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ABSTRACT 
Quality by design (QbD) became an indispensable part of pharmaceutical quality. To 
increase product quality, understanding how formulation and manufacturing process 
variables influence product quality is essential.  

In that holistic context, this work attempted to develop transferable methods to help increase 
process understanding, control and robustness. For the purpose of these goals a recombinant 
protein production process with E. coli as a host was used. The product was formed as 
inclusion bodies (IB). A high throughput method for IB sizing using nano-particle tracking 
analysis (NTA) was developed and established. The effect of temperature oscillations on IB 
solubility could not be investigated as planned due to insufficient heating and cooling 
performance of the reactor setup. A softsensor, previously developed in the working group, 
has been further developed and was used for real-time estimation of the specific substrate 
uptake rate qS. Therefore, the obligatory real-time biomass estimation was decoupled from 
the carbon balance and realized using a weighted average approach, enabling biomass 
estimation robust against substrate accumulation. Subsequently, the sensor was used to 
establish a closed loop control of qS. Because of the declining physiological capacity of the 
host to metabolize substrate (qScrit) during induction phase, a logical query was developed to 
detect reaching qScrit in real-time. 

The physiological closed loop control was used to successfully avoid substrate and 
metabolite accumulation throughout induction phase of an industrial relevant production 
process. 
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DEUTSCHE KURZFASSUNG 
Quality by Design (QbD) ist ein unverzichtbarer Bestandteil der pharmazeutischen Qualität 
geworden. Um die Produktqualität zu erhöhen, ist es wichtig zu verstehen, wie 
Prozessvariablen die Produktqualität beeinflussen. 

In diesem ganzheitlichen Kontext wurde versucht, übertragbare Methoden zu entwickeln, 
die das Verständnis, die Kontrolle und die Robustheit von Prozessen verbessern. Für die 
Zwecke dieser Ziele wurde ein rekombinanter Proteinproduktionsprozess mit E. coli als Wirt 
verwendet. Das Produkt wurde als sogenannte inclusion bodies (IB) gebildet. Es wurde eine 
Hochdurchsatzmethode für IB-Größenbestimmung unter Verwendung von Nano-Partikel-
Tracking-Analyse (NTA) entwickelt und etabliert. Die Auswirkung von 
Temperaturschwankungen auf die IB-Löslichkeit konnte aufgrund unzureichender Heiz- 
und Kühlleistung des Reaktoraufbaus nicht wie geplant untersucht werden. Ein zuvor in der 
Arbeitsgruppe entwickelter Softsensor wurde weiterentwickelt und zur Echtzeitschätzung 
der spezifischen Substrataufnahmerate qS verwendet. Dafür wurde die obligatorische 
Echtzeit-Biomasse-Schätzung von der Kohlenstoffbilanz entkoppelt und mit einem 
gewichteten Mittelwert realisiert, was eine robuste Biomasse-Schätzung gegen 
Substratakkumulation ermöglicht. Anschließend wurde der Sensor verwendet, um einen 
geschlossenen Regelkreis für die Regelung von qS zu realisieren. Aufgrund der 
abnehmenden physiologischen Kapazität des Wirts, während der Induktionsphase Substrat 
zu metabolisieren (qScrit), wurde eine logische Abfrage entwickelt, um das Erreichen von 
qScrit in Echtzeit zu erfassen. 

Die physiologische Regelung wurde angewendet, um die Akkumulation von Substrat und 
Metaboliten während der Induktionsphase eines industriell relevanten Produktionsprozesses 
erfolgreich zu vermeiden. 
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1 INTRODUCTION 

1.1 MOTIVATION 
In the bioprocess industry, as in many other industries too, the pursuit for optimization has 
led to increased productivity over the past years. While this boost is largely due to 
improvements in upstream processing (USP), downstream processing (DSP) has become a 
bottleneck in bioprocesses (Gottschalk 2008). Apart from optimizing DSP itself, controlling 
product properties in USP could also lead to debottlenecking of DSP. Although the approach 
of separately improving USP and DSP is simpler, a holistic approach originates from the 
concepts of Quality by Design (QbD) and is likely to increase over the next years (Calo-
Fernández and Martínez-Hurtado 2012). 

QbD is a systematic approach to pharmaceutical development that begins with predefined 
objectives and emphasizes product and process understanding and process control, based on 
sound science and quality risk management (ICH 2009). That means a QbD development 
process includes identifying critical process parameters (CPP), which need to be controlled 
to achieve critical material attributes of the final product (Lionberger, Lee et al. 2008). 

1.2 BACKGROUND 

1.2.1 PRODUCTION PLATFORM 

E. coli remains one of the most important production platforms for recombinant protein 
production overall and the single most common nonmammalian-based production cell type, 
although the percentage use of E. coli as an expression system declined over the last years 
due to steadily increasing mammalian expression systems. From 2010 to 2014 almost a third 
(29 %) of all product approvals used E. coli as an expression system (Walsh 2014).  

E. coli, as other microbial cells, lacks the ability to correctly fold complex molecular 
structures of eukaryotic derived recombinant proteins. This can cause the formation of 
inclusion bodies (IB), aggregates of intracellular proteins not properly folded (Williams, Van 
Frank et al. 1982). Nevertheless, the expression system comes with advantages prevailing 
the formation of IBs, like high growth rates, higher overall product yields, low media costs 
compared to mammalian cell lines and being the most studied microorganism (Swartz 2001), 
what facilitates genetic modifications. Another advantage is the Npro technology, where IB 
formation is used deliberately to facilitate the expression of toxic proteins (Dürauer, Ahrer 
et al. 2010). In general IB formation comes with the advantage of less purification but with 
the downside of solubilisation and refolding, which impacts the overall product yield (Pan, 
Zelger et al. 2014). Although literature provides insight in the study of IBs itself (Ami, 
Natalello et al. 2006, Margreiter, Messner et al. 2008, Margreiter, Schwanninger et al. 2008, 
Upadhyay, Murmu et al. 2012), investigations of controlling IB quality attributes (IB-QA) 
like e.g. size, purity or solubility in USP to positively influence DSP are scarce. 
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1.2.2 CONTROL STRATEGY 

As stoichiometric restrictions apply to IB formation, control of IB formation and its 
attributes should be possible using physiological process control. As shown by Wechselberg 
et al. (Wechselberger, Sagmeister et al. 2012) the specific substrate uptake rate qS (see 
Equation 1), which can be controlled via the feed rate, is the most important process 
parameter for optimization. Several other publications also show that the feed rate is one of 
the most promising factors to increase productivity (Levisauskas, Galvanauskas et al. 2003, 
Sandén, Prytz et al. 2003, Ramalingam, Gautam et al. 2007, Babaeipour, Shojaosadati et al. 
2008, Kavanagh and Barton 2008, Sagmeister, Schimek et al. 2014). 

𝑞" =
𝑔"

𝑔% ∙ ℎ
 

Equation 1: Specific substrate uptake rate qS 

For qS control a so-called first principle softsensor can be used for obligatory real-time 
biomass estimation (Wechselberger, Sagmeister et al. 2013). Implying no substrate 
accumulation, the softsensor uses the substrate feed rate and the carbon dioxide evolution 
rate CER to estimate the biomass formation rate rX by taking the biomass composition into 
account. Knowing the initial biomass, qS can be simply controlled via the substrate feed rate. 
By definition, this is an open loop (or feed forward) control, since the current state of the 
controlled variable is not measured or estimated. 

The substrate feed rate plays a key role, because it largely impacts the physiological state of 
the cell. In case of overfeeding the physiological capacity to metabolize substrate (qScrit) 
unwanted overflow occurs, substrate accumulates and productivity is impaired (Jensen and 
Carlsen 1990). The fact that qScrit is not a constant (Schaepe, Kuprijanov et al. 2014, Reichelt, 
Brillmann et al. 2017) suggests closed loop (or feedback) control of qS. While closed loop 
control is widely used to control technological variables like temperature or pH, the biggest 
challenge with physiological variables is to estimate their current state, since it is commonly 
not possible to directly measure it. 

1.3 GOALS 
The goal of this master thesis is to take one step towards custom made inclusion bodies and 
guarantee robustness in DSP through robust USP. 

1. Inclusion body quality attributes 
a) Investigate effects of combined qS and temperature oscillations during induction 

phase on inclusion body solubility in E. coli 
b) Establish novel high throughput method for IB sizing using nano-particle 

tracking analysis (NTA) 
2. Physiological process control 

a) Real-time qS estimation 
b) Closed loop control of qS 
c) Real-time detection of reaching qScrit 
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1.4 HYPOTHESES 

• Temperature oscillations during induction phase influence inclusion body solubility. 
• IB sizing can be measured with NTA 
• Closed loop control of qs can be achieved by decoupling the biomass estimation from 

the federate to estimate a process value of qs in real-time. 
• Reaching of qscrit during induction phase can be detected in real-time with a simple 

logical query. 

2 MATERIALS & METHODS 

2.1 LIST OF EXPERIMENTS 
Table 1: Performed fermentation experiments and author’s contribution 

Experiment Focus Author's contribution 
Nr. Code Ferm. Analytics Data analysis 
1 WR27A-D qs control - - X 
2 WR35A-D qs control - - X 
3 WR39A-D Temp. osc. X X X 
4 WR40A-D IB sizing X X X 
5 WR42A-D IB sizing X X X 
6 WR43A-D IB sizing X X X 
7 WR44A-D closed loop control X X X 
8 WR45A-D closed loop control. X X X 

 

2.2 STRAIN 
A recombinant Escherichia coli strain (BL21 DE3) with a C-molar biomass stoichiometry 
C1H1.78N0.25S0.01O0.45 and ash 5% was provided by an industrial partner and used for the 
fermentations. It produces an intracellular Npro-fusion protein as inclusion bodies after a 
1 mM IPTG induction. 

2.3 REACTOR SETUP 
The fermentations were conducted in a master slave reactor system. The master reactor 
(Sartorius BIOSTAT® C plus, Sartorius, Germany) had 10 l working volume and was used 
for the batch phase. It was equipped with a triple port for base, acid (not used) and feed 
addition, pH probe (Mettler Toledo USA), Pt100 temperature an optical pO2 sensor (Mettler 
Toledo USA), a double jacket for temperature regulation and an off-gas cooler. Mixing was 
done with a triple rushton turbine stirrer and four additional baffles inside of the reactor. 
Process control was done using Lucullus PIMS (Seucurecell Switzerland). The four slave 
reactors (DASGIP® Parallel Bioreactor System, Eppendorf, Germany) had 2 l working 
volume and were used for the fed-batch and induction phase. The reactors were equipped 
with Pt100 temperature sensors, pH probes (Mettler Toledo USA), optical pO2 sensors 
(Mettler Toledo USA, module DASGIP PH4PO4), triple rushton turbine stirrers and four 
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baffles for mixing (module DASGIP TC4SC4), heating pads and cooling fingers as well as 
cooling jacket for temperature control. Further they featured a triple port for base/feed 
addition and sampling. The DASGIP control software v4.5 revision 230 was used for data 
logging and control: pH, pO2, temperature, stirrer speed and aeration (module DASGIP 
MX4/4). CO2, O2 concentrations in the off-gas were quantified by a gas analyser (module 
DASGIP GA4) using the non-dispersive infrared and zircon dioxide detection principle, 
respectively. Reactor contents were monitored using four scales (Sartorius, Germany). 

