∆′ \ ∆n,
where 0 ≤ l ≤ n − 1. In particular, θl ̸∈ ∆l+1 ⊆ ∆n. Now, we can conclude that ∆l ∪ {θl}
is not φ-consistent with respect to KH C . However, this contradicts the φ-consistency
of ∆′ with respect to KH C given that ∆l ∪ {θl} ⊆ ∆′ holds.

Definition 5.58 (Canonical model). Let φ ∈ LC
KH . The canonical φ-model

Mφ = (W φ, πφ, Kφ
1 , . . . , Kφ

n , Hφ
1 , . . . , Hφ

n)

of KH C is defined in the following way:

1. W φ := {Γ | Γ is maximal φ-consistent set with respect to KH C };

2. ΓKφ
i ∆ iff for all σ ∈ cl(φ): Kiσ ∈ Γ → σ ∈ ∆;

3. ΓHφ
i ∆ iff for all σ ∈ cl(φ): Hiσ ∈ Γ → σ ∈ ∆;

4. πφ(p) := {Γ ∈ W φ | p ∈ Γ}.

Lemma 5.59 (Correctness lemma). For any φ ∈ LC
KH , Mφ ∈ KH holds.

Proof. We need to show that Kφ
i are equivalence relations, that Hφ

i are shift serial and
that the conditions HinK and oneH are satisfied as well.

• Kφ
i is reflexive: We need to show that ΓKφ

i Γ holds. Assume Kiθ ∈ Γ for some
θ ∈ cl(φ). Using axiom T K , more precisely ⊢KH C Kiθ → θ, we obtain Γ ⊢KH C θ
by Definition 5.49. Using Lemma 5.56 (1), we obtain θ ∈ Γ, as desired.

• Kφ
i is transitive: Assume that ΓKφ

i ∆ and ∆Kφ
i Σ. Therefore:

(∀σ ∈ cl(φ))(Kiσ ∈ Γ → σ ∈ ∆), (5.3)

(∀σ ∈ cl(φ))(Kiσ ∈ ∆ → σ ∈ Σ). (5.4)

We need to show that ΓKφ
i Σ holds too. Assume Kiθ ∈ Γ for some θ ∈ cl(φ). We

need to show θ ∈ Σ.
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1. Assume Kiθ ∈ cl3(φ) ⊂ cl(φ). Using axiom 4K , more precisely ⊢KH C

Kiθ → KiKiθ, we obtain Γ ⊢KH C KiKiθ according to Definition 5.49. Using
Lemma 5.56 (1), we obtain that KiKiθ ∈ Γ holds (note that KiKiθ ∈ cl(φ)).
According to assumption (5.3), this implies that Kiθ ∈ ∆ holds. Finally, using
assumption (5.4), we obtain θ ∈ Σ, as desired.

2. Assume Kiθ ∈ cl(φ)\cl3(φ).
– θ = Kiθ

′ for Kiθ
′ ∈ cl3(φ). Using axiom T K , more precisely ⊢KH C

Kiθ → θ, we obtain Γ ⊢KH C θ by Definition 5.49, that is, Γ ⊢KH C

Kiθ
′. Using Lemma 5.56 (1), we obtain that Kiθ

′ ∈ Γ holds. Using
axiom 4K , more precisely ⊢KH C Kiθ

′ → KiKiθ
′, we further obtain

Γ ⊢KH C KiKiθ
′ according to Definition 5.49. Using Lemma 5.56 (1),

we obtain that KiKiθ
′ ∈ Γ holds (note that KiKiθ

′ ∈ cl(φ)). According
to assumption (5.3), this implies that Kiθ

′ ∈ ∆ holds. Using axiom 4K

again, more precisely ⊢KH C Kiθ
′ → KiKiθ

′, we obtain ∆ ⊢KH C KiKiθ
′

according to Definition 5.49. Using Lemma 5.56 (1) one more time, we
further obtain that KiKiθ

′ ∈ ∆ holds (note that KiKiθ
′ ∈ cl(φ)). Finally,

using assumption (5.4), we obtain Kiθ
′ = θ ∈ Σ, as desired.

– θ = ¬Kiθ
′ for ¬Kiθ

′ ∈ cl3(φ). Using axiom T K , more precisely ⊢KH C

Kiθ → θ, we obtain Γ ⊢KH C θ by Definition 5.49, that is, Γ ⊢KH C

¬Kiθ
′. Using Lemma 5.56 (1), we obtain that ¬Kiθ

′ ∈ Γ holds. Using
axiom 5K , more precisely ⊢KH C ¬Kiθ

′ → Ki¬Kiθ
′, we further obtain

Γ ⊢KH C Ki¬Kiθ
′ according to Definition 5.49. Using Lemma 5.56 (1), we

obtain that Ki¬Kiθ
′ ∈ Γ holds (note that Ki¬Kiθ

′ ∈ cl(φ)). According
to assumption (5.3), this implies that ¬Kiθ

′ ∈ ∆ holds. Using axiom
5K again, more precisely ⊢KH C ¬Kiθ

′ → Ki¬Kiθ
′, we obtain ∆ ⊢KH C

Ki¬Kiθ
′ according to Definition 5.49. Using Lemma 5.56 (1) one more

time, we further obtain that Ki¬Kiθ
′ ∈ ∆ holds (note that Ki¬Kiθ

′ ∈
cl(φ)). Finally, using assumption (5.4), we obtain ¬Kiθ

′ = θ ∈ Σ, as
desired.

• Kφ
i is euclidean: Assume that ΓKφ

i ∆ and ΓKφ
i Σ. Therefore:

(∀σ ∈ cl(φ))(Kiσ ∈ Γ → σ ∈ ∆), (5.5)

(∀σ ∈ cl(φ))(Kiσ ∈ Γ → σ ∈ Σ). (5.6)

We need to show that ∆Kφ
i Σ holds too. Assume Kiθ ∈ ∆ for some θ ∈ cl(φ). We

need to show θ ∈ Σ.

1. Assume ¬Kiθ ∈ cl3(φ) ⊂ cl(φ). From Kiθ ∈ ∆ it follows that ¬Kiθ ̸∈ ∆
(otherwise, ∆ would not be φ-consistent with respect to KH C ). Therefore,
according to (5.5), Ki¬Kiθ ̸∈ Γ follows. Using Lemma 5.56 (1), we obtain
Γ ⊬KH C Ki¬Kiθ (note that Ki¬Kiθ ∈ cl(φ)). Using axiom 5K , more precisely,
⊢KH C ¬Kiθ → Ki¬Kiθ, we further obtain ¬Kiθ ̸∈ Γ by Definition 5.49.
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Therefore, Kiθ ∈ Γ (otherwise Γ would not be φ-consistent with respect to
KH C ). Finally, assumption (5.6) implies that θ ∈ Σ indeed holds.

2. Assume ¬Kiθ ∈ cl(φ)\cl3(φ).
– θ = Kiθ

′ for Kiθ
′ ∈ cl3(φ). Using axiom T K , more precisely ⊢KH C Kiθ →

θ, we obtain ∆ ⊢KH C θ by Definition 5.49, that is, ∆ ⊢KH C Kiθ
′. Using

Lemma 5.56 (1), we obtain that Kiθ
′ ∈ ∆ holds. Therefore, ¬Kiθ

′ ̸∈ ∆
(otherwise, ∆ would not be φ-consistent with respect to KH C ). Assump-
tion (5.5) implies that Ki¬Kiθ

′ ̸∈ Γ. Using Lemma 5.56 (1), we obtain
Γ ⊬KH C Ki¬Kiθ

′. Using axiom 5K , more precisely, ⊢KH C ¬Kiθ
′ →

Ki¬Kiθ
′, we further obtain ¬Kiθ

′ ̸∈ Γ by Definition 5.49. Lemma 5.56 (2)
implies that then Kiθ

′ ∈ Γ holds. Using axiom 4K , more precisely,
⊢KH C Kiθ

′ → KiKiθ
′ we obtain Γ ⊢KH C KiKiθ

′ by Definition 5.49.
Using Lemma 5.56 (1), we obtain KiKiθ

′ ∈ Γ (note that KiKiθ
′ ∈ cl(φ)).

Assumption (5.6) implies that Kiθ
′ = θ ∈ Σ.

– θ = ¬Kiθ
′ for ¬Kiθ

′ ∈ cl3(φ). Using axiom T K , more precisely ⊢KH C

Kiθ → θ, we obtain ∆ ⊢KH C θ by Definition 5.49, that is, ∆ ⊢KH C ¬Kiθ
′.

Using Lemma 5.56 (1), we obtain that ¬Kiθ
′ ∈ ∆ holds. Therefore,

Kiθ
′ ̸∈ ∆ (otherwise, ∆ would not be φ-consistent with respect to KH C ).

Assumption (5.5) implies that KiKiθ
′ ̸∈ Γ. Using Lemma 5.56 (1), we

obtain Γ ⊬KH C KiKiθ. Using axiom 4K , more precisely, ⊢KH C Kiθ
′ →

KiKiθ
′, we further obtain Kiθ

′ ̸∈ Γ by Definition 5.49. Lemma 5.56 (2)
implies that then ¬Kiθ

′ ∈ Γ holds. Using axiom 5K , more precisely,
⊢KH C ¬Kiθ

′ → Ki¬Kiθ
′ we obtain Γ ⊢KH C Ki¬Kiθ

′ by Definition 5.49.
Using Lemma 5.56 (1), we obtain Ki¬Kiθ

′ ∈ Γ (note that Ki¬Kiθ
′ ∈

cl(φ)). Assumption (5.6) implies that ¬Kiθ
′ = θ ∈ Σ.

• Hφ
i is shift serial: Assume that ΓHφ

i ∆. Therefore:

(∀σ ∈ cl(φ))(Hiσ ∈ Γ → σ ∈ ∆). (5.7)

We need to show that Hφ
i (∆) ̸= ∅. Using axiom HH , more precisely, ⊢KH C

Hi¬Hi⊥, we obtain Γ ⊢KH C Hi¬Hi⊥ by Definition 5.49. Using Lemma 5.56 (1),
we further obtain that Hi¬Hi⊥ ∈ Γ holds (note that Hi¬Hi⊥ ∈ cl(φ)). As-
sumption (5.7) now implies that ¬Hi⊥ ∈ ∆ (note that ¬Hi⊥ ∈ cl(φ)). As-
sume Hiθ ∈ ∆ for some θ ∈ cl(φ). Using Proposition 5.20, more precisely
⊢KH C ¬Hi⊥ → (Hiθ → θ), we get ∆ ⊢KH C θ by Definition 5.49. Finally,
according to Lemma 5.56 (1), θ ∈ ∆ (note that θ ∈ cl(φ)). Therefore, Hφ

i (∆) ̸= ∅
indeed holds since we have just shown that ∆Hφ

i ∆.

• HinK: Assume that ΓHφ
i ∆. Therefore:

(∀σ ∈ cl(φ))(Hiσ ∈ Γ → σ ∈ ∆). (5.8)

We need to show that ΓKφ
i ∆ holds too. Assume Kiθ ∈ Γ for some θ ∈ cl(φ). We

need to show θ ∈ ∆.
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– Assume Kiθ ∈ cl1(φ) ⊂ cl(φ). Using Proposition 5.16 (1), more precisely
⊢KH C Kiθ → Hiθ, we obtain Γ ⊢KH C Hiθ by Definition 5.49. Using
Lemma 5.56 (1), we now obtain that Hiθ ∈ Γ holds (note that Hiθ ∈ cl(φ)).
According to assumption (5.8), this implies that θ ∈ ∆ indeed holds.

– Assume Kiθ ∈ cl(φ)\cl1(φ).
∗ θ = ¬Hi⊥ → θ′ for Kiθ

′ ∈ cl1(φ). Using Proposition 5.16 (1), more
precisely ⊢KH C Kiθ → Hiθ, we obtain Γ ⊢KH C Hiθ by Definition 5.49,
that is, Γ ⊢KH C Hi(¬Hi⊥ → θ′). Using Lemma 5.56 (1), we now obtain
that Hi(¬Hi⊥ → θ′) ∈ Γ holds (note that Hi(¬Hi⊥ → θ′) ∈ cl(φ)).
According to assumption (5.8), this implies that ¬Hi⊥ → θ′ = θ ∈ ∆
indeed holds.

∗ θ = Kiθ
′ for Kiθ

′ ∈ cl3(φ). Using Proposition 5.16 (1), more precisely
⊢KH C Kiθ → Hiθ, we obtain Γ ⊢KH C Hiθ by Definition 5.49, that is,
Γ ⊢KH C HiKiθ

′. Using Lemma 5.56 (1), we now obtain that HiKiθ
′ ∈ Γ

holds (note that HiKiθ
′ ∈ cl(φ)). According to assumption (5.8), this

implies that Kiθ
′ = θ ∈ ∆ indeed holds.

∗ θ = ¬Kiθ
′ for ¬Kiθ

′ ∈ cl3(φ). Using Proposition 5.16 (1), more precisely
⊢KH C Kiθ → Hiθ, we obtain Γ ⊢KH C Hiθ by Definition 5.49, that is,
Γ ⊢KH C Hi¬Kiθ

′. Using Lemma 5.56 (1), we now obtain that Hi¬Kiθ
′ ∈

Γ holds (note that Hi¬Kiθ
′ ∈ cl(φ)). According to assumption (5.8), this

implies that ¬Kiθ
′ = θ ∈ ∆ indeed holds.

