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Kurzfassung

Das Hauptaugenmerk der Arbeit liegt auf der Erweiterung der dualen Brunn–Minkowski
Theorie in komplexen Vektorräumen auf die Lp-Theorie.
Eine neue Familie von geometrischen Operatoren, die komplexen Lp-Schnittkörper, wer-

den eingeführt. Sie sind inspiriert durch die Konstruktion der komplexen Projektionskörper.
Wir zeigen, dass sie, ähnlich zu ihrem reellen Gegenstück, eine zwischen den komplexen
Schwerpunktskörpern und komplexen Schnittkörpern interpolierende Familie darstellen.
Außerdem untersuchen wir geometrische Eigenschaften, wie (Pseudo-)Konvexität und iso-
perimetrische Ungleichungen.
Wir widmen uns auch Fragen im Stile des Busemann–Petty Problems für den komplexen

Projektionen- und Lp-Schnittkörper. Nachdem wir den Zusammenhang zu der sphärischen
Fourier-Transformation hergestellt haben, können wir die Fragestellung einheitlich behan-
deln.



Abstract

The main focus of this thesis lies on the extension of the dual Brunn–Minkowski theory on
complex vector spaces to the Lp-setting.
A new family of geometric operators, the complex Lp-intersection body operators, is in-

troduced which is motivated by the construction of complex projection bodies. It is shown
that, similar to their real counterparts, they interpolate between the recently introduced
intersection and centroid body operators on complex vector spaces. Moreover, geometric
properties like (pseudo-)convexity as well as isoperimetric inequalities for them are exam-
ined.
Secondly, Busemann–Petty type problems for complex projection and Lp-intersection

body operators are considered. After linking the spherical Fourier transform to the consid-
ered operators, one obtains a unified procedure to tackle these problems.
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1 Introduction

During the second half of the last century, the Busemann–Petty problem [9] has attracted
a lot of attention (see, e.g., [15, 21, 33–37, 68, 70] for an overview). It may be posed as
follows: Let K and L be origin-symmetric compact and convex subsets of Rn with the
property that the volume of each central hyperplane section of K is less or equal than the
corresponding one for L, does this imply that the volume of K is always less or equal than
the volume of L? The tools that were developed on the way to the complete solution led
to the development of the dual Brunn–Minkowski theory. The main object of interest for
this problem is Lutwak’s intersection body operator [47]. A big step forward to the solution
has been taken by the observation that the answer to the problem is affirmative whenever
K is an intersection body of a compact and star shaped set. Extending this principle and
describing the image in terms of the Fourier transform culminated in the unified solution by
Gardner, Koldobsky and Schlumprecht in [18]. It turns out that the answer is affirmative
for n ≤ 4 and negative for any higher dimension.
Already before the introduction of the intersection body, geometric properties for this

object were established. Foremost, one should highlight Busemann’s convexity theorem [8]
and the famous intersection inequality [9, 52].
Starting from the examination of intersection bodies as geometric operators, several

fruitful extensions were considered throughout the last years. Of special importance for this
thesis is the family of Lp-intersection bodies which extended the notion of the Lp-centroid
bodies (first defined in [49]) to the dual Lp-Brunn–Minkowski theory (see [4,6,17,26,28,67]).
Recently, the investigation of geometric operators on complex vector spaces in the (dual)

Brunn–Minkowski theory has arised. Starting with the construction of the family of complex
projection body operators by Abardia and Bernig [2], several complex analogues of geometric
operators on Rn were established in complex vector spaces. Just to name a few of these:
the complex difference bodies [1], the complex centroid bodies [27] as well as the complex
intersection bodies [40].

The main aim of this thesis lies in the further development of the dual Brunn–Minkowski
theory in complex vector spaces. We introduce a new family of geometric operators, gener-
alizing the concept of Lp-intersection bodies. The construction of these operators is inspired
by the approach in the papers of Abardia and Bernig [2], Abardia [1] and Haberl [27].
The first part, which is joint work with Georg C. Hofstätter, deals with the definition of

the complex Lp-intersection body operators. Besides proving basic properties like continuity,
we also examine the operator in the same directions as it was done for its real counterpart.
At first, we establish that a suitable normalization of the complex Lp-intersection bodies
converge to the complex intersection body, which also justifies the name. We describe the
operators via spherical harmonics to obtain statements about injectivity and in order to
show (pseudo-)convexity of the image of sets with certain symmetry assumptions, we adapt
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1 Introduction

techniques of Berck [6]. We close this section by linking real and complex Lp-intersection
bodies by an operator which acts on each complex line. Together with the recent remarkable
extension of Busemann’s intersection inequality for real Lp-intersection bodies (see [4]), this
allows us to lift the results to the complex case and obtain similar isoperimetric inequalities
for a certain range of p.

In view of the Busemann–Petty problem, there have been several generalizations for ge-
ometric operators in real vector spaces (see [42, 60, 63, 64, 67]). In complex vector spaces,
Koldobsky, König and Zymonopoulou [39] considered the corresponding problem by replac-
ing real by complex hyperplane sections and origin-symmetry by S1-invariance.
We want to tackle similar questions for complex projection and Lp-intersection bodies in

the second part of this thesis which is joint work with Georg C. Hofstätter. In this case we
also make use of the fact that the answer to the problem is affirmative whenever one of the
bodies is in the image of the considered operators. Similar to the approach used in [18,60,
67], we set the stage towards a solution by proving a representation linking the complex
projection and Lp-intersection body operators to the (spherical) Fourier transform. This
also involves the notion of embedding into Lp (see Chapter 2). We provide a negative answer
in the case n ≥ 2, when p > 0 for the complex Lp-intersection and complex projection
bodies, as well as a negative answer when n ≥ 3 and p < 0. Finally, we can give an
affirmative answer for the complex Lp-intersection bodies on S1-invariant convex bodies in
dimension n = 2. The case p = 1 also contains the solution for the corresponding problem
for complex centroid bodies.

The results of the first part can be found in [11] and the results concerning Busemann–
Petty problems are to appear in [12].
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2 Background

In this chapter, we will fix notation and recall basic facts from convex geometry. Moreover,
we will introduce two important concepts, that will occur at several points throughout
this thesis: On the one hand, we will see that the complex structure on Cn also yields a
finer decomposition of spherical harmonics into U(n)-irreducible spaces and on the other
hand, we will give a quick overview on the notion of embedding into Lp and its crucial
connection to the Fourier transform. We refer to [16] and [62] for a general reference
on convex geometry, to [3, 25, 54, 59] for more background on spherical harmonics and to
[38, Ch. 6] and [57] for a detailed treatment of the notion of embedding into Lp.

2.1 Convex and Star Bodies

Let K(Rn) denote the set of convex bodies in Rn, that is all convex and compact subsets
of Rn. Every element of this space is uniquely determined by its support function

hK(u) = sup{�x, u	 : x ∈ K}, u ∈ Rn \ {0},
where �·, ·	 is the standard Euclidean inner product. By one-homogeneity, this function is
already determined by its values on the unit sphere Sn−1 and the topology on the space
K(Rn) is uniform convergence of support functions.
Another description (unique up to translations) of a convex body K is given by its

surface area measure SK . For a Borel set ω ⊆ Sn−1 it is defined as the (n− 1)-dimensional
Hausdorff measure of the set of all boundary points of K for which there exists a normal
vector of K in ω. Strongly related to these measures is the mixed volume of K,L ∈ K(Rn).
It is defined by

V(K,L) =
1

n

�
Sn−1

hL(u)dSK(u),

see, e.g., [62, Sec. 5]. Clearly, V(K, ·) is monotone and V(K,K) = Vn(K), where Vi denotes
the i-dimensional volume. Minkowski’s first inequality (see [62, Thm. 7.2.1]) states that

V(K,L) ≥ Vn(K)
n−1
n Vn(L)

1
n (2.1)

for all K,L ∈ K(Rn) with non-empty interior. Equality holds if and only if K and L are
homothetic, that is, K = λL+ x for some λ ∈ R \ {0} and x ∈ Rn.
One major topic of convex geometry is the investigation of geometric operators on convex

bodies. One example of these is given by the projection body ΠK of a convex body
K ∈ K(Rn) which is defined by (see, e.g., [16])

hΠK(u) = Vn−1(K|u⊥), u ∈ Sn−1,
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2 Background

where K|u⊥ denotes the orthogonal projection of K onto u⊥, the hyperplane perpendicular
to u. This object sparked a lot of interest (see e.g. [23,47,53,61,63] and [16, Note 4.10] for
a list of references) and we are going to have a look at the related Shephard problem (see
Chapter 4).

Star bodies are considered to be the dual notion of convex bodies. These are compact
subsets of Rn, which are star shaped with respect to the origin that have a continuous
radial function

ρK(u) = sup{λ ∈ R : λu ∈ K}, u ∈ Rn \ {0}.

Let us denote the set of star bodies in Rn by S0(Rn). Since this function is −1-homogeneous,
it is already determined by its values on the unit sphere Sn−1 and the topology on this
space is uniform convergence of radial functions.
We will need the notion of dual mixed volume of K,L ∈ S0(Rn) which was introduced

for non-zero p ∈ R in [46] as

Ṽp(K,L) =
1

n

�
Sn−1

ρn−p
K (u)ρpL(u)du.

Note that we always have Ṽp(K,K) = Vn(K), by the polar formula for volume. If L ⊂ M ,
then pṼp(K,L) ≤ pṼp(K,M). Moreover, the dual Lp-Minkowski inequality states that
(see, e.g., [62, (9.40)]) for 0 < p < n and K,L ∈ S0(Rn)

Ṽp(K,L) ≤ Vn(K)
n−p
n Vn(L)

p
n ,

and for p < 0

Ṽp(K,L) ≥ Vn(K)
n−p
n Vn(L)

p
n .

The inequalities can be written in the following unified way for p < 0 or 0 < p < n

pṼp(K,L) ≤ pVn(K)
n−p
n Vn(L)

p
n . (2.2)

Equality holds if and only if K and L are dilates of each other.
There are also several interesting operators in the dual setting, which were studied

throughout the last decades. One important example is given by the intersection body
IK ∈ S0(Rn) of K ∈ S0(Rn), which was defined by Lutwak [47] as the unique, origin-
symmetric star body satisfying

V1(IK ∩ spanR{u}) = 2Vn−1(K ∩ u⊥), u ∈ Sn−1, (2.3)

where spanR{u} is the linear span of u or equivalently by using its radial function by

ρIK(u) = Vn−1(K ∩ u⊥), u ∈ Sn−1.

This operator is related to the Busemann–Petty problem (see Chapter 4).
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2 Background

A special connection between the notions of support and radial functions is given via
polarity, i.e. given the polar body of K ∈ K(0)(Rn) (the set of all convex bodies that contain
the origin in their interiors) which is defined by

K◦ = {z ∈ Rn : �z, y	 ≤ 1, ∀y ∈ K}.
the radial function of K◦ is related to the support function by

ρK◦(x)−1 = hK(x).

Note that we also have

ρK◦(x)−1 = �x�K◦ ,

where �x�K = min{λ ≥ 0 : x ∈ λK} is the gauge function of K.

In the following, most of the time, we will work in the space Cn ∼= R2n endowed with a
complex inner product ·, which is related to the Euclidean inner product on R2n by

x · u = �x, u	+ i�−ix, u	, x, u ∈ Cn.

With this definition, we have x · (λu) = λ(x · u), x, u ∈ Cn, λ ∈ C and consequently, by
identifying C ∼= R2,

�c, x · u	 = �cu, x	, x, u ∈ Cn, c ∈ C. (2.4)

The unit disk in C, i.e. the unit ball in the complex plane, is denoted by D. We will
identify the set of convex and star bodies respectively on Cn with the space of convex and
star bodies on R2n and in this sense, we can apply the results from above in dimension 2n,
when working in the space Cn.

Also in complex vector spaces geometric operators have been considered. As an analogue
of the projection body in real vector spaces, Abardia and Bernig [2] introduced the family
of complex projection bodies which are defined by

hΠCK(u) =
1

2

�
S2n−1

hCu(v)dSK(v), K ∈ K(Cn), u ∈ S2n−1, (2.5)

where C ∈ K(C) and Cu = {cu : c ∈ C}.
In the dual setting, the complex intersection body was recently introduced by Koldobsky,

Paouris and Zymonopoulou [40]. For an S1-invariant star body K ∈ S0(Cn), that is,
satisfying cK = K for all c ∈ S1 ⊆ C, the complex intersection body IcK is defined as the
unique S1-invariant star body satisfying

V2(IcK ∩ spanC{u}) = V2n−2(K ∩ u⊥,C), u ∈ S2n−1, (2.6)

where spanC{u} denotes the complex line defined by u and u⊥,C denotes the complex
hyperplane perpendicular to u ∈ S2n−1 with respect to the complex inner product on Cn.
Note that, by S1-invariance, IcK∩spanC{u} is always a disk and (2.6) determines its radius.
We will introduce a new family of geometric operators in the dual setting in Chapter 3.
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2 Background

2.2 Spherical Harmonics and Embedding into Lp

To exploit the complex structure in the space of spherical harmonics we will orient ourselves
at the presentation in [3]. Let us first recall that the space H2n consists of harmonic poly-
nomials on Cn = R2n restricted to S2n−1 and naturally decomposes into O(2n)-irreducible
subspaces,

H2n =
∞�
k=0

H2n
k ,

where the subscript k indicates the degree of homogeneity of the polynomial in Cn. We
can decompose H2n

k further into its U(n)-irreducible subspaces H2n
k,l of spherical harmonics

of bi-degree (k, l). Here, a spherical harmonic Y ∈ H2n
k,l has bi-degree (k, l) ∈ N × N, if

Y (cu) = ckclY (u) for all u ∈ S2n−1 and c ∈ S1.
Denoting by πk,l the orthogonal projection from L2(S2n−1) (endowed with the standard

L2-inner product) onto H2n
k,l, every f ∈ C(S2n−1) is uniquely determined by its harmonic

components πk,lf ∈ H2n
k,l, k, l ∈ N. Next, fixing a point ē ∈ S2n−1, there exists a unique

spherical harmonic !Pk,l ∈ H2n
k,l, such that !Pk,l(ē) = 1 and !Pk,l is invariant under the

stabilizer U(n − 1) ⊆ U(n) of ē. The existence of !Pk,l and some properties of it, that we
will need later on, are the content of the following proposition from [31, Thm. 3.1(3)], see
also [54, Prop. 4.2] for the formulation given here.

Proposition 2.2.1 ([31, Thm. 3.1(3)],[54, Prop. 4.2]). Let k, l ∈ N. Then H2n
k,l contains

a unique U(n − 1)-invariant spherical harmonic !Pk,l with !Pk,l(ē) = 1, given by !Pk,l(u) =
Pk,l(ē · u) for Jacobi polynomial Pk,l : D → C of order (k, l) , and satisfying

1. Pk,l(z) = Pk,l(z), and

2. Pk,l(z) = z|k−l|Qmin{k,l}(|k − l|, n− 2, |z|2), for all z ∈ D,

where {Ql(a, b, ·) : l ∈ N} is the complete set of polynomials orthogonal on [0, 1] with respect
to the L2-inner product with weight ta(1− t)b and Ql(a, b, 1) = 1, a, b > −1.

In analogy to their real counterparts (Legendre polynomials), Jacobi polynomials are
very helpful in relation with transforms on C(S2n−1) given by a kernel φ, as the following
complex Funk–Hecke theorem shows.

Theorem 2.2.2 ([54, Thm. 4.4]). Suppose that φ ∈ L2(D, (1 − |z|2)n−2dz) and let Yk,l ∈
H2n

k,l. Then �
S2n−1

φ(v · u)Yk,l(v)dv = λk,l[φ]Yk,l(u), u ∈ S2n−1,

with

λk,l[φ] = (2n− 2)κ2n−2

�
D
φ(z)Pk,l(z)(1− |z|2)n−2dz. (2.7)

6



2 Background

In general, a transform T : C(S2n−1) → C(S2n−1) that satisfies

πk,l(Tf) = λk,l[T ]πk,lf, f ∈ C(S2n−1),

is called a multiplier transform with multipliers λk,l[T ] ∈ C. Note that since every f ∈
C(S2n−1) is completely determined by its projections πk,lf , k, l ∈ N, a multiplier transform
is injective if and only if all of its multipliers are non-zero. We will give two examples of
multiplier transforms below, which we will need in the following.

Example 2.2.3.

i) The non-symmetric Lp-cosine transform C+
p , where p > −1 is non-zero is a well-

known example of a multiplier transform. It is given by

(C+
p f)(u) =

�
S2n−1∩u+

|�v, u	|pf(v)dv, u ∈ S2n−1, (2.8)

for every f ∈ C(S2n−1), writing u+ = {v ∈ S2n−1 : �v, u	 ≥ 0}.
The multipliers of C+

p as a transform on a real vector space were calculated by different
means by Rubin [56] (for dimension 3 and higher) and Haberl [26, Lem. 5] (also in
dimension 2). Since H2n

k,l ⊆ H2n
k+l, the multipliers of C+

p when viewed as a transform
on a complex vector space are equal to the corresponding real multipliers, that is,

λk,l[C
+
p ] =

πn

2p
Γ(p+ 1)

Γ
�
n+ p+k+l

2

�
Γ
�
p−k−l

2 + 1
� (2.9)

for non-zero p > −1 which is not an integer. In particular, λk,l[C
+
p ] �= 0 for all

k, l ∈ N, that is, C+
p is injective for p ∈ (−1,∞) \ N.

ii) The spherical Fourier transform Fp of degree p on S2n−1, −2n < p < 0, is defined by

(Fqϕ)(u) = (�ϕq)(u), u ∈ Sn−1, (2.10)

where ϕp is the p-homogeneous extension of an even function ϕ ∈ C∞(S2n−1) and �·
denotes the usual Fourier transform, i.e.

�φ(x) = �
Cn

φ(y)e−i�x,y�dy, x ∈ Cn,

for every Schwartz function φ on Cn. Note that, for this definition, it is important
that �ϕp is again a smooth function (see [22], it is homogeneous of degree −2n − p)
so that Fp defines a linear operator on even smooth functions. It can be extended to
even distributions using that Fp is self-adjoint.