2.4 PRECULTURE 
The preculture was obtained from shake flask cultures (3*100 ml in 1 l Erlenmeyer flasks) 
inoculated with frozen cryo-stocks (-80 °C) using a chemically defined media (recipe not 
shown due to confidentiality constrains). After autoclaving the prefilled flasks, ampicillin 
(selective pressure), sterilised glucose glucose solution and trace element solution were 
added to the media before inoculation. Incubation was done in a shaker at 230 rpm and 30 
°C. After reaching an OD600 of 1.5-3 (approx. 17h) the preculture was used for batch 
inoculation. 

2.5 BATCH 
The batch phase was performed in the master reactor. 10 l batch media (recipe not shown) 
was sterilized in situ. After autoclavation the pH of 6.7 was set with NH4OH (12.5 % w/w) 
solution and sterile glucose solution was added to the media. 250 ml of the preculture was 
added through a septum using sterile syringes to the batch media. Temperature and pH were 
held constant at 30°C and 6.7 respectively. Aeration was done using pressurised air at a flow 
rate of 1.4 vvm. Stirrer speed was 400 rpm. Final biomass concentration was approximately 
2.4 g/l. Batch end was indicated by a drop of the CO2 off-gas signal to 0% and a sudden 
increase of the pO2 signal. 

2.6 FED-BATCH AND INDUCTION PHASE 
At the end of the batch phase 1 l of fermentation broth was transferred via an autoclaved 
tube to each of the pre-sterilized slave reactors. Glucose feed solution was added using an 
exponential feeding profile corresponding to a specific growth rate µ of 0.17-0.22 h-1, which 
is significantly lower than the maximal specific growth rate µMax. This leads to a self-
controlling behavior of the cellular growth, resulting in a stable biomass concentration X and 
specific growth rate at induction time as shown by (Jenzsch, Gnoth et al. 2006). pH and 
temperature were kept at 7 and 30°C respectively, aeration was done using a flow rate of 
1.4 vvm. Stirrer speed was kept at 1400 rpm. pO2 was controlled to stay above 30 % by 
mixing pure oxygen to the in-gas using a step controller. 

At a biomass concentration of 20-30 g/l (depending on the conducted experiment) an 
adaption phase of 30 minutes was started. The biomass concentration was calculated based 
on a feed forward profile with a constant biomass yield Yx/s of 0.4 g/g. During adaption 
phase feed rate to meet the intended qS mean, pH and temperature were set for induction 
phase. After adaption phase sterile IPTG solution was added (1 mM final concentration) and 
the control script was started.  
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2.6.1 TEMPERATURE AND qS OSCILLATION 

The qS setpoint was control by using a first principle softsensor as described in detail 
elsewhere (Sagmeister, Wechselberger et al. 2013). The softsensor K2S1 performs biomass 
estimation following a cumulative estimation approach by calculating metabolic rates in 
real-time based on an over determined equation system using the carbon as well as the 
Degree of Reduction (DoR) balance. In addition to the calculation itself it allows a 
consistency check of the observed equation system, which is given by the h-value as 
described by (Jobe, Herwig et al. 2003). The elemental biomass composition, the substrate 
concentration in the feed as well as an initial biomass concentration are obligatory input 
parameters. According to biomass growth the feed supply is adapted in order to maintain 
the qS of interest. The flow diagram of the process is shown in Figure 1. 

 
Figure 1: Flow diagram depicting the qs control based on first principle softsensor; Constants (Biomass 
elemental composition, Substrate elemental composition, Feed concentration, Densities), and online process 
signals (off-gas measurements and substrate inflow) are used as inputs for total biomass estimation; From this 
feed-rate set-points to maintain a certain qs are calculated (Sagmeister, Wechselberger et al. 2013). 

The open loop control for qS is shown in Figure 2. The feed rate is calculated accordingly 
to Equation 2 in ml/h. The setpoint of qS in g/g/h was calculated using a visual basic script 
shown further below. Biomass in g was estimated in real-team as described above. Using a 
density correlation, the feed concentration cS in g/ml was calculated beforehand. 

𝐹̇*,,-. =
𝑞"𝑆𝑃,-. ∙ 𝑋,

𝑐"
 

Equation 2: Feed rate for desired qS setpoint for next control interval 
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Figure 2: Open loop control for qS including real-time biomass estimation based on a Softsensor with 
incremental calculations of the suitable substrate flow rate. The figure shows that the system does not return 
any information about the achieved process value of the controlled variable. 

The code for data reconciliation of this softsensor K2S1 is shown in the appendix. The 
oscillations of qS and temperature were controlled using the following Visual Basic code: 

osc_time …  time of constant qs/Temperature in hours 
.InoculationTime… timer started at induction 
 
'oscillate qs between qs low and qs high 
If (.InoculationTime_H/osc_time) mod 2D > 1 
 qs = 0.2 'qs low 
 else if (.InoculationTime_H/osc_time) mod 2D < 1 
 qs = 0.6 'qs high 
End if 
'oscillate temp between temp low and temp high 
If (.InoculationTime_H/osc_time) mod 2D > 1 
 .TSP = 35 'Temp high 
 else if (.InoculationTime_H/osc_time) mod 2D < 1 
 .TSP = 20 'Temp low 
End if 

According to the Visual Basic code the maximum of qs coincides with the minimum of the 
temperature and vice versa. 

2.6.2 CLOSED LOOP CONTROL OF QS 

2.6.3 CALCULATION AND CONTROL OF FEED RATE 

A step controller was used for real-time qS closed loop control during the post induction 
phase. Therefore, the feed rate 𝐹̇  in ml/h was calculated with the base load 𝐹̇*  and the 
adjustment term Δ𝐹̇. Feed rate was adjusted every 20 minutes. In Equation 3 the calculation 
of the feed rate 𝐹̇,-. for the next control interval i+1 is shown. 

𝐹̇,-. = 𝐹̇*,,-. + Δ𝐹̇,-. 

Equation 3: Feed rate for next control interval i+1 

The base load of the feed rate was calculated accordingly to Equation 4. The qS setpoint for 
the next interval qSSPi+1 in g/g/l was either a constant or a variable adjusted by the controller 
with setpoint adaption, used in some of the experiments. Using a density correlation, the 
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feed concentration cS in g/ml was calculated beforehand. The current biomass Xi was 
estimated every 20 minutes as described in 2.6.4. 

𝐹̇*,,-. =
𝑞"𝑆𝑃,-. ∙ 𝑋,

𝑐"
 

Equation 4: Feed rate base load for the next control interval i+1 

Taking the difference of the qS setpoint qsSPi and process value qsPVi during the last control 
interval i into account, the adjustment term Δ Ḟ i for the next control interval i+1 was 
calculated accordingly to Equation 5. To prevent overshooting the adjustment term was 
limited to 30 % of the base load. 

Δ𝐹̇,-. =
(𝑞"𝑆𝑃, − 𝑞"𝑃𝑉,) ∙ 𝑋,

𝑐"
		; 	Δ𝐹̇,-. ≤ 𝐹̇*,,-. ∙ 0.3 

Equation 5: Feed rate adjustment term for the next control interval i+1 

2.6.4 REAL-TIME BIOMASS ESTIMATION 

To decouple the estimation of biomass from the carbon balance, it was based on nitrogen 
balance, degree of reduction balance and a permittivity measurement. Results from prior 
experiments were taken to determine errors on the estimations based on the different 
approaches (N-, DoR-balance and permittivity measurement) and used to calculate an 
error-weighted average which was adapted from (Aehle, Simutis et al. 2010) according to 
Equation 6, to ensure more stable estimation during phase of induction. Real-time biomass 
estimation was started with time point of induction. The initial value for the estimation was 
calculated with a fixed-yield feed forward profile during fed-batch phase. 

𝑋, =
𝑤A ∙ 𝑋A + 𝑤BCD ∙ 𝑋BCD + 𝑤EFDG ∙ 𝑋EFDG

𝑤A + 𝑤BCH + 𝑤EFDG
 

Equation 6: Error-weighted biomass estimation in C-mol 

Base concentration was determined from titration with standardized 1M HCl. The molecular 
composition of biomass was determined in previous work and provided the necessary 
information of mole nitrogen per mole carbon of biomass. In Figure 3 the linear correlation 
between biomass growth and consumption of base is shown. 

𝑋A,, = 𝑋,I. +
∆𝑉AKL ∙ 𝑐AKL ∙ 𝑀A

𝑛A,%O ∙ 𝑀AKL
 

Equation 7: Biomass estimation based on N-balance in C-mol 
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Figure 3: Base consumption – biomass growth correlation; The plot shows the linear correlation between 
biomass growth and consumption of base (NH4) during phase of induction of experiment WR45-A. The 
correlation was used to estimate the growth of biomass independently of the C-balance and therefor of 
substrate accumulation. 

Beginning with the degree of reduction balance the biomass growth rate 𝑟%,BQH  was 
calculated in C-mol/h/l according to Equation 8. 𝑟QR  was calculated from off-gas 
measurements and for 𝑟" the estimation of the last interval was used. 

𝑟%,BQH =
4 ∙ (𝑟QR − 𝑟")

4.13  

Equation 8: Biomass growth rX,DOR based in DOR-balance 

With Equation 9 the biomass estimation in C-mol based on 𝑟%,BQH was calculated. 

𝑋BQH,, = 𝑋,I. + 𝑟%,BQH ∙ 𝑉H,, ∙ ∆𝑡 

Equation 9: Biomass estimation in C-mol based on DOR-balance 

During the fed-batch phase the permittivity measurement was calibrated with the feed 
forward profile with constant biomass yield, shown in Figure 4. According to Equation 10 
the biomass estimation in C-mol based on the permittivity measurement was calculated. 

𝑋EFDG,, =
𝑉H,, ∙ (𝜀, ∙ 𝑎X + 𝑏X)

𝑀%,O
 

Equation 10: Biomass estimation in g based on permittivity measurement 
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Figure 4: Biomass – permittivity correlation; The plot shows the linear correlation between DCW in g/l and 
permittivity measurement during the fed-batch phase of experiment WR45-A which was used to estimate 
DCW in g/l during phase of induction independently of the C-balance. 

 

Based on former experiments the error 𝑒,  of each particular biomass estimation was 
estimated and used to calculate an error-weighted average of all estimations. 

𝑤, =
1

𝑋, ∙ 𝑒,
 

Equation 11: Absolute error of particular biomass estimation 

2.6.5 REAL-TIME ESTIMATION OF METABOLIC RATES 

Biomass was estimated every 20 minutes and thus the amount of grown biomass within this 
time interval. 

𝑟%,, =
∆𝑋,
∆𝑡 =

𝑋, − 𝑋,I.
𝑡, − 𝑡,I.

 

Equation 12: Estimation of biomass growth rate  

To estimate the substrate conversion rate 𝑟" the softsensor (described in 2.6.1) was modified 
to version K2S1_v2. Instead of the feed rate the biomass growth rate was an obligatory input 
enabling the real-time estimation and reconciliation of 𝑟". The code for data reconciliation 
for K2S1_v2 is shown in the appendix. 

 

2.6.6 CLOSED LOOP CONTROL 

Figure 5 shows the closed loop control for 𝑞". As described in 2.6.3 the process value 𝑞"𝑃𝑉 
is compared with the setpoint 𝑞"𝑆𝑃  and provides Δ𝑞"  to calculate Δ𝐹̇  (according to 
Equation 5) to improve the quality of the controller performance. 
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Figure 5: Closed loop control provides the possibility of comparing the wanted setpoint with the actually 
achieved process value. Therefore, an interference of the process can improved the quality of the control 
strategy 

Additionally, to closing the control loop of 𝑞" a logical query (shown in Figure 6) to adapt 
qsSP if qscrit is reached, was developed. In Figure 7 the closed loop control with adaption of 
qsSP is shown. (Reichelt, Brillmann et al. 2016) showed a correlation between qscrit decline 
and qsmean. This coherence (see Equation 13) was used to assess the maximum possible 
decline of qscrit within a control interval (20 minutes). 