• oneH: Let Γ, ∆ ∈ W φ. Assume that Hφ
i (Γ) ̸= ∅ (i.e., that there exists Γ′ ∈ W φ

such that ΓHφ
i Γ′), Hφ

i (∆) ̸= ∅ (i.e., that there exists ∆′ ∈ W φ such that ∆Hφ
i ∆′)

and that ΓKφ
i ∆. Therefore:

¬Hi⊥ ∈ Γ2 (5.9)

¬Hi⊥ ∈ ∆3, (5.10)

(∀σ ∈ cl(φ))(Kiσ ∈ Γ → σ ∈ ∆). (5.11)

We need to show that ΓHφ
i ∆ holds too. Assume Hiθ ∈ Γ for some θ ∈ cl(φ). We

need to show θ ∈ ∆.

1. Assume Hiθ ∈ cl3(φ) ⊂ cl(φ).
– θ = ¬Hi⊥. Assumption (5.10) immediately implies θ ∈ ∆.
– Kiθ ∈ cl1(φ). Using axiom KH , more precisely ⊢KH C Hiθ ↔ �¬Hi⊥ →

Ki(¬Hi⊥ → θ)
�
, we obtain Γ ⊢KH C ¬Hi⊥ → Ki(¬Hi⊥ → θ) by Defini-

tion 5.49. Using the Deduction theorem 5.50 and assumption (5.9), we
further obtain Γ ⊢KH C Ki(¬Hi⊥ → θ). Lemma 5.56 (1) now implies that

2Otherwise, Hi⊥ ∈ Γ (according to Lemma 5.56 (2)) which implies that it must be Hφ
i (Γ) = ∅ since

no φ-consistent set can contain ⊥.
3Otherwise, Hi⊥ ∈ ∆ (according to Lemma 5.56 (2)) which implies that it must be Hφ

i (∆) = ∅ since
no φ-consistent set can contain ⊥.
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Ki(¬Hi⊥ → θ) ∈ Γ (note that Ki(¬Hi⊥ → θ) ∈ cl(φ)). According to
assumption (5.11), this now implies that ¬Hi⊥ → θ ∈ ∆ holds. Assump-
tion (5.10) and Definition 5.49 now imply that ∆ ⊢KH C θ holds. Finally,
according to Lemma 5.56 (1), θ ∈ ∆ holds.

– θ = ¬Hi⊥ → θ′ for Kiθ
′ ∈ cl1(φ). First of all, assumption Hi(¬Hi⊥ →

θ′) = Hiθ ∈ Γ implies that Hiθ
′ ∈ Γ also holds since Hi¬Hi⊥ ∈ Γ. Using

axiom KH , more precisely ⊢KH C Hiθ
′ ↔ �¬Hi⊥ → Ki(¬Hi⊥ → θ′)

�
,

we obtain Γ ⊢KH C ¬Hi⊥ → Ki(¬Hi⊥ → θ′) by Definition 5.49. Using
the Deduction theorem 5.50 and assumption (5.9), we further obtain
Γ ⊢KH C Ki(¬Hi⊥ → θ′). Lemma 5.56 (1) implies that Ki(¬Hi⊥ → θ′) ∈
Γ. According to assumption (5.11), ¬Hi⊥ → θ′ = θ ∈ ∆ hence holds.

2. Assume Hiθ ∈ cl(φ) \ cl3(φ).
– θ = Kiθ

′ for Kiθ
′ ∈ cl3(φ). Using Proposition 5.20, more precisely

⊢KH C ¬Hi⊥ → (Hiθ → θ), we obtain Γ ⊢KH C θ, that is, Γ ⊢KH C Kiθ
′

by Definition 5.49. Lemma 5.56 (1) now implies that Kiθ
′ ∈ Γ. Using

axiom 4K , more precisely ⊢KH C Kiθ
′ → KiKiθ

′, we further obtain
Γ ⊢KH C KiKiθ

′ according to Definition 5.49. Lemma 5.56 (1) now implies
that KiKiθ

′ ∈ Γ (note that KiKiθ
′ ∈ cl(φ)). Finally, assumption (5.11)

implies that Kiθ
′ = θ ∈ ∆ indeed holds.

– θ = ¬Kiθ
′ for ¬Kiθ

′ ∈ cl3(φ). Using ⊢KH C ¬Hi⊥ → (Hiθ → θ), we ob-
tain Γ ⊢KH C θ, that is, Γ ⊢KH C ¬Kiθ

′ by Definition 5.49. Lemma 5.56 (1)
implies that ¬Kiθ

′ ∈ Γ. Using axiom 5K , more precisely ⊢KH C ¬Kiθ
′ →

Ki¬Kiθ
′, we further obtain Γ ⊢KH C Ki¬Kiθ

′ according to Definition 5.49.
Lemma 5.56 (1) now implies that Ki¬Kiθ

′ ∈ Γ (note that Ki¬Kiθ
′ ∈

cl(φ)). Finally, assumption (5.11) implies that ¬Kiθ
′ = θ ∈ ∆ indeed

holds.

For the purpose of proving the following lemmas we introduce some notations:

• Γ := �
ξ∈Γ

ξ, for any finite set of formulas Γ ⊂ LC
KH ;

• ∼ξ :=
�

τ, if ξ = ¬τ

¬ξ, otherwise
, for any ξ ∈ LC

KH .

It is easy to prove:

Lemma 5.60. For any φ, ξ ∈ LC
KH :

1. ⊢KH C ∼ξ ↔ ¬ξ;

2. If ξ ∈ cl(φ), then ∼ξ ∈ cl(φ).
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Lemma 5.61. For any φ ∈ LC
KH :

1. ⊢KH C
�

Γ∈W φ
Γ;

2. ⊢KH C ¬Γ ∨ ¬∆ for any Γ, ∆ ∈ W φ such that Γ ̸= ∆.

Proof. 1. Assume the opposite towards a contradiction. By distributing ∨ through
Γ = �

ξ∈Γ
ξ, we get an equivalent conjuction of disjunctions, wherein each disjunction

contains exactly one formula from each Γ ∈ W φ. By assumption, that conjuction
is not derivable in KH C . Therefore, at least one of its conjuncts is not derivable
in KH C , that is, for some σΓ ∈ Γ for each Γ ∈ W φ, we have

⊬KH C

�
Γ∈W φ

σΓ.

From this, by propositional reasoning, we obtain ⊬KH C
�

Γ∈W φ
∼ σΓ → ⊥ which

implies that {∼σΓ | Γ ∈ W φ} is φ-consistent with respect to KH C (according to
the previous lemma, ∼σΓ ∈ cl(φ) for any Γ ∈ W φ). According to the Lindenbaum
lemma 5.57, {∼ σΓ | Γ ∈ W φ} ⊆ ∆ for some ∆ ∈ W φ. Thus, ∼ σ∆ ∈ ∆, in
particular. However, this contradicts the φ-consistency of ∆ since σ∆ ∈ ∆.

2. Assume Γ ̸= ∆ for some Γ, ∆ ∈ W φ. Given that Γ ∪ ∆ ⊃ Γ (as well as Γ ∪ ∆ ⊃ ∆),
the set Γ ∪ ∆ cannot be φ-consistent with respect to KH C by the maximality of
Γ (as well as by the maximality of ∆). Since we do have Γ ∪ ∆ ⊂ cl(φ), it must be

Γ ∪ ∆ ⊢KH C ⊥.

From this, using the Deduction theorem 5.50, we obtain ⊢KH C Γ ∧ ∆ → ⊥. Finally,
by propositional reasoning, we get ⊢KH C ¬Γ ∨ ¬∆.

Corollary 5.62. For any φ ∈ LC
KH and any W ⊆ W φ,

⊢KH C

�
Γ∈W

Γ ↔



∆∈W φ\W
¬∆.

Proof. Let φ ∈ LC
KH and W ⊆ W φ. From Lemma 5.61 (1), we immediately get ⊢KH C�

∆∈W φ\W
¬∆ → �

Γ∈W
Γ by propositional reasoning. Using Lemma 5.61 (2), it is easy to

show that, for any Γ ∈ W , we have

⊢KH C Γ →



∆∈W φ\{Γ}
¬∆.

Therefore, for any Γ ∈ W , we also have ⊢KH C Γ → �
∆∈W φ\W

¬∆. Finally, using

propositional reasoning, we obtain ⊢KH C
�

Γ∈W
Γ → �

∆∈W φ\W
¬∆.
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Lemma 5.63 (Truth lemma). For any φ ∈ LC
KH , any maximal φ-consistent set Γ with

respect to KH C , and any ψ ∈ cl(φ),

ψ ∈ Γ ⇐⇒ Mφ, Γ |= ψ.

Proof. We proceed by induction on the structure of ψ.

Base case: If ψ = p, then the statement of the theorem follows from Definition 5.58 (4).

Induction step:

1. If ψ is of the form ¬θ, then ψ ∈ Γ is equivalent to θ ̸∈ Γ by Lemma 5.56 (2). By
the induction hypothesis, this is further equivalent to Mφ, Γ ̸|= θ, i.e., Mφ, Γ |= ψ.

2. If ψ is of the form θ1 ∧ θ2, then θ1 ∧ θ2 ∈ Γ is equivalent to θ1 ∈ Γ and θ2 ∈ Γ
by Lemma 5.56 (3). By the induction hypothesis, this is further equivalent to
Mφ, Γ |= θ1 and Mφ, Γ |= θ2, i.e., Mφ, Γ |= θ1 ∧ θ2. In other words, Mφ, Γ |= ψ
holds.

3. Assume that ψ is of the form Kiθ.

(=⇒): Assume that Kiθ ∈ Γ. Take an arbitrary set ∆ such that ΓKφ
i ∆. By

Definition 5.58 (2), θ ∈ ∆ holds. Using the induction hypothesis, we now
obtain Mφ, ∆ |= θ. Therefore, Mφ, Γ |= Kiθ indeed holds.
(⇐=): Assume that Mφ, Γ |= Kiθ. We first show that the set

{σ | Kiσ ∈ Γ} ∪ {¬θ}

is not φ-consistent with respect to KH C (note that ¬θ ∈ cl(φ)). Assume
the opposite towards a contradiction. Then, according to the Lindenbaum
lemma 5.57 there exists a maximal φ-consistent set ∆ with respect to KH C
such that ∆ ⊃ {σ | Kiσ ∈ Γ} ∪ {¬θ}. According to Definition 5.58 (2),
we now obtain that ΓKφ

i ∆ holds. By assumption, Mφ, ∆ |= θ follows. By
applying the induction hypothesis, we now obtain θ ∈ ∆, contradicting the
φ-consistency of ∆. Thus, ⊢KH C

�
Kiσ∈Γ σ ∧ ¬θ → ⊥. Using propositional

reasoning, we obtain ⊢KH C
�

Kiσ∈Γ σ → θ. Using KH C reasoning, we now
obtain ⊢KH C

�
Kiσ∈Γ Kiσ → Kiθ. Thus, Γ ⊢KH C Kiθ, by Definition 5.49. By

applying Lemma 5.56 (1), we finally obtain Kiθ ∈ Γ.

4. Assume that ψ is of the form Hiθ.

(=⇒): Assume that Hiθ ∈ Γ. Take an arbitrary set ∆ such that ΓHφ
i ∆. By

Definition 5.58 (3), θ ∈ ∆ holds. Using the induction hypothesis, we now
obtain Mφ, ∆ |= θ. Therefore, Mφ, Γ |= Hiθ indeed holds.
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(⇐=): Assume that Mφ, Γ |= Hiθ. We first show that the set

{σ | Hiσ ∈ Γ} ∪ {¬θ}

is not φ-consistent with respect to KH C (note that ¬θ ∈ cl(φ)). Assume
the opposite towards a contradiction. Then, according to the Lindenbaum
lemma 5.57 there exists a maximal φ-consistent set ∆ with respect to KH C
such that ∆ ⊃ {σ | Hiσ ∈ Γ} ∪ {¬θ}. According to Definition 5.58 (3),
we now obtain that ΓHφ

i ∆ holds. By assumption, Mφ, ∆ |= θ follows. By
applying the induction hypothesis, we now obtain θ ∈ ∆, contradicting the
φ-consistency of ∆. Thus, ⊢KH C

�
Hiσ∈Γ σ ∧ ¬θ → ⊥. Using propositional

reasoning, we obtain ⊢KH C
�

Hiσ∈Γ σ → θ. Using KH C reasoning, we now
obtain ⊢KH C

�
Hiσ∈Γ Hiσ → Hiθ. Thus, Γ ⊢KH C Hiθ, by Definition 5.49. By

applying Lemma 5.56 (1), we finally obtain Hiθ ∈ Γ.

5. Assume that ψ is of the form CK
G θ.

(=⇒): Assume that CK
G θ ∈ Γ. In order to show Mφ, Γ |= CK

G θ, we need to
show that Mφ, ∆n |= θ holds for any sequence ΓKφ

1 ∆1 . . . Kφ
n∆n.

Let ∆0 := Γ. We first show by induction on n ≥ 0 that CK
G θ ∈ ∆n:

– CK
G θ ∈ ∆0 holds by assumption.

