
Journal of Computational and Applied Mathematics 457 (2025) 116240 

A
0
(

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

Optimally truncated WKB approximation for the 1D stationary
Schrödinger equation in the highly oscillatory regime
Anton Arnold a,∗, Christian Klein b,c, Jannis Körner a, Jens Markus Melenk a

a Institute of Analysis and Scientific Computing, Technische Universität Wien, Wiedner Hauptstr. 8-10, A–1040 Wien, Austria
b Institut de Mathématiques de Bourgogne, Université de Bourgogne-Franche-Comté, 9 avenue Alain Savary, 21078 Dijon Cedex, France
c Institut Universitaire de France, France

A R T I C L E I N F O

MSC:
34E20
81Q20
65L11
65M70

Keywords:
Schrödinger equation
Highly oscillatory wave functions
Higher order WKB approximation
Optimal truncation
Asymptotic analysis
Airy function
Spectral methods

A B S T R A C T

This paper is dedicated to the efficient numerical computation of solutions to the 1D stationary
Schrödinger equation in the highly oscillatory regime. We compute an approximate solution
based on the well-known WKB-ansatz, which relies on an asymptotic expansion w.r.t. the small
parameter 𝜀. Assuming that the coefficient in the equation is analytic, we derive an explicit
error estimate for the truncated WKB series, in terms of 𝜀 and the truncation order 𝑁 . For
any fixed 𝜀, this allows to determine the optimal truncation order 𝑁𝑜𝑝𝑡 which turns out to be
proportional to 𝜀−1. When chosen this way, the resulting error of the optimally truncated WKB
series behaves like (exp(−𝑟∕𝜀)), with some parameter 𝑟 > 0. The theoretical results established
in this paper are confirmed by several numerical examples.

1. Introduction

In this paper we are concerned with the numerical solution of the stationary 1D Schrödinger equation

⎧

⎪

⎨

⎪

⎩

𝜀2𝜑′′(𝑥) + 𝑎(𝑥)𝜑(𝑥) = 0 , 𝑥 ∈ 𝐼 ∶= [𝜉, 𝜂] ,
𝜑(𝜉) = 𝜑0 ,
𝜀𝜑′(𝜉) = 𝜑1 ,

(1)

which yields highly oscillatory solutions. Here, 0 < 𝜀 ≪ 1 is a very small parameter and 𝑎 is a real-valued function satisfying
𝑎(𝑥) ≥ 𝑎0 > 0 and, for a quantum mechanical problem, it is related to the potential. The constants 𝜑0, 𝜑1 ∈ C may depend on 𝜀 but
are assumed to be 𝜀-uniformly bounded. It is known that the (local) wavelength 𝜆 of the solution 𝜑 to (1) is proportional to 𝜀. More
precisely, it can be expressed as 𝜆(𝑥) = (2𝜋𝜀)∕

√

𝑎(𝑥). Consequently, for a small parameter 𝜀 the solution becomes highly oscillatory,
particularly in the semi-classical limit 𝜀→ 0.

Highly oscillatory problems such as (1) occur across a broad range of applications, e.g., plasma physics [1,2], inflationary
cosmology [3,4] and electron transport in semiconductor devices such as resonant tunneling diodes [5–7]. More specifically, the
state of an electron of mass 𝑚 that is injected with the prescribed energy 𝐸 from the right boundary into an electronic device
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(e.g., diode), modeled on the interval [𝜉, 𝜂], can be described by the following boundary value problem (BVP) (e.g., see [8] or [7,
Chap. 2]):

⎧

⎪

⎨

⎪

⎩

−𝜀2𝜓 ′′
𝐸 (𝑥) + 𝑉 (𝑥)𝜓𝐸 (𝑥) = 𝐸𝜓𝐸 (𝑥) , 𝑥 ∈ (𝜉, 𝜂) ,

𝜓 ′
𝐸 (𝜉) + i 𝑘(𝜉)𝜓𝐸 (𝜉) = 0 ,

𝜓 ′
𝐸 (𝜂) − i 𝑘(𝜂)𝜓𝐸 (𝜂) = −2 i 𝑘(𝜂) .

(2)

Here, 𝜀 ∶= ℏ∕
√

2𝑚 is proportional to the (reduced) Planck constant ℏ, 𝑘(𝑥) ∶= 𝜀−1
√

𝐸 − 𝑉 (𝑥) is the wavevector and the real-valued
function 𝑉 denotes the electrostatic potential. In the context of (2), our assumption 𝑎(𝑥) ≥ 𝑎0 > 0 simply reads 𝐸 > 𝑉 (𝑥), which
means that we are in the oscillatory regime. One is then often interested in macroscopic quantities such as the charge density 𝑛 and
he current density 𝑗, which are given by

𝑛(𝑥) = ∫

∞

0
|𝜓𝐸 (𝑥)|

2𝑓 (𝐸) d𝐸 , 𝑗(𝑥) = 𝜀∫

∞

0
Im(𝜓𝐸 (𝑥)𝜓 ′

𝐸 (𝑥))𝑓 (𝐸) d𝐸 . (3)

Here, 𝑓 is the distribution function which represents the injection statistics of the electron and Im(⋅) denotes the imaginary part.
Thus, in order to compute the quantities (3), one has to use a very fine grid in 𝐸 which means that the BVP (2) has to be solved
many times. Consequently, there exists a substantial demand for efficient numerical methods that are suitable for solving problems
like (2). Further, we note that the BVP (2) is strongly connected to IVP (1). Indeed, for suitable initial values, namely, 𝜑0 = 1 and
𝜑1 = − i

√

𝑎(𝜉), the solution 𝜑 of IVP (1) and the solution 𝜓𝐸 of BVP (2) are related by

𝜓𝐸 (𝑥) = −
2 i 𝑘(𝜂)

𝜑′(𝜂) − i 𝑘(𝜂)𝜑(𝜂)
𝜑(𝑥) . (4)

Thus, any numerical method for solving IVP (1) is also suitable for the numerical treatment of BVP (2).

1.1. Background and approach

Since the solution 𝜑 to (1) exhibits rapid oscillations when 𝜀 is small, standard numerical methods for ODEs become inefficient as
they are typically constrained by grid limitations ℎ = (𝜀) (ℎ denoting the step size), in order to resolve the oscillations accurately.
By contrast, the phase function method of [9] is based on the observation that solutions to (1) can be represented accurately by means
of a nonoscillatory phase function. Our approach presented below is closer to the uniformly accurate (w.r.t. 𝜀) marching methods
of [10,11] which yield global errors of order (ℎ2) and allow for reducing the grid limitation to at least ℎ = (

√

𝜀). The WKB-based
(named after the physicists Wentzel, Kramers, Brillouin; cf. [12]) one-step method from [8] is even asymptotically correct, i.e. the
numerical error goes to zero with 𝜀 → 0, provided that the integrals ∫ 𝑥

√

𝑎(𝜏) d𝜏 and ∫ 𝑥 𝑎(𝜏)−1∕4(𝑎(𝜏)−1∕4)′′ d𝜏 for the phase of the
olution can be computed exactly. More precisely, the method then yields an error which is of order (𝜀3) as 𝜀 → 0 and (ℎ2)
s ℎ → 0. If these integrals cannot be evaluated exactly, the asymptotically correct error behavior can be (almost) recovered by
mploying spectral methods for the integrals, as shown in [13]. Further, in [14] the authors propose a numerical algorithm that
witches adaptively between a defect correction iteration (which builds on an asymptotic expansion) for oscillatory regions of the
olution, and a conventional Chebyshev collocation solver for smoother regions. Although the method is demonstrated to be highly
ccurate and efficient, a full error analysis was left for future work.

Our approach here is to implement directly a WKB approximation for the solution of (1), which is asymptotically correct and of
rbitrary order w.r.t. 𝜀. The essence of the method is rather an analytic approximation via an asymptotic WKB series with optimal
runcation. As such, the main goal is to understand the asymptotic 𝜀-dependence of this truncation strategy and of the resulting error.
hus our strategy is not a classical numerical method with some chosen grid size ℎ and convergence as ℎ → 0. Instead, the resulting
pproximation error will be of order (𝜀𝑁 ) as 𝜀 → 0, where 𝑁 refers to the used truncation order in the underlying asymptotic
KB series, see (5)–(6) below. As 𝑁 can be chosen freely, this approach may prove very practical for applications, especially when

he model parameter 𝜀 is very small. Since the computation of the terms of the asymptotic series involves several integrals, we will
mploy highly accurate spectral methods, as already proven useful in [13].

The key question when implementing this WKB approximation is which choice of 𝑁 is adequate or even optimal, in the sense
f minimizing the resulting approximation error. Indeed, since the asymptotic WKB series is typically divergent, the error cannot
imply be reduced further by increasing the value of 𝑁 . This question about the best attainable accuracy of the WKB approximation
as already addressed in [4], where the author compared the WKB series with the exact solution represented by a convergent
remmer series [15,16], or more precisely, by an asymptotic expansion of that Bremmer series. The author finds that in cases
here the coefficient function 𝑎 is analytic, the optimal truncation order is proportional to 𝜀−1, yielding a corresponding optimal
ccuracy which is exponentially small w.r.t. 𝜀. However, to derive these results, the author makes several additional asymptotic
pproximations. In the present paper, on the other hand, we shall follow a more rigorous strategy by providing error estimates
or the WKB approximation which are explicit w.r.t. 𝜀 and 𝑁 . We note, however, that the key assumption from [4], i.e., 𝑎 being
nalytic, will also be crucial for the strategy of the present work.

In practical finite precision computations, optimal truncation is not generally needed since it is not useful to add additional terms

fter reaching machine precision. In this paper we present concrete a-priori estimates for this truncation.
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1.2. Main results

Our first main result is Theorem 3.7, which provides an explicit (w.r.t. 𝜀 and 𝑁) error estimate for the WKB approximation,
and implies that the approximation error is of order (𝜀𝑁 ). The explicitness of this estimate then allows for an investigation of the
error w.r.t. the truncation order 𝑁 . Indeed, the optimal truncation order 𝑁𝑜𝑝𝑡 can be predicted by minimizing the established upper
error bound w.r.t. 𝑁 or by determining the smallest term of the asymptotic series, and is found to be proportional to 𝜀−1. This leads
o our second main result, namely, Corollary 4.1. It states that, for an adequate choice of 𝑁 = 𝑁(𝜀) ∼ 𝜀−1, the error of the WKB
pproximation is of order (exp(−𝑟∕𝜀)), 𝑟 > 0 being some constant. As a consequence, also the error of the optimally truncated
KB approximation is of order (exp(−𝑟∕𝜀)), see also Remark 4.2.
This paper is organized as follows: In Section 2 we introduce the 𝑁th order (w.r.t. 𝜀) WKB approximation as an approximate

olution of IVP (1). Section 3 then contains a detailed error analysis for the WKB approximation and includes explicit (w.r.t. 𝜀 and
he truncation order 𝑁) error estimates. In Section 4 we specify the computation of the WKB approximation. This includes the
escription of the chosen methods for the computation of the terms of the underlying asymptotic series as well as a reasonable
runcation strategy. In Section 5 we illustrate the theoretical results established in this paper by several numerical examples. We
onclude in Section 6.

. WKB approximation

In this section we introduce the WKB approximation as an approximate solution of IVP (1). The basis for its construction is the
ell-known WKB-ansatz (cf. [12,17]), which for the ODE (1) reads1

𝜑(𝑥) ∼ exp
( 1
𝜀
𝑆(𝑥)

)

, 𝜀→ 0 , (5)

here 𝑆 is a complex-valued function containing information of the phase as well as the amplitude of the solution 𝜑. To derive
KB approximations it is then convenient to express 𝑆 as an asymptotic expansion2 w.r.t. the small parameter 𝜀:

𝑆(𝑥) ∼
∞
∑

𝑛=0
𝜀𝑛𝑆𝑛(𝑥) , 𝜀→ 0 ; 𝑆𝑛(𝑥) ∈ C . (6)

It should be noted that this asymptotic series is typically divergent (as usual for asymptotic series) and must therefore be truncated
in order to obtain an approximate solution.

By substituting the ansatz (5)–(6) into (1), one obtains (formally)
( ∞
∑

𝑛=0
𝜀𝑛𝑆′

𝑛(𝑥)

)2

+
∞
∑

𝑛=0
𝜀𝑛+1𝑆′′

𝑛 (𝑥) + 𝑎(𝑥) = 0. (7)

A comparison of 𝜀-powers then yields the following well-known recurrence relation for the functions 𝑆′
𝑛:

𝑆′
0 = ± i

√

𝑎 , (8)

𝑆′
1 = −

𝑆′′
0

2𝑆′
0
= − 𝑎

′

4𝑎
= −1

4
(ln(𝑎))′ , (9)

𝑆′
𝑛 = − 1

2𝑆′
0

(𝑛−1
∑

𝑗=1
𝑆′
𝑗𝑆

′
𝑛−𝑗 + 𝑆

′′
𝑛−1

)

, 𝑛 ≥ 2 . (10)

he computation of each 𝑆𝑛, 𝑛 ≥ 0, thus involves one integration constant. Further, the repeated differentiation in (10) indicates
hat a WKB approximation relying on 𝑁 +1 terms in the truncated series (6) requires 𝑎 ∈ 𝐶𝑁 (𝐼). Moreover, the fact that the r.h.s. of
8) has two different signs implies that there are two sequences of functions, which solve (8)–(10). This corresponds to the fact that
here are two fundamental solutions of the ODE in (1). Let us denote by (𝑆−

𝑛 )𝑛∈N0
the sequence induced by the choice 𝑆′

0 = − i
√

𝑎.
The one following from 𝑆′

0 = i
√

𝑎 will be denoted by (𝑆+
𝑛 )𝑛∈N0

. Then, a simple observation is the following proposition.

Proposition 2.1.

(𝑆−
2𝑛)

′(𝑥) = −(𝑆+
2𝑛)

′(𝑥) ∈ iR , (11)

(𝑆−
2𝑛+1)

′(𝑥) = (𝑆+
2𝑛+1)

′(𝑥) ∈ R , (12)

for all 𝑥 ∈ 𝐼 and 𝑛 ≥ 0.

