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1 Abstract  

 

Bioprocesses require efficient monitoring and control of the respective process parameters. In order 
to achieve defined states to produce a product in high quantities and required quality, the respective 
time-dependent biomass concentration as a catalytic converter is a key variable. However, several 
offline measurements such as the optical density or dry weight measurements exist but repeatedly do 
not satisfy the requirements for modern bioprocess development. Therefore, hard sensor types based 
on permittivity measurements and dielectric spectroscopy were used to determine the biomass online. 
However, these measurements come with different challenges and disadvantages. 

An alternative to these hard-type sensors are soft-type sensors, which indirectly estimate the biomass 
produced by existing measurements with a bioreaction system in real-time. Therefore, the known 
inlet, outlet and feed streams were quantified to calculate rates. These rates are used to develop a 
balance system according the law of mass conservation for carbon, nitrogen and degree of reduction. 

This overdetermined model system of equations can be solved with calculated rates or reconciled rates 
for the best possible estimation of the biomass. The estimated biomass amount is used for different 
specific substrate uptake rates during the experiment. For a trustworthy estimate of the biomass, a 
statistical test has been introduced which can distinguish whether a systematic error exists or whether 
the deviations of the rates can be explained with random errors. In this context, the error propagation 
of the measurements was considered in real-time as a novel approach. The investigation of the soft 
sensor concept shows that in the case of a valid model, the degree of reduction balance with the 
calculated rates of the measured quantities and the C-balance with the reconciled rates best describe 
the bioreaction. There were achieved accuracies below 10% for the estimation for the biomass relative 
to reference measurements such as optical density and dry weight measurements demonstrated with 
a Saccharomyces cerevisiae cultivation. A workflow was developed which should guarantee a 
successful fermentation using this robust soft sensor concept.  
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3 List of Symbols 
 

Symbols Description Unit 

�̇�𝑆 feed of substrate l/h 

𝑞𝑠 specific substrate uptake rate g/(g∙h) 

𝑐𝑠 substrate concentration g/l 

𝑋𝑠𝑡𝑝 current biomass setpoint g 

𝑟𝑋 biomass rate c-mol/h 

𝑟𝑆 substrate rate c-mol/h 

𝑟𝑂2
 oxygen uptake rate mol/h 

𝑟𝐶𝑂2
 carbon dioxide evolution rate mol/h 

𝑟𝑁 nitrogen consumption rate mol/h 

𝑟𝑚 measured rates vector - 

𝐸 Elemental Matrix - 

𝐸𝑚 measurement Elemental Matrix - 

𝐸𝑐 calculation Elemental Matrix - 

𝐸𝑐
# pseudo inverse calculation Elemental Matrix - 

𝑅 Redundancy matrix  - 

𝑟𝑚𝑏 best estimates of 𝑟𝑚 - 

𝛽 measured error vector   - 

𝑅𝑟 reduced redundancy matrix - 

𝜀 residue vector - 

𝑈 ⋅ 𝑆 ⋅ 𝑉 Singular value decomposition Matrix - 

𝛿 measurement error vector - 

𝑒𝑚 relative error vector of 𝑟𝑚 - 

𝐹 variance covariance matrix of 𝑟𝑚 - 

𝜑 covariance matrix of the residuals - 

ℎ statistical index value h - 

�̂�𝑚 reconciled measurement vector - 

�̇�𝑖𝑛 input volume stream mol/h 

𝑐𝑖,𝑖𝑛 input volume stream concentration mol/m³ 

�̇�𝑜𝑢𝑡 output volume stream  mol/h 

𝑐𝑖,𝑜𝑢𝑡 output volume stream concentration mol/m³ 

𝑉𝑅 reactor volume m³ 

𝑟𝑖 rates 𝑖 mol/(m³∙h) 

�̇�𝑖,𝑖𝑛 input mol stream 𝑖 mol/h 

�̇�𝑖,𝑜𝑢𝑡 output mol stream 𝑖 mol/h 

𝑛𝑔𝑎𝑠 gas amount in reactor mol 

𝑝𝑛𝑜𝑟𝑚 pressure under normal conditions 101325 Pa 

�̇�𝑗,𝑖𝑛,𝑛𝑜𝑟𝑚 inlet volume stream 𝑗 under normal conditions  m³ 
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𝑅 Universal gas constant 8,314 J/(mol∙K) 

𝑇𝑛𝑜𝑟𝑚 temperature under normal conditions 273,15 °K 

𝑉𝑔𝑎𝑠 volume of gas in system m³ 

𝑉𝑅𝑡  reactor total volume m³ 

𝑉𝑅 current reactor volume m³ 

𝑚𝑅(𝑡) measured reactor weight kg 

𝑚𝑅0 initial measured reactor weight kg 

𝜌 density of broth kg/m³ 

𝑉𝑅0 initial reactor volume m³ 

𝑝𝑅 reactor pressure  Pa 

𝑇𝑅 reactor temperature °K 

𝑛𝑖𝑛𝑒𝑟𝑡  inert gas in reactor mol 

𝑇𝑅 transport rate mol/h 

𝑦𝑖𝑛𝑒𝑟𝑡,𝑜𝑓𝑓  inert gas fraction in offgas - 

𝑦𝑂2,𝑜𝑓𝑓 oxygen fraction in offgas - 

𝑦𝐶𝑂2,𝑜𝑓𝑓 carbon dioxide fraction in offgas - 

𝑦𝐻2𝑂,𝑜𝑓𝑓 water fraction in offgas - 

𝑦𝑜2,𝑤𝑒𝑡  oxygen fraction in wet offgas - 

𝑦𝑂2,𝑎𝑖𝑟 oxygen fraction in air  - 

�̇�𝑖𝑛, 𝑖𝑛𝑒𝑟𝑡,𝑛𝑜𝑟𝑚 inert volume stream under normal condition m³/h 

�̇�𝑖𝑛,𝑁2,𝑛𝑜𝑟𝑚 N2 inlet volume stream under normal condition m³/h 

�̇�𝑖𝑛,𝑎𝑖𝑟,𝑛𝑜𝑟𝑚 air inlet volume stream under normal condition m³/h 

𝑇𝑅𝑖𝑛𝑒𝑟𝑡 transport rate of inert gas mol/h 

 �̇�𝑜𝑢𝑡 outlet stream mol/h 

�̇�𝑜𝑢𝑡,𝑖𝑛𝑒𝑟𝑡 outlet stream of inert gas mol/h 

𝑒𝑎𝑏𝑠,𝑖 absolute error of rate 𝑖 mol/h 

𝑒𝑛𝑜𝑖𝑠𝑒,𝑖 absolute noise error of rate 𝑖 mol/h 

∆𝑓𝑟𝑖
 propagation of uncertainty of rate 𝑖 mol/h 

𝑤𝑆 substrate weight signal  g 

𝑐𝐹𝑒𝑒𝑑  concentration of feed kg/m³ 

𝑐𝑚𝑜𝑙 c-mol fraction of glucose 6 

𝜌𝐹𝑒𝑒𝑑  density of feed kg/m³ 

𝑀𝐹𝑒𝑒𝑑  molar mass of glucose g/mol 

∆𝑒𝑤𝑆
 absolute error of substrate feed weight signal g 

∆𝑒𝑐𝐹𝑒𝑒𝑑
 absolute error of feed concentration kg/m³ 

𝑤𝑁𝐻3 ammonia weight signal g 

𝑐𝑁𝐻3 concentration of ammonia kg/m³ 

𝜌𝑁𝐻3 density of ammonia feed kg/m³ 

𝑀𝑁𝐻3 molar mass of ammonia g/mol 

∆𝑒𝑤𝑁𝐻3
 absolute error of ammonia feed weight signal g 

∆𝑒𝑐𝑁𝐻3
 absolute error of ammonia feed concentration kg/m³ 
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𝐹𝐴𝐼𝑅𝑖𝑛 air inlet stream variable Nl/min 

𝐹𝑂2𝑖𝑛 oxygen inlet stream variable Nl/min 

∆𝑒𝐹𝐴𝐼𝑅𝑖𝑛
 error of air inlet stream variable Nl/min 

∆𝑒𝐹𝑂2𝑖𝑛
 error of oxygen inlet stream variable Nl/min 

∆𝑒𝑦𝑂2,𝑜𝑓𝑓
 error of oxygen fraction in offgas - 

∆𝑒𝑦𝐶𝑂2,𝑜𝑓𝑓
 error of carbon dioxide fraction in offgas - 

𝑦02𝑤𝑒𝑡,𝑜𝑓𝑓 oxygen fraction in wet offgas - 

𝑋 biomass  g 

𝜇𝑚𝑎𝑥 maximum specific growth rate 1/h 

𝑆 substrate  g 

𝐾𝑆 saturation constant of substrate g/l 

𝑌𝑋
𝑆
 yield biomass/substrate g/g 

𝑂𝑇𝑅 oxygen transfer rate g/(l∙h) 

𝑘𝑙𝑎 volumetric mass transfer coefficient 1/h 

𝑐∗ saturation concentration  g/l 

𝑐𝑂2
 current oxygen concentration  g/l 

𝑒𝑐,𝑟𝑒𝑙(𝑡) current relative error of carbon balance % 

𝑒𝑐,𝑎𝑏𝑠(𝑡) absolute error of carbon balance  mol 

𝑒𝐷𝑜𝑅,𝑟𝑒𝑙(𝑡) current relative error of degree of reduction balance % 

𝑒𝐷𝑜𝑅,𝑎𝑏𝑠(𝑡) current absolute error of degree of reduction balance  mol 

𝑒𝑁,𝑟𝑒𝑙(𝑡) current relative error of nitrogen balance % 

𝑒𝑁,𝑎𝑏𝑠(𝑡) current absolute error of nitrogen balance  mol 

𝑒𝑐𝑟𝑐𝑜𝑛𝑐,𝑟𝑒𝑙(𝑡) current relative error of carbon balance after rates 
reconciliation 

% 

𝑒𝑐𝑟𝑐𝑜𝑛𝑐,𝑎𝑏𝑠(𝑡) absolute error of carbon balance after rates reconciliation mol 

𝑒𝐷𝑜𝑅𝑟𝑐𝑜𝑛𝑐,𝑟𝑒𝑙(𝑡) current relative error of degree of reduction balance after rates 
reconciliation 

% 

𝑒𝐷𝑜𝑅𝑟𝑐𝑜𝑛𝑐,𝑎𝑏𝑠(𝑡) current absolute error of degree of reduction balance after 
rates reconciliation 

mol 

𝑒𝑁𝑟𝑐𝑜𝑛𝑐,𝑟𝑒𝑙(𝑡) current relative error of nitrogen balance after rates 
reconciliation 

% 

𝑒𝑁𝑟𝑐𝑜𝑛𝑐,𝑎𝑏𝑠(𝑡) current absolute error of nitrogen balance after rates 
reconciliation 

mol 
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4 Introduction 
 

4.1 Motivation  

All bioprocesses involve microorganisms that use nutrients to form a product of interest. Furthermore, 
a fundamental goal of bioprocesses is to produce a product corresponding with a required quality. This 
requirement involves continuous process control and monitoring. Differential typical process 
parameters such as temperature, pH, O2 and CO2 in the offgas, biomass etc. can be measured offline 
and online measured and provide fundamental information about the state of bioprocesses. 
Moreover, the data collected online and offline form the basis for a better monitoring and controlling 
process, as well as for model development based on cell specific characteristics. A defined quality and 
high yield of the product referring to the broth volume can be achieved by advantageous cultivation 
conditions and a defined physiological state of the culture. In this regard, Fed batch processes are the 
method of choice to control the cell metabolism by a substrate limiting feed profile and further 
parameters such as temperature, pH and the dissolved O2 concentration. In order to ensure a 
consistent limited substrate supply for the growing biomass, the feed is regulated as a function of the 
biomass quantity. In this context, a key variable is the biomass concentration. 

Differential online and offline methods for the biomass concentration determination exists [1]. In 
general, offline measurement methods are time-consuming and come with high operator-dependent 
measurement errors. The current biomass concentration of the bioprocess, which can be detected by 
online sensors, can be classified in hard-type and soft type sensors [2]. Several hard type sensors exists 
based on different methods (residual transmission, microscope, fluorescence, infra-red absorption, 
capacitance, impedance) which are able to do an in-line quantification of the biomass concentration 
[1] [3] [4] [5]. It is common that challenges occur in these measurements concerning: calibrations, 
dynamic range, interferences due to different process modes, physiological states of the culture, media 
composition in the process. Moreover, the dry weight measurements as reference for the calibrations 
can also vary depending on changing process characteristics [6] [7]. In this regard, hard type sensors 
do not often meet the required accuracy in determining the biomass concentration due to the 
changing process conditions and challenges that focus on the calibration. 

Another approach to indirectly quantify the biomass concentration online is to use the accessible 
measurements such as the quantified feed, gas inlet and outlet streams with its oxygen and carbon 
dioxide concentrations to determine the biomass via mass conservation. This indirect determination 
can be summarized as soft type sensors. Several works were done which demonstrate the functionality 
of so called soft sensors for the biomass estimation.[8] [9] [10] [11].  

However, in process development time is a limiting factor so a reasonable strategy is to use available 

measurements in combination with an overall bioreaction describing model based on mass 

conservation. This balance system can be solved for the variable of interest, in this case the biomass 

concentration. In this context, the soft sensor technology needs easily accessible measurements, 

models and estimation algorithms to work. Previous works investigated the calculability and balance-

ability including diagnostics and error handling of such biochemical networks [12] [13] [14] [15] [16].  

If a soft sensor concept for estimating the biomass is implemented, the operator must consider the 

physiological characteristics, technical limits and model assumptions of the system to have reliable 

biomass estimation results. A successful run can be expected when the process is performed in the 

intersection of all three circles shown in Fig. 1. 
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The reasons for setting up soft sensor concepts today lies in the simple fact that direct measurements 

of the variables of interest are frequently too expensive, difficult to install or simply not reliable or 

accurate enough. A soft sensor provides continuous estimates of the variable instead of expensive, 

periodically performed measurements. Furthermore, the direct instrumentation for the direct 

measurement could make the process more difficult to control. It could be also possible that no 

instrumentation exists that can directly measure the process variable such as biomass concentration 

due to harsh conditions or simply lack of space in the bioreactor. In this case, a soft sensor concept is 

a suitable way to estimate the variable of interest. Moreover, with implementing a soft sensor, a model 

exists which is fed with measured data of the system. Additionally, the errors on each measurement 

can be considered for the calculation. This could also be used for a simple method to improve the 

reliability accuracy and fault detection of the model and data acquisition. Similarly, combining of 

information from different sensors allows us to combine the strength of each technology and reduce 

the weaknesses of the estimation. In this view, redundancy can be introduced in the measurement 

model system to provides precise estimates of the unmeasured variable. 

Derived from these advantageous aspects, this master thesis shows a general introduction on 

implementing a soft senor concept with its important considerations for various microbial cultivation 

processes. 

  

Fig. 1 Venn diagram for successful microbial fermenting 
considerations. In the hatched space, felicitous controlled 
processes meet the model assumptions, do not cross technical 
limits and deal with the physiology of the used strain.  
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4.2 Problem statement and goals of the work 
 

A brief overview about pervious cultivations and process behaviours lead to the following challenges. 

 

Challenge Ⅰ 

Soft sensor concepts for the estimation of variables of interest are widespread in industrial 

applications. This technology is not popular in laboratory scale cultivation experiments. 

Goal Ⅰ: The first goal of this work is to find the problems as to why it is uncommon to use a soft sensor 

technology for estimating the biomass during cultivation runs. Furthermore, an identification of the 

“issues” in the technical, handling and software section should provide necessary information. In this 

context, a developed strategy should avoid the “issues”. This should be a basis for a successful soft 

sensor development. 

 

Challenge ⅠⅠ 

Specific feeding profiles are related to the biomass concentration in the reactor. The amount of 

biomass is not available in real-time due to the lack of reliable and accurate biomass quantification 

results from online direct determinations.  

Goal ⅠⅠ: A soft sensor concept should be developed to estimate the biomass amount with easily 

accessible measurements. The provided biomass determination should satisfy the accuracy of a 

specific substrate uptake rate control strategy. This concept should be developed in a multi-paradigm 

numerical computing environment. Finally, a proof of this novel soft sensor approach must be done. 

 

Challenge ⅠⅠⅠ 

A soft sensor concept should be reliable, robust and easily adaptable to other processes in a bioprocess 
development environment. In this context, no works investigate the behaviour of the applied soft 
sensor with the in real-time considered measurement errors. 