– Assume that CK
G θ ∈ ∆n−1. Using MixK , we obtain ∆n−1 ⊢KH C EH

G (θ ∧
CK

G θ). By applying Lemma 5.56 (1), we obtain EK
G (θ ∧ CK

G θ) ∈ ∆n−1
(note that EK

G (θ ∧ CK
G θ) ∈ cl(φ) since CK

G θ ∈ cl(φ)). By applying Lemma
5.56 (3), we further obtain Kn(θ ∧ CK

G θ) ∈ ∆n−1, in particular. Thus,
θ ∧CK

G θ ∈ ∆n according to Definition 5.58 (3). Finally, CK
G θ ∈ ∆n follows

according to Lemma 5.56 (3).
Now that we have CK

G θ ∈ ∆n, ∆n ⊢KH C EK
G (θ ∧ CK

G θ) follows according to
MixK . By applying Lemma 5.56 (1), we now obtain EK

G (θ ∧ CK
G θ) ∈ ∆n

(note that EK
G (θ ∧ CK

G θ) ∈ cl(φ) since CK
G θ ∈ cl(φ)). From this, using

⊢KH C EK
G θ → θ, we obtain that ∆n ⊢KH C θ holds too. By applying

Lemma 5.56 (1), we further obtain θ ∈ ∆n (note that θ ∈ cl(φ)). Finally,
by applying the induction hypothesis, we obtain Mφ, ∆n |= θ. Therefore,
Mφ, Γ |= CK

G θ.

(⇐=): Assume that Mφ, Γ |= CK
G θ. Let W := {∆ ∈ W φ | Mφ, ∆ |= CK

G θ}.
We first show the following two things:

a) ⊢KH C ∆ → Kiθ for all i ∈ G and ∆ ∈ W and
b) ⊢KH C ∆ → Ki¬Σ for all i ∈ G, ∆ ∈ W , and Σ ∈ W φ\W .

113



5. A new hope

Proof of (a): Let i ∈ G and ∆ ∈ W . Therefore, Mφ, ∆ |= CH
K θ. This implies

that, in particular, Mφ, ∆ |= Kiθ holds too. As in case 3, it can be shown that
⊢KH C

�
Kiσ∈∆ Kiσ → Kiθ holds because the set {σ | Kiσ ∈ ∆} ∪ {¬θ} is not

φ-consistent with respect to KH C . Thus, ⊢KH C ∆ → Kiθ indeed holds.
Proof of (b): Let i ∈ G, ∆ ∈ W and Σ ∈ W φ\W . Therefore, Mφ, ∆ |= CK

G θ
and Mφ, Σ ̸|= CK

G θ. From this we get that, in particular, ∆Kφ
i Σ does not hold.

This means that τ ̸∈ Σ for some Kiτ ∈ ∆, where τ ∈ cl(φ).

Therefore:
1. ¬τ ∈ Σ for some Kiτ ∈ ∆ Lemma 5.56 (2)
2. ⊢KH C Σ → ¬τ for some Kiτ ∈ ∆ by prop. reasoning from 1.
3. ⊢KH C τ → ¬Σ for some Kiτ ∈ ∆ by prop. reasoning from 2.
4. ⊢KH C Ki(τ → ¬Σ) for some Kiτ ∈ ∆ by NecK from 3.
5. ⊢KH C Kiτ → Ki¬Σ for some Kiτ ∈ ∆ by KH C reasoning from 4.
6. ⊢KH C ∆ → Ki¬Σ by prop. reasoning from 5.

By combining (a) and (b), we obtain that, for all i ∈ G and ∆ ∈ W , the following
holds:

⊢KH C ∆ → Ki(θ ∧



Σ∈W φ\W
¬Σ). (5.12)

Using Corollary 5.62, we obtain ⊢KH C ∆ → Ki(θ ∧ �
∆∈W

∆). Since (5.12) holds for

all i ∈ G and ∆ ∈ W , we get ⊢KH C
�

∆∈W
∆ → EK

G (θ ∧ �
∆∈W

∆). The application

of IndK now results in ⊢KH C
�

∆∈W
∆ → CK

G θ. Thus, ⊢KH C Γ → CK
G θ holds,

by propositional reasoning, because Γ ∈ W by assumption. This means that
Γ ⊢KH C CK

G θ. Finally, by applying Lemma 5.56 (1), we obtain CK
G θ ∈ Γ.

6. Assume that ψ is of the form CH
G θ.

(=⇒): Assume that CH
G θ ∈ Γ. In order to show Mφ, Γ |= CH

G θ, we need to
show that Mφ, ∆n |= θ holds for any sequence ΓHφ

1 ∆1 . . . Hφ
n∆n.

Let ∆0 := Γ. We first show by induction on n ≥ 0 that CH
G θ ∈ ∆n:

– CH
G θ ∈ ∆0 holds by assumption.

– Assume that CH
G θ ∈ ∆n−1. Using MixH , we obtain ∆n−1 ⊢KH C EH

G (θ ∧
CH

G θ). By applying Lemma 5.56 (1), we obtain EH
G (θ ∧ CH

G θ) ∈ ∆n−1
(note that EH

G (θ ∧ CH
G θ) ∈ cl(φ) since CH

G θ ∈ cl(φ)). By applying Lemma
5.56 (3), we further obtain Hn(θ ∧ CH

G θ) ∈ ∆n−1, in particular. Thus,
θ ∧ CH

G θ ∈ ∆n according to Definition 5.58 (3). Finally, CH
G θ ∈ ∆n follows

according to Lemma 5.56 (3).
Now that we have CH

G θ ∈ ∆n, ∆n ⊢KH C EH
G (θ ∧ CH

G θ) follows according to
MixH .
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(⇐=): Assume that Mφ, Γ |= CH
G θ. Let

W := {∆ ∈ W φ | Mφ, ∆ |= CH
G θ}.

We first show the following two things:

a) ⊢KH C ∆ → Hiθ for all i ∈ G and ∆ ∈ W and
b) ⊢KH C ∆ → Hi¬Σ for all i ∈ G, ∆ ∈ W , and Σ ∈ W φ\W .

Proof of (a): Let i ∈ G and ∆ ∈ W . Therefore, Mφ, ∆ |= CH
G θ. This

implies that, in particular, Mφ, ∆ |= Hiθ holds too. As in the previous
case, it can be shown that ⊢KH C

�
Hiσ∈∆ Hiσ → Hiθ holds because the set

{σ | Hiσ ∈ ∆} ∪ {¬θ} is not φ-consistent with respect to KH C . Thus,
⊢KH C ∆ → Hiθ indeed holds.
Proof of (b): Let i ∈ G, ∆ ∈ W and Σ ∈ W φ\W . Therefore, Mφ, ∆ |= CH

G θ
and Mφ, Σ ̸|= CH

G θ. From this we get that, in particular, ∆Hφ
i Σ does not

hold. This means that τ ∉ Σ for some Hiτ ∈ ∆, where τ ∈ cl(φ).

Therefore:
1. ¬τ ∈ Σ for some Hiτ ∈ ∆ Lemma 5.56 (2)
2. ⊢KH C Σ → ¬τ for some Hiτ ∈ ∆ by prop. reasoning from 1.
3. ⊢KH C τ → ¬Σ for some Hiτ ∈ ∆ by prop. reasoning from 2.
4. ⊢KH C Hi(τ → ¬Σ) for some Hiτ ∈ ∆ by NecH from 3.
5. ⊢KH C Hiτ → Hi¬Σ for some Hiτ ∈ ∆ by KH C reasoning from 4.
6. ⊢KH C ∆ → Hi¬Σ by prop. reasoning from 5.

By combining (a) and (b), we obtain that, for all i ∈ G and ∆ ∈ W , the following holds:

⊢KH C ∆ → Hi(θ ∧



Σ∈W φ\W
¬Σ). (5.13)

Using Corollary 5.62, we obtain ⊢KH C ∆ → Hi(θ ∧ �
∆∈W

∆). Since (5.13) holds for all

i ∈ G and ∆ ∈ W , we get ⊢KH C
�

∆∈W
∆ → EH

G (θ ∧ �
∆∈W

∆). The application of IndH

now results in ⊢KH C
�

∆∈W
∆ → CH

G θ. Thus, ⊢KH C Γ → CH
G θ holds, by propositional

reasoning, because Γ ∈ W by assumption. This means that Γ ⊢KH C CH
G θ. Finally, by

applying Lemma 5.56 (1), we obtain CH
G θ ∈ Γ.

Finally, we obtain:

Theorem 5.64 (Soundness and completeness). The axiom system KH C is sound and
complete with respect to the KH class of models.
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Proof. Soundness: For an arbitrary φ ∈ LC
KH , it follows by induction on the length of the

derivation of φ that if φ is KH C -provable, then it is also valid with respect to class KH.

Completeness: We prove the contrapositive. Let ⊬KH C φ. It follows that {¬φ} is
φ-consistent with respect to KH C and, as such, it is contained in some maximal φ-
consistent set with respect to KH C , i.e., ¬φ ∈ Γ for some Γ ∈ W φ, according to the
Lindenbaum lemma 5.57. By applying the previous theorem, we obtain Mφ, Γ |= ¬φ, i.e.,
Mφ, Γ ̸|= φ. Therefore, KH ̸|= φ follows, since Mφ ∈ KH (as shown in Lemma 5.59).

Corollary 5.65. The axiom system KH C + Byzf is sound and complete with respect
to the KHn−f class of models.

5.5 Finite model property and decidability
Definition 5.66. A set of formulas Γ ⊆ LH is subformula-closed if for all formulas φ
and ψ such that φ ∈ Γ and ψ is a subformula of φ, it holds that ψ ∈ Γ.

Definition 5.67 (Filtration). Let M = (W, π, H1, . . . , Hn) ∈ KB4n and Γ ⊆ LH be a
subformula-closed set of formulas. Let ∼Γ be the relation on the worlds of M defined by:

w ∼Γ v

iff
(∀φ ∈ Γ)(M, w |= φ ⇐⇒ M, v |= φ)

Note that ∼Γ is an equivalence relation. We denote the equivalence class of a world w
with respect to Γ by |w|Γ. Let

WΓ := {|w|Γ | w ∈ W}.

Suppose Mf
Γ is any model (W f , πf , Hf

1 , . . . , Hf
n) such that:

1. W f = WΓ.

2. If (w, v) ∈ Hi then (|w|Γ, |v|Γ) ∈ Hf
i .

3. If (|w|Γ, |v|Γ) ∈ Hf
i then for all Hiφ ∈ Γ:

a) if M, w |= Hiφ then M, v |= Hiφ ∧ φ,
b) if M, v |= Hiφ then M, w |= Hiφ ∧ φ,

4. πf (p) = {|w|Γ | M, w |= p}, for all atomic propositions p ∈ Γ.

Then Mf
Γ is called a filtration of M through Γ.
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Lemma 5.68 (Filtration lemma). Let Mf
Γ be a filtration of M ∈ KB4n through a

subformula-closed set Γ ⊆ LH . Then, for all formulas φ ∈ Γ and all worlds w ∈ M , we
have

M, w |= φ iff Mf
Γ , |w|Γ |= φ.

Proof. We proceed by induction on the structure of φ.

Base case: If φ is p ∈ Prop, then

M, w |= p iff Mf
Γ , |w|Γ |= p

follows immediately according to Definition 5.67 (4).

Induction step:

1. If φ is of the form ¬ψ, then M, w |= ¬ψ iff M, w ̸|= ψ iff Mf
Γ , |w|Γ ̸|= ψ by

the induction hypothesis (ψ ∈ Γ since φ ∈ Γ and Γ is subformula-closed) iff
Mf

Γ , |w|Γ |= ¬ψ.

2. If φ is of the form ψ1 ∧ ψ2, then M, w |= ψ1 ∧ ψ2 iff M, w |= ψ1 and M, w |= ψ2
iff Mf

Γ , |w|Γ |= ψ1 by the induction hypothesis (ψ1 ∈ Γ since φ ∈ Γ and Γ is
subformula-closed) and Mf

Γ , |w|Γ |= ψ2 by the induction hypothesis (ψ2 ∈ Γ since
φ ∈ Γ and Γ is subformula-closed) iff Mf

Γ , |w|Γ |= ψ1 ∧ ψ2.

3. Assume that φ is of the form Hiψ.

(=⇒): Assume M, w |= Hiψ. Take an arbitrary |v|Γ ∈ W f such that (|w|Γ, |v|Γ) ∈
Hf

i . According to Definition 5.67 (3), this means that for all Hiφ ∈ Γ, if
M, w |= Hiφ then M, v |= Hiφ ∧ φ (and if M, v |= Hiφ then M, w |= Hiφ ∧ φ).
Since M, w |= Hiψ, it follows that M, v |= ψ, in particular. From this, by the
induction hypothesis (ψ ∈ Γ since φ ∈ Γ and Γ is subformula-closed), we get
Mf

Γ , |v|Γ |= ψ. Therefore, Mf
Γ , |w|Γ |= Hiψ indeed holds.

(⇐=): Assume Mf
Γ , |w|Γ |= Hiψ. This means that for all (|w|Γ, |v|Γ) ∈ Hf

i , it holds
that Mf

Γ , |v|Γ |= ψ. From this, by the induction hypothesis (ψ ∈ Γ since
φ ∈ Γ and Γ is subformula-closed), we get M, v |= ψ for all (|w|Γ, |v|Γ) ∈
Hf

i . Take an arbitrary v ∈ W such that (w, v) ∈ Hi. Therefore, according
to Definition 5.67 (2), (|w|Γ, |v|Γ) ∈ Hf

i , which further implies M, v |= ψ.
Consequently, M, w |= Hiψ follows.

Lemma 5.69. Mf
Γ ∈ KB4n.

Proof. We need to show that the relations Hf
i are symmetric and transitive.

