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Introduction
Smart manufacturing is a manufacturing strategy that is principally based on the digi-
tization of manufacturing related activities and the rapid conversion of data into infor-
mation. Innovations in big data analysis can be used to support the quick data-driven 
decision making processes needed for today’s turbulent markets [1–3].

Big data refers to the large volumes of structured, semi-structured, and unstructured 
data, acquired from a variety of heterogeneous sources [4]. This data is typically assumed 
to have the valuable information hidden in it because substantial efforts and resources 
are needed to uncover it [5, 6]. According to the U.S. National Institute of Science and 
Technology (NIST) Big Data Public Working Group (Reference Architecture Subgroup) 
[7], big data does not refer to the increasingly large datasets or the requirement for 
improved performance and efficiency. Instead, it refers to the fundamental reforms in 
the architecture needed to manage this data [1–3].

Big data analytics are currently used for many industrial applications. This includes 
product lifecycle management [8], process re-design [9], supply chain management [10], 
and production systems data analysis [11]. Of these, production systems analysis has 
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received a considerable amount of attention from academia and industry. According to 
Vodenc̆arević and Fett in [11], this is because “production systems are big sources of 
raw data that are often hard to model manually”. A number of applications have thus 
emerged to investigate process data for process monitoring, anomaly detection, root 
cause analysis, and knowledge extraction [11].

Recent publications have proposed platforms, frameworks, and architectures to 
address the different functions needed for process data analysis [12]. However, manu-
facturing systems present unique requirements for big data analysis platforms. This 
includes the ability to acquire and process billions of values [11], apply stringent con-
straints for low and/or bounded latency processing, and uphold high requirements for 
data quality. These demands translate to imposed minimum standards for the tools and 
technologies used in big data analysis pipelines and processing frameworks.

The goal of this article is to assist data engineers in designing big data analysis pipe-
lines for manufacturing process data. This is achieved by investigating two previously 
unaddressed research questions.

1. RQ1: What are the requirements for a big data analysis pipeline for manufacturing 
process data?

2. RQ2: What are the available big data analysis pipelines for process data in academic 
literature?

Thus, the first section of this article presents an overview on the smart manufacturing 
strategy. Next, the infrastructure, data sources, and characteristics of manufacturing sys-
tems, and the challenges facing the adoption of big data analysis solutions in enterprises 
are detailed. This is followed by an analysis on the requirements for big data platforms 
(RQ1) and on the recent big data platforms for process data analysis (RQ2). The results 
are discussed to explain the decisions and choices of the surveyed pipelines. Finally, this 
article also includes recommendations and conclusions based on the results of the analy-
sis as well as a discussion on possible future work.

Background—Smart manufacturing
A manufacturing strategy, according to [3], is a framework for the design, organization, 
management, and development of a manufacturing enterprise’s resources. It is used to 
focus the decisions of a company towards achieving a select number of characteristics 
that would continuously improve the company’s competitive advantage.

According to [3], the need for a manufacturing strategy can be understood from the 
following five characteristics.

1. Manufacturing involves the majority of the enterprise’s resources.
2. Manufacturing decisions often take a long time to have an effect. Thus, a long term 

perspective is needed to support them.
3. Reverting a manufacturing decision normally requires a substantial investment in 

both time and resources.
4. Manufacturing decisions impact the manufacturing characteristics and performance 

of a company. Thus, it has a direct effect on its ability to compete in the market place.
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5. A strategic outlook is needed for manufacturing decisions to ensure that it supports 
the business strategy of the enterprise.

Smart manufacturing is focused on the optimized application of resources and the work-
force to achieve the on-time production of high quality goods while maintaining the 
enterprise characteristics necessary for the company to control and quickly respond to 
internal and external stimuli. Smart manufacturing places special emphasis on the role 
of emerging technologies. Thus, it calls for the digitization of all manufacturing-relevant 
activities as well as the adoption of technologies such as big data analysis [1].

The digitization of manufacturing services increases the amount of internal and exter-
nal data available to the enterprise. Internal data is generated by sources inside the 
manufacturing enterprise. This includes data from manufacturing equipment, automa-
tion systems, work pieces, and enterprise information management, typically hosted in 
a Manufacturing Execution System (MES) and Enterprise Resource Planning System 
(ERP). External data refers to environmental data accumulated from sources external to 
the enterprise. This includes data from the supply network, the government (e.g., legis-
lature and incentive programs), strategic partners, distribution channels, and customers. 
Analyzing this data for data-driven decision making programs may lead to increases in 
productivity and profits. These programs may include the systematic analysis of data for 
yield management, product re-engineering, and predictive maintenance. The remainder 
of this section will discuss these three use cases.

Yield management

Yield is highlighted as a key performance indicator that impacts the product’s price, 
profit margin, quality, and customer satisfaction level. As opposed to the strategy of yield 
models, low yields can be combated by detecting anomalous behavior, preferably dur-
ing the product ramp up phase at low batch sizes. Previously, abnormal behavior could 
be detected by domain experts. However, the increased digitization and complexity of 
manufacturing functions has led to an enormous rise in the amount of data available. 
This has made the process of monitoring and analyzing process data for quality control 
an increasingly difficult task. In more detail, manufacturing plants typically implement 
alarm systems based on simple logic for the detection of abnormalities in the produc-
tion process. These systems use predefined thresholds to detect and alert an operator 
on violation events. However, high rates of false alarms and alarm flooding are endemic 
problems in industry. For example, Vodenc̆arević et al. [11] report on alarm bursts of 200 
alarms per second. Such rates overload plant operators and make it difficult to detect 
genuine root cause alarms. To combat these alarm floods, big data analysis techniques 
are proposed to mine production data and assist operators by suppressing redundant 
alarms and narrowing down the number of variables relevant to root cause detection 
[13, 14].

Product re‑engineering

The increasing complexity of produced goods have led to a rise in demands by custom-
ers for maintenance, repair, and overhaul (MRO) services from product manufacturers. 
These MRO services are major cost factors that require concise engineering to ensure 
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a favorable whole-life cost to the manufacturer and customer. Product re-engineering 
for the effective and constant improvement of product design and maintenance requires 
closing the loop on product development, manufacturing operations, and customer 
relationship management from an engineering, economic, and social perspective. This 
depends on the overall ecosystem’s ability to process large data sets including cus-
tomer surveys, inspection reports, maintenance operations plans, production sensors 
and actuators, wireless devices, software logs, photographic systems, audio-capturing 
devices, and other sources of metrology [15, 16].

Predictive maintenance

Maintenance in manufacturing has evolved over time from reactive and preventative 
maintenance to predictive maintenance. Reactive or corrective maintenance refers to the 
act of fixing or replacing components once they break down. The cost associated with 
the damage and down time caused by component failures has led to the development 
of preventative maintenance. This involves the prevention of failures through the regu-
lar inspection and servicing of assets based on pre-defined intervals (time-based main-
tenance, TBM) or the condition of assets (condition-based maintenance, CBM). CBM 
is also known as predictive maintenance and most commonly involves the continuous 
collection and analysis of raw sensor data to detect faults in production equipment 
before it manifests as a failure. Predictive maintenance avoids unnecessary inspections 
by prompting interventions only when necessary. However, the data characteristics and 
possibility of alarm floods require data mining techniques for alarm masking and root 
cause detection. The latter may be used to isolate and fix the source of failures rather 
than the symptoms, thereby improving asset lifetimes [17].

Altogether, the hypothesis of smart manufacturing is that technological transforma-
tions would allow for the sought after leaner and more agile innovation cycles. However, 
a number of hindrances stand in the way of smart manufacturing. These are discussed in 
the next section.

Challenges to data analysis systems in manufacturing
The manufacturing ecosystem may be viewed as a multi-dimensional grouping of sys-
tems designed to support the various business, operations, engineering, maintenance, 
and training functions involved in the manufacturing process. Figure  1 illustrates an 
example network of technologies, life cycles, systems, users, and applications.

The lowest layer of Fig. 1 represents the various tools and equipment that produce data. 
The data sources range from cross-domain design and diagnostics applications to physical 
sensors and cyber-physical devices. These provide large amounts of data that can include 
technical, social, environmental, and other types of data that are spread across the entire 
manufacturing life cycle (layer 2). The tools and equipment compose functionally specific 
systems (layer 3) such that the data is distributed across diverse databases, tools, and sys-
tems for access and use by different users (layer 4) and for different purposes (layer 5).

The majority of this ecosystem is governed by numerous standards, a complex techni-
cal landscape, safety and security considerations, and regulations and legislation. Each of 
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these factors pose a significant challenge to the design, implementation, and deployment 
of a digital platform for data analysis.

Complex standards landscape

Challenge 1: Integrating data of heterogeneous characteristics
Information integration is a challenging issue born of the multi-disciplinary nature of 

manufacturing. Specifically, a more accurate representation of layer 2 from Fig. 1 is the 
composition of three life cycles shown in Fig. 2. These are the product, production sys-
tem, and supply chain life cycles.

The product development life cycle is concerned with creating the entity to be mar-
keted and is associated with a collection of information flows and controls that span 
through design, process planning, production engineering, manufacturing, use and ser-
vice, and end-of-life and recycling phases [1, 18].

