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Abstract: With LiDAR (Light Detection and Ranging) time series being used for various applications,
the optimal realization of a common geodetic datum over many epochs is a highly important
prerequisite with a direct impact on the accuracy and reliability of derived measures. In our work,
we develop and define several approaches to the adjustment of multi-temporal LiDAR data in a
given software framework. These approaches, ranging from pragmatic to more rigorous solutions,
are applied to an 8-year time series with 21 individual epochs. The analysis of the respective results
suggests that a sequence of bi-temporal adjustments of each individual epoch and a designated
reference epoch brings the best results while being more flexible and computationally viable than
the most extensive approach of using all epochs in one single multi-temporal adjustment. With a
combination of sparse control patches measured in the field and one selected reference block, the
negative impacts of changing surfaces on orientation quality are more effectively avoided than in any
other approach. We obtain relative discrepancies in the range of 1–2 cm between epoch-wise DSMs
for the complete time series and mean offsets from independent checkpoints in the range of 3–5 cm.
Based on our findings, we formulate design criteria for setting up and adjusting future time series
with the proposed method.

Keywords: LiDAR; strip adjustment; multi-temporal; ALS; time series

1. Introduction

LiDAR, and specifically Airborne Laser Scanning (ALS), has emerged as the tech-
nique of choice for a diversity of mapping and change detection tasks in various fields of
application. Amongst techniques, its provision of accurate 3D measurements with high
spatial resolution, minimal requirements concerning accessibility of a scene, and penetra-
tion capabilities through vegetation are widely utilized in earth sciences [1], natural hazard
management (e.g., flood applications [2]), natural resource management [3], object change
detection in urban environments [4,5], and animal species diversity assessments [6].

Change detection with LiDAR relies on repeated surveys in suitably spaced time
epochs [1,4,7,8]. Numerous exemplary studies applying such multi-temporal ALS data can
be found in Table 1.

Table 1. Applications of multi-temporal airborne LiDAR data in various scientific fields.

Publication Short Description of LiDAR Application

Forestry and Agriculture

[9] Analysis of above-ground carbon density based on canopy height differences
[10] Site index assessment for mountainous forests
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Table 1. Cont.

Publication Short Description of LiDAR Application

[11] Vegetation growth prediction
[12] Assessment of persistent canopy structure changes resulting from wildfires
[13] Crop characterization and row/alley localization in agricultural fields
[14] Comparison of LiDAR systems for forest inventory applications
[15] Vegetation change monitoring
[16] Estimation and prediction of above-ground forest biomass changes
[17] Impact of selective logging on rain forest canopy and understory structure
[7] Forest growth estimation using periodic annual increment
[18] Sugar cane growth cycle monitoring
[19] Analysis of forest gap dynamics

Geomorphology and glaciology

[20] Delineation of glacial and periglacial features
[21] Classification and change detection of geomorphological features
[22] Detection of geomorphologic/glacial features and processes
[23] Impact of dataset registration quality on geomorphic change estimation
[24] Analysis of active rock glacier morphodynamics
[25] Motion estimation of an active landslide
[26] Volumetric glacier change estimation
[27] Monitoring of natural coastal barriers and their response to natural disasters
[28] Assessing morphology and dynamics of intertidal bars for coastal management
[29] Mapping of surface changes due to active landslides
[30] Long-term observation of proglacial river channel morphology
[31] Estimation of soil carbon loss from peatland wildfires
[32] Quantification of sediment transport on a rock slope
[33] Mapping of wetland inundation areas and their dynamic changes
[34] Analysis of rock cliff erosion

Infrastructure and building inspection

[35] Subsidence monitoring around a ship lock
[36] Localization and monitoring of railway deformations
[37] Building change detection
[38] Urban change detection with focus on buildings
[39] Assessment of building damage resulting from natural disasters

While the sensor properties and surrounding conditions of each data acquisition
epoch are extensively discussed, the data orientation and registration procedure is often
depicted as an independent epoch-wise preprocessing task or not even mentioned. Most of
the studies in Table 1 trust that data providers and standard processing workflows suffi-
ciently account for potential systematic discrepancies between separate epochs. Notably,
the significance of comparisons between different epochs crucially depends on whether the
respective datasets are consistent in terms of sharing a common coordinate frame. Even if
the individual accuracy and precision of the datasets are clearly sufficient for a given task,
change detection may be hindered by systematic discrepancies between the datasets [1,23].

In this paper, we investigate the impact of temporal decorrelation, varying sensor
characteristics and environmental conditions on the orientation of multi-temporal ALS
data based on a state-of-the-art strip adjustment procedure [40]. Our aim is to optimize the
workflow with respect to these additional challenges and answer the following questions:

1. What are the most important issues for the conceptualization, acquisition, and orien-
tation of multi-temporal ALS datasets?

2. Which criteria define an optimal workflow and how can these be achieved in practice?
The presumably most rigorous method for the improvement of multi-temporal ALS
data would be one simultaneous strip adjustment of all epochs combined. However,
certain drawbacks can be associated with this approach. The number of observations
and unknowns increases with each epoch, leading to a high demand for computational
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resources. An integration of new epochs is elaborate and implicates datum changes
for all old epochs. Thus, the central question is the following: Do the adjustment
results justify these drawbacks or can they be matched by a more efficient approach?

3. What accuracy can be realistically achieved with the proposed methods?

The remainder of this article is structured as follows. In Section 2, we discuss the
related contributions from the literature. Section 3 introduces the study area and gives an
overview of all relevant datasets. In Section 4, the methodology is presented, including
the basic strip adjustment approach, the proposed workflows for strip adjustment of multi-
temporal datasets, and the criteria for quality assessment. The results are presented and
discussed in Section 5. The article is concluded in Section 7 by summarizing our findings
and deducing recommendations for the design of future LiDAR time series.