𝑘 = −0.26 ∙ 𝑞"GF^_ + 0.04 

Equation 13: Calculation of 𝒒𝑺𝒄𝒓𝒊𝒕 trajectory slope in dependency of 𝒒𝑺𝒎𝒆𝒂𝒏 

Based on the results for qsmean of 0.4 g/g/h (-0.064 g/g/h2) and 0.2 g/g/h (-0.012 g/g/h2) it 
was decided to reduce the setpoint to 90 % in case of reaching the limit to ensure to fall 
below qscrit again and maintain high growth rate. Three inputs need to be true to adapt the 
setpoint. The comparison of the qsSP with the last qsPV from point of time 𝑡,I. 20 minutes 
ago, a comparison of qsSP with the current qsPV, point of time 𝑡,, and the change of the qsPV 
within the last 20 minutes (ΔqsPV). In case of all three conditions, qsSP will be reduced to 
90 %. Since qsPV should always increase due to the adapted federate, if qsPV is smaller than 
qsSP and qscrit is not reached. 

 

 



 

 11 

 
Figure 6: Logical query for closed loop control to adapt the setpoint of qs if qs crit is reached and the setpoint 
cannot be achieved. 

 
Figure 7: Closed loop control with logical query to adapt qSSP provides the possibility to stay within the 
oxidative maxima of the culture 

2.7 ANALYTICS 

2.7.1 BIOMASS DRY CELL WEIGHT 

Throughout the induction phase BM samples were taken every 30 min using an automated 
sampling device consisting of two pump modules (two tubes per module), and an 
autosampler with a cooling block holding up to 50 vials. This autosampler consisted of four 
tubes each connected to one sampling port of one of the slave reactors, two tube pumps (two 
tubes per pump) and a robotic arm to maneuver the tubes to the corresponding sampling 
vials, which have been placed in the cooling block. The sampling procedure featured a tube 
flushing step of two minutes followed by the actual sampling into the sampling vials (30 
seconds). Upon activation the robotic arm automatically counted the number of previous 
samples and therefore moved to the next sampling vial for the subsequent sampling cycle. 
The automated sampling device was controlled using Lucullus PIMS. Samples were stored 
at 4°C until the end of the fermentations. Vial volume was measured gravimetrically based 
on a density of 1 kg/m3, afterwards the suspension was centrifuged (5000 rpm) and the pellet 
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was washed with deionized water, centrifuged again (5000 rpm) and finally dried at 110°C 
for at least 72 h before weighing on an analytical scale. 

2.7.2 MANUAL FERMENTATION SAMPLES 

6 ml aliquots of fermentation broth were centrifuged, two aliquots of 1 ml of supernatant 
stored in Eppendorf tubes (rest discarded) and both (Pellets and supernatant tubes) stored on 
-20°C until further analysis. 

2.7.3 SUPERNATANT ANALYSIS 

Glucose, acetate and ammonia contents in fermentation supernatant were measured using 
enzymatic test kits for Cedex Bio HT Analyzer (Roche, Switzerland) for the manually taken 
fermentation samples. 

2.7.4 INCLUSION BODY SIZING 

Methods for IB sizing was performed using nano-particle tracking analysis and is described 
in detail in the publication (Reichelt, Kaineder et al. 2017), which was a result of this work. 

2.8  DATA ANALYSIS 
Matlab R2015a (MathWorks, USA) was used for calculation of rates and yields from online 
data (feed rate, gassing rate, off-gas analysis) and offline data (BM dry cell weight, Glucose, 
acetate and ammonia measurements in SN). Reaction rates were all normalized by the 
reaction volume. For calculation of rx a quadratic fit for the total biomass (shown in Figure 
8) was used to minimize the effect of error propagation which could lead to artifacts caused 
by sampling interference. The novel approach used for calculation of qs based on off-gas 
measurements and offline biomass is elsewhere (Reichelt, Brillmann et al. 2017). 
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Figure 8: Biomass fitting for rate smoothing. The plots show the quadratic fits used for total biomass (top 
row) and biomass concentration (bottom row) used to give a smoothened rX upon rate calculation. The red 
line shows the fit and the black dashed line shows the actual measured offline biomass. 

 

3 RESULTS AND DISCUSSION 

3.1 INCLUSION BODY QUALITY ATTRIBUTES 

3.1.1 TEMPERATURE AND QS OSCILLATIONS 

The results of experiment WR40-C led to ceasing further experiments dealing with 
temperature oscillations in combination with qS oscillations because the reactor setup did 
not provide sufficient heating and cooling performance. As shown in Figure 9 the lower 
temperature setpoint could not be reached and the time to reach the higher setpoint was 
approximately 30 minutes. With the given setup it was not possible to run temperature 
oscillations within the desired conditions in terms of frequency and amplitude. 

 
Figure 9: Temperature oscillations during phase of induction; The plot shows large deviations of the actual 
process value TPV (dashed line) from the desired setpoint TSP (solid line) due to insufficient heating and 
cooling performance 

Furthermore the constantly changing temperature led to problems with pH and pO2 control 
as shown in Figure 10. With the given setup it was not possible to provide stable pH and pO2 
control going hand in hand with temperature oscillations. It would have been necessary to 
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add acid to the pH control and determine the pH-temperature dependency of the system to 
compensate the temperature changes for the pH measurement. 

The pO2 control was done by a simple step controller as described in 2.3 and did not ensure 
a pO2 higher than 30 % at all times. Brillmann (Brillmann 2015) showed in his master thesis 
a correlation of inclusion body properties (solubilisation kinetics) and the amplitude of qS 
oscillations at constant temperature and pH as well as pO2 higher than 30 % during induction 
phase. de Groot et al. (de Groot and Ventura 2006) showed that lower temperature also 
favors inclusion body solubility. A potential increase of these positive effects due to 
temperature oscillations could not be proved if pH and pO2 cannot be controlled in a 
reproducible manner. 

 
Figure 10: Quality control of WR40-C; Temperature oscillations (upper plot) impacts on pH (middle plot) 
and pO2 (lower plot) control, which could not be controlled in the desired way. 

3.1.2 INCLUSION BODY SIZING – PUBLICATION PART 

In the following section the accepted publication is covering the results of this thesis 
concerning inclusion body sizing. The contributions of the work to the following publication 
accompanied with the writing of this thesis lie in the execution of the fermentation 
experiments, the development and execution of the fixation and staining protocol as well as 
the execution of the NTA measurements. 
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1  Background

The production of biosimilars is one of the main growth 
markets in pharmaceutical industry. Especially Escheri-
chia coli, as well characterized expression host, has been 
established as easily accessible host for fast and efficient, 
high titer protein production. Hereby, high titer expres-
sion of heterologous protein frequently leads to inclusion 
body (IB) formation. This protein aggregation either coin-
cides with high cytosolic concentrations of unfolded pro-
tein or can be induced, using a protein tag in order to 
reduce the toxicity of an otherwise toxic protein. How-
ever, while USP is hardly affected by IB formation, DSP 
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constitutes the bottleneck in IB related production pro-
cesses [1] and causes the bigger share of the total produc-
tion costs. 

As end product of USP, IBs are isolated by cell disrup-
tion prior to further processing during DSP. Industrial IB 
isolation is commonly conducted using high-pressure 
homogenization [2] and a continuous centrifugation to 
release and isolate IBs from the cells. Hereby, the continu-
ous addition of washing buffer allows the combination of 
cell disruption and the removal of cellular debris in one 
unit operation. Post isolation, IBs are commonly solubi-
lized in a chaotropic solubilization buffer, prior to refold-
ing the protein into the native and therefore active protein 
conformation. 

Integrated bioprocess development [7] strives to 
debottleneck the production process and to increase effi-
ciency by addressing the impact of USP on DSP [8, 9]. This 
calls for sensitive response parameters describing the 
characteristics of IBs as intermediate product of USP and 
DSP. Solubilization in particular, as well as, refolding effi-
ciency and purity appear to impair yields during DSP, 
which is why these steps and their efficiency have been 
investigated comprehensively [3–6]. 

Various methods have been investigated in order to 
characterize IBs, by paying attention to their different 
chemical properties. IB purity directly affects the neces-
sary effort for further purification post-refolding and can 
be easily analyzed by SDS-PAGE [10]. Furthermore, IB 
solubility is critical for DSP performance, since highly 
soluble IBs would dissolve during the washing steps. In 
contrast, barely soluble IBs require high amounts of chao-
trope reagents during solubilization, which increases 
buffer volume for refolding [11]. The increased volume in 
turn calls for bigger column diameters of economically 
expensive DSP purification columns [12]. Recent develop-
ments have enabled the concise measurement of solubil-
ity in respect to time [6, 8] as well as in respect to the 
concentration of chaotrope reagents [13]. 

Presumably mainly physical IB particle properties 
such as particle size and stickiness impact the yield of the 
isolation step prior IB solubilization during DSP. Never-
theless, the majority of available methods measure prop-
erties of the IB mass rather than properties of single par-
ticles. To date, analytical methods to quantify physical 
properties like the size and shape of IBs appear as being 
less developed.

Although a lot of effort has been invested especially 
into the quantification of IB size [14–18], the current, 
established methods have hardly been challenged/veri-
fied by an orthogonal verification method or are not single 
particle based (OD, DLS). Within this contribution we aim 
to establish an orthogonal verification method to analyze 
the size of large numbers of IBs and to assess sensitivity 
and information content of the nano particle tracking 
analysis (NTA) as a high throughput method to analyze 
IBs.

Besides being sensitive, a suitable method to effec-
tively characterize the physical properties of IBs needs to 
be robust and reproducible. Mainstream adoption in aca-
demic as well as in industrial labs will only happen if the 
method is sufficiently simplistic. Highly sophisticated 
methods often lack technical transferability and compara-
bility due to a certain degree of equipment and operator 
dependency.

1.1  Centrifugation based techniques

Early studies used centrifugation techniques, as centrifu-
gal disc photo sedimentation [19] or cumulative sedimen-
tation analysis [17], but require a particle density for the 
calculation of a size distribution of IBs. The more recently 
discussed approach of using an analytical centrifuge for 
IB sizing also relies on the density [20]. This dependency 
on IB density calls for an additional analytical method for 
IB density measurement, which makes methods relying 
on the density more laborious and less direct.

1.2  Dynamic light scattering

Dynamic light scattering (DLS) has extensively been uti-
lized to size biological nano particles [11, 13–15, 21, 22]. 
Nevertheless, since this method only measures one vari-
able its sensitivity is greatly impaired by multimodal dis-
tributions as well as by background particles [17]. As a 
counteraction, sample purification by serial washing steps 
[11, 13] or full-grown purification techniques as ultracen-
trifugation [15] have been investigated but these meas-
ures increase the risk of a measurement bias caused by 
sample preparation. 