The production systems are the means through which products are realized. They typ-
ically include systems of machines, equipment, and human labor that coordinate to con-
vert resources into manufactured goods and services. The production system life cycle is 
generally much longer than product life cycles and involves design, build, commission, 
operation and maintenance, and decommission and recycling phases [1, 19].

Finally, the supply chain life cycle is focused on the flow of interactions and functions 
between customers, manufacturers, suppliers, and other entities impacting the business 
factors of the manufacturing ecosystem [1].

As shown in Fig. 2, each of these life cycles encompasses a large number of standards 
designed to meet the key needs of their activities, functions, and components. These 
standards encompass different protocols for communication and therefore represent 

Fig. 1 A superimposed sample of different elements found in a manufacturing ecosystem
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and exchange information in ways that are not strictly compatible with each other. 
Unfortunately, each of the life cycles has been treated as isolated dimensions and, conse-
quently, work on the integration of information flows has primarily focused on establish-
ing mechanisms for the exchange of information along each of these dimensions. Thus, 
the ability to integrate data of different formats and from widely diverse sources is a con-
siderable challenge for data engineers.

Complex technical architecture

Challenge 2: Secure integration of the data analysis system in a “defense in depth” 
architecture

A manufacturing enterprise normally employs a layered architecture that segregates 
its infrastructure into multiple zones of operation, as shown in Fig.  3, based on the 5 
layers of the automation pyramid (see Fig. 4). The infrastructure can be seen as a com-
position of two networks, an enterprise IT network (levels 4–5) and a factory automa-
tion network (levels 0–3) that are separated by a de-militarized zone (DMZ) for access 
control. The enterprise levels are where the majority of business processes are located. 
These use applications and protocols technologically similar to what is found in most 
other enterprises; i.e., using standard IT infrastructure. The latter, may incorporate 

Fig. 2 The product, production system, and supply chain life cycle standards (Adapted from [1])
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Fig. 3 Typical ethernet‑based infrastructure for manufacturing enterprises [21]
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domain-specific technologies to meet the unique requirements of manufacturing. This 
can include strict real-time and deterministic behavior, domain-specific physical infra-
structure and topologies, and different expectations for the system’s availability, reliabil-
ity, safety, and security levels than what exists in the enterprise IT network [20].

This type of architecture is based on the concept of “defense in depth”. This is a security 
approach that protects against the failure of one or more components in a level from 
cascading to other levels by installing security and other measures at the communication 
boundaries between levels. Thus, network traffic can freely flow between devices within 
the same layer while traffic that crosses between layers is strictly controlled. Any digi-
tal system deployed as part of the smart manufacturing strategy must therefore comply 
with the architecture and mirror the controls in place [20, 23].

Safety

Challenge 3: Integration of safety-critical data sources
Challenge 4: Using the data platform for safety-critical functions
There is a strong requirement for safety in manufacturing as malfunctions may result 

in serious accidents. The Union Carbide India Limited chemical plant disaster, which 
caused the death of 2000 people and the injury of over 50,000, stands out as a prominent 
example of the hazards of compromised safety and maintenance practices. Standards, 
such as S84, IEC 61508, and IEC 61511 exist to minimize the dangers of hardware, oper-
ator, and information errors [24].

A common industry practice is to employ a high degree of redundancy in the plant 
to increase the availability of the overall system. This is demonstrated by the redun-
dant infrastructure shown in Fig. 3. In concrete terms, manufacturers typically deploy 
a separate control system, the Safety Instrumented System (SIS), in conjunction with a 
basic process control system (BPCS). The BPCS is responsible for the normal operation 
of the plant, yet, if the BPCS fails, and manual operator intervention also fails, the SIS 
then becomes responsible for safely returning the process to normal operating levels. An 
effective SIS requires that the number of components shared between the SIS and BPCS 
be kept at a minimum to avoid the cascading of failures between systems. Although it 
increases the reliability of the acquired data and imposed control over the plant, it also 
results in increased expenses [25].

The process components (e.g., transmitters and valves) that form the safety control 
loops, often referred to as Safety Instrumented Functions (SIF), are rated using a Safety 
Integrity Level (SIL) metric. This four level system ranges from 1 to 4. SIL 1 represents 
the worst possible level of safety and has a Required Safety Availability (RSA) of 90–99%. 
Each subsequent SIL level introduces an additional 9 to the RSA such that SIL 4, being 
the best level, requires an RSA of 99.99%–99.999%. As expected, every increment in the 
number of nines is more difficult to achieve. The safe and economic integration of data 
acquired from the SIS is a challenge that needs to be addressed convincingly for current 
technologies. This includes having strong guarantees throughout the data analysis pipe-
line for fault isolation, system availability, and data integrity [25, 26].
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Regulations and legislation

Challenge 5: Data governance, data life cycle management, and liability
Manufacturing is regulated from the local to the international level for product and 

technical compliance, safety, health, and environmental protection [20]. From the infor-
mation-centric perspective of digital systems, legislation for long-term data preserva-
tion is already in place for specific sectors. The US and Germany also employ cyber- and 
data breach notification laws [27]. Thus, strict data governance is considered an imposed 
requirement on current digital systems that necessitates data management policies for 
the entire information lifecycle. This lifecycle spans from “creation or receipt, [through] 
storage, distribution and transmittal, access and use, maintenance, disposition and 
destruction” [28]. However, data management in the manufacturing industry is further 
complicated by data sharing practices (between suppliers, manufacturers, and custom-
ers), privacy laws, liability, and IP protection. These are complex issues that are diffi-
cult to resolve and are associated with measures that are also hard to enforce [29]. Thus, 
there is a strong need for versatile and well-integrated controls for platform-wide data 
governance and policy enforcement.

This section presented some of the most prominent challenges to big data analysis 
platforms in manufacturing. While others exist (see [30]) the points discussed here are 
sufficient to highlight the difference between designing and employing a digital system 
for manufacturing as opposed to other candidate domains. In light of these challenges, 
the next section addresses the necessary requirements for a big data pipeline for manu-
facturing process data analysis.

Process data analysis
The manufacturing industry is characterized by highly sensitive and closely monitored 
production processes with extensive opportunities for big data analytics applications. 
Process operations and controls produce a variety of massive and complex data. This 
includes field level, control level, and quality control data that is collected using both 
direct and indirect measurement technologies. The data originating from the field and 
process levels are generally born of hierarchical manufacturing systems that produce 
structured time series data acquired through regular polling, with sampling possibly 
occurring in the range of milliseconds [16]. The data acquired from this level is typically 
expected to be structured, well-selected, and well-defined in both syntactic and seman-
tic means. This is evident from the survey of [1], which demonstrates that standards for 
structuring information are abundant and apply across industries. In contrast, quality 
control data can either be structured data from property and quality measurement tests, 
or unstructured data from social media networks, customer feedback forms, interviews, 
surveys, and other communication channels [16].

As such, the product manufacturing process produces a large variety and volume of 
data from complex process operations. Typically, the flow of data follows the hierarchy 
(shown in Fig. 3) from the automation and field layers, to the control layer, and finally 
the enterprise layer. In contrast, control data flows in the reverse direction, as demon-
strated in Fig. 5. Since the platform is focused on process data analysis, it is logical to 
assume that it will predominantly consume structured automation and field level data. 
However, quality control data may also be required from both the control and enterprise 
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layers. These may be used to isolate component faults or to supplement analysis with 
information that is only available from these layers. For example, this may include con-
troller debug logs, material properties, and customer feedback forms. The heterogene-
ous nature of the data will need to be ingested to formalize its structure and to filter, 
de-duplicate, and synchronize the different records. While it is typical for ingested data 
to be then directly sent for long term storage and analysis, it may also be returned to ele-
ments of the manufacturing infrastructure to be used or displayed in its pre-processed 
form. Next, the analysis of ingested data may include mining for knowledge in real time 
streams, processing for predictive analytics, and searching for historical patterns. It is 
typical for the analysis results to be stored while also being delivered through report-
ing and visualisation tools for real-time monitoring, alerting, and decision-making pur-
poses. Hence, five basic components are expected of process data analysis platforms. 
These are data ingestion, communication, storage, analysis, and visualization [4, 31, 32].

The next subsection will address the first research question (RQ1) by characterizing the 
non-functional and functional requirements for each of these components and for process 
data analysis platforms as a whole. The requirements are summarized in Tables 1 and 2.

RQ1: What are the requirements for a big data analysis pipeline for manufacturing process 

data?

Data ingestion

The data ingestion component is the main entry point for data into the big data analysis 
platform. Thus, it is responsible for tasks such as the identification, validation, transfor-
mation, filtering, compression, noise reduction, and integration of incoming data [33]. 
Data cleaning is considered to be an extremely resource-intensive task that may con-
sume 50% of the effort and 80% of the time in a data mining project [34]. It requires a 
concise understanding of the data sources to allow for the selection, cleaning, construc-
tion, and formatting of data.
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Fig. 5 Control and data flow between the manufacturing layers and a big data analysis pipeline
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Several challenges exist for manufacturing data ingestion. These include the following 
[5, 16].

1. Manufacturing ecosystems can have a large number of diverse protocols for com-
munication. Protocol integration normally incurs high engineering costs. Therefore, 
a system that natively supports a large number of relevant connectors is very useful 
(I1, I2).