2. Related Work

The questions we are addressing in this paper are approached from different directions
in the literature.

The aspect of ALS data registration with strip adjustment is, for instance, treated
in [41,42]. Recently, many publications have specifically adapted the workflow to UAV-
borne sensors, such as [40,43–46]. Due to its kinematic acquisition characteristics, the geo-
referencing of ALS data crucially depends on trajectory estimation [47] in order to achieve
optimal accuracy. This can either be solved in two separate steps (1. trajectory estimation.
2. strip adjustment with additional trajectory correction) or by directly integrating trajectory
estimation and strip adjustment [48]. An extensive review of integrated georeferencing
approaches is provided in [49], while [50] propose an alternative approach in the case
of missing or unusable trajectory data. In the cited articles, evaluation is usually carried
out by applying the proposed methods to datasets with rather homogeneous character-
istics compared to the multi-temporal case. ALS data and reference data are typically
acquired within a short time period resulting in comparable field conditions. Even then,
some precautions have to be made in order to eliminate the influence of highly dynamic
surfaces such as water bodies and vegetation canopy. However, it is not clear whether slow
decorrelation of wider areas over several years or in the seasonal cycle can be handled.
Another major difference to multi-temporal datasets is the fact that data from one specific
sensor constellation are typically adjusted. Several data characteristics may still be fairly
dissimilar, especially when combining the adjustment of ALS data with the adjustment of
(aerial) images, as in [51–53]. In this case, the respective configuration is explicitly taken
into account by using different suitable functional models for LiDAR and image data.
Comparably, issues may arise if a dataset acquired over many years with various LiDAR
sensors is treated in a uniform manner despite divergent properties such as point density,
beam divergence, measurement accuracy, wavelength, pulse length, scan patterns, etc.

Contrariwise, there is an application-driven view of multi-temporal Lidar data, which
has already been outlined in Section 1. In an abundant number of studies, heterogeneous
datasets are analyzed in detail, and all sorts of conclusions are drawn. However, the
question of orientation and geometric accuracy over different epochs is rarely discussed in
depth. Publications such as [1,7] point out concerns about heterogeneous multi-temporal
data in their respective fields of application. Ref. [11] take into account the aspect of
similar survey configurations during the selection of suitable epochs. Furthermore, they
provide an explicit workflow to ensure vertical co-registration of epochs and an uncertainty
estimation for the resulting application, in this case, a tree growth assessment. Thorough
uncertainty analysis, [26] conduct glacier extent analysis with DTMs interpolated from
multi-temporal ALS data. The DTMs are registered using known stable areas in the vicinity
of the glacier. A similar approach is developed by [54]. After epoch-wise strip adjustment
of multi-temporal ALS data, a rigid body transformation is estimated for each epoch in
order to share the datum of one reference block. The significance of the remaining DTM
differences is assessed with means of error propagation in order to separate actual changes
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from measurement noise. More recently, [23] discuss the reliability of change detection
using multi-temporal LiDAR and point out the importance of the registration procedure.

In summary, none of the reviewed approaches perform an integrated strip adjustment
for an extensive multi-temporal ALS dataset. If discovered, potential datum discrepancies
are usually compensated in a separate step with significantly less rigorous approaches.

3. Study Area And Data

Due to its characteristics and the availability of an extensive multi-temporal ALS
dataset, we chose our study area around the town of Loosdorf in the Lower Austrian
Alpine foothills (Figure 1). To the north–west, it extends through a wide and flat section of
the Pielach valley surrounded by hilly terrain on both sides. It also contains “Neubacher
Au”, a river section investigated in numerous studies, mainly with a focus on optical
bathymetry (e.g., [55,56]). Residential areas are limited to the village and surroundings of
Loosdorf as well as some small settlements along the margins of the Pielach valley. The rest
of the study area is dominated by agricultural land along with forests and grassland.

Figure 1. Map of the study area and its location in Austria. The outer boundary of all LiDAR datasets
combined is marked in orange, the blue line delimits the core area, which is covered by the majority
of airborne data acquisitions. The border of the reference block, which plays a crucial role in two
approaches (Sections 4.2.2 and 4.2.3), is marked in red.

3.1. ALS Data

Since 2013, the area around Loosdorf has seen more than 20 independent data ac-
quisition flights with airborne LiDAR. While showing somewhat similar block layouts
throughout this time series, the epoch-wise datasets differ in terms of scanner properties
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and phenology, Table 2. Also, the detailed flight planning varies from epoch to epoch, as
indicated by the respective number of strips and the average flying height above ground.

Table 2. Overview of the available epochs with respective LiDAR specifications. For each epoch, one
basic trajectory correction model was used throughout all approaches described in Section 4.2.

Flight Date Scanner (Riegl) Wavelength
in [nm] # Lines Ø Height

AGL [m]
Ø Points/m2

(Full Block)
Trajectory
Correction

2013-04-15 VQ-820-G 532 7 610 12.5 Bias
2013-05-24 VQ-580 & VQ-820-

G 1064 & 532 20 570 11.7 Spline: 20 s
2013-10-26 VQ-820-G 532 11 650 16.5 Spline: 30 s
2014-02-06 VQ-820-G 532 9 810 3.6 Bias
2014-02-13 VQ-820-G 532 16 530 18.9 Spline: 30 s
2014-02-21 VQ-820-G 532 16 640 16.8 Spline: 30 s
2014-06-10 VQ-820-G 532 9 630 14.0 Bias
2014-10-14 LMS-Q680i 1550 7 520 13.1 Bias
2014-10-16 VQ-880-G 532 8 700 27.8 Spline: 10 s
2015-02-26 LMS-Q1560 1064 6 680 21.9 Bias
2015-03-20 VQ-880-G 532 11 710 34.1 Spline: 10 s
2015-04-14 VQ-880-G 532 7 750 27.4 Spline: 10 s
2016-06-16 VQ-880-G 532 & 1064 12 630 47.7 Spline: 10 s
2016-11-04 VQ-820-G 532 9 710 11.8 Bias
2017-02-14 VQ-820-G 532 7 750 12.4 Bias
2017-11-15 VQ-880-G 532 & 1064 8 640 38.6 Spline: 10 s
2018-08-24 VQ-880-G 532 & 1064 14 590 54.3 Spline: 10 s
2019-03-08 VQ-880-G 532 & 1064 12 730 48.2 Spline: 12 s
2019-09-03 VQ-880-G 532 & 1064 2 780 29.1 Bias
2020-03-09 VQ-880-G 532 & 1064 8 810 40.8 Spline: 20 s
2021-03-09 VQ-880-G 532 & 1064 8 800 38.6 Spline: 08 s

