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Abstract: The topic of indoor positioning and indoor navigation by using observations from
smartphone sensors is very challenging as the determined trajectories can be subject to significant
deviations compared to the route travelled in reality. Especially the calculation of the direction
of movement is the critical part of pedestrian positioning approaches such as Pedestrian Dead
Reckoning (“PDR”). Due to distinct systematic effects in filtered trajectories, it can be assumed that
there are systematic deviations present in the observations from smartphone sensors. This article
has two aims: one is to enable the estimation of partial redundancies for each observation as well as
for observation groups. Partial redundancies are a measure for the reliability indicating how well
systematic deviations can be detected in single observations used in PDR. The second aim is to analyze
the behavior of partial redundancy by modifying the stochastic and functional model of the Kalman
filter. The equations relating the observations to the orientation are condition equations, which do
not exhibit the typical structure of the Gauss-Markov model (“GMM”), wherein the observations
are linear and can be formulated as functions of the states. To calculate and analyze the partial
redundancy of the observations from smartphone-sensors used in PDR, the system equation and
the measurement equation of a Kalman filter as well as the redundancy matrix need to be derived
in the Gauss-Helmert model (“GHM”). These derivations are introduced in this article and lead
to a novel Kalman filter structure based on condition equations, enabling reliability assessment of
each observation.

Keywords: Kalman filter; Gauss-Helmert model; reliability; partial redundancy; orientation determination;
indoor navigation

1. Introduction

Determining the orientation in pedestrian navigation with geometric-based approaches is
an essential step for positioning. There are several possibilities to mathematically parameterize
the orientation. In [1] three possibilities are given: the direction-cosine-matrix, Euler angles and
quaternions. Discussion on the advantages and disadvantages of these concepts can be found in [2].
In this article the Euler angles—roll, pitch and yaw—are used as it is the yaw angle that is especially
necessary for calculating the 2D-Position in pedestrian navigation approaches like Pedestrian Dead
Reckoning (“PDR”). The orientation can be calculated directly by the use of an accelerometer and
a magnetometer respectively a gyroscope, which are nowadays integrated in most of the available
smartphones. Each of these sensors is subject to specific systematic effects [3], which have to be
considered in detail when integrating low-cost sensors in smartphones. These systematic deviations
clearly can have a noticeable impact on the resulting position of PDR, which makes determining the
orientation the critical part.

Sensors 2018, 18, 414; doi:10.3390/s18020414 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s18020414
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 414 2 of 21

Several approaches exist to fuse and improve the calculated orientation from the individual
sensors. In [4] linear combinations are used, to calculate the yaw angle of the individual results
from magnetometer and gyroscope. Using a Kalman filter to fuse accelerometer, magnetometer
and gyroscope measurements [5–7] is the most common approach. Fusing these sensors offers the
opportunity to detect and correct for systematic deviations in the observations. In [8] a Kalman filter
is developed which uses the observed gravity and Earth magnetic field as well as the orientation
quaternion which are propagated by means of the gyroscope. If static acceleration or magnetic
flux is detected, systematic sensor deviations can be determined. In [9] or [10] the gyroscope is
used to detect when the user is turning. If the user walks straight, systematic sensor deviations are
derived. The same approach is used in [11] to smooth the resulting trajectory. A method to minimize
systematic effects in acceleration measurements resulting from the steps of pedestrians by adapting
the measurement noise can be found in [2]. Using additional data can improve the ability to detect
systematic effects. One possibility to retrieve additional position and attitude information is to use
pictures from the smartphone camera [12]. Also building plans can be used to support the calculation
of the orientation [13]. The previously mentioned approaches only use observations from one
device. Especially in pedestrian navigation, much data is produced from many different smartphones,
which can be used for positioning in various ways. This crowd-sourced data is mainly used to support
Wi-Fi fingerprinting [14,15] by extending and updating radio maps [16–18]. In the context of PDR,
in [19] for example, trajectories from multiple users are used to minimize the influence of magnetic
perturbations inside buildings.

Combining positions from signal strength observations with PDR is done, for example,
in [20]—with an adaptive Kalman filter—or in [21]—with a particle filter–to improve positioning
accuracy. Such signal strength observations or “Received Signal Strength” (RSS) can be used in
geometric-based approaches or in feature-based approaches and require external infrastructure.
Adding such positioning techniques—for example Wi-Fi [22,23], “radio-frequency identification”
(RFID) [24] or artificial magnetic fields [25]—will increase the redundancy and minimize the influence
of systematic effects. Geometric- and feature-based approaches are combined in [26], where also
measures are derived to quantify accuracy independently from the distribution of the observations.

This paper focuses on determining the orientation for PDR with accelerometer, magnetometer
and gyroscope in a Kalman filter. The focus is on analyzing the reliability of the observations from
smartphone-sensors, which are non-linearly included in condition equations. The Kalman filter is
commonly used to estimate states in a Gauss-Markov model (“GMM”—model with observation
equations), wherein the observations of the measurement equation are linear and can be formulated as
functions of the states [27,28]. However, the equations for the orientation determination in PDR are
condition equations, containing implicit relations between states and observations. Thus, reliability
analysis based on condition equations, necessitates a new derivation of the system equation and the
measurement equation of a Kalman filter as well as the redundancy matrix in the Gauss-Helmert model
(“GHM”—model with condition equations). The formulation of the system equation in the GHM can
be found in [29,30], wherein the measurement equation and corresponding redundancy matrix are
still assumed to satisfy the GMM. Hence, an important novelty of this article is the derivation of the
whole Kalman filter structure in the GHM, enabling the possibility to calculate reliability measures for
observations which are non-linearly included in the condition equations.

Section 2 contains the explanation of the existing approach and subsequent problem description of
reliability, as well as the derivation of the update-equations and redundancy matrix of the reformulated
Kalman filter. The data of a measured trajectory will be used to estimate the Euler angles as well
as the reliability measures. These results are presented in Section 3 whereas Section 4 concludes
this contribution.