As Fp intertwines the O(2n)-action on smooth functions, it acts as a multiplier trans-
form on the spaces H2n

k,l, where k + l is even. The multipliers were computed in
[22, Lem. 3.4] (however, using a different parametrization),

λk,l [Fp] = (−1)
k+l
2 22n+pπn

Γ
�
k+l+p

2 + n
�

Γ
�
k+l−p

2

� . (2.11)

7



2 Background

This formula extends analytically to all p ∈ C which are not even integers. Moreover,
we can deduce from (2.11) that the inverse of Fp is given by

F−2n−pFpϕ = (2π)nϕ. (2.12)

Strongly connected to the spherical Fourier transform is the notion of embedding into
Lp. Let K be a star body in Cn. We say that the space (Cn, � · �K) embeds (isometrically)
in Lp, p > 0, if and only if there exists a finite Borel measure µ on S2n−1, such that

�x�pK =

�
S2n−1

|�x, u	|pdµ(u), x ∈ Cn, (2.13)

see, e.g., [38, Ch. 6] for details.
One can express (2.13) in different terms using the Fourier transform (see [38, Lem. 6.9]).

With this at hand, the definition can be formally extended to negative values of p as follows.

Definition 2.2.4. [38, Def. 6.14] Suppose that K ∈ S0(Cn) is origin-symmetric. Then the
space (Cn, � · �K) is said to embed in Lp

i) for −n < p < 0, if there exists a finite Borel measure µ on S2n−1 such that�
Cn

�x�pKφ(x)dx =

�
S2n−1

�� ∞

0
r−p−1�φ(ru)dr� dµ(u), (2.14)

for every even Schwartz function φ on Cn and

ii) for p > 0 that is not an even integer, if there exists a finite Borel measure µ on S2n−1

such that�
Cn

�x�pKφ(x)dx =
1

Γ
�−p

2

� �
S2n−1

�� ∞

0
r−p−1�φ(ru)dr� dµ(u), (2.15)

for every even Schwartz function φ on Cn, whose Fourier transform is supported
outside of the origin.

We denote the set of all star bodies that embed into Lp by {�→ Lp}.
With the spherical Fourier transform of degree p, one can give an alternative charac-

terization of when a body embeds into Lp. It was given in [32], see also [38, Thm. 6.10,
Thm. 6.15] and [57, Thm. 5.2, Prop. 5.4] (formulated in terms of the spherical Fourier
transform used here).

Proposition 2.2.5. Let K ∈ S0(Cn) be origin-symmetric and let −2n < p be non-zero.
Then K embeds into Lp if and only if

1

Γ
�−p

2

�Fpρ
−p
K ≥ 0,

in the sense of distributions. In particular, 1
Γ(− p

2 )
Fpρ

−p
K can be represented by a positive

measure.
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2 Background

In two dimensions, every origin-symmetric convex body satisfies the condition above. This
is the content of the following lemma, which is a direct consequence of [38, Cor. 6.7 & 6.8],
for 0 < p ≤ 1, and of [38, Thm. 6.17], for −2 < p < 0.

Lemma 2.2.6. For every origin-symmetric K ∈ K(0)(C), the space (C, � · �K) embeds in
Lp for every non-zero −2 < p ≤ 1.

9



3 Complex Lp-intersection bodies

For a star body K in Rn, the intersection body IK (see (2.3)) was defined by Lutwak [47].
While intersection bodies played a key role in the solution of the famous Busemann–Petty
problem (see e.g. [18] for an elegant unified solution and a comprehensive list of references),
the origin of intersection bodies dates back to the pioneering works of Busemann on volume
and area defined in Finsler spaces. Formulated in different terms, Busemann established his
important convexity theorem [8], stating that the intersection body of an origin-symmetric
convex body is convex, as well as his famous intersection inequality for convex bodies [9],
which was extended to star bodies by Petty [52] in the following way: If K is a star body
in Rn, then

Vn(IK)/Vn(K)n−1 ≤ κnn−1/κ
n−2
n , (3.1)

where κi = Vi(B
i) is the volume of the i-dimensional Euclidean unit ball Bi, and equality

holds exactly for origin-symmetric ellipsoids.
Throughout the years, intersection bodies have sparked a lot of interest in a wide range

of fields (see, e.g., [15,21,33–37,45,50,58,68,70] for an overview). In particular, they played
a central role in the development of the dual Brunn–Minkowski theory due to Lutwak [47],
where their special role was revealed by characterizations of intersection bodies from a
valuation-theoretic point of view by Ludwig [45]. In the emerging Lp-Brunn–Minkowski
theory and its dual, the concept was extended to the Lp-intersection body IpK, defined for
K ∈ S0(Rn) and non-zero p > −1 by

ρIpK(u)−p =

�
K
|�x, u	|pdx, u ∈ Rn \ {0}, (3.2)

Note that, for p ≥ 1, this definition coincides (up to normalization) with the polar of the
Lp-centroid body (first defined in [49], see also [17]). For −1 < p < 1, Lp-intersection
bodies were studied in [6,26,28,67]. Using well-known properties of the p-cosine transform,
the Lp-intersection bodies relate to the classical intersection body by

lim
p→−1+

�
1

Γ(1 + p)

�−1/p

IpK = 2 · IK, K ∈ S0(Rn), (3.3)

see, e.g., [17, 24, 26], where convergence is with respect to the radial metric on S0(Rn).
As a natural consequence, Lp-analogues of classical problems for intersection bodies were
considered, leading to fruitful interactions and many new results, including a convexity
theorem by Berck [6] and characterizations by Haberl and Ludwig [28]. The intersection
inequality (3.1) was generalized in [49] for p ≥ 1, leading to the discovery of an interpolating
family of inequalities between the polar Busemann–Petty centroid inequality (p = 1) and

10



3 Complex Lp-intersection bodies

the famous Blaschke–Santaló inequality (p = ∞). Very recently, this family of inequalities
was extended in [4] to 0 < p < 1 and to −1 < p < 0 with n/|p| ∈ N, preceded by local
inequalities including equality cases around the unit ball proved in [66].

A different generalization of intersection bodies was recently introduced by Koldobsky,
Paouris and Zymonopoulou [40], based on a Busemann–Petty-type problem in complex
vector spaces, first considered in [39]. Here, intersections by real hyperplanes are replaced
by intersections by complex hyperplanes u⊥,C perpendicular to u ∈ S2n−1 with respect to
the complex inner product on Cn, leading in a natural way to the definition of a complex
intersection body (see (2.6)). Moreover, it was shown in [40] that IcK is convex whenever
K is the unit ball of a complex norm on Cn, that is, when K ∈ S0(Cn) is convex and
S1-invariant.
In this chapter, we combine the complex structure with the Lp-approach to define com-

plex Lp-intersection bodies. We adapt a strategy used by Abardia and Bernig [2], Abar-
dia [1] and Haberl [27] who introduced complex projection, difference and centroid bodies,
respectively.
Replacing the support function |�·, u	| of the interval [−1, 1]u by the support function of

a convex body Cu, C ∈ K(C), then leads to the following definition.

Definition 3.1.1. Suppose that C ∈ K(C) contains the origin in its relative interior,
dimC > 0, and 0 �= p ∈ (− dimC, 1). For K ∈ S0(Cn), the complex Lp-intersection body
IC,pK is the star body with radial function

ρIC,pK(u)−p =

�
K
hCu(x)

pdx, u ∈ S2n−1, (3.4)

where Cu = {cu : c ∈ C} ⊆ Cn.

Note that for C = [−1, 1] we recover the (real) Lp-intersection bodies defined in (3.2) and
for p = 1, this equals the polar complex centroid body introduced by Haberl in [27]. For
dimC = 2 the range of admissible values for p extends to (−2, 1], see Section 3.2 for details
and some basic properties of complex Lp-intersection bodies. Let us also point out that in
[65] complex Lp-centroid (moment) bodies were defined in a similar way for p ≥ 1.

As our first main result, we show that complex Lp-intersection bodies interpolate between
the polar complex centroid body (p = 1) and the complex intersection body (p = −2), that
is, we prove a complex analogue of (3.3), and thereby justify the name. To state the
theorem, let us recall that K(0)(C) denotes the set of convex bodies K ∈ K(C) that contain
the origin in their interiors and therefore that C ∈ K(0)(C) implies dim(C) = 2.

Theorem A. Suppose that C ∈ K(0)(C). Then there exists kC > 0, such that

lim
p→−2+

�
1

Γ(p+ 2)

�−1/p

IC,pK = kC · Ic
�
KS1

�
,

for every K ∈ S0(Cn), where KS1 ∈ S0(Cn) is the star body with radial function

ρ2n−2

KS1 (u) =
1

2π

�
S1
ρ2n−2
K (cu)dc, u ∈ S2n−1.

11



3 Complex Lp-intersection bodies

As before, convergence is with respect to the radial metric. Similar to the real setting,
Theorem A is proved by showing by analytic continuation that a certain integral transform,
used to define IC,p, converges in the strong operator topology to a multiple of the complex
spherical Radon transform (see Section 3.3.1 for the definition), which defines Ic, as p →
−2+. As a direct consequence, we obtain a simple formula for the multipliers of the complex
spherical Radon transform, seen as a U(n)-equivariant map on C(S2n−1), thereby partially
recovering results (of higher generality) from Rubin [55] and showing that the complex
intersection body map Ic, as well as the maps IC,p, are injective on S1-invariant star bodies.
See Section 3.3.2 for the details of these calculations.

Next, we consider an analogue of the well-known convexity theorem by Busemann [8],
as well as the following extension by Berck [6] to (real) Lp-intersection bodies:

Theorem 3.1.2 ([6]). Let p > −1 be non-zero. If K ∈ S0(Rn) is convex and origin-
symmetric, then IpK is convex.

Here, the condition that the body K is origin-symmetric, that is, K is the unit ball of
a (real) norm cannot be omitted. Transferring the symmetry condition to the complex
setting, real norms are naturally substituted by complex norms, that is, origin-symmetry
is replaced by S1-invariance, leading to the complex convexity theorem in [40] for Ic.

Theorem 3.1.3 ([40]). If K ∈ S0(Cn) is convex and S1-invariant, then IcK is convex.

It is a natural question to ask whether complex Lp-intersection bodies are convex. As our
second main result, we extend Theorems 3.1.2 and 3.1.3 to complex Lp-intersection bodies
of S1-invariant convex bodies in Cn, weakening for −2 < p < −1 convexity to pseudo-
convexity (see Section 3.4 for the definition). It is an interesting (open) question whether
pseudo-convexity can be strengthened to convexity.

Theorem B. Suppose that C ∈ K(0)(C). If K ∈ S0(Cn) is convex and S1-invariant, then
int IC,pK is pseudo-convex, if −2 < p < −1, and IC,pK is convex, if −1 ≤ p �= 0.

The proof of Theorem B is very much inspired by the techniques from [6] and relies for
p > −1 on Theorem 3.1.2. Indeed, for p > −1, we actually show, using techniques from
isometric embeddings into Lp-spaces, the following close relation.

Theorem C. Suppose that p > −1 is non-zero and C ∈ K(0)(C). Then there exists
dC,p > 0, such that IC,pK = dC,pIpK for every S1-invariant K ∈ S0(Cn).

Let us also note that, in general, Theorem B without the assumption of S1-invariance is
false, if p ≥ −1, as we show in Section 3.4.4.

Turning now to inequalities for intersection bodies, our next main result relates the
volume of complex Lp-intersection bodies with the volume of their real counterparts.

Theorem D. Suppose that C ∈ K(0)(C) is origin-symmetric and −1 ≤ p < 1 is non-zero.
If K ∈ S0(Cn), then

V2n(IC,pK)/V2n(IC,pB
2n) ≤ V2n(IpK)/V2n(IpB

2n). (3.5)

12



3 Complex Lp-intersection bodies

Let us note that the equality cases of (3.5) can be completely described by a technical
statement in terms of the convex body C and will be stated later in Section 3.5. By
Theorem C, clearly S1-invariant bodies satisfy equality. From Theorem D, we deduce the
following generalization of Busemann’s intersection inequality (3.1) for IC,p leading to affine
isoperimetric inequalities in the following sense. Here, we call an ellipsoid E Hermitian, if
E = ϕ(B2n) + t for ϕ ∈ GL(n,C), t ∈ Cn.

Corollary E. Suppose that C ∈ K(0)(C) is origin symmetric and 0 < p < 1 or −1 ≤ p < 0
and n/|p| ∈ N. Among K ∈ S0(Cn), the ratio

V2n (IC,pK) /V2n (K)2n+p

is maximized by origin-symmetric Hermitian ellipsoids. If p = −1, these are the only
maximizers.

Indeed, Theorem D shows that affine isoperimetric inequalities for real Lp intersection
bodies are stronger than their complex counterparts. Corollary E therefore follows directly
from the very recent breakthrough in [4], where the following inequality for Lp-intersection
bodies was proved using methods from stochastic geometry.

Theorem 3.1.4 ([4]). Suppose that 0 < p < 1 or −1 < p < 0 and n/|p| ∈ N.
Among K ∈ S0(Rn), the ratio

Vn(IpK)/Vn(K)n+p

is maximized by origin-symmetric ellipsoids.

3.2 Definition and Basic Properties of Complex Lp-Intersection
Bodies

In this section, we prove that by Definition 3.1.1 the complex Lp-intersection body map
is well defined and show basic properties. We will deduce this from properties of a more
general operator JC,p on C(S2n−1).

Recalling the definition of support functions, hK(u) = sup{�x, u	 : x ∈ K} ofK ∈ K(Cn),
(2.4) directly implies for every C ∈ K(C),

hCu(x) = hC(x · u), x, u ∈ Cn. (3.6)

For K ∈ S0(Cn), the complex parallel section function AC
K,u is defined by

AC
K,u(z) = V2n−2(K ∩ {x ∈ Cn : x · u = z}), u ∈ Cn \ {0}, z ∈ C. (3.7)

Similarly, the real parallel section function AR
K,u is defined using intersections by real (affine)

hyperplanes. AC
K,u can be written as complex Radon transform RC

u [✶K ] of the indicator
function ✶K of K, where for ψ ∈ C(Cn) with compact support,

RC
u [ψ](z) =

�
x·u=z

ψ(x)dx, u ∈ Cn \ {0}, z ∈ C.

13



3 Complex Lp-intersection bodies

Moreover, by Fubini’s theorem, AC
K,u can be used to express certain integrals over parallel

complex hyperplanes, that is,�
K
ϕ(x · u)dx =

�
C
ϕ(z)AC

K,u(z)dz (3.8)

for every ϕ ∈ C(C) and u ∈ Cn \ {0}.
Suppose that C ∈ K(C) contains the origin in its relative interior, dimC > 0 and let p

be non-zero with p > − dimC. For every f ∈ C(S2n−1), we define JC,pf by

(JC,pf)(u) =

�
S2n−1

hC(v · u)pf(v)dv, u ∈ S2n−1. (3.9)

Rewriting Definition 3.1.1 in polar coordinates, shows that

ρ−p
IC,pK

=
1

2n+ p
JC,p(ρ

2n+p
K ), (3.10)

for every K ∈ S0(Cn).

Lemma 3.2.1. JC,p is a well-defined operator on C(S2n−1), which is Lipschitz continuous
with Lipschitz-constant �JC,p1�∞. Moreover, if f ∈ C(S2n−1) is strictly positive, so is
JC,pf .

Proof. First note that since 0 ∈ relintC, we have hC ≥ 0 and that hC(z) = 0 if and only if
z is orthogonal to spanRC. Hence, hpC(v · u) is well-defined and positive for all v ∈ S2n−1

that are not contained in the (proper) subspace defined by v · u ∈ (spanRC)⊥R , that is, for
almost all v ∈ S2n−1, and we will interpret the integral in (3.9) accordingly. This readily
implies that (assuming it is well-defined) JC,pf is positive whenever f is positive.
Next, we distinguish the cases dimC = 2 and dimC = 1. In the first case, dimC = 2,

since 0 ∈ intC, there exist constants d,D > 0 such that dD ⊆ C ⊆ DD. A direct estimate
then shows that

|hC(v · u)pf(v)| ≤ �f�∞max{dp, Dp}hD(v · u)p,
that is, by dominated convergence, JC,pf is well-defined and continuous whenever v �→
hD(v · u)p = |v · u|p is integrable with respect to the spherical Lebesgue measure on S2n−1

for some (and by invariance then every) u ∈ S2n−1. For this reason, let u ∈ S2n−1 be
arbitrary and compute using polar coordinates (in Cn) and (3.8),�

S2n−1

|v · u|pdv = (2n+ p)

�
B2n

|x · u|pdx = (2n+ p)

�
C
|z|pAC

B2n,u(z)dz.

As AC
B2n,u is bounded by some M > 0 and has compact support contained in some ball RD,

R > 0, both uniformly in u, the latter integral can be estimated, using polar coordinates
(in C), by

(2n+ p)

�
C
|z|pAC

B2n,u(z)dz ≤ (2n+ p)M

�
RD

|z|pdz = (2n+ p)M2π

� R

0
rp+1dr,
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3 Complex Lp-intersection bodies

which is finite since p + 1 > − dimC + 1 = −1. We conclude that JC,pf ∈ C(S2n−1),
whenever dimC = 2.
In the second case, dimC = 1, there exists an origin-symmetric interval I ⊆ C and

constants d,D > 0 such that dI ⊆ C ⊆ DI, which reduces the claim to a similar calculation
as in the previous case.
Finally, Lipschitz-continuity of JC,p follows by a direct estimate, the Lipschitz constant

is given by �JC,p1�∞.

Indeed, the operators JC,pf are jointly continuous in C and f . Before stating and proving
this explicitly, we give two technical lemmas required in the proof.

Lemma 3.2.2. Suppose that C ∈ K(C) with C �= {0} and 0 ∈ relintC, and let p >
− dimC. Then there exists c(n, p) > 0 such that

(JC,p1)(u) = c(n, p)

�
S1
hC(v)

pdv, u ∈ S2n−1.