3.2. Field Measurements

In order to obtain proper reference information for the adjustment, a field measurement
campaign was conducted on 18 and 21.06.2021. A total of 60 surface patches in 12 groups
were measured with a Spectra Precision SP80 GNSS receiver and a Leica TS 16 Total Station.
The distribution of groups was planned to cover the core area as evenly as possible given
the limited availability of buildings near the borders. Each group consists of several stable
and planar surfaces, mainly building roofs, with varying slopes and expositions (Figure 2).

Measurements were conducted by first determining the coordinates of at least three
auxiliary points for each group using the GNSS receiver. The total station was then mounted
in a suitable place and oriented based on these auxiliary points before measuring the actual
reference patches.

Depending on its shape, one planar patch was captured with at least four (triangular)
or six (rectangular) total station measurements. The relevant area was limited by 3–4 corner
points, while the additional measurements inside served as checks on whether the assump-
tion of planarity held. Finally, the resulting planes were densely sampled at a point spacing
of 20 cm, leading to 60 individual control point clouds (CPCs) for the strip adjustment.

The results of an independent field measurement campaign from 2 February 2023 were
available for validation purposes. Thereby, around 60 single points on horizontal surfaces,
such as manhole covers, were measured with a GNSS receiver throughout the whole
block [49,56]. These were reduced to a sample of about 40 checkpoints based on reliability
(on stable surfaces) and unambiguousness (not occluded by vegetation and other objects).

3.3. Ancillary Data

Several land cover types were manually digitized as supplementary information
for the adjustment and for the interpretation of the results. Based on a comparison of
Digital Surface Models (DSMs) from several LiDAR epochs, all presumably stable road
and building surfaces were identified. Additionally, all forests and some selected areas of
interest, such as individual agricultural fields, playgrounds, etc., were delineated (Figure 2).
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Figure 2. Overview of field measurements and ancillary data with a shading of the digital ter-
rain model.

4. Methodology
4.1. Adjustment Concept Following the Gauss–Markov Model

The framework for multi-temporal strip adjustment was implemented using the
Python bindings of the point cloud processing software OPALS [57,58]. The OPALS module
stripAdjust, dedicated to LiDAR strip adjustment, is based on the approach introduced
in [40,42]. A flowchart of the basic procedure is provided in Figure 3.

Starting from point clouds in the Sensor’s Own Coordinate System (SOCS) and the
trajectory after Kalman filtering, the parameters of the direct georeferencing equation are
iteratively improved.

The approach is based on the Iterative Closest Point (ICP, [59]) method in establishing
observations using point correspondences, i.e., nearest neighbors in object space between
overlapping point clouds. As the point density is typically not high enough to directly
compare individual points of overlapping flight strips, the points of one strip are compared
against the tangent plane of the corresponding point in the overlapping strip. In an
analogous way, correspondences between control point clouds and flight strips are obtained.
These point-to-plane distances are minimized in a least squares adjustment. Notably,
a rejection step aims at higher robustness by eliminating correspondences, e.g., due to
differing or unreliable (roughness) local normal vectors.

Given the amount of data collected with LiDAR, it is computationally inefficient, if
not impossible, to run through this procedure for every single point. Thus, the locations
for potential correspondences are initially reduced, e.g., via uniform sub-sampling in
object space.

For parameter estimation, strips are grouped into sessions following the principle
that one session (i) holds strips from one non-stop flight and (ii) is acquired with the same
scanner and wavelength. Most of the key parameters can thereby be assigned to specific
parts of the LiDAR multi-sensor system:

• Scanner parameters: Session-wise constant and linear corrections can be estimated
for the range and direction measurements of the laser scanner. While this is rarely
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necessary for survey-grade scanners, it may offer the potential to compensate for other
error sources (e.g., atmospheric effects).

• Mounting parameters: The estimation of the lever arm and boresight misalignment is
usually unproblematic as they can be assumed constant during one session.

• Trajectory parameters: Correcting the trajectory is often the most crucial part of the
adjustment process. Trajectory quality depends on multiple factors and is thus subject
to short-term variations. It is, therefore, possible to choose between more conservative
(bias, linear) strip-wise correction models or time-dependent corrections within a
flight line using splines of arbitrary length. The selection of the correction model has
to be a well-balanced trade-off between the required relative accuracy, on the one
hand, and the risk of overfitting, on the other hand.

• Datum corrections: With proper reference data available, a global datum shift (X,
Y, Z) can be estimated for each session. Such an offset may originate from the ref-
erence station placement. The the explicit datum correction avoids these discrep-
ancies influencing the estimation of other parameters or leading to deformations of
entire blocks.

To achieve a better balance between partly correlated parameters, it is furthermore
possible to introduce pseudo-observations by setting correction parameters to zero with a
certain standard deviation. This attenuates the magnitude of corrections, e.g., in the case of
flexible spline trajectory correction models.