Sensors 2018, 18, 414 3 of 21

2. Orientation Determination

2.1. Existing Approach

In the Kalman filter used for orientation determination in this article, the state parameters are
the Euler angles roll ϕ, pitch θ and yaw ψ. Based on the assumption that roll and pitch are constant
while the user is walking, they are predicted at actual epoch k with a random-walk model (1) and (2).
The yaw angle is predicted with two different system equations, whereby (3) will be used if the user
is walking straight and (4) will be used at detected turns. In the second case the observed turn rates
from gyroscope gy,k and gz,k are included as control quantities summed in the vector uk. By doing
this, the predicted yaw should immediately follow the user’s turn. The noise components of the
state parameters are ck−1,ϕ, ck−1,θ , ck−1,ψ and ∆t is the time interval between two consecutive Kalman
updates:

f1 : ϕk = ϕk−1 + ck−1,ϕ (1)

f2 : θk = θk−1 + ck−1,θ (2)

f3 : ψk = ψk−1 + ck−1,ψ (3)

f3 : ψk = ψk−1 +
∆t

cos θk−1

(
gy,k sin ϕk−1 + gz,k cos ϕk−1

)
+ ck−1,ψ (4)

Turn detection is done by applying a statistical test on the filter innovations of the yaw angle
dψ,i [29,31]. The null hypothesis H0 of this statistical test says that the vector dψ containing the
filter innovations dψ,i from the last n epochs is equal to the zero vector (5), whereas the alternate
hypothesis HA states that dψ is significantly different to the zero vector (6). If the test value exceeds
the corresponding quantile of the chi-square distribution (7), (4) will be used to predict the yaw angle.
Dψ is the variance-covariance matrix (VCM) of the innovation vector dψ and only contains variances
on the diagonal belonging to the corresponding dψ,i. This is a simplification, as auto-covariances may
be present. The use of random-walk (3) results in smoother trajectories in sections when the user walks
straight. By neglecting the observations from gyroscope in the random-walk model, the influence of
systematic sensor deviations (gyro-drift) on the filter result is minimized:

H0 : E(dψ) = E
([

dψ,1 dψ,2 · · · dψ,n

]T
)
= 0 (5)

HA : E(dψ) 6= 0 (6)

P{dT
ψD−1

ψ dψ ≤ χ2
n;1−α|H0} = 1− α (7)

For the update equations also the VCM of the predicted state is needed (8):

∑xx,k = Tk,k−1 ∑x̂x̂,k−1 TT
k,k−1 + Uk,k−1 ∑uu,k UT

k,k−1 + Ck,k−1 ∑cc,k CT
k,k−1 (8)

Therein, Σii,k—with the index i = x̂k−1, u, c—are the VCMs of the corresponding observation
groups in epoch k. Tk,k−1 is the state transition matrix, Uk,k−1 the control matrix and Ck,k−1 is the noise
matrix, each referred to epoch k. These system matrices are Jacobi matrices and in general contain
the derivatives of the system equations with respect to the corresponding observation group [27–29].
Equations (9)–(11) show the system matrices for the approach presented in this section where E is the
identity matrix.

Tk,k−1 =

 1 0 0
0 1 0

∂ f3
∂ϕk

∂ f3
∂θk

1

 (9)
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Uk,k−1 =

 0 0 0
0 0 0
0 ∂ f3

∂gy,k

∂ f3
∂gz,k

 (10)

Ck,k−1 = ∆t · E3×3 (11)

The observations in the measurement equation are directly observed Euler angles, as also shown
in [32]. Therefore, the design matrix Am,k of the Kalman filter equals the identity matrix. They are
calculated outside of the Kalman filter ((12)–(14)) by using observed accelerations ax,k, ay,k, az,k and
magnetic flux densities mx,k, my,k, mz,k [33]. The accelerations are filtered in a separate Kalman filter to
remove high-frequency components due to the movement of the user [2]:

f4 : ϕk = tan−1
( ay,k

az,k

)
(12)

f5 : θk = tan−1

(
−ax,k

ay,k sin(ϕk) + az,k cos(ϕk)

)
(13)

f6 : ψk = tan−1

(
mz,k sin(ϕk)−my,k cos(ϕk)

mx,k cos(θk) + my,k sin(θk) sin(ϕk) + mz,k sin(θk) cos(ϕk)

)
(14)

The yaw angle calculated with (14) can be subject to magnetic perturbations, especially inside
buildings. The redundant determination of the Euler angles in the Kalman filter by using the
system equation and the measurement equation dampens the influence of magnetic perturbations.
Additionally, the standard deviation of the magnetometer measurements σm will be increased if the
magnitude of the measured magnetic field ‖mk‖ is not stable (15), leading to an adaptive standard
deviation σm,k for each Kalman filter epoch. As the geomagnetic field should be constant related to the
dimensions of a building, it will be assumed that magnetic perturbations are present if the measured
magnitude changes:

σm,k = σm + |‖mk‖ − ‖mk−1‖| (15)

Using the covariance propagation law, the VCM belonging to the directly observed Euler angles
Σϕθψ,k is derived (16), wherein Hk is a Jacobi matrix containing the derivatives of (12)–(14) with respect
to the accelerometer and magnetometer measurements.

∑ϕθψ,k = Hk

[
∑aa,k 03×3

03×3 σm,kE3×3

]
HT

k

Hk =


0 ∂ f4

∂ay,k

∂ f4
∂az,k

0 0 0
∂ f5

∂ax,k

∂ f5
∂ay,k

∂ f5
∂az,k

0 0 0
∂ f5

∂ax,k

∂ f5
∂ay,k

∂ f5
∂az,k

∂ f5
∂mx,k

∂ f5
∂my,k

∂ f5
∂mz,k


(16)

2.2. Problem Description

To determine the user’s position, the step length is also estimated and will be used with fixed
variance in PDR. Figure 1 shows a trajectory calculated with PDR, whereby the yaw is estimated with
the Kalman filter mentioned in Section 2.1. Additionally, the 95% confidence ellipses as well as the
reference trajectory are part of Figure 1. This measured trajectory will also be used to analyze the
partial redundancy in Section 3. During the measurements, the user held the smartphone in portrait
mode (Figure 2 left, ϕk ~0◦). The reference trajectory is calculated from the measurements of the TS16
total station (Leica Geosystems, Heerbrugg, Switzerland) which is tracking the user by the help of a
360◦-mini-prism on a helmet (Figure 2 right).
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Figure 2. Used sensors and measurement setup: Samsung Galaxy S7 (Samsung, Seoul, Korea),
smartphone running indoo.rs Mobile ToolkitTM to collect sensor observations (left). Helmet with
360◦-mini-prism (middle) and Leica TS16 tracking the user (right).