Proof. A direct calculation using polar coordinates and (3.8) for the complex parallel section
function AC

B2n,u yields for u ∈ S2n−1,

(JC,p1)(u) = (2n+ p)

�
B2n

hC(x · u)pdx = (2n+ p)

�
C
hC(z)

pAC
B2n,u(z)dz

= (2n+ p)

�
S1
hC(v)

p

� ∞

0
rp+1AC

B2n,u(rv)drdv

= (2n+ p)

� ∞

0
rp+1AC

B2n,u(r)dr

�
S1
hC(v)

pdv,

where we used that AC
B2n,u(rv) = AC

B2n,u(r) by the S1-invariance of B2n.

In the following lemma, convergence of convex bodies is, as always, in the Hausdorff-
topology, that is, uniform convergence on S2n−1 of support functions.

Lemma 3.2.3. Suppose that (Cj)j∈N ⊆ K(0)(C) converges to C0 ∈ K(C), with C0 �= {0}
and 0 ∈ relintC0, and let p > −min{dimCj : j = 0, 1, . . . } be non-zero. Then there exists
M > 0 such that �

S1
hCj (u)

pdu < M, j ∈ N. (3.11)

Proof. First note that the integral in (3.11) is always finite as the case n = 1 of the previous
Lemma 3.2.1 shows, that is, it remains to show that the integral can be uniformly bounded
when j is large enough.
If dimC0 = 2, there exist a, b > 0 such that aD ⊆ Cj , C0 ⊆ bD, and a direct estimate

shows the claim. We are therefore left to prove the claim for dimC0 = 1. To this end,
observe that the convergence Cj → C0 implies that Cj ∩ (−Cj) → C0 ∩ (−C0), as j → ∞,
and let 2d0 be the length of the maximal, origin-symmetric interval that is contained in
C0 ∩ (−C0). As 0 ∈ relintC0, d0 > 0. Since

d0 = max
u∈S1

hC0∩(−C0)(u),
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3 Complex Lp-intersection bodies

the convergence of Cj∩(−Cj) implies that for j sufficiently large, every Cj∩(−Cj) (and thus
every Cj) contains an origin symmetric interval of length greater or equal 2d0 − d0 = d0.

Moreover, since Cj is a convergent sequence, there exists D > 0 such that Cj ⊆ DD for
all j ∈ N. Consequently, we have shown that, for every j large enough there exists ξj ∈ S1,
such that [−d0

2 ξj ,
d0
2 ξj ] ⊆ Cj ⊆ DD, which implies that,

hCj (u)
p ≤ max

��
d0
2

�p

|�ξj , u	|p, Dp|u|p
�
, u ∈ S1. (3.12)

Therefore the claim follows from the integrability of | · |p and the fact that the (finite)
integral of |�w, ·	|p does not depend on the choice of w ∈ S2n−1.

We are now in a position to prove the aforementioned joint continuity of JC,p.

Proposition 3.2.4. Suppose that p > −2. Then the map

J : {C ∈ K(C) : C �= {0}, 0 ∈ relintC, dimC > −p} × C(S2n−1) → C(S2n−1),

defined by (C, f) �→ JC,pf , is jointly continuous.

Proof. Suppose that Cj → C, for {0} �= Cj , C ∈ K(C) with 0 ∈ relintCj , C and dimCj , C >
−p, and that fj → f uniformly, fj , f ∈ C(S2n−1), as j → ∞. We need to show that
JCj ,pfj → JC,pf uniformly on S2n−1 as j → ∞. To this end, we will first show point-
wise convergence of JCj ,pfj and then use the Arzelà-Ascoli theorem to deduce uniform
convergence.
Therefore, letting u ∈ S2n−1, a direct estimate yields

|(JCj ,pfj − JC,pf)(u)| ≤ |(JCj ,pfj − JCj ,pf)(u)|+ |(JCj ,pf − JC,pf)(u)|
≤ �fj − f�∞|(JCj ,p1)(u)|+ �f�∞

�
S2n−1

|(hpCj
− hpC)(v · u)|dv.

By Lemmas 3.2.2 and 3.2.3 the first term on the right-hand side is bounded by
M ��fj − f�∞, where M � > 0 is some constant independent of j. Moreover, arguing as
in the proof of Lemma 3.2.3, see (3.12), the integrand in the second term has an integrable
majorant. The uniform convergence of fj and dominated convergence therefore imply that
JCj ,pfj(u) → JC,pf(u).

Next, since (JCj ,pfj)(u) is convergent for every u ∈ S2n−1, the sequence is uniformly
bounded, that is, the family (JCj ,pfj)j∈N is pointwise bounded. In order to show equicon-
tinuity, fix some arbitrary u ∈ S2n−1 and let η ∈ U(n) be a unitary linear map. The
invariance of the Lebesgue measure on S2n−1 then yields,

(JCj ,pfj)(ηu) =

�
S2n−1

hCj ((η
−1v) · u)pfj(v)dv =

�
S2n−1

hCj (v · u)pfj(ηv)dv.

Letting ε > 0 arbitrary, by the equicontinuity of the fj on the compact set S2n−1, there ex-
ists an open neighborhood U of the identity in U(n) such that
|fj(v)− fj(ηv)| < ε for all v ∈ S2n−1, η ∈ U , j ∈ N. Consequently, for all η ∈ U ,

|(JCj ,pfj)(u)− (JCj ,pfj)(ηu)| ≤
�
S2n−1

hCj (v · u)p|fj(v)− fj(ηv)|dv ≤ ε|(JCj ,p1)(u)|,
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3 Complex Lp-intersection bodies

which, by the previous estimate |(JCj ,p1)(u)| < M � (independently of j) and since {ηu :
η ∈ U} is an open neighborhood of u ∈ S2n−1 shows the equicontinuity of the family
(JCj ,pfj)j∈N.
The Arzelà-Ascoli theorem thus implies the existence of a uniformly convergent subse-

quence (JCjk
,pfjk)k∈N. As the original sequence converges pointwise to JC,pf , we obtain

JCjk
,pfjk → JC,pf , and a standard argument (that is, starting with an arbitrary subse-

quence) implies that JCj ,pfj → JC,pf , which completes the proof.

Note that, for C ∈ K(0)(C), Proposition 3.2.4 can be proved directly by showing local
Lipschitz-continuity of JC,pf as a function in C.

It follows now directly that the complex Lp-intersection body body is well defined and
continuous.

Corollary 3.2.5. Suppose that p > −2. Then the map

I : {C ∈ K(C) : C �= {0}, 0 ∈ relintC, dimC > −p} × S0(Cn) → S0(Cn),

defined by (C,K) �→ IC,pK, is well-defined and jointly continuous.

Proof. This follows directly from (3.10), Lemma 3.2.1, Proposition 3.2.4 and the fact that
the maps t �→ t2n+p and t �→ t−1/p are locally Lipschitz-continuous for t > 0. Note that
Lemma 3.2.1 asserts that (JC,pρ

2n+p
K )−1/p is positive and continuous and therefore a radial

function of a star body in S0(Cn).

Note that the proofs of Lemma 3.2.1 and Corollary 3.2.5 imply that for fixed C ∈ K(C)
and non-zero p > − dimC, the operator IC,p : S0(Cn) → S0(Cn) is locally Lipschitz-
continuous.

In view of its importance for the real Lp-intersection body (see [28, 45]), we close the
section with the following corresponding property for complex Lp-intersection bodies. The
proof is a direct computation and will be omitted.

Lemma 3.2.6. Suppose that C ∈ K(C) contains the origin in its relative interior and
let p > − dimC be non-zero. Then IC,p : S0(Cn) → S0(Cn) is a GL(n,C)-contravariant
valuation with respect to L−p-radial addition, that is,

ρ−p
IC,p(K∪L) + ρ−p

IC,p(K∩L) = ρ−p
IC,p(K) + ρ−p

IC,p(L)
, K, L ∈ S0(Cn),

and

IC,p(ΘK) = | detΘ|−2/pΘ−∗IC,p(K), K ∈ S0(Cn),Θ ∈ GL(n,C),

where Θ−∗ = (Θ∗)−1 denotes the inverse of the Hermitian adjoint Θ∗ = Θ
T
.
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3.3 Proof of Theorem A and Injectivity

3.3.1 Proof of Theorem A

In this section, we will use several results from the previous section to give a proof of
Theorem A, that is, to compute the limit of (a normalization of) IC,pK for p → −2+,
where C ∈ K(0)(C) and K ∈ S0(Cn). To this end, we will first show a similar result for the
operator JC,p and then deduce from it Theorem A.

A key ingredient of the proof of the statements in this section will be the well-known
fact that the familiy of distributions rq+,

φ �→ �rq+, φ	 =
� ∞

0
rqφ(r)dr (3.13)

is analytic for every q ∈ C with �q > −1, and admits a meromorphic extension, with poles
at −N (see, e.g., [19, Sec. 3.2]). Consequently,

lim
q→0

� ∞

0
rqφ(r)dr =

� ∞

0
φ(r)dr

and, as can be directly checked,

lim
q→−1+

1

Γ(q + 1)

� ∞

0
rqφ(r)dr = φ(0), (3.14)

for every Schwartz function φ on R. Moreover, since all distributions rq+, �q > −1, and
their limit distribution can be applied to continuous functions with compact support, (3.14)
holds for all φ ∈ C(R) with compact support (see, e.g., [30, Thm. 2.1.8]).

As the following proposition shows, the normalized operators JC,p converge to a multiple
of the complex spherical Radon transform Rc,

(Rcf)(u) =

�
S2n−1∩{v·u=0}

f(v)dv, u ∈ S2n−1,

where f ∈ C(S2n−1).

Proposition 3.3.1. Suppose that C ∈ K(0)(C). Then there exists k�C > 0 such that
1

Γ(p+2)JC,p converges to k�CRc in the strong operator topology, as p → −2+, that is,

1

Γ(p+ 2)
JC,pf → k�CRcf, p → −2+, (3.15)

uniformly on S2n−1 for every f ∈ C(S2n−1).

Proof. Suppose that C ∈ K(0)(C) and f ∈ C(S2n−1). In order to prove (3.15), we will

first show that 1
Γ(p+2)JC,pf converges pointwise on S2n−1 and then use the Arzelà-Ascoli

theorem to deduce uniform convergence.
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3 Complex Lp-intersection bodies

To this end, we use polar coordinates (in Cn), Fubini’s theorem and again polar coordi-
nates (in C) to rewrite JC,pf(u) for u ∈ S2n−1,

(JC,pf)(u) = (2n+ p)

�
B2n\{0}

hC(x · u)pf
�

x

�x�
�
dx

= (2n+ p)

�
C
hC(z)

p

�
x·u=z

f

�
x

�x�
�
✶B2n\{0}(x)dxdz

= (2n+ p)

� ∞

0
rp+1

�
S1
hC(v)

p

�
x·u=rv

f

�
x

�x�
�
✶B2n\{0}(x)dxdvdr.

Letting gu,v(r) =
�
x·u=rv f

�
x

�x�
�
✶B2n\{0}(x)dx, and using again Fubini’s theorem, we ar-

rive at

(JC,pf)(u) = (2n+ p)

�
S1
hC(v)

p

� ∞

0
rp+1gu,v(r)drdv. (3.16)

Next, noting that gu,v is continuous (by dominated convergence) and has compact support,
we deduce by (3.14),

lim
p→−2+

1

Γ(p+ 2)

� ∞

0
rp+1gu,v(r)dr = gu,v(0)

for every v ∈ S1 and u ∈ S2n−1. Consequently, the integrand in (3.16), normalized by
Γ(p + 2), converges pointwise to hC(v)

−2gu,v(0). As there exists d ∈ (0, 1) such that
dD ⊆ C, that is, hC(v)

p ≤ dp ≤ d−2 for every v ∈ S1 and −2 < p < 0, and

1

Γ(p+ 2)

� ∞

0
rp+1|gu,v(r)|dr ≤ �f�∞

Γ(p+ 2)

� 1

0
rp+1

�
x·u=rv

✶B2n\{0}(x)dxdr

≤ �f�∞
Γ(p+ 2)(p+ 2)

κ2n−2 =
�f�∞

Γ(p+ 3)
κ2n−2,

where Γ(p + 3) is continuous for p ≥ −2, the integrand in (3.16) is bounded uniformly in
p. Dominated convergence thus implies that

lim
p→−2+

1

Γ(p+ 2)
(JC,pf)(u) = (2n− 2)

�
S1
hC(v)

−2gu,v(0)dv

= (2n− 2)

�
S1
hC(v)

−2dv

�
x·u=0

f

�
x

�x�
�
✶B2n\{0}(x)dx.

Letting k�C =
�
S1 hC(v)

−2dv = 2V2(C
◦) and using polar coordinates in x · u = 0, the latter

expression is equal to

k�C(2n− 2)

�
S2n−1∩{v·u=0}

f(v)dv

� 1

0
r2n−3dr = k�C(Rcf)(u),

that is, 1
Γ(p+2)(JC,pf)(u) → k�C(Rcf)(u), u ∈ S2n−1, p → −2+, as claimed.
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3 Complex Lp-intersection bodies

Next, since 1
Γ(p+2) |(JC,pf)(u)| is convergent for every u ∈ S2n−1, the sequence is bounded,

that is, the family ( 1
Γ(p+2)JC,pf)p>−2 is pointwise bounded. In order to show equicontinuity,

we proceed as in the proof of Proposition 3.2.4 to conclude that for every ε > 0 and
u ∈ S2n−1 there exists an open neighborhood U of u such that

|(JC,pf)(u)− (JC,pf)(w)| ≤ ε|(JC,p1)(u)|, w ∈ U.

Hence, since 1
Γ(p+2) |(JC,p1)(u)| is convergent (for p → −2+) and thus bounded, the family

( 1
Γ(p+2)JC,pf)p>−2 is equicontinuous.
The Arzelà-Ascoli theorem therefore implies the existence of a uniformly convergent

subsequence, which, by pointwise convergence, must converge to k�CRcf . A standard argu-
ment, finally, shows the uniform convergence of the whole sequence, which completes the
proof.

Theorem A is now a consequence of Proposition 3.3.1, since, by polar coordinates and
S1-invariance, the radial function of the complex intersection body IcK satisfies

ρIcK(u) =

�
1

(2n− 2)π
Rcρ

2n−2
K (u)

�1/2

, u ∈ S2n−1. (3.17)

Proof of Theorem A. First observe that Proposition 3.3.1 readily implies that whenever
fp → f uniformly as p → −2+, fp, f ∈ C(S2n−1), then 1

Γ(p+2)JC,pfp converges uniformly to

k�CRcf . Indeed,"""" JC,pfp
Γ(p+ 2)

− k�CRcf

""""
∞

≤ �JC,p(fp − f)�∞
Γ(p+ 2)

+

"""" JC,pf

Γ(p+ 2)
− k�CRcf

""""
∞

≤ �fp − f�∞ �JC,p1�∞
Γ(p+ 2)

+

"""" JC,pf

Γ(p+ 2)
− k�CRcf

""""
∞
,

where the right-hand side converges to zero by the uniform convergence of fp to f and since
�JC,p1�∞
Γ(p+2) is bounded by Proposition 3.3.1 (for the first summand), and by Proposition 3.3.1

(for the second summand).
Next, note that for K ∈ S0(Cn) there exist d > 0 and D > 1 such that

d < ρK(u) < D for all u ∈ S2n−1. Since the map p �→ t2n+p, t > 0, is differentiable
with derivative t2n+p ln(t), the mean value theorem of calculus implies for −2 < p < 0 and
u ∈ S2n−1 that

|ρK(u)2n+p − ρK(u)2n−2| ≤ max
q∈[−2,p]

ρK(u)2n+q| ln(ρK(u))||p+ 2|

≤ D2nmax{| ln(d)|, | ln(D)|}|p+ 2|,

that is, ρ2n+p
K → ρ2n−2

K uniformly as p → −2+. Hence, by (3.10) and the first part of the
proof,

lim
p→−2+

1

Γ(p+ 2)
ρ−p
IC,pK

= lim
p→−2+

JC,pρ
2n+p
K

(2n+ p)Γ(p+ 2)
=

k�C
2n− 2

Rcρ
2n−2
K
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3 Complex Lp-intersection bodies

uniformly on S2n−1. Moreover, a direct estimate using ρK(u) ∈ [d,D] shows that
Rcρ

2n−2
K (u) ∈ (2n − 2)κ2n−2[d

2n−2, D2n−2]. Consequently, by uniform convergence, there
exist constants d�, D� > 0 such that

d� <
1

Γ(p+ 2)
ρIC,pK(u)−p < D�, u ∈ S2n−1,

for all p < 0 sufficiently close to −2. Repeating the above argument for the differentiable
function p �→ t−1/p, t > 0, and using that the functions t �→ t−1/p, t ∈ [d�, D�] and
−2 < p < −1, are Lipschitz-continuous with Lipschitz constants uniformly bounded by
d�−1/2, then yields

lim
p→−2+

ρIC,pK

Γ(p+ 2)−1/p
=

�
k�C

2n− 2
Rcρ

2n−2
K

�1/2

(3.18)

uniformly on S2n−1.
Finally, as it is a direct computation that Rcf = Rcf

S1 , where for f ∈ C(S2n−1),

fS1(u) =
1

2π

�
S1
f(cu)dc, u ∈ S2n−1,

and by (3.17), the right-hand side of (3.18) is equal to (πk�C)
1/2ρ

IcKS1 , which completes the

proof by setting kC = (πk�C)
1/2.

3.3.2 Spherical Harmonics and Injectivity

In this section, we will use spherical harmonics to show a criterion for the operators JC,p

to be injective and deduce that every JC,p is injective on S1-invariant continuous functions.
As a by-product, we will calculate the multipliers of JC,p in terms of the Fourier coefficients
of hpC , which leads (by taking limits) to a closed formula for the multipliers of the complex
spherical Radon transform Rc. All results for JC,p directly translate to IC,p.