• Assume (|w|Γ, |v|Γ) ∈ Hf
i . Then (|v|Γ, |w|Γ) ∈ Hf

i follows immediately from Defini-
tion 5.67 (3).
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• Assume (|w|Γ, |v|Γ) ∈ Hf
i and (|v|Γ, |u|Γ) ∈ Hf

i . Take an arbitrary Hiφ ∈ Γ and
assume M, w |= Hiφ. Then, M, v |= Hiφ since M, v |= Hiφ ∧ φ. Consequently,
M, u |= Hiφ ∧ φ. Conversely, assume M, u |= Hiφ. Then, M, v |= Hiφ since
M, v |= Hiφ ∧ φ. Consequently, M, w |= Hiφ ∧ φ. It follows that (|w|Γ, |u|Γ) ∈ Hf

i

indeed holds.

Lemma 5.70. Let Γ ⊆ LH be a finite subformula-closed set of formulas. For any model
M ∈ KB4n, if Mf

Γ is a filtration of M through Γ, then Mf
Γ is finite.

Proof. Take an arbitrary M ∈ KB4n and let Mf
Γ = (W f , πf , Hf

1 , . . . , Hf
n) be a filtration

of M through Γ. Note that W f = WΓ. Let g : WΓ → P(Γ) be the function defined by

g(|w|Γ) := {φ ∈ Γ | M, w |= φ}.

It follows from the definition of ∼Γ that g is well-defined and injective. Thus, the size of
WΓ is at most 2n, where n is the size of Γ.

Theorem 5.71. The logic of H has the FMP.

Proof. Take an arbitrary φ ∈ LH . If H ⊬ φ, there exists a model M ∈ KB4n of H
such that M ̸|= φ (according to Theorem 5.4). Let Mf

Sub(φ) be a filtration of M through
Sub(φ) (which is a finite set). By the Filtration lemma 5.68, Mf

Sub(φ) ̸|= φ also holds.
Therefore, Mf

Sub(φ) is a finite model of H (according to Lemma 5.69 and Lemma 5.70)
that is a countermodel for φ.

Therefore, according to Theorem 2.26, we obtain:

Corollary 5.72. (Decidability) The logic of H is decidable.

Theorem 5.73. The logic of KH C has the FMP.

Proof. If KH C ⊬ φ, then the canonical φ-model Mφ is a finite countermodel for φ (as
already seen in the proof of Theorem 5.64).

Therefore, according to Theorem 2.26, we obtain:

Corollary 5.74 (Decidability). The logic of KH C is decidable.

Definition 5.75. An axiom system L1 in a language L1 is conservative over another
axiom system L2 in a language L2 ⊆ L1, if:

• L1 ⊢ φ whenever L2 ⊢ φ for any φ ∈ L1 and

• L2 ⊢ φ whenever L1 ⊢ φ for any φ ∈ L2.
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Lemma 5.76. KH C is conservative over KH .

Proof. If KH ⊢ φ for φ ∈ LC
KH , then KH C ⊢ φ follows immediately according to

Definition 5.38. If KH ⊬ φ for φ ∈ LKH , then KH ̸|= φ by Theorem 5.18. Therefore,
KH C ⊬ φ by Theorem 5.64.

Corollary 5.77. The logic of KH has the FMP.

Therefore, according to Theorem 2.26, we obtain:

Corollary 5.78 (Decidability). The logic of KH is decidable.

5.6 Defining common eventual hope
Inspired by a related approach described in [HM90, FHMV95], we will show how to
introduce common eventual hope, albeit without using a greatest fixpoint operator [Tar55].

As a first step, we extend the language LH by adding the temporal modality eventually
♢ and denote the extended language with L♢.

Given an interpreted system I = (R, π), we define

(I, r, t) |= ♢φ iff (I, r, t′) |= φ for some t′ ≥ t.

We further define mutual eventual hope of φ (in the language L♢)

E♢H
G φ :=



i∈G

♢Hiφ,

where ∅ ̸= G ⊆ A. Thus, we obtain

(I, r, t) |= E♢H
G φ iff (I, r, t) |= ♢Hiφ for all i ∈ G.

We also associate with a formula φ ∈ L♢ its intension [FHMV95] in the following way:

φI := {(r, t) | (I, r, t) |= φ}.

As a next step, we use LCH
♢ to denote the language obtained by extending L♢ with a

unary modal operator for common eventual hope C♢H
G , and we use LCH

♢x to denote the
language obtained by extending LCH

♢ with a single propositional variable x.

We call an occurrence of the propositional variable x in a formula φ free, if it is outside
the scope of the operator C♢H

G . We say that a free occurrence of x in a formula φ is
positive (negative) if it is in the scope of an even (odd) number of negation symbols.
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5. A new hope

Definition 5.79. Let A, B ⊆ R × N0 and let ∅ ̸= G ⊆ A. We associate a function with
the Boolean connectives and modal operators of the language LCH

♢x in the following way:

1. f¬(A) = (R × N0) \ A (the complement of A),

2. f∧(A, B) = A ∩ B,

3. fHi(A) = {(r, t) | (r′, t′) ∈ A whenever (r, t)Hi(r′, t′)},

4. f♢(A) = {(r, t) | (r, t′) ∈ A for some t′ ≥ t},

Definition 5.80. Let f : R × N0 → R × N0. The function f is monotonically increasing
(resp. decreasing) iff for all A, B ⊆ R × N0, A ⊆ B implies f(A) ⊆ f(B) (resp.
f(A) ⊇ f(B)).

Definition 5.81. Let f : (R×N0)×(R×N0) → R×N0. The function f is monotonically
increasing (resp. decreasing) iff for all A, A′, B, B′ ⊆ R × N0, A ⊆ A′ and B ⊆ B′ imply
f(A, B) ⊆ f(A′, B′) (resp. f(A, B) ⊇ f(A′, B′)).

Lemma 5.82. The functions defined in Definition 5.79 are monotonically increasing,
except the function associated with negation which is monotonically decreasing.

Proof. Assume that A ⊆ A′ ⊆ R × N0 and B ⊆ B′ ⊆ R × N0 and ∅ ̸= G ⊆ A. Then, we
obtain the following:

1. f¬(A) = A ⊇ A′ = f¬(A′),

2. f∧(A, B) = A ∩ B ⊆ A′ ∩ B′ = f∧(A′, B′),

3. fHi(A) = {(r, t) | (r′, t′) ∈ A whenever (r, t)Hi(r′, t′)} ⊆ {(r, t) | (r′, t′) ∈
A′ whenever (r, t)Hi(r′, t′)} = fHi(A′),

4. f♢(A) = {(r, t) | (r, t′) ∈ A for some t′ ≥ t} ⊆ {(r, t) | (r, t′) ∈ A′ for some t′ ≥
t} = f♢(A′).

Definition 5.83. We define fφ(A) for every set A ⊆ R×N0 by induction on the structure
of φ ∈ LCH

♢x as follows:

1. fp(A) = pI , where p ∈ Prop,

2. fx(A) = A,

3. f¬φ(A) = f¬(fφ(A)),

4. fφ∧ψ(A) = f∧(fφ(A), fψ(A)),

5. fHiφ(A) = fHi(fφ(A)),
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6. f♢φ(A) = f♢(fφ(A)),

7. fC♢H
G φ(A) = �{B ⊆ R × N0 | B ⊆ fE♢H

G (φ∧x)(B)}.

Notice that the function fC♢H
G φ does not depend on the set A in any way, i.e., it is a

constant function. As we will show in Lemma 5.88, functions associated with formulas
that have no occurrences of x are constant as well.

Lemma 5.84. If every free occurrence of x in φ ∈ LCH
♢x is positive (resp. negative), then

the function fφ is monotonically increasing (resp. monotonically decreasing).

Proof. We proceed by induction on the structure of φ.

Base case: If φ is p, then there are no occurrences of x in φ, so, the statement of
the lemma vacuously holds. If φ is x, we immediately obtain that fx is monotonically
increasing because it is an identity function. If φ is ¬x, we obtain that f¬x is monotoni-
cally decreasing because the composition of a monotonically decreasing function and a
monotonically increasing function is a monotonically decreasing function.

Induction step:

1. Assume that φ is of the form ¬ψ.

a) If every free occurrence of x in φ is positive, then every free occurrence of x
in ψ is negative. Therefore, using the induction hypothesis, we obtain that
the function fψ is monotonically decreasing. Finally, f¬ψ is monotonically
increasing as a composition of two monotonically decreasing functions.

b) If every free occurrence of x in φ is negative, then every free occurrence of x in
ψ is positive. Similarly to the first case, we conclude that f¬ψ is monotonically
decreasing.

2. Assume that φ is of the form φ1 ∧ φ2.

a) If every free occurrence of x in φ is positive, then every free occurrence of
x in φ1 and φ2 is positive. Using the induction hypothesis and the fact
that the composition of monotonically increasing functions is a monotonically
increasing function, we obtain that fφ1∧φ2 is indeed monotonically increasing.

b) If every free occurrence of x in φ is negative, then every free occurrence of x
in φ1 and φ2 is negative. Similarly to the first case, we conclude that fφ1∧φ2

is monotonically decreasing.

3. Assume that φ is of the form Hiψ.

a) If every free occurrence of x in φ is positive, then every free occurrence of x in
ψ is positive. Using the induction hypothesis and the fact that the composition
of monotonically increasing functions is a monotonically increasing function,
we obtain that fHiψ is indeed monotonically increasing.
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b) If every free occurrence of x in φ is negative, then every free occurrence
of x in ψ is negative. Similarly to the first case, we conclude that fHiψ is
monotonically decreasing.

4. Assume that φ is of the form ♢ψ. Analogously to 3., we obtain the desired mono-
tonicity.

5. Assume that φ is of the form C♢H
G ψ. Since no occurrence of x is free in φ in this

case, the statement of the lemma vacuously holds.

Corollary 5.85. For all formulas φ ∈ LCH
♢ and groups ∅ ≠ G ⊆ A of agents, the

function fE♢H
G (φ∧x) is monotonically increasing.

Proof. By definition, E♢H
G (φ ∧ x) = �

i∈G
♢Hi(φ ∧ x). Using Lemma 5.84, we immediately

obtain that the function fE♢H
G (φ∧x) is indeed monotonically increasing.

Definition 5.86. Given an interpreted system I = (R, π), a point (r, t) ∈ R ×N0, and a
formula φ ∈ LCH

♢ we define

(I, r, t) |= C♢H
G φ iff (r, t) ∈

�
{B ⊆ R × N0 | B ⊆ fE♢H

G (φ∧x)(B)}.

In other words,

(C♢H
G φ)I :=

�
{B ⊆ R × N0 | B ⊆ fE♢H

G (φ∧x)(B)}.

Lemma 5.87. Given an interpreted system I = (R, π), for any formula φ ∈ LCH
♢ ,

fE♢H
G (φ∧x)((C

♢H
G φ)I) = (C♢H

G φ)I .

Proof. Let us first show that (C♢H
G φ)I ⊆ fE♢H

G (φ∧x)((C
♢H
G φ)I), using Definition 5.86:

(C♢H
G φ)I =

�
{B ⊆ R × N0 | B ⊆ fE♢H

G (φ∧x)(B)}
⊆

�
{fE♢H

G (φ∧x)(B) | B ⊆ R × N0 and B ⊆ fE♢H
G (φ∧x)(B)}

= fE♢H
G (φ∧x)(

�
{B ⊆ R × N0 | B ⊆ fE♢H

G (φ∧x)(B)})

= fE♢H
G (φ∧x)((C

♢H
G φ)I).

Since fE♢H
G (φ∧x) is monotonically increasing, from (C♢H

G φ)I ⊆ fE♢H
G (φ∧x)((C

♢H
G φ)I) it

follows that

fE♢H
G (φ∧x)((C

♢H
G φ)I) ⊆ fE♢H

G (φ∧x)(fE♢H
G (φ∧x)((C

♢H
G φ)I)).

Therefore, according to Definition 5.86, fE♢H
G (φ∧x)((C

♢H
G φ)I) ⊆ (C♢H

G φ)I holds as well.
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Lemma 5.88. Given an interpreted system I = (R, π) and a set A ⊆ R × N0, for all
formulas φ ∈ LCH

♢ ,
fφ(A) = φI .

Proof. We proceed by induction on the structure of φ.

Base case: If φ is p ∈ Prop, then Definition 5.83 (1) implies

fp(A) = pI .

Induction step:

1. Assume that φ is of the form ¬ψ. Using Definition 5.83 (3) and the induction
hypothesis, we obtain

f¬ψ(A) = f¬(fψ(A)) = (R × N0) \ fψ(A) = (R × N0) \ ψI = (¬ψ)I .

2. Assume that φ is of the form ψ1 ∧ ψ2. Using Definition 5.83 (4) and the induction
hypothesis, we obtain

fψ1∧ψ2(A) = f∧(fψ1(A), fψ2(A)) = fψ1(A) ∩ fψ2(A) = ψI
1 ∩ ψI

2 = (ψ1 ∧ ψ2)I .

3. Assume that φ is of the form Hiψ. Using Definition 5.83 (5) and the induction
hypothesis, we obtain

fHiψ(A) = fHi(fψ(A))
= {(r, t) | (r′, t′) ∈ fψ(A) for all (r′, t′) s.t. (r, t)Hi(r′, t′)}
= {(r, t) | (r′, t′) ∈ ψI for all (r′, t′) s.t. (r, t)Hi(r′, t′)}
= (Hiψ)I .

4. Assume that φ is of the form ♢ψ. Similarly to the previous case, we obtain the
desired equality.

5. Assume that φ is of the form C♢H
G ψ. Then, using Definition 5.83 (7) and Defini-

tion 5.86, we immediately get

fC♢H
G ψ(A) = (C♢H

G ψ)I

regardless of the induction hypothesis.