In PDR, the yaw angle is responsible for the shape of the trajectory and the step length for the
scale. Hence in Figure 1, the estimated orientation causes the deviations between the estimated and
the reference trajectory. As these deviations are not captured by the confidence ellipses—which are
a measure for the precision [34]—there are two possible reasons for their appearance: systematic
deviations in the observed data or non-Gaussian distributed data. Because of the obvious systematics
in the estimated trajectory, it is assumed that systematic deviations are present in the observed data.

Reliability theory deals with the detection of large systematic deviations (inner reliability) and their
effect on the estimated quantities (outer reliability) [35,36]. To identify the measurements responsible
for the systematic deviations of the orientation between estimated and reference trajectory, the inner
reliability is used. Here the partial redundancies ri play a key role. According to [29,37,38], all quantities
with stochastic information can be treated as observations.

Observations related to the system equation are the estimated state from the previous epoch x̂k−1,
the control variables u and the noise variables c. The observations of the measurement equation are
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summed in the vector lm, where m labels quantities of the measurement equation. With (17)–(20) the
partial redundancy can be calculated for the previously mentioned observations according to [29]:

nx

∑
j=1

rx̂k−1,k,j =
nx

∑
j=1

eT
j ∑x̂x̂,k−1 TT

k,k−1AT
m,kD−1

k Am,kTk,k−1ej (17)

nu

∑
j=1

ru,k,j =
nu

∑
j=1

eT
j ∑uu,k UT

k,k−1AT
m,kD−1

k Am,kUk,k−1ej (18)

nw

∑
j=1

rc,k,j =
nw

∑
j=1

eT
j ∑cc,k CT

k,k−1AT
m,kD−1

k Am,kCk,k−1ej (19)

nl

∑
j=1

rlm ,k,j =
nl

∑
j=1

eT
j ∑ll,m,k D−1

k ej (20)

Therein, ni is the number of observations in each observation group and Dk is the VCM of the
filter innovation [27–29]. ej is the unity vector to select the corresponding ri respectively diagonal
element. In the above formulation of the Kalman filter, the ri can only be calculated for the directly
observed angles in the measurement equation but not for the original observations from accelerometer
and magnetometer due to the structure of (12)–(14).

2.3. Kalman Filter in the Gauss-Helmert Model

In the GMM, the true observations l̃ can be modeled as a function of the true parameters x̃—which
also holds for the estimated observations l̂ and estimated parameters x̂ (21). As mentioned above,
the measurement Equations (12)–(14) have another structure, which matches the GHM [39] shown
in (22). Hence, the update equations of the Kalman filter have to be derived in the GHM, to directly use
the observations from smartphone-sensors. Afterwards, the corresponding ri need to be derived for
this case. In [30] the GHM is also used to estimate variance components for the system noise. Though,
there is still the assumption of using the GMM in the measurement equation and the results cannot be
used in this article.

l̃− f(x̃) = l̂− f(x̂) = 0 (21)

f
(̃

l, x̃
)
= f
(
l̂, x̂
)
= 0 (22)

As the functional relations (22) are non-linear in general—and especially in this article—they have
to be linearized. Neither the real observations and parameters, nor their estimated values are known a
priori. Hence, to do Taylor linearization, approximate values l0 and x0 have to be used which also have
to satisfy the non-linear relations [34]. In least-squares, especially x0 is assumed to be non-stochastic.
According to [40], l0 can be replaced by the observed data l after linearization, which results in the
linearized, functional model (23):

f(l, x0) + A(x̂− x0) + B(l̂− l) = 0 (23)

The first term corresponds to the misclosure vector w, the bracketed expression in the second term
equals the stochastic additions ∆x̂ to the approximate parameters x0 and the bracketed expression in
the third term equals the residuals v. Formula (23) is only valid for the first iteration of least-squares
estimation, because linearization of the functional model necessitates an iterative approach. In the
subsequent iterations, the functional model is always linearized at the previously estimated observations
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and parameters [40]. Formulas (24)–(27) show, how the searched quantities with corresponding VCM
are calculated in the GHM in the context of least-squares [41]:

∑∆x̂∆x̂ =

(
AT
(

B ∑ll BT
)−1

A
)−1

(24)

∆x̂ = −∑∆x̂∆x̂ AT
(

B ∑ll BT
)−1

w (25)

v = −∑ll BT
(

B ∑ll BT
)−1

(
E−A ∑∆x̂∆x̂ AT

(
B ∑ll BT

)−1
)

w (26)

∑vv = ∑ll BT
(

B ∑ll BT
)−1

(
E−A ∑∆x̂∆x̂ AT

(
B ∑ll BT

)−1
)

B ∑ll (27)

B is the observation matrix, Σ∆x̂∆x̂ is the VCM of the estimated additions, Σll the VCM of the
observations and Σvv is the VCM of the residuals. It is important that A and B are column-regular
matrices. Otherwise the inverse matrices cannot be calculated. To avoid singular matrices, the functional
relations have to be chosen, such that there will be no linearly dependent columns in these matrices.