1 We say that two functions 𝑓, 𝑔 ∶ 𝐼 × (0, 𝜀0) → C are asymptotically equivalent as 𝜀 → 0, if and only if for any 𝑥 ∈ 𝐼 it holds 𝑓 (𝑥, 𝜀) − 𝑔(𝑥, 𝜀) = 𝑜(𝑔(𝑥, 𝜀)) as
→ 0. In this case we write 𝑓 (𝑥, 𝜀) ∼ 𝑔(𝑥, 𝜀), 𝜀→ 0.
2 We say that a function 𝑓 ∶ 𝐼 × (0, 𝜀0) → C has an asymptotic expansion as 𝜀 → 0, if and only if there exist sequences of functions

(

𝑓𝑛 ∶ 𝐼 → C
)

𝑛∈N0
and

𝜙𝑛 ∶ (0, 𝜀0) → C𝑛∈N0
satisfying for all 𝑛 ∈ N0 and 𝑥 ∈ 𝐼 that 𝜙𝑛+1(𝜀)𝑓𝑛+1(𝑥) = 𝑜(𝜙𝑛(𝜀)𝑓𝑛(𝑥)) as 𝜀 → 0, such that for all 𝑁 ≥ 0 it holds 𝑓 (𝑥, 𝜀) −∑𝑁

𝑛=0 𝜙𝑛(𝜀)𝑓𝑛(𝑥) =
(𝜙𝑁 (𝜀)𝑓𝑁 (𝑥)) as 𝜀→ 0. In this case we write 𝑓 (𝑥, 𝜀) ∼ ∑∞

𝑛=0 𝜙𝑛(𝜀)𝑓𝑛(𝑥), 𝜀→ 0. We call an asymptotic expansion uniform w.r.t. 𝑥 ∈ 𝐼 , if all the order symbols hold

niformly in 𝑥 ∈ 𝐼 .
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Proof. The statement can easily be verified by induction on 𝑛 ∈ N0. □

Since both sequences (𝑆±
𝑛 )𝑛∈N0

lead to an approximate solution of the ODE in (1), the general approximate solution can be written
s the linear combination

𝜑 ≈ 𝜑𝑊𝐾𝐵
𝑁 ∶= 𝛼𝑁,𝜀 exp

( 𝑁
∑

𝑛=0
𝜀𝑛−1𝑆−

𝑛

)

+ 𝛽𝑁,𝜀 exp

( 𝑁
∑

𝑛=0
𝜀𝑛−1𝑆+

𝑛

)

, (13)

ith arbitrary 𝛼𝑁,𝜀, 𝛽𝑁,𝜀 ∈ C. Note that all integration constants in the computation of 𝑆−
𝑛 and 𝑆+

𝑛 can be ‘‘absorbed’’ into 𝛼𝑁,𝜀 and
𝑁,𝜀, respectively. Hence, these integration constants can be set to zero without loss of generality. More precisely, we define

𝑆±
𝑛 (𝑥) ∶= ∫

𝑥

𝜉

(

𝑆±
𝑛
)′ (𝜏) d𝜏 . (14)

ith this, Proposition 2.1 implies

𝑆−
2𝑛(𝑥) = −𝑆+

2𝑛(𝑥) ∈ iR , (15)

𝑆−
2𝑛+1(𝑥) = 𝑆+

2𝑛+1(𝑥) ∈ R , (16)

or all 𝑥 ∈ 𝐼 and 𝑛 ≥ 0. Hence, functions with even indices only contribute to the phase of the WKB approximation 𝜑𝑊𝐾𝐵
𝑁 , whereas

functions with odd indices only provide corrections to the amplitude.
Note that in general the constants 𝛼𝑁,𝜀 and 𝛽𝑁,𝜀 can be uniquely determined by initial or boundary conditions. Here, for the

WKB approximation (13) to satisfy the initial conditions in (1), we set

𝛼𝑁,𝜀 =
𝜑0

(

∑𝑁
𝑛=0 𝜀

𝑛(𝑆+
𝑛 )

′(𝜉)
)

− 𝜑1
∑𝑁
𝑛=0 𝜀𝑛

(

(𝑆+
𝑛 )′(𝜉) − (𝑆−

𝑛 )′(𝜉)
)
, (17)

𝛽𝑁,𝜀 =
𝜑1 − 𝜑0

(

∑𝑁
𝑛=0 𝜀

𝑛(𝑆−
𝑛 )

′(𝜉)
)

∑𝑁
𝑛=0 𝜀𝑛

(

(𝑆+
𝑛 )′(𝜉) − (𝑆−

𝑛 )′(𝜉)
)
. (18)

In the following we will often simply write 𝑆𝑛 whenever one could insert either 𝑆−
𝑛 or 𝑆+

𝑛 .
According to [17, Sec. 10.2], for the WKB-ansatz (5)–(6) to be valid on the whole interval 𝐼 , it is necessary that the series

∑∞
𝑛=0 𝜀

𝑛−1𝑆𝑛(𝑥) is a uniform asymptotic expansion of 𝜀−1𝑆(𝑥) as 𝜀→ 0. This implies that for any 𝑛 ∈ N0 the relation

𝜀𝑛𝑆𝑛+1(𝑥) = 𝑜(𝜀𝑛−1𝑆𝑛(𝑥)) , 𝜀→ 0 , (19)

must hold uniformly in 𝑥 ∈ 𝐼 . Note that this condition is violated if the interval 𝐼 includes so-called turning points, i.e., points 𝑥0 ∈ 𝐼
with 𝑎(𝑥0) = 0. Indeed, this is already evident from (9), which implies that 𝑆1 blows up at such turning points.

3. Error analysis

In this section we aim to find an explicit (w.r.t. 𝜀 and the truncation order 𝑁) error estimate for the WKB approximation (13).
One key ingredient will be the following a priori estimate for the solution 𝜑 of the inhomogeneous analog of the Schrödinger
equation-IVP (1).

Proposition 3.1. Let 𝑎 ∈ 𝑊 1,∞(𝐼) with 𝑎(𝑥) ≥ 𝑎0 > 0 and 𝑓 ∈ 𝐶(𝐼). Further, let 𝜑 ∈ 𝐶2(𝐼) be the solution of the inhomogeneous IVP

⎧

⎪

⎨

⎪

⎩

𝜀2𝜑′′ + 𝑎(𝑥)𝜑 = 𝑓 (𝑥) , 𝑥 ∈ 𝐼 ,
𝜑(𝜉) = 𝜑̂0 ,
𝜀𝜑′(𝜉) = 𝜑̂1 ,

with constants 𝜑̂0, 𝜑̂1 ∈ C. Then there exists 𝐶 > 0 independent of 𝜀, 𝑓 , 𝜑̂0, 𝜑̂1 such that

‖𝜑‖𝐿∞(𝐼) ≤
𝐶
𝜀
‖𝑓‖𝐿2(𝐼) + 𝐶

(

|𝜑̂1| + |𝜑̂0|
)

, (20)

‖𝜀𝜑′
‖𝐿∞(𝐼) ≤

𝐶
𝜀
‖𝑓‖𝐿2(𝐼) + 𝐶

(

|𝜑̂1| + |𝜑̂0|
)

. (21)

roof. Estimates (20)–(21) can be derived by finding an upper bound for the real-valued function 𝐸(𝑥) ∶= 𝜀2|𝜑′
|

2 + 𝑎|𝜑|2. At first,
it holds that

d
d𝑥
𝐸(𝑥) = 𝜀2 d

d𝑥
|𝜑′

|

2 + 𝑎 d
d𝑥

|𝜑|2 + 𝑎′|𝜑|2

= 2Re((𝜀2𝜑′′ + 𝑎𝜑)𝜑′) + 𝑎′|𝜑|2

= 2Re(𝑓𝜑′) + 𝑎′|𝜑|2

≤ 2|𝑓 ||𝜑′
| + ‖𝑎′‖𝐿∞(𝐼)|𝜑|

2 . (22)
4 
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Using Young’s inequality, we obtain

2|𝑓 ||𝜑′
| ≤ 1

𝜀2
|𝑓 |2 + 𝜀2|𝜑′

|

2 . (23)

Moreover, 𝑎(𝑥) ≥ 𝑎0 > 0 implies that

‖𝑎′‖𝐿∞(𝐼)|𝜑|
2 ≤

‖𝑎′‖𝐿∞(𝐼)

𝑎0
𝑎|𝜑|2 . (24)

Thus, from (22)–(24) we obtain with 𝑐 ∶= max(1, ‖𝑎
′
‖𝐿∞(𝐼)
𝑎0

) ≥ 1

d
d𝑥
𝐸(𝑥) ≤ 1

𝜀2
|𝑓 (𝑥)|2 + 𝑐𝐸(𝑥) . (25)

Applying Gronwall’s inequality (i.e., multiply (25) by exp(−𝑐𝑥) and integrate), we therefore get

𝐸(𝑥) ≤ 1
𝜀2 ∫

𝑥

𝜉
|𝑓 (𝑠)|2 e𝑐(𝑥−𝑠) d𝑠 + 𝐸(𝜉) e𝑐(𝑥−𝜉)

≤
(

1
𝜀2

‖𝑓‖2
𝐿2(𝐼)

+ 𝐸(𝜉)
)

e𝑐(𝑥−𝜉)

≤ e𝑐(𝜂−𝜉)
(

1
𝜀2

‖𝑓‖2
𝐿2(𝐼)

+ |𝜑̂1|
2 + 𝑎(𝜉)|𝜑̂0|

2
)

, (26)

which implies the estimates (20)–(21). □

In order to derive an error estimate for the WKB approximation (13) that is explicit not only w.r.t. 𝜀 but also w.r.t. the truncation
order 𝑁 , it is essential to control the growth of the functions 𝑆𝑛 w.r.t. 𝑛 ∈ N0. As a first step, we aim to establish upper bounds for
he derivatives 𝑆′

𝑛, which are given by recurrence relation (8)–(10). To this end, we employ a strategy similar to [18, Lemma 2],
hich relies heavily on Cauchy’s integral formula. To enable us to apply this tool, we shall assume that 𝑆′

0 is not only defined on
he real interval 𝐼 , but also on a complex neighborhood 𝐺 ⊂ C of 𝐼 and holomorphic there. This leads us to introduce the following
ssumption.

ypothesis A. Let 𝑆′
0 be holomorphic (complex analytic) on a complex, bounded, simply connected neighborhood 𝐺 ⊂ C of 𝐼 ,

satisfying 𝑆′
0(𝑧) ≠ 0 for any 𝑧 ∈ 𝐺.

As a consequence of Hypothesis A, the function 𝑎 and all 𝑆𝑛, 𝑛 ∈ N, are holomorphic on 𝐺. In particular, each 𝑆𝑛 is bounded on
𝐼 . For the next lemma, we introduce, for 𝛿 > 0, the open sets

𝐺𝛿 ∶= {𝑧 ∈ 𝐺 ∣ dist(𝑧, 𝜕𝐺) > 𝛿}. (27)

Lemma 3.2. Let Hypothesis A be satisfied and let 0 < 𝛿 ≤ 1 be such that 𝐺𝛿 ≠ ∅. Then there exists a constant 𝐾 > 0 depending only on
𝐺 and 𝑆′

0 such that

‖𝑆′
𝑛‖𝐿∞(𝐺𝛿 ) ≤ ‖𝑆′

0‖𝐿∞(𝐺)𝐾
𝑛𝑛𝑛𝛿−𝑛 , 𝑛 ∈ N0 . (28)

Here, we define 00 as 1.

Proof. Define the auxiliary functions 𝑆′
𝑛 ∶= −(2𝑆′

0)
−1𝑆′

𝑛. By using (8)–(10) we then find that the functions 𝑆′
𝑛 satisfy the following

recurrence relation

𝑆′
0 = −1

2
, (29)

𝑆′
𝑛 =

(𝑛−1
∑

𝑗=1
𝑆′
𝑗𝑆

′
𝑛−𝑗

)

+
(

2𝑆′
0
)−2 (−2𝑆′

0𝑆
′
𝑛−1)

′ , 𝑛 ≥ 1 . (30)

Note that since 𝑆′
0 is holomorphic on 𝐺, it follows from recurrence relation (8)–(10) that 𝑆′

𝑛, and hence also 𝑆′
𝑛, is holomorphic

on 𝐺, for every 𝑛 ∈ N0. We will now prove by induction on 𝑛 that

‖𝑆′
𝑛‖𝐿∞(𝐺𝛿 ) ≤

1
2
𝐾𝑛𝑛𝑛𝛿−𝑛 , 𝑛 ∈ N0 . (31)

Obviously, this estimate does hold for 𝑛 = 0, according to (29). Assume that the estimate in (31) holds for 0 ≤ 𝑗 ≤ 𝑛 − 1 with
some fixed 𝑛 ≥ 1. We will now prove it for 𝑛. Let 0 < 𝜅 < 1 and 𝑧 ∈ 𝐺𝛿 . We denote with 𝜕𝐵𝜅𝛿(𝑧) a circle of radius 𝜅𝛿 around 𝑧, see
the left panel of Fig. 1. Then Cauchy’s integral formula implies

|(−2𝑆′
0𝑆

′
𝑛−1)

′(𝑧)| = 1
2𝜋

|

|

|

|

|

∫𝜕𝐵𝜅𝛿 (𝑧)

−2𝑆′
0(𝜁 )𝑆

′
𝑛−1(𝜁 )

(𝜁 − 𝑧)2
d𝜁
|

|

|

|

|

≤ 2𝜋𝜅𝛿
2𝜋

2‖𝑆′
0‖𝐿∞(𝐺)‖𝑆

′
𝑛−1‖𝐿∞(𝜕𝐵𝜅𝛿 (𝑧))(𝜅𝛿)

−2 . (32)

| |
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Fig. 1. (a) Exemplary sketch of the situation from the proof of Lemma 3.2: 𝐺𝛿 ⊂ 𝐺(1−𝜅)𝛿 ⊂ 𝐺, where 𝐺 is a complex neighborhood of the interval 𝐼 . Here, the
oint 𝑧 ∈ 𝐺𝛿 is very close to the boundary 𝜕𝐺𝛿 , which makes it clear why one has to consider 𝐺(1−𝜅)𝛿 in the r.h.s. of (33). (b) Every possible candidate 𝐺 for
he minimum on the l.h.s. of (41) can be reduced to a set 𝐺𝜅 ∶= {𝑧 ∈ C ∣ dist(𝑧, 𝐼) < 𝜅}, where 𝜅 ∶= dist(𝐼, 𝜕𝐺) > 0.

his, together with the fact that 𝜕𝐵𝜅𝛿(𝑧) ⊆ 𝐺(1−𝜅)𝛿 yields

‖(−2𝑆′
0𝑆

′
𝑛−1)