2. The ubiquity of proprietary protocols in manufacturing requires that the system be 
extensible with custom processors and connectors (I3).

3. The number of data sources and sinks may be in the thousands or hundreds of thou-
sands implying the need for a scalable distributed solution (I4).

4. The presence of redundancy at the field level results in multiple readings of the same 
parameter, which may not be identical in values or sampling rates, thus requiring 
data synchronization (I5).

5. While certain sources are expected to provide real-time streams of data (I6), the 
scheduled transfer of data in bulk from back-end servers, repositories, and applica-
tions may also occur in a manufacturing setting (I7). In fact, the cleaned data may 

Table 1 Non-functional requirements for the platform based on the FURPS+ model

Robert Grady’s FURPS+model . This acronym stands for functionality, usability, reliability, performance, and supportability 
(FURPS), and the + represents additional needs [43]
a Dependent on regulatory concerns imposed by local to international laws and agreement. Can impact storage and 
application locations, communication paths, security configurations, and other system features

Parameter Requirement

Functionality Security Compliant with legislative and regulatory  requirementsa

Compliant with enterprise security policies

Extensibility Capable of integrating new interfaces, data types, connectors, and compo‑
nents

Reusability System functions should, at minimum, handle structured time‑series data. 
The system should also have sufficient connectors to allow its reuse for new 
compositions of data and functions

Usability Aesthetics Generic and intuitive interfaces providing interpretable data. The various 
data types should be queried via a single interface. Visualisation interfaces 
should present data in multiple common formats (trend charts, bar charts, 
etc.) [11, 42]

Documentation Well‑documented to assist in the reduction of system ambiguity and entropy, 
and to allow for system extensibility, component replacement, user training, 
etc

Responsiveness Limits on stream analysis response times depend on the use case and can 
range from milliseconds to seconds (alarms and eventing), to daily and 
weekly reports (process optimization)

Reliability Accuracy Intolerant of data and event loss

Availability Data acquisition, storage systems, and event processing and reporting should 
have the highest guarantees for availability

Recoverability Recovery of persisted data (raw and processed) is necessary. Speed of system 
recovery from faults and the resumption of functions is important

Performance Throughput Typically, this is in the order of 10s of Gigabytes (GB) per day

Scalability The system should scale to accommodate geographically dispersed sources/
sinks

Supportability The components should be well‑maintained, stable, active, well‑documented, 
and with a strong, supportive, and responsive user and developer com‑
munity. They should also be compatible with well‑established monitoring 
solutions
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also need to be transferred back to some of these same databases for transactional 
operations.

Communication

While communication channels are necessary to transfer data between the different 
tools in the analysis pipeline, the need for a dedicated communication middleware is 
not as clear. In some cases, ingestion and communication tasks are handled by the same 
tool. Figure 5 acknowledges this possibility by displaying both functions in the same box. 
However, data may flow to an increasingly large number of destinations. Certain tools 
also split up or parallelize tasks across a large number of distributed workers. Having 
middleware decouple the ingestion component from other processes supports “asyn-
chronous operations and [promotes] scalability, robustness and performance” [30]. 

Table 2 Platform requirements by function

Pipeline stage Requirement

Ingestion I1: Native support of a large number of technology connectors

I2: Can ingest a large variety of formats

I3: Supports custom processors and connectors

I4: Scales to support a large number of sources and sinks (1000s to 100,000s)

I5: Native processors for data validation, transformation, filtration, compression, noise 
reduction, identification, and integration

I6: Supports active (real‑time) ingestion

I7: Supports passive (batch) ingestion

Communication C1: Scalable It should be able to support a large number of sources (ms poll rate) and 
sinks. The combined number can range from 1000s to 100,000s

C2: Secures data in transit

C3: Exactly‑once message delivery semantics

C4: Publish‑subscribe communication

C5: Efficient bandwidth utilization

C6: Supports both real‑time data streams and bulk data transfer

C7: Pull‑based data consumption

Storage S1: Scalable up to 10s GB/day

S2: Read/Write speed independent of volume of stored data.

S3: Large variety of formats and types (structured, semi‑structured, and unstructured)

S4: Compression features for cost‑efficient long‑term storage (years)

S5: Intolerant of data loss

S6: Secures stored data

S7: Exports data to relational databases

Analysis [16] A1: Scalable up to 100,000 variables

A2: Heterogeneous data types

A3: Imperfect data

A4: Real‑time and batch processing required

A5: Supports time‑series analysis & data mining and machine learning

Visualization V1: Scalable

V2: Visualization methods for large data volumes, variety, and velocity

V3: Dynamic and static visualization

V4: Interactive

V5: Extensible interfaces
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Thus, using dedicated middleware for communication tasks is encouraged for big data 
systems.

The network infrastructure of a manufacturing plant is divided into layers based on 
function and requirements with strict controls on communication between them. The 
top layers are IP-based networks and the lowest layers use one or more field-level tech-
nologies [35]. Field-level technologies interconnect manufacturing equipment that can 
consist of thousands of data sources and sinks that produce enormous and continuous 
streams of data. For example, NXP Semiconductor’s Assembly Plant in GuangDong is 
recorded to “[produce] millions of products per day, on a few thousand pieces of equip-
ment, [collecting] over 26 Gigabytes of data per day” [36].

Furthermore, the sensory, actuation, and control devices embedded in manufacturing 
equipment are typically resource-constrained systems that are sensitive to any variations 
in the characteristics of network inputs. For example, two recorded incidents published 
by NIST in [37] demonstrate that unsolicited traffic (ping sweeps) in online control sys-
tems caused a robotic arm to switch from standby to active mode and swing around 180 
degrees. The second incident, also involving a ping sweep, caused the control system in 
charge of fabricating integrated circuits to hang, and resulted in the loss of $50,000 of 
wafers.

In addition, the communication protocols used by control systems usually have limited 
or no security features1 [39]. This means that access by an unauthorized individual may 
lead to unlimited access to the production equipment. Thus, manufacturing plants typi-
cally employ a defense in depth approach using firewalls, virtual private networks, intru-
sion detection systems, and other technologies to secure the control network [39].

Therefore, the communication system should be able to support thousands to hun-
dreds of thousands of endpoints (C1). It should have a proven track record of operating 
safely in defense in depth architectures. It should also incorporate its own security meas-
ures to limit access to its data and functions and to secure data in transit (C2). This may 
include access control mechanisms and cryptography. Furthermore, since data loss may 
reduce the operating safety level of the plant, result in litigation, or degrade the quality of 
analysis, the middleware should provide strong guarantees for fault tolerance and avail-
ability. While this may imply at-least-once message delivery semantics, message dupli-
cates should be avoided to prevent unnecessary load on resource-constrained devices. 
Thus, the ideal tool should support exactly-once message delivery semantics (C3). For 
efficiency, the tool should also support the publish/subscribe communication model and 
message compression and be capable of both real-time and bulk data transfer (C4, C5, 
C6). Finally, given the sensitivity of endpoints to unsolicited traffic, the tool should offer 
pull-based communication (C7).

Storage

As far back as 1997, the production of a single manufactured item could produce mega-
bytes of sensor data in a single step of a single phase of production. As the number of 
units and production steps increase, the amount of data produced also increases. The 

1 See Section 22.5.2 of [38] for more details.
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tools used throughout the process may vary, and therefore, may produce a variety of dif-
ferent data types. Fractions of this data may be highly correlated due to a multi-step pro-
duction process or because of the wide deployment of redundant sensors. For reasons 
related to liability determination and regulations, this data may also need to be stored 
securely and for many years [33, 40].

Thus, there is a need for a database that is capable of scaling in the order of gigabytes 
per day (S1). It should be able to do so while maintaining fairly consistent per-second 
read and write speeds regardless of the volume of stored data (S2). The tool should also 
be able to handle highly correlated data of a large variety (S3). Due to the costs associ-
ated with long-term storage, it should be able to hold this data in an efficiently com-
pressed state and in a secure manner (S4, S5, S6). Finally, it should be able to export to 
relational databases since manufacturing applications still depend on this type of data-
bases (S7) [33, 40].

Analysis

The requirements for manufacturing data analysis described in this section are based on 
the perspective paper by Qin in [16].

According to Qin [16], process data analytics has heavily been in favor of modeling 
data using multivariate statistical methods such as the latent variable methods of prin-
ciple components analysis (PCA) and projection to latent structures (PLS). Data recon-
ciliation, neural networks, and time-series trend analysis are also explored and applied 
in industry for inferential modeling and performance assessment. Yet, these methods 
have been disconnected from recent developments in big data analysis, machine learn-
ing, and data mining. The benefit in progressing beyond the status quo lies in being able 
to use imperfect data in analysis, improving performance through deep learning tech-
niques, exploiting underutilized time-series trend analysis methods for data mining, and 
extracting valuable information from largely unused unstructured data [16].

To achieve these improvements, data analysis should strive for scalability, versatility, 
simplicity, and timeliness. The requirements for analysis outlined by Qin include scal-
ability up to a 100,000 variables (A1), the ability to analyze heterogeneous data types 
from diverse data sources (A2), and supporting analytical techniques for the real-time 
and batch processing of imperfect data (A3, A4). Finally, since the manufacturing pro-
cess mainly generates time-series data, analysis should also favor tools that are designed 
to handle this type of data (A5) [16].