Goal ⅠⅠⅠ: A detailed analysis of error propagation should be done for a powerful reconciliation 
procedure, a robust estimation of the biomass and a meaningful statistical test. Finally, a workflow 
should be established for a successful biomass estimation via this robust soft sensor concept.  
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5 Materials & Methods 
 

5.1 Cultivation 
 

A yeast strain, Saccharomyces cerevisiae, CBS 8340-Wild type, was used in a defined media according 

to Table 1 to Table 3. The shake flask culture for the batch phase inoculation were maintained in 200 ml 

H2O solution. It contained 20 g/l glucose, 10 g/l yeast extract and 20 g/l peptone under pH 4.8, 200 

rpm and 30 °C in laboratory incubator.  

Table 1: Medium composition for the batch and fed-batch 

Medium quantity unit Annotation 

Glucose 200 g/l Fed Batch; 2 Liter 
 20 g/l Batch, 3 Liter 
(NH4)2SO4 5 g/l  
KH2PO4 3 g/l  
MgSO4*7H2O 0,5 g/l  
Struktol J 650 0,1 g/l  
Trace Elements (750x) 1,33 g/l  
Vitamines (750x) 1,33  g/l  

 

Table 2: Trace elements for the batch and fed-batch medium.  

Trace elements (750x) pH 4 quantity unit Annotation 

EDTA 15 g/l  
ZnSO4*7H2O 4,5 g/l  
MnCl2*4H2O 1 g/l  
CoCl2*6H2O 0,3 g/l  
CuSO4*5H2O 0,3 g/l  
Na2MoO4*2H2O 0,4 g/l  
CaCl2*2H2O 4,5 g/l  
FeSO4*7H2O 3  g/l  
H3BO3 1 g/l  
KI 0,1 g/l  

 

Table 3: Vitamins for the batch and fed-batch medium. 

Vitamins (750x) pH 6,5 quantity unit Annotation 

Biotin 0,05 g/l  
Ca pentothenate 1 g/l  
Nicotinic acid 1 g/l  
m-inositol 25 g/l  
Thiamin hydrochloride (B1) 1 g/l  
Pyridoxine hydrochloride(B6) 1 g/l  
Para-amino benoic acid (PABA) 0,2 g/l  
FeSO4*7H2O 3  g/l  
H3BO3 1 g/l  
KI 0,1 g/l  
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In the batch and fed batch phase, the set points of temperature (30°C), pH (4,8), dissolved oxygen 

concentration (35 %), initial aeration (1,5 l/(l∙min)) and initial stirrer speed were chosen in compliance 

to the supplied information from previous experiments with this Saccharomyces cerevisiae yeast 

strain. As the growing biomass amount will be available online in this approach, a qs (specific substrate 

uptake rate) control feed strategy is the method of choice. The fed batch run was realised with 

different constant qs. The pH control was performed with a 6,25 w% NH3 solution as base and 6,25 w% 

H3PO4 solution as acid. 

 

5.2 Offline and Online Analytics 
 

Several sampling routings were made to compare and validate the results with other biomass 

estimation methods as demonstrated here by OD (optical density) measurement and DW (dry weight) 

measurement. The biomass was determined with an OD –three-fold determination and a DW-five-fold 

determination. The sampling interval was chosen to be increased at higher qs and reduced at lower qs 

to follow a trend of biomass growth behaviour. The glucose and NH3 concentrations during the 

experiment were analysed for each sample routine by an automated analyser (Cedex BioHT 

Biochemical analyzer, Roche, Mannheim, Germany). In order to have an online biomass determination 

tool, an online microscope (Ovizio Imaging Systems, Brussels, Belgium) was added to compare the 

estimated biomass via the microscope result. 

 

5.3 Hardware 
 

A glass bioreactor with a total volume of 7,5l and a working volume of 5l was used (Infors 3, 

Bottmingen, Switzerland). The controlled parameters, pH and temperature and cooling system were 

regulated with an internal controller unit on the bioreactor system. The base and acid were observed 

by using attached peristaltic pumps.  

The following devices in Table 4 have been installed to calculate the input and output streams. Scales 

were used to define the input flow stream of glucose and the NH3 solution as base. In addition, the 

reactor vessel was also weighted by a scale to determine the reactor volume. Two mass flow 

controllers were used to quantify the gas inlet flow streams of air and pure oxygen. Moreover, the 

oxygen and carbon dioxide concentration were measured by an offgas analysator.  

Table 1 lists the measured process variables including the used devices and necessary general features 

such as range and accuracy/readability for considering the measurement errors. 

 

5.4 Software  
 

The process control system Lucullus PIMS (Securecell, Switzerland) was used for controlling the 

temperature, pH, dissolved oxygen and substrate feed controlling. MATLAB (MathWorks, USA) as a 

multi-paradigm numerical computing environment was used for enabling the soft-sensor concept. A 

link from Lucullus to a database phyton server via OPC interface and afterwards a Matlab connection 

to this database enables an online computing source for controlling and data analysis. Fig. 2 shows the 

schematic setup of this connection.  
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Table 4: Measured process variables including the used devices and necessary general features 

Variables labelling Principle Device Range 
Accuracy / 

Readability 

𝑚𝑅 103.3 
Scale  

Kern & Sohn ITS 

35 K1IP 
max. 35 kg  ± 0.1g,  

𝑇𝑅 103.5 
- PT 100 80 °C - 

𝑝𝐻 103.7 
- 

Hamilton 

Easyferm Plus HB 

K8 425 

0 to 14 
57 to 59 mV / pH 

at 25 °C 

𝑂2 101.3 - 
Hamilton 

VISIFerm DO 425 
0-100% ± 0.2 % 

𝑟𝑝𝑚 101.5 
- - 80 - 1400 rpm  - 

𝑦𝑂2,𝑜𝑓𝑓 
102.4 ZrO2 BlueInOne Ferm  

0 – 50%  ±0.02%  

𝑦𝐶𝑂2,𝑜𝑓𝑓 
102.5 IR BlueInOne Ferm  

 0-25% < ±1% 

�̇�𝐴𝑖𝑟,𝑖𝑛,𝑛𝑜𝑟𝑚 101.1 
MFC 

Vogtlin 

Instruments GSC 

B5SA BB26 

5 NL/min ± 1% F.S 

�̇�𝑂2,𝑖𝑛, 𝑛𝑜𝑟𝑚 101.2 MFC 
Brooks 4800 

Series 
10 NL/min +/- 3,0% of F.S  

𝑚𝑠 102.1 
Scale 

Sarturius Signum 

1 
max. 35 kg ± 0,1g, d=0,1g 

𝑚𝑛 103.1 
Scale 

Sarturius CPA 

34001S 
max. 34 kg ± 0,1g d=0,1g 

 

  

Fig. 2: Schematic structure of the online connection from local process control system via OPC-
Python Server to Matlab. 
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The entire process flow diagram designed for the experiment is shown in Fig. 3. 

 

 

  

Fig. 3: Process-flow-Diagram with all basic equipment for measuring and controlling culture 
parameters. The dissolved O2 is a closed loop controlled via Lucullus Software (UC 101.6). pH value is 
controlled via internal Infors software tool with peristaltic pumps. The qs control feed strategy is 
controlled via OPC server with the Bioprocess Technology Tool (BPTT) in Matlab 2017b. The red lines 
represent gas streams and the green lines fluid streams. 
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5.5 Control strategy 
 

In general, for successful cultivations, a well-working process control strategy is indispensable. 

Principally, microorganisms need defined process conditions to develop their optimal performance. If 

the regulation of the real values parameters such as pH, dissolved O2, temperature, feeding profile is 

not satisfying the desired conditions, arbitrary pathway switching, limitations and finally cell death can 

be possible. Hence targeted cultivations, and high productivities are not achievable. Based on previous 

literary work, a cascade control subfunction for three steps O2 control [17] [18] has been built, which 

is described in more detail, see subsection 5.5.1. The qs control strategy is realized as closed loop 

subfunction which is explained in subsection 5.5.2. These subfunctions were implemented in the 

process information management system Lucullus. The closed loop controllers are schematic shown 

in Fig. 4. 

 

 

  

Fig. 4: Sequential control of pO2 regulation and qs setpoint control unit. 
A: cascade control function unit with primarily stirrer speed regulation and as second 
step controlling the air gassing. B: Step function for constant volume flow with chancing 
air/O2 ratio. B is enabled if A is not satisfying the required dissolved oxygen 
concentration. C: Step function for PID controlled feed pump setpoint dependent on qs. 
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5.5.1 O2 control 
 

Due to the fact, that cultivations should not be restricted to oxygen, the concentration of dissolved 

oxygen should be regulated to a certain level to ensure the oxygen uptake. Therefore, two 

subfunctions were established for robust versatile cultivation applications. The subfunction A shown 

in Fig. 4 uses at first the agitator speed and as second step the aeration rate to regulate the O2 

concentration. Each actuating variable is a closed loop controlled via a PID controller subdevice in 

which the derivative term is zero. The limits for the stirrer speed, aeration rate and the initial gassing 

rate in vvm (l/(lvolume∙min) are set in the initialization step. The subfunction is enabled if the O2 

concentration is under the critical chosen value. In this phase the stirrer speed is regulates the 

dissolved oxygen. If the maximum stirrer speed is reached and is not able to hold the dissolved O2 on 

the setpoint, the PID controller for the aeration rate is enabled. The stirrer speed at the so called PID 

Aeration steps is still at the maximum. Steps with a Stop in the labelling are for stopping the PID internal 

calculating algorithm. The aim is to avoid overflows and in addition to make it resistant against handling 

errors. 

If the controller of subfunction A cannot get the dissolved oxygen level, the extend subfunction B will 

be activated. This controller strategy is based on a constant gassing flow with changing air/pure oxygen 

ratio and maximum stirrer speed. The PID controller is changing the gas composition to hold the O2 

concentration on the setpoint. The limits of the O2 mass flow controller and setpoint of the constant 

flow throw the reactor can be adjusted in the initial step.  

This cascade strategy with subfunction A and B can be run in both directions. Adjustments of the values 

for the proportional and integral terms in the PID controller subdevices depends primarily on the 

actuating variable size units and the calculating intervals. As an approximate initial adjustment, the 

proportional term is 1% of the lower limits from each actuating variable entered in the initial step. The 

integral term is approximately a tenth of the proportional term. 

 

5.5.2 Feed control 
 

The controlled qs constant strategy was realized with a PID and Flow controller app sub device in 

Lucullus which is shown in Fig. 4. 

C. The flow controller app returns the real feed rate calculated by the changing feed weight signal. This 

calculated real feed rate is the controlled process variable for the PID controller subdevice. Step Pump 

setpoint calculates the setpoint for the feed pump. The current biomass setpoint 𝑋𝑠𝑡𝑝 was received by 

Python Server and OPC link from Matlab. 𝑞𝑠 and the substrate concentration 𝑐𝑠 of the feed are set in 

the initialization step. Equation Eqs. 5-1 shows the relation for the feed flow. 

 

�̇�𝑆 =  
𝑞𝑠 ⋅ 𝑋𝑠𝑡𝑝

𝑐𝑠
 

Eqs. 5-1 
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5.6 Conditions for application 
 

The created program presents a soft sensor for microorganism in fed-batch dynamic process 

conditions to indirectly determine the amount of biomass. The biomass estimation and reconciliation 

with this soft-sensor tool was possible with known elemental composition of the biomass in (C, H, N, 

O) and quantified inlet flows with defined media content. The shown application is a base for one 

substrate and a nitrogen source. 

Furthermore, the balance equation system is constructed for the carbon-, degree of reduction- and 

nitrogen balance. In this contrast, it must be stated that the balances only describe the overall 

bioreaction and that there are a lot of other reactions beside this basic specification. Data input 

reconciliation cannot be performed without redundancy. That means the system of equations must be 

overdetermined. If needed, gross error detection is only feasible by using all three stated balances. In 

order to execute the calculations as precise as possible, the measurement frequency shall be high as 

possible. Furthermore, the linear regression window size for the calculated input rates should be 

chosen as low as possible to reduce the impact of average values. 

The defined equation system for describing the overall bioreaction use various assumptions as follows:  

 

• fluids are ideally mixed  

• no pH changes during the cultivation  

• constant density and temperature of the cultivation broth 

• neglectable sensor response behaviour  

• neglectable transport rate of inert gas  

• no change of biomass composition 

• product formation is not considered  

• no accumulation of substrate 

• no accumulation of nitrogen 
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5.7 Soft sensor concept 
 

It is a good choice to use a soft sensor to estimate the unmeasured biomass concentration during a 

culture run. For this purpose, a model will be created according to the conservation law and its physical 

limitations to describe the bioreaction. Assuming oxidative metabolism, the bioreaction can be 

described according Eqs. 5-2 for the growth of Saccharomyces cerevisiae [19]. It should be noted that 

many different chemical reactions are running in a living cell. For this reason, the equation Eqs. 5-2 

applies only to a general bioreaction formulation.  

 

 𝑟𝑆 ⋅ 𝐶𝐻𝑝𝐻𝑂𝑝𝑂 + 𝑟𝑜2
⋅ 𝑂2 + 𝑟𝑁 ⋅ 𝑁𝐻3  →  𝑟𝑥 ⋅ 𝐶𝐻𝑧𝐻𝑂𝑧𝑁 + 𝑟𝐶𝑜2

⋅ 𝐶𝑂2 Eqs. 5-2 

 

In order to estimate unmeasured variables at a given set of independent system constraints, a 

minimum number of measurements are required to calculate the estimates. In this case the system is 

determined. If there are more measurements than the minimum, redundancy exists in the 

measurements which can be exploited for data reconciliation. The overall bioreaction can be split and 

written as elemental balances for carbon and nitrogen, according to Eqs. 5-3. For donating and 

receiving electrons of each molecule, the degree of reduction (DoR) balance describes the electrons 

exchange. The elemental balances can be summarized to an elemental matrix and a rate vector 

analogous to the procedure in previous works [19] [20] [21] [22]. The elemental matrix and the rate 

vector are constructed as follows in Eqs. 5-4 and Eqs. 5-5. 

 

𝐼𝑛𝑝𝑢𝑡 − 𝑂𝑢𝑡𝑝𝑢𝑡 + 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑎𝑡𝑖𝑜𝑛 = 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛  Eqs. 5-3 

 

 

𝐸 = 

Bal. X S O2 CO2 NH3 

C 1 1 0 1 0 

DoR 4,18 4 −4 0 0 

N 0,176 0 0 0 1 

Eqs. 5-4 

 

 

𝑟𝑖 = 

𝑟𝑋 

𝑟𝑆 

𝑟𝑂2
 

𝑟𝐶𝑂2
 

𝑟𝑁 

Eqs. 5-5 
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The matrix is defined by means of known information of the biomass and substrate composition. For 

general purpose, the elemental matrix system (Eqs. 5-4) with its carbon containing sources is 

standardized on c-mol. Besides the rate 𝑟𝑋, the remaining rates (𝑟𝑆, 𝑟𝑂2
, 𝑟𝐶𝑂2

, 𝑟𝑁) are calculated by 

measured variables illustrated in subchapter 5.7.1. In this context, the rates are positive donated if 

production or negative donated in the case of consumption. 

The matrix structure of the balance system enables math calculation operations. Several insightful 
literature[19] [20] [21] [23] exists for solving the system to estimate the unmeasured rates in over 
determined systems. Therefore, a full treatment of their foundations was not the subject of this work. 
Following operations and brief descriptions explain the strategy based on that.  
 
Assuming the balance model satisfies the overall bioreaction without faulty data by convention, the 

system can be summarized according Eqs. 5-6. 

∑ 𝑟𝑖 ⋅ 𝐸

𝑘

𝑖=1

≝ 0 Eqs. 5-6 

 

It is possible to partition the elemental matrix 𝐸 and the rate vector 𝑟𝑖 in measured and calculating 

components in Eqs. 5-7. The biomass production quantified by the production rate 𝑟𝑋 is member of 

the unknown vector 𝑟𝑐 which can be determined with Eqs. 5-8 by using the pseudo-inverse of of 𝐸𝑐. 

𝑟𝑚 ⋅ 𝐸𝑚 + 𝐸𝑐 ⋅ 𝑟𝑐 ≝ 0 
Eqs. 5-7 

 

 

𝑟𝑐 = −𝐸𝑐
# ⋅ 𝐸𝑚 ⋅ 𝑟𝑚 Eqs. 5-8 

 

The redundancy matrix 𝑅 defined by Eqs. 5-9 expresses the relations between all measured rates and 

inform about balance ability and redundancy. The rank of 𝑅 (Degree of Redundancy) equals the 

independent balances and must be greater than one for gross error detection. 