′
‖𝐿∞(𝐺𝛿 ) ≤ 2‖𝑆′

0‖𝐿∞(𝐺)(𝜅𝛿)−1‖𝑆′
𝑛−1‖𝐿∞(𝐺(1−𝜅)𝛿 ) . (33)

By applying estimate (33) and the induction hypothesis to (30), we find

‖𝑆′
𝑛‖𝐿∞(𝐺𝛿 ) ≤

𝑛−1
∑

𝑗=1
‖𝑆′

𝑗‖𝐿∞(𝐺𝛿 )‖𝑆
′
𝑛−𝑗‖𝐿∞(𝐺𝛿 ) + 1

4
‖(𝑆′

0)
−2
‖𝐿∞(𝐺𝛿 )2‖𝑆

′
0‖𝐿∞(𝐺)(𝜅𝛿)−1‖𝑆′

𝑛−1‖𝐿∞(𝐺(1−𝜅)𝛿 )

≤ 1
4
𝐾𝑛𝛿−𝑛

𝑛−1
∑

𝑗=1
𝑗𝑗 (𝑛 − 𝑗)𝑛−𝑗 + 1

4
‖(𝑆′

0)
−2
‖𝐿∞(𝐺𝛿 )‖𝑆

′
0‖𝐿∞(𝐺)𝛿

−𝑛𝐾𝑛−1 (𝑛 − 1)𝑛−1

𝜅(1 − 𝜅)𝑛−1
. (34)

Since 𝑗𝑗 (𝑛 − 𝑗)𝑛−𝑗 ≤ (𝑛 − 1)𝑛−1 for all 1 ≤ 𝑗 ≤ 𝑛 − 1, we can bound the sum in the first term of (34) by (𝑛 − 1)𝑛. Thus, we obtain

‖𝑆′
𝑛‖𝐿∞(𝐺𝛿 ) ≤

1
2
𝐾𝑛𝑛𝑛𝛿−𝑛

[

1
2

( 𝑛 − 1
𝑛

)𝑛
+

‖(𝑆′
0)

−2
‖𝐿∞(𝐺𝛿 )‖𝑆

′
0‖𝐿∞(𝐺)

2𝐾𝜅(1 − 𝜅)𝑛−1𝑛

( 𝑛 − 1
𝑛

)𝑛−1
]

. (35)

It now suffices to show that the expression in the square brackets is less than or equal to 1. By further estimating
(

𝑛−1
𝑛

)𝑛
≤ 1

e , and
choosing 𝜅 = 1

𝑛 , we get

‖𝑆′
𝑛‖𝐿∞(𝐺𝛿 ) ≤

1
2
𝐾𝑛𝑛𝑛𝛿−𝑛

[

1
2 e

+
‖(𝑆′

0)
−2
‖𝐿∞(𝐺𝛿 )‖𝑆

′
0‖𝐿∞(𝐺)

2𝐾

]

(36)

Thus it is sufficient to choose

𝐾 ∶= e
2 e−1

‖(𝑆′
0)

−2
‖𝐿∞(𝐺)‖𝑆

′
0‖𝐿∞(𝐺) . (37)

The estimate ‖(𝑆′
0)

−2
‖𝐿∞(𝐺𝛿 ) ≤ ‖(𝑆′

0)
−2
‖𝐿∞(𝐺) concludes the proof. □

A simple but important implication of Lemma 3.2 is the fact that we are now able to provide estimates not only for all the
derivatives of 𝑆𝑛 but also for 𝑆𝑛 itself:

Corollary 3.3. Let Hypothesis A be satisfied. Then there exist constants 𝐾1, 𝐾2 > 0 depending only on 𝐺 and 𝑆′
0 such that

‖𝑆𝑛‖𝐿∞(𝐼) ≤ (𝜂 − 𝜉)‖𝑆′
0‖𝐿∞(𝐺)𝐾

𝑛
2𝑛

𝑛 , 𝑛 ∈ N0 , (38)

‖𝑆(𝑘)
𝑛 ‖𝐿∞(𝐼) ≤ ‖𝑆′

0‖𝐿∞(𝐺)(𝑘 − 1)!𝐾𝑘−1
1 𝐾𝑛

2𝑛
𝑛 , 𝑛 ∈ N0 , 𝑘 ∈ N . (39)

Here we define 00 as 1.

Proof. Since 𝐺 is a complex neighborhood of 𝐼 , there is some 0 < 𝛿 ≤ 1 such that 𝐼 ⊂ 𝐺2𝛿 . To prove estimate (39), we start with
the trivial estimate ‖𝑆(𝑘)

𝑛 ‖𝐿∞(𝐼) ≤ ‖𝑆(𝑘)
𝑛 ‖𝐿∞(𝐺2𝛿 ). Then, for any 𝑘 ∈ N and 𝑧 ∈ 𝐺2𝛿 , Cauchy’s integral formula implies

|𝑆(𝑘)
𝑛 (𝑧)| =

(𝑘 − 1)!
2𝜋

|

|

|

|

|

∫𝜕𝐵𝛿 (𝑧)

𝑆′
𝑛(𝑧)

(𝜁 − 𝑧)𝑘
d𝜁
|

|

|

|

|

≤ (𝑘 − 1)! 𝛿−𝑘+1‖𝑆′
𝑛‖𝐿∞(𝐺𝛿 ) . (40)

By applying Lemma 3.2 on the r.h.s. of (40) we conclude that (39) holds with 𝐾1 ∶= 1∕𝛿 and 𝐾2 ∶= 𝐾∕𝛿. Estimate (38) then follows
from (39) for 𝑘 = 1 and by the definition of 𝑆 , see (14). □
𝑛
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Remark 3.4. Of course, it is of great interest to find a constant 𝐾2 from Corollary 3.3 that is as small as possible. To this end one
ould have to minimize the constant 𝐾∕𝛿 in estimate (28). In particular, one has to fix some complex neighborhood 𝐺 of 𝐼 as well
s a constant 0 < 𝛿 ≤ 1 such that it holds 𝐼 ⊂ 𝐺𝛿 . Further, the proof of Lemma 3.2 indicates that 𝐾 can be reduced by choosing

small, see (37). However, this means that one is forced to reduce also the value of 𝛿. Hence, this procedure usually results in a
rade-off between the magnitudes of 𝐾 and 𝛿. More precisely, one is led to solve the following minimization problem:

inf
0<𝛿≤1
𝐺⊂C
𝐼⊂𝐺𝛿

‖(𝑆′
0)

−2
‖𝐿∞(𝐺)‖𝑆′

0‖𝐿∞(𝐺)

𝛿
= min

0<𝛿≤1

‖(𝑆′
0)

−2
‖𝐿∞(𝐺𝛿 )‖𝑆′

0‖𝐿∞(𝐺𝛿 )

𝛿
, (41)

where 𝐺𝛿 ∶= {𝑧 ∈ C ∣ dist(𝑧, 𝐼) < 𝛿}. Equality in (41) holds for the following reasons: First, on the l.h.s. of (41) one only needs to
consider sets 𝐺 ⊂ C of the form 𝐺 = 𝐺𝜅 ∶= {𝑧 ∈ C ∣ dist(𝑧, 𝐼) < 𝜅}, with 𝜅 > 0. For any 0 < 𝛿 ≤ 1 such that 𝐼 ⊂ 𝐺𝛿 , this follows
ince the numerator on the l.h.s. of (41) is not increased when replacing 𝐺 by 𝐺dist(𝐼,𝜕𝐺), see the right panel of Fig. 1. The condition
⊂ 𝐺𝛿 then simply reads 𝜅 > 𝛿. Second, since for a fixed 0 < 𝛿 ≤ 1 and 𝛿 < 𝜅1 < 𝜅2 it holds that 𝐺𝜅1 ⊂ 𝐺𝜅2 , it is sufficient to

onsider simply the sets 𝐺𝛿+𝜖 , with 𝜖 > 0 being an arbitrarily small number. The equality in (41) then follows from the fact that
𝜖>0 𝐺

𝛿+𝜖 = 𝐺𝛿 .

We will later make use of the residual of the WKB approximation (13) w.r.t. the ODE in (1). For this, the following lemma will
e helpful.

emma 3.5. Denote with 𝐿𝜀 ∶= 𝜀2 d2
d𝑥2 + 𝑎(𝑥) the linear operator appearing in the Schrödinger Eq. (1) and let 𝜑̃𝑁 ∶= exp

(

∑𝑁
𝑛=0 𝜀

𝑛−1𝑆𝑛
)

,
𝑁 ∈ N0. Then it holds

𝐿𝜀𝜑̃𝑁 = 𝜑̃𝑁𝑓𝑁,𝜀 , (42)

where

𝑓𝑁,𝜀 = 𝜀𝑁+1(−2𝑆′
0𝑆

′
𝑁+1) +

𝑁
∑

𝑛=2

𝑁
∑

𝑘=2+𝑁−𝑛
𝜀𝑛+𝑘𝑆′

𝑛𝑆
′
𝑘 ; (43)

for 𝑁 < 2 the double sum is dropped.

Proof. First we observe that

𝐿𝜀𝜑̃𝑁 = 𝜀2𝜑̃′′
𝑁 + 𝑎(𝑥)𝜑̃𝑁 = 𝜀2𝜑̃𝑁

⎛

⎜

⎜

⎝

(

1
𝜀

𝑁
∑

𝑛=0
𝜀𝑛𝑆′

𝑛

)2

+ 1
𝜀

𝑁
∑

𝑛=0
𝜀𝑛𝑆′′

𝑛

⎞

⎟

⎟

⎠

+ 𝑎(𝑥)𝜑̃𝑁 = 𝜑̃𝑁

( 𝑁
∑

𝑛=0

𝑁
∑

𝑘=0
𝜀𝑛+𝑘𝑆′

𝑛𝑆
′
𝑘 +

𝑁
∑

𝑛=0
𝜀𝑛+1𝑆′′

𝑛 + 𝑎(𝑥)

)

. (44)

et us denote the second factor in (44) by 𝑓𝑁,𝜀. We will now show that 𝑓𝑁,𝜀 reduces to (43). To this end, let us first rewrite 𝑓𝑁,𝜀 as

𝑓𝑁,𝜀 =
(

𝑆′2
0 + 𝑎

)

+

( 𝑁
∑

𝑛=0

𝑁−𝑛
∑

𝑘=max(0,1−𝑛)
𝜀𝑛+𝑘𝑆′

𝑛𝑆
′
𝑘 +

𝑁−1
∑

𝑛=0
𝜀𝑛+1𝑆′′

𝑛

)

+

( 𝑁
∑

𝑛=1
𝜀𝑁+1𝑆′

𝑁+1−𝑛𝑆
′
𝑛 + 𝜀

𝑁+1𝑆′′
𝑁

)

+
𝑁
∑

𝑛=2

𝑁
∑

𝑘=𝑁+2−𝑛
𝜀𝑛+𝑘𝑆′

𝑛𝑆
′
𝑘 . (45)

ow, the first term in (45) vanishes due to (8). The second term also vanishes since
𝑁
∑

𝑛=0

𝑁−𝑛
∑

𝑘=max(0,1−𝑛)
𝜀𝑛+𝑘𝑆′

𝑛𝑆
′
𝑘 =

𝑁−1
∑

𝑛=0
𝜀𝑛+1

𝑛+1
∑

𝑗=0
𝑆′
𝑗𝑆

′
𝑛+1−𝑗 =

𝑁−1
∑

𝑛=0
𝜀𝑛+1

(

2𝑆′
0𝑆

′
𝑛+1 +

𝑛
∑

𝑗=1
𝑆′
𝑗𝑆

′
𝑛+1−𝑗

)

= −
𝑁−1
∑

𝑛=0
𝜀𝑛+1𝑆′′

𝑛 , (46)

here we used in the last equation recurrence relation (10) for the function 𝑆′
𝑛+1. Finally, by using (10) for the function 𝑆′

𝑁+1, the
hird term in (45) simplifies to 𝜀𝑁+1(−2𝑆′

0𝑆
′
𝑁+1). The claim follows. □

Recalling that 𝑆0(𝑥) ∈ iR we note that 𝜑̃𝑁 (𝑥) is, for fixed 𝑥 ∈ 𝐼 , uniformly bounded w.r.t. 𝜀 ∈ (0, 1]. Thus the r.h.s. of (42) is of
he order (𝜀𝑁+1), and we conclude from Lemma 3.5 that the function 𝜑̃𝑁 satisfies the ODE 𝐿𝜀𝜑 = 0 asymptotically, as 𝜀 → 0. This
s one of the main properties we can utilize to show that also the numerical error of the WKB approximation (13) will approach 0
s 𝜀→ 0, at least for 𝑁 ≥ 1. To this end we need the following lemma.

emma 3.6. Let Hypothesis A be satisfied and define 𝜑±
𝑁 ∶= exp

(

∑𝑁
𝑛=0 𝜀

𝑛−1𝑆±
𝑛

)

, 𝑁 ∈ N0. Then there exist constants 𝜀0 ∈ (0, 1) and
> 0 such that it holds for 𝜀 ∈ (0, 𝜀0]:

‖𝛼𝑁,𝜀𝜑
−
𝑁‖𝐿∞(𝐼) ≤ 𝐶

(

|𝜑0| ‖𝑆
′
0‖𝐿∞(𝐺)

𝑁
∑

𝑛=0
𝜀𝑛𝐾𝑛

2𝑛
𝑛 + |𝜑1|

)

exp

⎛

⎜

⎜

⎜

⎝

(𝜂 − 𝜉)‖𝑆′
0‖𝐿∞(𝐺)

⌊

𝑁−1
2 ⌋

∑

𝑛=0
𝜀2𝑛𝐾2𝑛+1

2 (2𝑛 + 1)2𝑛+1
⎞

⎟

⎟

⎟

⎠

, (47)

with 𝛼𝑁,𝜀 from (17). For 𝑁 = 0 the last sum is dropped. The same estimate holds for ‖𝛽𝑁,𝜀𝜑+
𝑁‖𝐿∞(𝐼). In particular, since the initial values

𝜑 and 𝜑 are assumed to be uniformly bounded w.r.t. 𝜀, so is 𝜑𝑊𝐾𝐵 in 𝐿∞(𝐼).
0 1 𝑁
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Proof. We will prove only the estimate for 𝛼𝑁,𝜀𝜑−
𝑁 . For 𝛽𝑁,𝜀𝜑+