The Kalman filter is based on sequential least-squares with an additional state transition model.
The state transition model respectively system equation is described in general by non-linear, stochastic,
vector-matrix differential equations. We assume, that such differential equations have the form shown
in (28) after linearization, which is also basis for deriving the system equation in [27–29]:

.
x(t) = Fx(t) + Lu(t) + Gc(t) (28)

t is the continuous time variable. The system matrix F, control-input matrix L and noise-input
matrix G are assumed to be time-invariant. Solving such differential equations in the state space—also
shown in [27–29]—unambiguously defines the state parameters at time k and gives the approximate
formulation (29):

xk ≈ Tk,k−1xk + Uk,k−1uk + Ck,k−1ck (29)

As mentioned in [27], the predicted parameter vector xk should be calculated from the original
set of functions (30) in the non-linear case to avoid linearization errors. Equation (29) is necessary for
calculating the VCM of xk with the covariance propagation law (8).

xk = f(x̂k−1, uk, ck) (30)

The system can also be described by several sub-systems which yields in an over-determined
system equation. This will be dealt with in the next section, where one yaw angle will be estimated
from multiple trajectory data. Thus, the system equation decomposes into two sets of equations.
The first set unambiguously defines the predicted parameters by using x̂k−1, uk and ck which is already
shown in (29) respectively (30). This set of equations will be—analogue to [29]—formulated in the
GHM, such that it contains the residuals belonging to x̂k−1, uk and ck (31). The derivation of (31) can
be found in the Appendix A:

xk − x̂k + vx,k = −E∆x̂k +
[

Tk,k−1 Uk,k−1 Ck,k−1

] vx̂k−1,k
vu,k
vc,k

 = 0 (31)

The second set consists of condition equations, having the same structure like (23). These condition
equations contain the same quantities like the first set of equations and can therefore be formulated
as shown in (32). w*

s,k are the misclosures, arising because of the overdetermined system equation
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respectively condition equations. A*
s,k is the design matrix and T*

k.k−1, U*
k,k−1 and C*

k,k−1 are the
observation matrices which belong to the condition equations of the system equation:

w∗s,k + A∗s,k∆x̂k +
[

T∗k,k−1 U∗k,k−1 C∗k,k−1

] vx̂k−1,k
vu,k
vc,k

 = 0 (32)

The functional model of the measurement equation has the structure (23). Fusing the system
equation and the measurement equation leads to the functional model of a Kalman filter formulated in
the GHM with additional condition equations in the system Equation (33):

 0
w∗s,k
wm,k

+

 −E
A∗s,k
Am,k

∆x̂k +

 Tk,k−1
T∗k,k−1

0

Uk,k−1
U∗k,k−1

0

Ck,k−1
C∗k,k−1

0

0
0

Bm,k




vx̂k−1,k
vu,k
vc,k
vlm ,k

 =

[
ws,k
wm,k

]
︸ ︷︷ ︸

w

+

[
As,k
Am,k

]
︸ ︷︷ ︸

A

∆x̂k +

[
Bs,k,k−1 0

0 Bm,k

]
︸ ︷︷ ︸

B

[
vls ,k
vlm ,k

]
︸ ︷︷ ︸

v

= 0 (33)

Now the formulas of the GHM in least-squares can be applied and the parameters with
corresponding VCM can be calculated. Equation (34) shows the VCM of the estimated parameters,
which is derived by inserting A and B into (24):

∑x̂x̂,k =

(
AT

s,k

(
Bs,k,k−1 ∑ll,s,k BT

s,k,k−1

)−1
As,k + AT

m,k

(
Bm,k ∑ll,m,k BT

m,k

)−1
Am,k

)−1
=
(

∑−1
x̂x̂,s,k +∑−1

x̂x̂,m,k

)−1
(34)

Σx̂x̂,s,k is the VCM of the parameters which would be the result of a Kalman filter only considering
the system equation. Similarly, Σx̂x̂,m,k is the VCM of the parameters if only the measurement equation
would be considered in the Kalman filter. Σx̂x̂,k is the inverse of the sum of these two matrices.
To further process (34), the Woodbury formula for matrix inversion—according to [42]—is applied (35),
where M, N, O and P are arbitrary matrices and not related to the derivations made in this section:

(M + NOP)−1 = M−1 −M−1N
(

O−1 + PM−1N
)−1

PM−1 (35)

Depending on which term of the sum in (34) is chosen to be the matrix M in the Woodbury
formula (35), results will show two equivalent representations (36) and (37) of the VCM of the estimated
parameters. It has to be mentioned, that this VCM corresponds to x̂k and not to ∆x̂k. The reason is that
x0 equals xk, which is stochastic and its stochastic information is implicitly integrated by adding its
calculation to the functional model ((31) and (33)). Whereas in least-squares x0 is non-stochastic and
therefore Σx̂x̂ equals Σ∆x̂∆x̂.

∑x̂x̂,k =

(
E−∑x̂x̂,s,k AT

m,k

(
Bm,k ∑ll,m,k BT

m,k + Am,k ∑x̂x̂,s,k AT
m,k

)−1
Am,k

)
∑x̂x̂,s,k (36)

∑x̂x̂,k =

(
E−∑x̂x̂,m,k AT

s,k

(
Bs,k,k−1 ∑ll,s,k BT

s,k,k−1 + As,k ∑x̂x̂,m,k AT
s,k

)−1
As,k

)
∑x̂x̂,m,k (37)

By comparing (36) with the update equation for the VCM of the estimated parameters in the
GMM (see [29] or [27]), the VCM of the filter innovation Dm,k and the gain matrix Km,k—belonging to
the measurement equation—can be found ((39) and (41)). In the same manner, the VCM of the filter
innovation Ds,k of and the gain matrix Ks,k belonging to the system equation are derived ((38) and (40)):

Ds,k = Bs,k,k−1 ∑ll,s,k BT
s,k,k−1 + As,k ∑x̂x̂,m,k AT

s,k (38)

Dm,k = Bm,k ∑ll,m,k BT
m,k + Am,k ∑x̂x̂,s,k AT

m,k (39)

Ks,k = ∑x̂x̂,m,k AT
s,kD−1

s,k (40)
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Km,k = ∑x̂x̂,s,k AT
m,kD−1

m,k (41)

The estimated additions to the approximate parameters are derived by using (25) and (33).
Formula (42) shows these additions, where the results from the previous paragraph are already
considered. Hence, it includes corrections respectively updates for the system equation as well as for
the measurement equation:

∆x̂k = −Ks,kws,k −Km,kwm,k = −
[

Ks,k Km,k

][ ws,k
wm,k

]
(42)

If the system equation is not overdetermined, (32) will not be used in the functional model (33),
which leads to simplifications in the update equations. The classical Kalman filter update equations as
well as the two GHM variants are summarized in Table 1.