 

𝑅 = 𝐸𝑚 − 𝐸𝑐 ⋅ 𝐸𝑐
# ⋅ 𝐸𝑚 Eqs. 5-9 

 

As another requirement, the rank of 𝑅 must be greater or equal to the number of tested balances 

minus the number of calculated components for the full calculability of non-measured rates. The 

remaining number of equations for reconciliation alignment, called degree of freedom S is the number 

of tested balances minus the rank of the redundancy matrix 𝑅. 

 

The goal of rates reconciliation is to obtain the best estimates 𝑟𝑚𝑏  of measured variables 𝑟𝑚  via least 

square minimization procedure in Eqs. 5-10 with the unknown measured error vector  𝛽. 

 

𝑟𝑚𝑏  = 𝑟𝑚  +   𝛽 Eqs. 5-10 
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It is obvious that the Eqs. 5-6 is not exactly met due to measurement noise. Therefore, the residue 

vector 𝜀 is calculated according Eqs. 5-11. 

 

𝜀 = 𝑅𝑟 ⋅ 𝑟𝑚 
Eqs. 5-11 

 
 
For further calculations, a reduced redundancy matrix 𝑅𝑟 is needed because the inverse of the variance-
covariance matrix of the residues 𝜑 does not exist or lead to incorrect results. Therefore, singular value 
decomposition (SVD) was executed on R to find the non-singular values of R according Eqs. 5-12.  
 
The reduced redundancy matrix is computed from the right-hand singular vector 𝑉. Using 𝑗 columns 
(1 ≤ 𝑗 ≤ 𝑆,    S … degree of freedom)of vector 𝑉, the reduced redundancy matrix 𝑅𝑟  is generated (Eqs. 
5-13). 
 

 

𝑅 = 𝑈 ⋅ 𝑆 ⋅ 𝑉 Eqs. 5-12 

 

𝑅𝑟 = (𝑉𝑖𝑗)
𝑇

       1 ≤ 𝑖 ≤ 𝑆 Eqs. 5-13 

 

The measurement error vector 𝛿 contains information on the error in measured rates created by Eqs. 
5-14. Further, a variance covariance matrix 𝐹 of the measured rates is formed in Eqs. 5-15. This matrix 
is only diagonal, assuming that the variance-covariance matrix is uncorrelated. 
 

𝛿 = 𝑒𝑚 ⋅ 𝑟𝑚 
Eqs. 5-14 

 

 

𝐹 = 𝐸(𝛿 ⋅ 𝛿𝑇) Eqs. 5-15 

 

The covariance matrix of the residuals 𝜑 is calculated in Eqs. 5-16. 

 

𝜑 =  𝑅𝑟 ⋅ 𝐹 ⋅ 𝑅𝑟
𝑇  Eqs. 5-16 

 

With this information, the consistency index h according Eqs. 5-17 can be determined. The index h is a 

suitable value to test the significance of errors caused by errors either the measurement set or in the 

system description. In this case the residual vector differs significantly from zero. 

ℎ =  𝜀 ⋅ 𝜑−1 ⋅ 𝜀𝑇  Eqs. 5-17 
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It has been shown that the h value follows a X2 distribution with the degrees of freedom equals the 

rank of R [24]. Moreover, the residuals are weighted according to their accuracy. If the h value is higher 

than the level of significance at the appropriate degree of freedom an error is significant.  

 

Back to the data reconciliation to find a solution for the unknown measured error vector 𝛽 in Eqs. 5-10. 

This problem can be solved according to [25]. The reconciled measurement vector �̂�𝑚 can be calculated 

by Eqs. 5-18. 

 

�̂�𝑚 = ( 𝐼 − 𝐹 ⋅ 𝑅𝑟
𝑇 ⋅  𝜑−1 ⋅ 𝑅𝑟) ⋅ 𝑟𝑚 Eqs. 5-18 

 

The reconciled measurement vector Eqs. 5-18 can be used in Eqs. 5-8 to calculate an improved biomass 

estimate. 
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5.7.1 Rates Calculators 
 

The measured velocity vector is fundamental to a soft sensor design in addition to the element matrix. 

Furthermore, the errors on the rates by error propagation of measurement inaccuracy are taken into 

account as a novelty in this paper. The following calculated rates are set according to Fig. 5. The 

expressions in the following equations are described in chapter 3. 

 

 

The general material balance for component 𝑖 is formulated in Eqs. 5-19 is balanced as input minus 
output plus reaction expression and corresponds to the accumulation. 
 

�̇�𝑖𝑛𝑐𝑖,𝑖𝑛 − �̇�𝑜𝑢𝑡𝑐𝑖,𝑜𝑢𝑡 + 𝑉𝑅𝑟𝑖 = 𝑉𝑅

𝜕𝑐𝑖

𝜕𝑡
+ 𝑐𝑖

𝜕𝑉𝑅

𝜕𝑡
 Eqs. 5-19 

 

The Eqs. 5-19 applies to all substances of the system such as substrate, nitrogen, oxygen, carbon 

dioxide and biomass [26] [27]. Applying of Eqs. 5-19 for calculating 𝑟𝑖 with 𝑖 = 𝑆 for substrate rate and 

𝑖 = 𝑁 for the nitrogen rate leads to Eqs. 5-20. Furthermore, one can assume that the accumulation 

term and the output mol current are zero according to Eqs. 5-21 The rates can be calculated by a 

difference quotient (Eqs. 5-22) from the measured signals according to Eqs. 5-23. 

 

𝑑𝑛𝑖

𝑑𝑡
= �̇�𝑖,𝑖𝑛 −  �̇�𝑖,𝑜𝑢𝑡 + 𝑟𝑖 Eqs. 5-20 

 

Fig. 5: Balance space for rates calculation. 
Directly measured process variables have font 
colour red, indirectly calculated major variables 
are green highlighted. 



Master-Thesis  Felix Pilz 

page 25 of 73 

𝑑𝑛𝑖

𝑑𝑡
= 0,  �̇�𝑖,𝑜𝑢𝑡 = 0 Eqs. 5-21 

 

𝑟𝑖 = �̇�𝑖,𝑖𝑛 =
∆𝑛𝑖

∆𝑡
=

𝑛𝑖+1 − 𝑛𝑖

∆𝑡
 Eqs. 5-22 

 

�̇�𝑖,𝑖𝑛 =
∆𝑚𝑖

∆𝑡
=

𝑚𝑖+1 − 𝑚𝑖

∆𝑡
 Eqs. 5-23 

 

The outlet molar stream �̇�𝑜𝑢𝑡 must be determined before it is possible the calculate the gaseous rates 

𝑟𝑂2
 and 𝑟𝐶𝑂2

. The outlet molar stream �̇�𝑜𝑢𝑡 is calculated from Eqs. 5-24 to Eqs. 5-37. 

 

𝑑𝑛𝑔𝑎𝑠

𝑑𝑡
= �̇�𝑖𝑛 − �̇�𝑜𝑢𝑡 + 𝑇𝑅 Eqs. 5-24 

 

�̇�𝑖𝑛 =
𝑝𝑛𝑜𝑟𝑚 ∙ ∑ �̇�𝑗,𝑖𝑛,𝑛𝑜𝑟𝑚

𝑛
𝑗=1

𝑅 ∙ 𝑇𝑛𝑜𝑟𝑚
 Eqs. 5-25 

 

𝑉𝑔𝑎𝑠 = 𝑉𝑅𝑡 − 𝑉𝑅 Eqs. 5-26 

 

The current reactor volume 𝑉𝑅 is calculated from the measured balance signal 𝑚𝑅(𝑡) and the assumed 

constant broth density 𝜌. 

𝑉𝑅 = 𝑉𝑅0 +
𝑚𝑅(𝑡) − 𝑚𝑅0

𝜌
 

Eqs. 5-27 

 
 

𝑛𝑔𝑎𝑠 =
𝑝𝑅 ∙ 𝑉𝑔𝑎𝑠

𝑅 ∙ 𝑇𝑅
⇒

𝑑𝑛𝑔𝑎𝑠

𝑑𝑡
=

∆𝑛𝑔𝑎𝑠

∆𝑡
 Eqs. 5-28 

 

𝑑𝑛𝑖𝑛𝑒𝑟𝑡

𝑑𝑡
= �̇�𝑖𝑛,𝑖𝑛𝑒𝑟𝑡 − �̇�𝑜𝑢𝑡, 𝑖𝑛𝑒𝑟𝑡 + 𝑇𝑅𝑖𝑛𝑒𝑟𝑡 

Eqs. 5-29 

 
 

∆𝑛𝑖𝑛𝑒𝑟𝑡

∆𝑡
= 𝑦𝑖𝑛𝑒𝑟𝑡,𝑜𝑓𝑓 ∙

∆𝑛𝑔𝑎𝑠

∆𝑡
 Eqs. 5-30 

 

𝑦𝑖𝑛𝑒𝑟𝑡, 𝑜𝑓𝑓 = 1 − 𝑦𝑂2,𝑜𝑓𝑓 − 𝑦𝐶𝑂2,𝑜𝑓𝑓 − 𝑦𝐻2𝑂,𝑜𝑓𝑓 Eqs. 5-31 

 

The water content is calculated in Eqs. 5-32 with the measured 𝑦𝑜2,𝑤𝑒𝑡 in the wet outlet stream, 

provided there is no bioreaction in the reactor.  

 

𝑦𝐻2𝑂,𝑜𝑓𝑓 = 1 −
𝑦𝑜2,𝑤𝑒𝑡

𝑦𝑂2,𝑎𝑖𝑟
 Eqs. 5-32 
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�̇�𝑖𝑛, 𝑖𝑛𝑒𝑟𝑡,𝑛𝑜𝑟𝑚 = �̇�𝑖𝑛,𝑁2,𝑛𝑜𝑟𝑚 + (1 − 𝑦𝑂2,𝑎𝑖𝑟 − 𝑦𝐶𝑂2,𝑎𝑖𝑟) ∙ �̇�𝑖𝑛,𝑎𝑖𝑟,𝑛𝑜𝑟𝑚 Eqs. 5-33 

 

�̇�𝑖𝑛, 𝑖𝑛𝑒𝑟𝑡 =
𝑝𝑛𝑜𝑟𝑚 ∙ �̇�𝑖𝑛, 𝑖𝑛𝑒𝑟𝑡,𝑛𝑜𝑟𝑚

𝑅 ∙ 𝑇𝑛𝑜𝑟𝑚
 Eqs. 5-34 

 

The transport rate  𝑇𝑅𝑖𝑛𝑒𝑟𝑡 of the inert gas can be supposed to be zero. 

 

𝑇𝑅𝑖𝑛𝑒𝑟𝑡 = 0 mol/h Eqs. 5-35 

 

�̇�𝑜𝑢𝑡,𝑖𝑛𝑒𝑟𝑡 = �̇�𝑖𝑛,𝑖𝑛𝑒𝑟𝑡 + 𝑇𝑅𝑖𝑛𝑒𝑟𝑡 −
∆𝑛𝑖𝑛𝑒𝑟𝑡

∆𝑡
 Eqs. 5-36 

 

Finally, the output stream can be calculated with Eqs. 5-37. 

 

 �̇�𝑜𝑢𝑡 =
�̇�𝑜𝑢𝑡,𝑖𝑛𝑒𝑟𝑡

𝑦𝑖𝑛𝑒𝑟𝑡,𝑜𝑓𝑓
 Eqs. 5-37 

 

The application of Eqs. 5-38 to Eqs. 5-44, leads to the calculation of 𝑟𝑖 with 𝑖 = 𝑂2 for the oxygen the 

uptake rate and 𝑖 = 𝐶𝑂2 for the carbon evolution rate. The accumulation term can be formed 

according Eqs. 5-39 by means of a difference quotient.  

 

𝑑𝑛𝑖

𝑑𝑡
= �̇�𝑖,𝑖𝑛 −  �̇�𝑖,𝑜𝑢𝑡 + 𝑇𝑅𝑖 Eqs. 5-38 

 

𝑑𝑛𝑖

𝑑𝑡
≝

∆𝑛𝑖

∆𝑡
= 𝑦𝑖,𝑜𝑓𝑓 ∙

∆𝑛𝐺𝑎𝑠

∆𝑡
 Eqs. 5-39 

 

�̇�𝑖,𝑖𝑛 = 𝑦𝑖,𝑖𝑛 ∙ �̇�𝑖𝑛 Eqs. 5-40 

 

𝑦𝑖,𝑖𝑛 =
�̇�𝑖,𝑖𝑛, 𝑛𝑜𝑟𝑚 + 𝑦𝑖,𝐴𝑖𝑟 ∙ �̇�𝑎𝑖𝑟,𝑖𝑛,𝑛𝑜𝑟𝑚

∑ �̇�𝑗,𝑖𝑛,𝑛𝑜𝑟𝑚
𝑛
𝑗=1

 Eqs. 5-41 

 

�̇�𝑖,𝑖𝑛 = 𝑦𝑖,𝑖𝑛 ∙ �̇�𝑖𝑛 Eqs. 5-42 

 

�̇�𝑖,𝑜𝑢𝑡 = 𝑦𝑖,𝑜𝑓𝑓 ∙ �̇�𝑜𝑢𝑡  Eqs. 5-43 

 

⇒ 𝑟𝑖 = 𝑇𝑅𝑖 = �̇�𝑖,𝑖𝑛 − �̇�𝑖,𝑜𝑢𝑡 −
∆𝑛𝑖

∆𝑡
 Eqs. 5-44 
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A glance on the equations Eqs. 5-23 Eqs. 5-36 and Eqs. 5-44 shows the dependence of the rates on the 

selected time interval ∆𝑡. This influence on the method of finite difference approximation has been 

studied[28]. As a new approach, the traditional method of finite difference approximation was 

replaced by a linear regression function. The Matlab function regress is performed on a certain amount 

of rate datapoints, which are adjusted by a moving window with the selected windowsize. 

[b,bint]  = regress(y,X) returns a vector b where the first line represents the gradient corresponding to 

the current rate.  

 

5.7.1.1 Propagation of uncertainty and noise error 

 

The total absolute error 𝑒𝑎𝑏𝑠 of the rates according [29] corresponds to the sum of the noise error 𝑒𝑛𝑜𝑖𝑠𝑒,𝑖 

and the propagated uncertainty error ∆𝑓𝑟𝑖
 , which is determined by the measured uncertainty according 

Eqs. 5-45. 

 

𝑒𝑎𝑏𝑠,𝑖 = 𝑒𝑛𝑜𝑖𝑠𝑒,𝑖 +  ∆𝑓𝑟𝑖
 Eqs. 5-45 

 

[b,bint] = regress(y,X) also returns a p-by-2 matrix bint of 95% confidence intervals for the coefficient 

estimates. The first column of bint contains lower confidence bounds for each of the p coefficient 

estimates. The noise error 𝑒𝑛𝑜𝑖𝑠𝑒,𝑖 of the rates is computed with this information and always the first 

datapoint of the moving window was taken for the calculation. 

The absolute propagated uncertainty error ∆𝑓𝑟𝑆
 of the substrate rate 𝑟𝑆 as function of the weight signal 

and feed concentration can be calculated according Eqs. 5-46 to Eqs. 5-48. 

 
𝜕𝑓𝑟𝑆

𝜕𝑤𝑆
=

1

𝑑𝑡
⋅

𝑐𝐹𝑒𝑒𝑑 ⋅ 𝑐𝑚𝑜𝑙

𝜌𝐹𝑒𝑒𝑑 ⋅ 𝑀𝐹𝑒𝑒𝑑
 Eqs. 5-46 

 

𝜕𝑓𝑟𝑆

𝜕𝑐𝐹𝑒𝑒𝑑
=

𝑑𝑤

𝑑𝑡
⋅

𝑐𝑚𝑜𝑙

𝜌𝐹𝑒𝑒𝑑 ⋅ 𝑀𝐹𝑒𝑒𝑑
 Eqs. 5-47 

 

∆𝑓𝑟𝑆
= √(

𝜕𝑓𝑟𝑆

𝜕𝑤𝑆
)

2

⋅ (∆𝑒𝑤𝑆
)

2
+ (

𝜕𝑓𝑟𝑆

𝜕𝑐𝐹𝑒𝑒𝑑
)

2

⋅ (∆𝑒𝑐𝐹𝑒𝑒𝑑
)

2
 Eqs. 5-48 

 

The absolute propagated uncertainty error∆𝑓𝑟𝑁
 of the nitrogen rate 𝑟𝑁 as function of the weight signal 

and ammonia concentration can be calculated according Eqs. 5-49 to Eqs. 5-51. 