𝑁 it is fully analogous. First notice that Proposition 2.1 implies that

|𝛼𝑁,𝜀| =
|

|

|

𝜑0
∑𝑁
𝑛=0 𝜀

𝑛(𝑆+
𝑛 )

′(𝜉) − 𝜑1
|

|

|

2
|

|

|

|

|

∑⌊

𝑁
2 ⌋

𝑛=0 𝜀2𝑛(𝑆+
2𝑛)

′(𝜉)
|

|

|

|

|

. (48)

Due to 𝑎(𝑥) ≥ 𝑎0 > 0, we have |(𝑆+
0 )

′(𝜉)| ≥
√

𝑎0 > 0. Thus, there exists 𝜀0 ∈ (0, 1) sufficiently small such that

|

|

|

|

|

|

|

⌊

𝑁
2 ⌋

∑

𝑛=0
𝜀2𝑛(𝑆+

2𝑛)
′(𝜉)

|

|

|

|

|

|

|

≥ |

|

|

(𝑆+
0 )

′(𝜉)||
|

−
⌊

𝑁
2 ⌋

∑

𝑛=1
𝜀2𝑛 ||

|

(𝑆+
2𝑛)

′(𝜉)||
|

≥
√

𝑎0 −
⌊

𝑁
2 ⌋

∑

𝑛=1
𝜀2𝑛 ||

|

(𝑆+
2𝑛)

′(𝜉)||
|

≥ 1
2𝐶

(49)

or all 𝜀 ∈ (0, 𝜀0] and some 𝐶 > 0 (since (𝑆+
2𝑛)

′ is bounded on 𝐼). Hence, we obtain

|𝛼𝑁,𝜀| ≤ 𝐶
|

|

|

|

|

|

𝜑0

𝑁
∑

𝑛=0
𝜀𝑛(𝑆+

𝑛 )
′(𝜉) − 𝜑1

|

|

|

|

|

|

. (50)

Next, (15)–(16) imply |𝜑−
𝑁 (𝑥)| ≤ exp

(

∑⌊

𝑁−1
2 ⌋

𝑛=0 𝜀2𝑛 ||
|

𝑆−
2𝑛+1(𝑥)

|

|

|

)

for all 𝑥 ∈ 𝐼 . Together with (50) this yields

|𝛼𝑁,𝜀𝜑
−
𝑁 (𝑥)| ≤ 𝐶

(

|𝜑0|

𝑁
∑

𝑛=0
𝜀𝑛 |

|

(𝑆+
𝑛 )

′(𝜉)|
|

+ |𝜑1|

)

exp

⎛

⎜

⎜

⎜

⎝

⌊

𝑁−1
2 ⌋

∑

𝑛=0
𝜀2𝑛 ||

|

𝑆−
2𝑛+1(𝑥)

|

|

|

⎞

⎟

⎟

⎟

⎠

(51)

or all 𝑥 ∈ 𝐼 . Applying Corollary 3.3 then yields the claim. □

Finally, we provide an error estimate for the WKB approximation (13).

heorem 3.7. Let Hypothesis A be satisfied and let 𝜑 ∈ 𝐶2(𝐼) be the solution of IVP (1). There exist constants 𝜀0 ∈ (0, 1) and 𝐶 > 0
independent of 𝑁 and 𝜀 such that it holds for 𝜀 ∈ (0, 𝜀0]:

‖𝜑 − 𝜑𝑊𝐾𝐵
𝑁 ‖𝐿∞(𝐼) ≤ 𝐶‖𝑆′

0‖
2
𝐿∞(𝐺)

(

|𝜑0| ‖𝑆
′
0‖𝐿∞(𝐺)

𝑁
∑

𝑛=0
𝜀𝑛𝐾𝑛

2𝑛
𝑛 + |𝜑1|

)

× exp

⎛

⎜

⎜

⎜

⎝

(𝜂 − 𝜉)‖𝑆′
0‖𝐿∞(𝐺)

⌊

𝑁−1
2 ⌋

∑

𝑛=0
𝜀2𝑛𝐾2𝑛+1

2 (2𝑛 + 1)2𝑛+1
⎞

⎟

⎟

⎟

⎠

×

(

𝜀𝑁𝐾𝑁+1
2 (𝑁 + 1)𝑁+1 +

𝑁
∑

𝑛=2

𝑁
∑

𝑘=2+𝑁−𝑛
𝜀𝑛+𝑘−1𝐾𝑛+𝑘

2 𝑛𝑛𝑘𝑘
)

. (52)

or 𝑁 = 0 the sum in the exponential function is dropped, and for 𝑁 < 2 the double sum is dropped.

roof. To compute the residual of the WKB approximation (13), we notice that 𝜑𝑊𝐾𝐵
𝑁 = 𝛼𝑁,𝜀𝜑−

𝑁 + 𝛽𝑁,𝜀𝜑+
𝑁 , where 𝜑±

𝑁 =
xp

(

∑𝑁
𝑛=0 𝜀

𝑛−1𝑆±
𝑛

)

. By applying Lemma 3.5, we obtain

𝐿𝜀(𝜑 − 𝜑𝑊𝐾𝐵
𝑁 ) = −𝛼𝑁,𝜀𝐿𝜀𝜑−

𝑁 − 𝛽𝑁,𝜀𝐿𝜀𝜑+
𝑁 = −𝛼𝑁,𝜀𝜑−

𝑁𝑓
−
𝑁,𝜀 − 𝛽𝑁,𝜀𝜑

+
𝑁𝑓

+
𝑁,𝜀 , (53)

here the functions 𝑓±
𝑁,𝜀 are given by (43) when inserting 𝑆±

𝑛 for 𝑆𝑛. Further, since 𝜑𝑊𝐾𝐵
𝑁 satisfies the initial conditions in (1), we

ave (𝜑−𝜑𝑊𝐾𝐵
𝑁 )(𝜉) = 0 and 𝜀(𝜑−𝜑𝑊𝐾𝐵

𝑁 )′(𝜉) = 0. Thus, Proposition 3.1 for 𝜑̂0, 𝜑̂1 = 0 implies (note that 𝑓±
𝑁,𝜀 ∈ 𝐶(𝐼) and 𝑎 ∈ 𝑊 1,∞(𝐼))

he existence of some 𝐶 > 0 independent of 𝑁 and 𝜀 such that

‖𝜑 − 𝜑𝑊𝐾𝐵
𝑁 ‖𝐿∞(𝐼) ≤

𝐶
𝜀
‖𝛼𝑁,𝜀𝜑

−
𝑁𝑓

−
𝑁,𝜀 + 𝛽𝑁,𝜀𝜑

+
𝑁𝑓

+
𝑁,𝜀‖𝐿2(𝐼)

≤ 𝐶
𝜀

(

‖𝛼𝑁,𝜀𝜑
−
𝑁‖𝐿∞(𝐼)‖𝑓

−
𝑁,𝜀‖𝐿∞(𝐼) + ‖𝛽𝑁,𝜀𝜑

+
𝑁‖𝐿∞(𝐼)‖𝑓

+
𝑁,𝜀‖𝐿∞(𝐼)

)

, (54)

where 𝐶 ∶=
√

𝜂 − 𝜉𝐶. Further, according to Corollary 3.3,

‖𝑓±
𝑁,𝜀‖𝐿∞(𝐼) ≤ 2𝜀𝑁+1

‖𝑆′
0‖𝐿∞(𝐼)‖𝑆

′
𝑁+1‖𝐿∞(𝐼) +

𝑁
∑

𝑛=2

𝑁
∑

𝑘=2+𝑁−𝑛
𝜀𝑛+𝑘‖𝑆′

𝑛‖𝐿∞(𝐼)‖𝑆
′
𝑘‖𝐿∞(𝐼)

≤ ‖𝑆′
0‖

2
𝐿∞(𝐺)

(

2𝜀𝑁+1𝐾𝑁+1
2 (𝑁 + 1)𝑁+1 +

𝑁
∑

𝑛=2

𝑁
∑

𝑘=2+𝑁−𝑛
𝜀𝑛+𝑘𝐾𝑛+𝑘

2 𝑛𝑛𝑘𝑘
)

. (55)
Estimate (52) now follows from (54)–(55) by applying Lemma 3.6. This concludes the proof. □
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Remark 3.8. As a consequence of Theorem 3.7, we have that

‖𝜑 − 𝜑𝑊𝐾𝐵
𝑁 ‖𝐿∞(𝐼) = (𝜀𝑁 ) , 𝜀→ 0 . (56)

3.1. Refined error estimate incorporating quadrature errors

Theorem 3.7 yields an explicit (w.r.t. 𝜀 and 𝑁) error estimate for the WKB approximation (13). However, in practice one cannot
xpect to be able to compute (13) exactly. Indeed, even though for a given function 𝑎 one can compute the derivatives (𝑆±

𝑛 )
′ exactly

through (8)–(10), one still has to deal with the integrals ∫ 𝑥𝜉 (𝑆±
𝑛 )

′ d𝜏 in (14) in order to compute the functions 𝑆±
𝑛 . For a detailed

description of the method we use to approximate these integrals, we refer to Section 4.1.
For now, let us assume we are given numerical approximations 𝑆±

𝑛 , 𝑛 ∈ N0, of the functions 𝑆±
𝑛 that satisfy ‖𝑆±

𝑛 −𝑆±
𝑛 ‖𝐿∞(𝐼) ≤ 𝑒𝑛

ith positive constants 𝑒𝑛. We then define the corresponding ‘‘perturbed’’ WKB approximation as

𝜑̃𝑊𝐾𝐵
𝑁 ∶= 𝛼𝑁,𝜀 exp

( 𝑁
∑

𝑛=0
𝜀𝑛−1𝑆−

𝑛

)

+ 𝛽𝑁,𝜀 exp

( 𝑁
∑

𝑛=0
𝜀𝑛−1𝑆+

𝑛

)

. (57)

otice that we use here the exact constants 𝛼𝑁,𝜀 and 𝛽𝑁,𝜀 as given by formulas (17)–(18) (since the values (𝑆±
𝑛 )

′(𝜉) are exactly
nown from (8)–(10)).

We are now interested in an error estimate for the perturbed WKB approximation (57). Such an estimate is provided by the
ollowing theorem:

heorem 3.9. Let Hypothesis A be satisfied and let 𝜑 ∈ 𝐶2(𝐼) be the solution of IVP (1). Further assume 𝑆±
2𝑛(𝑥) ∈ iR, 𝑛 ∈ N0, for any

∈ 𝐼 . Then, there exist constants 𝜀0 ∈ (0, 1) and 𝐶 > 0 independent of 𝑁 and 𝜀 such that it holds for 𝜀 ∈ (0, 𝜀0]:

‖𝜑 − 𝜑̃𝑊𝐾𝐵
𝑁 ‖𝐿∞(𝐼) ≤ exp

⎛

⎜

⎜

⎜

⎝

(𝜂 − 𝜉)‖𝑆′
0‖𝐿∞(𝐺)

⌊

𝑁−1
2 ⌋

∑

𝑛=0
𝜀2𝑛𝐾2𝑛+1

2 (2𝑛 + 1)2𝑛+1
⎞

⎟

⎟

⎟

⎠

×

[

𝐶‖𝑆′
0‖

2
𝐿∞(𝐺)

(

|𝜑0| ‖𝑆
′
0‖𝐿∞(𝐺)

𝑁
∑

𝑛=0
𝜀𝑛𝐾𝑛

2𝑛
𝑛 + |𝜑1|

)

×

(

𝜀𝑁𝐾𝑁+1
2 (𝑁 + 1)𝑁+1 +

𝑁
∑

𝑛=2

𝑁
∑

𝑘=2+𝑁−𝑛
𝜀𝑛+𝑘−1𝐾𝑛+𝑘

2 𝑛𝑛𝑘𝑘
)

+
(

|𝛼𝑁,𝜀| + |𝛽𝑁,𝜀|
)

( 𝑁
∑

𝑛=0
𝜀𝑛−1𝑒𝑛

)

exp

⎛

⎜

⎜

⎜

⎝

⌊

𝑁−1
2 ⌋

∑

𝑛=0
𝜀2𝑛𝑒2𝑛+1

⎞

⎟

⎟

⎟

⎠

]

. (58)

For 𝑁 = 0 the sums in the exponential functions drop, and for 𝑁 < 2 the double sum is dropped.