Figure 3. Overview of the strip adjustment procedure. (*) Overlaps and correspondences are
established between all relevant point cloud pairs. The choice of these pairs is the main distinctive
feature between our approaches for multi-temporal adjustment (Figure 4).
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Figure 4. Depiction of the relevant point cloud pairs for each approach in the strip adjustment
procedure (Figure 3). All approaches have in common that correspondences are established between
overlapping strips of a single epoch as well as between strips and CPCs. The solid lines between
epochs in REF and FULL indicate that overlapping strip pairs across the respective epochs are
also taken into account. In the CPC+ approach, the CPCs are enhanced by stable parts of the
reference epoch only (dotted lines). For CPC, CPC+, and REF, this figure represents N adjustments,
where N is the total number of epochs. Thus, each adjustment gets one specific color; the double
line in REF is used in every adjustment. The FULL approach performs one single adjustment,
i.e., black connections.

4.2. Multi-Temporal Strip Adjustment

Before addressing the various multi-temporal approaches, the individual epochs were
pre-processed. All relevant information (e.g., SOCS orientation, time lag between scanner
and trajectory) was acquired and empirically verified. Epoch-wise strip adjustments and
quality controls were carried out in order to determine suitable settings for the automatic
detection of corresponding points (observations) as well as a meaningful choice of cor-
rection parameters, Section 4.1. Furthermore, this procedure enables the introduction
of improved parameter approximations and thus saves computational resources in the
multi-temporal adjustment.

When it comes to adjusting the whole multi-temporal dataset to a common datum,
several strategies were developed and tested. The most relevant ones are briefly described
in this Section and illustrated in Figure 4.

4.2.1. Epoch-Wise Adjustment with Control Point Clouds (CPCs)

The easiest approach in terms of computational effort is the separate epoch-wise ad-
justment. The datum is defined by stable control patches, in this case, the densified control
point clouds (CPCs) described in Section 3.2. As a consequence, no direct correspondences
between different epochs are established; the only link to ensure a consistent datum is the



Remote Sens. 2024, 16, 2838 9 of 23

CPC. Due to their rather sparse coverage compared to the full block area, a conservative
trajectory correction model is preferred.

For cases where a more flexible trajectory correction model is necessary to cope with
dynamic trajectory-related discrepancies, a slightly more elaborate two-step approach
was developed: Firstly, a block-wise strip adjustment with bias trajectory corrections is
conducted in order to set a stable datum for the whole block. Secondly, a height model is
interpolated from the adjusted point clouds and masked to areas with low discrepancies
between all overlapping strips and low roughness. This height model is created for each
block individually to enhance the sparse original control point clouds. The increased cover-
age with reference data enables strip adjustment using time-dependent spline trajectory
corrections in order to minimize the relative differences in the remaining areas.

4.2.2. Block-Wise Adjustment with CPC and Stable Areas (CPC+)

Instead of enhancing the CPCs with data from the adjusted block itself (Section 4.2.1),
a common extended reference dataset for all blocks can be derived using the stable ar-
eas introduced in Section 3.3. The height model of one reference block (14 October 2014,
Section 4.2.3) adjusted with CPCs and bias trajectory corrections is trimmed to the stable ar-
eas and added to the measured CPCs. The resulting control information is potentially exten-
sive enough to enable direct block-wise adjustment, including spline trajectory corrections.

4.2.3. Bi-Temporal Adjustment with a Reference Block (REF)

While the extended reference data (CPC+) already ensures a decent coverage of the
block, this approach also has immanent disadvantages. On the one hand, data from
an ALS block are treated the same way as control point clouds measured with superior
accuracy. On the other hand, the coverage strongly depends on the presence of sealed
surfaces. Locally, this leads to a weak datum definition and overfitting when using flexible
correction models.

Both points can be addressed by individually combining each epoch flight with a whole
reference block to form a bi-temporal strip adjustment. Important criteria for choosing a
suitable reference block are the following:

• Coverage: The block has to cover all relevant areas in order to avoid extrapolation.
• Stability: Time-dependent quality variations should be low enough to allow for a

conservative trajectory correction model.
• Accuracy: Relative and absolute accuracy need to be comparable or better than the

overall expected values.
• Comparability: As the very same epoch serves as a reference block in all bi-temporal

strip adjustments, it is important to depict a representative state of the covered area.
Epochs containing particularly extensive decorrelated areas due to (i) large construc-
tion sites, (ii) the influence of natural disasters (e.g., floods, landslides), and (iii)
divergent phenology should be avoided.

For the datasets at hand, the 2014-10-14 block turned out to be the best option as a
reference according to these points. Its extent is delineated in Figure 1. More details about
block design and point density can be found in Table 2.

First of all, the reference block is adjusted with a conservative correction model only
using the measured CPC. If the quality of this block has been verified beforehand, and
good parameter approximations (e.g., mounting) are available, this step can be omitted.
One by one, each other block (with a trajectory correction model according to Table 2) then
participates in a pairwise adjustment with the reference block. The conservative trajectory
correction of the reference block (bias) is thereby expected to stabilize the datum in areas
where this otherwise would not be the case due to flexible trajectory correction and sparse
CPC coverage.
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4.2.4. Combined Multi-Temporal Adjustment off All Blocks (FULL)

As the reference block is not fully fixed in the REF approach (Section 4.2.3), it will end
up with a slightly different orientation in each pairwise adjustment, potentially leading to
small systematic datum discrepancies between the remaining blocks.

This can be solved by adjusting the data from all epochs simultaneously. Each block
is set up according to the parameter configuration and the approximations from pre-
processing (Section 4.2). Correspondences are determined between all spatially overlapping
strip pairs, no matter which block they belong to. While this is expected to ensure minimal
datum differences between overlapping blocks, it also leads to a vast number of highly
correlated observations. Besides obvious implications, such as high computational costs,
another consequence is that convergence massively depends on strong attenuation of
correction parameters with pseudo-observations (Section 4.1) due to the near-singular
equation system.