Now we turn to showing that the well-known Fixpoint Axiom and Induction Rule [FHMV95]
hold for common eventual hope modality.

First, we need the following lemma.
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Lemma 5.89. Given an interpreted system I = (R, π), for any formula φ ∈ LCH
♢x and

any formula ψ ∈ LCH
♢ ,

fφ(ψI) = (φ[x/ψ])I .

Proof. We proceed by induction on the structure of φ. Let ψ ∈ LCH
♢ .

Base case: If φ is p ∈ Prop, then p[x/ψ] = p. The result fp(ψI) = pI follows immediately
by Definition 5.83 (1). If φ is the propositional variable x, then x[x/ψ] = ψ. The result
fx(ψI) = ψI follows immediately by Definition 5.83 (2).

Induction step:

1. Assume that φ is of the form ¬χ. Using Definition 5.83 (3) and the induction
hypothesis, we obtain

f¬χ(ψI) = f¬(fχ(ψI)) = (R × N0) \ fχ(ψI) = (R × N0) \ (χ[x/ψ])I = (¬χ[x/ψ])I .

2. Assume that φ is of the form χ1 ∧ χ2. Using Definition 5.83 (4) and the induction
hypothesis, we obtain

fχ1∧χ2(ψI) = f∧(fχ1(ψI), fχ2(ψI))
= fχ1(ψI) ∩ fχ2(ψI)
= (χ1[x/ψ])I ∩ (χ2[x/ψ])I

= (χ1[x/ψ] ∧ χ2[x/ψ])I

= ((χ1 ∧ χ2)[x/ψ])I .

3. Assume that φ is of the form Hiχ. Using Definition 5.83 (5) and the induction
hypothesis, we obtain

fHiχ(ψI) = fHi(fχ(ψI))
= {(r, t) | (r′, t′) ∈ fχ(ψI) for all (r′, t′) s.t. (r, t)Hi(r′, t′)}
= {(r, t) | (r′, t′) ∈ (χ[x/ψ])I for all (r′, t′) s.t. (r, t)Hi(r′, t′)}
= (Hi(χ[x/ψ]))I = ((Hiχ)[x/ψ])I .

4. Assume that φ is of the form ♢χ. Similarly to the previous case, we obtain the
desired equality.

5. Assume that φ is of the form C♢H
G χ. Then, using Definition 5.83 (7) and Defini-

tion 5.86, we immediately get

fC♢H
G χ(ψI) =

�
{B ⊆ R × N0 | B ⊆ fE♢H

G (φ∧x)(B)}
= (C♢H

G χ[x/ψ])I

regardless of the induction hypothesis.
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Theorem 5.90. Given an interpreted system I = (R, π), for all formulas φ, ψ ∈ LCH
♢

and groups ∅ ̸= G ⊆ A of agents:

I |= E♢H
G (φ ∧ C♢H

G φ) ↔ C♢H
G φ Fixpoint Axiom (5.14)

If I |= ψ → E♢H
G (φ ∧ ψ), then I |= ψ → C♢H

G φ Induction Rule (5.15)

Proof. Using Lemma 5.89, we obtain (E♢H
G (φ ∧ C♢H

G φ))I = fE♢H
G (φ∧x)((C

♢H
G φ)I). There-

fore, according to Lemma 5.87, (E♢H
G (φ ∧ C♢H

G φ))I = (C♢H
G φ)I follows, that is,

(I, r, t) |= C♢H
G φ ↔ E♢H

G (φ ∧ C♢H
G φ),

for all (r, t) ∈ R × N0.

Let now I |= ψ → E♢H
G (φ∧ψ). This means that ψI ⊆ (E♢H

G (φ∧ψ))I . Using Lemma 5.89,
we, thus, obtain

ψI ⊆ fE♢H
G (φ∧x)(ψ

I).

Finally, from Definition 5.86, follows that ψI ⊆ (C♢H
G φ)I , that is, I |= ψ → C♢H

G φ.

Lemma 5.91. Let I = (R, π) be an interpreted system, φ, ψ ∈ LCH
♢ , and ∅ ̸= G ⊆ A.

Then
I |= E♢H

G (φ ∧ ψ) → E♢H
G φ ∧ E♢H

G ψ.

Proof. Let (r, t) ∈ R ×N0. Assume (I, r, t) |= E♢H
G (φ ∧ ψ). This means that for all i ∈ G

it holds that (I, r, t) |= ♢Hi(φ ∧ ψ). Therefore, for all i ∈ G there exists ti ∈ N0 such
that t ≤ ti and (I, r, ti) |= Hi(φ ∧ ψ). This is further equivalent to: for all i ∈ G there
exists ti ∈ N0 such that t ≤ ti and (I, r, ti) |= Hiφ ∧ Hiψ. It now follows that for all
i ∈ G it holds that (I, r, t) |= ♢Hiφ, and for all i ∈ G it holds that (I, r, t) |= ♢Hiψ.
Thus, (I, r, t) |= E♢H

G φ ∧ E♢H
G ψ indeed holds.

Therefore, we can prove the following:

Theorem 5.92. Let I = (R, π) be an interpreted system, φ ∈ LCH
♢ , and ∅ ̸= G ⊆ A.

Then
I |= C♢H

G φ → (E♢H
G )kφ for all k > 0. (5.16)

Proof. Let k > 0 and (r, t) ∈ R × N0. Assume that (I, r, t) |= C♢H
G φ. Therefore,

(I, r, t) |= E♢H
G (φ ∧ C♢H

G φ) according to the Fixpoint Axiom. Using the Fixpoint Axiom
again, we obtain (I, r, t) |= E♢H

G (φ ∧ E♢H
G (φ ∧ C♢H

G φ)). Similarly (by applying the
Fixpoint Axiom k − 2 more times), we obtain:

(I, r, t) |= E♢H
G (φ ∧ E♢H

G (φ ∧ · · · ∧ E♢H
G (φ ∧ C♢H

G φ) . . . ),
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in which the modal operator E♢H
G appears k times. Now, according to Lemma 5.91, the

latter implies

(I, r, t) |= E♢H
G φ ∧ (E♢H

G )2φ ∧ · · · ∧ (E♢H
G )kφ ∧ (E♢H

G )kC♢H
G φ,

which further implies that (I, r, t) |= (E♢H
G )kφ indeed holds. Since k > 0 and (r, t) ∈

R × N0 were chosen arbitrarily, we can conclude that (5.16) holds.

Theorem 5.93. Let I = (R, π) be an interpreted system, φ, ψ ∈ LCH
♢ , and ∅ ≠ G ⊆ A.

Then
If I |= φ → ψ, then I |= C♢H

G φ → C♢H
G ψ.

Proof. Assume I |= φ → ψ. Let (r, t) ∈ R ×N0. Assume further (I, r, t) |= C♢H
G φ. Using

the Fixpoint Axiom, we get

(I, r, t) |= E♢H
G (φ ∧ C♢H

G φ). (5.17)

Since (I, r, t) |= φ → ψ holds by assumption, (I, r, t) |= (φ ∧ C♢H
G φ) → (ψ ∧ C♢H

G φ) holds
as well. Now (I, r, t) |= E♢H

G (φ ∧ C♢H
G φ) → E♢H

G (ψ ∧ C♢H
G φ) easily follows as both Hi

(for all i ∈ G) and ♢ are monotone. Using (5.17), we obtain (I, r, t) |= E♢H
G (ψ ∧ C♢H

G φ).
To conclude, we have shown that

I |= C♢H
G φ → E♢H

G (ψ ∧ C♢H
G φ),

since (r, t) ∈ R × N0 was chosen arbitrarily. Thus, according to the Induction Rule,
I |= C♢H

G φ → C♢H
G ψ follows.

5.7 Related work
It is notable that, independently, based on algebraic topological modeling, Goubault
et al. [GLR22] proposed a KB4-type of a modality to model the epistemic attitudes
of agents in synchronous systems restricted to crash failures. They call their (KB4)
modalities ‘knowledge,’ use Ki for them, and define a dead agent as Ki⊥. We call our
(KB4) modalities ‘hope,’ use Hi for them, and define a byzantine faulty agent as Hi⊥,
whereas ‘knowledge’ for us is a separate modality of type S5. In addition, recall that we
model the epistemic attitudes of agents in asynchronous systems with byzantine faults.
All this suggests KB4 to be a good choice for epistemically studying a wide range of
fault-tolerant systems.
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CHAPTER 6
The Firing Rebels with Relay

In this chapter, we perform a knowledge-based analysis of a canonical distributed
computing problem called Firing Rebels with Relay (FRR) within the byzantine fault-
tolerant asynchronous model of distributed systems introduced in Chapter 2. Through
a detailed epistemic analysis, we establish the necessary level of knowledge that needs
to be acquired by correct agents in every correct solution of the FRR problem (that is,
in any protocol that is supposed to solve it). Even though identifying such epistemic
conditions does not immediately lead to practical protocols for FRR, it is an important
first step towards this goal. Indeed, we expect it to lead to necessary communication
structures, which must be present in every run of any protocol that is supposed to solve
FRR. Knowing the latter would not only enable us to decide right away whether the
communication guarantees provided by a given model of distributed systems allow to
solve FRR, but would also facilitate the design of efficient protocols for it.

Chapter organization

The exact formulation of the FRR problem is introduced in Section 6.1. Using an
appropriately chosen language, we model FRR in Section 6.2 by “translating” its specifi-
cation into epistemic formulas. Then, in Section 6.3, we perform a thorough epistemic
analysis by studying the corresponding interpreted systems. In particular, we establish
the necessary epistemic state that needs to be achieved in every correct solution of the
FRR problem. Interestingly, the required epistemic state turns out to include a variant of
common hope, namely, common eventual hope. We also explore the relationship between
mutual eventual hope and common eventual hope specifically in case there are at least
3f + 1 agents present in the system, where f is the maximal number of agents that can
turn byzantine. Finally, we also identify sufficient conditions for solving FRR.
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6. The Firing Rebels with Relay

6.1 Formulating the problem
The FRR problem assumes that every agent i ∈ A may observe an event START and
may generate an action FIRE according to the following specification:

Definition 6.1 (Firing Rebels with Relay). A system is consistent with Firing Rebels
with Relay (FRR) for f > 0, iff all runs satisfy:

(C) Correctness: If at least 2f + 1 agents learn that START occurred at a correct agent,
then all correct agents perform FIRE eventually.

(U) Unforgeability: If a correct agent performs FIRE, then START occurred at a correct
agent.

(R) Relay: If a correct agent performs FIRE, then all correct agents perform FIRE
eventually.

Remark 6.2. A different specification for Correctness can be found in literature: “If
at least f + 1 reliable agents locally observed START, then some reliable agent fires
eventually” (see, e.g., [BL87]). Here, a reliable agent is one that will always follow its
protocol, which corresponds to a forever correct agent in our terminology. In the case of
FRR, by invoking (R), this specification implies “If at least f + 1 reliable agents locally
observed START, then all reliable agents fire eventually.” We require 2f + 1 arbitrary
(correct or byzantine faulty) agents instead. Of course, given the limit of f byzantine
faulty agents per run, at least f + 1 (not necessarily the same) of these agents will remain
forever correct in every run. Moreover, we relax the condition of the 2f + 1 agents locally
observing START to each of them learning that START occurred at a correct agent. This
is preferable, because direct observation is only one possible way of ascertaining that
START occurred. For instance, if an agent has already determined1 who the f byzantine
faulty agents are, e.g., due to their erratic behaviour in the past, then a confirmation of
START from just one other agent would be sufficient.

Note that in crash-prone systems, FRR is trivial to solve, even for large f : Indeed, every
agent who observes START or receives a notification message (for the first time) just
invokes FIRE and sends a notification message to everyone. This guarantees that if
a single correct agent observes START, every correct agent will invoke FIRE (agents
that crash during the run may or may not issue FIRE here). Observe that this solution
involves a trivial silent choir [GM18], namely, when no agent observes START. In the
presence of byzantine faulty agents, however, this solution does not work, as byzantine
faulty agents may send a notification without having observed anything. A correct
solution for FRR must, hence, prevent the byzantine faulty agents from triggering FIRE
at any correct agent.

1Strictly speaking, the agent in this situation does not know that the f agents are byzantine faulty,
but rather that they are byzantine faulty if it itself is not. By the same token, whenever we say “learned,”
“determined,” or “ascertained” above, what we mean is reasoning under the assumption of its own
correctness, i.e., the belief modality Bi rather than the knowledge modality Ki.
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6.2. Modeling via interpreted systems

6.2 Modeling via interpreted systems
First of all, we fix:

• a finite set A := {1, . . . , n} of agents,

• a nonempty countably infinite set Prop of atomic propositions (atoms),

• a finite set Co := {correcti | i ∈ A} of designated correctness atoms,

• a finite set Start := {occurredi(START) | i ∈ A} of designated start event atoms,

• a finite set Fire := {occurredi(FIRE) | i ∈ A} of designated firing atoms.

Syntax. We start with Prop ∪ Co ∪ Start ∪ Fire and continue by forming formulas by
closing under the Boolean connectives ¬ and ∧ and under the following (unary) modal
operators: K1, . . . , Kn, H1, . . . , Hn, ♢, C♢Hφ, and Y to obtain the language LFRR, i.e.,
the language LFRR is generated by the following BNF:

φ ::= p | ¬φ | (φ ∧ φ) | Kiφ | Hiφ | ♢φ | C♢Hφ | Y φ,

where p ∈ Prop ∪ Co ∪ Start ∪ Fire and i ∈ A. We take ⊤ to be an abbreviation for some
fixed propositional tautology, and take ⊥ to be an abbreviation for ¬⊤. Also, we use the
following standard abbreviations from propositional logic: φ ∨ ψ for ¬(¬φ ∧ ¬ψ), φ → ψ
for ¬φ ∨ ψ, and φ ↔ ψ for (φ → ψ) ∧ (ψ → φ). In addition, we also write:

□φ := ¬♢¬φ,

Biφ := Ki(correcti → φ),
E♢Bφ :=



j∈A

♢Bjφ,

E♢Hφ :=



j∈A
♢Hjφ.