Proof. We have that

‖𝜑 − 𝜑̃𝑊𝐾𝐵
𝑁 ‖𝐿∞(𝐼) ≤ ‖𝜑 − 𝜑𝑊𝐾𝐵

𝑁 ‖𝐿∞(𝐼) + ‖𝜑𝑊𝐾𝐵
𝑁 − 𝜑̃𝑊𝐾𝐵

𝑁 ‖𝐿∞(𝐼) . (59)

Now, the first term in (59) can be estimated using Theorem 3.7 and enforces the restriction 𝜀 ∈ (0, 𝜀0]. For the second term we
estimate

‖𝜑𝑊𝐾𝐵
𝑁 − 𝜑̃𝑊𝐾𝐵

𝑁 ‖𝐿∞(𝐼) ≤ |𝛼𝑁,𝜀|
‖

‖

‖

‖

‖

‖

exp

( 𝑁
∑

𝑛=0
𝜀𝑛−1𝑆−

𝑛

)

− exp

( 𝑁
∑

𝑛=0
𝜀𝑛−1𝑆−

𝑛

)

‖

‖

‖

‖

‖

‖𝐿∞(𝐼)

+ |𝛽𝑁,𝜀|
‖

‖

‖

‖

‖

‖

exp

( 𝑁
∑

𝑛=0
𝜀𝑛−1𝑆+

𝑛

)

− exp

( 𝑁
∑

𝑛=0
𝜀𝑛−1𝑆+

𝑛

)

‖

‖

‖

‖

‖

‖𝐿∞(𝐼)

. (60)

Let us introduce the abbreviation 𝛥𝑆±
𝑛 ∶= 𝑆±

𝑛 − 𝑆±
𝑛 and estimate

‖

‖

‖

‖

‖

‖

exp

( 𝑁
∑

𝑛=0
𝜀𝑛−1𝑆±

𝑛

)

− exp

( 𝑁
∑

𝑛=0
𝜀𝑛−1𝑆±

𝑛

)

‖

‖

‖

‖

‖

‖𝐿∞(𝐼)

=
‖

‖

‖

‖

‖

‖

∫

1

0

d
d𝑡

exp

( 𝑁
∑

𝑛=0
𝜀𝑛−1

(

𝑆±
𝑛 + 𝑡𝛥𝑆±

𝑛
)

)

d𝑡
‖

‖

‖

‖

‖

‖𝐿∞(𝐼)

≤
⎛

⎜

⎜∫

1

0

‖

‖

‖

‖

‖

exp

( 𝑁
∑

𝜀𝑛−1
(

𝑆±
𝑛 + 𝑡𝛥𝑆±

𝑛
)

)

‖

‖

‖

‖

‖

d𝑡
⎞

⎟

⎟

( 𝑁
∑

𝜀𝑛−1‖𝛥𝑆±
𝑛 ‖𝐿∞(𝐼)

)

⎝ ‖

𝑛=0
‖𝐿∞(𝐼) ⎠

𝑛=0
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≤
⎛

⎜

⎜

⎜

⎝

∫

1

0
exp

⎛

⎜

⎜

⎜

⎝

⌊

𝑁−1
2 ⌋

∑

𝑛=0
𝜀2𝑛

(

‖𝑆±
2𝑛+1‖𝐿∞(𝐼) + 𝑡‖𝛥𝑆

±
2𝑛+1‖𝐿∞(𝐼)

)

⎞

⎟

⎟

⎟

⎠

d𝑡

⎞

⎟

⎟

⎟

⎠

( 𝑁
∑

𝑛=0
𝜀𝑛−1‖𝛥𝑆±

𝑛 ‖𝐿∞(𝐼)

)

≤ exp

⎛

⎜

⎜

⎜

⎝

⌊

𝑁−1
2 ⌋

∑

𝑛=0
𝜀2𝑛

(

‖𝑆±
2𝑛+1‖𝐿∞(𝐼) + ‖𝛥𝑆±

2𝑛+1‖𝐿∞(𝐼)

)

⎞

⎟

⎟

⎟

⎠

( 𝑁
∑

𝑛=0
𝜀𝑛−1‖𝛥𝑆±

𝑛 ‖𝐿∞(𝐼)

)

≤ exp

⎛

⎜

⎜

⎜

⎝

(𝜂 − 𝜉)‖𝑆′
0‖𝐿∞(𝐺)

⌊

𝑁−1
2 ⌋

∑

𝑛=0
𝜀2𝑛𝐾2𝑛+1

2 (2𝑛 + 1)2𝑛+1
⎞

⎟

⎟

⎟

⎠

exp

⎛

⎜

⎜

⎜

⎝

⌊

𝑁−1
2 ⌋

∑

𝑛=0
𝜀2𝑛𝑒2𝑛+1

⎞

⎟

⎟

⎟

⎠

( 𝑁
∑

𝑛=0
𝜀𝑛−1𝑒𝑛

)

, (61)

where we used in the third step that 𝑆±
2𝑛(𝑥) + 𝑡𝛥𝑆

±
2𝑛(𝑥) ∈ iR for every 𝑡 ∈ [0, 1] and 𝑥 ∈ 𝐼 , which is a direct consequence of (15) and

the assumption 𝑆±
2𝑛(𝑥) ∈ iR. Moreover, in the last step we used Corollary 3.3. The claim now follows by combining (59)–(61). □

Let us compare the extended error estimate (58) with (52). The new (additional) second term inside the square brackets in (58)
is due to the perturbed functions 𝑆±

𝑛 and includes the approximation error bounds 𝑒𝑛. In particular, the factor ∑𝑁
𝑛=0 𝜀

𝑛−1𝑒𝑛 is rather
unfavorable, as it is of order (𝜀−1), as 𝜀→ 0. We note that the appearance of this (𝜀−1)-term in estimate (58) is strongly related to
the appearance of the (𝜀−1)-terms in [8, Theorem 3.1], [13, Theorem 3.2] and [11, Eq. (35)]. There it implied an upper step size
limit ℎ ≤ ℎ̄(𝜀) = 𝜀𝛾 with some 𝛾 ∈ (0, 1). Similarly, it would require here some 𝜀-dependent upper bound on the quadrature error 𝑒0
of 𝑆±

0 in order to compensate at least the (𝜀−1)-error term. In practice this will necessitate to use some finer grid for computing
𝑆±
0 , as 𝜀 decreases. We specify this observation in the following remark.

Remark 3.10. It is evident from (50) that 𝛼𝑁,𝜀 = (1), 𝜀→ 0. The same holds for 𝛽𝑁,𝜀. Hence, we see from (58) that

‖𝜑 − 𝜑̃𝑊𝐾𝐵
𝑁 ‖𝐿∞(𝐼) = (𝜀𝑁 ) +

𝑁
∑

𝑛=0
(𝜀𝑛−1)𝑒𝑛 , 𝜀→ 0 . (62)

Thus, asymptotically, as 𝜀 → 0, the approximation error of 𝑆±
0 has the biggest impact on the overall error since it is multiplied

y a factor (𝜀−1). In order to recover an overall (𝜀𝑁 ) error behavior, as in Theorem 3.7, one should hence aim for highly accurate
pproximations of the functions 𝑆±

𝑛 , with an 𝜀-dependent error order of at most 𝑒𝑛 = (𝜀𝑁−𝑛+1).

. Computation of the WKB approximation

In this section we present the methods we use to compute the (perturbed) WKB approximation (13), (57). This process can be
ivided into two steps. First, the computation of the functions 𝑆𝑛. Second, an adequate truncation of the asymptotic series (6).

.1. Computation of the functions 𝑆𝑛

The computation of the functions 𝑆𝑛 relies on recurrence relation (8)–(10) as well as on definition (14). Since the latter involves
he evaluation of an integral, one cannot expect to be able to compute 𝑆𝑛 exactly, in general. Consequently, we will instead compute
pproximations 𝑆𝑛 ≈ 𝑆𝑛 = ∫ 𝑥𝜉 𝑆

′
𝑛 d𝜏 which satisfy the assumption 𝑆2𝑛(𝑥) ∈ iR, 𝑛 ∈ N0, such that the resulting error for the

orresponding perturbed WKB approximation can be controlled by Theorem 3.9.
As the first step, we compute the derivatives 𝑆′

𝑛 through (8)–(10) exactly, employing symbolic computations3. Secondly, we
mploy a highly accurate quadrature for approximating the integral in (14). For this, we use the well-known Clenshaw–Curtis
lgorithm [20], which we shall briefly explain in the following.

The basic idea of Clenshaw–Curtis quadrature is to expand the integrand 𝑓 in terms of Chebyshev polynomials, the integrals
f which are known. More precisely, one considers a truncated Chebyshev series for the integrand, i.e., 𝑓 (𝑙) ≈

∑𝑀
𝑟=0 𝑎𝑟𝑇𝑟(𝑙),

∈ [−1, 1], where 𝑇𝑟(𝑙) = cos(𝑟 arccos(𝑙)), 𝑟 ∈ N0, are the Chebyshev polynomials. Here, the spectral coefficients 𝑎𝑟 are determined
ith a collocation method at the Chebyshev collocation points 𝑙𝑘 = cos(𝑘𝜋∕𝑀), 𝑘 = 0,… ,𝑀 , by solving the 𝑀 + 1 equations
(𝑙𝑘) =

∑𝑀
𝑟=0 𝑎𝑟 cos

(

𝑟𝑘𝜋
𝑀

)

for the 𝑎𝑟, 𝑟 = 0,… ,𝑀 . Therefore, the spectral coefficients can be computed by the discrete cosine
transformation (DCT) of the function 𝑓 sampled at the collocations points. We note that the DCT is related to the discrete Fourier
transform and can be computed efficiently using the fast Fourier transform algorithm after some preprocessing (e.g., see [21, Chap.
8]).

Then, the antiderivative of 𝑓 can be approximated again by a Chebyshev sum,

∫

𝑙

−1
𝑓 (𝜏) d𝜏 ≈

𝑀
∑

𝑟=0
𝑏𝑟𝑇𝑟(𝑙) , (63)

3 As an alternative to (8)–(10), in [19] the authors established an almost explicit formula for the derivatives 𝑆′
𝑛, depending on 𝑎 and its derivatives 𝑎′ ,… , 𝑎(𝑛).
lthough not used here, this approach may prove advantageous with regard to the computational time.
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Fig. 2. 𝐿∞(𝐼)-norm of the error of the approximation 𝑆̄′
𝑛 for the examples 𝑎(𝑥) = 𝑥 and 𝑎(𝑥) = 𝑥2 on the interval 𝐼 = [1, 2]. Here, we set 𝑀 = 20.

here the coefficients 𝑏𝑟 are related to the 𝑎𝑟, see [20] for the detailed formulas. In [22] it was shown that the Clenshaw–Curtis
ethod approximates integrals of analytic functions with spectral accuracy, i.e., the numerical error decreases exponentially with

he number of modes 𝑀 .
An integration over the interval 𝑥 ∈ [𝜉, 𝜂] is realized by mapping 𝑥 = 𝜂(1 + 𝑙)∕2 + 𝜉(1 − 𝑙)∕2, 𝑙 ∈ [−1, 1] to the interval [−1, 1].

hus, by sampling the derivatives 𝑆′
𝑛 at the transformed Chebyshev points 𝑥𝑘, 𝑘 = 0,… ,𝑀 in the interval 𝐼 = [𝜉, 𝜂], we obtain the

pproximations 𝑆𝑛(𝑥𝑘) ≈ 𝑆𝑛(𝑥𝑘). Notably, the coefficients 𝑏𝑟 are such that the r.h.s. of (63) vanishes at 𝑙 = −1, implying 𝑆𝑛(𝜉) = 0.
ence, the perturbed WKB approximation (57) satisfies the first initial condition in (1), namely, 𝜑̃𝑊𝐾𝐵

𝑁 (𝜉) = 𝛼𝑁,𝜀+𝛽𝑁,𝜀 = 𝜑0. Finally,
t is worth mentioning that when employing the Clenshaw–Curtis algorithm for the integrals in (14), it follows that 𝑆2𝑛(𝑥𝑘) ∈ iR. As
consequence, the error of the corresponding perturbed WKB approximation (57) can be controlled with the aid of Theorem 3.9.

We note that an alternative and efficient way of approximating the functions 𝑆𝑛 can be realized without the need for symbolic
omputation of the derivatives 𝑆′

𝑛. Indeed, one can instead employ a spectral method to perform the differentiation of the predecessor
′
𝑛−1 in the recursion (10). For instance, by using the (𝑀 + 1) × (𝑀 + 1) Chebyshev differentiation matrices 𝐃𝑀 as described in [21,
hap. 6], one can efficiently approximate the derivative of a function at Chebyshev grid points 𝑙𝑘 ∈ [−1, 1], 𝑘 = 0, 1,… ,𝑀 . Thus, to
pproximate the derivative of a function sampled at transformed Chebyshev points 𝑥𝑘 ∈ [𝜉, 𝜂], it is necessary to use the scaled matrix
̃
𝑀 ∶= 2

𝜂−𝜉𝐃𝑀 . Following recurrence relation (8)–(10), we can therefore approximate the derivatives 𝑆′
𝑛 sampled at Chebyshev

points 𝑥𝑘 through the following pointwise definition on the grid:

𝑆̄′
1(𝑥𝑘) ∶= −

∑𝑀
𝑙=0(𝐃̃𝑀 )𝑘+1,𝑙+1𝑆′

0(𝑥𝑙)

2𝑆′
0(𝑥𝑘)

, (64)

𝑆̄′
𝑛(𝑥𝑘) ∶= −

∑𝑛−1
𝑗=1 𝑆̄

′
𝑗 (𝑥𝑘)𝑆̄

′
𝑛−𝑗 (𝑥𝑘) +

∑𝑀
𝑙=0(𝐃̃𝑀 )𝑘+1,𝑙+1𝑆̄′

𝑛−1(𝑥𝑙)

2𝑆′
0(𝑥𝑘)

, 𝑛 ≥ 2 , (65)

for 𝑘 = 0,… ,𝑀 . One then obtains approximations 𝑆𝑛(𝑥𝑘) ≈ 𝑆𝑛(𝑥𝑘) by employing the Clenshaw–Curtis algorithm using the
approximations 𝑆̄′

𝑛(𝑥𝑘) ≈ 𝑆′
𝑛(𝑥𝑘), 𝑘 = 0,… ,𝑀 .

However, note that approximating 𝑆′
𝑛 using (64)–(65) can lead to a rapid accumulation of errors, as repeated numerical

differentiation is intrinsically unstable. The reason for this behavior lies in the ill-conditioned Chebyshev differentiation matrices
𝐃𝑀 . It is known that the condition number of these matrices is of order (𝑀2) (e.g., see [23,24]). In a finite precision approach
this leads to a big loss, which means that in each application of the recurrence relation we lose a finite amount of accuracy in the
computation of the 𝑆′

𝑛 (see Fig. 2 for two examples). Consequently, it can be recommended to employ this approach only for small
values of 𝑁 .

4.2. Truncation of the WKB series

When truncating the asymptotic series

𝑓 ∼
∞
∑

𝑛=0
𝜀𝑛𝑓𝑛 , 𝜀→ 0 (66)

after some finite order 𝑁 , one would like to analyze the difference 𝑓 −
∑𝑁
𝑛=0 𝜀

𝑛𝑓𝑛. But since the function 𝑆 in (5)–(6) remains
nknown, we shall investigate the numerical error of the WKB approximation, as started in Section 3.

Recall that for a fixed 𝑁 ≥ 0, Theorem 3.7 guarantees that ‖𝜑−𝜑𝑊𝐾𝐵
𝑁 ‖𝐿∞(𝐼) = (𝜀𝑁 ) as 𝜀→ 0, see also Remark 3.8. In practical

pplications, however, the situation is exactly the opposite, namely, the small parameter 𝜀 is fixed and 𝑁 can be chosen freely.
ote also that just including more terms into the series (6) does not necessarily reduce the error of the WKB approximation, simply
11 
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since the asymptotic series is typically divergent. Hence the question arises which choice of 𝑁 will minimize ‖𝜑 − 𝜑𝑊𝐾𝐵
𝑁 ‖𝐿∞(𝐼),

often referred to as optimal truncation. In this context, we denote by 𝑁𝑜𝑝𝑡 = 𝑁𝑜𝑝𝑡(𝜀) ∶= argmin𝑁∈N0
‖𝜑 − 𝜑𝑊𝐾𝐵

𝑁 ‖𝐿∞(𝐼) the optimal
runcation order. In general, an optimally truncated asymptotic series is sometimes referred to as superasymptotics (e.g., see [25]). The
orresponding error of an optimally truncated series is then typically of the form ∼ exp(−𝑐∕𝜀), as 𝜀 → 0, with some constant 𝑐 > 0.