4.3. Quality Control

Quality control is mainly based on pairwise strip differences in object space: Every
single strip is interpolated after adjustment and difference models between all sufficiently
overlapping strip pairs are calculated. After masking out unreliable differences (high
roughness, extrapolation), mosaics are created by computing the largest signed absolute
difference in each raster cell. Color-coded visualizations serve to evaluate and interpret
potential systematic residuals. Since a complete mosaic for any multi-temporal dataset
also contains a significant amount of explainable differences due to temporal decorrelation,
an additional “stable mosaic” is created by masking out everything except for the stable
areas (Section 3.3). Examples for both mosaics are provided in Figure 5.

These strip difference mosaics and stable mosaics are mainly derived for single epochs
individually or for pairs of epochs. Integrating more than two epochs into one mosaic
often leads to the occlusion of potentially interesting systematic effects. An appropriate
overview of the complete multi-temporal dataset can be obtained by combining all pairwise
difference mosaics (each represented by one characteristic statistical value) into one matrix,
the “blockpair-difference matrix”. For the matrices in this article, we use the robust
estimator σMAD, which is defined as the “median absolute deviation to median” multiplied
with the scale factor 1.4826 (c.f. documentation of module “Histo” in [58]).

Evaluation Criteria

When comparing the various multi-temporal strip adjustment procedures, the first
and foremost question is about meaningful quality criteria. Of course, the specific priorities
depend on several factors, such as study area characteristics, intended applications, and
available resources. In this section, we highlight the following generic quality criteria for
our dataset:

• Consistency within one epoch: By adding additional observations and constraints,
multi-temporal strip adjustment always slightly compromises the relative accuracy
within single epochs. It is thus a sign of quality if an approach is capable of adjusting
various epochs together without significantly compromising the individual strip differ-
ences of the involved epochs compared to their single-epoch strip adjustment results.

• Consistency with independent validation data.
• Consistency across epochs: The main goal of multi-temporal adjustments is to min-

imize orientation-related discrepancies between different epochs. However, this
somewhat contradicts other quality criteria in practice and is thus subject to trade-offs.
The accomplishment of this criterion mainly manifests itself in multi-temporal strip
difference mosaics and in the blockpair-difference matrix, both masked to stable areas.

• Robustness with respect to decorrelation: Data acquisition with different sensors
and block layouts over several months or years necessarily leads to surfaces being
represented differently. Ideally, the adjustment preserves these justified differences
while avoiding any impact on stable areas in the close vicinity. A high robustness is
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achieved, if discrepancies in presumably stable areas (roads, roofs) are not influenced
by changed areas (vegetation, agricultural land) nearby.

• Demand of resources: When it comes to practical application, efficiency is another
highly important factor. This includes aspects such as manpower requirements, ap-
propriate equipment for survey and computation, as well as the total duration from
data acquisition to receiving final results.

• Expandability: As a time series is developed sequentially, efficiency considerations
must not be limited to one single conclusive run of the workflow. It is just as important
that new epochs can be included at any point with reasonable effort.

Figure 5. Comparison of (A) the full strip difference mosaic (largest signed absolute difference) and
(B) the stable mosaic for epochs 6 February 2014 and 14 October 2014 on the background of a DSM.
The unit of the differences is [m]. For the full mosaic (A), masking mainly eliminates forests based
on their roughness. Thus, it still contains numerous areas affected by changes between the epochs,
such as agricultural land. The stable mosaic (B) is limited to stable building roofs and road sections
only, making it a better means to assess relative accuracy. Here, this assumption is relativized by the
low point density of 6 February 2014, which causes a considerably stronger smoothing of edges and
further leads to apparent differences, e.g., on roofs.

As anticipated in the Introduction (Section 1), there is a clear advantage of the approach
of treating one or few blocks separately, i.e., CPC, CPC+, and REF (Sections 4.2.1–4.2.3)
with regard to the efficiency-related quality criteria “expandability” and “demand of
resources” (Section 4.3). Processing typically takes less than a few hours per block and
can be accomplished on a modern consumer-grade computer. New blocks can be added
with the same effort and without causing changes to already adjusted blocks. There is
only one limitation concerning the REF approach, which requires a suitable reference block
a priori. Compared to that, the FULL approach (Section 4.2.4) is clearly less practicable.
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The computational demands increase with every epoch added. The adjustment of all blocks
in our study required a random access memory (RAM) of more than 300 GB with settings
comparable to the other approaches. The adjustment procedure took several weeks and
was prone to unintended crashes in the process. Any addition to the time series requires
a repetition of the full adjustment enhanced by new blocks and implies changes to all
previously adjusted data.

5. Results

Coming to the adjustment results, we first give a global overview by comparing
blockpair-difference matrices (Section 4.3) for all approaches in Section 5.1. Taking a closer
look into representative difference maps supports the interpretation of these matrices as
well as their limitations (Section 6.1). The in-depth analysis is followed by an evaluation
using all criteria from Section 4.3, which results in a clear preference for the REF approach.
Finally, epoch-wise DSMs are used to elaborate the relative concordance of epochs as well
as the absolute accuracy compared to independent check points (Section 6.2.)

5.1. Presentation of the Results Based on Blockpair-Difference Matrices

We first investigate the individual block-wise adjustment with control patches (CPC,
Section 4.2.1), which is a typical solution in practice. The blockpair-difference matrices
for the CPC approach (Figure 6) clearly show disadvantages. Many of the explainable
differences in matrix A also translate into discrepancies in stable areas (matrix B), for
example, epoch 16 June 2016. Additionally, even blocks separated only by days (e.g.,
14 October 2014 and 16 October 2014) show high differences, which can not be explained
by actual changes on the ground.