Visualization

Visualization involves the systematic representation of data. In [11], the results of data 
analytics were found to be more readily accepted by engineers if the models were inter-
pretable and easy to visualize. According to [41], big data visualization requires different 
tools than traditional methods because of their differences in properties such as veloc-
ity, variety, and volume. The largeness of datasets implies the need for parallel visualiza-
tion algorithms that can divide the workload into separate tasks that can be processed 
concurrently (V1). Visualization methods are also needed to meaningfully display struc-
tured, semi-structured, and unstructured data, as well as data of high complexity and 
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dimensionality (V2). Dynamic visualization is also needed to report on real-time pro-
cessing streams (V3). According to [41], interactive tools are also stated as being more 
useful and leading to more discoveries than static ones (V4). Finally, the applied tools 
should have extensible interfaces to allow for cross-platform access (e.g., browsers, 
mobile devices) (V5).

This section discussed the main requirements for the five phases of manufacturing pro-
cess data analysis pipelines. These non-functional and functional requirements are sum-
marized in Tables 1 and 2. The next section addresses the second research question by 
discussing the existing data analysis pipelines in academic literature.

RQ2: What are the available big data analysis pipelines for process data in academic 

literature?

This subsection describes the big data analysis pipelines for manufacturing process data. 
Thus, it is divided in three parts. First, the search methodology used to source relevant 
literature is described. Then the inclusion and exclusion criteria applied are explained. 
Next, the main tools used in the different platforms are described.

Search methodology The primary search string (“Manufacturing” AND “Big Data”) was 
used in the IEEE Xplore, ACM Digital Library, and Scopus digital databases. When pos-
sible, the search was limited to peer-reviewed English journal articles and conference 
papers in the computer science and engineering fields between the years 2014 and 2018. 
This yielded 939 unique papers.

Inclusion/exclusion criteria Four criteria are used to limit the number of surveyed 
papers. These are as follows.

1. Recent The paper should have been published within the last 5 years, including this 
year (i.e., 2014, 2015, 2016, 2017, 2018). Technologies change often, thus, the prop-
erties and capabilities of tools that justified their inclusion may change drastically 
between the time that a tool was included in a platform and when this survey was 
carried out. Therefore, it is not useful for this survey to aggregate platforms devel-
oped based on the requirements of systems that existed 10 years ago with those 
developed for today’s needs.

2. Manufacturing process data analysis The reviewed platforms must be designed for 
manufacturing and specifically for process data analysis.

3. Platform The purpose of this survey is to review platforms. We base our definition of 
a platform on [12]. Thus, a paper qualifies if it is “research that provides a system with 
hardware and software components, which enables applications to execute” [12]. For 
this survey, we relax the definition to only software components and look specifically 
for platforms that address the full analysis pipeline from ingestion to visualization.

4. Big data The platforms should be designed specifically for big data use cases.

The full text of all 939 papers were manually inspected to ensure that they met the 
specified inclusion and exclusion criteria. Only 38 papers qualified. The 38 papers, their 
publication year, type (conference paper or journal article), industry, and use case are 
summarized in Table 3.
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Classification The papers are analyzed and the tools used in their respective pipe-
lines are defined. These tools are classified by function into one of five stages: ingestion, 
communication, storage, analysis, and visualization. Table  4 shows the results of this 
classification.

Table 3 Papers that satisfy the review criteria

Type ‘C’ represents a conference paper and ‘A’ a journal article

SCM: semi-conductor manufacturing, APC: advanced process control, OEE: overall equipment effectiveness

Paper Year Type Industry Use case

[44] 2014 C Agnostic Model discovery and analysis

[45] 2014 C Agnostic Knowledge management

[46] 2014 C Agnostic Cloud manufacturing

[47] 2014 C Agnostic Anomaly detection

[48] 2014 C SCM Predictive maintenance

[49] 2015 C Agnostic Air quality

[50] 2015 A Polymer Yield optimization

[51] 2015 A Cement Performance monitoring

[52] 2015 A Chemical agricultural recycling Anomaly detection

[53] 2015 C SCM APC

[54] 2016 A Agnostic Agnostic

[55] 2016 C Agnostic Risk management

[56] 2016 C Agnostic Agnostic

[57] 2016 C SCM Yield improvement

[58] 2016 C Agriculture Quality control

[59] 2016 C Printing Anomaly detection

[60] 2016 C Tire Quality control

[61] 2017 A Polymer Quality control

[62] 2017 A Die casting Quality control

[63] 2017 A Agnostic Quality control

[64] 2017 A SCM APC

[65] 2017 C SCM Process monitoring

[66] 2017 C Oil and gas Predictive maintenance

[67] 2017 C Agnostic Prognostics

[68] 2017 C Hydroelectric Semantic integration

[69] 2017 C Weichai Power Co., Ltd. Quality management

[70] 2017 C Machining Energy use tool use and wear

[71] 2017 C Agnostic Energy use

[72] 2017 C Polymer Prognostics

[73] 2017 C Automotive Quality management

[74] 2018 A SCM Production planning

[75] 2018 A Metal casting Quality management

[76] 2018 A Machining Kanban

[77] 2018 A Food Event processing

[78] 2018 A Agnostic Supply chain management

[79] 2018 A Agnostic Agnostic

[80] 2018 C Agnostic OEE

[81] 2018 C Agnostic Agnostic
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Table 4 The tools used in the respective data analysis pipelines of each paper

Paper Ingestion Communication Storage Analysis Visualization

[44] Custom − HDFS, HBase, Mon‑
goDB Infinispan,

Hadoop, Hive, Pig, 
Elasticsearch

Custom

[45] Custom − HDFS, MySQL Hadoop − ( ∼)

[46] WSO2 BAM WSO2 ESB HDFS, RDB ( ∼ ), Cas‑
sandra ( ∼)

Hadoop, WSO2 CEP Custom (WSO2 
UES)

[47] − Kafka HDFS Hadoop, Storm −
[48] − − HDFS, HBase, Mon‑

goDB Cassandra,
Hadoop, Hive −

[49] − − HDFS Hadoop, Mahout, 
Jena Elephas

−

[50] − − MySQL Matlab, QuickCog −
[51] Custom − Microsoft SQL 2012 Custom Custom

[52] Custom Kafka HDFS, HBase Hadoop, Storm, Hive, 
Radoop, Rapid‑
miner

− ( ∼)

[53] Sqoop − HDFS, HBase Hadoop, Hive, Impala −
[54] Sqoop Flume HDFS, HBase, MySQL Hadoop, Hive Custom

[55] Custom Custom MongoDB Custom Custom

[56] Custom − MongoDB, Post‑
greSQL

RStudio, Watson Ana‑
lytics, Qliksense

Custom

[57] Flume ( ∼ ), 
Sqoop ( ∼)

Custom HDFS, HBase Hadoop, Hive, Impala, 
Spark, Pig

Custom

[58] Custom Custom Cassandra Spark Zeppelin ( ∼)

[59] Kafka Kafka Cassandra, Onto‑
QUAD

Spark Custom, Jupyter, 
Ontos Eiger

[60] Custom − HDFS Hadoop, Hive, Spark Custom

[61] Storm Kafka MongoDB Storm Custom

[62] Pig, Hive Custom HDFS Hadoop, Hive, Pig Flamingo, Custom

[63] ODI, Talend, 
Sqoop

Kafka HDFS, HBase Hadoop, Spark, 
IPython

Tableau, Microsoft 
BI

[64] Sqoop, Custom Custom HDFS, RDB ∼ Hadoop, Hive, Impala, 
Spark, Matlab

−

[65] Custom − − Custom ( ∼) Custom

[66] Custom Kafka, RabbitMQ HDFS, HBase, Cassan‑
dra, PostgreSQL

Hadoop, Spark, Storm Custom

[67] Custom Custom Microsoft SQL 
2008R2

Custom Custom

[68] Custom − Cassandra Spark −
[69] Sqoop − HDFS Spark Custom

[70] Custom, Storm Kafka CouchDB − −
[71] Sqoop − HDFS, HBase Hadoop, Hive, Pig Custom

[72] Custom − MongoDB Custom −
[73] WSO2 ESB WSO2 ESB Alfresco CMS, Neo4j Apache UIMA, WEKA Custom

[74] − ( ∼) − HDFS, HBase Hadoop, Hive −
[75] Spark − HDFS, HBase R, Drools Custom

[76] Custom − MySQL Custom Custom

[77] Custom − Microsoft SQL 
2008R2

Custom Custom

[78] Flume, Sqoop − HDFS Hadoop, Hive, Solr, 
RServe, Mahout

Custom

[79] Flume Kafka HDFS, HBase, MySQL Hadoop, Hive, Storm Custom
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Results
A number of anecdotal observations collected during this survey include the following.

1. Papers often do not state the requirements of their systems prior to the design of the 
pipeline.

2. Papers often do not justify their design choices and decisions in tools.
3. Papers often do not describe how the tools were applied and used. This is especially 

true for custom tools that are also not openly accessible.

This restricts the information available to explain the observed trends in this study.
Yet, the results of RQ1 define the requirements that should be met by a data analy-

sis pipeline for manufacturing process data. They are agnostic to industry and use case. 
Thus, process data analysis pipeline should at the least meet these requirements and 
those that are specific to the industry and use case. Therefore, the results of RQ1 are 
used to establish the context needed to explain the pipelines in RQ2.