Remark 6.3. Just like before, the overline in occurredi(START) and occurredi(FIRE)
is used to indicate that the occurrences of START and FIRE are correct (non-byzantine).

Semantics. Truth of formulas from LFRR is defined in the following way:

1. For an atom p ∈ Prop ∪ Co ∪ Start ∪ Fire, (I, r, t) |= p iff (r, t) ∈ π(p),

2. (I, r, t) |= ¬φ iff (I, r, t) |= φ does not hold,

3. (I, r, t) |= φ ∧ ψ iff (I, r, t) |= φ and (I, r, t) |= ψ,

4. (I, r, t) |= Kiφ iff (I, r′, t′) |= φ for all (r′, t′) such that ri(t) = r′
i(t′),
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6. The Firing Rebels with Relay

5. (I, r, t) |= Hiφ iff (I, r′, t′) |= φ for all (r′, t′) such that (I, r, t) |= correcti and
(I, r′, t′) |= correcti and ri(t) = r′

i(t′),

6. (I, r, t) |= ♢φ iff (I, r, t′) |= φ for some t′ ≥ t,

7. (I, r, t) |= C♢H
G φ iff (r, t) ∈ �{B ⊆ R × N0 | B ⊆ fE♢H

G (φ∧x)(B)},

8. (I, r, t) |= Y φ iff t > 0 and (I, r, t − 1) |= φ,

where the function fE♢H
G (φ∧x) is defined as in Definition 5.83.

Note that
MI = (R × N0, π, H1, . . . , Hn) ∈ K45co

n ,

whenever, for i ∈ A:

(r, t)Hi(r′, t′) iff (I, r, t) |= correcti and (I, r′, t′) |= correcti and ri(t) = r′
i(t′).

We will write (I, r, t) ̸|= φ to denote that (I, r, t) |= φ does not hold. By I |= φ, we
denote the fact that φ is satisfied at all the points (r, t), i.e., that φ is valid in I.

Lemma 6.4. For any agent i ∈ A, formula φ ∈ LFRR, and interpreted system I, it holds
that I |= Hiφ ↔ (correcti → Biφ).

Proof. Let I = (R, π). Consider a run r ∈ R and a node (i, t) ∈ A × N0. Assume
(I, r, t) |= Hiφ. This means that (I, r′, t′) |= φ for all (r′, t′) such that (I, r, t) |= correcti
and (I, r′, t′) |= correcti and ri(t) = r′

i(t′). Assume now (I, r, t) |= correcti . In order to
show (I, r, t) |= Biφ, i.e., (I, r, t) |= Ki(correcti → φ), take an arbitrary (r∗, t∗) such that
ri(t) = r∗

i (t∗). If (I, r∗, t∗) |= correcti , our initial assumption implies that (I, r∗, t∗) |= φ
must hold. Therefore, (I, r∗, t∗) |= correcti → φ.

For the other direction, assume (I, r, t) |= correcti → Biφ. In order to show (I, r, t) |=
Hiφ, take an arbitrary (r∗, t∗) such that (I, r, t) |= correcti and (I, r∗, t∗) |= correcti
and ri(t) = r∗

i (t∗). It thus follows from the initial assumption that (I, r, t) |= Biφ, i.e.,
(I, r, t) |= Ki(correcti → φ). This means that (I, r′, t′) |= correcti → φ for all (r′, t′) such
that ri(t) = r′

i(t′). Therefore, (I, r∗, t∗) |= correcti → φ, in particular. Finally, since
(I, r∗, t∗) |= correcti , it follows that (I, r∗, t∗) |= φ.

Corollary 6.5. For any formula φ ∈ LFRR and interpreted system I, it holds that
I |= E♢Hφ ↔ �

i∈A
♢(correcti → Biφ).
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6.2. Modeling via interpreted systems

Definition 6.6. For an agent i ∈ A, we define:

starti := Y occurredi(START) ∧ correcti

firei := occurredi(FIRE) ∧ correcti

start :=
�

j∈A
startj

fire :=
�

j∈A
firej

Note that for one of these formulas to be true, it is necessary for (one of) the involved
agent(s) to be correct not only at the time the event/action in question occurred but
also at the time of the evaluation. Using the yesterday modality Y in starti accounts for
the fact that our agents cannot act on a precondition in the same round it is established.

Using Definition 6.6, we can translate the specification of FRR (stated in Definition 6.1)
as follows:

Definition 6.7 (Modeling Firing Rebels with Relay). An interpreted system I is con-
sistent with Firing Rebels with Relay for f > 0, if the conditions Correctness (C),
Unforgeability (U), and Relay (R) hold:

(C) I |=
�

G ⊆ A
|G|=2f+1



j∈G

Bjstart →


i∈A

♢(correcti → firei)

(U) I |= fire → start

(R) I |= fire →


i∈A

♢(correcti → firei)

Remark 6.8 (Variants of eventuality). The phrase all correct agents fulfill φi eventually
in Definition 6.1 can be formalized in two different ways:

• �
i∈A

♢(correcti → φi), which states that each agent will either become byzantine

faulty at some point in the future or will fulfill its respective φi at some point in
the future.

• ♢ �
i∈A

(correcti → φi), which states that there is one moment in the future by which

every agent still correct fulfills its respective φi.

The second statement is a strengthening of the first as it demands the existence of a
common moment in time at which for all correct agents formulas φi are satisfied. As
we show in Corollary 6.11, for φi = firei, the two formulations are equivalent because,
due to our agents having perfect recall (Remark 2.43), correcti → firei is a stable fact
(Lemma 6.10), i.e., once the formula evaluates to true, it stays true forever. In order to
prove this, we first show that faultiness of an agent is a stable fact too.
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6. The Firing Rebels with Relay

Lemma 6.9. I |= ¬correcti → □¬correcti for any agent i ∈ A and any interpreted
system I.

Proof. Let I = (R, π). Consider a run r ∈ R and a node (i, t) ∈ A × N0. Assume
(I, r, t) |= ¬correcti . By Definition 3.4, this means that for some ti ≤ t,

Λti ∩ FEventsi ̸= ∅

holds. Consider an arbitrary t′ ≥ t. Now (I, r, t′) |= ¬correcti immediately follows since
ti ≤ t ≤ t′. Therefore, (I, r, t) |= □¬correcti indeed holds.

Lemma 6.10. I |= (correcti → firei) → □(correcti → firei) for any agent i ∈ A and
any interpreted system I.

Proof. Let I = (R, π). Consider a run r ∈ R and a node (i, t) ∈ A × N0. Assume
(I, r, t) |= correcti → firei. Consider further an arbitrary t′ ≥ t. If (I, r, t) |= ¬correcti ,
then, according to the previous lemma, (I, r, t′) |= ¬correcti follows. Thus, (I, r, t′) |=
correcti → firei also follows. Let us assume now (I, r, t) |= firei. To show that
(I, r, t′) |= correcti → firei holds in this case as well, assume further (I, r, t′) |= correcti .
According to Definition 6.6, (I, r, t) |= firei means (I, r, t) |= occurredi(FIRE) ∧ correcti .
Consequently, according to Definition 3.4, there exists some t∗ < t such that FIRE ∈
label−1


βt∗

i (r) ⊔ β
t∗
ϵi

(r)

. Therefore, (I, r, t′) |= occurredi(FIRE) must also hold since

t∗ < t ≤ t′. Finally, using (I, r, t′) |= correcti , we obtain (I, r, t′) |= correcti → firei.

Corollary 6.11. For any interpreted system I:

I |=


i∈A

♢(correcti → firei) ↔ ♢


i∈A

(correcti → firei).

Proof. Let I = (R, π). Consider a run r ∈ R and a timestamp t ∈ N0. Assume
(I, r, t) |= �

i∈A
♢(correcti → firei). This means that for every i ∈ A there exists some

ti ≥ t such that (I, r, ti) |= correcti → firei. Now, let tmax := max{ti | i ∈ A}. By
applying the previous lemma, we obtain (I, r, tmax) |= correcti → firei for all i ∈ A,
i.e., (I, r, tmax) |= �

i∈A
correcti → firei. Since tmax ≥ t, (I, r, t) |= ♢ �

i∈A
(correcti → firei)

follows.

For the other direction, let us assume (I, r, t) |= ♢ �
i∈A

(correcti → firei). This means

that there exists some t′ ≥ t such that (I, r, t′) |= �
i∈A

(correcti → firei), i.e., (I, r, t′) |=
(correcti → firei) for all i ∈ A. Thus, indeed, there exists some ti ≥ t for all i ∈ A
(namely, ti = t′ for all i ∈ A) such that (I, r, ti) |= correcti → firei. In other words,
(I, r, t) |= �

i∈A
♢(correcti → firei).
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6.3 Necessary and sufficient conditions
The goal of this section is to

1. lift the given necessary conditions on a single correct agent’s firing — namely, that
start must hold by Unforgeability (U) and �

i∈A
♢(correcti → firei) must hold by

Relay (R) — to statements that describe the epistemic state that is necessary to
be achieved by any correct agent before firing;

2. strengthen the obtained necessary epistemic conditions for firing so that they
become sufficient for satisfying the conditions Unforgeability (U) and Relay (R);

3. show how Correctness (C) helps simplifying the obtained strengthened necessary
epistemic conditions in the presence of at least 3f + 1 agents in the system;

4. find conditions that are sufficient for solving FRR.

Note that the case when insufficiently many agents learn that START occurred at a
correct agent, trivially satisfies condition (C). In this case, FRR reduces to (U)+(R), a
problem with a trivial solution, namely, all correct agents not firing. It is the combination
of all three conditions that makes FRR a problem worth the analysis.

The first lemma formalizes the fact that, since our agents have perfect recall, reasoning
under the assumption of their own correctness leads them to believe that their perceptions
are accurate. For instance, an agent who recalls observing START believes that, unless
it is byzantine faulty, a correct agent (namely, itself) observed START.

Lemma 6.12. For any interpreted system I and any agent i ∈ A:

I |= firei → Bifirei (6.1)
I |= firei → Bifire (6.2)
I |= starti → Bistarti (6.3)
I |= starti → Bistart (6.4)

Proof. The argument is the same for FIRE and START. We only provide it for the
former. Let I = (R, π). Consider a run r ∈ R and a node (i, t) ∈ A × N0. Assume
(I, r, t) |= firei. According to Definition 6.6, this means that (I, r, t) |= occurredi(FIRE)∧
correcti . Consequently, according to Definition 3.4, there exists some t∗ < t such
that FIRE ∈ label−1


βt∗

i (r) ⊔ β
t∗
ϵi

(r)

. Consider any r′ ∈ R and t′ ∈ N0 such that

ri (t) = r′
i (t′). Then, r′

i (t′) also contains a record of FIRE since agent i has perfect recall.
If (I, r′, t′) |= correcti , this record must correspond to a correct action and, consequently,
(I, r′, t′) |= firei. Since (I, r′, t′) |= correcti → firei whenever ri (t) = r′

i (t′), we have
(I, r, t) |= Ki(correcti → firei), i.e., (I, r, t) |= Bifirei. The other statement about FIRE
follows from |= firei → fire and monotonicity of Bi.
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Unforgeability (U) states that start is a necessary condition for a correct agent firing.
Lifting this condition to the level of agent’s knowledge yields that, in order to fire, it
must believe in start.

Lemma 6.13 (Epistemic state necessary for firing in presence of Unforgeability (U)).
Let I be an interpreted system consistent with Unforgeability (U). For any agent i ∈ A,

I |= firei → Bistart. (6.5)

Proof. The proof follows immediately from (6.2), (U), and monotonicity of Bi.

Similarly, lifting the Relay condition (R) to the level of agent’s knowledge yields the
requirement that, in order to fire, a correct agent must believe that all correct agents
eventually will have fired.

Lemma 6.14 (Epistemic state necessary for firing in presence of Relay (R)). Let I be
an interpreted system consistent with Relay (R). For any agent i ∈ A,

I |= firei → Bi



j∈A

♢(correctj → firej). (6.6)

Proof. Immediately follows from (6.2), (R), and monotonicity of Bi.

Combining the conditions necessary for (U) and (R), we establish the following level of
knowledge necessary for firing:

Theorem 6.15 (Epistemic state necessary for firing in presence of both (U) and (R)).
Let I be an interpreted system consistent with (U) and (R). For any agent i ∈ A,

I |= firei → Bi(start ∧ E♢Hstart).