1.3  Field flow fractionation 

Field flow fractionation (FFF) as separation or purification 
technique, as described elsewhere [23], has a wide 
dynamic range from 0.3–100  µm of particle separation 
capacity. The separation mechanism is a combination of 
Brownian motion, sedimentation and hydrodynamic lift 
forces [23] and facilitates bulk separation of nano particles 
according to their respective size and mass. Luo et al. 
used asymmetrical FFF in combination with multi-angle 
light scattering in order to analyze the size distribution of 
GFP inclusion bodies in response to induction time and 
temperature [14]. Using a sedimentation FFF in combina-
tion with a UV-Vis detector Margreiter et al. investigated 
the impact of inducer concentration and induction time 
on IB size [16]. Thereafter, an increase in the median 
spherical diameter of up to 140 nm over induction time 
was observed. Nevertheless, the effort for FFF method 
establishment is substantial and the potential interplay of 
different separation mechanisms implies that the inter-
pretation of the results may not be so straightforward.
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1.4  Imaging/TEM

The majority of the previously described methods and 
research contributions feature transmission electron 
microscopy, in an attempt to verify drawn conclusions. 
TEM facilitates conclusions based on single particle 
analysis by making single IBs visible. Given the overall 
goal of IB analytics of characterizing IBs as product of 
USP, the IBs should be analyzed in the most native con-
formation possible. Hereby, imaging of IBs in the cytosol 
excludes most of the otherwise necessary sample prepa-
ration and therefore a potential analytical bias. Neverthe-
less, it is indicated to analyze as many IBs per sample as 
possible in order to obtain a statistical representation of 
the IB population in the sample. Sizing IBs using TEM is 
commonly based on a laborious manual image analysis of 
the TEM image [16, 24]. In addition, the effort for sample 
preparation, the analytical technique, and image evalua-
tion is substantial and basically excludes the possibility of 
using the usage of EM-based methods as routine analyti-
cal technique. 

1.5  Nano particle tracking analysis

In this contribution we introduce nano particle tracking 
analysis (NTA) [25] as method to analyze and size a large 
number of biologic nano particles individually. For bio-
logic particles the dynamic range of NTA spans 
 100–1500  nm, which fits the reported size range of IBs 
from 170 to 1300 nm [13, 16, 19, 24]. NTA uses a laser as 
light source, which passes through the sample particle 
suspension and illuminates the particles. In scatter mode, 
the scattered light, while in fluorescence mode the emit-
ted light is recorded by a high-speed camera through a 
microscope. Due to the angle between the light beam and 
the camera axis, individual particles can be tracked and 
analyzed. At a constant temperature and a constant vis-
cosity of the liquid, the size of each particle correlates to 
the Brownian particle movement. Using the Stokes–Ein-
stein equation, the individual particle size can conse-
quently be calculated resulting in a histogram of the par-
ticle size distribution of the particles in suspension. 

The overall goal of this contribution is to provide a cost 
and time efficient method to quantify IB size. Firstly, for 
method verification, we aim to establish grey scale image 
segmentation of TEM pictures as an orthogonal method 
to assess IB size. Secondly, as cost and time efficient 
method, NTA is assessed as method to quantify IBs and 
their size in the background of cell debris. Finally, as an 
exemplary application the growth of IBs is investigated 
over process time.

2  Materials and methods

2.1  Bioreactor system

The fermentations were conducted in a DASGIP multi-
bioreactor system (4Force; Eppendorf; Germany) with a 
working volume of 2 L each. The DASGIP control software 
v4.5 revision 230 was used for data logging and control: 
pH (Hamilton, Reno, USA), pO2 (Mettler Toledo; Switzer-
land;), temperature and stirrer speed (module DASGIP 
TC4SC4; Eppendorf; Germany), aeration (module DASGIP 
MX4/4; Eppendorf; Germany) and pH (module DASGIP 
MP8; Eppendorf; Germany). CO2, O2 concentrations in the 
off-gas were quantified by a gas analyzer (module DASGIP 
GA4; Eppendorf; Germany) using the non-dispersive 
infrared and zircon dioxide detection principle, respec-
tively. 

2.2  Cultivations

A recombinant BL21 DE3 E. coli strain was cultured, pro-
ducing an intracellular protein (≈30  kDa) in the form of 
inclusion bodies, after a one-time induction with IPTG 
(1  mM). The synthetic media was based on the recipe 
from Korz et al. [26], where the limiting C-source was 
glucose.

Pre-cultures were grown to a OD600 of approx. 1.5 in 
150 mL media. 2.5% of the batch volume was added as 
pre-culture for inoculation. The strain was cultivated at a 
controlled pH level, dissolved oxygen DO2 (>30%) and 
temperature. The DO2 was kept over 30% by supplement-
ing oxygen to the air. After depletion of the C-source in an 
initial batch phase, the pre-induction fed-batch was 
started. The pre-induction feeding strategy was based on 
an exponential feed forward profile to maintain a prede-
fined growth rate [27]. Upon induction, stirrer speed was 
set to 1400 rpm and aeration to 1.4 v/v/m for the whole 
process. The pH was maintained by adding 12.5% NH4OH, 
which also served as nitrogen source. 

2.3  Imaging

For high-pressure freezing (HPF) E. coli samples were pel-
leted and re-suspended in 5% BSA. After a second cen-
trifugation step, the pellet was immediately frozen in a 
high-pressure freezer (HPF Compact 01; Wohlwend; Swit-
zerland). The samples were then transferred into a freeze 
substitution unit (EM AFS2; Leica Microsystems; Ger-
many) for water substitution with 2% uranyl acetate in 
anhydrous acetone over five days (–140°C to –90°C for 3 h; 
–90°C to –90°C for 25 h; –90°C to –54°C for 18 h; –54°C to 
–54°C for 8 h; –54°C to –24°C for 10 h; –24°C to –24°C for 
15 h; –24°C to 0°C for 12 h;0 to 0 for 2 h)

For chemical fixation, the supernatant of the pelleted 
E. coli samples was carefully aspirated and cells were 
fixed using 2.5% glutaraldehyde in 100  mM cacodylate 
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buffer at pH 7.4 for 1 h at room temperature. After washing 
in the same buffer samples were post-fixed in 2% osmium 
tetroxide in cacodylate buffer, washed and dehydrated in 
a graded series of ethanol. 

The dehydrated specimens were embedded in agar 
100 resin (AGR 10131; Agar Scientific Ltd; UK) and after 
hardening, ultrathin sections (70 nm) were prepared (Lei-
ca ultramicrotome UCT; Leica Microsystems; Germany). 
The 70 nm sections were collected on 100 mesh Cu/Pd 
grids with a supporting formvar film. Sections were post-
stained with 2% aqueous uranyl acetate, followed by 
incubation with  Reynold’s lead citrate. Images were col-
lected using a transmission electron microscope (Mor-
gagni 268D; FEI; Netherlands) operated at 80  kV and 
equipped with an 11  megapixel camera (Morada CCD; 
Olympus-SIS; Germany). Images were collected in both, 
regions of random sections and regions of one section.

2.4  Image segmentation

To quantify the IB size, the relative area of IB per cell was 
calculated based on grey scale image segmentation. The 
thresholds for background and IBs were selected manu-
ally by the operator, specific for each picture. The differ-
ence in area of the background and total image area cor-
responds to the area covered by cells. A pre-test with a 
larger number of operators (9) substantiated that the 
image segmentation is insignificantly impacted by the 
operator and can be regarded as transferable in-between 
operators (data not shown). Image segmentation of the 17 
different samples and one negative sample with three to 
six images for each sample was conducted in Image Lab 
(v.1.02, Epina GmbH, Pressbaum, Austria; http://www.
imagelab.at). 160–380 individual cells were repetitively 
analyzed per sample.

2.5  Cell disruption

2 mL of the fresh culture broth were centrifuged (4500 × g; 
10 min; 4°C). The cell pellets were re-suspended in 20 mL 
0.1 M Tris-buffer; 10 mM EDTA (pH 7.4) buffer and were 
disrupted in a high-pressure homogenizer (EmulsiFlex; 
Avestin; Canada) at 1400 ± 100 bar in six passages. For 
chemical fixation, 0.2% glutaraldehyde (G7776; Sigma 
Aldrich; Austria) was added dropwise to the re-suspend-
ed pellet and incubated 1 h at 4°C prior to homogeniza-
tion. 

2.6  Fluorescence stain

To discriminate cell debris from IBs, the homogenized cell 
pellet (5000 × g; 5 min) was re-suspended and incubated 
for 30 min in a 1x PBS solution containing 1% BSA and 
2.2 mg/L of a product specific biotinylated primary anti-
body (courtesy of Sandoz GmbH; Austria). After washing 
with 1x PBS 1% BSA once, the pellet was re-suspended 

and incubated for 30 min in 1x PBS 1% BSA containing 
10 µg/mL secondary IgG antibody labelled with Alexa 488 
(AT11001; Invitrogen Life Technologies; Austria). Prior to 
measurement, the suspension was washed and re-sus-
pended in 1x PBS.

2.7  Nano particle tracking (NTA)

A NS500 (Malvern, UK) software release (Nano Sight 3.0) 
equipped with a 488  nm laser and a CMOS camera 
(Hamamatsu Photonics, Japan) was used for the con-
ducted NTA measurements. Most of the software param-
eters and algorithms are proprietary and are not known to 
the authors. The measurement chamber was primed prior 
to each measurement with 1x PBS to minimize particle 
drift. In-between measurements the chamber was flushed 
twice to avoid sample carryover. All samples were soni-
cated 1 min prior to measurement and diluted 1:10 in PBS. 
The focus level was set automatically, a standardized 
camera level of 16 was used in combination with a detec-
tion threshold of 20. Six replicates, 90 s each were meas-
ured with a 5 s time delay at a controlled temperature of 
25°C. 

2.8  Titer quantification

Product titer was measured using RP-HPLC after solubi-
lizing the washed pellet of disrupted cells in guanidine 
hydrochloride. To calculate the specific titer, biomass 
concentrations were gravimetrically quantified after dry-
ing at 105°C for 72 h. Therefore 2 mL of culture broth were 
centrifuged (4500  ×  g, 10  min, 4°C) in a pre-weighted 
glass tube and the pellet was washed once with 5 mL RO 
water. The determination was done in duplicates. After 
drying in the drying oven, the biomass dry weight was 
measured on a scale. 

2.9  Statistical data analysis

Data were subjected to statistical analysis using Datalab 
Version 3.5 (Epina GmbH, Pressbaum, Austria, http://
datalab.epina.at/). Based on an α = 0.05 the significance 
of the correlation was evaluated based on the p-value. 
Data were not transformed. Serial correlation was tested 
using the Durbin-Watson statistic.

3  Results 

3.1   TEM+HPF as a gentle method  
for IB visualization

Currently, there is no verified method available to quanti-
tatively size a representative number of IBs. This circum-
stance hinders the establishment of a high throughput 
method for quantitative IB sizing. Consequently, method 
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assessment can only be based on relative confirmation by 
comparing the results of two otherwise orthogonal meth-
ods (Fig. 1). Since an absolute measurement method for 
the particle size of a distribution of biologic nanoparticles 
is not available, a relative verification is targeted by com-
paring the relative area (%) derived from TEM and the 
hydrodynamic diameter (nm) derived from NTA. To avoid 
measuring artefacts it is of utmost importance to mini-
mize the impact of sample preparation in order to pre-
serve the most native IB form. While TEM is capable of 
visualizing IBs even in the cytosol, NTA can only measure 
particles in suspension. For this reason, HPF has been 
used as fixation approach for TEM, due to the gentle fixa-
tion properties. Supporting information 1 illustrates the 
conservation of cellular structures for different induction 
time points of two representative experiments. In con-
trast, sample preparation for NTA requires cell homogeni-
zation and a consequent FL stain in order to facilitate IB 
analysis in the background of cell debris. 

3.2   Grey scale image segmentation for quantitative 
IB sizing is not significantly operator dependent

Based on deduced the images from Supporting informa-
tion 1, qualitative IB growth over time can be observed. 
But for a quantitative assessment of IB size/growth over 
time, a standardized approach for IB sizing is necessary. 