Figure 6. Blockpair difference matrices (σMAD) for the CPC approach. Matrix (A) was created from
the full strip difference mosaics, whereas matrix (B) represents the stable mosaics, Section 4.3. The
numbers in the first row and column refer to the epoch datum in the format YYMMDD.

The small values in the diagonal compared to the rest of the matrix indicate a strong
bias of the CPC approach towards minimizing relative differences in individual blocks.
The absolute datum definition with sparse control patches is rather weak leading to poor
consistency across epochs as well as little robustness with respect to decorrelation.

Similar results were obtained for the expanded control areas (CPC+, Section 4.2.2,
Figure 7). In this study area, the coverage with stable areas is apparently not sufficient to
support a consistent datum definition, especially if their wide distribution encourages the
use of more flexible correction models (Section 4.1).
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Figure 7. Full (A) and stable (B) blockpair difference matrix (σMAD) for the CPC+ approach.

The stable areas (Figure 7B) show slightly smaller differences than in the CPC approach
(Figure 6B). This is not surprising, as CPC+ is the only approach explicitly using these
stable areas for strip adjustment. In contrast, the full blockpair difference matrix (Figure 7A)
indicates higher discrepancies than CPC and all other approaches (Figures 6A and 8A),
which suggests overfitting towards the sparse control areas.

Compared to these single-block approaches, massive improvements can be observed
for the bi-temporal adjustment (REF, Section 4.2.3, Figure 8). There are still striking discrep-
ancies in the area-wide matrix (Figure 8A), mainly for the blocks under leaf-on conditions
(May–October). But as opposed to Figures 6 and 7, most of these blocks are hardly recog-
nizable in the stable-area differences (Figure 8B). This indicates high robustness in terms
of decorrelated areas not significantly influencing the orientation of unchanged surfaces
nearby. The diagonal representing the σMAD for each individual block is comparable be-
tween CPC and REF; however, the deviations from the rest of the matrix are much smaller
in the latter approach. Notably, the reference block (14 October 2014) appears similar to
several other blocks in Figure 8B. This suggests that the good overall datum does not come
at the cost of strong overfitting.

Figure 8. Full (A) and stable (B) blockpair difference matrix (σMAD) for the REF approach.
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When it comes to the stable blockpair-difference matrix resulting from the FULL
approach (Figure 9A), the values have a similar order of magnitude as in the REF approach.
However, their distribution is somewhat different. Figure 9B provides a direct comparison
of discrepancies in stable areas between REF and FULL. The following observations can
be made:

• The REF approach tends to deal better with single blocks differing from others in key
properties (e.g., phenology). This is especially obvious for block 16 June 2016, but also
for 16 October 2014 and 26 October 2013.

• In the FULL approach, accumulations of blocks with similar properties seem to pro-
duce datum clusters in the orientation procedure. As an example, the three blocks
from February 2014 act as a huge aggregated reference block, which pulls other blocks
towards its datum, resulting in consistent green rows and columns. Another cluster
seems to be formed by the first six blocks (15 April 2013–21 February 2014), all acquired
with the same scanner.

• The row/column of the reference block (14 October 2014) is predominantly white or
light green in Figure 9B, i.e., similar or even slightly better discrepancies in the FULL
approach. This encourages the assumption that the global datum is not exceedingly
biased towards the explicitly defined reference block in the REF approach. Note: As
each bi-temporal adjustment leads to a (slightly) different variant of the reference
block datum, its CPC result is used for this comparison.

• Later blocks, i.e., 4 November 2016 to 9 March 2021, seem to be more indifferent
concerning the choice between FULL and REF, as they show similar difference patterns
between each other in both approaches. One possible explanation is the state-of-the-
art equipment and the higher point density used for these blocks. Additionally,
their sparser distribution over time could play a role, as it avoids any major cluster
aggregation in the FULL approach. Thus, they share a comparably weak influence
on the global datum in both variants and are fit to an externally defined datum in a
similar manner.

• The diagonal is predominantly close to zero, with few exceptions. This suggests that
the relative orientation within single epochs is not significantly influenced by the
choice of orientation procedure.

Figure 9. (A) Stable blockpair difference matrix (σMAD, only stable areas) for the FULL approach.
(B) Difference of the stable FULL-matrix form (A) minus the stable REF-matrix (Figure 8). Green
fields represent better values for the FULL approach whereas orange depicts the advantages of the
REF approach.
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6. Discussion
6.1. Analysis and Interpretation of the Results

A synopsis of the points above suggests clear advantages of the REF approach com-
pared to FULL. However, the mean of all values in Figure 9B is −0.7 mm, i.e., slightly
in favor of FULL. In order to clarify this apparent contradiction, several strip difference
mosaics were analyzed in depth. As an example, Figure 10 compares the two approaches
by means of the full strip difference mosaic for blocks 24 May 2013 and 13 February 2014.

Figure 10. Mosaic of the highest absolute across-epoch strip differences between 24 May 2013 and
13 February 2014. A cutout showing a residential area in the center of the block is enlarged on the
left. The results of the FULL approach (A) are compared to the REF approach (B). For the latter,
the boundary of the reference block is marked in red.
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Differences are, in general, comparably high for this block pair, which is not surprising
due to the late May block 2013-05-24 effectively having full leave-on conditions in contrast to
most other blocks. Apart from that, the distribution of differences strongly varies between
the two approaches. The FULL approach (Figure 10A) shows several areas with distinct
systematic datum discrepancies. These are situated around agricultural areas in the block
center where many blocks overlap. Notably, surrounding stable areas (e.g., roads, building
roofs in the close-up map) are equally affected. Only the town center, which predominantly
consists of stable areas, comes close to the results of the REF approach (Figure 10B). In
comparison, the results from the REF approach seem clearly better for most of the block.
However, the quality significantly drops in the vicinity of the reference block boundary, where
the sparse control patches remain the only link to ensure a consistent datum definition.