Proof. Since the system is consistent with (U), (6.5) holds according to Lemma 6.13.
Thus, it only remains to show that

I |= firei → BiE
♢Hstart. (6.7)

Using I |= firej → Bjstart, that is (6.5), we easily obtain

I |= Bi



j∈A

♢(correctj → firej) → Bi



j∈A

♢
�
correctj → Bjstart

�
, (6.8)

using propositional reasoning and monotonicity of both Bj (for all j ∈ G) and ♢.
Since the system is consistent with (R) as well, (6.6) holds according to Lemma 6.14.
Therefore, using (6.8) we further obtain

I |= firei → Bi



j∈A

♢
�
correctj → Bjstart

�
by propositional reasoning. Finally, according to Corollary 6.5, it follows that (6.7) indeed
holds.
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Remark 6.16 (Emergence of hope). Note that requiring I |= firei → BiE
♢Bstart would

not work. We cannot strengthen the necessary condition in Theorem 6.15 by replacing
mutual eventual hope with mutual eventual belief, i.e., by omitting correctj therein. In
other words, the use of hope for deeper iterations is crucial for the correct formulation.
Indeed, in case of our notion of belief, agent i can rarely have unconditional beliefs
about another agent j’s beliefs. The problematic situation is when agent j’s perception is
compromised. In that case, agent i has no way of ascertaining what j’s erroneous input
data might be and, hence, cannot determine what a correct agent would have inferred
from these incorrect inputs. According to our notion of belief, whether agent i itself is
correct or not, it reasons assuming that its own perceptions are the objective reality. The
correctj assumption is, therefore, necessary to anchor j to the same (allegedly) objective
reality contemplated by i, even though j’s access to the facts of this objective reality is
generally different from i’s.

Remark 6.17 (Relation to indexical sets). Another approach to describing beliefs of
fault-prone agents is via so-called indexical sets [FHMV95, MT88], which are variable
(non-rigid) sets that can be used to represent the set of all correct agents at every point
in the system. While our results could be reformulated in terms of indexical sets, there
were several reasons for us to choose another language. Besides the ability to reason
about all agents, whether correct or byzantine faulty, in a uniform way, we tried to
stay as close as possible to the standard language of epistemic modal logic. Perhaps
more importantly, however, was the moral lesson of the already mentioned Knowledge
of Preconditions Principle [Mos15], which reveals how important it is for an agent to
know all ingredients affecting its behaviour, correctness of itself and other agents being
one of them. Thus, we believe that the transparent and explicit use of correctness in our
language is advantageous. An immediate example is the distinction between belief and
hope discussed in Remark 6.16, which would have remained somewhat obscured in the
indexical set notation.

Remark 6.18 (Mutual eventual hope is not sufficient). While using Bi(start∧E♢Hstart)
as a trigger for agent i firing would ensure Unforgeability (U), it is too weak to guarantee
Relay (R). Indeed, consider a system with 3 agents (n = 3), at most one of which can
become byzantine faulty (f = 1). In such a system, receiving the same information from
two independent sources is sufficient to believe in its validity, while information from
only one source without observing it first hand is not. Suppose that the protocol forces a
correct agent to notify all other agents whenever it observed START. Consider a run
where agent b is byzantine from the beginning, whereas agents c1 and c2 remain correct.
Let c1 and c2 each observe START and, hence, notify all agents about it. Meanwhile
b falsely notifies c2 that it too observed START but will never duplicate this message to
c1. Thus,

• correct c2 observed START and eventually received 2 confirmations of START from
c1 and b;
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• correct c1 observed START and eventually received 1 confirmation of START from
c2;

• byzantine faulty b did not observe START but was eventually notified of START
by both c1 and c2.

In this situation, all agents eventually believe that START was correctly observed (c1
and c2 saw it themselves, whereas b has 2 independent confirmations). Moreover, c2
has a reason to believe in the mutual eventual hope of START. Indeed, hope would be
trivially satisfied for a byzantine faulty agent, whereas any correct agent would eventually
receive at least 2 confirmations out of 3 that c2 itself possesses. Thus, according to the
proposed knowledge threshold, c2 should fire. On the other hand, c1 will never fire because
it cannot be sure that b will eventually hope that START occurred. In c1’s mind, if b
were correct and c2 were byzantine faulty and did not send a confirmation to b, then b
would only ever receive 1 confirmation, which is not sufficient to make it trust START
truly occurred. Hence, c1 would never fire, and Relay (R) would be violated. The issue
here is that BiE

♢Hstart for one correct agent i does not generally imply that eventually
BjE♢Hstart for all other correct agents j.

Thus, although BiE
♢Hstart is necessary before i can fire, acting on it may be premature.

The necessary level of knowledge must be further strengthened. Since FRR involves an
agreement property (if one correct agent fires, all other correct agents also fire eventually),
it is not very surprising that, in fact, some form of common level of knowledge, namely
common eventual hope, plays a role. We show that Unforgeability (U) and Relay (R)
together imply that, in order to fire, an agent must ascertain (modulo its own correctness)
both that START was observed by some correct agent and the common eventual hope of
the same fact:

Theorem 6.19 (Strengthened epistemic state necessary for firing in presence of both
(U) and (R)). Let I be an interpreted system consistent with (U) and (R). For any agent
i ∈ A,

I |= firei → Bi


start ∧ C♢Hstart


. (6.9)

Proof. Since (6.5) holds by Lemma 6.13, it is sufficient to demonstrate

I |= firei → BiC
♢Hstart.

Combining (R) with (6.2) by applying the replacement property for positive subformulas,
we obtain I |= fire → E♢Hfire. Thus, using the Induction Rule (5.15) with φ = ψ =
fire, we conclude

I |= fire → C♢Hfire.

According to Theorem 5.93, it follows from (U) that I |= fire → C♢Hstart. It remains
to use (6.2), monotonicity of Bi and propositional reasoning to obtain I |= firei →
BiC

♢Hstart.
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Corollary 6.20. For any interpreted system consistent with FRR, (6.9) is satisfied for
all agents.

We now show that, unlike belief in mutual eventual hope (see Remark 6.18), belief in
common eventual hope is sufficient to fulfill Unforgeability (U) and Relay (R), i.e., that
firing as soon as the necessary level of knowledge from Theorem 6.19 is achieved does
guarantee that both (U) and (R) are fulfilled:

Theorem 6.21 (Sufficient conditions for (U) and (R)). For any interpreted system I:

1. (U) is fulfilled if I |= �
i∈A

(¬Bistart → ¬firei).

2. Both (U) and (R) are fulfilled if

I |=


i∈A


¬Bi


start ∧ C♢Hstart


→ ¬firei


∧


Bi


start ∧ C♢Hstart


→ ♢(correcti → firei)


.

(6.10)

Proof. 1. Assume I |= �
i∈A

(¬Bistart → ¬firei). Fix i ∈ A. Therefore, we have

I |= firei → Bistart, by assumption. Combining this with I |= firei → correcti
(holds according to Definition 6.6) and I |= correcti → (Biφ → φ) results in I |=
firei → start. Now, (U) follows by propositional reasoning since fire = �

j∈A
firej .

2. Assume (6.10). Analogously to the previous case, we can show that (U) holds.
Fix i ∈ A. From the first conjunct of (6.10), it follows that I |= firei →
BiC

♢Hstart. Now, just like before, combining this with I |= firei → correcti
and I |= correcti → (Biφ → φ) results in I |= firei → C♢Hstart. Since
I |= C♢Hφ → �

j∈A
♢Hj(φ ∧ C♢Hφ) for any formula φ according to the Fixpoint

Axiom (5.14),

I |= firei →



j∈A
♢


correctj → Bj

�
start ∧ C♢Hstart

�
. (6.11)

Using the second conjunct of (6.10) and monotonicity of ♢ in (6.11), we further
obtain

I |= firei →



j∈A
♢


correctj → ♢

�
correctj → firej

�
.

In order to show (R), just like before, it is sufficient to demonstrate that

I |= firei →



j∈A
♢(correctj → firej).

It remains to note that I |= ♢

φ → ♢(φ → ψ)


→ ♢(φ → ψ) for all formulas φ

and ψ.
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6. The Firing Rebels with Relay

The following “Lifting lemma” shows that Correctness (C) lifts mutual eventual hope
to common eventual hope. This way, the arbitrarily deep nested hope implied by
the latter effectively collapses, a phenomenon that has also been reported for other
problems [BZM10].

Lemma 6.22 (Lifting lemma). Let I be an interpreted system consistent with (C) and
let |A| ≥ 3f + 1, where f > 0. Furthermore, assume that

I |= firei → Bi


start ∧ E♢Hstart


(6.12)

holds. Then,
I |= E♢Hstart → C♢Hstart. (6.13)

Proof. Let I = (R, π). Assume (I, r, t) |= E♢Hstart for some r ∈ R and t ∈ N0. This
means that, for every agent j ∈ A, there exists some t′

j ≥ t such that (I, r, tj) |= Hjstart.
Since |A| ≥ 3f + 1, it follows that there exists a group G of 2f + 1 correct agents
such that (I, r, tj) |= Bjstart, i.e., (I, r, tj) |= Kj(correctj → start), for all j ∈ G. Let
t′ := max{t′

j | j ∈ G}. We claim that

(I, r, t′) |=



j∈G

Kj(correctj → start). (6.14)

Indeed, for an arbitrary agent j ∈ G, consider any alternative run r ∈ R and time
t′ ∈ N0 such that rj(t′) = rj(t′). Given that t′ ≥ t′

j and the agents have perfect
recall, there must exist some time t′

j ≤ t′ such that rj(t′
j) = rj(t′

j). Thus, (I, r, t′
j) |=

correctj → start. Since the latter formula is stable2, it remains true in r by the time
t′. We showed that (I, r, t′) |= correctj → start whenever rj(t′) = rj(t′), meaning
(I, r, t′) |= Kj(correctj → start). This argument applies to every j ∈ G, hence, (6.14) is
demonstrated for the group G of 2f + 1 correct agents. Correctness (C) applied at time
t′ ensures (I, r, t′) |= �

i∈A
♢(correcti → firei), and, since t ≤ t′, we also have

(I, r, t) |=


i∈A

♢(correcti → firei).

Given that r and t were chosen arbitrarily, we have proved

I |= E♢Hstart →


i∈A

♢(correcti → firei). (6.15)

Using (6.12) and monotonicity of ♢ in (6.15), we further obtain

I |= E♢Hstart →


i∈A

♢
�
correcti → Bi(start ∧ E♢Hstart)

�
,

2The proof is similar to Lemma 6.10.
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i.e.,
I |= E♢Hstart →



i∈A

♢Hi(start ∧ E♢Hstart).

In other words, we have demonstrated

I |= E♢Hstart → E♢H(start ∧ E♢Hstart).

Using the Induction Rule (5.15) with ψ = E♢Hstart and φ = start, we conclude

I |= E♢Hstart → C♢Hstart.

Corollary 6.23. Let I be an interpreted system and let there be at least 3f + 1 agents,
where f > 0. If I is consistent with FRR, then (6.13) holds.

Proof. For interpreted systems consistent with (U) and (R), property (6.12) follows from
Theorem 6.15.

Lemma 6.24. Let I be an interpreted system. If I is consistent with (C) and (U), then

I |=
�

G ⊆ A
|G|=2f+1



j∈G

Bjstart → E♢Hstart. (6.16)

Proof. Using (C), (6.5), and monotonicity of ♢, we immediately obtain

I |=
�

G ⊆ A
|G|=2f+1



j∈G

Bjstart →


i∈A

♢(correcti → Bistart),

i.e.,
I |=

�
G ⊆ A

|G|=2f+1



j∈G

Bjstart →


i∈A

♢Histart.

Corollary 6.25. Let I be an interpreted system. If I is consistent with FRR, then (6.16)
holds.

Finally, in the following theorem, we establish sufficient conditions for solving FRR.

Theorem 6.26 (Sufficient conditions for solving FRR). Let I be an interpreted system.
Assume (6.16) and (6.13). If

I |=


i∈A


¬Bi


start ∧ E♢Hstart


→ ¬firei


∧


Bi


start ∧ E♢Hstart


→ ♢(correcti → firei)


,

(6.17)

then I is consistent with FRR.
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6. The Firing Rebels with Relay

Proof. In order to show that I is consistent with FRR, we need to prove that the
conditions (C), (U), and (R) from Definition 6.7 are satisfied:

(C) Using (6.16) and (6.13), we obtain I |= �
G ⊆ A

|G|=2f+1

�
j∈G

Bjstart → C♢Hstart. Since

I |= C♢Hφ → �
i∈A

♢Hi(φ ∧ C♢Hφ) for any formula φ according to the Fixpoint

Axiom (5.14),

I |=
�

G ⊆ A
|G|=2f+1



j∈G

Bjstart →


i∈A

♢

correcti → Bi

�
start ∧ C♢Hstart

�
. (6.18)

Therefore, using monotonicity of Bi and ♢ in (6.18), we obtain that

I |=
�

G ⊆ A
|G|=2f+1



j∈G

Bjstart →


i∈A

♢

correcti → Bi

�
start ∧ E♢Hstart

�

also holds since I |= C♢Hφ → E♢Hφ for any formula φ according to (5.16). Finally,
using the second conjuct of (6.17) and monotonicity of ♢, we get

I |=
�

G ⊆ A
|G|=2f+1



j∈G

Bjstart →


i∈A

♢

correcti → ♢(correcti → firei)


.

It remains to note that I |= ♢

φ → ♢(φ → ψ)


→ ♢(φ → ψ) for all formulas φ

and ψ.

(U) Using the first conjuct of (6.17), just like in Theorem 6.21, we obtain the desired.

(R) Using (6.13) and the above used I |= C♢Hstart → E♢Hstart, we obtain that the
formulas in (6.17) and (6.10) are equivalent. Thus, the condition (R) indeed holds
according to Theorem 6.21.

Is belief in start reduntant in some cases?
If there is no reason for agents to expect START to occur, their predictions about START
occurring can only rely on it already having occurred. This observation is formalized in
Theorem 6.31 and the immediately following corollary.