Using grey scale image segmentation from TEM images. 
The relative IB size was quantified as IB area per cell (%). 
Basal grey values of TEM images, have been found to be 
highly variable owned to background particles. This 
impairs a uniform background correction and consequent-
ly fully automated image segmentation. Targeting a sound 
science method to reproducibly quantify cytosolic IB size, 
the operators analyzed 17 independent samples by image 
segmentation (Fig. 2) . Using a software aided approach, 
the time per image segmentation decreased below 10 s. 
For each sample three to six TEM images were recorded 
and segmented by the individual operator in random order 
at least three times. In Fig. 2A–C the variance induced by 
the different operators is indicated. The respective results 
are not statistically significant operator dependent, ren-
dering the method transferable between operators for IB 
sizing and thereby suitable for method verification. Conse-
quently, TEM imaging using HPF as gentle fixation meth-
od for IBs in combination with the software aided image 
segmentation approach across operators, was employed 
as orthogonal verification method. 

In order to minimize artefacts, sample preparation was 
simplified as far as possible. While mere homogenization 
and direct NTA measurement did not lead to satisfying 
results, the implementation of a FL stain increased sensi-
tivity of the method (data not shown). Also, standard FL 
beads were identified with high precision even in the 

Figure 1. Method assessment by relative method verification. Flow chart of the targeted relative verification of NTA and TEM derived quantification of IB 
size. Independent IB process samples are analyzed by NTA as well as by TEM. TEM images on the left only represent the IBs as such, not the method spe-
cific sample preparation. While NTA measures IBs in the background of homogenized cells (Supporting information 2), the verification method TEM is 
based on ultrathin sections of whole cells in combination with grey scale image segmentation (Supporting information 1). NTA yields the hydrodynamic 
particle diameter distribution which corresponds to the IB size (nm) based on the utilized specific FL stain. TEM derived images of process samples are 
segmented according to the grey scale. Based on the image segmentation of IB area and cell area the relative area IB/cell [%] is calculated.
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background of stained homogenate (data not shown). 
Consequently, the samples were measured post homoge-
nization and FL stain without any fixative (non-fixated). To 
illustrate the data basis for a size measurement by NTA, 
Fig. 2A displays a histogram of tracked and sized particles 
of an exemplary FL stained sample. Although a high num-
ber of particles was tracked in high number, NTA results 
and the relative IB areas from TEM-HPF were not signifi-
cantly correlated (Fig.  2F). Judging from the TEM-HPF 
images (Supporting information 1) as well as from the 
image segmentation (Fig.  2D), a significant difference/
growth over time in size of IBs can be observed. Neverthe-
less, this trend was not represented by NTA results. 

3.3   Particle fixation for nano particle tracking 
analysis (NTA) increases method sensitivity

To investigate the impact of sample preparation on IB siz-
ing by NTA, additional tests were conducted using a 
chemical fixative prior to cell homogenization. The IB siz-
ing results of non-fixated IBs and chemical fixated IBs are 
compared in Fig. 3. Figure 3A and 3B illustrate the mas-
sive improvement of NTA raw data quality upon sample 
fixation prior to homogenization. The standard deviation 
is decreased and displays significantly less variance 
(Fig. 3C). Highly interesting is the observation that fixated 
samples display quantitatively more unspecific particles 

Figure 2. Grey scale image segmentation of TEM images for IB sizing is not significantly operator dependent. The relative area (rel. area [%]) corresponds 
to the area covered by IBs per cell background, 17 induced samples and one negative sample (C-1), of each sample three to six individual TEM images 
were segmented in random order (n > 3), each letter corresponds to an individual fermentation, samples with the same letter  but different number corre-
spond to different time points; (A–C) Grey scale image segmentation results operator specific, each subpanel corresponds to one individual operator; 
(D) all segmentations (> 550) results pooled, whiskers indicate 75% interval; (E) Filtered data of the size distribution of fixated IBs by NTA in the back-
ground of cell debris, all tracked particles of one sample measurement including the six replicate measurements, filtered by intensity and track length. 
(F) The correlation of relative IB area (%) to the hydrodynamic diameter derived from NTA (nm) was not found to be significant p(t) = 0.18, also the 
 residuals were not found to be normally distributed.
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than non-fixated samples (Fig. 3D). This is surprising in 
respect of the cross-linking properties of glutaraldehyde, 
which in theory should lead to generally bigger and fewer 
particles. Possibly, the addition of a fixative prior to homo-
genization prevents IBs from aggregating post homogeni-
zation during sample preparation. 

Besides increasing measurement sensitivity, sample 
fixation appears to impact the intensity per particle 
(Fig. 4A). In order to put the IB size obtained from fixated 
samples into perspective, Fig. 4B illustrates the correla-
tion of all measured TEM and NTA samples. Based on a 
p value of 0.002, it can be concluded that the rel. IB area 
(%) and the hydrodynamic diameter (nm) are correlated. 
To illustrate that the measured IB size is not a redundant 
measure of a simple titer quantification, the TEM areas 
as well as the IB diameters derived from NTA are com-

pared to the respective specific titers (Fig. 4B and 4C). 
Based on the assumption of a uniform IB density within 
one sample the size of IBs should be tightly correlated to 
the amount of product contained in the particle. Never-
theless, the specific product titer does not display a 
highly significant correlation to the particle size, neither 
for particle sizes derived from TEM (Fig.  4C) nor from 
NTA (Fig. 4D).

The analysis of early and late time points of induction 
from different sets of experiments increases the observable 
differences in IB size. In comparison, the timely resolution 
of size over induction time is a greater challenge in regard 
to method sensitivity. In this respect, Fig. 5A illustrates the 
growth of IB size as well as the progression of specific prod-
uct titer (g/g) over induction time. In accordance with 
Fig. 4D the IB size and product titer were not found to be 

Figure 3. The positive impact of fixation prior to homogenization on NTA particle measurement. (A) raw data of particle size distribution of FL stained 
non-fixated IBs; (B) raw data of particle size distribution of FL stained fixated IB of the same sample as in (A); (C) Fixation prior to homogenization 
decreases standard deviation of the median size and boosts reproducibility, comparison of the standard deviation of the median of the particle size distri-
bution of the six replicate measurements per sample, for not fixated (native) n = 37 and fixated (fixated) n = 26 samples, p(t)  < 0.001; (D) total unspecific 
particle counts of NTA raw data, A-I correspond to sample names from various fermentations and time points, the observed trajectory in the particle count 
of fixated samples is presumably of coincidental nature.
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closely correlated. The increase in size (+10 to 12%) was 
found to be comparably small given the substantial increase 
in specific titer (+300–400%) over induction time. 

To investigate the impact of homogenization and cor-
related sample preparation on the sensitivity of the NTA 
measurement, additional samples after homogenization 
were analyzed (Fig. 5) by TEM. It can be observed that in 
case of HPF (Fig. 5C), the IBs are released into the super-
natant and appear to maintain a more segregated state. 
The structure of these protein aggregates appeared porif-
erous and fragile. In contrast, the chemical fixation of the 
same sample prior to homogenization led to denser parti-
cles (Fig. 5B). Based on these images, it can be inferred 
that chemical fixation helps to maintain the IB conforma-
tion. A more pronounced impact of chemical fixation can 
be observed if the sample preparation for TEM is based on 

a thorough chemical fixation (Supporting information 3) 
instead of HPF/AFS (Supporting information 1). This con-
clusion is also in accordance with the previously discov-
ered positive impact of fixation on NTA sensitivity.

4  Discussion

The investigation of the interface of USP and DSP requires 
sensitive analysis of the USP end product – the inclusion 
bodies. In this context, it are especially physical IB proper-
ties that presumably impact the isolation yield prior to 
solubilization and refolding during DSP. Accordingly, the 
goal of this contribution was to establish and verify a 
particle-based method to size a representative number of 
IBs with high sensitivity and high efficiency.

Figure 4. IB size of fixated samples derived from NTA is significantly correlated to the relative IB area derived from TEM; (A) Filtered data of the size distri-
bution of fixated IBs by NTA in the background of cell debris, all particles of one sample measurement including the six replicate measurements, filtered by 
intensity and track length; (B) significant correlation of relative area (rel. area TEM [%]) and particle size derived from NTA (size), n = 15, R2 = 0.69, p(f) = 
0.002; (C) correlation of relative area (rel. area TEM [%]) and specific product titer (spec. titer [g/g]), n = 15, R2 = 0.33, p(f) = 0.026, no serial correlation; 
(D) correlation of particle size derived from NTA (size ) and specific product titer (spec. titer [g/g]), n = 15, R2 = 0.42, p(f) = 0.009, no serial correlation.
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4.1   Grey scale segmentation of TEM images  
is a sensitive method for IB characterization

For method verification, a second, orthogonal method to 
assess IB size has been established. To minimize the 
effect of sample preparation and correlated artefacts, it 
was indicated to analyze the IBs in the most native con-
formation feasible. Using only centrifugation prior to HPF, 
sample preparation was reduced to a minimum. Besides 
sample preparation, the method of sample fixation has 
been a topic of vivid discussion. A common approach for 
sample fixation of IBs is chemical fixation [11, 13, 20, 24] 
or air drying of the specimen on a copper grid [15, 16]. 
Despite the wide usage of these methods, the specimen 
might be altered, subcellular structures can condense and 
shrinkage can occur. In this contribution, that used HPF-
AFS, the structure of IBs was found to be far looser and 
more sensitive in contrast to the general opinion regard-
ing the shape of IBs [13].

Regardless of the sample preparation, microscopy 
generally simplifies the shape of 3D specimens to 2D 
images. Although 3D-TEM offers an alternative, the effort 
per measurement renders 3D-TEM unfeasible for the 
analysis of over 100 particles per sample. To compensate 
for the drawback of a 2D image based method a repre-
sentative number of particles needs to be analyzed. Espe-
cially since the IBs do not appear to have a fully symmetri-
cal, spherical shape, different orientations need to be 
accounted for by sizing a larger number of IBs. Peternel et 
al [24] addressed the problem of the statistical signifi-
cance and sized 250–350  IBs in order to obtain a histo-
gram of IB size distribution of isolated and washed IBs. In 
accordance with this contribution, 160–380 individual 
cells (containing IBs) were analyzed repetitively by each 
of the three operators for every sample. But in contrast to 
the chemical fixation used by Peternel et al [24], HPF-AFS 
was used as a highly gentle method, renowned for its abil-
ity to preserve cellular substructures. Hereby, we estab-
lished HPF-AFS TEM imaging of IBs in the cytosol in 
combination with grey scale image segmentation as valu-
able method to reproducibly quantify a representative 
number of IBs, independent of an operator. Nevertheless, 
the five days needed for sample preparation in combina-
tion with the undeniably time-consuming procedure of 
image segmentation, do not qualify the method as sim-
plistic or easily transferable in a technological sense.

4.2   NTA is a sensitive method to size  
a representative number of IBs

IB sizing by NTA permitted the characterization of a rep-
resentative number of particles (>1000) per sample. In 
contrast to HPF-AFS TEM, sample preparation for the 
NTA measurement as well as the actual measurement of 
several samples was done within one day. Data evaluation 
was fully automated and can be easily standardized, 

Figure 5. IB sizing by NTA features sufficient sensitivity to resolve IB 
growth over time; (A) The specific titer (spec. titer [g/g]) and IB size 
(median of size [nm]) over process time since induction (Time after 
induction [h]), as indicated before size and titer are correlated significant-
ly, n = 8, p(f) = 0.015, including a serial correlation over time (B); Fixation 
leads to particle condensation in the homogenate as well as in the cells, 
TEM image of IBs after homogenization (700 bar, six passages) of chemi-
cally fixated cells, 1:36 000; (C) TEM image of IBs after homogenization 
(700 bar, six passages) of non-fixated cells, 1:36 000.
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which makes it less operator dependent. Consequently, 
NTA appears to offer a far more feasible approach to quan-
tify IB properties on a single particle level, compared to 
currently available methods.