We are now ready to state the main proposition to prove injectivity of JC,p, calculating
the multipliers of the transforms JC,p. In the statement of the proposition, we use the
notation of the kth Fourier coefficient ck(f) of f ∈ C(S1),

c0(f) =
1

2π

�
S1
f(c)dc and ck(f) =

1

π

�
S1
f(c)ckdc, k ∈ Z \ {0}. (3.19)

Proposition 3.3.2. Suppose that C ∈ K(C), with C �= {0} and 0 ∈ relintC, and let
p > − dimC be non-zero. Then the multipliers of the transform JC,p are given for k, l ∈ N
by

λk,l[JC,p] =

�
c0(h

p
C)2α

(n,p)
k,l , k = l,

cl−k(h
p
C)α

(n,p)
k,l , k �= l,

(3.20)

where

α
(n,p)
k,l = πn

Γ
�
p+k−l

2 + 1
�
Γ
�
p−k+l

2 + 1
�

Γ
�
p+k+l

2 + n
�
Γ
�
p−k−l

2 + 1
� .
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3 Complex Lp-intersection bodies

Proof. By (2.7), we calculate using polar coordinates and the properties of Jacobi polyno-
mials from Proposition 2.2.1,

1

(2n− 2)κ2n−2
λk,l[JC,p] =

�
S1

� 1

0
hC(c)

pPk,l(rc)(1− r2)n−2rp+1drdc

=

�
S1
hC(c)

pcl−kdc

� 1

0
Qmin{k,l}(|k − l|, n− 2, r2)(1− r2)n−2rp+1+|k−l|dr,

where the second integral does not depend on C anymore. In particular, when p > −1,
we can repeat the argument for hpC(z) replaced by the kernel hp[−1,1](z)✶�z≥0 of the non-

symmetric Lp-cosine transform C+
p to obtain

λk,l[JC,p] =

�
S1 hC(c)

pcl−kdc�
S1(�c)p✶�c≥0cl−kdc

λk,l[C
+
p ] =

cl−k(h
p
C)

cl−k((�c)p✶�c≥0)
λk,l[C

+
p ].

Next, (2.9) and direct computations using identities for the reciprocal beta function yield
for k �= l,

cl−k((�c)p✶�c≥0) =
1

π

� π/2

−π/2
cos(t)pei(l−k)tdt =

Γ(p+ 1)

2pΓ
�
p+k−l

2 + 1
�
Γ
�
p−k+l

2 + 1
�

and for k = l,

c0((�c)p✶�c≥0) =
1

2π

� π/2

−π/2
cos(t)pdt =

Γ(p+ 1)

2p+1Γ
�p
2 + 1

�2 .
This proves the claim when p > −1. Noting, finally, that both sides of (3.20) are analytic
functions in p (for �(p) > − dimC) that coincide on the set (−1, 0) and therefore on their
domains, completes the proof.

Note that α
(n,p)
k,l �= 0 for all k, l ∈ N and non-zero p > −2, p �∈ Z, as the gamma function

has no zeros and its poles are exactly the non-positive integers. In particular, we have
shown the following.

Corollary 3.3.3. Suppose that C ∈ K(C), with C �= {0} and 0 ∈ relintC, and let p >
− dimC, p �∈ Z, be non-zero. Then JC,p is injective if and only if ck(h

p
C) �= 0 for all k ∈ Z.

We turn now to S1-invariant functions on S2n−1. Here, the computation simplifies to the
case C = D, since

2π(JC,pf
S1)(u) =

�
S2n−1

hC(v · u)p
�
S1
f(cv)dcdv (3.21)

=

�
S2n−1

�
S1
hC(c(w · u))pdcf(w)dw = 2π(JdD,pf)(u) (3.22)

for every f ∈ C(S2n−1), as the inner integral on the right-hand side can be written as
hdD(w · u)p for some d > 0 not depending on f .
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3 Complex Lp-intersection bodies

This can also be seen in terms of spherical harmonics, since restricting to
S1-invariant functions corresponds exactly to restricting to the spaces H2n

k,k, k ∈ N. Indeed,
the definition of bi-degree directly implies that a function f ∈ C(S2n−1) is S1-invariant
if and only if πk,lf = 0, k �= l ∈ N, see, e.g., [3, Lem. 4.8]. Consequently, JC,p is com-
pletely determined on S1-invariant functions by λk,k[JC,p], k ∈ N, that is, using (3.20), by
c0(h

p
C) �= 0. Thus, we conclude the following.

Corollary 3.3.4. Suppose that C ∈ K(C), with C �= {0} and 0 ∈ relintC, and let p >
− dimC be non-zero. Then JC,p is injective on S1-invariant functions in C(S2n−1).

Finally, as we have seen in Section 3.3.1, letting p → −2+, the operators JC,p converge
appropriately normalized (in the strong operator topology) to the complex spherical Radon
transform Rc for which Rcf = Rcf

S1 holds. Consequently, the multipliers of Rc can be
directly calculated from (3.20) by taking the limit.

Proposition 3.3.5. The multipliers of the complex spherical Radon transform Rc are given
by λk,l[Rc] = 0 for k �= l and

λk,k[Rc] = (−1)k2πn−1 k!

(n+ k − 2)!
, k ∈ N.

In particular, the complex intersection body map Ic is injective.

3.4 (Pseudo-)Convexity

In this section we first collect the definition and basic properties of pseudo-convex sets
that are used to prove Theorem B. As a general reference for pseudo-convex sets and
plurisubharmonic functions, we refer to [29, 43].

Next, we prove Theorem B following the ideas of Berck [6] for his convexity theorem for
Lp-intersection bodies. More precisely, we first establish concavity properties for complex
p-moments of convex bodies using inequalities of Brunn–Minkowski type, which are then
used to show that the reciprocal radial functions of IC,pK satisfy the sufficient conditions for
pseudo-convexity in Theorem 3.4.2, where K ∈ K(0)(Cn) is S1-invariant and has a smooth
boundary. The general case then follows by approximation.
In the final part of this section we give examples in the range −1 < p < 1 of convex

bodies K that are not S1-invariant, such that IC,pK is not convex for some C ∈ K(0)(C),
showing that S1-invariance is a necessary condition.

3.4.1 Basic notions

First, recall that a function ϕ : Ω → [−∞,∞), defined on an open subset Ω ⊆ Cn, is called
plurisubharmonic, if

• ϕ is upper semi-continuous;

• for all u, v ∈ Cn, the map z �→ ϕ(u+ zv) is subharmonic where it is defined,
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3 Complex Lp-intersection bodies

see, e.g., [29, Def. 1.6.1 and 2.6.1]. Examples are given by all subharmonic and, hence, by
all convex functions on Cn. Using this notion, pseudo-convex sets are defined as follows.

Definition 3.4.1 ([29, Def. 2.6.8]). An open, connected set K ⊆ Cn is pseudo-convex, if
there exists a continuous, plurisubharmonic function ϕ in K such that the sets

{z ∈ K : ϕ(z) < c}, c ∈ R,

are all relatively compact in K.

Note that this is also called Hartogs pseudo-convex and equivalent to K being a domain
of holomorphy or holomorphically convex. For sets with more regular boundary, the Levi
condition yields an equivalent statement, which is more accessible:

Theorem 3.4.2 ([29, Thm. 2.6.12]). Suppose that K ⊆ Cn is an open set with
C2-boundary, given by

K = {u ∈ Cn : ρ(u) < 0},

where ρ : Cn → R is C2 in a neighborhood of clK and ∇ρ �= 0 on bdK. Then K is
pseudo-convex, if and only if

Δzρ(u+ zv)|z=0 ≥ 0,

for all u ∈ bdK and v ∈ Cn with ∇ρ(u) · v = 0.

The next theorem shows how to use approximation by sets with smooth boundaries to
extend our results to sets with arbitrary boundaries.

Theorem 3.4.3 ([29, Thm. 2.6.9]). Suppose that Ki ⊆ Cn, i ∈ I, are pseudo-convex sets
for an index set I. Then the interior of

�
i∈I Ki is pseudo-convex.

3.4.2 Brunn–Minkowski inequalities for complex moments

For K ∈ K(Cn), v ∈ Cn \ {0} and p ≥ 0, the p-th asymmetric complex moment of K is
defined by

M�,+
p,v (K) =

�
K∩v+

�(x · v)pdx,

where v+ = {x ∈ Cn : �(x·v) ≥ 0}. Note that clearlyM�,+
p,v (K) is (2n+p)-homogeneous. A

direct application of the Prékopa–Leindler inequality yields the following Brunn–Minkowski-
type inequality for M�,+

p,v by Berck [6].

Proposition 3.4.4. Suppose that p ≥ 0 and v ∈ Cn \ {0}. Then

M�,+
p,v (K0 +K1)

1
2n+p ≥ M�,+

p,v (K0)
1

2n+p +M�,+
p,v (K1)

1
2n+p ,

for every K0,K1 ∈ K(Cn), such that K0 ∩ v+,K1 ∩ v+ �= ∅.
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Like the classical Brunn–Minkowski-inequality, Proposition 3.4.4 directly implies an ana-
logue of Brunn’s concavity theorem for the moments of parallel sections by complex hyper-
planes Hu,z = {x ∈ Cn : x · u = z}, that is, for

M�,+,u
p,v (K, z) =

�
v+∩(K∩Hu,z)

�(x · v)pdx,

where u, v ∈ Cn \ {0} are not contained in the same complex line.

Corollary 3.4.5. Suppose that K ∈ K(Cn), p > 0 and let u, v ∈ Cn \ {0} with v �∈
spanC{u}. Then the function

z �→ M�,+,u
p,v (K, z)

1
2n−2+p

is concave on the set {z ∈ C : K ∩Hu,z ∩ v+ �= ∅}.
Proof. This is a direct consequence of Proposition 3.4.4 and the fact that
(1− λ)(K ∩Hu,z0) + λ(K ∩Hu,z1) ⊆ K ∩Hu,(1−λ)z0+λz1 by convexity.

As a concave function on its compact support, M�,+,u
p,v (K, ·) 1

2n−2+p thus attains a maximum,

which is, by the monotonicity of t �→ t2n−2+p, also true for M�,+,u
p,v (K, ·). The following

lemma shows that by replacing v by v + λu, with λ ∈ C suitable, we can ensure that, for
smooth K, z = 0 is a critical point of M�,+,u

p,v (K, ·) and thus its maximum. Note that

for smooth K, M�,+,u
p,v+λu(K, ·) is differentiable at z = 0, since the complex parallel section

function of K is smooth at z = 0 (see, e.g., [38, Lem. 2.4]).
In the proof, we denote by HR

u,t the (real) hyperplane {x ∈ Cn : �x, u	 = t}, u ∈
Cn \ {0}, t ∈ R.

Lemma 3.4.6. Suppose that K ∈ K(0)(Cn) is S1-invariant and has smooth boundary, p > 0

and let u, v ∈ Cn \ {0} with v �∈ spanC{u}. Then there exists λ ∈ C such that

∇zM�,+,u
p,v+λu(K, z)

###
z=0

= 0.

Proof. Without loss of generality, we may assume that v · u = 0. Letting
K0 = K ∩HR

iu,0, by [6, Lem. 3.6] applied in HR
iu,0, there exist λ1, λ2 ∈ R such that

t �→
�
K0∩HR

u,t∩(v+λ1u)+
�x, v + λ1u	pdx

and

t �→
�
K0∩HR

u,t∩(−iv+λ2u)+
�x,−iv + λ2u	pdx

have critical points at t = 0. Set λ = λ1 + iλ2. Next, since for x · u = t ∈ R, we have
�(x · (v + λu)) = �(x · (v + λ1u)) = �x, v + λ1u	 and K ∩Hu,t = K0 ∩HR

u,t,

M�,+,u
p,v+λu(K, t) =

�
K∩Hu,t∩(v+λu)+

�(x · (v + λu))pdx =

�
K0∩HR

u,t∩(v+λ1u)+
�x, v + λ1u	pdx,
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and, hence, t �→ M�,+,u
p,v+λu(K, t) has a critical point at zero. If x · u = it, t ∈ R, then

�(x · (v + λu)) = �x, v + λ2iu	 and, by the S1-invariance of K, K ∩Hu,it = i(K0 ∩HR
u,t).

Consequently, by letting x = iy,

M�,+,u
p,v+λu(K, t) =

�
K∩Hu,it∩(v+λu)+

�(x · (v + λu))pdx =

�
i(K0∩HR

u,t∩(−iv+λ2u)+)
�x, v + λ2iu	pdx

=

�
K0∩HR

u,t∩(−iv+λ2u)+
�y,−iv + λ2u	pdy,

we conclude that also t �→ M�,+,u
p,v+λu(K, it) has a critical point at zero, which yields the

claim.

Using symmetries, Lemma 3.4.6 now directly translates to symmetric moments,

M|·|,u
2,v (K, z) =

�
K∩Hu,z

|x · v|2dx,

whenever K is S1-invariant.

Proposition 3.4.7. Suppose that K ∈ K(0)(Cn) is S1-invariant and let u, v ∈ Cn \ {0}
with v �∈ spanC{u}. Then there exists λ ∈ C such that

z �→ M|·|,u
2,v+λu(K, z)

is maximal at z = 0.

Proof. First note that since K is S1-invariant,

M|·|,u
2,w (K, z) = M�,+,u

2,w (K, z) +M�,+,u
2,w (K,−z) +M�,+,u

2,w (K, iz) +M�,+,u
2,w (K,−iz),

for every w ∈ Cn \ {0}, and we need to choose λ ∈ C such that M�,+,u
2,v+λu(K, ·) attains

its maximum at z = 0. However, by Corollary 3.4.5, M�,+,u
2,v+λu(K, ·) 1

2n is concave on {z ∈
C : K ∩Hu,z ∩ (v + λu)+ �= ∅}, and by Lemma 3.4.6 (together with the chain rule), there

exists λ ∈ C such that M�,+,u
2,v+λu(K, ·) 1

2n is maximal at z = 0 for smooth K ∈ K(0)(Cn).

Hence, the claim follows from the monotonicity of t �→ t2n and by approximating a general
K ∈ K(0)(Cn) by smooth bodies.

3.4.3 Proof of Theorem B

In this section, we compute the necessary derivatives required in order to apply Theo-
rem 3.4.2 in the proof of Theorem B.

Recalling that the analytic family of distributions rq+, �q > −1, can be extended analyt-
ically to −�q �∈ N+, and that, for −2 < �q < −1, this extension is given by

�rq+, φ	 =
� ∞

0
rq

�
φ(r)− φ(0)− rφ�(0)

�
dr, φ ∈ C∞

c (C), (3.23)

which clearly can be extended to all φ ∈ C(C) with compact support, which are smooth in
a neighborhood of zero. The main auxiliary result can then be stated as follows.
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Proposition 3.4.8. Suppose that p > −2, p �= 0,−1, and let u,w ∈ Cn \ {0} with w �∈
spanC{u}. Then

Δz(ρID,pK(u+ zw)−p)|z=0 = 2πp2�rp−1
+ ,M|·|,u

2,w (K, ·)	 (3.24)

for every S1-invariant K ∈ K(0)(Cn) with smooth boundary.

Proof. Assume first that p > 0. Since z �→ ρID,pK(u + zw)−p is a tempered distribution
on C, we can consider the Fourier transform (denoted by ·̂) of its Laplacian, applied to a
Schwartz function ϕ on C, that is,

�(ΔzρID,pK(u+ zw)−p)�, ϕ	=�ρID,pK(u+ zw)−p,Δz �ϕ	=�ρID,pK(u+ zw)−p,− �(| · |2ϕ)	.

By inserting the definition of ρID,pK , exchanging the order of integration, and letting c =

z − (x · u)/(x · w)

�ρID,pK(u+ zw)−p,�| · |2ϕ	 =
�
K

�
C
|x · (u+ zw)|p �(| · |2ϕ)(z)dzdx

=

�
K

�
C
|x · w|p|z + (x · u)/(x · w)|p �(| · |2ϕ)(z)dzdx

=

�
K
|x · w|p

�
C
|c|p �(| · |2ϕ)(c− (x · u)/(x · w))dcdx.

Next, it is a direct computation that for p �= −2,−4, . . . (see, e.g., [19, Sec. II.3.3]),

| · |2�(| · |p) = −p2 �(| · |p−2),

and, consequently, the previous integral simplifies to

−p2
�
K
|x · w|p

�
C
|c|p−2 �ϕ(c− (x · u)/(x · w))dcdx

= −p2
�
C

�
K
|x · w|2|x · (u+ zw)|p−2dx �ϕ(z)dz.

By taking the inverse Fourier transform, we conclude that

ΔzρID,pK(u+ zw)−p = p2
�
K
|x · w|2|x · (u+ zw)|p−2dx (3.25)

as tempered distributions. By

�ΔzρID,pK(u+ zw)−p, ϕ	 = �ρID,pK(u+ zw)−p,Δzϕ	,

ϕ ∈ C∞
c (C), and since ρID,pK(u + zw)−p is analytic in p, the left-hand side of (3.25) is

an analytic family of distributions (in z ∈ C). Rewriting the right-hand side of (3.25) by
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Fubini’s theorem, and using polar coordinates on C and the S1-invariance of K,

p2
�
K
|x · w|2|x · (u+ zw)|p−2dx = p2

�
C
|ζ|p−2

�
K∩Hu+zw,ζ

|x · w|2dxdζ

= p2
� ∞

0
rp−1

�
S1

�
K∩Hu+zw,rc

|x · w|2dxdcdr

= 2πp2
� ∞

0
rp−1

�
K∩Hu+zw,r

|x · w|2dxdr

= 2πp2�rp−1
+ ,M|·|,u+zw

2,w (K, r)	r,
we conclude that also the right-hand side of (3.25) is an analytic family of distributions.
The uniqueness of analytic continuation therefore implies that

�ΔzρID,pK(u+ zw)−p, ϕ	 = 2πp2��rp−1
+ ,M|·|,u+zw

2,w (K, r)	r, ϕ	z,
for all ϕ ∈ C∞

c (C) and p > −2, p �= 0,−1. Note that since (for p > 0)

��rp−1
+ ,M|·|,u+zw

2,w (K, r)	r, ϕ	z =
�
C
�rp−1

+ ,M|·|,u+zw
2,w (K, r)	rϕ(z)dz

= �rp−1
+ , �M|·|,u+zw

2,w (K, r), ϕ	z	r

the analytic continuation of �rp−1
+ ,M|·|,u+zw

2,w (K, r)	r is given by

��rp−1
+ ,M|·|,u+zw

2,w (K, r)	r, ϕ	z =
� ∞

0
rp−1
+

�
�M|·|,u+zw

2,w (K, r), ϕ	z

−�M|·|,u+zw
2,w (K, 0), ϕ	z − �r ∂

∂r

####
r=0

M|·|,u+zw
2,w (K, r), ϕ	z

�
dr

= ��rp−1
+ ,M|·|,u+zw

2,w (K, r)	r, ϕ	z.