In practice, a useful heuristic for finding the optimal truncation order for a fixed 𝜀 is given in [25]. It suggests that it can be
btained by truncating the asymptotic series before its smallest term. In our case, we would hence have to find the minimizer
ℎ𝑒𝑢 = 𝑁ℎ𝑒𝑢(𝜀) of 𝑛 ↦ 𝜀𝑛‖𝑆𝑛+1‖𝐿∞(𝐼). This can either be found by ‘‘brute force’’, comparing the size of each term up to some
rescribed maximal order 𝑁𝑚𝑎𝑥, or by utilizing Corollary 3.3 to (roughly) predict 𝑁ℎ𝑒𝑢. Indeed, for any 𝑁 ∈ N0, estimate (38)
mplies

𝜀𝑁‖𝑆𝑁+1‖𝐿∞(𝐼) ≤ (𝜂 − 𝜉)‖𝑆′
0‖𝐿∞(𝐺)𝜀

𝑁𝐾𝑁+1
2 (𝑁 + 1)𝑁+1 . (67)

reating 𝑁 as a continuous variable for the moment, we find the minimum of

𝑔(𝑁) ∶= ln
(

𝜀𝑁𝐾𝑁+1
2 (𝑁 + 1)𝑁+1) (68)

t

𝑁̂ℎ𝑒𝑢 = 𝑁̂ℎ𝑒𝑢(𝜀) =
1

e𝐾2𝜀
− 1 . (69)

ence, the minimum of the right-hand side of (67) is

(𝜂 − 𝜉)‖𝑆′
0‖𝐿∞(𝐺) exp

(

𝑔(𝑁̂ℎ𝑒𝑢)
)

=
(𝜂 − 𝜉)‖𝑆′

0‖𝐿∞(𝐺)

𝜀
exp

(

− 1
e𝐾2𝜀

)

. (70)

So, the first term of the remainder of the asymptotic series appearing in the WKB-ansatz (5)–(6), truncated at the nearest integer
value to 𝑁̂ℎ𝑒𝑢, is exponentially small w.r.t. 𝜀. Recalling that the term exp(𝑔(𝑁)) = 𝜀𝑁𝐾𝑁+1

2 (𝑁 + 1)𝑁+1 also appears in estimate (52),
e therefore might also expect the error ‖𝜑−𝜑𝑊𝐾𝐵

𝑁 ‖𝐿∞(𝐼) to be exponentially small w.r.t. 𝜀, if 𝑁 is chosen adequately. Indeed, this
is guaranteed by the following corollary of Theorem 3.7.

Corollary 4.1. Let Hypothesis A be satisfied and let 𝜑 ∈ 𝐶2(𝐼) be the solution of IVP (1). Then there exist 𝜀̃0 ∈ (0, 1) and 𝑁 = 𝑁(𝜀) ∈ N
such that it holds for 𝜀 ∈ (0, 𝜀̃0]:

‖𝜑 − 𝜑𝑊𝐾𝐵
𝑁 ‖𝐿∞(𝐼) ≤ 𝐶 exp

(

− 𝑟
𝜀

)

, (71)

with constants 𝐶, 𝑟 > 0 independent of 𝜀.

Proof. We prove estimate (71) by applying Theorem 3.7 for a specific choice of 𝑁 = 𝑁(𝜀). First, choose 0 < 𝜀̃0 < min(𝜀0,
1
𝐾2

) with
0 ∈ (0, 1) being the constant from Theorem 3.7 and 𝐾2 from Corollary 3.3. Then there exists some constant 𝑐 ∈ [e𝐾2𝜀̃0, e) implying

that 𝑁 ∶= ⌊

𝑐
e𝐾2𝜀

⌋ − 1 ≥ 0 for any 𝜀 ∈ (0, 𝜀̃0]. The idea is now to majorize, for this choice of 𝑁 , several sums in (52) by convergent
geometric series. First, we have

𝑁
∑

𝑛=0
(𝜀𝐾2𝑛)𝑛 ≤

𝑁
∑

𝑛=0
(𝜀𝐾2(𝑁 + 1))𝑛 ≤

∞
∑

𝑛=0

( 𝑐
e

)𝑛
= 1

1 − 𝑐
e

, (72)

here we used 𝜀𝐾2(𝑁 + 1) ≤ 𝑐
e . Similarly, we get

⌊

𝑁−1
2 ⌋

∑

𝑛=0
𝜀2𝑛(𝐾2(2𝑛 + 1))2𝑛+1 ≤ 𝐾2

⌊

𝑁−1
2 ⌋

∑

𝑛=0
(𝜀𝐾2(𝑁 + 1))2𝑛(2𝑛 + 1) ≤ 𝐾2

𝑁
∑

𝑛=0

( 𝑐
e

)𝑛
(𝑛 + 1) ≤ 𝐾2

( ∞
∑

𝑛=0

( 𝑐
e

)𝑛
𝑛 +

∞
∑

𝑛=0

( 𝑐
e

)𝑛
)

= 𝐾2
e2

(e −𝑐)2
, (73)

where we used the geometric series variant ∑∞
𝑛=0 𝑞

𝑛𝑛 = 𝑞
(1−𝑞)2 for any 𝑞 ∈ R with |𝑞| < 1. At this point, Theorem 3.7 and (72)–(73)

mply for 𝜀 ∈ (0, 𝜀̃0]

‖𝜑 − 𝜑𝑊𝐾𝐵
𝑁 ‖𝐿∞(𝐼) ≤ 𝐶𝜀𝑁𝐾𝑁+1

2 (𝑁 + 1)𝑁+1 + 𝐶
𝑁
∑

𝑛=2

𝑁
∑

𝑘=2+𝑁−𝑛
𝜀𝑛+𝑘−1𝐾𝑛+𝑘

2 𝑛𝑛𝑘𝑘 , (74)

here 𝐶 > 0 is some constant independent of 𝜀. Now, for the first term in (74) we have that

𝜀𝑁𝐾𝑁+1
2 (𝑁 + 1)𝑁+1 ≤ 1

𝜀

( 𝑐
e

)

⌊

𝑐
e𝐾2𝜀

⌋

≤ e
𝑐𝜀

( 𝑐
e

)
𝑐

e𝐾2𝜀 = e
𝑐𝜀

exp
(

− 𝑟
𝜀

)

, (75)

with 𝑟 ∶= 𝑐 ln(e ∕𝑐)
e𝐾2

> 0. Finally, the second term in (74) can be estimated as follows:

𝑁
∑

𝑁
∑

𝜀𝑛+𝑘−1𝐾𝑛+𝑘
2 𝑛𝑛𝑘𝑘 ≤ 1

𝑁
∑

𝑁
∑

(𝜀𝐾2𝑁)𝑛(𝜀𝐾2𝑁)𝑘 = 1 (𝜀𝐾2𝑁)𝑁+2
𝑁−2
∑

𝑛
∑

(𝜀𝐾2𝑁)𝑘

𝑛=2 𝑘=2+𝑁−𝑛 𝜀 𝑛=2 𝑘=2+𝑁−𝑛 𝜀 𝑛=0 𝑘=0
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≤ 1
𝜀
(𝜀𝐾2𝑁)𝑁+2

𝑁−2
∑

𝑛=0

∞
∑

𝑘=0

( 𝑐
e

)𝑘
= 1
𝜀
(𝜀𝐾2𝑁)𝑁+2𝑁 − 1

1 − 𝑐
e

≤
𝐾2

1 − 𝑐
e

(

𝑐
e𝐾2𝜀

)2
( 𝑐
e

)

⌊

𝑐
e𝐾2𝜀

⌋

≤ 𝑐
(e −𝑐)𝐾2𝜀2

( 𝑐
e

)
𝑐

e𝐾2𝜀 = 𝑐
(e −𝑐)𝐾2𝜀2

exp
(

− 𝑟
𝜀

)

. (76)

We observe that the r.h.s. of (75) can be bounded by the r.h.s. of (76) (up to a multiplicative constant) for 𝜀 ∈ (0, 𝜀̃0]. Thus, the
claim follows with 𝑟 ∶= 𝑟∕2 and adapting 𝐶. □

Remark 4.2. We note that the specific value 𝑁 from the proof of Corollary 4.1 is not necessarily equal to the optimal truncation
order 𝑁𝑜𝑝𝑡. However, as a consequence of Corollary 4.1, and by the definition of 𝑁𝑜𝑝𝑡, we conclude that for some 𝑟 > 0

‖𝜑 − 𝜑𝑊𝐾𝐵
𝑁𝑜𝑝𝑡

‖𝐿∞(𝐼) = (exp(−𝑟∕𝜀)) , 𝜀→ 0 . (77)

Finally, we note that, apart from 𝑁ℎ𝑒𝑢 and 𝑁̂ℎ𝑒𝑢, another option for predicting the optimal truncation order 𝑁𝑜𝑝𝑡 is to find the
inimizer of error estimate (52) (for 𝜀 fixed), say 𝑁̂𝑜𝑝𝑡 = 𝑁̂𝑜𝑝𝑡(𝜀), although this rather complicated expression can only be minimized
umerically by brute force.

At this point, it seems convenient to summarize the notations and meanings of the different mentioned truncation orders which
im to estimate 𝑁𝑜𝑝𝑡 – see Table 1. In the next section we will compare results for each truncation order from Table 1, since it is not
lear a priori which of these orders provides the most accurate prediction of 𝑁𝑜𝑝𝑡. Nonetheless, let us note that in our experiments
𝑜𝑝𝑡, 𝑁̂𝑜𝑝𝑡, and 𝑁ℎ𝑒𝑢 can only be determined by brute force, while 𝑁̂ℎ𝑒𝑢 is given explicitly by formula (69).

. Numerical simulations

In this section we present several numerical simulations to illustrate some of the theoretical results we derived in Section 3. To
his end, we will compute the (perturbed) WKB approximation as described in Section 4.1. That is, the functions 𝑆′

𝑛 are pre-computed
ymbolically and are then integrated numerically using the Clenshaw–Curtis algorithm based on a Chebyshev grid with 𝑀 + 1 grid
oints, where 𝑀 will be specified later. All computations are carried out using Matlab version 9.13.0.2049777 (R2022b). Further,
ince we are dealing with very small errors for the WKB approximation, especially when investigating the optimal truncation order,
e use the Advanpix Multiprecision Computing Toolbox for Matlab [26] with quadruple-precision to avoid roundoff errors.

.1. Example 1: Airy equation

Consider the initial value problem

⎧

⎪

⎨

⎪

⎩

𝜀2𝜑′′(𝑥) + 𝑥𝜑(𝑥) = 0 , 𝑥 ∈ [1, 2] ,
𝜑(1) = Ai(− 1

𝜀2∕3
) + i Bi(− 1

𝜀2∕3
) ,

𝜀𝜑′(1) = −𝜀1∕3
(

Ai′(− 1
𝜀2∕3

) + i Bi′(− 1
𝜀2∕3

)
)

,
(78)

where the exact solution is given by

𝜑𝑒𝑥𝑎𝑐𝑡(𝑥) = Ai(− 𝑥
𝜀2∕3

) + i Bi(− 𝑥
𝜀2∕3

) . (79)

ere, Ai and Bi denote the Airy functions of first and second kind, respectively (e.g., see [27, Chap. 9]). Note that for this example,
here 𝑎(𝑥) = 𝑥, the derivatives 𝑆′

𝑛 are given by powers of 𝑥 (up to a constant factor). Hence, the functions 𝑆±
𝑛 can be computed

xactly from (14); however, we shall use them here only as reference solutions for the approximations 𝑆±
𝑛 . Indeed, for a fixed number

𝑀 + 1 of Chebyshev grid points, we are then able to compute explicitly the approximation error ‖𝑆±
𝑛 − 𝑆±

𝑛 ‖𝐿∞(𝐼) =∶ 𝑒𝑛. Since 𝑆±
𝑛 is

only available at the grid points, we actually compute the discrete analog of this norm.
The left panel of Fig. 3 shows the real part of 𝜑𝑒𝑥𝑎𝑐𝑡 for the choice 𝜀 = 2−8, which illustrates well the highly oscillatory behavior

of the solution. Let us first investigate numerically the result from Corollary 3.3. For this, let us compute a constant 𝐾2, as indicated

Table 1
Terminology for the different truncation orders mentioned in Section 4.
The numbers 𝑁̂𝑜𝑝𝑡 and 𝑁̂ℎ𝑒𝑢 are predictions for 𝑁𝑜𝑝𝑡 and 𝑁ℎ𝑒𝑢 by means
of (52) and (67), respectively. (For numerical values in two concrete
examples see Figs. 6 and 9.)
𝑁𝑜𝑝𝑡 minimizer of ‖𝜑 − 𝜑𝑊𝐾𝐵

𝑁 ‖𝐿∞ (𝐼) (optimal truncation order)
𝑁̂𝑜𝑝𝑡 minimizer of error estimate (52) (prediction of 𝑁𝑜𝑝𝑡)
𝑁ℎ𝑒𝑢 minimizer of 𝜀𝑁‖𝑆𝑁+1‖𝐿∞ (𝐼) (heuristic prediction of 𝑁𝑜𝑝𝑡)
𝑁̂ℎ𝑒𝑢 minimizer of the r.h.s. of (67) (prediction of 𝑁ℎ𝑒𝑢)
13 
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Fig. 3. Left: Real part of the exact solution (79) of IVP (78) for the choice 𝜀 = 2−8. Right: 𝐿∞(𝐼)-norm of 𝑆′
𝑛 and 𝑆𝑛 as functions of 𝑛 for the example 𝑎(𝑥) = 𝑥

n the interval 𝐼 = [1, 2].

y the proof of Corollary 3.3 and Remark 3.4. Indeed, by using the minimization strategy from (41), we find that (note that here
′
0(𝑧) = ± i

√

𝑧; 𝛿𝑜𝑝𝑡 =
√

97−7
6 ≈ 0.4748)

𝐾2 =
e

2 e−1
min
0<𝛿≤1

√

2 + 𝛿
𝛿(1 − 𝛿)

= e
2 e−1

√

2 + 𝛿𝑜𝑝𝑡
𝛿𝑜𝑝𝑡(1 − 𝛿𝑜𝑝𝑡)

≈ 3.8653 (80)

is a suitable constant within the context of Corollary 3.3. In the right panel of Fig. 3, we present the 𝐿∞(𝐼)-norms of the functions
𝑆′
𝑛 and the approximations 𝑆𝑛 when using 𝑀 = 25, along with the theoretical bound (39) on ‖𝑆′

𝑛‖𝐿∞(𝐼). We observe that the true
norms consistently remain below the theoretical bound. Additionally, we include as a dashed line the theoretical bound (39) when
replacing 𝐾2 and ‖𝑆′

0‖𝐿∞(𝐺) by the experimentally fitted values 𝐾𝑓𝑖𝑡𝑡𝑒𝑑
2 = 10∕37 ≈ 0.27 and 0.25, respectively.4 We observe very

good agreement between the norms ‖𝑆′
𝑛‖𝐿∞(𝐼) and the dashed line. This demonstrates well that, in the present example, the norms

‖𝑆′
𝑛‖𝐿∞(𝐼) grow as Corollary 3.3 suggests, i.e., ‖𝑆′

𝑛‖𝐿∞(𝐼) ∼ 𝐶𝐾𝑛
2𝑛

𝑛 as 𝑛 → ∞, for some appropriate constants 𝐶,𝐾2 > 0. In general,
owever, this may not be the case. We refer to Appendix A and Section 5.3 for an example, where the functions 𝑆′

𝑛 and 𝑆𝑛 even
ecay as 𝑛→ ∞.