𝜕𝑓𝑟𝑁

𝜕𝑤𝑁𝐻3
=

1

𝑑𝑡
⋅

𝑐𝑁𝐻3 ⋅ 𝑐𝑚𝑜𝑙 ⋅ 14

17 ⋅ 𝜌𝑁𝐻3 ⋅ 𝑀𝑁𝐻3
 Eqs. 5-49 

 

𝜕𝑓𝑟𝑁

𝜕𝑐𝑁𝐻3
=

𝑑𝑤𝑁𝐻3

𝑑𝑡
⋅

14

17 ⋅ 𝑀𝑁𝐻3
 Eqs. 5-50 

 

∆𝑓𝑟𝑁
= √(

𝜕𝑓𝑟𝑁

𝜕𝑤𝑁𝐻3
)

2

⋅ (∆𝑒𝑤𝑁𝐻3
)

2
+ (

𝜕𝑓𝑟𝑁

𝜕𝑐𝑁𝐻3
)

2

⋅ (∆𝑒𝑐𝑁𝐻3
)

2
 Eqs. 5-51 
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The absolute propagated uncertainty error ∆𝑓𝑟𝑂2
 of the oxygen uptake rate 𝑟𝑂2

 as function of the gas 

inlet streams AIRin and O2in, measured yO2,off and 𝑦𝐶𝑂2,𝑜𝑓𝑓 concentrations in the offgas are calculated 

according Eqs. 5-52 to Eqs. 5-56. 

 

 

𝜕𝑓𝑂2

𝜕𝐹𝐴𝐼𝑅𝑖𝑛
= −0,2096 +

0,7804 ⋅ 0,2096 ⋅ 𝑦𝑂2,𝑜𝑓𝑓

𝑦02,𝑤𝑒𝑡 − 0,2096 ⋅ (𝑦𝑂2,𝑜𝑓𝑓 + 𝑦𝐶𝑂2,𝑜𝑓𝑓)
 Eqs. 5-52 

 

𝜕𝑓

𝜕𝐹𝑂2𝑖𝑛
=  −1 Eqs. 5-53 

 

𝜕𝑓𝑂2

𝜕𝑦𝑂2,𝑜𝑓𝑓
=

𝐹𝐴𝐼𝑅𝑖𝑛 ⋅ 0,7804 ⋅ 0,2096 ⋅ (𝑦02,𝑤𝑒𝑡 − 0,2096 ⋅ (𝑦𝑂2,𝑜𝑓𝑓 + 𝑦𝐶𝑂2,𝑜𝑓𝑓)) + 0,2096 ⋅ 𝐹𝐴𝐼𝑅𝑖𝑛 ⋅ 0,7804 ⋅ 0,2096 ⋅ 𝑦𝑂2,𝑜𝑓𝑓

(𝑦02,𝑤𝑒𝑡 − 0,2096 ⋅ (𝑦𝑂2,𝑜𝑓𝑓 + 𝑦𝐶𝑂2,𝑜𝑓𝑓))
2  Eqs. 5-54 

 

𝜕𝑓𝑂2

𝜕𝑦
𝐶𝑂2,𝑜𝑓𝑓

=
0,2096 ⋅ 𝐹𝐴𝐼𝑅𝑖𝑛 ⋅ 0,7804 ⋅ 0,2096 ⋅ 𝑦

𝑂2,𝑜𝑓𝑓

(𝑦
02,𝑤𝑒𝑡

− 0,2096 ⋅ (𝑦
𝑂2,𝑜𝑓𝑓

+ 𝑦
𝐶𝑂2 ,𝑜𝑓𝑓

))
2  Eqs. 5-55 

 

∆𝑓𝑟𝑂2
= √(

𝜕𝑓𝑂2

𝜕𝐹𝐴𝐼𝑅𝑖𝑛
)

2

⋅ (∆𝑒𝐹𝐴𝐼𝑅𝑖𝑛
)

2
+ (

𝜕𝑓𝑂2

𝜕𝐹𝑂2𝑖𝑛
)

2

⋅ (∆𝑒𝐹𝑂2𝑖𝑛
)

2
+ (

𝜕𝑓𝑂2

𝜕𝑦𝑂2,𝑜𝑓𝑓
)

2

⋅ (∆𝑒𝑦𝑂2,𝑜𝑓𝑓
)

2
+ (

𝜕𝑓𝑂2

𝜕𝑦𝐶𝑂2,𝑜𝑓𝑓
)

2

⋅ (∆𝑒𝑦𝐶𝑂2,𝑜𝑓𝑓
)

2
 Eqs. 5-56 

 

 

The absolute propagated uncertainty error ∆𝑓𝑟𝐶𝑂2
 of the carbon evolution rate 𝑟𝐶𝑂2

 as function of the 

gas inlet stream AIRin, measured yO2,off and 𝑦𝐶𝑂2,𝑜𝑓𝑓 concentration in the offgas are calculated 

according Eqs. 5-57 to Eqs. 5-60. 

 

 

𝜕𝑓𝐶𝑂2

𝜕𝐹𝐴𝐼𝑅𝑖𝑛

=  −0,000407 +
0,7804 ⋅ 0,2096 ⋅ 𝑦𝐶𝑂2,𝑜𝑓𝑓

𝑦02𝑤𝑒𝑡
− 0,2096 ⋅ (𝑦𝑂2,𝑜𝑓𝑓 + 𝑦𝐶𝑂2,𝑜𝑓𝑓)

 Eqs. 5-57 

 

𝜕𝑓𝐶𝑂2

𝜕𝑦𝐶𝑂2𝑜𝑢𝑡

=
𝐹𝐴𝐼𝑅𝑖𝑛 ⋅ 0,7804 ⋅ 0,2096 ⋅ (𝑦02𝑤𝑒𝑡,𝑜𝑓𝑓 − 0,2096 ⋅ (𝑦𝑂2,𝑜𝑓𝑓 + 𝑦𝐶𝑂2,𝑜𝑓𝑓)) + 0,2096 ⋅ 𝐹𝐴𝐼𝑅𝑖𝑛 ⋅ 0,7804 ⋅ 0,2096 ⋅ 𝑦𝐶𝑂2,𝑜𝑓𝑓

(𝑦02𝑤𝑒𝑡
− 0,2096 ⋅ (𝑦𝑂2,𝑜𝑓𝑓 + 𝑦𝐶𝑂2,𝑜𝑓𝑓))

2  Eqs. 5-58 

 

𝜕𝑓𝐶𝑂2

𝜕𝑦𝑂2,𝑜𝑓𝑓
=  

0,2096 ⋅ 𝐹𝐴𝐼𝑅𝑖𝑛 ⋅ 0,7804 ⋅ 0,2096 ⋅ 𝑦𝐶𝑂2,𝑜𝑓𝑓

(𝑦02𝑤𝑒𝑡,𝑜𝑓𝑓 − 0,2096 ⋅ (𝑦𝑂2,𝑜𝑓𝑓 + 𝑦𝐶𝑂2,𝑜𝑓𝑓))
2 Eqs. 5-59 

 

∆𝑓𝑟𝐶𝑂2
= √(

𝜕𝑓𝐶𝑂2

𝜕𝐹𝐴𝐼𝑅𝑖𝑛

)

2

⋅ (∆𝑒𝐹𝐴𝐼𝑅𝑖𝑛
)

2
+ (

𝜕𝑓𝐶𝑂2

𝜕𝑦𝐶𝑂2,𝑜𝑓𝑓

)

2

⋅ (∆𝑒𝑦𝐶𝑂2,𝑜𝑓𝑓
)

2

+ (
𝜕𝑓𝐶𝑂2

𝜕𝑦𝑂2,𝑜𝑓𝑓

)

2

⋅ (∆𝑒𝑦𝑂2,𝑜𝑓𝑓
)

2

 Eqs. 5-60 
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5.8 Quantification of Setup 
 

The experiment must be performed within the technical limits of the setup. Therefore, a kinetic model 
for the simulation of the critical system variables process-time, biomass and reactor volume as function 
of the specific substrate rate qs with different volumetric mass transfer coefficients is created. 
Whether or not the experiment with the online biomass estimation setup is ready it is necessary to 
provide a basic decision tool. 
 

 

5.8.1 Fed Batch Model  
 

A fed batch model was established according Eqs. 5-61 - Eqs. 5-63 to quantify the change in biomass, 

substrate concentration and volume of the system. 

 

 

𝑑𝑋

𝑑𝑡
=  𝜇𝑚𝑎𝑥 ⋅

𝑆

𝐾𝑆 + 𝑆
⋅ 𝑋 Eqs. 5-61 

 

𝑑𝑆

𝑑𝑡
=  𝑞𝑠 ⋅ 𝑋 −

(𝜇𝑚𝑎𝑥 ⋅
𝑆

𝐾𝑆 + 𝑆
⋅ 𝑋 ) 

𝑌𝑋
𝑆

 Eqs. 5-62 

 

𝑑𝑉

𝑑𝑡
=  

𝑞𝑠 ⋅ 𝑋 

𝑐𝑓

 Eqs. 5-63 

 

 

5.8.2 Simulation study 
 

The previously in Eqs. 5-4 and Eqs. 5-5 described Fed Batch model is used to quantify the substrate and 

nitrogen consumption for the biomass production. In addition, the respective volumetric mass 

coefficient kLa was calculated with the knowledge of rO2, which can be considered to correspond to the 

OTR (oxygen transfer rate) according Eqs. 5-64. For each qs phase, the kLa was compared with the kLa 

max of 121 h-1 given from a previous kLa determination experiment.  

  

𝑘𝑙𝑎 =  
𝑂𝑇𝑅 

(𝑐∗ − 𝑐𝑂2
)
 Eqs. 5-64 
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6 Results and Discussion  
 

The chapter six presents the results of the performed Saccharomyces cerevisiae cultivation starting 

with the evaluation of historical data, including a user story to study general application requirements 

and regulatory requirements. Furthermore, the results of the setup quantification and the simulation 

study provide an overview of the boundaries and behaviour of the designed cultivation run. The 

following subsections 6.4.1 to 6.4.3 show and discuss the results of the estimated biomass with 

calculated and reconciled rates for different model types.  

 

6.1 Historical Data Evaluation 
 

A user story was added to identify the issues and challenges to implement the online biomass 

estimation soft sensor concept. A metabolic balance analyser tool for estimating the biomass already 

exists in the process control system Lucullus, but was not applied in the cultivations. It was found out 

that an internal function has an error and returns wrong results. Furthermore, there is no possibility 

to fix this problem without updating the library packages, so this instrument is not available for 

biomass estimations. 

Focusing on the challenges for process control strategies, physiological assumptions and technical 

limits, it was observed that following process parameters were exceeded: 

 

• The oxygen uptake rate, OUR is higher than the oxygen transport rate OUR. That means that 

the volumetric mass transfer coefficient is too small in the selected setup. 

• Usage of pure oxygen instead of air leads to be out of the offgas analyser ranges. 

• Secondary metabolites due to insufficient feeding strategy. 

• Inadequate control of the dissolved oxygen caused by the back pressure of the offgas analysis. 

 

The acquired knowledge of the user story emphasises the general goal to control the cultivation under 

defined conditions, such as a suitable feeding profile. This feeding profile depended on the amount of 

biomass which can be computed with this soft sensor concept. Table 5 lists the significant cultivation 

parameters with its initial values and desired accuracy. In this context, the existing pH and temperature 

control is satisfying the demands. 

Table 5: significant cultivation parameters  

State variable Priciple Setpoint Accuray 

dO2 direct measured 30% +-5% 

pH direct measured 7 6,8-7.2 

T direct measured 37°C +-1 °C 

qS indirect measured - ±0,03 g/g/h 
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6.2 Quantification of Setup 
 

By using the Fed batch model and the initial parameter inputs shown in Table 6, the critical system 

parameters such as critical process time, maximum generated biomass amount and critical broth 

volume can be calculated. It depends on the specific uptake rate qs. and the respective system-

dependent maximum volumetric mass transport of oxygen shown in Fig. 6. 

 

Table 6 Parameters of Fed batch model  

Parameters  Description Initial Values  Unit  

X  initial biomass  23 g 
V  initial volume  3 l 
S  substrate 0 g 
μmax specific growth rate of X 0,2 h-1 
Yxs yield biomass/substrate 0,35 g/g 
cf  glucose concentration 200 g/l 
H Henry constant oxygen 1,3*10-3 mol/l/atm 
yO2  O2 fraction of aeration  0,21 - 
dO2 dissolved O2 concentration 35 % 

 

 

  

Fig. 6: A: The critical process time, B: critical biomass and C: critical volume for different volumetric mass 
transfer coefficients kLa dependent of qs. 

 

Fig. 7Fig. 8: A: The critical process time, B: critical biomass and C: critical volume for different volumetric 
mass transfer coefficients kLa dependent of qs are shown as basic facility for planning the fed batch 
experiment within the technical and physiological limits for the used setup and model.  
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As described in 5.6 there are limitations for the utilization of the created equation system model. 

Assumed physiological behaviours and technical limitations should not be exceeded for a successful 

application of the soft sensor. In this context, it should be noted that the cultivation run should not 

reach areas (1) - (3). Area (1) shows the area with the ethanol formation. It should be to be assumed, 

started with a specific rate of qs = 0,233 g/(g∙h) according [30]. The technical limit (2) is caused by 

oxygen transfer limitations described by the volumetric mass transfer coefficient kLa. In area (3), 

ethanol is formed and the technical design space exceeded. 

 

The obtained maximum volumetric mass transfer coefficient kladesign 121 h-1 from a previous kLa 

determination, including a safety of 0,8* kLadesign ≈ 100 h-1 is the basis of designing the experiment. The 

experiment is designed with a specific uptake rate of qs =0,1 and 0,2 g/(g∙h), which satisfies the 

assumptions and is below the technical limits. Moreover, a qs =0,3 g/(g∙h) it is chosen to interpret the 

behaviour if the thresholds were exceeded. 

It can be observed that a cultivation with a constant specific rate of qs = 0.1 g/(g∙h) is only limited by 

the maximum working volume of 5l and is able to run approximately 70 h. Furthermore, a cultivation 

with a constant specific rate qs = 0,2 g/(g∙h) is limited in the oxygen transfer, which can be interpreted 

by the violet line (kLa =100 h-1) as a threshold. In this case the maximum grown biomass is 

approximately 140 g and the runtime which is limited up to 28 hours.  

The last part of the experiment at a specific uptake rate qs = 0.3 g/(g∙h) is initially located in the region 

that represents ethanol formation and which is also limited by the oxygen transfer. Under these 

conditions, the cultivation is complete after 12 hours and a biomass of 75 g. The setup was constructed 

according to Fig. 9. 

 

  

Fig. 9: Setup of Fermenter 1  
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6.3 Simulation study  
 

The setup quantification information shows the maximum amount of biomass that can be achieved 

using the selected substrate uptake rates qs  and gives an indication of the maximum possible run time. 

The distribution of the different chosen qs as 0,1 0,2 0,3 in g/(g∙h) leads to the overall simulated 

experiment shown in Fig. 10. The estimated biomass, consumed substrate glucose and nitrogen is 

shown in subplot A. Subplot B shows the simulated kLa and the increasing broth volume as a function 

of time associated with the threshold values of these parameters.  

In this context the performance of such cultivations also includes shaping the length of time periods 

for each qs in a manner to optimally quantify the biomass increase alternatively with the measurement 

of optical density and dry weight. Consequently, the sampling interval of the low specific qs rate 

qs = 0.1 g/(g∙h) and an additional rate, qs = 0,05 g/ g/(g∙h), is lower and these experimental periods are 

also run overnight.  

 

 

The simulation of the required volumatric mass coefficient of oxygen and the increase in the broth 

volume shows that the thresholds are exceeded in the period qs = 0,3 g/(g*h). This period should show 

the behaviour of the cultivation outside the technical limits and the additional ethanol formation.  

Fig. 10: A: Simulation of consuming substrate(glucose), nitrogen and produced biomass in g. B: Trends 
of kLa and broth volume increase various qs periods as a function of time. The threshold for kLa max is 
100 h-1 and for the maximum working volume 5 l.  
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6.4 Process data results 
 

Following subchapters shows the results of two different model types starting with the equation 

system with 3 balances (C, DoR, N) in subchapter K3S1 and second model with 2 balances (C, DoR) in 

subchapter K2S1. An additional run shown in subchapter K2S1_2 was performed with a feed 

concentration of 400 g/l instead of 200 g/l to investigate the performance of higher qs rates. 