Definition 6.27 (Potentially persistent formulas). A formula φ ∈ LFRR is called poten-
tially persistent in an interpreted system I = (R, π) if, for any run r ∈ R and any time
t ∈ N0 such that (I, r, t) |= φ, there exists a run r′ ∈ R such that r′(t) = r(t) — i.e., r′

is an alternative continuation of the global state r(t) — and such that (I, r′, t) |= □φ. In
other words, a true potentially persistent formula can stay true forever.
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Lemma 6.28. For any agent i ∈ A and formula φ ∈ LFRR that is potentially persistent
in an interpreted system I, it holds that I |= Ki♢¬φ → Ki¬φ.

Proof. Let I = (R, π). Assume that (I, r, t) ̸|= Ki¬φ for some r ∈ R and t ∈ N0. Then
there exists another run r′ ∈ R and time t′ ∈ N0 such that ri(t) = r′

i(t′) and (I, r′, t′) |= φ.
By the potential persistence of φ, there exists an alternative continuation r′′ ∈ R of the
prefix r′(t′) such that r′′(t′) = r′(t′) and (I, r′′, t′) |= □φ. Thus, (I, r′′, t′) ̸|= ♢¬φ. It
remains to note that r′′

i (t′) = r′
i(t′) = ri(t). Hence, (I, r, t) ̸|= Ki♢¬φ.

Lemma 6.29. I |= Bi♢(correcti → φ) ↔ Ki♢(correcti → φ) for any agent i ∈ A,
formula φ ∈ LFRR, and interpreted system I, i.e., believing something eventually happens
modulo one’s own correctness is as strong as knowing it eventually happens modulo one’s
own correctness.

Proof. The right-to-left direction is trivial as I |= Kiφ → Biφ for any agent i ∈ A and
formula φ ∈ LFRR. Therefore, we prove the implication from left to right.

Firstly, ¬correcti → (correcti → φ) is an instance of a propositional tautology. Hence,

I |= □¬correcti → □(correcti → φ).

Thus, using Lemma 6.9, we get

I |= ¬correcti → □(correcti → φ).

Using I |= □ψ → ♢ψ (which follows by seriality of temporal modalities), and knowledge
necessitation, we further obtain

I |= Ki
�¬correcti → ♢(correcti → φ)

�
.

By epistemically internalized propositional reasoning, we have I |= Ki
�
correcti →

♢(correcti → φ)
� ∧ Ki

�¬correcti → ♢(correcti → φ)
� → Ki♢(correcti → φ). Since we

have just shown the second conjunct above to be valid, we obtain the desired

I |= Ki
�
correcti → ♢(correcti → φ)

� → Ki♢(correcti → φ).

Corollary 6.30. For any agent i ∈ A, formula φ ∈ LFRR, and interpreted system I, it
holds that I |= Bi♢Hiφ ↔ Ki♢Hiφ.

Theorem 6.31 (Early local belief). If formula correcti ∧ ¬start is potentially persistent
in an interpreted system I, then

I |= Bi♢Histart → Bistart.
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6. The Firing Rebels with Relay

Proof. By Corollary 6.30, I |= Bi♢Histart → Ki♢Histart. Applying the factivity
property of knowledge and propositional reasoning to the expanded version of Ki♢Histart
yields

I |= Ki♢
�
correcti → Ki(correcti → start)

� → Ki♢(correcti → start).

Since correcti ∧¬start is potentially persistent, and its negation is equivalent to correcti →
start, we have by Lemma 6.28 that

I |= Ki♢(correcti → start) → Ki(correcti → start).

Combining all implications, we conclude that

I |= Bi♢Histart → Bistart.

Corollary 6.32. If formula correcti ∧ ¬start is potentially persistent in an interpreted
system I, then

I |= BiE
♢Hstart → Bistart, (6.19)

I |= BiC
♢Hstart → Bistart. (6.20)

Proof. The proof of (6.19) follows from the definition of mutual eventual hope, Theo-
rem 6.31 and monotonicity of Bi. The proof of (6.20) is obtained by combining (5.16)
and (6.19) using the monotonicity of Bi.

Remark 6.33. While sufficient for dropping the conjunct start from the conditions
triggering and preventing FIRE in Theorem 6.21, the potential persistency of correcti ∧
¬start is not necessary. Indeed, (6.20) can hold even when START is always guaranteed
to occur in every run. For instance, in an interpreted system where START occurs
exactly once per run, no agent ever becomes byzantine faulty, and, in addition, agents
never communicate, I |= ¬BiE

♢Hstart automatically holds because only the agent who
observed START can learn that it already occurred. All other agents can only be sure that
START will occur eventually at some agent in the system. By (5.16) and monotonicity
of Bi, I |= ¬BiC

♢Hstart. Thus, both implications (6.19) and (6.20) are vacuously true,
allowing to drop start, though admittedly in such cases agents should never fire anyways.

6.4 Related work
The FRR problem is a problem related to the consistent broadcasting primitive, introduced
by Srikanth and Toueg in [ST87b]. The motivation behind this communication primitive
was to simulate signed communication in order to be able to convert an authenticated
fault-tolerant algorithm into an equivalent non-authenticated fault-tolerant algorithm.
In addition, it has been used as a pivotal building block in distributed algorithms for
byzantine fault-tolerant clock synchronization [DFP+14, FS12, RS11, ST87a, WS09].
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The Firing Rebels with Relay problem can be viewed as a non-synchronous version of the
Byzantine Firing Squad problem [BL87], which is a problem of synchronizing a collection
of processors (some of which might be byzantine faulty) in systems with synchronous
communication only (i.e, with bounded message delays). In [BL87], the authors considered
two versions of the Byzantine Firing Squad problem, namely a permissive and a strict
version, and they developed protocols solving them by reductions to Byzantine Agreement.

In [BZM14], Ben-Zvi and Moses considered the Ordered Response problem, where the
agents had to respond to an external START event by executing a special one-shot
FIRE action in a given order i1, i2, . . . . The authors showed that, in every correct
solution of the Ordered Response problem, agent ik has to establish nested knowledge
Kik

Kik−1 . . . Ki1occurred (START) whenever executing FIRE. In [BM11], the authors
also identify corresponding sufficient conditions. In the conference version [BZM10] of
[BZM14], the authors also considered the Simultaneous Response problem, where all
agents had to issue FIRE at the same time. In this case, the group G of firing agents has
to establish common knowledge CGoccurred (START). This work was later extended to
responses that are not simultaneous but tightly coordinated in time [BZM13, GM13].

Closely related to our FRR problem is Eventual Distributed Agreement studied in
[HMW01], where the stronger notion of continual common knowledge proved its value.
The latter needs to hold throughout a run, i.e., from the beginning, which makes sense
in the context of [HMW01] since it is applied to conditions on the initial state only.
Continual common knowledge is not readily applicable to FRR, however, as START can
occur at any time in a run.

In [GM18, GM20], Goren and Moses introduced and epistemically analyzed silent choirs
as a fundamental primitive for message-optimal protocols in synchronous crash-resilient
distributed systems. In synchronous systems, where one can time-out messages, it is
well-known [Lam78] that an agent can convey information also by not sending a message.
In a system where the sender may also crash, however, not receiving a message is not
informative in that sense. Still, if only up to f of the n > f agents in a system may
crash, a silent choir of f + 1 agents that aim to convey identical information suffices: at
least one agent in the choir must be correct, so its silence can be relied on. In view of
the reduction introduced in [MTH14], broadcasting (and hence FRR) can be seen as the
byzantine analog of a silent choir.
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CHAPTER 7
Summary of our accomplishments

and follow-up/future work

7.1 Summary of our accomplishments

In this thesis, we illustrated how to study byzantine fault-tolerant asynchronous message-
passing distributed systems using (temporal-)epistemic logic. Based on our framework
for modeling such systems, we established agents’ knowledge limitations in the presence
of byzantine faulty agents. Since, as we showed, knowledge is not achievable by agents
in most cases of interest, we explored how to best capture their actual epistemic states
in those situations. On that journey, we encountered different epistemic modalities and
studied them from a purely logical point of view. Given that our ultimate goal has been
gaining insight into agents’ decision-making process in byzantine fault-tolerant systems,
we used the newly encountered epistemic modalities to analyze in full detail a canonical
distributed computing problem called Firing Rebels with Relay (FRR).

Our main accomplishments can be summarized as follows:

In Chapter 3, we derived generic results about what asynchronous agents can(not) know
in byzantine fault-tolerant message-passing distributed systems. In our central result,
the Brain-in-a-Vat lemma, we showed that no matter what it observed, an asynchronous
agent in a byzantine setting can never rule out the possibility of those observations being
imaginary results of its malfunction. Using this result, we concluded that the Knowledge
of Preconditions principle (according to which any precondition for action must be known
by the acting agent) severely restricts the kinds of preconditions for actions agents can
rely on in such a setting. Consequently, we investigated how the corresponding adequate
preconditions for actions look like, which gave us insight into the epistemic state of an
agent in systems with byzantine faults.
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In Chapter 4, we studied the hope modality, introduced in Chapter 3, from a purely
logical point of view. We proposed a separate (from knowledge) axiomatization for the
individual hope modality while relying on correctness atoms. We then provided a detailed
proof of strong soundness and strong completess for the proposed axiom system with
respect to a newly designed class of Kripke models capturing hope in a precise way. The
resulting logic turned out to violate the uniform substitution rule, however. In addition,
we also provided a proof of soundness and completeness with respect to the standard S5
models for knowledge via a suitable translation function. Finally, we showed that the
proposed logic of hope has the finite model property as well as that it is decidable.

In Chapter 5, we proposed an alternative axiomatization for the hope modality which
successfully avoids the use of correctness atoms. The resulting new logic of hope turned
out to be a normal multi-agent epistemic logic. We also proposed a joint logic of hope
and knowledge as well as a logic extended with notions of common hope and common
knowledge. The proposed systems enabled us to logically characterize byzantine fault-
tolerant distributed systems. We also provided a thorough soundness and completeness
proof for the joint logic of common hope and common knowledge. In addition, we
showed that all of the logics presented in the chapter have the finite model property as
well as that they are decidable. Finally, we described a way to introduce a particular
temporal-epistemic group notion of hope called common eventual hope and proved some
of its basic properties used in Chapter 6.

In Chapter 6, using epistemic reasoning, we analyzed a canonical distributed computing
problem called Firing Rebels with Relay (FRR) within the byzantine fault-tolerant
asynchronous message-passing model of distributed systems. We established the necessary
epistemic state that needs to be acquired by correct agents in order to FIRE in every
correct solution of the problem. The respective epistemic state turns out to involve
common eventual hope, which we show to be attained already by achieving one level
of mutual eventual hope in case there are at least 3f + 1 agents in the system in total.
Finally, we also identified sufficient conditions for solving FRR.

7.2 Follow-up/future work
Given that this thesis entered some scientific uncharted teritory, there are many possible
directions for future research. We picked two such topics, which are particularly close to
the content of this thesis and already started working on them. These are:

(1) Axiomatizing common eventual hope, and

(2) Modeling agent fault recovery using epistemic logic.

Regarding (1), coming up with a suitable sound and complete axiomatization for the
common eventual hope modality seems as an especially interesting task given that it is
a temporal-epistemic mixture of an operator. The challenge lies in working with the
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semantics for it. As we saw in Section 5.6, in order to evaluate a formula of the form
C♢H

G φ at a world w of a model M , we have to check whether the world w belongs to the
set �

{B ⊆ W | B ⊆ fE♢H
G (φ∧x)(B)}.

There does not seem to be a way around this since it is not clear whether a corresponding
relation R such that

M, w |= C♢H
G φ iff M, v |= φ for all v ∈ R(w)

exists. So far, we have identified a candidate axiom system for the simplest form of
common eventual knowledge (i.e., obtained by taking only the K axiom) as well as
a candidate corresponding class of Kripke models. We are not aware of any work on
axiomatizing common eventual knowledge directly. However, common eventual knowledge
has been introduced in the literature [HM90, FHMV95] using modal mu-calculus [Koz83].
Thus, potentially, some results could be obtained from the already existing work on
modal mu-calculus [Wal00, JKS08].

Questions to be addressed:

• How to go about proving soundness and completeness of the identified axiom system
directly?

• Is the obtained logic of the simplest form of common eventual knowledge compact?

• Is it straightforward to adapt the obtained results for common eventual hope?

• What insights does the obtained logic provide about the process of reaching common
eventual hope among agents in byzantine fault-tolerant distributed systems?

Regarding (2), building on top of the logics introduced in the thesis, we aim to model
correctness change of agents using tools from dynamic epistemic logic (DEL) [vDvdHK08].
We showed that correctness of agent i can be represented using an atomic proposition
correcti (as it was done in Chapter 4), or using the hope modality such that “agent i
is correct” corresponds to “agent i does not hope false”, i.e., ¬Hi⊥ (as it was done in
Chapter 5).

Therefore, changing the correctness status of agent i can be modeled either

i.) as a factual change, which amounts to changing the truth value of the atom correcti
(at world(s) of interest), or

ii.) as a relation update, which amounts to updating the hope relation Hi such that
it is not empty if we wish to make the agent in question correct (at world(s) of
interest), or so that it is in fact empty if we wish to make the agent in question
byzantine faulty (at world(s) of interest).
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We find this second option particularly interesting, as it represents a novel method of
updates in DEL. So far, we have considered several different logics based on whether the
relation updates are public (witnessed by all agents) or private.

Questions to be addressed:

• Are the considered logics “rich” enough to capture self-correcting agents in the
intended way?

• How do the obtained results relate to recovery distributed systems [EAWJ02,
Rus96]?
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