The discussion is split into two sections that give an overview of the results and a more 
in-depth discussion on the tools used and design choices made for the analysis pipelines, 
respectively.

Results overview

Figure 6 shows an overview on the tools used in the different pipelines and demonstrates 
the following. The analysis and storage stages of the pipeline are well-addressed by most 
paper with respectively only 1 and 3 papers out of 38 not using a tool (custom or other-
wise) for the task. In contrast, 6 pipelines do not have a tool set for ingestion ( 15.8% ), 19 
for communication ( 50.0% ), and 13 for visualization ( 34.2% ). Thus, a considerable num-
ber of papers focused predominantly on the analysis and storage phase and, in the pro-
cess, neglected the ingestion, communication, and visualization stages.

Results by analysis stage

This section does not compare the tools and pipelines used against the requirements 
defined in RQ1 for two reasons.

1. Figure 6 shows the frequent use of custom and ad-hoc tools in the different pipelines. 
These tools are not openly available for review.

2. The descriptions of how the tools are applied vary drastically in quality and detail 
between papers. Therefore, while the tools may be evaluated independent of how 

Paper Ingestion Communication Storage Analysis Visualization

[80] − Kafka Cassandra Spark Custom

[81] Custom RabbitMQ HDFS Hadoop −

∼ , implies that it is uncertain if the tool was used for this stage of the pipeline. −, implies that no tool was used for this stage 
of the pipeline

ODI: Oracle Data Integrator, BAM: Business Activity Monitor, ESB: Enterprise Service Bus, CEP: Complex Event Processor, UES: 
User Engagement Server

Table 4 (continued)
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they are actually used, this would not give a realistic and fair assessment of the pipe-
lines themselves.

The rest of this section will instead describe the trends in Fig. 7 in light of the require-
ments from RQ1.

Ingestion (Fig. 7a) 18 of the 38 pipelines ( 47.3% ) use custom tools. Custom tools are 
therefore the largest type of tool used for data ingestion. This design choice may be due 
to the nature of manufacturing ecosystems. To explain, a manufacturing ecosystem may 
employ a number of protocols and standards for communication and data representa-
tion, some of which are proprietary. The protocols, standards, and the combination in 
which they are used can be unique to the manufacturing industry. Since these properties 
would directly impact the characteristics of the ingested data, the response has been to 
develop custom and ad-hoc connectors for data ingestion.

Apache Sqoop is the second most used tool for data ingestion. It is used in 8 out of 38 
pipelines ( 21.0% ). Apache Sqoop is used to integrate Hadoop directly with existing rela-
tional databases and manufacturing operations management systems (e.g., ERP, MES) 
that commonly depend on relational databases. Since, Apache Sqoop is a big data tool 
for the transfer of data between relational databases and Hadoop, explaining this trend is 
straight forward.

The third most common design choice is to not use any tool and to leave the ingestion 
phase unaddressed. This is done in 6 of the 38 pipelines ( 15.8%).

The remainder of the tools include message queuing middleware (e.g., Flume, Kafka), 
processing frameworks (e.g., Storm, Spark), query engines (e.g., Pig, Hive), and others. 
These are each applied in 3 pipelines or less ( 7.9%).

Fig. 6 An overview of the tools used. The yellow bar is the number of unique and non‑custom made tools 
(e.g., NiFi, Kafka). The green bar is the number of custom tools (e.g., ad hoc scripts/applications). The red 
bar shows the number of pipelines that did not use any tool for that specific stage. The blue bar counts the 
number of cases of uncertainty in the results (e.g., a paper includes a tool in its figure of the data analysis 
pipeline but then does not mention it in‑text)
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Communication (Fig. 7b) 18 out of 38 pipelines ( 47.3% ) did not use any tool for com-
munication. Instead, the pipelines would chain the different tools using their connectors 
or respective interfaces.

Apache Kafka is the second most used tool and is applied in 9 out of 38 pipelines 
( 23.7% ). Kafka is a message queuing solution. Thus, it can be used to decouple the pipe-
line components and promote scalability, robustness, and performance [30]. Kafka is a 
good choice based on the requirements defined in RQ1 for communication middleware. 
However, Kafka may be difficult to integrate in systems where data flows back to the 
process and control levels from the analysis pipeline. To explain, Apache Kafka publishes 
messages from producers to queues (‘topics’), that are then processed by consumers. 
Instances of Kafka consumers operate in consumer groups. If a consumer group is sub-
scribed to a topic, each published record is delivered to a single consumer instance in 
that group. Yet, manufacturing systems often have redundant equipment that needs to 
be in sync and up to date. If the redundant components operate as a single consumer 
group, then only one component out of the redundant set will receive each message 
from the Kafka topic. Additional mechanisms will therefore be necessary to ensure that 
all of the redundant components are in sync. Alternatively, each component will have to 
operate as an independent consumer group. This is one example of a caveat that requires 
extra care to engineer a correct system for message queuing in manufacturing.

(a) (b)

(c) (d)

(e)
Fig. 7 The top 5 tools used for a ingestion, b communication, c storage, d analysis, and e visualization in the 
pipelines
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Custom tools are used in 6 of 38 pipelines ( 15.8% ). This is normally seen as integrated 
communication interfaces in middleware and other components of the pipeline. How-
ever, several papers also construct pipelines that predominantly use custom tools. Thus, 
having a custom tool for the communication stage is unsurprising as it conforms with 
their all-encompassing design choice.

The remainder of the tools used (e.g., WSO2 ESB, and RabbitMQ) are each applied in 
2 pipelines or less ( 5.3%).

Storage (Fig. 7c) HDFS is used in 22 out of 38 pipelines ( 57.9% ), thus making it the 
most popular choice for storage in the surveyed pipelines. HDFS is bundled with big 
data analysis tools (e.g., Hadoop) that depend on HDFS to function. It is therefore unsur-
prising that it is so well-represented in the analysis platforms.

NoSQL (Not Only SQL) databases are used in 27 out of 38 pipelines ( 71.1% ). The data-
bases used are HBase, Cassandra, MongoDB, Infinispan, and CouchDB. NoSQL data-
bases are normally described as optimal solutions for storing heterogeneous data. Some 
papers, however, have cited scalability as their main reason for using a NoSQL database 
instead of a relational one.

Relational databases are used in 12 out of 38 pipelines ( 31.6% ). The tools used include 
MySQL, Microsoft SQL Server, and PostgreSQL. Two papers did not specify the exact 
type and referred only to a relational database in the pipeline. Relational databases are 
traditionally common in manufacturing systems. Thus, this choice in database systems 
may be driven by historical reasons and context.

One pipeline, described in [65], did not address the storage stage and did not explain 
this decision.

Analysis (Fig. 7d) Hadoop is used in 20 of 38 pipelines ( 52.6% ). This number is inflated 
because Hadoop is often used to execute jobs on behest of other tools. For example, Hive 
is used in 13 of 38 pipelines ( 34.2% ) and runs on top of Hadoop, submitting SQL queries 
to Hadoop for processing. Similarly, Pig submits SQL-like jobs to Hadoop and is used in 
4 separate pipelines ( 10.5% ). However, several pipelines do use Hadoop as intended for 
batch processing tasks.

Spark and Storm are used for stream processing in 10 pipelines ( 26.3% ) and 5 pipelines 
( 13.2% ) out of 38, respectively. Using this type of tools conforms with the well-known 
fact that the majority of data from field level equipment is structured time series data 
produced through regular polling.

Custom tools are used in 7 of 38 pipelines ( 18.4% ). This number represents applica-
tions and ad hoc scripts written in a variety of languages.

It is worth noting that this stage shows the highest diversity of tools. In total, 24 differ-
ent tools (excluding custom tools) are used in the 38 pipelines. Yet, 19 of the 24 tools are 
each used in 3 pipelines or less.

Finally, 1 of the 38 pipelines ( 2.6% ) does not use a tool for this stage. This pipeline is 
described in [70]. This paper focuses on establishing a pipeline for ingestion, commu-
nication, and storage. Plans exist to hand off the stored and cleaned data to an analysis 
component in the future. However, the analysis setup is not specified as of yet.

Visualization (Fig. 7e) A custom tool is used in 23 of the 38 pipelines ( 60.5% ). This 
includes web frameworks developed in a number of languages to display web pages on 
diverse terminals.
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The second most common choice is to have no tool assigned for the visualization stage 
of the pipeline. This is done in 13 of the 38 pipelines ( 34.2% ). Instead, they depend on the 
outputs of the analysis tools used or leave it unaddressed.

The commercial off-the-shelf (COTS) tools used are Flamingo, Jupyter, Microsoft BI, 
Ontos Eiger, Tableau, and Zeppelin. These are each used in 1 pipeline.

Recommendations
This section presents the main recommendations for each stage in the pipeline based on 
the study’s results.

Ingestion Custom tools are the largest type of tool used for data ingestion. This may 
highlight the lack of readily available industry-wide capable technology connectors for 
ingestion or the need for specialized tools in general. For example, the latter may include 
tools that have direct support for proficiently handling highly correlated and redundant 
process level data. Developing a standard and openly available tool with the required 
features can remove the redundancy of redeveloping fundamental components, such as 
protocol connectors.