Since K = −K, M|·|,u+zw
2,w (K, r) is even (in r), the derivative at r = 0 vanishes. Conse-

quently,

ΔzρID,pK(u+ zw)−p = 2πp2�rp−1
+ ,M|·|,u+zw

2,w (K, r)	r (3.26)

= 2πp2
� ∞

0
rp−1

�
M|·|,u+zw

2,w (K, r)−M|·|,u+zw
2,w (K, 0)

�
dr,

as distributions. Next, observe that since the operator JD,p commutes with the action of
U(n) on S2n−1, JD,p maps C∞(S2n−1) to itself. Consequently, by (3.10) and as ρID,pK(x)
is strictly positive for x �= 0, ρID,pK is smooth in Cn \ {0}, whenever K ∈ K(0)(Cn) has a
smooth boundary.
As the right-hand side of (3.26) is also continuous in z, both sides of (3.26) coincide as

functions (as u+ zw �= 0 for all z ∈ C, by assumption). Evaluating at z = 0, we obtain

ΔzρID,pK(u+ zw)−p|z=0 = 2πp2�rp−1
+ ,M|·|,u

2,w (K, ·)	,
which yields the claim.
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The last ingredient for the proof of Theorem B is the following result from elementary
calculus, included for the reader’s convenience.

Lemma 3.4.9. Suppose that F ∈ C∞(Cn \ {0}) is non-negative and F (u) > 0 for u �= 0,
one-homogeneous and S1-invariant, that is, F (zw) = |z|F (w), z ∈ C, w ∈ Cn, and let
u, v ∈ Cn \ {0} with ∇F (u) · v = 0. Then

Δ|z=0 F (u+ zw)p = p2|λ|2F (u)p + pF (u)p−1 Δ|z=0 F (u+ zv),

where w = v + λu, λ ∈ C, and the derivatives are with respect to z ∈ C.

Proof. First note that by one-homogeneity and S1-invariance,

�∇F (u), u	 = F (u) and �∇F (u), iu	 = 0, (3.27)

and, by differentiating the equalities in (3.27),

d2F (u)u = 0 and d2F (u)iu = i∇F (u). (3.28)

Next, computing by the chain rule, for x ∈ Cn \ {0} arbitrary, yields

d2

dt2

####
t=0

F (u+ tx)p = p(p− 1)F (u)p−2�∇F (u), x	2 + pF (u)p−1�x, d2F (u)x	.

Letting x = v + λu and applying (3.27), (3.28) and the assumptions on v,

d2

dt2

####
t=0

F (u+ tw)p = p(p− 1)F (u)p(�λ)2 + pF (u)p−1�v, d2F (u)v	+ pF (u)p(�λ)2,

and for x = i(v + λu),

d2

dt2

####
t=0

F (u+ tiw)p = p(p− 1)F (u)p(�λ)2 + pF (u)p−1�iv, d2F (u)iv	+ pF (u)p(�λ)2,

which yields the claim, when summed up.

We are now ready to prove Theorem B.

Proof of Theorem B. By (3.21) and (3.22), we can assume without loss of generality that
C = D. Moreover, by Theorem C (which is proved independently in Section 3.5) and
Theorem 3.1.2, we only need to consider −2 < p < −1.
Let now K ∈ K(0)(Cn) be S1-invariant and assume first that its radial function ρK is

smooth in Cn \ {0}. Noting, as before, that ρID,pK is smooth in Cn \ {0}, and

int ID,pK = {u ∈ Cn : ρID,pK(u)−1 − 1 < 0},

by Theorem 3.4.2, we need to show that

Δz

�
ρID,pK(u+ zv)−1

� |z=0 ≥ 0

29



3 Complex Lp-intersection bodies

for all u ∈ bd ID,pK and ∇(ρ−1
ID,pK

)(u) · v = 0.

Therefore, let u ∈ bd ID,pK be fixed and take v ∈ Cn \ {0} arbitrary such that
∇(ρ−1

ID,pK
) · v = 0. If v = ζu for some ζ ∈ C, then, since ρID,pK(u) = 1, the S1-invariance

and homogeneity of the radial function imply that

ρID,pK(u+ zv)−1 = |1 + zζ|,

and one directly sees that Δz|1 + zζ| ≥ 0 at z = 0. If v �∈ spanC{u}, by Lemma 3.4.9,

Δz

�
ρID,pK(u+ zv)−1

� |z=0 + p|λ|2 = 1

p
Δz

�
ρID,pK(u+ zw)−p

� |z=0,

with w = v+λu, for some λ ∈ C to be chosen later, which, by Proposition 3.4.8 is equal to

2πp�rp−1
+ ,M|·|,u

2,w (K, ·)	.

Denoting Φ(r) = M|·|,u
2,w (K, r), we conclude from (3.23) that

Δz

�
ρID,pK(u+ zv)−1

� |z=0 + p|λ|2 = 2πp

� ∞

0
rp−1(φ(r)− φ(0)− rφ�(0))dr.

Since K is origin-symmetric, φ is even, and, hence, φ�(0) = 0. Moreover, by Proposi-
tion 3.4.7, we can choose λ ∈ C such that φ(r) ≤ φ(0) for all r > 0. As p < 0, we conclude
that

Δz

�
ρID,pK(u+ zv)−1

� |z=0 ≥ 0,

that is, int ID,pK is pseudo-convex.
For general S1-invariantK ∈ K(0)(Cn), we approximateK by smooth S1-invariant convex

bodies Kj , j ∈ N such that K ⊆ Kj for all j ∈ N. By the first part of the proof and the
monotonicity of ID,p,

ID,pK =
�
j∈N

ID,pKj ,

where all int ID,pKj are pseudo-convex, and the claim follows by Theorem 3.4.3.

3.4.4 Counterexamples to convexity

In the proof of Theorem B, S1-invariance of the convex bodies played a critical role. It is
therefore a natural question to ask whether this is a particular aspect of the proof or reflects
an underlying principle. In this section, we give a (partial) answer to this by providing
examples in the range −1 ≤ p < 1 of convex bodies which are not S1-invariant and have
non-convex, complex Lp-intersection bodies.
These examples are obtained by considering sequences of ellipsoids, whose complex Lp-

intersection bodies converge to a non-convex star body. The key ingredient of this argument
is the following generalization of (parts of) [24, Lem. 6.3], proved using similar arguments.
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Lemma 3.4.10. Suppose that p ≥ −1 and let ē ∈ S2n−1. Then there exists a sequence of
origin-symmetric ellipsoids Ej ⊆ Cn, j ∈ N, such that

lim
j→∞

�
S2n−1

f(u)ρEj (u)
2n+pdu =

1

2
(f(ē) + f(−ē)), (3.29)

for all f ∈ C(S2n−1).

Proof. First, without loss of generality, we may assume that ē is the first standard unit
vector in Cn. Using generalized spherical coordinates u = (u1 sin(t), u2 cos(t)) for u ∈
S2n−1, with u1 ∈ S0 = {±ē}, u2 ∈ S2n−2 and t ∈ [0, π/2], the radial function of the ellipsoid

Ea,b =

�
(z1, . . . , zn) ∈ Cn :

(�z1)2
a2

+
(�z1)2 + |z2|2 + · · ·+ |zn|2

b2
≤ 1

�
,

for a, b > 0 is given by

ρEa,b
(u1 sin(t), u2 cos(t)) =

�
sin(t)2

a2
+

cos(t)2

b2

�−1/2

, t ∈ [0, π/2].

Next, choose bj > 0 by the intermediate value theorem, such that�
S2n−1

ρEj,bj
(u)2n+pdu = 1, (3.30)

whenever j ∈ N is large enough. Note that bj → 0 as j → ∞. Indeed, assume that
bj ≥ M for some constant M > 0. Writing (3.30) in generalized spherical coordinates
(where du = cos(t)2n−2du1du2dt), denoting Cn = 2(2n− 2)κ2n−2,

1 =

�
S2n−1

ρEj,bj
(u)2n+pdu = Cn

� π/2

0
cos(t)2n−2

�
sin(t)2

j2
+

cos(t)2

b2j

�−(2n+p)/2

dt

≥ Cn

� π/2

0
cos(t)2n−2

�
sin(t)2

j2
+

cos(t)2

M2

�−(2n+p)/2

dt,

and letting j → ∞ yields (by monotone convergence)

1 ≥ CnM
2n+p

� π/2

0
cos(t)−2−pdt,

which contradicts the fact that cos(t)−2−p is integrable only if −2−p > −1, that is p < −1.
Since bj is clearly monotonously decreasing, bj → 0.
Setting Ej = Ej,bj , we claim that a subsequence of (Ej)j∈N already satisfies (3.29).

Indeed, observe that by (3.30) and since they are positive, the functions ρ2n+p
Ej

all have norm

1, when seen as elements of the dual space of C(S2n−1). Consequently, by the Banach–
Alaoglu theorem, there exists a subsequence (again denoted by (ρ2n+p

Ej
)j) converging in the

weak-* topology to a Borel measure µ on S2n−1, that is,�
S2n−1

f(u)ρEj (u)
2n+pdu →

�
S2n−1

f(u)dµ(u), j → ∞,
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for every f ∈ C(S2n−1). Showing that µ = 1
2(δē + δ−ē), thus directly implies the claim.

To this end, suppose that u ∈ S2n−1 \ {±ē} and let U ⊆ S2n−1 be an open neighborhood
of u not containing ±ē in its closure. Then there exists ε > 0 such that for all u =
(u1 sin(t), u2 cos(t)) ∈ U , we have cos(t) > ε, and, therefore�

sin(t)2

j2
+

cos(t)2

b2j

�−(2n+p)/2

≤
�
sin(t)2

j2
+

ε2

b2j

�−(2n+p)/2

≤ b2n+p
j

ε2n+p
. (3.31)

As bj → 0 for j → ∞, a direct estimate for f ∈ C(S2n−1) concentrated on U , shows�
S2n−1

f(c)dµ(c) = lim
j→∞

�
U
f(c)ρEj (c)

2n+pdc = 0,

that is, suppµ ⊆ S2n−1\U and, hence, suppµ ⊆ {±ē}, as u was arbitrary. Since µ(S2n−1) =
1, by (3.30), and µ must be even (as weak-* limit of even measures), we conclude that
µ = 1

2(δē + δ−ē), which completes the proof.

The previous lemma for continuous functions on S2n−1 can be directly extended to functions
with a specific type of pole.

Lemma 3.4.11. Suppose that p ≥ −1 and let ē ∈ S2n−1. Then there exists a sequence of
origin-symmetric ellipsoids Ej ⊆ Cn, j ∈ N, such that

lim
j→∞

�
S2n−1

hC(v · (cē))pρEj (u)
2n+pdv =

1

2
(hC(c)

p + hC(−c)p) , c ∈ S1, (3.32)

for all C ∈ K(0)(C).

Proof. If p > 0, the function g(v) = hC(v · (cē))p is continuous on S2n−1 and, the claim
follows from Lemma 3.4.10. For p < 0, set M = 2max{hC(c)p, hC(−c)p}, and consider the
decomposition

g(v) = min{g(v),M}+ (max{g(v),M} −M),

where the first function clearly is continuous and coincides with g on a neighborhood V of
±ē, whereas the second function vanishes on the same neighborhood. Taking the ellipsoids
Ej as in the previous lemma, the same estimate as in (3.31) implies that�

S2n−1

(max{g(v),M} −M)ρEj (u)
2n+pdv ≤ b2n+p

j

ε2n+p

�
S2n−1\V

(max{g(v),M} −M)dv,

where the integral on the right-hand side is finite, since its absolute value is bounded by
�JC,p1�∞ +M(2n− 1)κ2n−1. Consequently, as bj → 0, the left-hand side converges to zero
as j → ∞. Hence, together with Lemma 3.4.10 for the first term min{g(v),M} and since
min{g(v),M} = g(v) for v = ±ē, the claim follows.

We are now ready to state the aforementioned counterexample.
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Proposition 3.4.12. Let −1 ≤ p < 1 be non-zero. Then there exists C ∈ K(0)(C) and an
origin-symmetric ellipsoid K ⊆ Cn such that IC,pK is not convex.

Proof. By (3.10) and Lemma 3.4.11, there exists ē ∈ S2n−1 and a sequence (Ej)j∈N of
origin-symmetric ellipsoids such that

ρIC,pEj (cē)
−p → 1

2(2n+ p)
(hC(c)

p + hC(−c)p), j → ∞,

for every c ∈ S1, C ∈ K(0)(C) and p ≥ −1. Note that, when choosing C to be, e.g., a

suitable triangle, the function c �→ (hC(c)
p + h−C(c)

p)−1/p is not the radial function of a
convex body (see [16, Sec. 6.1] for details) when p < 1. Consequently, the radial function
of IC,pEj converges pointwise to the radial function of a non-convex star body as j → ∞
and, hence, IC,pEj cannot be convex when j is sufficiently large.

3.5 Proof of Theorems C and D

In this section we establish a representation of the radial function of IC,pK for K ∈ S0(Cn)
and origin-symmetric C ∈ K(0)(C), and use it to prove Theorem D.

To this end, we require a lemma relating the Fourier transforms of the complex and the
real Radon transform.

Lemma 3.5.1. Suppose that f ∈ C(Cn) has compact support and, for u ∈ Cn \ {0}, recall
that for z ∈ C and t ∈ R,

(RC
uf)(z) =

�
x·u=z

f(x)dx and (RR
uf)(t) =

�
�x,u�=t

f(x)dx,

denote the complex and real Radon transforms of f . Then

�RC
uf(rc) =

�RR
cuf(r), r ∈ R, c ∈ C,

for u ∈ Cn \ {0}, where the left Fourier transform is on C and the right one on R.

Proof. The claim follows by Fubini’s theorem applied twice and (2.4),

�RC
uf(rc) =

�
C

�
x·u=z

f(x)e−i�rc,z�dxdz =

�
Cn

f(x)e−i�rc,x·u�dx

=

�
Cn

f(x)e−ir�cu,x�dx =

�
R

�
�x,cu�=t

f(x)e−irtdxdt = �RR
cuf(r).

We are now in a position to prove the main proposition required in the proof of Theorem C.
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Proposition 3.5.2. Let C ∈ K(0)(C) be origin-symmetric and −1 ≤ p < 1 be non-zero.
Then there exists a finite Borel measure µC,p on S1, such that

ρIC,pK(u)−p =

�
S1
ρIpK(cu)−pdµC,p(c), u ∈ S2n−1, (3.33)

for every K ∈ S0(Cn), where, for p = −1, dµC,−1 = 1
2ρiC◦(c)dc. In particular, if K ∈

S0(Cn) is S1-invariant, then IC,pK = µC,p(S1)IpK.

Proof. We distinguish the cases 0 < p < 1, −1 < p < 0 and p = −1. If p > 0, by
Lemma 2.2.6 applied to C◦ ∈ K(0)(C), there exists a finite Borel measure µC,p on S1 such
that

hC(z)
p = ρC◦(z)−p = �z�pC◦ =

�
S1
|�z, c	|pdµC,p(c), z ∈ C. (3.34)

Note that we identify C ∼= R2 here. Combining, for u ∈ S2n−1, (3.34) with the defini-
tion (3.4) of IC,pK, K ∈ S0(Cn), by (2.4), and interchanging the order of integration,

ρIC,pK(u)−p =

�
K
hC(x · u)pdx =

�
K

�
S1
|�x · u, c	|pdµC,p(c)dx

=

�
S1

�
K
|�x, cu	|pdxdµC,p(c) =

�
S1
ρIpK(cu)−pdµC,p(c)

we arrive at the claim.
In the second case, −1 < p < 0, Lemma 2.2.6, applied again to C◦ ∈ K(0)(C), implies

the existence of a measure νC,p on S1 such that�
C
ρC◦(z)−pφ(z)dz =

�
S1

�� ∞

0
t−p−1φ̂(tc)dt

�
dνC,p(c), (3.35)

for every even Schwartz function φ on C. Note that νC,p can be chosen to be even. Since
φ is even and (see, e.g., [38, Lem. 2.23])

�|t|−p−1(r) = 2Γ(−p) sin

�
π(p+ 1)

2

�
|r|p, r ∈ R, (3.36)

we can rewrite the inner integral on the right-hand side to obtain� ∞

0
t−p−1φ̂(tc)dt =

1

2

�
R
|t|−p−1φ̂(tc)dt

= Γ(−p) sin

�
π(p+ 1)

2

��
R
|r|pφ̃c(r)dr = cp

� ∞

0
rpφ̃c(r)dr,

where we denote by φ̃c the Fourier transform in R of t �→ φ̂(tc), and collect the constants
into cp ∈ R.

If f ∈ C∞(Cn) is even and has compact support, then the complex Radon transformRC
uf

is again even and smooth with compact support, and thus a Schwartz function. Taking
now φ = RC

uf , then φ̃c = RR
cuf , by Lemma 3.5.1, and, hence,� ∞

0
t−p−1�RC

uf(tc)dt = cp

� ∞

0
rp

�
RR

cuf
�
(r)dr.
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Equation (3.35) therefore implies�
C
ρC◦(z)−p

�
RC

uf
�
(z)dz = cp

�
S1

� ∞

0
rp

�
RR

cuf
�
(r)dr dνC,p(c),

for every even f ∈ C∞(Cn) with compact support. As ρC◦ and νC,p are even, this equation
clearly also holds for functions f that are not necessarily even. Moreover, by approximation,
it holds for f = ✶K , K ∈ S0(Cn), where RC

uf = AC
K,u and RR

cuf = AR
K,cu are the complex

and real parallel section functions (see (3.7) and the comment below it). Consequently, for
u ∈ S2n−1,

ρIC,pK(u)−p =

�
C
ρC◦(z)−pAC

K,u(z)dz = cp

�
S1

� ∞

0
rpAR

K,cu(r)dr dνC,p(c),

and, since νC,p is even, the right-hand side is equal to

cp
2

�
S1

�
R
|r|pAR

K,cu(r)dr dνC,p(c) =
cp
2

�
S1
ρIpK(cu)−p dνC,p(c),

which yields the claim with µC,p =
cp
2 νC,p.