Table 1. Comparison of the Kalman filter update equations.

Gauss-Markov Gauss-Helmert (Simplification) Gauss-Helmert

d lm − fm(x) −wm = −fm(lm, x)
[
−ws
−wm

]
=

[
−fs(ls, x)
−fm(lm, x)

]

D Am ∑xx AT
m Bm ∑ll,m BT

m + Am ∑xx AT
m

[
Ds 0
0 Dm

]
=

=

[
Bs ∑ll,s BT

s + As ∑x̂x̂,m AT
s 0

0 Bm ∑ll,m BT
m + Am ∑x̂x̂,s AT

m

]
K ∑xx AT

mD−1 [
Ks Km

]
=
[

∑x̂x̂,m AT
s D−1

s ∑x̂x̂,s AT
mD−1

m
]

∑x̂x̂ (E−KAm)∑xx (E−KmAm)∑x̂x̂,s = (E−KsAs)∑x̂x̂,m

x̂ x + Kd

Approaches whose aim is to detect systematic deviations in the observations respectively
to quantify the inner reliability in the GMM, are often based on the disturbed residuals v [43].
The error-term ∇v in (43) is caused by the systematic deviations in the observations, summed in
the error-vector ∇l:

v = v +∇v (43)

ri is the factor which specifies how an observation deviation ∇li influences the corresponding
residual vi (44). Hence, high ri are desirable to detect systematic deviations [29]:

∇vi = −ri∇li (44)

Transferring these thoughts to the GHM, (26) has to be used to derive R, containing the ri on its
diagonal. R is an idempotent matrix, whose trace equals the overall redundancy of the estimation
problem [34]. Formula (26) only contains the misclosures w, which can be linearized by Bl according
to [34]. If ∇l is taken into account, results show the disturbed model (45):

v = −∑ll BT
(

B ∑ll BT
)−1

(
E−A ∑∆x̂∆x̂ AT

(
B ∑ll BT

)−1
)

B(l +∇l) (45)

Thus, there is a direct relation between observations and residuals and the redundancy matrix for
the GHM is now available (46):

R = ∑ll BT
(

B ∑ll BT
)−1

(
E−A ∑x̂x̂ AT

(
B ∑ll BT

)−1
)

B (46)

By using (27), (46) equals the matrix product ΣvvΣ−1
ll , whereby the analogy to the GMM is stated

again [34]. The proof that the trace of R equals the overall redundancy can be found in Appendix B.
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3. Results

In this section the results of the trajectory shown in Section 2.2. will be analyzed by applying
the simplified GHM (Table 1) on the approach described in Section 2.1. In a first step, the influence
of the observation groups—accelerometer a, magnetometer m, estimated parameters of the previous
epoch x, system noise c and gyroscope g—on the estimated orientation will be assessed by means of
the ri. Figure 3 shows a representative section of the calculated group redundancies for two different
specifications of the sensor- and system noise standard deviations.
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For the beginning the focus lies on the left part of Figure 3, where the original standard deviations
are used (Table 2). These are derived for each observation in the trajectory parts where the user walked
straight. Using these standard deviations leads to a small partial redundancy of the observation
groups (x, c, g) of the system equation in comparison to the ones of the measurement equation (a, m).
This means that the estimated orientation mainly relies on the system equation. The reason for the high
weight of the system equation is that the resulting trajectory should be smoothed [32]. The problem is
that if the model assumptions made in the system equation do not capture the reality, the resulting
deviations have high influence on the estimated orientation. There are mainly two possibilities to
intervene in the partial redundancy respectively the inner reliability, which will be covered in the next
two sections.

Table 2. Standard deviations used for the sensor measurements and system noise.

Standard Deviations Gyroscope System Noise Accelerometer Magnetometer

Original 30◦/s 10◦/s 1 m/s2 5 µT
Adapted 60◦/s 20◦/s 0.5 m/s2 2.5 µT

3.1. Adaption of the Stochastic Model

Adaption of the stochastic model means to change the standard deviations of the different
observations. To align the group redundancies of the observation groups (Figure 3 left), the standard
deviations of the sensors and system noise are changed until an improvement is visible. This leads to
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the group redundancies in the right part of Figure 3, where the adapted standard deviations of Table 2
were used. The weight of the system equation in comparison to the measurement equation is now
reduced, whereas the ri of the gyroscope and the system noise are now clearly higher. The ri of the
magnetometer get close to the ones of the gyroscope if it is used when the user is turning, which yields
in good mutual controllability.

To identify the critical observations, the ri of the individual observations are analyzed. Figure 4
shows, that the ri of the accelerometer are continuously higher than 0.2, which means that controllability
is sufficient. Calculating the thresholds from which deviations can be—statistically justified—detected
(according to [29]), gives ~1.4 m/s2 for the y-component of the accelerometer and ~2 m/s2 for the x- and
z-component. The user’s motion causes systematic deviations which exceeds these thresholds. Hence,
accelerometer observations which should not be used for calculating pitch and roll can be detected.
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Figure 4. Partial redundancy of the accelerometer, magnetometer, previously estimated parameter,
system noise and gyroscope (top to bottom).

The ri of the magnetometer show a remarkable, alternating behavior. In the trajectory parts
where the user walks straight, the ri of my are close to zero. Whereas in parts where the user turns,
controllability of mx and mz is bad. If there are systematic deviations in these observations, they cannot
be detected and have a high influence on the estimated orientation angles. The ri of xϕ and xθ are again
continuously higher than 0.2 and therefore sufficiently controlled. The same findings hold for cϕ and
cθ , whereas cψ is totally uncontrolled. Generally the ri of the previously estimated parameters and the
system noise behave in a similar manner. gy is also uncontrolled as its ri is very close to zero. The ri of
gz are again higher than 0.2. The behavior of the ri of the previously estimated yaw angle is interesting,
as they go up to 0.25 if the gyroscope measurements are used in the system equation. If the gyroscope
is not used in the following epochs the ri decrease.