The evaluation of the results for the various equation models runs K3S1, K2S1, K2S1_2 followed the 

workflow starting with checking the consistency of the data using the statistical X² test. Subsequently, 

the results of each input rate were displayed in contrast to the adjusted rate. In addition, the 

time - dependent relative errors of the calculated rates are shown. As a next investigating step, the 

calculated biomass from each mass balance including the estimated biomass with calculated and 

reconciled rates were illustrated. Moreover, the discrepancies of the estimated biomass with 

calculated and reconciled rates were shown and investigated. A comparison of the estimated biomass 

with calculated and reconciled rates in contrast to the dry weight (DW) and optical density (OD) 

measurements completed the examination of the used soft sensor concept. In this context, it should 

be noted that the online microscope was not available as an online tool for determining the biomass 

due to the increased cell density.  

 

6.4.1 K3S1 
 

Several statistical tests are available in literature to investigate the quality of the results [31], [32] and 

[33]. In this thesis, the consistency check for the K3S1 model was performed using the statistical global 

X2 test, which was also proposed in [34] [35]. The result is shown in Fig. 11. Subplot A represents the 

calculated consistency index value h with a bar interval of 1 hour against the levels of significance 

α  =  (0,1 0,05 0,025 0,01) with the degree of freedom of 2 equal to the rank of the redundancy matrix 

R. It can be observed that the consistency index value h is exceeding the thresholds, respectively all 

levels of significance. This means a significant error has been detected. The classification of the errors 

can be done according [21] as noted: 

 

I. At any rate, on one of the primary measurements exists a significant (gross) error. 

II. The equations system is incorrect. 

a. a significant component is not considered in the equation system or 

b. a component has a different composition from the specified one. 

III. The variances of the rates are too small resulting in a too sensitive X2 test. 

Identifying the gross error measurements when the original complete data set does not pass the 

hypothesis test can be determined by deleting a measurement and calculating the consistency test 

again[24]. If the model does not describe the bioreaction, it is possible to remove an equation from 

the model and recalculate the consistency test to identify the error containing equation. 
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Subplot B shows the variances of each rate as a function of time and set qs rates. In this context, the 

time course result of the rN variance is significantly manipulated by Savitzky-Golay filtering to prepare 

the outcome in a vivid depiction. The variance values higher than 1 (mol/h)2 were caused by the 

discontinuous working nitrogen pump resulting in a low to zero nitrogen rate leading to a relative error 

that goes towards the infinite and culminate to a very high variance. In contrast to that, the other 

variances of the rates were very low all the time. Moreover, the rN variance was lowest when the 

nitrogen feed was on.  

Furthermore, it can be observed that in the phase qsset = 0.2 g/(g∙h), the h value decreased 

exponentially. Decreasing in the direction of threshold values and the consistency value increased 

again with a smaller qsset = 0.05 g/(g∙h) and got about 2 magnitudes higher. This suggests that there 

can be an error in the model, or the variances of the rates are too small resulting in a too sensitive X2 

test assuming there is no gross error on the calculated rates. Investigating the rates, including 

examining each balance gives more information about this behaviour and was studied subsequently.  

Nevertheless, the results for the K3S1 were shown without passing the global statistical X2 test to 

demonstrate and observe the behaviour of estimating the biomass via measured and reconciled rates.  

The calculated substrate rate of glucose (red line), the confidence intervals with a level of significance 

of (α= 0.05) and the reconciled rate in c-mol are shown in Fig. 12. It could be observed that the 

calculated and the reconciled rate is similar in the low qs phases (qs = 0,1; 0,05 g/(g∙h)). The 

qs = 0,2 g/(g∙h) phase represented a distinction of the reconciled rate and the calculated rate at the 

Fig. 11: K3S1 A: Statistical Chi-quadrat test in 60 min intervals for model validation. The straight lines represent 
the levels of significance for the statistical test. B: Time-dependent variances of the K3S1 model input rates. 
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beginning of the phase. Moreover, they are completely different in the phase of qs = Feed max. In this 

context, it must be stated that the planed qs = 0,3 g/(g∙h) could not be performed the whole time in 

this phase caused by the upper pump rate limitation. A supplementary experiment of higher qs rates 

was realized in subchapter 6.4.3.  

 

Fig. 13 shows the relativ error in the substrate rate as the sum of the propagation and noise error. The 

window size of the linear regression was set to 10 which corresponds to the accounted data points. 

These 10 data points represent a time-interval of 5 minutes, accorrding to a signal receiving interval of 

30 seconds from the Python Server. It could be observed that the relative propagation error and noise 

error are significantly higher in the low qs phases caused by the poor signal to noise ratio (SNR) which 

was also observed in [28]. Moreover, the noise error has less impact of the time-dependent error. 

Fig. 12: K3S1 substrate consumption rate rS. The red line, including grey confidence intervals 
(α= 0.05) represents the online calculated rS. The reconciled rate rS is shown as black trend.  

Fig. 13: K3S1 time-dependent relative error (red) separated in noise (grey) and 
propagation error (blue) of substrate consumption rate rS.  
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The results of the calculated nitrogen input rate rN , including the 95% confidence intervals and the 

reconciled rate are shown in in Fig. 14. It is interesting that the reconciled rate was completely equal 

to the calculated rate, especially at the beginning, in phase qs =0,2 g/(g∙h) and in the phase qs = Feed 

max in contrast to the results of the substrate rate before. 

The results of the relative error by means of the scale calculated rN rate (Fig. 15) shows throughout 

different trends in contrast to the relative error of the rS error shown in Fig. 13. The propagation error 

has a significantly higher impact of the total relative error in contrast to the error results of rS. 

Furthermore, there were outliers caused by extremely low to zero rate calculations, especially in the 

phases with low qs rates.  

 

Fig. 14: K3S1 nitrogen consumption rate rN. The red line, including grey confidence intervals (α= 0.05) 
represents the online calculated rN. The reconciled rate rN is shown as black trend. 

Fig. 15: K3S1 time-dependent relative error (red) separated in noise (grey) and propagation 
error (blue) of the nitrogen consumption rate rN.  

 

 

Fig. 16Fig. 17: K3S1 time-dependent relative error (red) separated in noise (grey) and 
propagation error (blue) of the nitrogen consumption rate rN.  
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The calculated gas rates, including the 95% confidence intervals are shown as following, beginning with 

the results of the oxygen uptake rate rO2 in mol/h as a function of time. It must be stated that the O2 

mass flow controller is not considered in K3S1 which otherwise leads to higher confidence intervals. It 

could be observed that the calculated and reconciled rate were similar in low qs phases and there were 

mismatches at the beginning of the phase qs = 0,2 g/(g∙h) and in the phase qs = Feed max phase. The 

reconciled rO2 rate is underrated in contrast to the calculated rate in these parts. 

 

The outcome of the relative rO2 rate error is represented in Fig. 19. It could be detected that the relative 

error on rO2 is mainly dependent on the error propagation results. The noise error was at least 

approximately three magnitudes smaller than the propagated error. The outliers in the noise error and 

propagated error results were caused by the sampling procedure during the run. It could be identified 

that the calculated relative error on rO2 was higher in contrast to rS and rN calculated with scale signals.  

  

Fig. 18: K3S1 oxygen uptake rate rO2. The red line, including grey confidence intervals (α= 0.05) 
represents the online calculated rO2. The reconciled rate rO2 is shown as black trend. 

Fig. 19: K3S1 time-dependent relative error (red) separated in noise (grey) and 
propagation error (blue) of the oxygen uptake rate rO2. 
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The behaviour of the carbon evolution rate rCO2 in mol/h is revealed in Fig. 20. As similar to the rO2 rate 

the calculated and reconciled rate were just the same in the low qs phases. Moreover, the reconciled 

rate was also underrated at the beginning of phase qs = 0,2 g/(g∙h) and the phase qs = Feed max.  

 

The trend of the relative error on rCO2 during the trial is shown in Fig. 21. The error characteristic was 

similar to the rO2 error. The outliers in the noise signal was caused by the sample procedure. The time-

dependent relative error was mainly driven by error propagation. As seen the noise error was at least 

4 magnitudes smaller than the propagated error. 

 

  

Fig. 20: K3S1 carbon dioxide evolution rate rCO2. The red line, including grey confidence intervals 
(α= 0.05) represents the online calculated rCO2. The reconciled rate rCO2 is shown as black trend. 

Fig. 21: K3S1 time-dependent relative error (red) separated in noise (grey) and propagation error (blue) 
of the carbon dioxide uptake rate rCO2. 
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The results of the dissolved O2 concentration control strategy are shown in Fig. 22. The setpoint of 35% 

and the control of it is given in subplot A for all phases. The actuating variables agitator speed and the 

air flow are revealed in subplot B. Most of the time the varying agitator speed was sufficient to control 

the O2 concentration setpoint. The change of the specific uptake rate qs led to the singular overshoot 

at the point of 22 hours. Moreover, a good control behaviour is observed when qs is decreased to 

0,05 g/(g∙h).  

A different manner was detected in the qs rate of Feed max. Here the O2 concentration was not only 

reached by manipulating the stirrer speed. In this phase the air flow regulation entered the control 

loop and strong overshoots could be discovered. This behaviour could be primarily caused by the high 

qs change from qs = 0,05 g/(g∙h) to the maximum feed pump rate and also by switching the metabolic 

mode depending of the glucose levels[36] [37]. 

 

 

 

  

Fig. 22: A: closed loop controlled dissolved O2 on 35%. B: Subplot shows the actuating variables 
agitator speed and aeration rate of the cascade control system. 
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To examine the results more closely, each mass balance is shown in Fig. 23. Subplot A shows the 

calculated biomass, which was calculated independently from each mass balance, including the 

estimated biomass result, which is displayed as a red line.  

In the qs =0,1 g/(g∙h) phase, the calculated biomass amount of each balance was reasonably similar 

and distinguish with the beginning of the qs = 0,2 g/(g∙h) phase. The DoR balance predicted the biomass 

amount result best in contrast to the C-balance and N-balance determined biomass quantity. An 

interesting aspect accounted the fact that the estimated biomass amount is nearly similar to the 

determined biomass, according the DoR balance. So it could be justified by a low error of this balance. 

The relative and cumulative absolute error with the estimated biomass rate was examined on the 

different mass balances shown in subplot B-D. The relative error was related to the overall conversion 

of each balance according Eqs. 6-1 to Eqs. 6-3. 

 

𝑒𝑐,𝑟𝑒𝑙(𝑡) = 100 ⋅
𝑒𝑐,𝑎𝑏𝑠(𝑡)

1 ⋅ 𝑟𝑋(𝑡) + 1 ⋅∣ 𝑟𝑆(𝑡) ∣ +1 ⋅ 𝑟𝐶𝑂2(𝑡)
 Eqs. 6-1 

 

𝑒𝐷𝑜𝑅,𝑟𝑒𝑙(𝑡) =  100 ⋅
𝑒𝐷𝑜𝑅,𝑎𝑏𝑠(𝑡)

4,159 ⋅ 𝑟𝑋(𝑡) + 4 ⋅∣ 𝑟𝑆(𝑡) ∣ +4 ⋅∣ 𝑟𝑂2(𝑡) ∣
 Eqs. 6-2 

 

𝑒𝑁,𝑟𝑒𝑙(𝑡) =  100 ⋅
𝑒𝑁,𝑎𝑏𝑠(𝑡)

0,176 ⋅ 𝑟𝑋(𝑡) + 1 ⋅∣ 𝑟𝑁(𝑡) ∣
 Eqs. 6-3 

 

Subplot B shows the absolute and relative error of the C-balance as a function of time. After solving 

the equation system according to Eqs. 5-8, it could be observed that the biomass was underestimated 

with regards to the C-balance and led to a cumulated error by 0,4 mol of biomass.  

Investigating the cumulative and relative error of the DoR-balance as a function of time, it was found 

out that the relative error in terms of the C and N-balance was lowest. This low error is consistent to 

the estimated biomass, which was near to the calculated biomass from the DoR-balance revealed in 

subplot A. It could be seen in subplot C the cumulative error was increased to approximately 0,13 mol. 

This can be also interpreted that the biomass is overestimated. 

The relative and cumulative error of the N-balance for the chosen time interval is shown in subplot C. 

A look on the relative error a much higher error on this balance in contrast to the C and DoR balance 

was identified. In addition, the cumulative error was almost minus 0,3 moles, which can be interpreted 

that 0,3 moles of nitrogen were not available for the estimated biomass, since it can be assumed that 

all the nitrogen input is used to produce biomass. In conclusion, these results of the N balance made 

this balance to be a candidate of a systematic balance error, which could cause the overall not passing 

consistency test and was further discussed after the same procedure with reconciled rates.  

Nevertheless, the estimated biomass calculated according Eqs. 5-8 for the K3S1 model (C, DoR, N-

balance) with glucose as substrate (S1) showed that the DoR-balance is describing the mass transfer 

of the overall bioreaction most suitable.  
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The results shown in Fig. 23. revealed discrepancies in the balances, especially in the N and C balance 

in general. As a next step, it is possible to alter the measured rates having regard to their accuracies 

quantified by their standard deviations of the rates according Eqs. 5-18.  

  

Fig. 23: K3S1 A: Calculated biomass from C, DoR and N balance with additional estimated biomass 
result as a function of the time. B: C-balance cumulative error in mol. The relative error relates to the 
total carbon across the balance space. C: DoR-balance cumulative error in mol. The relative error 
relates to the total electron’s actions across the balance space. D: N-balance cumulative error in mol. 
The relative error of N-balance relates to the total nitrogen across the balance space. 
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The biomass estimation results with the reconciled rates are shown in the subplots A-D in Fig. 24. The 

estimated biomass with the reconciled rates represents the blue line in subplot A. In contrast to the 

results in Fig. 23, the estimated biomass was well predicted from the N-balance. Subplot B shows each 

balance residue. The residue of the nitrogen balance was here also significantly higher than the 

residues of the C- and DoR-balance and was contributing the conclusion that this nitrogen balance 

does not characterize the bioreaction in terms of nitrogen with this discontinuous rN feeding profile. 

The relative errors were performed according Eqs. 6-4 to Eqs. 6-6, to investigate the shown cumulative 

errors in subplot B in another context. The cumulative errors in the balances were related to the 

cumulative sum of the absolute input rates plus absolute output rates and estimated biomass 

generation as a function of time for each balance.  

 

𝑒𝑐𝑟𝑐𝑜𝑛𝑐,𝑟𝑒𝑙(𝑡) =  
∫ 𝑒𝑐𝑟𝑐𝑜𝑛𝑐,𝑎𝑏𝑠(𝑡)

𝑡

0
 

∫  𝑟𝑥(𝑡) +∣ 𝑟𝑆(𝑡) ∣ +𝑟𝐶𝑂2(𝑡)
𝑡

0

 
Eqs. 6-4 

 

𝑒𝐷𝑜𝑅𝑟𝑐𝑜𝑛𝑐,𝑟𝑒𝑙(𝑡) =  
∫ 𝑒𝐷𝑜𝑅𝑟𝑐𝑜𝑛𝑐,𝑎𝑏𝑠(𝑡)

𝑡

0
 

∫  4,1590 ⋅ 𝑟𝑥(𝑡) + 4 ⋅∣ 𝑟𝑆(𝑡) ∣ +4 ⋅∣ 𝑟𝑂2(𝑡) ∣
𝑡

0

 
Eqs. 6-5 

 

𝑒𝑁𝑟𝑐𝑜𝑛𝑐,𝑟𝑒𝑙(𝑡) =  
∫ 𝑒𝑁𝑟𝑐𝑜𝑛𝑐,𝑎𝑏𝑠(𝑡)

𝑡

0
 

∫  0,176 ⋅ 𝑟𝑥(𝑡) + 1 ⋅∣ 𝑟𝑁(𝑡) ∣
𝑡

0

 
Eqs. 6-6 

 

Subplot C shows the outcomes of this interpretation. In this view, it could be observed that the 

nitrogen balance fits most suitable related to the cumulative sum of the nitrogen input and nitrogen 

amount in the generated estimated biomass.  

The results show that the N-balance after the reconciliation of the calculated rates is more significant 

for the biomass estimation. This fact can be explained by the statistical basis of data reconciliation. It 

arises from the properties that are assumed for the random errors on the rates. It is assumed that the 

random errors follow a normal distribution with zero mean and a known variance covariance matrix 𝐹 

generated according Eqs. 5-15. By convention, the matrix 𝐹 is diagonal respectively the rates are 

independent from each other, the variances on each rate can be interpreted as a weighting factor. 

That means, a higher value of the variance implies that the calculated current rate is less accurate, so 

the more accurate rates have larger weights. Moreover, the variances in a balance can be simply 

summed up due to this independence and give a suitable information of the weighting of each balance 

according its weighting for the estimation.  