Several other block pairs show a similar pattern, leading to the assumption that the
blockpair difference matrix in Figure 8 does not reflect the full potential of the REF approach.
It is disadvantageously biased by the limited coverage of the reference block, which is
significantly smaller than the total area covered by all blocks combined (Figure 1).

As a result of this analysis, Table 3 rates the different approaches with respect to the
quality criteria formulated earlier.

Table 3. Rating of the investigated approaches from very favorable (++) to not favorable (∼).

Approach Consistency
within Epoch

Consistency
between Epochs

Robustness wrt.
Changed Areas

Required
Resources

Expandability
(New Blocks)

CPC ++ ∼ ∼ + ++

CPC+ ++ ∼ ∼ ++ ++

REF + + ++ + ++

FULL + + + ∼ ∼

The overall view of the various criteria clearly favors the REF approach for the
given dataset. This will be further supported by quantitative summaries of the blockpair-
difference matrices (Figures 6–9), an analysis of DSMs computed for each block (Section 6.2)
and a comparison to check points in Table 4.

Table 4. Epoch-wise accuracy measures for the discussed results: Columns 2–5 hold the mean
σMAD for all stable strip difference mosaics (largest signed absolute difference, Section 4.3) with
participation of a certain epoch. This corresponds to line-wise mean values of the stable blockpair-
difference matrices for each approach (Figures 6B, 7B, 8B and 9A). The following column contains the
mean σMAD of DSM differences, lines in Figure 11B. The final two columns show the distribution of
height differences of the interpolated DSM minus the measured check points.

All Values in [cm] Mean σMAD of Blockpair-Wise Diff. DSM Diff. DSM-Check Points

Flight Date CPC CPC+ REF FULL REF Mean Std.Dev.

2013-04-15 6.7 5.6 4.1 3.2 2.1 3.4 2.8
2013-05-24 9.7 8.7 7.0 6.8 1.8 3.7 2.6
2013-10-13 7.8 10.6 4.6 5.0 1.9 4.2 2.9
2014-02-06 6.2 6.5 4.6 3.9 2.0 4.5 2.6
2014-02-13 6.1 6.9 4.0 3.1 1.7 4.1 2.4
2014-02-21 6.9 8.4 4.1 3.2 1.5 3.9 2.3
2014-06-10 5.8 5.8 3.8 3.9 1.7 3.6 2.1
2014-10-14 5.5 5.4 3.4 3.1 1.2 3.7 2.0
2014-10-16 10.5 10.2 3.9 4.9 1.9 2.4 2.3
2015-02-26 6.0 5.7 3.9 3.3 1.5 3.7 2.1
2015-03-20 10.0 10.3 5.2 5.1 2.0 3.2 2.2
2015-04-14 8.2 8.4 4.7 5.1 2.0 2.8 2.5
2016-06-16 11.0 8.9 4.9 7.1 1.7 3.0 2.6
2016-11-04 5.6 5.4 3.5 3.3 1.6 3.7 2.5
2017-02-14 5.8 5.8 3.8 3.8 1.8 3.5 2.2
2017-11-15 10.6 9.5 4.0 3.5 1.3 3.4 2.2
2018-08-24 13.0 7.8 4.8 5.0 1.4 3.7 2.3
2019-03-08 10.3 10.3 6.0 6.0 1.6 3.4 2.3
2019-09-03 8.9 6.4 5.1 4.6 1.9 2.9 2.8
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Table 4. Cont.

All Values in [cm] Mean σMAD of Blockpair-Wise Diff. DSM Diff. DSM-Check Points

Flight Date CPC CPC+ REF FULL REF Mean Std.Dev.

2020-03-09 6.3 6.8 4.2 4.1 1.4 4.1 2.5
2021-03-09 11.2 10.7 5.8 5.9 1.6 4.1 2.8

Figure 11. (A) Differences (σMAD) between the full DSMs derived from REF results. (B) DSM
Differences masked to stable areas only.

6.2. DSM-Based Assessment of the REF Results

Using a DSM allows us to show the full potential of the resulting data. A DSM was
calculated for the REF results of each epoch following the methodology of [60]. In compari-
son to the models of individual LiDAR strips and their differences, the DSMs filter random
noise to a higher extent.

Figure 11 visualizes the differences between epoch-wise DSMs in the style of blockpair
difference matrices. The full differences (Figure 11A) hereby also include forests, as the
DSM calculation contains no roughness masking. Thus, the difference patterns are mas-
sively influenced by phenology and vegetation growth. More importantly, the stable DSM
differences (Figure 11B) prove a consistent common datum definition with discrepancies of
less than 2–3 cm (σMAD) for all DSM pairs without notable outliers.

Independent validation was carried out using the point measurements from 2 February
2023 (Section 3.2). Therefore, the height measured in these points was compared to the
DSM height for every ALS epoch. Figure 12 illustrates the spatial distribution of differences
(mean and standard deviation) for each checkpoint. After an analysis of these differences at
the individual checkpoints, we will look at the distribution of these differences with respect
to each epoch.

The consistently small standard deviation (2 cm and smaller) for all checkpoints in
Figure 12 confirms the high relative accordance of all epochs. Apart from that, the ex-
clusively positive mean differences between 0 and 8 cm are remarkable. One possible
explanation is a combination of (i) a biased global datum of ALS data or checkpoints and
(ii) local datum deformations of the ALS data leading to varying orders of magnitude. A
more likely reason is the difference in data acquisition: For the checkpoints, single terres-
trial measurements were carried out, mostly on manhole covers. The DSM is a result of
interpolating an ALS point cloud. It is thus also influenced by a certain neighborhood,
which predominantly contains slightly (e.g., road surface) or significantly (e.g., curbstone,
low vegetation) higher points.
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Figure 12. Validation results: For each checkpoint, the mean and standard deviation of the differences
to all DSM models are visualized. In order to improve readability, nearby checkpoints with similar
values were combined in this Figure. A statistic based on all checkpoints can be found in Table 4.