From the analysis of Figure 4 it can be concluded that there are uncontrollable observations
in this approach, even if the standard deviations are adapted. To better understand the behavior
of the ri, the influence of the change of the standard deviation σi of one observation on the partial
redundancy of the other observations is analyzed. This analysis should support an aimed change of
the standard deviations to improve the ri. Table 3 shows how the ri change, if the standard deviation
of one observation is multiplied with the factor 10 (left sign in Table 3) respectively 0.1 (right sign
in Table 3). The standard deviation of all the observations was varied, except for the ones of the
previously estimated parameters, as they are a direct result of the Kalman filter.
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Table 3. Influence of the change of the standard deviation of one observation on the partial redundancy
of the other observations. “+” indicates a raise and “−” a reduction of the partial redundancy. At the
left sign, the standard deviation was increased by the factor 10 and at the right sign it was decreased by
the factor 0.1. Grey shaded cells show the change in the corresponding observation and green means
that the observations are functionally related.

σg-y σg-z σc-ϕ σc-θ σc-ψ σa-x σa-y σa-z σm-x σm-y σm-z

rx-ϕ −|− −|+
rx-θ −|− −|+ −|+
rx-ψ +|− +| −|+ −|+ −|+
rg-y +|
rg-z +|− −|+ −|+ −|+
rc-ϕ +|− −|+ |+
rc-θ +|− −|+ −|+ |+
rc-ψ +|−
ra-x −|+ +|− −|+
ra-y −|+ +|−
ra-z −|+ −|+ +|− |+
rm-x −|+ +|− −|+ −|+
rm-y −|+ −|+ +|− −|+
rm-z −|+ −|+ −|+ +|−

The grey shaded cells show the influence of a change of σi of one observation on the corresponding
ri. If σi is increased, the weight of the observation will be less in state estimation. Hence the corresponding
ri should also be increased. A reduction of σi should cause a smaller ri on the contrary. This is the case for
most of the observations, except for gy. The reason therefore is that its ri are already close to zero and a
reduction of σi has no effect.

Green shaded cells show a direct functional relation of the corresponding observations (see (1)–(4)
and (12)–(14)). The change of σi of one observation influences also the partial redundancy of other
observations. A raise of one σi should cause a reduction of partial redundancy of other observations,
as they get more weight in the state estimation. A reduction of one σi should raise the partial
redundancy of other observations on the contrary. Though, the change of σi of cϕ and cθ , show another
behavior. By increasing as well as decreasing σc-ϕ and σc-θ , the rx-ϕ and rx-θ are reduced. A raise of σi
of gz respectively of cψ causes also a raise of the ri of the previously estimated yaw angle.

A relation which is not expected from the system equations respectively the measurement
equations, appears at the accelerometer measurements. ay is only related to xϕ and cϕ, whereas
ax and az are related to xθ and cθ . The change of σi of one of the magnetometer measurements
influences the ri of xψ, gz and the other two magnetometer components. my stands out, as a reduction
of σi positively influences the ri of cϕ and cθ and the ri of az. Hence, a reduction of σi of my would
have the most positive influence on the ri. As the controllability of this observation is bad, a further
reduction is not advisable.

Changing the stochastic model clearly has an impact on the inner reliability but it also has
limitations. As shown in Table 3, gy as well as cψ are not controlled by any of the other observations
(i.e., changing the standard deviation of any other observation does not influence rg-y and rc-ψ). The only
way left in the stochastic model is to increase the standard deviation of such observations. In this case
it is very likely, that the raised standard deviations cover the systematic deviations which actually
should be detected.

3.2. Adaption of the Functional Model

In general, the functional model can be adapted by changing respectively extending the system
equations and the measurement equations. As seen in the previous section, the y-component of the
gyroscope and the system noise of the yaw angle stay problematical observations, as their controllability
cannot be improved by changing σi of other observations. Through the example of the ri of the
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gyroscope, the functional influences should be analyzed. (47) and (48) show the formulas to calculate
the ri of the gyroscope:

rg−y = sin2 ϕ ·
σ2

g−y · d∗33 · ∆t2

cos2 θ
(47)

rg−z = cos2 ϕ ·
σ2

g−z · d∗33 · ∆t2

cos2 θ
(48)

These equations are derived by evaluating (18), which is shown in Appendix C. d33* corresponds
to the third diagonal element of the inverse of D. The difference of (47) and (48) is the trigonometric
function of the roll angle ϕ (σ2

g-y and σ2
g-z are assumed to be equal). As the roll angle is close to zero

in the considered trajectory, also rg-y will be close to zero even when changing σi of other observations
(which influences d33*). Hence, the smartphone orientation during the trajectory measurements
has a huge impact on the calculated ri—not only the ones from gyroscope, but also the ones from
accelerometer and magnetometer ((12)–(14)). This seems reasonable if a closer look is taken on the
quantities used to determine the smartphone orientation. The accelerometer should sense the gravity
vector and the magnetometer the Earth magnetic field, which are both a vector quantity. The more
sensor components sense these quantities, the better the mutual controllability should be. This should
be the same for the gyroscope, which should sense the rotation of the user around the z-axis of the
reference respectively navigation coordinate frame.

To check whether the assumptions made above are true, the recorded sensor data from the
trajectory are rotated with the rotation matrix R given in (49):

R = RxRyRz

Rx =

 1 0 0
0 cos ϕ − sin ϕ

0 sin ϕ cos ϕ

, Ry =

 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

, Rz =

 cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

 (49)

ϕ is chosen to be 45◦ and θ and ψ are 0◦. Evaluating the rotated sensor data in the same Kalman
filter as used above, gives the partial redundancies shown in Figure 5. The ri of the previously
estimated parameters, the system noise as well as the x-components of the sensors are not affected by
the rotated data, when comparing the results with Figure 4. The y- and z-components of the sensors
are more balanced now, leading to a better mutual controllability. Especially the mean level of the ri of
the gyroscope y-component are now approximately 0.1, which is clearly higher compared to Figure 4.