Returning to Fig. 11, the variance of rN was lowest as opposed to the other rates when the NH3 feed 

pump operates. In the N balance, only the rN variance occurs and the overall sum of the variances in 

this balance is lower than all other balances, so it is evident that the estimated biomass is predicted to 

the N-balance after the reconciliation procedure. 
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Fig. 24: K3S1 A: Calculated biomass from C, DoR and N balance with additional estimated and 
reconciled biomass results as a function of time. B: Cumulative error of C, DoR and N balance after 
reconciliation. C: Relative balance errors related to total C, electron actions (DoR) and N usage across 
the balance space. 

 

Fig. 25Fig. 26: K3S1 A: Calculated biomass from C, DoR and N balance with additional estimated and 
reconciled biomass result as function of the time. B: Cumulated error of C, DoR and N balance after 
reconciliation. C: Relative balance errors related to total C, electron actions (DoR) and N usage across 
the balance room. 
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As described in subchapter Materials and Methods, alternative biomass determinations with optical 

density measurements and dry weight measurements were done to compare the results of these 

common procedures with the estimated biomass on calculated and reconciled rates. Fig. 27 shows in 

subplot A the estimated biomasses with the calculated rates (green) and the reconciled rates (blue), 

including alternative offline biomass determinations with the confidence intervals of 95%. 

Subplot B reveals the absolute error of the estimated biomasses in comparison to the optical density 

measurements at the respective time points. Subplot C shows the absolute error of the estimated 

biomasses in comparison to the dry weight results at the respective time points. The absolute mean 

errors of the biomasses with respect to the OD respectively DW measurements are also shown in 

subplot B and C.  

 

 

Fig. 27: K3S1 Independent biomass content comparison and validation, 13 samples were under 
consideration. A: Estimated and reconciled biomass trend as functions of time in different qs phases, 
including optical density (OD) and dry weight (DW) measurements. B: Absolute errors of estimated 
and reconciled biomass related to optical density (OD) measurement method. In addition, the mean 
error over all different qs process phases. C: Absolute errors of estimated and reconciled biomass 
related to dry weight (DW) measurement method. In addition, mean error over all different qs 
process phases. 

 

Fig. 28Fig. 29: K3S1 For independent biomass content comparison and validation, 13 samples be 
under consideration. A: Estimated and reconciled biomass trend as functions of the time in different 
qs phases including optical density (OD) and dry weight (DW) measurements. B: Absolute errors of 
estimated and reconciled biomass related to optical density (OD) measurement method in addition 
mean error over all different qs process phases. C: Absolute errors of estimated and reconciled 



Master-Thesis  Felix Pilz 

page 46 of 73 

A view on the subplot A shows that the estimated biomass with the reconciled rates was overrated 

and the estimated biomass by the calculated rates was underrated most of the time. This phenomenon 

takes place, especially at higher qs rates (qs = 0,2 g/(g∙h)).  

It could be observed that the mean error of the estimated biomasses (Xrconc, Xest) with and without 

reconciling data in terms of the optical density measurements yielded in 8,6 or rather 10,9 g. This fact 

shows that, the data reconciliation does not generally improve the performance of the estimation. 

That is, if the equation model does not pass the consistency test, it is possible that the biomass 

estimate is not optimal. The mean error on the estimated biomasses related to the dry weight biomass 

determination yielded in 10,3 respectively 7,9 g. Reconciling the rates in this case improves the 

biomass estimation compared to the OD measurements in contrast to the DW measurements. Back to 

subplot A, the best estimation is between the dotted green line and the blue curve. Moreover, the 

results of the offline methods for biomass determination are also afflicted with errors concerning 

washing procedure and error propagation on DW and calibration, dynamic range and attachment of 

cells or antifoam on OD measurements[38]. 

It could be stated that best accordance was given by the estimated biomass with reconciled rates in 

comparison to the dry weight measurement, which led to an error of approximately 7%, related to the 

generated biomass.  

Back to the initial situation, it was observed that the equation model did not meet the global 

consistency criteria explained before. Using small qs rates (qs = 0,1 / 0,05 g/(g∙h)), small variances led 

to a too sensitive consistency test. This also confirmed by the observation of an exponential decrease 

of the consistency value h in the qs = 0,2 g/(g∙h) phase.  

Nevertheless, the model does not fulfil the quantification of the global consistency criteria. This 

suggests that some constraints of the equation model are incorrect. It has been observed that the 

relative error in the N-balance was significantly higher in the intervals seen in subplot D in Fig. 23 in 

comparison to the C- and DoR-balance relative error after the estimation without reconciled rates. The 

glucose and NH3 amounts were measured from the samples and are shown Fig. 30 in subplot A.  

 

Fig. 30: K3S1 A: Glucose and and NH3 amount in mmol during the fed batch run in different qs phases. 
Instead of Glucose, the ammonium content during the process does not meet the assumption to be zero. 
B: Pre-defined qs setpoints and calculated specific rate qs as a function time. 
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The assumption that all glucose is metabolised is fulfilled. There is no glucose accumulation at the 

overall run. Another assumption which concerns that all nitrogen input is used for the biomass 

generation by holding the pH constant cannot be accepted after the changing NH3 concentration 

demonstrated in subplot A. The change is significantly high at the end of the run in the phase 

qs = Feed max.  

Subplot B in Fig. 30 shows the real calculated specific uptake rate qs in comparison to the qs setpoint. 

The real calculated qs was similar to the qs setpoint at low qs setpoint rates. In the part of the 

qs = 0,2 g/(g∙h) phase, the real calculated qs differed from the qs setpoint. This could be interpreted 

that the integral term of the PI -Controller must be higher for further runs. The technical limit of the 

pump in the qs max phase was reached, so the qs of 0,3 g/(g∙h) was not performed. 

In conclusion, the estimation of the biomass with calculated and reconciled rates. It can be summarized 

that the significance of the balances on the biomass results differed after the reconciliation procedure. 

If the N-balance would satisfy the assumptions, it would be the most significant balance after the 

reconciliation procedure in this experimental case. The valuation of each balance in relation to the OD 

and DW measurements are assessed by their weighting on the estimated biomass results and classified 

in calculated and reconciled rates input according Table 7. 

 

Table 7: K3S1 Performance of each balance with calculated and reconciled rates input 

Balances  Rank with calculated rates Rank with reconciled rates 

N-Balance less satisfying best 
Degree of Reduction Balance best satisfactory 
C-Balance satisfactory less satisfying 
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6.4.2 K2S1 
 

A suitable approach is to investigate the run without the used nitrogen balance. The model decreases 

to two equations (C- and DoR-balance) and one substrate (Glucose). K2S1 is also an over-determined 

system, where only one (biomass) rate is unknown. Therefore, the reconciliation of the rates is also 

possible. As a first consequence, the consistency test should be improved in comparison to the K3S1 

model. The analysis of the K2S1 model is equally structured such as the previous investigation.  

The statistical global X2-test for the K2S1 equation system is shown in Fig. 31. Firstly, it could be 

observed that the consistency index h is one magnitude smaller in comparison to the consistency test 

of the K3S1 model in Fig. 11. Furthermore, the model passed the test at a specific uptake rate of 

qs = 0,2 g/(g∙h) as an opposite to the K3S1 model. This means, that the K2S1 model is trustful in this 

phase and describes the overall bioreaction. It can be said that we have a representative biomass 

estimation. However, the calculated h value exceeded the thresholds in the low qs phases. This could 

be a result of switching the mode of the metabolism detected by a lower respiratory quotient RQ of 

approximately 0,8 instead of 1 in these phases. Furthermore, the maintenance also had a large 

proportion on the metabolism in these low qs phases. Otherwise, this high consistency value h could 

be also from the very low variances resulting in a very sensitive test. It is obvious, that the most 

accurate rate is rS followed by rCO2 and rO2 in contrast to Fig. 11 subplot B. 

  

Fig. 31 K2S1 A: Statistical Chi-quadrat test in 60 min intervals for model validation. The straight lines 
represent the levels of significance for the statistical test. B: Time-dependent variances of the K2S1 
model input rates. 
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The calculated substrate rate of glucose (red line), the confidence intervals with a level of significance 

(α= 0.05) and the reconciled rate in c-mol are shown in Fig. 32. It could be observed that the calculated 

and the reconciled rate was exactly equal in all qs phases in contrast to the similar plot of the K3S1 

model. The reconciliation procedure did not significantly modify the calculated rate.  

 

The calculated oxygen uptake rate rO2 (red line), the confidence intervals with a level of significance 

α = 0.05 (grey line) and the reconciled rate (black line) in mol are shown in Fig. 33. It could be observed 

that the reconciled rate was slightly lower than the calculated rate in the phases qs = 0 g/(g∙h) and 

qs = 0,05 g/(g∙h). There were mismatches at the beginning of phase qs = 0,2 g/(g∙h) and phase feed max. 

The reconciled rO2 rate in these parts were underrated in contrast to the calculated rate. It could be 

observed that the mismatches were significantly smaller after the reconciliation procedure in 

comparison to the rO2 analysis in K3S1 shown in Fig. 18. 

The calculated carbon dioxide evolution rate rCO2 (red line), the confidence intervals with a level of 

significance α = 0.05 (grey line) and the reconciled rate (black line) in mol are shown in Fig. 34. It was 

found out that the calculated rate was similar to the reconciled rate over wide qs phases. Slight 

distinctions were also observed at the beginning of the qs = 0,2 g/(g∙h) phase and at the beginning of 

the maximal feed phase. These distinctions were not so pronounced in contrast to the reconciled rate 

of the K3S1 model shown in Fig. 20.The errors of the rates rS, rO2 and rCO2 were the same as in the K3S1 

model shown in subchapter 6.4.1. 

  

Fig. 32: K2S1 substrate consumption rate rS. The red line including grey confidence intervals (α= 0.05) 
represents the online calculated rS. The reconciled rate rS is shown as black trend. 
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The biomass estimation results with the K2S1 model of each balance (C and DoR) demonstrated in Fig. 

35 were consistent in comparison to the K3S1 model. The estimated biomass with the calculated rates 

was also located in the determined biomass of the DoR balance shown in Fig. 35 in subplot A.  

Fig. 34: K2S1 carbon dioxide evolution rate rCO2. The red line including grey confidence intervals 
(α= 0.05) represents the online calculated rCO2. The reconciled rate rCO2 is shown as black trend. 

Fig. 33: K2S1 oxygen uptake rate rO2. The red line, including grey confidence intervals (α= 0.05) 
represents the online calculated rO2. The reconciled rate rO2 is shown as black trend. 
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The results of the reconciliation procedure of the K2S1 model differs from the previous K3S1 model. 

Here, the estimated biomass was located in the determined biomass of the C-balance in contrast to 

model K3S1. A look on subplot B shows the cumulative absolute balance errors of the C and DoR 

balance. The cumulative absolute errors are 12 magnitudes lower in comparison to the absolute 

balance errors of the K3S1 model after the reconciliation procedure.  

The critical examination according Eqs. 6-4 to Eqs. 6-6 revealed in subplot C led also to different results 

in contrast to the K3S1 evaluation. Here, the C-balance is more significant for the biomass estimation 

than the DoR balance. The sum of the rate variances in the C-balance is lower than in the DoR balance, 

that means that the C-balance is more accurate and has more influence on the reconciliation. As a 

general statement, it can be said that the K2S1 equation model system describes the overall 

bioreaction well with higher qs rates such as 0,2 g/(g∙h). This circumstance led to a small discrepancy 

of the estimated biomass with calculated and reconciled rates.  

 

  

Fig. 35: K2S1 A: Calculated biomass from C, DoR and N balance with additional estimated and 
reconciled biomass results as a function of time. B: Cumulative error of C and DoR balance after 
reconciliation. C: Relative balance errors related to total C or rather electron actions (DoR) across 
the balance space. 
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The comparison of the estimated biomass with the OD and DW measurements according Fig. 36 shows 

an improvement in contrast to the K3S1 model. Subplot A shows the absolute estimated biomass with 

calculated and reconciled rates, including the OD and DW results. The discrepancies between the two 

different estimated biomasses are low in the first two qs phases and in the last qs phase. 

Subplot B reveals the absolute error of the estimated biomasses in comparison to the optical density 

measurements at the respective time points. Subplot C shows the absolute error of the estimated 

biomasses in comparison to the dry weight results at the respective time points. The absolute mean 

errors of the estimated biomasses with respect to the OD respectively DW measurement are also 

shown in subplot B and C.  

It could be observed that the mean error of the estimated biomasses (Xrconc, Xest) with and without 

reconciled rates in terms of the optical density measurements yielded in 8,88 or rather 4,3g. This fact 

shows in this case that, the rates reconciliation improves the performance of the estimation. This 

happens, if the equation model (K2S1) passes the consistency test or if the failed consistency test is 

only caused by too small variances. The mean error on the estimated biomasses compared to the dry 

weight biomass determination yielded in 10,63 g respectively 6 g. Reconciling the rates also improved 

the biomass estimation compared to the OD measurements. It could be stated that the best 

accordance is given by the estimated biomass with reconciled data in comparison to the OD 

measurement. In this context, a biomass estimation with a relative error of 5 % based on the biomass 

produced could be obtained.  

The valuation of the balances in relation to the OD and DW measurements was assessed by their 

weighting on the estimated biomass results. Furthermore, balances are classified in calculated and 

reconciled rates input according Table 8. 

Table 8: K2S1 Performance of each balance with calculated and reconciled rates input 

Balances  Rank with calculated rates Rank with reconciled rates 

Degree of Reduction Balance best satisfactory 
C-Balance satisfactory best 
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Fig. 36: K3S1 Independent biomass content comparison and validation. 13 samples were under 
consideration. A: Estimated and reconciled biomass trend as a functions time in different qs phases, 
including optical density (OD) and dry weight (DW) measurements. B: Absolute errors of estimated 
and reconciled biomass related to the optical density (OD) measurement method. OD mean error over 
all different qs process phases. C: Absolute errors of estimated and reconciled biomass related to the 
dry weight (DW) measurement method. DW mean error over all different qs process phases. 
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6.4.3 K2S1_2  
 

The following analysis is similarly structured such as subchapter 6.4.1. The assumptions are equal to 

the run before. This additional run with the K2S1 model was performed with a feed concentration of 

400 g/l instead of 200 g/l to investigate the behaviour of higher qs rates. In this task, the run was 

executed at a specific substrate uptake rate of qs = 0,3 g/(g∙h) and qs = 0,4 g/(g∙h). Fig. 37 shows the 

calculated specific uptake rate, including their setpoints as a function of time. A good feeding control 

performance is at the first third of the phase qs = 0,3 g/(g∙h). The integral term in the PI controller has 

not had the required control power which was caused by the exponential biomass growth. Especially, 

this effect is shown in the phase qs = 0,4 g/(g∙h). Further optimizations can be done in this field in 

prospective works. Furthermore, the whole glucose was metabolised as a result of the samples 

investigation.  

 

 

The application of the global consistency test on the K2S1 model with higher rate values leads to 

different results in contrast to Fig. 31. Here, the behaviour shown in Fig. 38 is caused by the higher 

setpoints of the specific uptake rates and a higher starting biomass amount of 93 g. Subplot A shows 

the calculated consistency index h also as a bar plot with a bar width of 10 minutes. The threshold 

values represent the levels of significance with α = (0,1 0,05 0,025 0,01). Contrary to the findings of 

the previous K2S1 investigation, here the K2S1 model fits in combination with the executed qs feeding 

setpoints. That means, that the biomass estimation is successful. It is also obvious that the consistency 

index h increases if there is no feeding phase or a possible ethanol metabolism.  

The variances of the rates are shown in subplot B. The variances of all rates are significantly higher in 

contradiction to the variances of the previous run. This means, the risk of a too sensitive global 

consistency test caused by very low variances is minimal.  

A higher rO2 variance related to the other variances in contrast to the rO2 variance results in Fig. 31 

subplot B was also identified. This behaviour is caused by the considered pure O2 mass flow controller 

and its accuracy allowance.  

 

 

  

Fig. 37: Specific calculated glucose uptake rate with qs setpoints. 
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The calculated substrate rate of glucose (red line), the confidence intervals with a level of significance 

(α= 0.05) and the reconciled rate in c-mol is shown in Fig. 39 on the next side. It could be observed that 

the calculated and the reconciled rate is exactly equal in all qs phases. Moreover, the reconciliation 

procedure does not significantly modify the calculated rate.  