Communication 19 out of the 38 pipelines ( 50.0% ) neglect the communication phase. 
Using an enterprise-level message queuing service would introduce middleware that can 
decouple the components in the pipelines, and thus promote scalability, robustness and 
performance [30]. Also, 6 of the 38 pipelines ( 15.8% ) use custom tools for communica-
tion. Using a COTS service would relieve data engineers from the cost of having to rede-
velop communication logic for custom tools.

Storage 27 out of the 38 pipelines ( 71.1% ) use NoSQL databases. This is an under-
standable design choice since the context dictates support for storing and analyzing het-
erogeneous data. However, NoSQL databases should provide a familiar interface similar 
to relational databases, e.g., the ability to strictly enforce data schema, since it is more 
likely that in-house expertise in the manufacturing sector are more aligned with rela-
tional systems.

Analysis Real-time processing frameworks are under-represented in this stage of the 
pipeline. This limits the capabilities of the overall system and may, in the future, require 
the re-engineering of systems. Incorporating a suitable real-time processing tool in the 
initial design is normally justified since it is highly relevant to a number of current man-
ufacturing use cases.

Visualization In [11], data analysis results were found to be more readily accepted by 
engineers if the models were interpretable and easy to visualize. Having no tool assigned 
for this stage or depending on the output of analysis tools instead of using standardized 
interfaces for the systematic representation of data antagonizes these findings. Thus, this 
aspect should be addressed in accordance to the requirements defined in RQ1.

Conclusion
This survey identifies and addresses two research questions with the goal of support-
ing data engineers in the development of big data analysis pipelines for manufacturing 
process data. The first research question addresses the requirements for big data analy-
sis pipelines for manufacturing process data. The second research question surveys the 
available pipelines in academic literature.
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Most pipelines focus on the analysis and storage phases, and neglect the ingestion, 
communication, and visualization stages. Furthermore, custom tools are frequently 
used for ingestion and visualization. While these trends may currently be justified in the 
manufacturing context, it highlights an opportunity for the development of standardized 
and openly accessible tools. Moreover, tools capable of handling heterogeneous data are 
well-represented. Storage and analysis tools for relational data are also well-represented. 
Finally, batch processing tools are more widely adopted than real-time stream process-
ing frameworks, and most pipelines tackle the analysis phase using a common script-
based data processing approach.

The derived recommendations are as follows.

1. Data ingestion is in need of a suitable tool with the standard technology connectors 
and common features necessary for manufacturing.

2. A COTS enterprise-level message queuing solution should be used for communi-
cation to free-up developers from having to re-implement message queuing logic 
between pipelines. It also ensures that the overall system can decouple the compo-
nents in the pipelines, thereby promoting features such as scalability, robustness, and 
performance.

3. For storage, NoSQL databases with a familiar interface (e.g., similar to relational 
databases) should be favored over others. This would allow companies to capitalize 
on existing in-house expertise that are typically in relational systems for historical 
reasons.

4. The analysis stage should strive to include a stream processing tool in the pipeline 
since it is relevant to most use cases on manufacturing process data.

5. The visualization stage should not be left unaddressed so that the data analysis results 
are more accessible to engineers.

Future work can include a complete comparison of the tools identified in this survey 
against the requirements of RQ1. This future comparison may help further determine a 
set of tools that are best-suited for the big data analysis of manufacturing process data. 
They may then serve as a good basis for future development and standardization efforts.

Abbreviations
ERP: enterprise resource planning; MES: manufacturing execution system; MRO: maintenance, repair and overhaul; TBM: 
time‑based maintenance; CBM: condition‑based maintenance; DMZ: de‑militarized zone; SIS: safety instrumented 
system; BPCS: basic process control system; SIF: safety instrumented functions; SIL: safety integrity level; RSA: required 
safety availability; NIST: national institute of science and technology; PCA: principal components analysis; PLS: projec‑
tion to latent structures; FURPS: functionality, usability, reliability, performance, and supportability; GB: gigabytes; SCM: 
semi‑conductor manufacturing; APC: advanced process control; OEE: overall equipment effectiveness; ODI: oracle data 
integrator; BAM: business activity monitor; ESB: enterprise service bus; CEP: complex event processor; UES: user engage‑
ment server; NoSQL: not only SQL; COTS: commercial off‑the‑shelf.

Authors’ contributions
AI identified the background, challenges, and research questions, designed and conducted suitable research method‑
ologies, collected, inspected, and classified the papers and tools, formulated the discussion, recommendations, and 
conclusion, and wrote the manuscript. HLT identified topics, edited the manuscript, and supervised the research. WK 
edited the manuscript and supervised the research. All authors read and approved the final manuscript.

Acknowledgements
The authors thank the reviewers. AI thanks G. Gridling and R. Trubko for their helpful discussions.



Page 24 of 26Ismail et al. J Big Data             (2019) 6:1 

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Not applicable.

Funding
The paper has been partially funded by the European Union’s Horizon 2020 research and innovation program under the 
Marie Sklodowska‑Curie Grant Agreement No. 764785 (Fog Computing for Robotics and Industrial Automation). The 
authors acknowledge the TU Wien University Library for financial support through its Open Access Funding Program.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 24 September 2018   Accepted: 7 December 2018

References
 1. Lu Y, Morris K, et al. Current standards landscape for smart manufacturing systems. In: Tech. rep. NIST IR 8107. 

National Institute of Standards and Technology. https ://doi.org/10.6028/NIST.IR.8107.
 2. Choudri A. The Agile enterprise. In: ReVelle J, editor. Manufacturing handbook of best practices: an innovation, 

productivity, and quality focus. New York: CRC Press; 2001. p. 3–23.
 3. Corrêa H. Agile manufacturing as the 21st century strategy for improving manufacturing competitiveness. In: 

Gunasekaran A, editor. Agile manufacturing: the 21st century competitive strategy. Oxford: Elsevier Science Ltd; 
2001. p. 3–23.

 4. Rehman M.H.u, Chang V, et al. Big Data reduction framework for value creation in sustainable enterprises. In: Interna‑
tional journal of information management. 2016. p. 917–28. https ://doi.org/10.1016/j.ijinf omgt.2016.05.013.

 5. Jirkovsky V, Obitko M, et al. Big Data analysis for sensor time‑series in automation. In: International conference on 
emerging technology and factory automation (ETFA). IEEE; 2014. p. 1–8.

 6. Han J, Kamber M. Data mining: concepts and techniques. 3rd ed. Burlington: Elsevier; 2011 ISBN: 978‑0‑12‑381479‑1.
 7. NIST Big Data Interoperability Framework. Volume 1, definitions. In: Tech. rep. NIST SP 1500‑1. National Institute of 

Standards and Technology; 2015. https ://doi.org/10.6028/NIST.SP.1500‑1.
 8. Li J, Tao F, et al. Big Data in product lifecycle management. Int J Adv Manuf Technol. 2015;81:667–84. https ://doi.

org/10.1007/s0017 0‑015‑7151‑x.
 9. Palma‑Mendoza JA, Neailey K. A business process re‑design methodology to support supply chain integration: 

application in an airline MRO supply chain. Int J Inform Manag. 2015;35:620–31. https ://doi.org/10.1016/j.ijinf 
omgt.2015.03.002.

 10. Hazen BT, Boone CA, et al. Data quality for data science, predictive analytics, and big data in supply chain manage‑
ment: an introduction to the problem and suggestions for research and applications. Int J Prod Econ. 2014;154:72–
80. https ://doi.org/10.1016/j.ijpe.2014.04.018.

 11. Vodenc̆arević A, Fett T. Data analytics for manufacturing systems. In: International conference on emerging technol‑
ogy and factory automation (ETFA). IEEE; 2015. p. 1–4.

 12. O’Donovan P, Leahy K, et al. Big Data in manufacturing: a systematic mapping study. J Big Data. 2015;1:1. https ://doi.
org/10.1186/s4053 7‑015‑0028‑x.

 13. Chien C‑F, Liu CW, et al. Analysing semiconductor manufacturing Big Data for root cause detection of excursion for 
yield enhancement. Int J Prod Res. 2017;55:5095–107. https ://doi.org/10.1080/00207 543.2015.11091 53.

 14. Mannila H, Toivonen H, et al. Discovery of frequent episodes in event sequences. Data Mining Knowl Dis. 
1997;1(3):259–89.

 15. Stark R, Grosser H, et al. Advanced technologies in life cycle engineering. Procedia CIRP. 2014;22:3–14. https ://doi.
org/10.1016/j.proci r.2014.07.118.

 16. Qin SJ. Process data analytics in the era of big data. AIChE J. 2014;60:3092–100. https ://doi.org/10.1002/aic.14523 .
 17. Puig Ramírez J. Asset optimization and predictive maintenance in discrete manufacturing industry. MA thesis. 