The idea of the following approach is to use multiple trajectory data, to determine the actual
smartphone’s orientation. If one thinks of scenarios in crowded environments, it could be that multiple
users have already taken the same path as the actual user does. If this data from the users who have
taken the same path is stored, it could be used in a multiple trajectory data approach to determine the
actual yaw angle, which equals the situation outlined in Section 2.3 where several sub-systems are
used to determine the overall-system. Hence, the Gauss-Helmert Kalman filter which incorporates
(32) in its functional model (33) has to be used now. In the case of orientation determination, the set of
equations which unambiguously determine the state vector (31) are equal to (1), (2) and (3) respectively
(4) for the actual trajectory. Now, for every additionally used trajectory, (1) and (2) have to be added
to the unambiguous set of equations, as the smartphone’s orientation could be different (the only
assumption is that there is the same path, e.g., the same yaw angle). Thus—if Ntr is the number of
used trajectories—Ntr roll angles, Ntr pitch angles and one yaw angle have to be estimated. If there is a
turn detected in the actual trajectory, gyroscope measurements from multiple smartphones have to
be processed. Hence, every additional trajectory contributes with a formula of type (4) to the system
equation, which leads to Ntr−1 condition Equations (32) in the system equation. The measurement
equation consists of Ntr triples of (12)–(14).
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Figure 5. Partial redundancy of the rotated trajectory.

In this article additional trajectories are simulated, which means that they are retrieved from
the trajectory considered in this section by performing rotations in the same manner as done in (49).
This is a simplification respectively a synthetical example whose aim is to retrieve more insights into
how additional observations affect the partial redundancy. Before using additional rotated trajectories,
the effect of using the same trajectory data two times will be analyzed. The reason is that no additional
roll and pitch angles have to be estimated and therefore the results for the partial redundancy can
be directly compared to the results from Section 3.1 respectively Figure 4. The results of the partial
redundancy of the observations from the actual trajectory are shown in Figure 6.
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The most obvious effect can be seen in the turn detection. The gyroscope is used less in the straight
trajectory parts, which leads to slightly different appearance of the ri. Nevertheless, the height of the ri
can be compared. The ri of the previously estimated roll and pitch angel has not changed. It can be
seen, that the ri of the accelerometer, the system noise components and the previously estimated yaw
angle are raised by using additional observations, which is especially important for the system noise
of the yaw angle. The controllability of this quantity is now slightly improved. The components of the
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magnetometer and the gyroscope, which already had quite high ri are now also raised, whereas an
effect on the low ri during turns is not visible.

This is not a surprise, as trajectory data is used two times where the controllability of these quantities
is suboptimal. Figure 7 shows the partial redundancy of the observations from the actual trajectory by
using one additional trajectory, where the smartphone’s orientation is different. This additional trajectory
comes from rotating the trajectory data as mentioned above (49), which is a simplification respectively
simulation. In a real-life application some sort of search-algorithm would have to be performed on the
stored trajectories, to find the ones where users took the same path as in the actual trajectory. The only
thing that has changed, are the ri of the previously estimated roll and pitch angles, as they are clearly
reduced now. The reason could be that the overall redundancy has not changed from the scenario in
Figure 6 to the scenario in Figure 7 but more parameters have to be estimated. The remaining ri have not
changed. Especially rg-y is still close to zero, despite using an additional trajectory where the smartphone’s
orientation is different. The functional relation of the four gyroscope measurements—resulting from using
the actual and the simulated trajectory (i.e., the two formulas of type (4))—doesn’t lead to an improved
mutual controllability. The same holds for the ri of the magnetometer measurements which are close
to zero.

Figure 8 shows the ground truth from total station (see Section 2.2), the raw result from the
magnetometer and different variants of the estimated yaw angle. For better visibility, again a
representative section of the trajectory is chosen. Estimation variant 1 clearly differs from the rest of
the estimation variants as it is much smoother. In this variant the original standard deviations from
Table 2 are used, whereas in the other variants the adapted ones are used. The differences between
variant 2 and 3 are negligible. This is reasonable, as the additional trajectory data of variant 3 is just
rotated in comparison to the original trajectory data. Thus, the additional trajectory data used in this
article does not contribute to the state estimation process but to the improvement of the inner reliability.
In future experiments, real multiple trajectory data has to be collected from different smartphones
and users to further evaluate the approach presented in this section. In this article, variant 1 performs
slightly better with the drawback of worse inner reliability. In the beginning of the trajectory section
shown in Figure 8, the raw result from magnetometer as well as the estimated yaw angles are shifted
due to undetected systematic deviations. The aim of future research will be to detect such systematic
deviations based on improved inner reliability, enabling better performance of a Kalman filter used for
orientation determination.Sensors 2018, 18, x FOR PEER REVIEW  15 of 20 
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Figure 8. Different results for the yaw angle compared to ground truth from total station. In estimation
variant 1 the original standard deviations from Table 2 are used. Variant 2 uses the adapted standard
deviations. Variant 3 uses one simulated additional trajectory (equal to the one of Figure 7).

4. Discussion

The main novelty of this article is the formulation of the Kalman filter and the redundancy
matrix in the GHM. Depending on the system description in the system equation two different sets of
update equations are derived, which are both applied to orientation determination as well as to partial
redundancy calculation. The results of these derivations are used to analyze the inner reliability based
on the partial redundancy. Analyzing the partial redundancy shows that in the Kalman filter used in
Section 2.1 the system equation contribute disproportionately highly to the estimation of the orientation
compared the measurement equation. This means that the observations of the system equation are
nearly uncontrolled. Two general ways are considered to intervene into the inner reliability respectively
partial redundancy.

First, effects of changes in the stochastic model are analyzed. By adapting the standard deviations,
the group redundancies can be improved. Analyzing the partial redundancy of the individual
observations shows that observations which crucially determine the orientation are still badly
controlled. Systematic deviations in such observations can cause huge disturbances in the estimated
quantities. By increasing and decreasing the standard deviations, their influence on the partial
redundancy was analyzed. It appears that reducing the standard deviation of the magnetometer’s
y-component, could increase many partial redundancies but its controllability is bad. The y-component
of the gyroscope as well as the system noise of the yaw angle cannot be controlled by observations
of the actual trajectory. It has to be mentioned that the resulting insights are in a way limited to the
considered trajectory. Such adaptions in the stochastic model have to be also tested in other trajectories
and different devices.