Fig. 38 K2S1_2 A: Statistical Chi-quadrat test in 60 min intervals for model validation. The straight 
lines represent the levels of significance for the statistical test. B: Time-dependent variances of the 
K2S1_2 model input rates. 
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Fig. 40 shows the relative error of the substrate rate as the sum of the propagation and noise error. 

The relative error is approximately 5% during the feeding phase. It is obvious that the relative error 

goes to infinite if the rate goes to zero. This behaviour can be seen before the feed switch on and after 

the feed switch off timepoints.  

 

  

Fig. 39: K2S1_2 substrate consumption rate rS. The red line, including the grey confidence intervals 
(α = 0.05) represents the online calculated rS. The reconciled rate rS is shown as black trend. 

Fig. 40: K2S1_2 time-dependent relative error (red) separated in noise (grey) and propagation error 
(blue) of the substrate consumption rate rS. 
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The calculated oxygen uptake rate (red line), the confidence intervals with a level of significance 

(α = 0.05) and the reconciled rate in mol is shown in Fig. 41. The O2 mass flow controller is here 

considered, in contrast to the K3S1 and K2S1 evaluation. This circumstance leads to bigger confidence 

intervals in contrast to the results in Fig. 33. It could be observed that the calculated and reconciled 

rate is almost similar in the two thirds of the experiment. The discrepancy increases when the O2 mass 

flow controller entered in the dissolved O2 control system. Which shows the noise at the end of the 

qs = 0,3 g/(g∙h) phase. 

 

Fig. 42 shows the relative error on the substrate rate as the sum of the propagation and noise error. 

The relative error is higher in constrast to the K2S1 and K3S1 evalution because of the considered 

additional O2 massflow controller.  

Fig. 41: K2S1_2 oxygen uptake rate rO2. The red line, including the grey confidence intervals (α= 0.05) 
represents the online calculated rO2. The reconciled rate rO2 is shown as black graph. 

Fig. 42: K2S1_2 time-dependent relative error (red) separated in noise (grey) and propagation error 
(blue) of the oxygen uptake rate rO2. 
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The calculated carbon evolution rate (red line), the confidence intervals with a level of significance 

(α = 0.05) and the reconciled rate in c-mol is shown in Fig. 43. It could be observed that the calculated 

and the reconciled rate is exactly equal in all qs phases. In this context, the reconciliation procedure 

did not significantly modify the calculated rate.  

 

Fig. 44 shows the relative error of the carbon evolution rate as the sum of the propagation and noise. 

The relative error is significantly lower in the feeding phases as in contrast to the previous K3S1 run. 

Here, the mean relative error remains around 5%.  

  

Fig. 43: K2S1_2 carbon dioxide evolution rate rCO2. The red line, including grey confidence 
intervals (α= 0.05) represents the online calculated rCO2. The reconciled rate rCO2 is shown 
as black graph. 

Fig. 44: K2S1_2 time-dependent relative error (red) separated in noise (grey) and 
propagation error (blue) of the carbon dioxide evolution rate rCO2. 

 

Fig. 45Fig. 46: K2S1_2 time-dependent relative error (red) separated in noise (grey) 
and propagation error (blue) of the carbon dioxide consumption rate rCO2. 
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The jagged course in all rates plots at the end of the qs =0,3 g/(g∙h) phase was caused by the high 

minimum flow rate of the O2 mass flow controller. The discrete turn on and turn off of this device in 

combination with the minimum flow rate of 0,2 l/min led to a reduced O2 control stability. This reduced 

stability is strong when the air mass flow controller could not really hold the O2 concentration on the 

setpoint. Consequently, this behaviour led to a higher calculated consistency value at a process time 

of 4 hours, shown in Fig. 38 subplot A. This behaviour can be avoided by a more convenient mass flow 

controller. 

Fig. 47 shows the O2 concentration control with the agitator speed and oxygen input stream as the 

actuating parameters. The O2 concentration broke in at the start of feeding (qs = 0,3 g/(g∙h)). The 

control system required approximately one hour to reach the setpoint of 35 %. That is not uncommon 

with approximately 30 g/l biomass and an initial specific substrate uptake rate of 0,3 g/(g∙h). The 

cascade control can be explained by the actuating variables in subplot B. When the agitator speed 

reaches the maximum, then the air mass flow controller enters the control system. If the mass flow 

controller reaches the maximum, then the additional O2 mass flow controller enters the control 

system. The activation of the O2 controller can be identified at a time point of 3,5 hours.  

As a result of this plot, it can be said that the implemented O2 control provides the required 

performance also with higher qs rates. Furthermore, the additional pure oxygen control function 

extends the existing design space. In this context and for this specific case, a solid oxygen supply must 

be guaranteed. In conclusion, the oxygen supply could not be provided after approximately 5 hours, 

which caused the termination of the experiment.  

 

 

 

  

Fig. 47: K2S1_2 A: closed loop controlled dissolved O2 on 35%. B: Subplot shows the actuating variables 
agitator speed and aeration rate of the cascade control system. 
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The results of the biomass estimation with the K2S1 model are revealed in Fig. 48. Subplot A shows 

the calculated biomass from each balance, including the estimated biomass with the measurements 

calculated rates.The estimated biomass coincided with the result of the DoR balance. The following 

subplots B and C represents the relative and cumulative errors of each balance after the estimation. 

The DoR-balance also describes the overall bioreaction more precise than in contrast to the C-balance. 

Moreover, the cumulative error of the C-balance is approximatly 40 times higher than the cumulative 

error of the DoR balance. In an another interpretation, it can be said that the biomass production is 

overrated in the C-balance and slightly underated in the DoR-balance. 

 

 

  

Fig. 48: K2S1_2 A: Calculated biomass from C and DoR balance with additional estimated biomass result 
as a function of time. B: C-balance cumulative error in mol. The relative error relates to the total carbon 
across the balance space. C: DoR-balance cumulative error in mol. The relative error relates to the total 
electron’s actions across the balance space. 
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The results of the estimated biomass with the reconciled rates are shown in Fig. 49. The estimated 

biomass is also predicted on the C-balance. This behaviour can be explainted with the variances of the 

different rates. The variances shown in Fig. 38 reveals that variances of the rS rate and the rCO2 rate are 

smaller than the variance of rO2. The sum of the variances in the C balance is significantly lower than 

the sum of the variances in the DoR balance. This fact is caused by the high variance of the rO2 rate. 

Futhermore, this suggest that the C-balance is more significant for the reconciliation prodecure than 

the DoR balance. 

Subplot B shows the cumulated error of each balance after the reconciliation procedure. The results 

are near to zero. In conclusion, the equation model also fits with higher qs rates. Subplot C shows the 

relative error of the balance explained in more detail in subchapter K3S1. It can be summarized that 

the relative error related to the sum of the input, output and accumulation amount is higher on the 

DoR balance with the reconciled rates.  

 

 

  

Fig. 49 K2S1_2 A: Calculated biomass from C and DoR balance with additional estimated and 
reconciled biomass results as a function of time. B: Cumulated error of the C and DoR balance after 
reconciliation. C: Relative balance errors related to total C and electron actions (DoR) across the 
balance space. 
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The comparsion of the estimated biomass with calculated and reconciled rates in contrast to the OD 

and DW measurements is shown in Fig. 50. Only 3 samples were done in this run. The first sample was 

to initialize the calculation with the biomass content of 93 g. It has been observed that the OD and DW 

measurements differ singnificantly in the qs = 0,3 g/(g∙h) phase.  

In subplot B, it can be observed that the mean error of the estimated biomasses with calculated and 

with reconciled rates in comparison to the optical density measurements yielded in same value of 

5,4 g. This fact demonstrates that the reconciliation did not improve the performance in this run.  

In subplot C, the mean error of the estimated biomasses is represented with calculated and with 

reconciled rates in comparison to the dry weight measurements. The mean errors related to the DW 

measurements yielded in 8,8 g respectively 9,2g. This also suggests that the reconciliation procedure 

rather impair the estimation related to the DW measurements. The better estimation results in 

relation to the OD measurements are caused by the initial biomass value for the calculation in contrast 

to the DW comparison.The results of the mean errors related to the alternative measurements can be 

also related to the generated biomass. The results in this view yielded in a relative error of 

approximatly 10 % compared to the OD and approximatly 18% compared to the DW measurements. It 

can be generally stated that the offline biomass measurements are obviously less accurate than the 

estimated biomass.  

In conclusion, the additional run with the K2S1 model and higher qs rates is fitting the overall 

bioreaction checked by the consistency test. The formation of ethanol with higher qs rates of 

0,233 g/(g∙h) did not lead to an not passing consistency test. Furhtermore, the higher rates, including 

the higher variances avoid a too sensitive consistency test in contrast to the results in subchapter 6.4.2. 

It can be stated the general performance of this run was satisfying the demands for the estimation of 

the biomass via this robust soft sensor concept. Also the balances can be weighted according Table 8. 
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Fig. 50: K2S1_2 Independent biomass content comparison and validation, 3 samples were under 
consideration. A: Estimated and reconciled biomass trends as a function of time in different qs phases, 
including optical density (OD) and dry weight (DW) measurements. B: Absolute errors of the estimated 
and reconciled biomass related to the optical density (OD) measurement method. C: Absolute errors 
of the estimated and reconciled biomass related to dry weight (DW) measurement method. 
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6.5 Workflow for a successful performance of microbial fermentations 
 

Based on [23], a general strategy to run a successful cultivation with a robust biomass soft sensor can 

be summarized in a workflow shown in Fig. 51. 

The reasons for the advantages of such this workflow is at first demonstrated by the first step of 

defining assumptions for the bioreaction network. The operator is encouraged to think about possible 

assumptions then to develop a simple bioreaction network that can describe the overall bioreaction 

with simple accessible measurements or derived quantities.  

In the next step, the stochiometric matrix for various species and different reactions (C, DoR, N) is 

formulated. This reaction network is the basis for a basic experimental simulation. The practical benefit 

of a general fed batch simulation study, such as in this thesis, is that the setup can be constructed for 

the experiment without any knowledge from previous similar cultivations. Any problems, especially 

regarding to limitations especially of oxygen transfer, maximum volume and feeding profile can be 

prevented. 

Subsequently after the setup of the reactor system, a “water” run should be conducted to test the 

control systems and the connection link to the process control system also via python server to 

MATLAB and in reverse direction. It needs to be stated at this point that a fermenting run should be 

performed under stable conditions without malfunctioning dissolved O2, pH, temperature, and feed 

strategy controls that disturb the whole soft sensor system. 

The initial biomass concentration after the batch phase must be known as initial biomass concentration 

for the biomass estimation calculator. In contrast to previous works [22] [39] [19] [28],this calculator 

takes the changing variances of the inputs during the run into account, which makes the biomass 

estimation with reconciled rates robust. 

After the calculation of the reduced redundancy matrix and the covariance matrix of the residuals, it 

can be computed the constency value h. This value is also highly dependent on the variance from the 

rates as function of the time. If a gross error is detected, the gross error can be identified by sub 

sequential elimination of the measured rates. If there is no identified error on the measured rates, 

then the error must be in the model. The normal procedure is to modify the assumptions or bioreaction 

network. The input rate can be adjusted afterwards in the case of a gross error on a measured rate 

and the calculation procedure repeated. If the consistency test does not detect a gross error, then the 

measured rates can be readily reconciled. An improved biomass result can be computed with the 

reconciled rates.  

Checking the control system, especially in the first 5 steps from the assumption involves a lot of work. 

These steps are time consuming, especially setting the system up in the ‘’water’’ run and is a 

disadvantage of this workflow. Moreover, the concept requires a certain amount of expert knowledge, 

which could represent a barrier to the use of the workflow. 

Nonetheless, the showed soft sensor concept for the biomass estimation represents a robust soft 

sensor concept and due to the modular setup in MATLAB a slight adaption and extensible platform for 

other cultivations. The general concept can be also correlated with other online sensors to use MATLAB 

for advanced mathematical requirements. 
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Fig. 51 Workflow for successful performance of microbial fermentations including estimating the biomass 
via soft-sensor. The green box represents the goal of the soft sensor concept. 
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7 Summary  
 

The investigation of pervious cultivation runs showed that robust control strategies in combination 
with a successful soft sensor for the biomass estimation were not applied. Therefore, it is 
recommended to make a simulation of the experiment to avoid to be out of the design space. A general 
aspect of all sub - evaluations from K3S1 to the extended K2S1_2 run shows the importance of the 
statistical consistency test. The test verifies the model and the measured input rates. If the consistency 
test is not performed, wrong estimations can occur. This fact is demonstrated in the analysis with the 
K3S1 model, were the faulty nitrogen balance seems to be the most significant balance for the overall 
bioreaction after the rates reconciliation procedure. This is caused by the time-dependent 
consideration of the measurement errors.  

The key novelty in this soft sensor concept is the real-time consideration of the measurement errors 
from the devices, including their propagation and measurement noise of the rates. This information 
was used for the consistency test and the reconciliation procedure during the run to estimate the best 
biomass result related to the current process conditions. This circumstance makes the concept robust 
against changing process conditions. This is the key improvement in contrast to a traditional soft sensor 
in previous works [19] [22] [28] [39] were the error of the rates was assumed by a constant value. 
Furthermore, [29] only investigated the behaviour of a biomass estimating soft sensor with a 
considered error propagation by Monte Carlo simulation with in silico generated data. In contrast to 
[29] this thesis investigates the behaviour in a real-time application. Therefore, following statements 
can be done for this robust soft sensor concept. 

The results of the K3S1 subchapter show that small rates are linked with high relative errors which lead 
to very small variances. In further consequence, this can lead to a too sensitive consistency test 
whereby the informative value is reduced. A model error was detected and led to a reduced model 
without the nitrogen balance. The system passed the consistency test with the reduced K2S1 model 
with a specific feed rate of qs = 0,2 g/(g∙h). An additional run was performed to investigate the soft 
sensor concept with higher rates. It has been shown that the concept becomes stronger due to the 
decreased relative errors of the higher rates. This improved accuracy of the calculated rates can be 
impaired by poorly selected measurement devices. In this context, a suitable equipment is a 
mandatory for a successful soft sensor application. Moreover, it has been shown that the most 
significant balance for the biomass estimation result is the DoR-balance with calculated rates and the 
C - balance with the reconciled rates. This statement can be done with this setup, a Saccharomyces 
cerevisiae cultivation and a passed consistency test. 

The estimated biomass results were compared with optical density and dry weight measurements at 

certain time points. It can be shown that these reference measurements are more inaccurate at higher 

biomass concentrations. The best results for the biomass estimation were achieved with the K2S1 

model in comparison to the dry weight measurements. The mean relative errors of the estimated 

biomass are less than 10 % compared to the reference measurements. The investigation of the control 

strategies for a pre - defined run shows different results. The dissolved O2 concentration control with 

the extended pure oxygen function provides the requirements for a smooth run. The control for the 

specific feeding profile has the necessary accuracy in low feed flows but declined with higher specific 

uptake rates. This was caused by the not considered changing requirements for an optimal setting of 

the PID controller.  

A workflow for a successful performance of microbial cultivations based on these results is developed. 

It shows the requirements for a successful soft sensor application. It can be concluded that this novel 

soft sensor concept provides a precise biomass estimation in real – time. 
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8 Outlook 
 

The biomass amount as a catalytic converter to develop a product of interest is one of the key variables 

in any microbial cultivation processes. In this thesis a Saccharomyces cerevisiae cultivation was only 

performed as an example to investigate the behaviour with this novel error consideration approach. 

The prospective aim of this work should be the implementation of this concept in different cultivations 

with similar initial process conditions as a first step. The slight implementation is provided due to the 

modular setup of the created calculator functions. In contrast to that, robust data transfer should be 

improved in terms of easy use and stability. A centralized approach for monitoring and control in 

combination with a decentral data management could reduce the susceptibility to errors. 

Another improvement can be achieved with the workflow of [29]. This paper provides a workflow for 

an optimized pre-selection of the measurement devices for improved estimation results. From this 

point of view, it is interesting to compare the predicted results to a real-time application. Chapter K3S1 

and K2S1 showed non-passing consistency tests behaviours. A suitable approach could be to enlarge 

the constant parameter windowsize for the rates calculation. This reduces the relative errors of the 

rates and enlarge the variances. In this context, a too sensitive consistency test can be avoided. A next 

approach could be done to control this parameter windowsize in relation to pre-defined maximum 

relative errors.  