Universitat Politècnica de Catalunya; 2010.
 18. Biffl S, Gerhard D, et al. Introduction to the multi‑disciplinary engineering of cyber‑physical production systems. In: 

Multi‑disciplinary engineering for cyber‑physical production systems. Oxford: Springer; 2017.
 19. Colombo A, Bangemann T, et al. Industrial cloud‑based cyber‑physical systems. Cham: Springer; 2014.
 20. Ismail A, Kastner W. Vertical integration in industrial enterprises and distributed middleware. Int J Internet Protocol 

Technol. 2016;9(2/3):79–89. https ://doi.org/10.1504/IJIPT .2016.07954 7.
 21. Ismail A, Kastner W. Discovery in SOA‑Governed Industrial Middleware with mDNS and DNS‑SD. In: International 

conference on emerging technology and factory automation (ETFA). IEEE. 2016.
 22. Ismail A. Service oriented manufacturing infrastructure. Dissertation. Vienna: TU Wien; 2018.
 23. Zerbst J, Schaefer M, et al. Zone principles as cyber security architecture element for smart grids. In: 2010 IEEE PES 

innovative smart grid technologies conference Europe (ISGT Europe). 2010. https ://doi.org/10.1109/ISGTE UROPE 
.2010.56389 00.

 24. Bowonder B. An analysis of the Bhopal accident. Project Appraisal. 1987;2(3):157–68.
 25. Spooner M, MacDougall T. Safety Safety instrumented systems. Can they be integrated but separate?” In: ABB White 

Paper. 2011.

https://doi.org/10.6028/NIST.IR.8107
https://doi.org/10.1016/j.ijinfomgt.2016.05.013
https://doi.org/10.6028/NIST.SP.1500-1
https://doi.org/10.1007/s00170-015-7151-x
https://doi.org/10.1007/s00170-015-7151-x
https://doi.org/10.1016/j.ijinfomgt.2015.03.002
https://doi.org/10.1016/j.ijinfomgt.2015.03.002
https://doi.org/10.1016/j.ijpe.2014.04.018
https://doi.org/10.1186/s40537-015-0028-x
https://doi.org/10.1186/s40537-015-0028-x
https://doi.org/10.1080/00207543.2015.1109153
https://doi.org/10.1016/j.procir.2014.07.118
https://doi.org/10.1016/j.procir.2014.07.118
https://doi.org/10.1002/aic.14523
https://doi.org/10.1504/IJIPT.2016.079547
https://doi.org/10.1109/ISGTEUROPE.2010.5638900
https://doi.org/10.1109/ISGTEUROPE.2010.5638900


Page 25 of 26Ismail et al. J Big Data             (2019) 6:1 

 26. Liptak BG, Venczel K, et al. Instrument and Automation Engineers’ Handbook. Process measurement and analysis. 
5th ed. Boston: CRC Press; 2016.

 27. Raul AC. The privacy, data protection and cybersecurity law review. English. 2014. ISBN: 978‑1‑909830‑28‑8.
 28. Bernard R. Information lifecycle security risk assessment: a tool for closing security gaps. Comput Secur. 

2007;26:26–30.
 29. Appt S, Fietz E, et al. Smart manufacturing. The legal and regulatory challenges. Pinsent: Pinsent Masons LLP; 2015.
 30. O’Donovan P, Leahy K, et al. An industrial big data pipeline for data‑driven analytics maintenance applications in 

large‑scale smart manufacturing facilities. J Big Data. 2015;1:1. https ://doi.org/10.1186/s4053 7‑015‑0034‑z.
 31. Didier P, Macias F, et al. Converged plantwide ethernet (CPwE) design and implementation guide. Milwaukee: Cisco 

Systems, San Jose, Californiaand Rockwell Automation; 2011.
 32. Krumeich J, Werth D, et al. Advanced planning and control of manufacturing processes in steel industry through big 

data analytics: case study and architecture proposal. In: 2014 IEEE international conference on Big Data (Big Data). 
2014. p. 16–24.

 33. Sawant N, Shah H. Big Data application architecture Q & A: a problem‑solution approach. Expert’s voice in big data. 
New York: Apress. 2013. ISBN: 978‑1‑4302‑6292‑3.

 34. Gupta G. Introduction to Data Mining with case studies. English. 2015. ISBN: 978‑81‑203‑5002‑1.
 35. Sauter T, Soucek S, et al. Vertical integration. In: Wilamowski B, Irwin J, editors. Industrial communication systems. 

2nd ed. London: CRC Press; 2011. p. 1–12.
 36. Wilschut T, Adan I.J, et al. Big Data in daily manufacturing operations. In: IEEE simulation conference (WSC). 2014. p. 

2364–75.
 37. Stouffer K, Pillitteri V, et al. NIST special publication 800‑82 revision 2: guide to industrial control systems (ICS) secu‑

rity. Tech. rep. National Institute of Standards and Technology. 2015.
 38. Granzer W, Treytl A. Industrial Communication Systems. In: Irwin J, editor. Security in industrial communication 

systems. New York: CRC Press; 2011. https ://doi.org/10.1201/b1060 3‑24.
 39. Kuipers D, Fabro M. Control systems cyber security: defense in depth strategies. Department of Homeland Security: 

Tech. rep. Prepared by Idaho National Laboratory. U.S; 2006.
 40. Staff NRC. Massive data sets: proceedings of a workshop. Washington: National Academies Press; 1900.
 41. Wang L, Wang G, et al. Big Data and visualization: methods, challenges and technology progress. Dig Technol. 

2015;1:33–8. https ://doi.org/10.12691 /dt‑1‑1‑7.
 42. Lee F, Smith S. Yield Analysis and Data Management Using Yield ManagerTM. In: IEEE/SEMI 1998 IEEE/SEMI 

Advanced semiconductor manufacturing conference and workshop (Cat. No.98CH36168). 1998. pp. 19–30. https ://
doi.org/10.1109/ASMC.1998.73137 7.

 43. Grady R, Caswell D. Software metrics: establishing a company‑wide program. New Yrok: Prentice Hall; 1987 ISBN: 
0138218447.

 44. Yang H, Park M, et al. A system architecture for manufacturing process analysis based on big data and process 
mining techniques. In: International conference on Big Data. 2014. p. 1024–9. https ://doi.org/10.1109/BigDa 
ta.2014.70043 36.

 45. Wang C, Zhao C, et al. A framework for management of massive knowledge in cloud environment. In: Interna‑
tional conference on BioMedical engineering and informatics (BMEI). 2014. p. 843–7. https ://doi.org/10.1109/
BMEI.2014.70028 89.

 46. Qanbari S, Zadeh S, et al. CloudMan: a platform for portable cloud manufacturing services. In: International confer‑
ence on Big Data (Big Data). IEEE; 2015. p. 1006–14. https ://doi.org/10.1109/BigDa ta.2014.70043 34.

 47. Chen H, Fei X, et al. Energy consumption data based machine anomaly detection. In: International conference on 
advanced cloud and big data (CBD). IEEE. 2015. p. 136–42. https ://doi.org/10.1109/CBD.2014.24.

 48. Munirathinam S, Ramadoss B. Big data predictive analtyics for proactive semiconductor equipment maintenance. In: 
International conference on Big Data (Big Data). IEEE. 2015. p. 893–902. https ://doi.org/10.1109/BigDa ta.2014.70043 
20.

 49. Obitko M, Jirkovský V. Big data semantics in industry 4.0. In: Lecture Notes in Computer Science 9266 2015. p. 
217–29. https ://doi.org/10.1007/978‑3‑319‑22867 ‑9_19.

 50. Kohlert M, König A. Large, high‑dimensional, heterogeneous multi‑sensor data analysis approach for process 
yield optimization in polymer film industry. Neural Comput Appl. 2015;26(3):581–8. https ://doi.org/10.1007/s0052 
1‑014‑1654‑5.

 51. Dutta D, Bose I. Managing a big data project: the case of Ramco cements limited. Int J Prod Econ. 2015;165:293–306. 
https ://doi.org/10.1016/j.ijpe.2014.12.032.

 52. Windmann S, Maier A, et al. Big data analysis of manufacturing processes. J Phys. 2015;1:1. https ://doi.
org/10.1088/1742‑6596/659/1/01205 5.

 53. Moyne J, Samantaray J, et al. Big data emergence in semiconductor manufacturing advanced process control. 
In: Annual SEMI advanced semiconductor manufacturing conference (ASMC). IEEE. 2015. p. 130–5. https ://doi.
org/10.1109/ASMC.2015.71644 83.

 54. Wan J, Tang S. Software‑defined industrial internet of things in the context of industry 4.0. IEEE Sens J. 
2016;16(20):7373–80. https ://doi.org/10.1109/JSEN.2016.25656 21.

 55. Niesen T, Houy C, et al. Towards an integrative big data analysis framework for data‑driven risk management in 
industry 4.0. In: International conference on system sciences, Vol. 2016. 2016. p. 5065–74. https ://doi.org/10.1109/
HICSS .2016.627.

 56. Gerrikagoitia J, Unamuno G, et al. Making sense of manufacturing data. In: International conference on informatics 
in control, automation and robotics, vol. 2. SciTePress. 2016. p. 590–4.

 57. Chen C‑C, Hung M‑H, et al. Development of a cyber‑physical‑style continuous yield improvement system for manu‑
facturing industry. In: International conference on automation science and engineering. IEEE. 2016. p. 1307–12. 
https ://doi.org/10.1109/COASE .2016.77435 59.