For p = −1, finally, we first show that (3.35) holds for dνC,−1 =
1
2πρiC◦(c)dc. Indeed, let

φ be an even Schwartz function on C. Using polar coordinates, the homogeneity of radial
functions and the parity of φ,�

C
ρC◦(x)φ(x)dx =

�
S1

1

2
ρC◦(c)

�
R
φ(rc)drdc,

where the inner integral equals �φ(·c)(0). By [38, Lem. 2.11], �RR
c φ̂(s) = (2π)2φ(sc) for

s ∈ R, that is,�
R
φ(rc)dr = �φ(·c)(0) = 1

2π
RR

c φ̂(0) =
1

2π

�
�x,c�=0

φ̂(x)dx =
1

2π

�
R
φ̂(itc)dt.

Changing the outer integration and by ρC◦(−ic) = ρiC◦(c) and the parity of φ̂, we arrive
at (3.35) for p = −1 and dνC,−1 =

1
2πρiC◦(c)dc.

Next, we repeat the steps from the previous part (−1 < p < 0) to obtain�
S1

�� ∞

0
t−p−1�RC

uf(tc)dt

�
dνC,−1(c) = cp

�
S1

� ∞

0
rp

�
RR

cuf
�
(r)dr dνC,−1(c)

for every even f ∈ C∞(Cn) with compact support. Recalling the convergence (3.14) of the
family of distributions rp+ from (3.13) as p → −1+, we deduce by dominated convergence

(as �RC
uf is a Schwartz function and RR

cuf has support uniformly bounded in c) that�
S1

�� ∞

0

�RC
uf(tc)dt

�
dνC,−1(c) = π

�
S1

�
RR

cuf
�
(0) dνC,−1(c), (3.37)

where we also used that cpΓ(p+ 1) → π. Combining (3.37) with (3.35),�
C
ρC◦(x)

�
RC

uf
�
(x)dx = π

�
S1

�
RR

cuf
�
(0) dνC,−1(c),
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which, since νC,−1 is even and by approximating ✶K by smooth functions f , implies

ρIC,−1K(u) =

�
C
ρC◦(z)AC

K,u(z)dz = π

�
S1
AR

K,cu(0) dνC,−1(c) =
1

2

�
S1
ρIK(cu)ρiC◦(c)dc

for every K ∈ S0(Cn) and u ∈ S2n−1, yielding the claim.

Note that we had to consider the case p = −1 separately in the proof as we can not
apply (3.36) for p = −1.

The proof Theorem C is now a direct consequence of Proposition 3.5.2.

Proof of Theorem C. Let p > −1 and C ∈ K(0)(C). If K ∈ S0(Cn) is S1-invariant, then
IpK is S1-invariant as well, by SL(2n,R)-contravariance. Consequently, ρIpK(cu) = ρIpK(u)
for all u ∈ S2n−1 and c ∈ S1, and by Proposition 3.5.2,

ρIC,pK(u)−p =

�
S1
ρIpK(cu)−pdµC,p(c) = µC,p(S1)ρIpK(u)−p, u ∈ S2n−1,

which yields the claim for dC,p = µC,p(S1)−1/p (noting that µC,p(S1) > 0 as it is equal to
the radius of IC,pB for some suitably chosen ball B ⊆ Cn).

We continue by proving Theorem D, which we can now state with the (technical) equality
conditions, depending on the measure µC,p from Proposition 3.5.2.

Theorem 3.5.3. Suppose that C ∈ K(0)(C) is origin-symmetric and −1 ≤ p < 1 is non-
zero. If K ∈ S0(Cn), then

V2n(IC,pK)

V2n(IC,pB2n)
≤ V2n(IpK)

V2n(IpB2n)
. (3.38)

If µC,p has infinite support equality holds if and only if IpK is S1-invariant, and for all
other µC,p equality holds if and only if IpK = c1c2IpK whenever c1, c2 ∈ suppµC,p.

Proof. By Proposition 3.5.2,

V2n(IC,pK) =
1

2n

�
S2n−1

��
S1
ρIpK(cu)−pdµC,p(c)

�−2n/p

du.

We apply Jensen’s inequality to the inner integral to obtain

V2n(IC,pK) ≤ µC,p(S1)−1−2n/p

2n

�
S2n−1

�
S1
ρIpK(cu)2ndµC,p(c)du. (3.39)

Changing the order of integration using Fubini’s theorem,

V2n(IC,pK) ≤ µC,p(S1)−1−2n/p

�
S1
V2n(cIpK)dµC,p(c) = µC,p(S1)−2n/pV2n(IpK),
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3 Complex Lp-intersection bodies

we arrive at the desired inequality, since ρIC,pB2n = µC,p(S1)−1/pρIpB2n by (3.33).

Equality holds in (3.38) if and only if it holds in (3.39), that is, by the equality conditions
of Jensen’s inequality, exactly if for almost every u ∈ S2n−1 there exists du ∈ R such that

ρIpK(cu)−p = du, for µC,p-a.e. c ∈ S1.

Note that, by the continuity of ρIpK , this holds indeed for all u ∈ S2n−1. Consequently,
c1IpK = c2IpK for µC,p-almost all c1, c2 ∈ S1, that is, again by continuity,

IpK = c1c2IpK, c1, c2 ∈ suppµC,p, (3.40)

which yields the equality condition for µC,p with finite support. If suppµC,p is infinite,
then, by compactness of S1, for every ε > 0, there exist c1, c2 ∈ suppµC,p such that
|c1c2 − 1| < ε. Iterating (3.40), we obtain that the map c �→ ρIpK(cu) is constant on the
set {(c1c2)k : k ∈ N} ⊆ S1, which is ε-close to every c ∈ S1. Since ε > 0 was arbitrary and
ρIpK is continuous, we conclude that IpK must be S1-invariant. The converse follows easily
from (3.33).

Proof of Corollary E. Suppose that C ∈ K(0)(C) is origin-symmetric and let K ∈ S0(Cn).
Then, by inequality (3.38) and Theorem 3.1.4 (respectively Busemann’s intersection in-
equality (3.1) for p = −1) it follows that

V2n(IC,pK)

V2n(IC,pB2n)
≤ V2n(IpK)

V2n(IpB2n)
≤ V2n(K)2n+p

V2n(B2n)2n+p
. (3.41)

Equality holds for p = −1 and K ∈ S0(Cn) if and only if there is equality in (3.38) and
(3.1). Since dµC,−1 = 1

2ρiC◦(c)dc has infinite support (equal to S1), the equality cases
of Theorem 3.5.3 imply that IK must be S1-invariant, whereas the equality cases of (3.1)
imply thatK must be an origin-symmetric ellipsoid. Consequently, as the intersection body
map is injective on origin-symmetric star bodies (see, e.g., [16, Thm. 8.1.3]), we conclude
that K is an S1-invariant ellipsoid, which is equivalent to K being an origin-symmetric
Hermitian ellipsoid.
If, on the other hand K is an origin-symmetric Hermitian ellipsoid, then there clearly is

equality in (3.41).
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4 Busemann–Petty type problems on
complex vector spaces

This chapter is devoted to questions in the spirit of the Busemann–Petty and Shephard’s
problem. To this end, let us formulate both problems properly, starting with the famous
Busemann–Petty problem [10]: Suppose that K,L ∈ K(Rn) are origin-symmetric with
non-empty interior, and assume that

Vn−1(K ∩ u⊥) ≤ Vn−1(L ∩ u⊥), ∀u ∈ Sn−1. (4.1)

Does this imply that Vn(K) ≤ Vn(L)? The answer is affirmative, if n ≤ 4, and negative,
if n ≥ 5. Many authors contributed to this solution (see [5, 7, 13, 14, 18, 20, 33, 44, 47, 51,
68, 69, 71]). A unified proof was given finally by Gardner, Koldobsky and Schlumprecht in
[18].
The dual question to the Busemann–Petty problem is known as Shephard’s problem [64]:

Suppose that K,L ∈ K(Rn) are origin-symmetric with non-empty interior, and assume
that

Vn−1(K|u⊥) ≤ Vn−1(L|u⊥), ∀u ∈ Sn−1. (4.2)

Does this imply that Vn(K) ≤ Vn(L)? Here, the full answer was given by Petty [53] and
Schneider [61]. It is affirmative, if n ≤ 2, and negative, if n ≥ 3.

The key step in the proof of both problems was to link them to the intersection body
for the Busemann–Petty problem (as was noticed by Lutwak [47]), and the projection body
for Shephard’s problem. Indeed, the inequality for the volume holds, that is, the answer
is affirmative, if, in (4.1), K is an intersection body, or if, in (4.2), L is a projection body.
Moreover, if K ∈ K(Rn) is origin-symmetric, sufficiently regular and not a projection body,
then there exists an origin-symmetric L ∈ K(Rn) such that (4.2) holds, but the inequality
for the volume is reversed (see [61]). A similar statement holds for intersection bodies and
(4.1) (see [47]). As a consequence, both problems were solved by an analysis of the classes
of intersection respectively projection bodies.
Interestingly, both problems can also be stated in terms of intersection respectively pro-

jection bodies, translating the inequality condition into a set inclusion condition. Therefore,
one can summarize these as instances of the following more general class of questions which
we vaguely formulate for geometric operators on (subsets of) convex bodies with non-empty
interiors and make more precise later.

Problem 1. Let Φ be a geometric operator on (subsets of) convex bodies taking values in
the set of star bodies and let K,L ∈ K(Φ).

Does ΦK ⊆ ΦL =⇒ Vn(K) ≤ Vn(L) hold?
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Here, we denote by K(Φ) ⊂ K(Rn) a subset of convex bodies with non-empty interior, for
which we will consider Problem 1. Usually, K(Φ) will be the injectivity set of the operator
Φ, which turns out to be the largest subset for which Problem 1 is non-trivial. Problem 1
has been considered widely, e.g., for centroid bodies [48], for Lp-intersection bodies [67], for
Minkowski valuations compatible with rotations [63], for complex intersection bodies [39],
replacing real by complex hyperplanes in (4.1) and origin-symmetry by S1-invariance, as
well as in a functional setting [41].

In the following, we will consider Problem 1 for the operators ΠC (see (2.5)) and IC,p

only for origin-symmetric C ∈ K(C) containing the origin in its interior. This will be a
general condition in all statements below, together with the assumption that −2 < p ≤ 1
is non-zero.
As in the real setting, ΠC and IC,p behave in a dual way. In order to state the results

in a unified way, we will therefore “dualize” the problem for ΠC by considering its polar
operator Π◦

C , Π
◦
CK = (ΠCK)◦. As polarity is order-reversing, this reverses the inequality

in Problem 1, but has no further effects.
Moreover, note that for p > 0, the volume inequality that we expect in Problem 1 is

reversed. We will take care of this fact by multiplying both sides with −p < 0 and set
p = 1 when Φ = Π◦

C . The main result of this chapter reads

Theorem F. Let K,L ∈ K(Φ).

• If p < 0, then for n = 2 and Φ = ID,p, the implication

ΦK ⊆ ΦL =⇒ −pV2n(K) ≤ −pV2n(L)

holds. For n ≥ 3 and Φ = IC,p, this implication does not hold in general.

• If p > 0, then for n ≥ 2 and Φ ∈ {Π◦
C , IC,p}, the implication

ΦK ⊆ ΦL =⇒ −pV2n(K) ≤ −pV2n(L)

does not hold in general.

Let us point out that Theorem F implies a similar statement for the complex centroid
body defined in [27] (see Remark 4.3.6 below).
Our proof of Theorem F follows a similar strategy as [42,60,67] for real Busemann–Petty

type problems. In particular, it relies heavily on a connection to the spherical Fourier
transform. It is our second main result of this chapter that the map JC,p on even functions
can be decomposed into the (distributional) spherical Fourier transform Fq and an integral
operator on the body C.

Theorem G. Let C ∈ K(C) be origin-symmetric containing the origin in its interior and
let −2 < p ≤ 1 be non-zero. Then there exists a finite even Borel measure νC,p on S1, such
that −p νC,p ≥ 0, and

JC,pϕ(u) =
1

(2π)2

�
S1
(F−2n−pϕ)(cu)dνC,p(c), u ∈ S2n−1, (4.3)

for all even ϕ ∈ C∞(S2n−1).
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For a more explicit description of the measure νC,p, we refer to Section 4.2. Let us note
here that Theorem G extends the well-known connection between the Lp-cosine transform
and the spherical Fourier transform (see, e.g., [22]), which corresponds to the limit case
C = [−1, 1] with νC,p = cp(δ1 + δ−1) for some cp ∈ R.
Using Theorem G, the proof of Theorem F follows the steps that are usually taken in

solutions of Problem 1. For the reader’s convenience, we will explain them here in detail,
including the exact statements proven in each step. We assume n ≥ 2.

Determination of K(Φ). The first step is to determine the maximal set K(Φ) for which
Problem 1 is non-trivial. As mentioned above, it is natural to define K(Φ) as the injectivity
set of Φ. More precisely, let M(S2n−1) denote the set of all (signed) finite Borel measures
on S2n−1 and denote by

Inj(JC,p) = {µ ∈ M(S2n−1) : ∀k, l ∈ N : πk,l(JC,pµ) = 0 =⇒ πk,lµ = 0}

the injectivity space of JC,p. The injectivity sets of ΠC and IC,p are defined by

K(ΠC) = {K ∈ K(Cn) : intK �= ∅, SK ∈ Inj(JC,1)}, (4.4)

K(IC,p) = {K ∈ K(Cn) : intK �= ∅, ρ2n+p
K ∈ Inj(JC,p)}. (4.5)

In particular, if C is origin-symmetric, then every K ∈ K(Φ) is origin-symmetric, and
all S1-invariant convex bodies with non-empty interior are contained both in K(ΠC) and
K(IC,p).
Outside the injectivity sets, a perturbation argument using a specific spherical harmonic

shows that the answer to Problem 1 is negative in general. It is therefore necessary and
reasonable to restrict the study of Problem 1 to bodies in K(Φ).

Proposition 4.1.1. Let Φ ∈ {Π◦
C , IC,p} and suppose that L ∈ K(Cn) is smooth with positive

curvature. If K(Φ) is a strict subset of the set of convex bodies with non-empty interior,
then there is K /∈ K(Φ) with non-empty interior, such that

ΦK = ΦL but − pV2n(K) > −pV2n(L).

Affirmative Cases. The next step is to confirm the statement of Problem 1 in special
cases, corresponding to intersection respectively projection bodies in the Busemann–Petty
respectively Shephard problem. In contrast to the real problems, here, the answer is af-
firmative for bodies in the image of the conjugated operator Φ#, where I#C,p = IC,p and

Π#
C = ΠC . If C = C, in particular, in the limit C → [−1, 1], this is consistent with the real

case. We write imΦ# for ΠC(K) respectively IC,p(S0), where

ΠC(K) = {K ∈ K(Φ) : ∃L ∈ K(Cn) : ΠCL = K},
IC,p(S0) = {K ∈ K(Φ) : ∃L ∈ S0(Cn) : IC,pL = K}.

Let us point out here that we consider the image of all convex respectively star bodies,
that is, we do not consider Φ as operator on K(Φ) only. The statement then reads
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Proposition 4.1.2. Let Φ ∈ {Π◦
C , IC,p}. If K ∈ imΦ# and L ∈ K(Φ), then

ΦK ⊆ ΦL =⇒ −pV2n(K) ≤ −pV2n(L).

Moreover, in this case, if ΦK ⊆ ΦL, then V2n(K) = V2n(L) holds if and only if K is a
translate of L, when Φ = Π◦

C , and only if K = L, when Φ = IC,p.

Proposition 4.1.2 is proved using an adjointness property of ΠC respectively IC,p with
respect to mixed volume respectively dual mixed volume, similar to the real case. In this
sense, Φ# can be interpreted as the adjoint of Φ (while JC,p is indeed the adjoint of JC,p).

Outside the image. To understand the image of Π◦
C respectively IC,p, we will use the

notion of a body embedding into Lp (see Definition 2.2.4 below), which already proved very
useful for Lp-intersection bodies. Indeed, we will show that all bodies in Π◦

C(K) respectively
IC,p(S0) embed into Lp.

Applying a known characterization of embedability by the spherical Fourier transform,
a perturbation argument then shows that Problem 1, restricted to S1-invariant bodies,
has a negative answer outside the images. Let us point out here that, in contrast to the
usual treatment of real Busemann–Petty problems, we do not extend the maps IC,p to
measures. Therefore, technically, we have to consider the (weak) closure of the images (see
Proposition 4.3.4 and Proposition 4.4.3 below).

Proposition 4.1.3. Let Φ ∈ {Π◦
C , IC,p}. If there is an S1-invariant body in K(Φ), which

is not in the (weak) closure of Π◦
C(K) ∩ K(ΠC) respectively IC,p(S0) ∩ K(IC,p), then there

exist S1-invariant bodies K,L ∈ K(Φ) such that

ΦK ⊆ ΦL but − pV2n(K) > −pV2n(L).

Counter examples in higher dimensions. Proposition 4.1.3 allows to give S1-invariant
counter examples to Problem 1 in higher dimensions. These are known examples of bodies
which do not embed into Lp (see [39]).

Proposition 4.1.4. Let Φ ∈ {Π◦
C , IC,p}. If n ≥ 3, then there exists an S1-invariant body

K ∈ K(Φ), which is not in the (weak) closure of im(Φ) ∩ K(Φ). If p > 0, then the same is
true also for n = 2.

Affirmative answer in low dimension. The final step is to give an affirmative answer
to Problem 1 in the remaining (complex) dimension n = 2. As we describe the image of
IC,p only in complete detail for C = D, we prove

Proposition 4.1.5. If Φ = ID,p and −2 < p < 0, then the answer to Problem 1 is
affirmative in C2.