Next, we investigate numerically the behavior of the WKB approximation error ‖𝜑 − 𝜑̃𝑊𝐾𝐵
𝑁 ‖𝐿∞(𝐼) as a function of 𝜀. We may

ompare the results with the error ‘‘estimate’’ (62). As a first test, we set 𝑀 = 8 to compute 𝜑̃𝑊𝐾𝐵
𝑁 . This results in an approximation

rror for 𝑆𝑛 of 𝑒𝑛 ≈ 10−8, 𝑛 = 0,… , 4. On the left of Fig. 4 we plot for 𝑁 = 0,… , 4 the error as a function of 𝜀: For 𝑁 = 2, 3, 4 and
mall values of 𝜀, the (𝜀−1)𝑒0-term is dominant. In contrast, for 𝑁 = 0 and 𝑁 = 1 this error term is not visible for the given range
f 𝜀-values so that the (𝜀𝑁 )-term is dominant. As a second test, we set again 𝑀 = 8, but now use in 𝜑̃𝑊𝐾𝐵

𝑁 the exactly computed
unction 𝑆0. The (𝜀−1)𝑒0-term from (62) is thus eliminated. On the right of Fig. 4 we show again the error ‖𝜑 − 𝜑̃𝑊𝐾𝐵

𝑁 ‖𝐿∞(𝐼) as a
unction of 𝜀: For 𝑁 = 2, 3, 4 and small 𝜀-values, the (𝜀0)𝑒1-term, which is the next term in the sum in (62), now dominates. Indeed,
he error curves show an almost constant value of approximately 2 ⋅ 10−9 for small values of 𝜀. For larger 𝜀, the error curves behave
ike (𝜀𝑁 ). As a third test, we set 𝑀 = 25 and approximate again all functions 𝑆𝑛, 𝑛 = 0,… , 4 (as in the first test). The corresponding
pproximation errors of 𝑆𝑛 are 𝑒𝑛 ≈ 10−23, 𝑛 = 0,… , 4. On the left of Fig. 5 we present the resulting WKB approximation errors. We
bserve that, on this scale, all (𝜀𝑛−1)𝑒𝑛-terms in the sum of (62) are essentially eliminated, since all the shown error curves behave
ike (𝜀𝑁 ). Overall, we observe very good agreement between the numerical results of each of the three tests and the statements
rom Theorem 3.9 and Remark 3.10.

Next we investigate the error of the (perturbed) WKB approximation as a function of the truncation order 𝑁 . For this, we set
gain 𝑀 = 25, yielding approximation errors of 𝑆𝑛 as 𝑒𝑛 ≈ 10−23 for 𝑛 = 0, 1,… . We may therefore neglect the errors caused by

approximating the functions 𝑆𝑛. On the right of Fig. 5 we plot the actual error ‖𝜑 − 𝜑̃𝑊𝐾𝐵
𝑁 ‖𝐿∞(𝐼) and its error estimate (52) while

gain using 𝐾𝑓𝑖𝑡𝑡𝑒𝑑
2 = 10∕37, both as functions of 𝑁 , for several 𝜀-values. We observe that, even when using the fitted constant

𝑓𝑖𝑡𝑡𝑒𝑑
2 , the ‘‘optimal’’ truncation order 𝑁̂𝑜𝑝𝑡, as predicted by the estimate (52), is smaller than 𝑁𝑜𝑝𝑡 (determined as the argmin of the
ctual error curve). For instance, we have 𝑁̂𝑜𝑝𝑡(2−4) ≈ 14 < 22 ≈ 𝑁𝑜𝑝𝑡(2−4) and 𝑁̂𝑜𝑝𝑡(2−5) ≈ 29 < 44 ≈ 𝑁𝑜𝑝𝑡(2−5), respectively. This is
ot a paradox, but it is implied in this example by the strong over-estimation (52) of the error for large 𝑁 .

In Fig. 6 we plot on the left the optimal truncation order 𝑁𝑜𝑝𝑡(𝜀) as a function of 𝜀 as well as its predictions 𝑁̂𝑜𝑝𝑡(𝜀), 𝑁ℎ𝑒𝑢(𝜀), and
̂ℎ𝑒𝑢(𝜀). The plot suggests that 𝑁𝑜𝑝𝑡, 𝑁̂𝑜𝑝𝑡, and 𝑁ℎ𝑒𝑢 are all proportional to 𝜀−1, as 𝜀 → 0 (for 𝑁̂ℎ𝑒𝑢 this is already evident from (69)).
urther, for 𝜀 = 2−1, 2−3, 2−4, 2−5 we observe that 𝑁𝑜𝑝𝑡 = 𝑁ℎ𝑒𝑢. On the right of Fig. 6 we plot the corresponding optimal error which
s achieved by using 𝑁𝑜𝑝𝑡 as well as error estimate (52) when using 𝑁 = 𝑁̂𝑜𝑝𝑡, both as a function of 1∕𝜀. As indicated by the dashed
ine, the optimal error decays like (exp(−𝑟∕𝜀)), with 𝑟 ≈ 1.36 being a fitted value, in good agreement with Remark 4.2.

4 Dividing (39) by 𝑛𝑛 and taking the logarithm we used a linear approximation to obtain 𝐾𝑓𝑖𝑡𝑡𝑒𝑑 .
2
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Fig. 4. 𝐿∞(𝐼)-norm of the error of the WKB approximation as a function of 𝜀, for the IVP (78) and several choices of 𝑁 . Left: 𝑀 = 8. Right: 𝑀 = 8; using the
exact function 𝑆0.

Fig. 5. Left: 𝐿∞(𝐼)-norm of the error of the WKB approximation as a function of 𝜀 for the IVP (78) and several choices of 𝑁 . Here, we set 𝑀 = 25. Right:
∞(𝐼)-norm of the error of the WKB approximation as a function of 𝑁 for the IVP (78) and several choices of 𝜀. The dash-dotted lines correspond to the
rror estimate according to Theorem 3.7 and the solid lines correspond to the actual error of the WKB approximation. (In both plots the curves have the same
op-down ordering as the legend.).

Fig. 6. Left: The optimal truncation order 𝑁𝑜𝑝𝑡 as well as the predicted ‘‘optimal’’ orders 𝑁̂𝑜𝑝𝑡, 𝑁ℎ𝑒𝑢, and 𝑁̂ℎ𝑒𝑢 as functions of 𝜀. The dashed line is proportional
to 1∕𝜀. Right: The optimal error achieved by using 𝑁𝑜𝑝𝑡 as well as error estimate (52) when using 𝑁 = 𝑁̂𝑜𝑝𝑡, both as functions of 1∕𝜀. The dashed line is
proportional to exp(− 𝑟

𝜀
) with 𝑟 ≈ 1.36.
15 
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Fig. 7. Left: Exact solution (82) of IVP (81) for the choice 𝜀 = 10−2. Right: 𝐿∞(𝐼)-norm of 𝑆′
𝑛 and 𝑆𝑛 as functions of 𝑛 for the example 𝑎(𝑥) = exp(5𝑥) on the

interval 𝐼 = [0, 1].

5.2. Example 2

As our second example let us consider the initial value problem

⎧

⎪

⎨

⎪

⎩

𝜀2𝜑′′(𝑥) + e5𝑥 𝜑(𝑥) = 0 , 𝑥 ∈ [0, 1] ,
𝜑(0) = 1 ,
𝜀𝜑′(0) = 0 ,

(81)

where the exact solution is given by5

𝜑𝑒𝑥𝑎𝑐𝑡(𝑥) =
𝐽0

(

2
5𝜀 e

5𝑥∕2
)

𝑌1
(

2
5𝜀

)

− 𝑌0
(

2
5𝜀 e

5𝑥∕2
)

𝐽1
(

2
5𝜀

)

𝐽0
(

2
5𝜀

)

𝑌1
(

2
5𝜀

)

− 𝐽1
(

2
5𝜀

)

𝑌0
(

2
5𝜀

) . (82)

Here, 𝐽𝜈 and 𝑌𝜈 denote the Bessel functions of first and second kind of order 𝜈, respectively (e.g., see [27, Chap. 10]).
On the left of Fig. 7 the exact solution 𝜑𝑒𝑥𝑎𝑐𝑡 is plotted for the choice 𝜀 = 10−2. Throughout the whole interval, due to the fast

growth of the function 𝑎(𝑥) = exp(5𝑥), the solution exhibits a rapid increase of its oscillatory behavior. Further, we plot on the right
of Fig. 7 the 𝐿∞(𝐼)-norms of the derivatives 𝑆′

𝑛 and the approximations 𝑆𝑛 when using 𝑀 = 30. As indicated by the dashed line,
the smallest (fitted) constant 𝐾2 such that estimate (39) holds is 𝐾𝑓𝑖𝑡𝑡𝑒𝑑

2 ≈ 9∕20 (here we also replaced ‖𝑆′
0‖𝐿∞(𝐺) in (39) by the

itted value 0.6). In Fig. 8 we present the WKB approximation error ‖𝜑 − 𝜑̃𝑊𝐾𝐵
𝑁 ‖𝐿∞(𝐼) as a function of 𝜀 and may again compare

he results with the error ‘‘estimate’’ (62). We observe that, on this scale, all (𝜀𝑛−1)𝑒𝑛-terms are essentially eliminated, since all
he shown error curves behave like (𝜀𝑁 ). Overall, we observe very good agreement with the statements from Theorem 3.9 and
emark 3.10. Finally, we plot in Fig. 9 on the left the optimal truncation order 𝑁𝑜𝑝𝑡 as well as its predictions 𝑁̂𝑜𝑝𝑡, 𝑁ℎ𝑒𝑢, and 𝑁̂ℎ𝑒𝑢,
s functions of 𝜀. We find that 𝑁𝑜𝑝𝑡 is proportional to 𝜀−1, as 𝜀 → 0. On the right of Fig. 9 we present the corresponding optimal
rror as well as error estimate (52) when using 𝑁 = 𝑁̂𝑜𝑝𝑡, both as a function of 1∕𝜀. As the dashed line indicates, the error decays
ike (exp(−𝑟∕𝜀)), with 𝑟 ≈ 0.81 being a fitted value. This is in good agreement with Remark 4.2.

.3. Example 3: Convergent WKB approximation

As a final example, let us consider 𝑎(𝑥) = (1 + 𝑥 + 𝑥2)−2. We are interested in investigating the initial value problem

⎧

⎪

⎨

⎪

⎩

𝜀2𝜑′′(𝑥) + (1 + 𝑥 + 𝑥2)−2𝜑(𝑥) = 0 , 𝑥 ∈ [0, 1] ,
𝜑(0) = 1 ,
𝜀𝜑′(0) = 1 ,

(83)

here the exact solution 𝜑𝑒𝑥𝑎𝑐𝑡 is given by6

𝜑𝑒𝑥𝑎𝑐𝑡(𝑥) =
𝑎(𝑥)−1∕4
√

3𝛾(𝜀)
sin

(

𝛾(𝜀)

(

arctan

(

2𝑥 + 1
√

3

)

− 𝜋
6

))

− 𝑎(𝑥)−1∕4 cos

(

𝛾(𝜀)

(

arctan

(

2𝑥 + 1
√

3

)

− 𝜋
6

))

, (84)

5 We found the exact solution by using the Symbolic Math Toolbox of Matlab.
6 We found the exact solution by using the Symbolic Math Toolbox of Matlab.
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Fig. 8. 𝐿∞(𝐼)-norm of the error of the WKB approximation as a function of 𝜀 for the IVP (81) and several choices of 𝑁 . Here, we set 𝑀 = 30.