In the context of NTA measurements the chemical 
fixation of the cells prior to homogenization yielded an 
increase in sensitivity as well as a substantial increase in 
total, unspecific particle count. Although the total amount 
of recognized particles had increased (Fig.  3D), the 
amount of relevant particles (IBs) had decreased (Fig. 3A 
and 3B). This observation might be due to a certain aggre-
gation tendency of native particles. This tendency could 
lead to an aggregation of the IBs with cell debris, espe-
cially in combination with a disintegration of the IBs trig-
gered by shear stress during homogenization. Cellular 
debris after high-pressure homogenization is about 
0.5 µm in size [17]. In combination with IB fragments, the 
resulting size would theoretically overlap with the expect-
ed size of native IBs. In case fixation impairs this aggrega-
tion and decreases the probability of IB disintegration 
during homogenization, fixation would lead to an increase 
in the total number of particles but a decreased number 
of product specific particles.

Despite using a product specific FL stain in combina-
tion with a chemical fixation of the cells, background 
particles were found to create a bias in the sizing of the 
standard beads present in the background of homogen-
ate. The observed strong background signal might be 
attributed to a bleed through of scattered light through 
the long pass fluorescence filter, which decreases the 
method specificity. For future measurements, it would be 
advisable to circumvent such issues by increasing the 
distance between the excitation wavelength and fluores-
cence filter. 

Besides the methodological advances for sizing IBs by 
using NTA and TEM, the results indicate that high-pres-
sure homogenization greatly impacts IB properties. Con-
sequently, the native size of the IBs is highly unlikely to 
be preserved throughout high pressure homogenization. 
Nevertheless, a tendency to adhere to surfaces (sticki-
ness) during the isolation step, e.g. the wall of the con-
tinuous centrifuge, could cause significant product loss. 
This hypothesis substantiates the necessity of a sensitive 
characterization of IB particle properties, in order to ena-
ble the scientific community to investigate the correlated 
product loss.

The NTA method offers an approach to quantify the 
impact of USP and homogenization on the IB particle 
property size. Moreover, NTA allows to assess the ratio of 
particle count of non-fixated and fixated IB samples, 
which could potentially be used as a measure of sticki-
ness. 

In summary, the findings infer that even if different 
process parameters in USP elicit differences in IB particle 
properties, it is highly unlikely that these differences are 
preserved throughout high-pressure homogenization. 

However, IB sizing by NTA could help to better under-
stand the molecular processes which lead to different 
aggregation tendencies and in turn, impact isolation 
efficiency. Consequently, NTA could be used to derive an 
additional response parameter on the basis of which inte-
grated bioprocess development might succeed in investi-
gating the interlink of USP and DSP. 

4.3  Conclusions

The overall goal of this contribution was the establish-
ment and assessment of a simplistic and sensitive meth-
od for high throughput IB sizing.
(i) TEM in combination with grey scale image seg-

mentation is a sensitive and reproducible method 
to quantify the size of native, cytosolic IBs and can 
be used for method verification.

(ii) NTA is a particle-based method that allows to size 
a great number (>1000) of fluorescence labelled IBs 
in the background of cell debris.

(iii) Chemical fixation of IBs prior to homogenization 
leads to a decrease in standard deviation and par-
ticle count but increases the reproducibility of IB 
sizing with NTA.

Based on the observed effect of fixation, it can be hypoth-
esized that high-pressure homogenization annihilates 
differences in IB size caused by USP. Nevertheless, the 
ratio in particle count of native homogenate and fixated 
homogenate offers a measure for IB stickiness.
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3.2 PHYSIOLOGICAL PROCESS CONTROL - qS CONTROL 

3.2.1 OPEN LOOP CONTROL OF qS - OFFLINE VALIDATION OF SOFTSENSOR K2S1 

The first principal softsensor described in 2.6.1 works precisely under the condition of no 
substrate accumulation, accurate feed pump calibration and correct initial biomass. Over- or 
underestimation of initial biomass, wrong calibration of the feed pump or substrate 
accumulation lead to inadequate feed rates and consequently to mistakenly process values 
of qS. 

Data analysis of previous work (experiments WR27 and WR35) showed some examples of 
failing of this setup as shown in Figure 11. In case of WR27-A an underestimation of the 
initial biomass or inaccurate feed pump calibration led to an in real-time unknown deviation 
of qSPV from qSSP. In WR27-D the assumption that rS and therefore qS can be calculated 
directly from the feed rate is not valid due to severe overestimation of biomass through 
substrate accumulation. Using the consistency check, by monitoring the h-value and making 
control actions on it, it could be possible to detect such situations. However, this was not 
implemented in the used script and was not used in real-time.  
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Figure 11: Specific substrate uptake rate calculated from feed rate and OUR of WR27; The upper plot 
(WR27-A) shows continuous underestimation of qSFeed (solid line) compared to qSOUR (dashed line) because 
of to low biomass estimation respectively inaccurate feed pump calibration. The lower plot (WR27-D) 
shows escalating of qSFeed due to substrate accumulation. Both plots show deviations from the setpoint 
(dotted line) 

Using the h-value as a consistency check certainly would have some difficulties too, if 
applied in real-time. For WR27-A the h-value spikes about two hours after induction because 
of mixing pure oxygen to the in-gas to control pO2 above 30 % as shown further down for 
WR35 (shown in Figure 14). In this case, since no substrate accumulation occurred, the h-
value could be misinterpreted and would cause wrongful feed rate adjustment. And even 
though the biomass underestimated throughout the experiment and qSPV is far of its setpoint, 
the h-value stays low all along. In such a case the h-value would have not been of any use 
because the deviation of qSPV couldn’t be detected in real-time. The data of WR27-D show 
steady increase of the h-value in case of severe overestimation of biomass (shown in Figure 
12) through substrate accumulation. 
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Figure 12: h-value of WR27-A (upper plot) and QR27-D (lower plot); The upper plot shows a spike of the 
h-value due to mistakenly calculated OUR and the constant increase of the h-value during growing substrate 
accumulation. 

As WR35 was evaluated the RQ showed spikes, which could not be explained 
physiologically. Data analysis and investigation of the calculation method showed that the 
spikes originate in the changes of oxygen concentration of the gassing (shown in Figure 13). 
It is clearly seen that with every increase of the oxygen concentration, the RQ shows a steep 
negative slope and vice versa. In Equation 14 the calculation of RQ is stated. 

𝑅𝑄 =
𝐶𝐸𝑅
𝑂𝑈𝑅 

Equation 14: Calculation of the respiratory quotient RQ with carbon evolution rate CER and oxygen uptake 
rate OUR as inputs 

Investigating the two inputs, CER and OUR, led to the finding that spikes in the OUR signal 
causes the spikes of the RQ. Equation 15 shows the calculation of OUR and confirms the 
assumption that changes of the oxygen concentration cause the spikes in the OUR 
respectively the RQ signal. 

𝑂𝑈𝑅 =
𝑉̇
𝑉G

∙ p𝑦QR,,_ − 𝑦QR,Crst 

Equation 15: Calculation of oxygen uptake rate OUR in mol/h 
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Figure 13: Spikes in RQ (dotted line) occur at changes of oxygen concentration of gassing (solid line) shown 
in WR35-C (upper plot) and WR35-D (lower plot)  

Further data analysis of WR35C and WR35-D showed a direct correlation between the 
changes of oxygen concentration respectively the OUR spikes and the h-value (shown in 
Figure 14). The h-value increases just because of the mistakenly spikes of OUR and would 
have indicated substrate accumulation accidently.  

The increase of the h-value around 0.4 h after induction results from the sudden increase of 
the feed rate (oscillations) and indicates a severe change of the physiological state of the 
culture. 

A small experiment was conducted to determine the delay of off-gas measurement. 
Therefore, a reactor was filled with 1.5 l of water and aeration was done with 1.4 vvm in 
accordance to the setup of the fermentations. The goal was to measure the time delay 
between increasing the oxygen concentration at the inlet and detecting it at the off-gas 
analyzer. The results are shown in Figure 15.  
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Figure 14: Correlation of OUR (dashed line) and h-value (bars) with changes in oxygen concentration of 
gassing (solid line) shown in WR35-C (upper plot) and WR35-D (lower plot). The feed rate (dotted line) is 
shown to understand the trend of OUR. 

It takes approximately two minutes to detect a change in the off-gas signal and 
approximately six minutes to measure the same concentration at the outlet as at the inlet. 
The commonly used visual basic script was executed every five minutes. With each 
execution of the script it was possible to change the setpoints of the parameters and calculate 
biomass growth etc. using the softsensor. This means that the effects of any changes in the 
gassing or the feed rate five minutes ago could not be detected correctly. 

This was the reason to increase the intervals for executing the script from five to twenty 
minutes. Especially when thinking about adjusting the feed rate to reach a setpoint, one has 
to make sure that the next measurement respectively estimation of the process value reflects 
the most recent changes to influence it.  
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Figure 15: Oxygen concentration of inlet (solid line) and outlet (dot-dashed line) of reactor and calculated 
OUR (dashed line) 

3.2.2 REAL-TIME ESTIMATION OF QS - VALIDATION OF SOFTSENSOR K2S1_V2 ON BASIS 
OF WR44 

The experiment WR44 was conducted to test the new version of the softsensor K2S1_v2 as 
described in 2.6.2. Biomass estimation in real-time was performed by the new softsensor 
K2S1_v2 however no feed rate adjustment nor setpoint adaption was performed in real-time. 

 
Figure 16: Real-time biomass estimation of WR44-A (upper plot) and WR44-C (lower plot) compared to 
DCW; horizontal error bars indicate accuracy of DCW measurement of approximately +/- 1.5 % 

The biomass estimation is consistent with the DCW measurements from 30-70 g (shown in 
Figure 16). Therefor it was suitable to apply for real-time estimations and provides a solid 
basis for estimation of biomass growth rate to feed the softsensor. 
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Figure 17: Relative error (bar) and average of relative error (dash-dotted line) on real-time biomass 
estimation from WR44-A (upper plot) and WR44-C (lower plot).  

With -1.9 % and 2.1 % the average relative error of biomass estimation is close to the DCW 
measurement accuracy (shown in Figure 17), which is approximately 1.5 %. The results of 
this weighted average approach correspond with data shown by Reichelt et al. (Reichelt, 
Thurrold et al. 2016). The maximum relative error of estimation amounts to -4.7 % in case 
of WR44-A respectively 7.6 % in case of WR44-C.  

When calculating the biomass growth rate rx from DCW, error propagation has to be taken 
into account. The possible error of the growth rate was calculated accordingly to Equation 
16, Equation 17 and Equation 18. The magnitude of the possible error of rx from DCW is 
shown in Figure 18. In most cases the real-time estimation rxu  lies well within the range of rx 
and more importantly follows the trend of rx correctly.  