4.2 Analysis of the operator JC,p

In this section, we study the operator JC,p using the theory of spherical harmonics in
complex vector spaces, and prove Theorem G.
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Combining (3.20) and (2.11), we deduce that (4.3) holds, if the integral transform defined
by νC,p has multipliers λk,l[JC,p]/(4π

2λk,l[Fp]). It remains to find a measure νC,p with this
property and an appropriate sign. For this reason, we first describe the multipliers of
operators Tµ of the form

Tµf(u) =

�
S1
f(cu)dµ(c), u ∈ S2n−1, f ∈ C(S2n−1), (4.6)

where µ is a finite Borel measure on S1.

Lemma 4.2.1. Let µ be a finite real Borel measure on S1 and let f, g ∈ C(S2n−1).

i) Then �Tµf, g	 =
�
f,Tµ#g

�
, where µ# is the push-forward measure of µ by complex

conjugation.

ii) The multipliers λk,l[Tµ], k, l ∈ N, of Tµ are given by

λk,l[Tµ] =

�
2πc0[µ] k = l,

πcl−k[µ] k �= l.

In particular, λk,l[Tµ# ] = πck−l[µ] for k �= l ∈ N.

Let us note that Lemma 4.2.1 generalizes a result from [3] for µ = SK , K ∈ K(C). By
i), Tµ extends to measures.

Proof. Point i) follows by a direct computation

�Tµf, g	 =
�
S2n−1

�
S1
f(cu)dµ(c)g(u)du =

�
S2n−1

f(u)

�
S1
g(cu)dµ(c)du

=

�
S2n−1

f(u)

�
S1
g(cu)dµ(c)du =

�
f,Tµ#g

�
.

For ii), we use the U(n)-invariance of the spherical Lebesgue measure and Fubini’s the-
orem, to obtain for Yk,l ∈ H2n

k,l

�Yk,l,Tµf	 =
�
Tµ#Yk,l, f

�
=

�
S2n−1

�
S1
Yk,l(cu)dµ(c)f(u)du

=

�
S2n−1

�
S1
ck−lYk,l(u)dµ(c)f(u)du = πcl−k[µ]

�
S2n−1

Yk,l(u)f(u)du

= πcl−k[µ] �Yk,l, f	 ,

for l �= k, which yields the claim. The case k = l is similar.

We can now use that every suitable origin-symmetric body C ⊂ C embeds into Lp and,
hence, by Proposition 2.2.5, we obtain a measure with the correct sign.
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Proposition 4.2.2. Let C ∈ K(C) be origin-symmetric containing the origin in its interior,
and −2 < p ≤ 1. Then the distribution νC,p = Fph

p
C on S1 satisfies

1

Γ
�−p

2

�νC,p ≥ 0,

and therefore is a measure. The multipliers of TνC,p are given by

λk,l[TνC,p ] =

�
2πkpΓ

�p
2 + 1

�2
c0[h

p
C ], k = l,

πkpΓ
�
p+l−k

2 + 1
�
Γ
�
p−l+k

2 + 1
�
cl−k[h

p
C ], k �= l,

(4.7)

where kp = −22+p sin
�pπ

2

�
.

For p = 1, we have νC,1 = −2πS(iC, ·) and for p = −1, we have dνC,−1 = 2πρiC◦dc.

Proof. By Lemma 2.2.6, every origin-symmetric convex body C with non-empty interior
embeds into Lp for every non-zero −2 < p ≤ 1. Now, Proposition 2.2.5 implies that
Fph

p
C = Fpρ

−p
C◦ is up to the sign of Γ

�−p
2

�
a positive and even measure, yielding the first

claim.
Next, noting that H2

k is spanned by the maps c �→ ck, c−k, we have for even k �= 0

πck[Fph
p
C ] = �πk,0Fph

p
C , c

k	 = λk,0[Fp]�πk,0hpC , ck	 = πλk,0[Fp]ck[h
p
C ],

and thus, by (2.11) and a similar computation for k = 0,

ck[Fph
p
C ] = λk,0[Fp]ck[h

p
C ] = (−1)

k
2 22+pπ

Γ
�
k+p
2 + 1

�
Γ
�
k−p
2

� ck[h
p
C ]. (4.8)

Applying Euler’s reflection formula, we obtain for even k,

ck[Fph
p
C ] = −22+p sin

�pπ
2

�
Γ

�
p+ k

2
+ 1

�
Γ

�
p− k

2
+ 1

�
ck[h

p
C ],

which, by Lemma 4.2.1, yields the second claim as the multipliers for k + l odd vanish.
For p = 1 and even k, (4.8) reduces to

ck[νC,1] = (−1)
k
2 8π

Γ
�
k+3
2

�
Γ
�
k−1
2

�ck[hC ] = 2π(−1)
k
2 (k2 − 1)ck[hC ].

As, by [3, Lem. 4.6], the Fourier coefficients of SC(·) are given by (1−k2)ck[hC ], this yields
the claim for p = 1. The statement for p = −1 follows directly.

Corollary 4.2.3. Let C ∈ K(C) be origin-symmetric, 0 ∈ intC, and −2 < p ≤ 1 non-zero.

Then νC,p = ν#C,p and, thus, TνC,p
and TνC,p are adjoint.

Proof. As ck[µ
#] = ck[µ] for a real measure µ, and ck[h

p

C
] = ck[h

p
C ], the first claim follows

from (4.8). The second claim follows from Lemma 4.2.1i).
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We are now ready to prove Theorem G.

Proof of Theorem G. By the origin-symmetry of C, cl−k[h
p
C ] = 0 when k + l is odd, and

thus λk,l[JC,p] = 0, that is, we only have to consider k + l even. By (3.20) and (2.11), we
obtain using kp = −22+p sin(pπ/2)

λk,l[JC,p] =

�
λk,l[F−2n−p]

kp
2πΓ

�p
2 + 1

�2
c0[h

p
C ], k = l,

λk,l[F−2n−p]
kp
4πΓ

�
p+k−l

2 + 1
�
Γ
�
p−k+l

2 + 1
�
cl−k[h

p
C ], k < l.

Consequently, by (4.7), (2π)2λk,l[JC,p] = λk,l[F−2n−p]λk,l[TνC,p ], yielding the claim.

Let us point out that the spherical Fourier transform maps smooth even functions to
smooth even functions on S2n−1. However, Fpf for f ∈ C(S2n−1), defined in the distribu-
tional sense, in general only yields a distribution. As we want to apply Theorem G in the
following for radial functions of general star respectively convex bodies, we need to argue
that, in this case, TνC,p ◦ F−2n−p maps continuous functions to continuous functions.

Proposition 4.2.4. Let C ∈ K(C) be origin-symmetric containing the origin in its interior,
and −2 < p ≤ 1 non-zero. Then for νC,p = Fph

p
C we have

ρ−p
IC,pK

=
1

(2π)2(2n+ p)
TνC,p ◦ F−2n−pρ

2n+p
K ,

for every K ∈ S0(Cn) and

hΠCK = − 1

4π
TSiC

◦ F−2n−1SK ,

for every K ∈ K(Cn) with non-empty interior.

Before proving Proposition 4.2.4, we note that

ρ−p
IC,pK

=
1

2n+ p
JC,p(ρ

2n+p
K ) and hΠCK =

1

2
JC,1(SK) (4.9)

forK ∈ S0(Cn) respectivelyK ∈ K(Cn) with non-empty interior. Moreover, let us point out
that the order of the transforms on the right-hand side of the equations in Proposition 4.2.4
is interchangeable as they are all multiplier transforms.

Proof of Proposition 4.2.4. First note that since C is origin-symmetric, and thus νC,p is
even, both sides of (4.3) in Theorem G vanish for odd ϕ ∈ C∞(S2n−1). Hence, we conclude
that the statement of Theorem G holds for all ϕ ∈ C∞(S2n−1).

Next, let ϕ ∈ C∞(S2n−1). By (4.9), the fact that JC,p is the adjoint of JC,p and Theo-
rem G, �

ρ−p
IC,pK

, ϕ
�
=

1

2n+ p

�
JC,pρ

2n+p
K , ϕ

�
=

1

2n+ p

�
ρ2n+p
K , JC,pϕ

�
=

1

(2π)2(2n+ p)

�
ρ2n+p
K ,TνC,p

◦ F−2n−pϕ
�
.
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Since the involved operators are multiplier transforms, they commute and therefore�
ρ−p
IC,pK

, ϕ
�
=

1

(2π)2(2n+ p)

�
ρ2n+p
K ,F−2n−p ◦ TνC,p

ϕ
�
.

Consequently, as ϕ was arbitrary, and TνC,p ◦ F−2n−p is, by Corollary 4.2.3, the adjoint of

F−2n−p ◦TνC,p
, we obtain ρ−p

IC,pK
= 1

(2π)2(2n+p)
TνC,p ◦F−2n−pρ

2n+p
K in the sense of distribu-

tions. However, since the left hand side is a continuous function on the sphere, the equality
indeed holds as equality of continuous functions.
Repeating the argument above and noting that−2πhΠK = F−2n−1SK (see [38, Thm. 8.1])

is a continuous map on S2n−1, the second equality follows since νC,1 = −2πS(iC, ·), by
Proposition 4.2.2.

4.3 Busemann–Petty problem for complex Lp-intersection bodies

In this section, we prove Theorem F for the complex Lp-intersection body maps IC,p fol-
lowing the steps outlined at the beginning of this chapter.

4.3.1 Determination of K(Φ)

First, we prove that the injectivity set K(IC,p) defined in (4.5) is maximal in the sense that
the answer to Problem 1 is negative when the bodies are not in K(IC,p).

Before doing so, let us point out that a body K ∈ K(Cn) is in K(IC,p), if πk,lρ
2n+p
K = 0

whenever λk,l[JC,p] = 0 or, equivalently by (3.20), cl−k[h
p
C ] = 0. In particular, for K,L ∈

K(IC,p), IC,pK = IC,pL implies K = L. Moreover, as ck[h
p

C
] = ck[h

p
C ], we directly obtain

that K(IC,p) = K(IC,p).

In the following, we will also work with the set of S1-invariant convex bodies with non-
empty interior. As a function f ∈ C(S2n−1) is S1-invariant, if and only if πk,lf = 0 for all
k �= l, and as c0[h

p
C ] > 0, all such bodies are contained in K(IC,p).

For the proof of Proposition 4.1.1, we will use the following convexity statement for small
perturbations.

Lemma 4.3.1 ([38, p. 96]). Let L be a smooth convex body with strictly positive curvature
and p ∈ R \ {0}. Then for any ϕ ∈ C∞(Sn−1), the star body K defined by

ρ−p
K = ρ−p

L + εϕ

is convex for all ε > 0 sufficiently small.

Proof of Proposition 4.1.1 for IC,p. As the set K(IC,p) is a strict subset, there exist indices

(k, l) ∈ N × N such that cl−k[h
p
C ] = 0. Denoting by !Pk,l ∈ H2n

k,l the Jacobi polynomial of
bi-degree (k, l), we define

ρ2n+p
K = ρ2n+p

L + ε !Pk,l
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where |ε| is sufficiently small such thatK ∈ K(Cn) with non-empty interior (using Lemma 4.3.1),
and the sign of ε is chosen in a way such that

−pε
� !Pk,l, ρ

−p
L

�
≥ 0. (4.10)

By our choice of (k, l), we have TνC,p
!Pk,l = 0 and thus, by Proposition 4.2.4 and since

multiplier transforms commute, IC,pK = IC,pL.
Next, note that by (4.10),

−2npṼ−p(K,L) = −p
�
ρ2n+p
K , ρ−p

L

�
= −2npV2n(L)− pε

� !Pk,l, ρ
−p
L

�
≥ −2npV2n(L),

and, consequently, by (2.2),

−pV2n(L) ≤ −pṼ−p(K,L) ≤ −pV2n(K)
2n+p
2n V2n(L)

− p
2n ,

that is, −pV2n(L) ≤ −pV2n(K). As equality holds in (2.2) only when K,L are dilates, and,
by construction, this is not the case for K and L here, the inequality is strict, concluding
the proof.

4.3.2 Affirmative Cases

Next, we will show that Problem 1 has a positive answer, whenever K ∈ K(IC,p) is in the
image set IC,p(S0).

Proof of Proposition 4.1.2 for IC,p. By Proposition 4.2.4 and Corollary 4.2.3, we obtain for
every K,L ∈ S0(Cn)

2nṼ−p(K, IC,pL) =
1

2n+ p

�
ρ2n+p
K , JC,pρ

2n+p
L

�
=

1

(2π)2(2n+ p)

�
ρ2n+p
K ,TνC,p

F−2n−pρ
2n+p
L

�
=

1

(2π)2(2n+ p)

�
TνC,pF−2n−pρ

2n+p
K , ρ2n+p

L

�
= 2nṼ−p(L, IC,pK). (4.11)

Next, let K ∈ IC,p(S0), that is, K = IC,pK0 for some K0 ∈ S0(Cn), and assume that

IC,pK ⊆ IC,pL for L ∈ K(IC,p). Since −pṼ−p(K0, ·) is monotone, (4.11) together with the
inclusion implies

−pV2n(K) = −pṼ−p(K, IC,pK0) = −pṼ−p(K0, IC,pK)

≤ −pṼ−p(K0, IC,pL) = −pṼ−p(L,K)

Applying the dual Lp-Minkowski inequality (2.2),

−pV2n(K) ≤ −pṼ−p(L,K) ≤ −pV2n(L)
2n+p
2n V2n(K)−

p
2n ,

that is, −pV2n(K) ≤ −pV2n(L), as claimed.
The statement when V2n(K) = V2n(L) follows directly from the equality cases of the

dual Lp-Minkowski inequality.
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4.3.3 Outside the image

In the next step, we show that, if there are bodies that are not in the image of IC,p, then
Problem 1 has a negative answer. To this end, we will give a characterization of IC,p(S0)
in terms of the spherical Fourier transform, similar to the real setting. Indeed, we first
show that every body in the image embeds into Lp, that is, by [57, Prop. 5.4], is a real
Lp-intersection body.

Proposition 4.3.2. Let C ∈ K(C) be origin-symmetric with non-empty interior, and
−2 < p ≤ 1 be non-zero. If K ∈ IC,p(S0), then

1

Γ
�−p

2

�Fpρ
−p
K ≥ 0.

In particular, IC,p(S0) ⊆ {�→ Lp} ∩ {K ∈ S0(Cn) : ρ−p
K ∈ imTνC,p}.

Proof. Let K0 ∈ K(IC,p) such that K = IC,pK0. By Proposition 4.2.4 and since multiplier
transforms commute, we get

Fpρ
−p
K = Fpρ

−p
IC,pK0

=
(2π)−2

(2n+ p)
Fp ◦ F−2n−p ◦ TνC,pρ

2n+p
K0

=
(2π)2n−2

2n+ p
TνC,pρ

2n+p
K0

.

By Proposition 4.2.2, 1
Γ(− p

2 )
νC,p is a positive measure and, hence,

1

Γ
�−p

2

�Fpρ
−p
K =

(2π)2n−2

(2n+ p)Γ
�−p

2

�TνC,pρ
2n+p
K0

≥ 0,

which by Proposition 2.2.5 is equivalent to K embedding into Lp.

Note that, in general, the image of TνC,p can be quite complicated and is only described
by spherical harmonics. However, as it turns out, if the statement of Problem 1 is negative,
it already fails when restricted to S1-invariant bodies. In the following, we will therefore
concentrate on S1-invariant bodies, which we denote by a superscript (·)S1 , that is, e.g.,
IC,p(S0)

S1 .

Let us point out that, if C = D, then imTνD,p = C(S2n−1)S
1
, as can be seen, e.g., by

(4.7). Next, we show that on S1-invariant bodies, the image of IC,p does not depend on C
and coincides (up to closure) with S1-invariant bodies embedding into Lp.

Proposition 4.3.3. Let C ∈ K(C) be origin-symmetric with non-empty interior, and
−2 < p ≤ 1 be non-zero. Then

IC,p(S0)
S1 = ID,p(S0) and clw (ID,p(S0)) = {�→ Lp}S1 ,

where we denote by clw the closure with respect to weak convergence of ρ−p
K .

Proof. Let K ∈ IC,p(S0)
S1 , that is, S1-invariant and K = IC,pK0 for some K0 ∈ S0(Cn).

By the S1-invariance, TνC,pρ
−p
K = νC,p(S1)ρ−p

K for all C, and, by Proposition 4.2.4,

νD,p(S1)ρ−p
K = TνD,pρ

−p
K =

1

(2π)2(2n+ p)
TνD,p ◦ F−2n−p ◦ TνC,pρ

2n+p
K0

.
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We can therefore define !K0 ∈ S0(Cn) by

ρ2n+p�K0
=

1

νD,p(S1)
TνC,pρ

2n+p
K0

to see that K = ID,p !K0 and thus K ∈ ID,p(S0). Let us point out here that we used that
νD,p(S1)−1νC,p ≥ 0, by Proposition 4.2.2, in order to get ρ �K0

> 0. Repeating the argument

with C and D replaced yields the other inclusion of IC,p(S0)
S1 = ID,p(S0).

Next, by Proposition 4.3.2 and the comment below it, ID,p(S0) ⊆ {�→ Lp}S1 . As the
condition in Proposition 2.2.5 is closed with respect to the weak topology, it therefore
remains to see that {�→ Lp}S1 ⊆ clw (ID,p(S0)).

To this end, let K ∈ {�→ Lp}S1 . By Propositions 2.2.5 and 4.2.2, µ := νD,p(S1)−1Fpρ
−p
K

is a positive measure on S2n−1. We can therefore find a sequence of positive, S1-invariant
functions fk ∈ C∞(S2n−1), k ∈ N, which convergences to µ in the weak topology. For
k ∈ N, define Kk ∈ S0(Cn) by ρ2n+p

Kk
= fk. Then, by S1-invariance,

ρ−p
ID,pKk

=
νD,p(S1)
(2π)2

F−2n−pρ
2n+p
Kk

w−→ νD,p(S1)
(2π)2

F−2n−pµ = (2π)2n−2ρ−p
K ,

concluding the proof.

Next, we will use the characterization in Proposition 4.3.3 to prove Proposition 4.1.3. For
the reader’s convenience, we repeat the statement using the notation of Proposition 4.3.3.