Fig. 9. Left: The optimal truncation order 𝑁𝑜𝑝𝑡 as well as the predicted ‘‘optimal’’ orders 𝑁̂𝑜𝑝𝑡, 𝑁ℎ𝑒𝑢, and 𝑁̂ℎ𝑒𝑢 as functions of 𝜀. The dashed line is proportional
to 1∕𝜀. Right: The optimal error achieved by using 𝑁𝑜𝑝𝑡 as well as error estimate (52) when using 𝑁 = 𝑁̂𝑜𝑝𝑡, both as functions of 1∕𝜀. The dashed line is
proportional to exp(− 𝑟

𝜀
) with 𝑟 ≈ 0.81.

here 𝛾(𝜀) ∶=
√

3𝜀2 + 4∕(
√

3𝜀).
This example is special in the sense that 𝑎(𝑥) = (1+𝑥+𝑥2)−2 belongs to the class of functions represented as (𝐶1 +𝐶2𝑥+𝐶3𝑥2)−2,

ith constants 𝐶𝑖, 𝑖 = 1, 2, 3, satisfying |𝐶2|+ |𝐶3| > 0 and 𝐶2
2 ≠ 4𝐶1𝐶3. Further details regarding this class of functions are discussed

n Appendix A, particularly with regard to the corresponding WKB series. Notably, for such functions it holds that 𝑆′
1 ≢ 0, 𝑆′

2 ≢ 0
nd 𝑆′

3 ≡ 0, see Remark A.2. Moreover, according to Proposition A.1 and Remark A.3, it follows that

𝑆′
2𝑛 = 

(

(𝑛 − 1)−3∕2|𝐶1𝐶3 − 𝐶2
2∕4|

𝑛−1) , 𝑛→ ∞ , (85)

𝑆′
2𝑛+1 ≡ 0 , 𝑛 ≥ 1 . (86)

onsequently, this implies that the underlying asymptotic series (6) is (geometrically) convergent for any 𝜀 ≤ |𝐶1𝐶3 − 𝐶2
2∕4|

−1∕2,
ee again Remark A.3. In this case, given that |𝐶1𝐶3 − 𝐶2

2∕4| = 3∕4, the functions 𝑆′
2𝑛 (and hence 𝑆2𝑛) exhibit exponential decay as

→ ∞, uniformly in 𝑥 ∈ 𝐼 . The corresponding WKB series is convergent for any 𝜀 ∈ (0, 2∕
√

3].
In Fig. 10 on the left we plot 𝜑𝑒𝑥𝑎𝑐𝑡 for the choice 𝜀 = 2−9. Moreover, on the right of Fig. 10 we plot the 𝐿∞(𝐼)-norm of 𝑆′

𝑛
nd 𝑆𝑛, both as a function of 𝑛. Here, we set 𝑀 = 30 for the numerical integration of the functions 𝑆′

𝑛. We observe that the norms
ndeed decay exponentially, in agreement with Remark A.3. Here, the dashed line is precisely given by the r.h.s. of (92) with
1 = 𝐶2 = 𝐶3 = 1. In Fig. 11 on the left we plot for 𝑁 = 0,… , 4 the error of the WKB approximation ‖𝜑− 𝜑̃𝑊𝐾𝐵

𝑁 ‖𝐿∞(𝐼) as a function
f 𝜀. By comparing the results with (62), we observe that all (𝜀𝑛−1)𝑒𝑛-terms are essentially eliminated. Further, the error curves
or 𝑁 = 0, 1, 3 behave like (𝜀𝑁 ) whereas the curves corresponding to the choices 𝑁 = 2, 4 behave like (𝜀𝑁+1). This is because the
iven function 𝑎 implies 𝑆′

2𝑛+1 ≡ 0, for any 𝑛 ≥ 1, which means 𝜑𝑊𝐾𝐵
𝑁 = 𝜑𝑊𝐾𝐵

𝑁+1 for any even 𝑁 ≥ 2.
Finally, on the right of Fig. 11 we plot the error ‖𝜑−𝜑̃𝑊𝐾𝐵

𝑁 ‖𝐿∞(𝐼) as a function of the truncation order 𝑁 , for several 𝜀-values. We
bserve that all shown error curves are decreasing functions in 𝑁 , up to the point where they reach values of approximately 10−22.
his is due to the approximation of the functions 𝑆𝑛. More precisely, the first term of the sum in (62), namely, the (𝜀−1)𝑒0-term
orresponding to the approximation of 𝑆 , becomes dominant at this point. For this reason, the minimum achievable error level
0
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Fig. 10. Left: Exact solution (84) of IVP (83) for the choice 𝜀 = 2−9. Right: 𝐿∞(𝐼)-norm of 𝑆′
𝑛 and 𝑆𝑛 as functions of even 𝑛, for the example 𝑎(𝑥) = (1+𝑥+𝑥2)−2

on the interval 𝐼 = [0, 1]. The dashed line is proportional to the r.h.s. of (92) with 𝐶1 = 𝐶2 = 𝐶3 = 1.

Fig. 11. Left: 𝐿∞(𝐼)-norm of the error of the WKB approximation as a function of 𝜀, for the IVP (83) and several choices of 𝑁 . Here, we set 𝑀 = 30. The yellow
urve for 𝑁 = 2 is the same as for 𝑁 = 3 and hence not visible in the shown plot. Right: 𝐿∞(𝐼)-norm of the error of the WKB approximation as a function of
, for the IVP (83) and several choices of 𝜀. Here, we set 𝑀 = 30.

s growing with decreasing 𝜀. Besides from this saturation effect, the plot aligns well with Remark A.3, suggesting that the WKB
pproximation converges to the exact solution of IVP (83) as 𝑁 → ∞, for all displayed 𝜀-values. Furthermore, one can observe again
he fact that 𝜑𝑊𝐾𝐵

𝑁 = 𝜑𝑊𝐾𝐵
𝑁+1 for even 𝑁 ≥ 2, as indicated by the step-like behavior of all shown error curves.

. Conclusion

In the present paper we analyzed the WKB approximation of the solution to a highly oscillatory initial value problem. Assuming
hat the potential in the equation is analytic, we found explicit upper bounds for the terms occurring in the asymptotic WKB series
f the approximate solution. Building on that, we proved error estimates which are explicit not only w.r.t. the small parameter 𝜀
ut also w.r.t. 𝑁 , the chosen number of terms in the truncated asymptotic series. We showed that the optimal truncation order 𝑁𝑜𝑝𝑡
s proportional to 𝜀−1, and this results in an approximation error that is exponentially small w.r.t. 𝜀. We confirmed our theoretical
esults by several numerical experiments.

ata availability

Data will be made available on request.

cknowledgments

The authors J. Körner, A. Arnold, and J. M. Melenk acknowledge support by the Austrian Science Fund (FWF) project
0.55776/F65, and the authors A. Arnold and C. Klein also by the bi-national FWF-project I3538-N32. C. Klein thanks for support
y the ANR-17-EURE-0002 EIPHI and by the European Union Horizon 2020 research and innovation program under the Marie
klodowska-Curie RISE 2017 grant agreement no. 778010 IPaDEGAN.
18 

https://doi.org/10.55776/F65


A. Arnold et al.

(
H
𝑎
t
t
i
I

P

o

𝐶
T

R
g
t

Journal of Computational and Applied Mathematics 457 (2025) 116240 
Appendix A. Convergent WKB series

In this appendix we provide examples where the asymptotic series (6) is convergent in 𝐿∞(𝐼). In practice, the norms ‖𝑆′
𝑛‖𝐿∞(𝐼)

and ‖𝑆𝑛‖𝐿∞(𝐼)) often decrease up to a certain number of 𝑛 before they start to increase rapidly, e.g., see the right plot of Fig. 3.
owever, there are examples where one can easily verify that this is not the case. For instance, consider the simplest case in which
≡ 𝑎0 is constant. By (9) this is equivalent to 𝑆′

1 ≡ 0, which by (10) then implies 𝑆′
𝑛 ≡ 0 for every 𝑛 ≥ 1. Similarly, one easily verifies

hat 𝑆′
2 ≡ 0 is equivalent to 𝑎 having the form 𝑎(𝑥) = (𝐶1 + 𝐶2𝑥)−4 for some constants 𝐶1 and 𝐶2, see also [17, Problem 10.2]. It

hen holds 𝑆′
𝑛 ≡ 0 for every 𝑛 ≥ 2. Thus, in both of the just mentioned cases, the asymptotic series (6) terminates automatically and

s therefore convergent. The corresponding WKB approximation (13) with 𝑁 ≥ 0 (respectively 𝑁 ≥ 1) is then the exact solution to
VP (1). Indeed, revisiting (43), it is clear that the r.h.s. in (54) then vanishes, i.e. ‖𝜑 − 𝜑𝑊𝐾𝐵

𝑁 ‖𝐿∞(𝐼) = 0.
In the subsequent discussion, we will give examples of convergent WKB series which do not terminate automatically.

roposition A.1. Let 𝑆′
3 ≡ 0. Then it holds

𝑆′
2𝑛 = 𝑆′

2

(

−
𝑆′
2

2𝑆′
0

)𝑛−1

𝑎𝑛 , (87)

𝑆′
2𝑛+1 ≡ 0 , (88)

for 𝑛 ≥ 2. Here, the sequence 𝑎𝑛 is recursively defined by 𝑎1 ∶= 1 and

𝑎𝑛+1 ∶=
𝑛
∑

𝑗=1
𝑎𝑗𝑎𝑛+1−𝑗 , 𝑛 ≥ 1 . (89)

Proof. It is easy to check, that (87) and (88) hold for 𝑛 = 2. We proceed now by induction on 𝑛. To this end, assume that formulas
(87) and (88) hold for all 2 ≤ 𝑘 ≤ 𝑛 for some fixed 𝑛 ≥ 2. We shall now prove them for 𝑛+ 1. The induction hypothesis implies that
𝑆′′
2𝑛+1 ≡ 0 as well as 𝑆′

𝑗 ≡ 0 for all odd indices 𝑗 such that 1 ≤ 𝑗 ≤ 2𝑛 + 1. Hence,

𝑆′
2𝑛+2 = − 1

2𝑆′
0

(2𝑛+1
∑

𝑗=1
𝑆′
𝑗𝑆

′
2𝑛+2−𝑗 + 𝑆

′′
2𝑛+1

)

= − 1
2𝑆′

0

𝑛
∑

𝑗=1
𝑆′
2𝑗𝑆

′
2(𝑛+1−𝑗) = 𝑆′

2

(

−
𝑆′
2

2𝑆′
0

)𝑛 𝑛
∑

𝑗=1
𝑎𝑗𝑎𝑛+1−𝑗 = 𝑆′

2

(

−
𝑆′
2

2𝑆′
0

)𝑛

𝑎𝑛+1 , (90)

where we have again used the induction hypothesis in the third equation. Differentiating (90) and using
𝑆′′
0
𝑆′
0

= −2𝑆′
1 we further

btain

𝑆′′
2𝑛+2 =

(

−
𝑆′
2

2𝑆′
0

)𝑛
(

2𝑛𝑆′
1𝑆

′
2 + (𝑛 + 1)𝑆′′

2

)

𝑎𝑛+1 . (91)

Moreover, the induction hypothesis implies 𝑆′
𝑗𝑆

′
2𝑛+3−𝑗 ≡ 0 for 2 ≤ 𝑗 ≤ 2𝑛+ 1 since either 𝑗 or 2𝑛+ 3 − 𝑗 is odd. Therefore, we get

𝑆′
2𝑛+3 = − 1

2𝑆′
0

(2𝑛+2
∑

𝑗=1
𝑆′
𝑗𝑆

′
2𝑛+3−𝑗 + 𝑆

′′
2𝑛+2

)

= − 1
2𝑆′

0

(

2𝑆′
1𝑆

′
2𝑛+2 + 𝑆

′′
2𝑛+2

)

=

(

−
𝑆′
2

2𝑆′
0

)𝑛(

− 1
2𝑆′

0

)

(

2(𝑛 + 1)𝑆′
1𝑆

′
2 + (𝑛 + 1)𝑆′′

2

)

𝑎𝑛+1 =

(

−
𝑆′
2

2𝑆′
0

)𝑛

(𝑛 + 1)𝑆′
3𝑎𝑛+1 ≡ 0 ,

by assumption on 𝑆′
3. This concludes the proof. □

Remark A.2. Proposition A.1 assumes 𝑆′
3 ≡ 0, which is equivalent to 𝑎(𝑥) satisfying the third order nonlinear ODE 15𝑎′3 +

4𝑎2𝑎′′′ − 18𝑎𝑎′𝑎′′ = 0. With the aid of Matlab’s Symbolic Math Toolbox we find that the general solution to this ODE is given
by 𝑎(𝑥) = (𝐶1 + 𝐶2𝑥 + 𝐶3𝑥2)−2, where 𝐶1, 𝐶2 and 𝐶3 are constants. A simple computation then shows that if |𝐶2| + |𝐶3| > 0 and

2
2 ≠ 4𝐶1𝐶3, the coefficient function 𝑎 does not have one of the two forms mentioned before Proposition A.1, i.e., 𝑆′

1 ≢ 0 and 𝑆′
2 ≢ 0.

hus, due to Proposition A.1, the corresponding WKB series does not terminate in this case.

emark A.3. The numbers 𝑎𝑛 =∶ 𝑐𝑛−1 in Proposition A.1 are the so-called Catalan numbers (e.g., see [28]), which are known to
row asymptotically as 𝑐𝑛 ∼

4𝑛

𝑛3∕2
√

𝜋
, for 𝑛→ ∞. Let us assume that 𝑎(𝑥) = (𝐶1 +𝐶2𝑥+𝐶3𝑥2)−2 such that 𝑆′

3 ≡ 0, see Remark A.2. We
hen have 𝑆′

2(𝑥)∕𝑆
′
0(𝑥) = 𝐶1𝐶3∕2 − 𝐶2

2∕8. According to (87), we thus have for 𝑛 ≥ 2

‖𝑆′
2𝑛‖𝐿∞(𝐼) ≤ ‖𝑆′

2‖𝐿∞(𝐼)

‖

‖

‖

‖

‖

𝑆′
2

2𝑆′
0

‖

‖

‖

‖

‖

𝑛−1

𝐿∞(𝐼)
𝑐𝑛−1 ∼

‖𝑆′
2‖𝐿∞(𝐼)

(𝑛 − 1)3∕2
√

𝜋

‖

‖

‖

‖

‖

2𝑆′
2

𝑆′
0

‖

‖

‖

‖

‖

𝑛−1

𝐿∞(𝐼)
, 𝑛→ ∞

=
‖𝑆′

2‖𝐿∞(𝐼)

(𝑛 − 1)3∕2
√

𝜋

|

|

|

|

|

𝐶1𝐶3 −
𝐶2
2
4

|

|

|

|

|

𝑛−1

. (92)

| |

19 



A. Arnold et al.

t
W

R

Journal of Computational and Applied Mathematics 457 (2025) 116240 
By definition (14), we conclude that

‖𝑆2𝑛‖𝐿∞(𝐼) = 
(

(𝑛 − 1)−3∕2|𝐶1𝐶3 − 𝐶2
2∕4|

𝑛−1) , 𝑛→ ∞ . (93)

Thus, the constants 𝐶𝑖, 𝑖 = 1, 2, 3, determine whether the function ‖𝑆2𝑛‖𝐿∞(𝐼) is exponentially growing or decaying as 𝑛 → ∞. Note
hat Proposition A.1 also implies that 𝑆2𝑛+1 ≡ 0 for 𝑛 ≥ 1. A short calculation then shows that (93) implies that the corresponding

KB series exp(
∑∞
𝑛=0 𝜀

𝑛−1𝑆𝑛(𝑥)) is (geometrically) convergent for any 𝑥 ∈ 𝐼 , if 𝜀 ≤ |𝐶1𝐶3 − 𝐶2
2∕4|

−1∕2.
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