Table 4 provides a statistical comparison of all major results discussed in this section
by listing quantitative measures for each epoch. The first columns show the mean σMAD
of blockpair-wise strip discrepancies for each epoch relative to all other epochs. These
strip difference measures underline the assumption illustrated in Figures 6–9 that the
CPC and CPC+ approaches fall short of REF and FULL in terms of across-epoch accuracy.
The overall average differences are slightly smaller for the FULL approach (4.47 cm) in
comparison to REF (4.54 cm). When comparing DSM-based differences to individual strip-
based differences (again, each epoch is compared to all others), it is notable that the average
overall σMAD differences reduce from 4.5 cm to 1.7 cm. Furthermore, the range of values is
2.1 cm to only 1.2 cm (Column “DSM diff.” in Table 4). This relative accuracy demonstrates
the high precision and consistency airborne LiDAR measurements can provide. The
differences between each DSM and independent checkpoints confirm an absolute accuracy
in the range of a few centimeters while also showing the positive bias of mean differences
already discussed in the context of Figure 12.

As a specific example, Figure 13 provides a DSM difference model between two blocks
separated by nearly seven years. Despite the long time span and differing phenology, roads
and building roofs are consistently white, i.e., less than 2 cm difference. Notably, this is
also the case in the direct vicinity of agricultural land and vegetation. Agricultural land is
mostly negative (red), meaning 10 June 2014 is higher than 9 March 2021 due to leaf-on
conditions. Positive differences (blue) show new objects such as photovoltaic panels (west
of A) or new buildings (northeast of B). Vegetation gives a mixed image, depending on
whether growth/plantation (blue) or phenology/clearance (red) is the dominant effect over
the given time span. The grassland around (C) was mowed on 10 June 2014 and not yet
overgrown on 9 March 2021, resulting in effectively no height difference except for the hay
deposited to dry in 2014. Due to the datum accordance of the two epochs, also more subtle
changes, such as slight degradation of the soccer field northeast of (D), can be observed.
Only the differences in the river channel (south to north through D) are not meaningful, as
refraction corrections for the bathymetric data have not been applied.
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Figure 13. Top: Difference model of the DSMs from 2021-03-09 (leaf-off) and 2014-06-10 (leaf-on).
bottom: Digital Orthophoto from 2020 covering the same area. The locations of interest A to D are
explained in the text and serve for easier localization of the discussed phenomena.

7. Conclusions

In this paper, we compared various strip adjustment approaches to achieve a common
datum for 21 LiDAR blocks distributed over a time span of approximately 8 years. The re-
sults proved that the seemingly most rigorous approach of combining all epochs into one
large adjustment is not necessarily the optimal solution. Besides the high computational
costs, the resulting common datum is potentially compromised by clusters of similar blocks.

Compared to that, the much more flexible bi-temporal adjustment of each epoch with
one reference block (Section 4.2.3) showed exceptionally consistent results within the area
covered by the reference block. Relative discrepancies of the derived height models were
below 2–3 cm for all involved epochs with a mean of 1.7 cm. In this bi-temporal adjustment
of two independent epochs, the utilized adjustment concept (Section 4.1) demonstrated
high robustness with respect to short- or long-term surface changes such as vegetation or
construction sites. Without the explicit application of masks, the automated matching and
rejection of correspondences efficiently avoided impact on stable areas nearby.

For setting up a new time series following this approach, the design of the reference
block plays a key role:

• Chronology: Due to practical reasons, the reference block is presumably acquired at
the very beginning of a time series since all earlier epochs would have a preliminary
datum prior to its availability. Notably, our results suggest no decrease in accuracy
related to an increasing temporal offset from the reference block.
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• Coverage: In order to ensure ideal datum consistency, the reference block should cover
the entire designated study area. All datasets protruding beyond this area have to be
supported by additional control data.

• Point density: It is not necessary that the reference block has the highest point density
of the time series. At minimum, it needs to be high enough to allow the reliable
computation of local surface normal vectors for relevant surface patches (e.g., small
roofs) during strip adjustment.

• Accuracy: While we found no extreme overfitting to the reference block in our work,
its quality decisively determines the achievable accuracy for the whole time series.
In order to give stability to other more volatile blocks, the original trajectory estimation
for the reference block has to be of high quality so that rigid trajectory correction
models are sufficient for the reference block in the adjustment process. The interior
and especially the borders of the reference block have to be covered with control
patches varying in slope and exposition. In order to support more blocks in the time
series, permanent surfaces (e.g., building roofs) for these control patches are preferred.
If this is not possible, temporary targets should be placed at some distance from the
permanent surface (e.g., ground) nearby. This avoids the establishment of erroneous
correspondences for blocks acquired after the removal of these targets.

All other blocks of the time series need to cover an area within the reference block,
which is interspersed with stable patches as extensively as possible. In terms of decorre-
lation, vegetation is less problematic due to the robustness of the adjustment procedure.
However, large areas with slow changes over time (e.g., sliding slopes) have the risk
of systematically compromising datum estimation and are ideally eliminated using ex-
plicit masking.

For future work, a meaningful next step is to test this approach under changed circum-
stances. This includes a stronger variation of flying heights, the combination of airborne
and UAV-borne sensors, flatter or more mountainous terrain characteristics, etc. Further-
more, a close look into the effect of different scanner systems is worthwhile, especially
when differing in scanner wavelengths and beam characteristics [56]. Finally, working with
classified data could bring benefits in terms of broader quality control, e.g., using terrain
points only, but may also help improve the adjustment procedure in challenging areas such
as large forests.
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