Proposition 4.3.4. Let −2 < p ≤ 1 be non-zero. If clw(IC,p(S0)) ∩ K(IC,p)
S1 is a strict

subset of K(IC,p)
S1, then there exist S1-invariant K,L ∈ K(IC,p) such that

IC,pK ⊆ IC,pL but − pV2n(K) > −pV2n(L).

Let us point out that K(IC,p)
S1 consists precisely of all S1-invariant convex bodies with

non-empty interior (in particular, does not depend on C).
For the proof of Proposition 4.3.4, we need the following perturbation statement, which

is a slight generalization of [38, Lem. 4.10]. It follows from the fact that the condition in
Proposition 2.2.5 is stable under suitable approximations.

Lemma 4.3.5. Let K ∈ K(Rn) be origin-symmetric with 0 ∈ intK, and suppose that K
does not embed into Lp. Then there exists a sequence of smooth origin-symmetric convex
bodies (Kk)k∈N with strictly positive curvature such that ρ−p

Kk
→ ρ−p

K and each Kk does not
embed into Lp.

Proof of Proposition 4.3.4. Let !L ∈ K(IC,p)
S1 not in clw (IC,p(S0)) = {�→ Lp}S1 . By

Lemma 4.3.5, there exists a smooth L ∈ K(Cn) with strictly positive curvature which does
not embed into Lp. Moreover, we can assume that L is S1-invariant and, thus, L ∈ K(IC,p).
As ρL is smooth on S2n−1, so is Fpρ

−p
L . By Proposition 2.2.5, −pFpρ

−p
L is negative on

some S1-invariant open set U ⊆ S2n−1. Let 0 �= ϕ ∈ C∞(S2n−1) be non-negative and
S1-invariant, such that ϕ is supported inside U , and set ψ = Fpϕ. Since Fp intertwines
rotations, ψ is also S1-invariant.
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Next, we define K ∈ K(Cn) by

ρ2n+p
K = ρ2n+p

L − εψ,

for ε > 0 sufficiently small, using Lemma 4.3.1. Note that, by construction, K is again
S1-invariant and therefore in K(IC,p). Since (2π)2nϕ = F−2n−pψ, we get that F−2n−pψ is
positive and, thus, by Theorem G and using that −pνC,p ≥ 0,

−p(2π)2JC,pρ
2n+p
K = −pTνC,pF−2n−p

�
ρ2n+p
L − εpψ

�
= −p(2π)2JC,pρ

2n+p
L − ε(−p)νC,p(S1)F−2n−pψ ≤ −p(2π)2JC,pρ

2n+p
L .

Consequently, IC,pK ⊆ IC,pL. As ϕ is positive on an open subset of U and −pFpρ
−p
L is

negative on U , we obtain by (2.12) and the self-adjointness of Fp,

−2npṼ−p(K,L) = −p
�
ρ2n+p
K , ρ−p

L

�
= −2npV2n(L) + pε

�
(2π)−2nF−2n−pψ,Fpρ

−p
L

�
= −2npV2n(L)− ε

�
ϕ, (−p)Fpρ

−p
L

�
> −2npV2n(L).

By the dual Lp-Minkowski inequality (2.2),

−pV2n(L) < −pṼ−p(K,L) ≤ −pV2n(K)
2n+p
2n V2n(L)

− p
2n ,

that is, −pV2n(L) < −pV2n(K), concluding the proof.

4.3.4 Counter examples in higher dimensions

By Proposition 4.1.3 respectively Proposition 4.3.4, it suffices to show that not every S1-
invariant convex body is contained in the closure of IC,p(S0)

S1 in order to obtain a negative
answer to Problem 1. Using examples from [39] of bodies that do not embed into some Lp,
Proposition 4.3.2 then completes the proof of Proposition 4.1.4 for IC,p.

Proof of Proposition 4.1.4 for IC,p. By [39, Thm. 4], the unit ball of the complex space )qn,
i.e.

Bq =

(z1, . . . , zn) ∈ Cn :
n 

j=1

|zj |q ≤ 1

 ,

where q > 2 does not embed into Lp for p ∈ (−2n+4, 0). In particular, Bq does not embed
into Lp for p ∈ (−2, 0) if n ≥ 3. Moreover, by [38, Thm. 6.17], Bq cannot embed into Lp for
p ∈ (0, 2] if n ≥ 3. By [39, Thm. 6], finally, there exist 2-dimensional, S1-invariant convex
bodies that do not embed into Lp for any p > 0.

Hence, by Proposition 4.3.2, clw(IC,p(S0)) ∩ K(IC,p)
S1 	 K(IC,p)

S1 .
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4.3.5 Affirmative answer in low dimension

In the case n = 2, C = D and p ∈ (−2, 0), embedding results from [39] yield a positive
answer. Note that we need to take similar steps as in the proof of Proposition 4.1.2 here, as
we did not extend the notion of complex Lp-intersection body (and thereby the statement of
Proposition 4.1.2) to measures (that is, taking the closure) as was done in the real setting.

Proof of Proposition 4.1.5. As K(ID,p) consists precisely of all S1-invariant convex bodies
with non-empty interior, by [39, Thm. 3], every K ∈ K(ID,p) in C2 embeds into Lp for
(−4, 0). In particular, by Proposition 2.2.5, Fpρ

−p
K ≥ 0 for all K ∈ K(ID,p), as Γ

�−p
2

�
> 0

for p < 0.
Suppose now that K,L ∈ K(ID,p) satisfy ID,pK ⊆ ID,pL. As K and L are S1-invariant,

by Proposition 4.2.4,

νD,p(S1)
(2π)2(4 + p)

F−4−pρ
4+p
K = ρ−p

ID,pK
≤ ρ−p

ID,pL
=

νD,p(S1)
(2π)2(4 + p)

F−4−pρ
4+p
L ,

that is, F−4−pρ
4+p
K ≤ F−4−pρ

4+p
L , as νD,p ≥ 0 by Proposition 4.2.2. By (2.12) and the

self-adjointness of the spherical Fourier transform, we thus obtain

4V4(K) = 4Ṽ−p(K,K) =
�
ρ4+p
K , ρ−p

K

�
= (2π)4

�
F−4−pρ

4+p
K ,Fpρ

−p
K

�
≤ (2π)4

�
F−4−pρ

4+p
L ,Fpρ

−p
K

�
=

�
ρ4+p
L , ρ−p

K

�
= 4Ṽ−p(L,K).

The dual Lp-Minkowski inequality (2.2) therefore implies

V4(K) ≤ Ṽ−p(L,K) ≤ V4(L)
4+p
4 V4(K)−

p
4 ,

that is, V4(K) ≤ V4(L), concluding the proof.

We conclude the treatment of complex Lp-intersection bodies by a remark on the complex
centroid body.

Remark 4.3.6. The complex centroid body map ΓC was defined in [27] for all K ∈ K(Cn)
with non-empty interior by

hΓCK(u) =
1

V2n(K)

�
K
hCu(x)dx, u ∈ S2n−1.

Clearly, by (3.4), (ΓCK)◦ = V2n(K)IC,1K = IC,1(V2n(K)−1/(2n+1)K), and, thus, K(Γ◦
C) =

K(IC,1) and the images of Γ◦
C and IC,1 coincide (as IC,1 is homogeneous).

Moreover, since

ΓCK ⊆ ΓCL ⇔ Γ◦
CL ⊆ Γ◦

CK,

the conditions in Problem 1 are equivalent, with K and L replaced. Proposition 4.1.2
therefore implies

V2n(V2n(K)−
1

2n+1K) ≤ V2n(V2n(L)
− 1

2n+1L),
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that is, V2n(K) ≤ V2n(L), whenever L ∈ IC,1(S0) ∩ K(IC,1).
In a similar way, by Proposition 4.1.3 for IC,1, we can find bodies K and L with ΓCK ⊆

ΓCL but V2n(L) < V2n(K), if there are bodies outside the image, as is the case for all
n ≥ 2 by the same statement for IC,1, solving Problem 1 for ΓC as well.

4.4 Busemann–Petty problem for complex projection bodies

In this section, we prove Theorem F for the complex projection body map ΠC . As for IC,p,
we will follow the steps outlined at the beginning of this chapter.

4.4.1 Determination of K(Φ)

Determined by the multipliers (3.20) of the operator JC,1, the injectivity set K(ΠC), defined
in (4.4), is given by

K(ΠC) =
�
K ∈ K(Cn) : intK �= ∅ and cl−k[h

p
C ] = 0 ⇒ πk,lSK = 0

�
.

In particular, we have ΠCK = ΠCL for K,L ∈ K(ΠC) only if SK = SL, that is, K = L
up to translations. Moreover, K(ΠC) contains the set of S1-invariant convex bodies with
non-empty interior.
We can now prove Proposition 4.1.1 using again a small perturbation.

Proof of Proposition 4.1.1 for Π◦
C . Let L ∈ K(Cn) be smooth with positive curvature, that

is, SL has a smooth, positive density sL ∈ C∞(S2n−1). As K(ΠC) is a proper subset, there
exists (k, l) ∈ N such that cl−k[hC ] = 0. Using the Jacobi polynomial !Pk,l ∈ H2n

k,l, we define

ϕ = sL + ε !Pk,l,

where |ε| is sufficiently small such that ϕ > 0 and the sign of ε is chosen such that

ε
� !Pk,l, hL

�
≤ 0 (4.12)

By Minkowski’s existence theorem [62, Thm. 8.2.2], there exists a convex body K ∈ K(Cn)
such that SK = ϕ.

By the choice of (k, l), TSiC
!Pk,l = 0 by (4.7), and we conclude by Proposition 4.2.4

−4πhΠCK = TSiC
F−2n−1SK = TSiC

F−2n−1SL = −4πhΠCL,

that is, ΠCK = ΠCL. Consequently, by (4.12),

2nV(K,L) = �SK , hL	 = 2nV2n(L) + ε
� !Pk,l, hL

�
≤ 2nV2n(L).

Minkowski’s first inequality (2.1) then implies

V2n(L) ≥ V(K,L) ≥ V2n(K)
2n−1
2n V2n(L)

1
2n ,

that is, V2n(L) ≥ V2n(K). As K and L are not homothetic, the equality cases of (2.1)
imply that the inequality is strict, concluding the proof.
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4.4.2 Affirmative Cases

As in case of IC,p, Problem 1 for ΠC has an affirmative answer, when one of the bodies is in
the image of the adjoint operator ΠC . The proof idea is exactly the same as before, namely
using an adjointness property for mixed volumes and applying Minkowski’s first inequality.

Proof of Proposition 4.1.2 for ΠC . First, we apply Proposition 4.2.4 and use that F−2n−1

is self-adjoint and, by Lemma 4.2.1, TSiC
is the adjoint operator of TSiC

, to obtain

2nV(K,ΠCL) =
�
SK , hΠCL

�
= − 1

4π

�
SK ,TSiC

F−2n−1SL

�
= − 1

4π
�TSiC

F−2n−1SK , SL	 = �hΠCK , SL	 = 2nV(L,ΠCK), (4.13)

for every K,L ∈ K(ΠC). Let now K,L ∈ K(ΠC) with K = ΠCK0 for some K0 ∈ K(ΠC)
and assume that Π◦

CK ⊆ Π◦
CL, equivalently, ΠCL ⊆ ΠCK. Then, by (4.13) and the

monotonicity of mixed volume,

V2n(K) = V(K,ΠCK0) = V(K0,ΠCK) ≥ V(K0,ΠCL) = V(L,ΠCK0) = V(L,K).

Minkowski’s first inequality (2.1) finally implies that

V2n(K) ≥ V(L,K) ≥ V2n(L)
2n−1
2n V2n(K)

1
2n ,

that is, V2n(K) ≥ V2n(L) as claimed. Equality V2n(K) = V2n(L) holds here only if there
is equality in Minkowski’s first inequality, that is, K and L are homothetic. As they have
the same volume, they must be translates of each other.

4.4.3 Outside the image

The next step is to show that the answer to Problem 1 is negative if there are bodies which
are not contained in the image of ΠC . Again, we will start with a description of ΠC(K) in
terms of the spherical Fourier transform.

Proposition 4.4.1. Let C ∈ K(C) be origin-symmetric with non-empty interior. If K ∈
ΠC(K), then

1

Γ
�−1

2

�F1hK ≥ 0.

In particular, K◦ ∈ {�→ L1} ∩ {L ∈ K(Cn) : ρ−1
L ∈ imTSiC

}.
Proof. First note that Γ

�−1
2

�
= −2

√
π. Combining Proposition 4.2.4 and (2.12), using

that multiplier transforms commute, we obtain

−F1hK =
1

4π
F1TSiC

F−2n−1SK =
(2π)2n

4π
TSiC

SK ≥ 0,

yielding the first claim. The second claim follows directly from Proposition 2.2.5.
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As before, it is sufficient to consider only S1-invariant bodies. In the following, we will
denote by Π◦

C(K) = {K◦ : K ∈ ΠC(K)}.
Proposition 4.4.2. Let C ∈ K(C) be origin-symmetric with non-empty interior. Then

ΠC(K)S
1
= ΠD(K) and clw (Π◦

D(K)) = {�→ L1}S1 ,

where we denote by clw the closure with respect to weak convergence of ρ−1
K .

Proof. Let K ∈ ΠC(K)S
1
, that is, S1-invariant and such that K = ΠCK0 for some K0 ∈

K(ΠC). By the S1-invariance, TSiC
hK = SiC(S1)hK for all C and, by Proposition 4.2.4,

SiD(S1)hK = TSiDhK = − 1

4π
TSiDF−2n−1TSiC

SK0 .

Setting µ = SiD(S1)−1TSiC
SK0 , we note that µ is a centered (even), non-negative measure,

which is not concentrated in a subsphere. Hence, by Minkowski’s existence theorem [62,
Thm. 8.2.2], there exists an origin-symmetric body L0 ∈ K(Cn) with non-empty interior
such that SL0 = µ.

Consequently, K = ΠDL0, that is, K ∈ ΠD(K). Repeating the argument with C and D
replaced yields the other inclusion.
Next, by Proposition 4.4.1, all bodies in Π◦

D(K) embed into L1 and are S1-invariant.
As {�→ L1}S1 is closed under weak convergence, it remains to show that {�→ L1}S1 ⊆
clw (Π◦

D(K)).

To this end, let K ∈ {�→ L1}S1 . By Proposition 2.2.5, µ = −SiD(S1)−1F1ρ
−1
K is a

non-negative measure. We can therefore find a sequence of positive, S1-invariant functions
fk ∈ C∞(S2n−1), k ∈ N, which converges to µ in the weak topology. As every fk is, in
particular, even and positive, Minkowski’s existence theorem implies that there are convex
bodies Kk ∈ K(Cn) with non-empty interior, such that SKk

= fk, k ∈ N. Then, by
S1-invariance,

ρ−1
Π◦

DKk
= −SiD(S1)

4π
F−2n−1SKk

w−→ −SiD(S1)
4π

F−2n−1µ =
(2π)2n

4π
ρ−1
K ,

concluding the proof.

Next, we will use the characterization in Proposition 4.4.2 to prove Proposition 4.1.3. For
the reader’s convenience, we repeat the statement using the notation of Proposition 4.4.2.

Proposition 4.4.3. If clw(Π
◦
C(K)) ∩ K(ΠC)

S1 is a strict subset of K(ΠC)
S1, then there

exist S1-invariant K,L ∈ K(ΠC) such that

ΠCK ⊆ ΠCL but V2n(K) > V2n(L).

Let us point out that K(ΠC)
S1 consists precisely of all S1-invariant convex bodies with

non-empty interior (in particular, does not depend on C and is invariant under taking
polars).
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4 Busemann–Petty type problems on complex vector spaces

Proof. Let !L◦ ∈ K(ΠC)
S1 not in clw(Π

◦
C(K)) = {�→ L1}S1 . By Lemma 4.3.5, there exists

a smooth L◦ ∈ K(Cn) with strictly positive curvature which does not embed into L1.
Moreover, we can assume that L◦ is S1-invariant and, thus, L ∈ K(ΠC).
As hL is smooth on S2n−1, so is F1hL. By Proposition 2.2.5 for L◦, −F1hL is negative

on some S1-invariant open set U ⊂ S2n−1. Let 0 �= ϕ ∈ C∞(S2n−1) be non-negative and
S1-invariant, such that ϕ is supported inside U , and set ψ = F1ϕ. Since F1 intertwines
rotations, ψ is S1-invariant.

Next, let sL denote the smooth density of SL and define

f = sL − εψ

for ε > 0 sufficiently small such that f is still positive. Then f is, in particular, even
and positive and by Minkowski’s existence theorem there exists K ∈ K(ΠC)

S1 such that
SK = fdu. Since F−2n−1ψ = (2π)2nϕ ≥ 0, and by Proposition 4.2.4,

−4πhΠCK = TSiC
F−2n−1SK = −4πhΠCL − εTSiC

F−2n−1ψ

= −4πhΠCL − εSiC(S1)(2π)2nϕ ≤ −4πhΠCL,

that is, ΠCK ⊇ ΠCL. As ϕ is positive on an open subset of U and −F1hL is negative on
U , we obtain by (2.12) and the self-adjointness of F1

2nV(K,L) = �SK , hL	 = 2nV2n(L)− ε
�
(2π)−2nF−2n−1ψ,F1hL

�
= 2nV2n(L) + ε �ϕ,−F1hL	 < 2nV2n(L).

By Minkowski’s first inequality (2.1),

V2n(L) > V(K,L) ≥ V2n(K)
2n−1
2n V2n(L)

1
2n ,

that is, V2n(L) > V2n(K), concluding the proof.

4.4.4 Counter examples in higher dimensions

As in the case of IC,p, by Proposition 4.1.3 respectively Proposition 4.4.3, it suffices to show
that not every S1-invariant convex body is contained in the closure of Π◦

C(K) in order to
solve Problem 1. Again, we will use examples from [38, 39] of bodies not embedding into
L1.

Proof of Proposition 4.1.4 for ΠC . In the proof of Proposition 4.1.4 for IC,p it was deduced
from [38,39] that the unit ball of the complex space )qn, q > 2, does not embed into L1 for
n ≥ 2. Hence the claim follows by Proposition 4.4.3.
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