As shown in this thesis, 3 different balances were initially used to characterize the overall bioreaction 

for the biomass estimation. The nitrogen balance did not quantify this overall bioreaction system due 

to wrong assumptions. Further works can be done to make the nitrogen or other balances accessible 

to describe a wide range of bioreaction systems. In this context, useful literature was found [20] [25] 

[40] [41] [42]. Various specific uptake rates can cause temporary metabolites which are not considered 

with a statically C-balance. The advantage of the nitrogen balance consideration lies in the fact that 

possible carbon containing temporary metabolites without nitrogen such as ethanol do not disturb the 

nitrogen balance. An implementation of the N-balance needs a precise online determination of the 

nitrogen concentration in the broth. NIR and MIR spectroscopy can be used for online ammonia 

measurements, although this is an expensive method [43]. In this context, the behaviour of the setup 

can be investigated when the nitrogen is the limited nutrient [44]. 

A steady-state model was used in this approach. Innovative improvements can be done in the model 
development to characterize the bioreaction. One idea could be to create a more sophisticated 
adaptive soft sensor where the performance is improved by a change or adaption of the model in real-
time. Furthermore, a dynamic structured balance model can be implemented in combination with 
kinetics to describe rate expressions as a function of the state variables. Literature was found 
concerning to [45] [46] [47]. It is also possible to use different models in a parallel mode.  

Finally, this soft sensor concept can be used for the calibration of other direct online measurement 
methods or as an additional reference measurement for an improved biomass amount determination.  
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9 Conclusion 
 

Challenge Ⅰ 

Soft sensor concepts for the estimation of variables of interest are widespread in industrial 

applications. This technology is rarely in laboratory scale cultivation experiments. 

Goal Ⅰ: The first goal of this work is to find the problems as to why it is uncommon to use a soft sensor 

technology for estimating the biomass during cultivation runs. Furthermore, an identification of the 

“issues” in the technical, handling and software section should provide necessary information. In this 

context, a developed strategy should avoid the “issues”. This should be a basis for a successful soft 

sensor development. 

Conclusion Ⅰ: The use of soft sensor technologies in laboratory environments requires some expertise 
and can be an inhibitor for an application. Research has shown that processes are often performed 
outside a design space. The problem is now avoided by a developed fed batch simulation tool. This 
tool is designed for a pre-estimation of the design space of an existing setup and process.  
 
 

Challenge ⅠⅠ 

Specific feeding profiles are related to the biomass concentration in the reactor. The amount of 

biomass is not available in real-time due to the lack of reliable and accurate biomass quantification 

results from online direct determinations.  

Goal ⅠⅠ: A soft sensor concept should be developed to estimate the biomass amount with easily 

accessible measurements. The provided biomass determination should satisfy the accuracy of a 

specific substrate uptake rate control strategy. This concept should be developed in a multi-paradigm 

numerical computing environment. Finally, a proof of this novel soft sensor approach must be done. 

Conclusion ⅠⅠ: Control concepts for the dissolved oxygen concentration and feeding profile have been 
developed to ensure a stable fermentation. These shareable tools are implemented in Lucullus PIMS 
to increase the process robustness. Based on the real-time communication to MATLAB, a novel soft 
sensor for a robust biomass estimation was implemented. This novel approach is based on the 
real - time consideration of the measurement device errors. The error propagation consideration only 
then provides a robust rate reconciliation procedure. The implementation is based on modular 
functions, which allow fast adaptions to other processes. The soft sensor was validated according to 
the pre-defined acceptance criteria. Biomass estimation errors around 5 % were reached. 
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Challenge ⅠⅠⅠ 

A soft sensor concept should be reliable, robust and easily adaptable to other processes in a bioprocess 
development environment. In this context, no works investigate the behaviour of the applied soft 
sensor with the in real-time considered measurement errors. 

Goal ⅠⅠⅠ: A detailed analysis of the error propagation should be done for a powerful reconciliation 
procedure, a robust estimation of the biomass and a meaningful statistical test. Finally, a workflow 
should be established for a successful biomass estimation via this robust soft sensor concept.  

Conclusion ⅠⅠⅠ: The key novelty of this thesis is the real-time consideration of the changing errors on 

the rates. The errors on the rates were taken into account by an error propagation and noise error 

consideration of the measurements for a powerful reconciliation procedure. Furthermore, the rates 

were calculated with a regression analysis. This led to a very sensitive statistical test at low rates. The 

used N-balance could be identified as non-representative in this approach. A robust estimation of the 

biomass could be achieved with the K2S1 model (C and DoR balance). It was found out that the C-

balance is the most significant balance for the biomass estimation after the reconciliation procedure. 

In general, a stable process is essential for a proper biomass estimation. The developed workflow for 

the biomass estimation therefore forms a basis for improved process developments.  
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10 Appendix 
 

The program parts in addition with the generated source code of the soft sensor concept and further 
technical documents are enclosed in digital form.  
   



Master-Thesis  Felix Pilz 

page 71 of 73 

11 Bibliography 
[1] B. Sonnleitner, G. Locher, and A. Fiechter, “Biomass determination,” J. Biotechnol., vol. 25, no. 1, 

pp. 5–22, Aug. 1992. 
[2] P. Wechselberger, P. Sagmeister, and C. Herwig, “Real-time estimation of biomass and specific 

growth rate in physiologically variable recombinant fed-batch processes,” Bioprocess Biosyst. 
Eng., vol. 36, no. 9, pp. 1205–1218, 2013. 

[3] C. Bittner, G. Wehnert, and T. Scheper, “In situ microscopy for on-line determination of biomass,” 
Biotechnol. Bioeng., vol. 60, no. 1, pp. 24–35, 1998. 

[4] K. Kiviharju, K. Salonen, U. Moilanen, and T. Eerikäinen, “Biomass measurement online: the 
performance of in situ measurements and software sensors,” J. Ind. Microbiol. Biotechnol., vol. 
35, no. 7, pp. 657–665, Jul. 2008. 

[5] A. E. Cervera, N. Petersen, A. E. Lantz, A. Larsen, and K. V. Gernaey, “Application of near-infrared 
spectroscopy for monitoring and control of cell culture and fermentation,” Biotechnol. Prog., vol. 
25, no. 6, pp. 1561–1581, 2009. 

[6] K. Kiviharju, K. Salonen, U. Moilanen, E. Meskanen, M. Leisola, and T. Eerikäinen, “On-line 
biomass measurements in bioreactor cultivations: comparison study of two on-line probes,” J. 
Ind. Microbiol. Biotechnol., vol. 34, no. 8, pp. 561–566, Aug. 2007. 

[7] I. Knabben, L. Regestein, J. Schauf, S. Steinbusch, and J. Büchs, “Linear Correlation between 
Online Capacitance and Offline Biomass Measurement up to High Cell Densities in Escherichia 
coli Fermentations in a Pilot-Scale Pressurized Bioreactor,” J. Microbiol. Biotechnol., vol. 21, pp. 
204–11, Feb. 2011. 

[8] P. Wechselberger, P. Sagmeister, and C. Herwig, “Model-based analysis on the extractability of 
information from data in dynamic fed-batch experiments,” Biotechnol. Prog., vol. 29, no. 1, pp. 
285–296, Jan. 2013. 

[9] P. Wechselberger and C. Herwig, “Model-based analysis on the relationship of signal quality to 
real-time extraction of information in bioprocesses,” Biotechnol. Prog., vol. 28, no. 1, pp. 265–
275, Jan. 2012. 

[10] V. Steinwandter, T. Zahel, P. Sagmeister, and C. Herwig, “Propagation of measurement accuracy 
to biomass soft-sensor estimation and control quality,” Anal. Bioanal. Chem., vol. 409, Jul. 2016. 

[11] P. Sagmeister, P. Wechselberger, M. Jazini, A. Meitz, T. Langemann, and C. Herwig, “Soft sensor 
assisted dynamic bioprocess control: Efficient tools for bioprocess development,” Chem. Eng. 
Sci., vol. 96, pp. 190–198, Jun. 2013. 

[12] R. T. van der Heijden, J. J. Heijnen, C. Hellinga, B. Romein, and K. C. Luyben, “Linear constraint 
relations in biochemical reaction systems: I. Classification of the calculability and the 
balanceability of conversion rates,” Biotechnol. Bioeng., vol. 43, no. 1, pp. 3–10, Jan. 1994. 

[13] R. T. J. M. van der Heijden, B. Romein, J. J. Heijnen, C. Hellinga, and K. C. A. M. Luyben, “Linear 
constraint relations in biochemical reaction systems: II. Diagnosis and estimation of gross errors,” 
Biotechnol. Bioeng., vol. 43, no. 1, pp. 11–20, Jan. 1994. 

[14] N. S. Wang and G. Stephanopoulos, “Application of macroscopic balances to the identification of 
gross measurement errors,” Biotechnol. Bioeng., vol. 25, no. 9, pp. 2177–2208, Sep. 1983. 

[15] F. Madron, V. Veverka, and V. Vaněček, “Statistical analysis of material balance of a chemical 
reactor,” AIChE J., vol. 23, no. 4, pp. 482–486, Jul. 1977. 

[16] C. T. Goudar, R. K. Biener, J. M. Piret, and K. B. Konstantinov, “Metabolic Flux Estimation in 
Mammalian Cell Cultures,” in Animal Cell Biotechnology: Methods and Protocols, R. Pörtner, Ed. 
Totowa, NJ: Humana Press, 2014, pp. 193–209. 

[17] J. S. Alford, “Bioprocess control: Advances and challenges,” Comput. Chem. Eng., vol. 30, no. 10, 
pp. 1464–1475, Sep. 2006. 

[18] D. J. Korz, U. Rinas, K. Hellmuth, E. A. Sanders, and W.-D. Deckwer, “Simple fed-batch technique 
for high cell density cultivation of Escherichia coli,” J. Biotechnol., vol. 39, no. 1, pp. 59–65, Feb. 
1995. 



Master-Thesis  Felix Pilz 

page 72 of 73 

[19] P. Wechselberger, P. Sagmeister, and C. Herwig, “Real-time estimation of biomass and specific 
growth rate in physiologically variable recombinant fed-batch processes,” Bioprocess Biosyst. 
Eng., vol. 36, no. 9, pp. 1205–1218, Sep. 2013. 

[20] R. T. van der Heijden, J. J. Heijnen, C. Hellinga, B. Romein, and K. C. Luyben, “Linear constraint 
relations in biochemical reaction systems: I. Classification of the calculability and the 
balanceability of conversion rates,” Biotechnol. Bioeng., vol. 43, no. 1, pp. 3–10, Jan. 1994. 

[21] R. T. J. M. van der Heijden, B. Romein, J. J. Heijnen, C. Hellinga, and K. C. A. M. Luyben, “Linear 
constraint relations in biochemical reaction systems: II. Diagnosis and estimation of gross errors,” 
Biotechnol. Bioeng., vol. 43, no. 1, pp. 11–20, Jan. 1994. 

[22] P. Sagmeister, P. Wechselberger, M. Jazini, A. Meitz, T. Langemann, and C. Herwig, “Soft sensor 
assisted dynamic bioprocess control: Efficient tools for bioprocess development,” Chem. Eng. 
Sci., vol. 96, pp. 190–198, Jun. 2013. 

[23] C. T. Goudar, R. K. Biener, J. M. Piret, and K. B. Konstantinov, “Metabolic Flux Estimation in 
Mammalian Cell Cultures,” in Animal Cell Biotechnology: Methods and Protocols, R. Pörtner, Ed. 
Totowa, NJ: Humana Press, 2014, pp. 193–209. 

[24] N. S. Wang and G. Stephanopoulos, “Application of macroscopic balances to the identification of 
gross measurement errors,” Biotechnol. Bioeng., vol. 25, no. 9, pp. 2177–2208, Sep. 1983. 

[25] F. Madron, V. Veverka, and V. Vaněček, “Statistical analysis of material balance of a chemical 
reactor,” AIChE J., vol. 23, no. 4, pp. 482–486, Jul. 1977. 

[26] H. Chmiel, Ed., Bioprozesstechnik. Heidelberg: Spektrum Akademischer Verlag, 2011. 
[27] C. Ratledge and B. Kristiansen, Basic Biotechnology. Cambridge: Cambridge University Press, 

2006. 
[28] P. Wechselberger, P. Sagmeister, and C. Herwig, “Model-based analysis on the extractability of 

information from data in dynamic fed-batch experiments,” Biotechnol. Prog., vol. 29, no. 1, pp. 
285–296, Jan. 2013. 

[29] V. Steinwandter, T. Zahel, P. Sagmeister, and C. Herwig, “Propagation of measurement accuracy 
to biomass soft-sensor estimation and control quality,” Anal. Bioanal. Chem., vol. 409, Jul. 2016. 

[30] B. Sonnleitner and O. Käppeli, “Growth of Saccharomyces cerevisiae is controlled by its limited 
respiratory capacity: Formulation and verification of a hypothesis,” Biotechnol. Bioeng., vol. 28, 
no. 6, pp. 927–937, Jun. 1986. 

[31] H. Tong and D. Bluck, “An Industrial Application of Principal Component Test to Fault Detection 
and Identification,” IFAC Proc. Vol., vol. 31, no. 10, pp. 201–206, Jun. 1998. 

[32] A. C. Tamhane, “A note on the use of residuals for detecting an outlier in linear regression,” 
Biometrika, vol. 69, no. 2, pp. 488–489, Aug. 1982. 

[33] S. Narasimhan and R. S. H. Mah, “Generalized likelihood ratio method for gross error 
identification,” AIChE J., vol. 33, no. 9, pp. 1514–1521, Sep. 1987. 

[34] J. A. Romagnoli and M. C. Sánchez, Eds., “7 Treatment of gross errors,” in Process Systems 
Engineering, vol. 2, Academic Press, 1999, pp. 109–135. 

[35] F. Madron, “A new approach to the identification of gross errors in chemical engineering 
measurements,” Chem. Eng. Sci., vol. 40, no. 10, pp. 1855–1860, Jan. 1985. 

[36] K. Otterstedt et al., “Switching the mode of metabolism in the yeast Saccharomyces cerevisiae,” 
EMBO Rep., vol. 5, no. 5, pp. 532–537, May 2004. 

[37] F. Rodrigues, P. Ludovico, and C. Leão, “Sugar Metabolism in Yeasts: an Overview of Aerobic and 
Anaerobic Glucose Catabolism,” in The Yeast Handbook, 2006, pp. 101–121. 

[38] B. Sonnleitner, G. Locher, and A. Fiechter, “Biomass determination,” J. Biotechnol., vol. 25, no. 1, 
pp. 5–22, Aug. 1992. 

[39] P. Wechselberger and C. Herwig, “Model-based analysis on the relationship of signal quality to 
real-time extraction of information in bioprocesses,” Biotechnol. Prog., vol. 28, no. 1, pp. 265–
275, Jan. 2012. 

[40] T. Chattaway, A. L. Demain, and G. Stephanopoulos, “Use of Various Measurements for Biomass 
Estimation,” Biotechnol. Prog., vol. 8, no. 1, pp. 81–84, 1992. 



Master-Thesis  Felix Pilz 

page 73 of 73 

[41] D. Paulsson, R. Gustavsson, and C.-F. Mandenius, “A Soft Sensor for Bioprocess Control Based on 
Sequential Filtering of Metabolic Heat Signals,” Sensors, vol. 14, no. 10, pp. 17864–17882, Oct. 
2014. 

[42] A. Vicente, J. I. Castrillo, J. A. Teixeira, and U. Ugalde, “On-line estimation of biomass through pH 
control analysis in aerobic yeast fermentation systems,” Biotechnol. Bioeng., vol. 58, no. 4, pp. 
445–450, May 1998. 

[43] P. Harms, Y. Kostov, and G. Rao, “Bioprocess monitoring,” Curr. Opin. Biotechnol., vol. 13, no. 2, 
pp. 124–127, Apr. 2002. 

[44] A. Bren, Y. Hart, E. Dekel, D. Koster, and U. Alon, “The last generation of bacterial growth in 
limiting nutrient,” BMC Syst. Biol., vol. 7, p. 27, Mar. 2013. 

[45] M. R. Warnes, J. Glassey, G. A. Montague, and B. Kara, “On data-based modelling techniques for 
fermentation processes,” Process Biochem., vol. 31, no. 2, pp. 147–155, Jan. 1996. 

[46] J. Schubert, R. Simutis, M. Dors, I. Havlik, and A. Lübbert, “Bioprocess optimization and control: 
Application of hybrid modelling,” J. Biotechnol., vol. 35, no. 1, pp. 51–68, Jun. 1994. 

[47] M. von Stosch, R. Oliveira, J. Peres, and S. Feyo de Azevedo, “Hybrid semi-parametric modeling 
in process systems engineering: Past, present and future,” Comput. Chem. Eng., vol. 60, pp. 86–
101, Jan. 2014. 

 