𝑒Dv = 𝑟v,G^v − 𝑟v =
∆𝑋G^v
∆𝑡 −

∆𝑋
∆𝑡  

Equation 16: Error biomass growth rate due to limited accuracy of DCW measurements 

∆𝑋G^v = 𝑋, ∙ p1 + 𝑒v,,t − 𝑋,I. ∙ p1 − 𝑒v,,I.t 

Equation 17: Possible maximum change of DCW based on error-prone DCW measurement 

∆𝑋 = 𝑋, − 𝑋,I. 
Equation 18: Change of DCW based on correct measurements 
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Figure 18: Real-time estimation of biomass growth rate (dashed line) from WR44-A (upper plot) and WR44-
C (lower plot) compared to rx from DCW (solid line) 

Beginning with rx, OUR and CER the softsensor K2S1_v2 calculated the reconciled 
substrate conversion rate rs and furthermore the specific substrate uptake rate qs in real-time 
every 20 minutes. The results of the real-time estimation are shown in Figure 19. It can be 
seen that the real-time estimation of qs clearly follows the trend of actually achieved qs 
correctly. The mean error of 17.7 % for WR44-A and 18.4 % for WR44-C with a standard 
deviation of 21.8 % and respectively 22.0 % originates in the previously mentioned errors 
of biomass estimation, biomass growth rate estimation and off-gas measurements. 
Considering the novel approach of real-time estimation these values were adequate to 
continue with an experiment for closed loop control of qs. 

The consistency check respectively the h-value is plotted in Figure 20. After a transient 
condition of approximately two hours the h-value is constantly single-digit, what points to 
correct input values of the softsensor. 
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Figure 19: Real-time estimation of qs (dashed line) compared to actually achieved specific substrate uptake 
rate qsour (solid line) 

 

 
Figure 20: h-value of WR44-A (upper plot) and WR44-C (lower plot); The figure shows spikes of the h-
value at the beginning of induction phase due to transient condition 
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3.2.3 CLOSED LOOP CONTROL OF qS – PUBLICATION PART 

Based on the results described in 3.2.2 experiments for closed loop control of qs with and 
without setpoint adaption were performed. Results of these experiments are shown in the 
current draft of the publication, which covers an aspect of this thesis. 

The contributions of the work to the following publication accompanied with the writing of 
this thesis lie in the development of methods, execution and data analysis of the fermentation 
experiments, writing of materials and methods, preparation of all figures and figure captions 
and the preparation and description of the equations as well as abbreviations. 
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Abstract 9 

Producing pharmaceutically relevant proteins in microbial bioprocesses, substrate accumulation has to be avoided for the sake of 10 
productivity and controllability. But during late induction phase unexpected substrate accumulation is a phenomena often observed 11 
in microbial bioprocesses, despite comprehensive strain characterization and quantification of the physiological capacity to 12 

metabolize substrate without accumulation of substrate or metabolites (qScrit).  13 
Recent literature has illustrated a clear dependency of qScrit not only on induction time but also on the level of metabolic activity. In 14 
other words in addition to time after induction the rate of substrate metabolization severely impacts the decline in qScrit. To 15 

effectively avoid substrate accumulation, the dynamics and dependencies of the qScrit highlight the necessity to sense this 16 
physiological capacity real time. In this contribution a combination of mass balances was used to estimate the process value of qS 17 
independently of substrate accumulation as well as biomass yield and accurately real time (qSPV). In the context of physiological 18 
control of the specific substrate uptake rate (qS) the latter approach allowed for the first time physiological feedback control by the 19 

comparison of qSPV and the setpoint of qS (qSSP). Moreover, using a simple algorithm reaching of qScrit was detected real time in 20 
order to react upon such a breach by qSSP adaptation. By successfully avoiding substrate and metabolite accumulation throughout 21 
induction phase of an industrial relevant production process, we were able to illustrate the feasibility of the physiological feedback 22 
control. 23 

Keywords 24 

Physiological feedback control; critical physiological capacity; substrate accumulation; real time biomass estimation; 25 

oxidative metabolism 26 

Abbreviation 27 

!"!"#$  estimated biomass based on the N-balance, the DoR balance and a permittivity measurement (g) 28 

!"!!!"#  estimated biomass based on the C-balance (g) 29 
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!!   biomass growth rate calculated offline (g/h) 30 

!!   real time estimated biomass growth rate (g/h) 31 

!!   substrate conversion rate calculated offline (g/h) 32 

!!  real time estimated substrate conversion rate (g/h) 33 

!!  the specific substrate uptake calculated offline (g/g/h) 34 

!!!"  setpoint of !! (g/g/h) 35 

!!!"  real time process value of !! (g/g/h) 36 

∆!!!!!   change of !!!" within the last control interval (20 min) (g/g/h) 37 

!!   substrate concentration in feed (g/L) 38 

!!  starting feed rate (L/h) 39 

!!""  rate of accumulating substrate and acetate (c-mol/h) 40 

!!"!  CER, carbon dioxide evolution rate (mol/h) 41 

!!!  OUR, oxygen uptake rate (mol/h) 42 

!!  biomass conversion rate (mol/h) 43 

!   specific biomass growth rate (1/h) 44 

!!   volume at t = 0 (L) 45 

!!   biomass dry cell weight at t = 0 batch end or at time point t = I (g) 46 

!!/!  biomass yield on substrate (g/g or c-mol/c-mol) 47 

Introduction 48 

Bioprocesses are increasingly employed for the production of pharmaceuticals owned to correlated cost efficacy. Given the 49 

simple genetic accessibility, high growth rates and low demands concerning media composition, Escherichia coli is one of 50 

the most exploited hosts for industrial production of recombinant proteins [1,2]. To optimize productivity of a given 51 

bioprocess, process parameters and their interrelations are investigated during process development within a given range – 52 

the characterization space [3]. One of the most promising factors used frequently to increase productivity - the substrate feed 53 

rate [4-6,8-10] is also the most challenging one. Overfeeding the physiological capacity to metabolize substrate (qScrit) 54 

impairs productivity [11] and leads to unwanted overflow metabolism or even substrate accumulation. But rather than being 55 

a constant qScrit, is dynamically changing in response to process parameters e.g. pH, temperature and induction time 56 

qScrit=f(t,pH,T,…). This dependency of qScrit makes its quantification especially laborious but necessary to avoid overflow 57 

metabolism and substrate accumulation.  58 

Conventional process development investigates the impact of process parameters on productivity within a design of 59 

experiment (DoE). To ensure feasibility of the experiments the DoE is commonly been designed within the technological and 60 



 

 38 

 

3 
 

physiological feasible space. While technologic constraints (e.g. kLa, heat transfer rate) are setup specific and therefore 61 

commonly known, physiological constraints have to be assessed strain and product specific. Especially in respect of the 62 

substrate feeding rate the definition of the physiological feasible space is of great concern. Exceeding the physiological 63 

feasible space leads to metabolite formation and substrate accumulation, which negatively affect physiology [12]. Moreover 64 

substrate accumulation has been shown to negatively affect productivity [11] as well as controllability of the respective 65 

bioprocess. Consequently, qScrit constitutes the main constraint to the physiologic feasible space. Given the importance of 66 

qScrit various approaches for the quantification of qScrit have been discussed in literature [13-16].  67 

Other factors investigated within the respective DoE can potentially impact qScrit e.g. temperature and pH. Additionally, qScrit 68 

has been shown to be dependent on induction time [17,18] as well as on the level of metabolic activity [17]. Concluding, 69 

qScrit comprises a highly dynamic nature, which boosts the necessary effort for strain characterization regardless of the 70 

experimental approach utilized for quantification of qScrit. To reduce dependencies and to increase transferability bioprocess 71 

development has increasingly focused on specific physiological rates [19-21,14] rather than on volumetric feeding rates. To 72 

overcome the challenge of a dynamically changing qScrit and to avoid substrate accumulation a feedback control approach of 73 

a physiological variable is necessary. Focusing on specific physiological rates for process physiological development 74 

requires real time biomass estimation and physiological bioprocess control.  75 

Various approaches have been outlined to overcome the challenge of biomass estimation and consequently facilitate the 76 

control specific physiological variables. For biomass estimation in general, literature favors data driven models or hybrid 77 

models [22,23]. But for bioprocess development available historic process data is commonly scarce, which restricts the use 78 

of data based algorithms. In this context hard type sensor and first principle mass balance based approaches for biomass 79 

estimation are regarded as more feasible than data driven approaches. A weighted average based combination of redundant 80 

biomass estimations has been shown as highly beneficial to increase accuracy and robustness of the biomass estimation[24].  81 

Controllers 82 

Besides biomass estimation approach physiological control approaches can be discriminated by the controller category. 83 

Two main categories of controllers are employed for physiological process control. While open loop controllers (feed 84 

forward) do not measure or estimate the current state of the controlled variable closed loop respectively feedback controllers 85 

derive the current state of the controlled variable as process value from a direct or indirect measurement. Direct 86 

measurements refer to online measurements of e.g. pH, temperature, DO2 and off gas. Indirect measurements or estimations 87 

refer to computational values derived from direct measurements. For physiological process control the biggest challenge is 88 

the estimation of the variable of interest, since it commonly cannot be measured directly. Consequently the quality of the 89 

primary data as basis for subsequent computations is of often underestimated importance. In respect of transferability to 90 

industrial scale the number of necessary direct measurements is crucial, since manufactures tend to minimize of 91 

measurement device ports to avoid contamination sites.  92 

Open loop controllers are most commonly employed for physiological process control . The high level of simplicity and its 93 

robustness concerning measurement errors are the main reasons for the common use. 94 

Feedback control 95 

While technological feedback controllers are widely used e.g. for temperature and pH, examples of closed loop control of 96 

physiological variables are extremely scarce. The reason for the limited examples for feedback control is the necessity to 97 
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determine the variable of interest with sufficient accuracy. Only if the variable of interest can be determined fast enough and 98 

with a sufficient signal to noise ratio closed loop control is feasible. Nevertheless, closed loop control is of great interest as 99 

real time quality insurance [20], owned to its capability to react on process perturbations constitutes the basis of the 100 

attributed robustness of closed loop control approaches. 101 

In the stage of bioprocess development strain specific historic process data is commonly scarce the accuracy of multivariate 102 

approaches (e.g. artificial neuronal networks), which commonly feature a high degree of accuracy does not appear feasible. 103 

An light data driven example, merely using a set of three experiments, Jenzsch et al. used an extended Kalman filter for 104 

biomass estimation in combination with generic model control [22] for closed loop control of the specific growth rate. 105 

Examples of algorithms independent of apriori information and complex mathematical models have been introduced [21,25] 106 

although provided experimental data is scarce.  107 

q S maximation for productivity 108 

Given the frequent correlation of substrate uptake rate and productivity a control objective can be to run a bioprocess at the 109 

highest possible substrate level below qScrit. These control approaches do not necessarily qualify as closed loop control 110 

approaches since the system response used for controller actions is of qualitative nature and not directly correlated to the 111 

controlled variable. Hereby usually a basic open loop control approach is combined with a probing technique e.g. in order to 112 

assess the reaction of the culture to sudden substrate starvation or excess. Monitoring the DO2 as response to short substrate 113 

up-pulsing it can be determined whether the culture is being overfed or if the open loop feed profile can continue increasing 114 

the volumetric feed flow rate [26,16]. Based on the same principle also down pulsing by temporary intermittence of the 115 

substrate feed rate can be utilized to assess the substrate supply situation in order to maximize the substrate uptake during 116 

induction phase [14].  117 

More advanced techniques target a quantitative assessment of the metabolic state and substrate accumulation. Since the 118 

direct sensing of metabolites and substrate is only possible with substantial analytical effort using an online HPLC or FTIR 119 

this approach is commonly not regarded as feasible to pilot or even production scale. Merely based on off-gas analysis the 120 

respiratory quotient (RQ) can provide valuable insight into the metabolism of the cell [27]. But sensing overflow metabolism 121 

based on the RQ is only feasible if the metabolite has a different degree of reduction than the substrate. In case of glucose as 122 

substrate and acetate as metabolite this approach is consequently not feasible. Nevertheless, using first principle mass 123 

balances differentiating between oxidative and oxido-reductive metabolic states is possible as shown by the approach of Jobe 124 

et al. [27]. 125 

We target an independent estimation of biomass and the oxidative metabolism of the culture using first principle mass 126 

balances. Since this approach requires off-gas analysis besides a volume balance and merely the biomass composition as 127 

strain specific information this approach shall feature a high degree of transferability. Using a simple algorithm the controller 128 

shall facilitate avoiding substrate accumulation rather than mere sensing of the latter. 129 