Furthermore, effects of changes in the functional model on the partial redundancy are considered.
In a first step the influences of the smartphone’s orientation on the partial redundancy were analyzed.
Rotating the trajectory data shows that if more than one sensor axis is sensing the quantity of interest,
the controllability will be improved. Using multiple trajectory data should take advantage of this
behavior. The formulation of the Kalman filter update equations in the GHM enables processing
multiple trajectory data in a Kalman filter. Partial redundancy is improved through this approach
but still there are critical observations, such as the y-components of the gyroscope and magnetometer.
Just using more data does not mandatory lead to better controllability in the GHM. Additionally,
improving inner reliability does not lead to better accuracy of the estimated quantities. These questions
respectively challenges will be addressed in future studies.
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Appendix A

Formula (31) will be derived by rearranging (30):

0 = f(x̂k−1, uk, ck)− xk (A1)

This is the approximate solution of the following least squares parameter estimation problem:

0 = f( ˆ̂xk−1, ûk, ĉk)− x̂k (A2)

This is a special case of the GHM (22). Using the approximate solution for Taylor linearization—and
neglecting second and higher order terms—yields:

0 = f(x̂k−1, uk, ck)− xk − E(x̂k − xk) +
∂f

∂x̂k−1

( ˆ̂xk−1 − x̂k−1
)
+

∂f
∂uk

(ûk − uk) +
∂f

∂ck
(ĉk − ck) (A3)

Taking (30) into account, the first two terms are equal to zero. The next step is to insert the
following quantities in the linearized functional model above:

∂f
∂x̂k−1

= Tk,k−1

∂f
∂uk

= Uk,k−1

∂f
∂ck

= Ck,k−1

ˆ̂xk−1 − x̂k−1 = vx̂k−1,k

ûk − uk = vu,k

ĉk − ck = vc,k

∆x̂k = x̂k − xk

(A4)

Insertion gives:
0 = −E∆x̂k + Tk,k−1vx̂k−1,k + Uk,k−1vu,k + Ck,k−1vc,k (A5)

The last step is to summarize Tk,k−1, Uk,k−1 and Ck,k−1 in one matrix and vx̂,k−1,k, vu,k and vc,k in
one vector:

− E∆x̂k +
[

Tk,k−1 Uk,k−1 Ck,k−1

] vx̂k−1,k
vu,k
vc,k

 = 0 (A6)

Appendix B

The following calculation rules will be used to calculate the overall redundancy [42]:

tr(AB) = tr(BA)

tr(A + B) = tr(A) + tr(B)
(A7)
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Calculation of the trace of R:

tr(R) = tr
(

∑ll BT(B ∑ll BT)−1
(

E−A ∑x̂x̂ AT(B ∑ll BT)−1
)

B
)
=

tr
((

B ∑ll BT)−1
(

E−A ∑x̂x̂ AT(B ∑ll BT)−1
)

B ∑ll BT
)
=

tr
((

B ∑ll BT)−1(B ∑ll BT −A ∑x̂x̂ AT)) = tr(E)− tr
((

B ∑ll BT)−1A ∑x̂x̂ AT
) (A8)

The identity matrix comes from the matrix product BΣllBT and its inverse. B contains the
derivatives of the condition equations with respect to the observations. Therefore, its dimension is
b × n, where n equals the number of observations and b equals the number of condition equations.
Hence, the identity matrix has dimension b × b and its trace corresponds to the number of condition
equations:

tr(R) = b− tr
((

B ∑ll BT)−1A ∑x̂x̂ AT
)
= b− tr

(
AT(B ∑ll BT)−1A ∑x̂x̂

)
=

b− tr
(

AT(B ∑ll BT)−1A
(

AT(B ∑ll BT)−1A
)−1

)
= b− tr(E)

(A9)

As A contains the derivatives of the condition equations with respect to the parameters, the
identity matrix has dimension u × u, where u equals the number of parameters. Thus, the trace
of R equals the number condition equations minus the number of parameters, which is the overall
redundancy in the GHM [34].

tr(R) = b− u = r (A10)

Appendix C

To derive (47) and (48), the following quantities are used to evaluate (18):

∑uu,k =

 σ2
g−x 0 0
0 σ2

g−y 0
0 0 σ2

g−z

 = σ2
gE

Uk,k−1 =

 0 0 0
0 0 0
0 sin ϕ ∆t

cos θ cos ϕ ∆t
cos θ


Am,k = −E

D−1
k =

 d∗11 d∗12 d∗13
d∗21 d∗22 d∗23
d∗31 d∗32 d∗33



(A11)

Uk,k−1 contains the derivatives of (1), (2) and (4) with respect to the gyroscope measurements. Am,k
contains the derivatives of (12)–(14) with respect to the parameters respectively the Euler angles and
therefore equals the negative identity matrix The variances of the three gyroscope axes are assumed to
be equal. Inserting these quantities into (12) gives:

nu
∑

j=1
ru,k,j =σ2

g ·
nu
∑

j=1
eT

j E

 0 0 0
0 0 sin ϕ ∆t

cos θ

0 0 cos ϕ ∆t
cos θ

(−E)

 d∗11 d∗12 d∗13
d∗12 d∗22 d∗23
d∗13 d∗23 d∗33

(−E)

 0 0 0
0 0 0
0 sin ϕ ∆t

cos θ cos ϕ ∆t
cos θ

ej (A12)

Evaluating the expression between the identity vectors ej gives:

nu

∑
j=1

ru,k,j =
σ2

g · d∗33 · ∆t2

cos2 θ
·

nu

∑
j=1

eT
j

 0 0 0
0 sin2 ϕ sin ϕ · cos ϕ

0 sin ϕ · cos ϕ cos2 ϕ

ej (A13)
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