 58. De Silva PP, De Silva PA. Ipanera: an industry 4.0 based architecture for distributed soil‑less food production systems. 
In: Manufacturing & industrial engineering symposium (MIES). IEEE. 2016. p. 1–5.

https://doi.org/10.1186/s40537-015-0034-z
https://doi.org/10.1201/b10603-24
https://doi.org/10.12691/dt-1-1-7
https://doi.org/10.1109/ASMC.1998.731377
https://doi.org/10.1109/ASMC.1998.731377
https://doi.org/10.1109/BigData.2014.7004336
https://doi.org/10.1109/BigData.2014.7004336
https://doi.org/10.1109/BMEI.2014.7002889
https://doi.org/10.1109/BMEI.2014.7002889
https://doi.org/10.1109/BigData.2014.7004334
https://doi.org/10.1109/CBD.2014.24
https://doi.org/10.1109/BigData.2014.7004320
https://doi.org/10.1109/BigData.2014.7004320
https://doi.org/10.1007/978-3-319-22867-9_19
https://doi.org/10.1007/s00521-014-1654-5
https://doi.org/10.1007/s00521-014-1654-5
https://doi.org/10.1016/j.ijpe.2014.12.032
https://doi.org/10.1088/1742-6596/659/1/012055
https://doi.org/10.1088/1742-6596/659/1/012055
https://doi.org/10.1109/ASMC.2015.7164483
https://doi.org/10.1109/ASMC.2015.7164483
https://doi.org/10.1109/JSEN.2016.2565621
https://doi.org/10.1109/HICSS.2016.627
https://doi.org/10.1109/HICSS.2016.627
https://doi.org/10.1109/COASE.2016.7743559


Page 26 of 26Ismail et al. J Big Data             (2019) 6:1 

 59. Huber M, Voigt M, et al. Big data architecture for the semantic analysis of complex events in manufacturing. In: 
Lecture Notes in Informatics (LNI), Proceedings—series of the Gesellschaft fur Informatik (GI). p. 353–60.

 60. Shi Y, Chen Y, et al. A data services‑based quality analysis system for the life cycle of tire production”. In: Lecture notes 
in computer science 9936 2016. p. 715–29. https ://doi.org/10.1007/978‑3‑319‑46295 ‑0_51.

 61. Syafrudin M, Fitriyani N, et al. An open source‑based real‑time data processing architecture framework for manufac‑
turing sustainability. In: Sustainability. 2017. p. 2139. https ://doi.org/10.3390/su911 2139.

 62. Lee JY, Yoon JS, et al. A big data analytics platform for smart factories in small and medium‑sized manufacturing 
enterprises: an empirical case study of a die casting factory. Int J Precis Eng Manuf. 2017;18:1353–61. https ://doi.
org/10.1007/s1254 1‑017‑0161‑x.

 63. Lade P, Ghosh R. Manufacturing analytics and industrial Internet of Things. IEEE Intell Syst. 2017;32(3):74–9.
 64. Lin Y‑C, Hung M‑H. Development of advanced manufacturing cloud of things (AMCoT)—a smart manufacturing 

platform. IEEE Robot Automat Lett. 2017;2(3):1809–16. https ://doi.org/10.1109/LRA.2017.27068 59.
 65. Fan X, Zhu X, et al. Big data analytics to improve photomask manufacturing productivity. In: International confer‑

ence on industrial engineering and engineering management, Vol. 2017. IEEE, 2018. p. 2341–5. https ://doi.
org/10.1109/IEEM.2017.82903 10.

 66. Stojanovic L, Stojanovic N. PREMIuM: Big data platform for enabling self‑healing manufacturing. In: Interna‑
tional conference on engineering, technology and innovation. IEEE, 2018. p. 1501–8. https ://doi.org/10.1109/
ICE.2017.82800 60.

 67. Yan J, Meng Y, et al. Big‑data‑driven based intelligent prognostics scheme in industry 4.0 environment”. In: Prognos‑
tics and system health management conference (PHM‑Harbin), 2017. IEEE. 2017. p. 1–5.

 68. Jirkovský V, Obitko M. Enabling Semantics within Industry 4.0. In: Mařík V, Wahlster W, editors. Industrial applications 
of holonic and multi‑agent systems, vol. 10444. Cham: Springer; 2017. p. 39–52. https ://doi.org/10.1007/978‑3‑319‑
64635 ‑0_4.

 69. Li X, Tu Z, et al. Deep‑level quality management based on big data analytics with case study. In: 2017 Chinese Auto‑
mation Congress (CAC). 2017. p. 4921–6.

 70. Ferry N, Terrazas G, et al. Towards a big data platform for managing machine generated data in the cloud. In: Inter‑
national Conference on Industrial Informatics (INDIN). IEEE. 2017. https ://doi.org/10.1109/INDIN .2017.81047 82.

 71. Xu W, Liu Q, et al. Energy condition perception and Big Data analysis for industrial cloud robotics. In: Procedia CIRP 
61 2017. p. 370–5. https ://doi.org/10.1016/j.proci r.2016.11.164.

 72. Kozjek D, Vrabič R, et al. A data‑driven holistic approach to fault prognostics in a cyclic manufacturing process. In: 
Procedia CIRP 63: 2017. p. 664–9. https ://doi.org/10.1016/j.proci r.2017.03.109.

 73. Kassner L, Gröger C, et al. The Stuttgart IT Architecture for Manufacturing. In: Hammoudi S, Maciaszek LA, editors. 
Enterprise Information Systems, vol. 291. Cham: Springer; 2017. p. 53–80. https ://doi.org/10.1007/978‑3‑319‑62386 
‑3_3.

 74. Wang J, Yang J, et al. Big data driven cycle time parallel prediction for production planning in wafer manufacturing. 
In: Enterprise information systems. 2018. p. 714–32. https ://doi.org/10.1080/17517 575.2018.14509 98.

 75. Lee J, Noh S, et al. Implementation of cyber‑physical production systems for quality prediction and operation con‑
trol in metal casting. In: Sensors. 2018. p. 1428. https ://doi.org/10.3390/s1805 1428.

 76. Ding K, Jiang P. RFID‑based production data analysis in an IoT‑enabled smart job‑shop. IEEE/CAA J Autom Sinica. 
2018;5(1):128–38. https ://doi.org/10.1109/JAS.2017.75104 18.

 77. Li S, Chen W, et al. ASPIE: a framework for active sensing and processing of complex events in the internet of manu‑
facturing things. In: Sustainability. 2018. p. 692. https ://doi.org/10.3390/su100 30692 .

 78. Noh K‑S. Model of knowledge‑based process management system using big data in the wireless communication 
environment. Wireless Personal Commun. 2018;98:3147–62. https ://doi.org/10.1007/s1127 7‑017‑4769‑z.

 79. Bai Y. Industrial Internet of things over tactile Internet in the context of intelligent manufacturing. Cluster Comput‑
ing. 2018;21:869–77. https ://doi.org/10.1007/s1058 6‑017‑0925‑1.

 80. Arantes M, Bonnard R, et al. General architecture for data analysis in industry 4.0 using SysML and model based 
system engineering. In: International systems conference (SysCon). IEEE. 2018. p. 1–6.

 81. Kirmse A, Kraus V, et al. An architecture for efficient integration and harmonization of heterogeneous, distributed 
data sources enabling big data analytics. In: International conference on enterprise information systems. INSTICC. 
SciTePress. 2018. p. 175–82. ISBN: 978‑989‑758‑298‑1. https ://doi.org/10.5220/00067 76701 75018 2.

https://doi.org/10.1007/978-3-319-46295-0_51
https://doi.org/10.3390/su9112139
https://doi.org/10.1007/s12541-017-0161-x
https://doi.org/10.1007/s12541-017-0161-x
https://doi.org/10.1109/LRA.2017.2706859
https://doi.org/10.1109/IEEM.2017.8290310
https://doi.org/10.1109/IEEM.2017.8290310
https://doi.org/10.1109/ICE.2017.8280060
https://doi.org/10.1109/ICE.2017.8280060
https://doi.org/10.1007/978-3-319-64635-0_4
https://doi.org/10.1007/978-3-319-64635-0_4
https://doi.org/10.1109/INDIN.2017.8104782
https://doi.org/10.1016/j.procir.2016.11.164
https://doi.org/10.1016/j.procir.2017.03.109
https://doi.org/10.1007/978-3-319-62386-3_3
https://doi.org/10.1007/978-3-319-62386-3_3
https://doi.org/10.1080/17517575.2018.1450998
https://doi.org/10.3390/s18051428
https://doi.org/10.1109/JAS.2017.7510418
https://doi.org/10.3390/su10030692
https://doi.org/10.1007/s11277-017-4769-z
https://doi.org/10.1007/s10586-017-0925-1
https://doi.org/10.5220/0006776701750182

	Manufacturing process data analysis pipelines: a requirements analysis and survey
	Abstract 
	Introduction
	Background—Smart manufacturing
	Yield management
	Product re-engineering
	Predictive maintenance

	Challenges to data analysis systems in manufacturing
	Complex standards landscape
	Complex technical architecture
	Safety
	Regulations and legislation

	Process data analysis
	RQ1: What are the requirements for a big data analysis pipeline for manufacturing process data?
	Data ingestion
	Communication
	Storage
	Analysis
	Visualization

	RQ2: What are the available big data analysis pipelines for process data in academic literature?

	Results
	Results overview
	Results by analysis stage

	Recommendations
	Conclusion
	Authors’ contributions
	References