Goals 130 

The goal of this contribution is the introduction of a transferable control concept independent of historic process data. 131 

Thereby the approach shall be employable even in early bioprocess development. Given the relevance of physiological 132 

bioprocess development this approach shall facilitate a reduction in necessary strain characterization experiments, by sensing 133 
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qScrit in real time. The feasibility of the introduced approach to effectively avoid substrate accumulation, despite a rapidly 134 

declining qScrit , shall assessed within a fermentation. 135 

Materials and Methods 136 

Cultivations 137 

Bioreactor system 138 

Fermentations were conducted in a DASGIP multi-bioreactor system with 4 parallel reactors with 2L of working volume 139 

each (Eppendorf; Hamburg, Germany). The reactors were equipped with baffles and three disk impeller stirrers. The 140 

DASGIP control software v4.5 revision 230 was used for control: pH (Hamilton, Reno, USA), pO2 (Mettler Toledo; 141 

Greifensee, Switzerland; module DASGIP PH4PO4), temperature and stirrer speed (module DASGIP TC4SC4), aeration 142 

(module DASGIP MX4/4) and pH (module DASGIP MP8). CO2, O2 concentrations in the off-gas were quantified by a gas 143 

analyzer (module DASGIP GA4) using the non-dispersive infrared and zircon dioxide detection principle, respectively.  144 

Strain and media 145 

A recombinant BL21 DE3 E.coli strain was cultivated, producing an intracellular protein (~30 kDa) in form of inclusion 146 

bodies, after a one-time induction with IPTG (1 mM). The synthetic media was based on the recipe of Korz, Rinas et al. [28], 147 

where the limiting C-source was glucose. 148 

Process parameters 149 

Pre-cultures were incubated at 30°C and 170 rpm to an OD600 of approx. 1.5 in 150 mL batch media and 2.5% batch volume 150 

aliquots were used for inoculation. After depletion of the C-source in an initial batch phase, the pre-induction fed-batch was 151 

started. The pre-induction feeding strategy was based on an exponential feed forward profile to maintain a predefined growth 152 

rate. On attainment of the predefined biomass the cultures were induced after 30 min adaption time. Stirrer speed was set to 153 

1400 rpm and aeration to 1.4 v/v/m for the whole process. The pH was maintained at 6.9 by adding 12.5% NH4OH, which 154 

also served as nitrogen source. The dissolved oxygen (DO2) was kept over 30% by supplementing oxygen to the air.  155 

Pre induction: exponential  feed forward profile 156 

The starting feed rate in L/h (F0) was calculated using a gravimetrical biomass yield in g/g (YX/S,g), the starting biomass in g 157 

(X0), the concentration of the feed solution in g/L (cS,g) as well as the specific biomass growth rate as described elsewhere 158 

[29] 159 

Post induction feeding strategy 160 

After the depletion of C-source in the batch phase the culture was induced with IPTG (1 mM). A step controller was used for 161 

real time qS feedback control during the post induction phase. Therefore the feed rate is dynamically adjusted every 20 162 

minutes, which is calculated with the base load (calculated with the setpoint) and the adjustment term (calculated with the 163 

difference between the setpoint and the process value) to actually reach the given set-point of qS. 164 

!!!! =  !!!"!!! ∙ !!!!
+ !!!"! − !!!"! ∙ !!

!!
 

Equation 1:	Feed rate for next control interval	165 
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Two fermentations with !!!" = 0.02 ! ! ℎ were performed parallel. For on fermentation the algorithm to detect reaching 166 

!!!" was deactivated to keep !!!" unmodified, while the second fermentation was performed with activated algorithm to 167 

adapt !!!" automatically, if necessary. 168 

Process evaluation and data analysis  169 

Metabolic rates and yield coefficients were calculated with Matlab r2013 b (Mathworks; Natick, Massachusetts, USA). The 170 

calculation of specific rates and yield coefficients was conducted as described elsewhere [30]. 171 

Offline analytics 172 

Biomass dry weight (CDW) 173 

Biomass concentrations were gravimetrically quantified after drying at 105°C for min. 72 h. Therefore 2 mL of culture broth 174 

were centrifuged (4500 x g, 10 min, 4°C) in a pre-weighted glass tube and the pellet was washed once with 5 mL RO water. 175 

The determination was done in duplicates. After drying in the drying oven, the biomass dry weight was measured on a scale.  176 

Substrate concentration and small metabolites 177 

The C-source concentration in the feed media was calculated using the gravimetrically determined density. NH4OH 178 

concentration was determined by titration with 1 M HCl. Acetate concentrations were quantified from the supernatant by 179 

enzymatic photometric principle in a robotic system (Cedex BioHT, Roche, Switzerland). The analysis was used as a quality 180 

control to exclude possible acetate production due to oxygen limitation or overflow metabolism.  181 

Results 182 

Physiological maxima for physiologic DoE design 183 

Rather than controlling a technological variable at a constant level, physiological process control targets maintaining a 184 

physiological variable. To illustrate the goal of physiological bioprocess control Fig. 1 illustrates biomass growth and the 185 

accordingly increased substrate flow rate. The most common approach for physiological control is based on a fixed biomass 186 

yield, neglecting the dynamics of the biomass yield for the sake of simplicity. Fig. 1a shows a more advanced control 187 

approach, including a real time biomass estimation from a softsensor. Following the control scheme of Fig. 1b despite real 188 

time biomass estimation no estimate of the controlled variable is made. Instead of following a predefined substrate flow 189 

profile, the substrate flow rate is calculated incrementally via softsensor biomass estimation.  190 
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 191 

 192 

Fig. 1 State of the art physiological open loop process control does not provide quantitative real time information about the controlled 193 
variable a Open loop control including real time biomass estimation based on a softsensor with incremental calculations of the suitable 194 
substrate flow rate. b Open loop controller design for incremental feed forward calculations 195 

In order to bring the limitations of the previously described controller setup to the reader’s attention Fig. 2 outlines a fed 196 

batch process including substrate accumulation. Upon glucose accumulation due to overfeeding, the biomass estimation of 197 

the softsensor clearly deviates from the offline verification data. This is owned to the fact that the used softsensor was based 198 

on the assumption that the accumulation term in the C-balance equals zero. Accordingly biomass estimation works well until 199 

substrate accumulation. 200 
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 201 

Fig. 2 BM estimation based on C-balance is impaired by substrate accumulation;BM real-time estimations (�,Ï) and accumulation of 202 
glucose (♦). The BM estimation via the C balance (Ï) shows an increasing error upon glucose accumulation and is not suitable for high qS 203 
fermentations due to the possibility of reaching qScrit and accumulating substrate. The BM estimation via weighted average of permittivity, 204 
DOR- & N balance (�) provides a more reliable estimation during glucose accumulation and was therefore chosen for the experiments 205 

Given the sensitivity of the C-balance based softsensor an alternative approach for biomass estimation is necessary. Altering 206 

the softsensor setup can greatly benefit the quality of estimation as well as the robustness of estimation. Fig. 3 shows the 207 

result of using balancing approaches in combination with a permittivity measurement in order to obtain reliable estimates of 208 

the biomass rate (rX) and the oxidative substrate metabolization rate (rSox). Using a weighted average approach, the biomass 209 

estimations based on the N-balance, the DoR balance and a permittivity measurement are combined to make the approach 210 

robust against accumulation. Including the DoR balance is in this case straight forward since the primary metabolite (acetate) 211 

shares the same degree of reduction as the substrate. Fig. 3 illustrates the correlated noise on the estimation of the most 212 

crucial rates: the biomass rate (Fig. 3a) and the oxidative substrate uptake rate (Fig. 3b). In case of substrate accumulation 213 

(data not shown) the C-balance based estimation quickly deviates from the rate derived from offline references biomass 214 

analytics. In comparison to the estimations merely based on the C-balance the noise on the rates of the weighted estimations 215 

lies within the order of magnitude of noise observed for the verification data that were calculated offline. 216 
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 218 

 219 

Fig. 3 Biomass and substrate uptake rate estimation vs. verification; a Biomass growth rate estimation (dashed line) based on N and DoR 220 
balance and permittivity is congruent to offline data (solid line). The BM accumulation rate rX is one of three needed values to estimate the 221 
actual substrate conversion rate and furthermore the specific substrate uptake rate qS. The biomass growth rate based on C balance (dotted 222 
line) shows large deviations due to glucose accumulation. b Estimation of substrate conversion rate (dashed line) reconciled from rX, CER 223 
and OUR shows great congruence to offline data (solid line). The actual substrate conversion rate rS in combination with the biomass is 224 
needed to estimate the actual specific substrate uptake rate qS. The substrate conversion rate based on C balance (dotted line) shows large 225 
deviations due to glucose accumulation. 226 

Upon the proof of principle for the real time estimation of rX and rS the calculation of a process value of qS, as controlled 227 

variable, becomes possible. Fig. 4a explains the feedback controller design to close the loop for the controlled variable qS by 228 

incorporating the obtained values into the previously introduced controller scheme. In contrast now a process value for qS 229 

can be calculated and used for controller action. To increase robustness only the feedback of the process value of qS impacts 230 

the controller action. The basal substrate flow rate is being calculated in time increments based on the biomass estimation, as 231 
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explained previously (Fig. 1b). Nevertheless, despite closing the loop the qS setpoint is not maintained and glucose 232 

accumulation occurs quickly during induction phase. 233 

 234 

 235 

Fig. 4 Closed loop control approach and its limitations; a Closed loop control provides the possibility of comparing the wanted setpoint 236 
with the actually achieved process value. Therefore an interference of the process can improved the quality of the control strategy. b 237 
Closed loop control of qS is insufficient without adapting the setpoint, if qScrit is reached. Significant deviation from qSSP (solid line) due to 238 
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qScrit decline. Real time estimation of qSPV (dotted line) compared to actually achieved qS (dashed line) is within 25% error. High glucose 239 
accumulation (blue dots) due to reaching qScrit 240 

Owned to the physiological decline of qScrit the setpoint of qS cannot be maintained without substrate accumulation. The cells 241 

are simply not capable of metabolizing the amount of substrate defined by the setpoint. As a consequence the setpoint has to 242 

be adapted according to the decline in qScrit. Given the target of reducing the effort for strain characterization, using a 243 

predefined qSSP limitation is not viable. Instead a simple algorithm is required to assess whether qScrit is reached or not. 244 

Fig. 5 illustrates the underlying principle of the qScrit control. By comparing the behavior of the culture upon controller action 245 

to previous behavior qScrit becomes obvious. If the process value of qS does not increase after consecutive increase in 246 

substrate flow the setpoint of qS needs to be decreased since qScrit has been reached. Fig. 5a displays the in cooperation of the 247 

step controller displayed in Fig. 5b.  248 

 249 

 250 

Fig. 5 Closed loop control with setpoint adaptation; a A logical query to adapt qSSP, if qScrit is reached was implemented. Three conditions 251 
need to be true to adapt qSSP: 1) The qSSP from time point t(i-1) 20 minutes ago was larger than last qSPV, 1) The qSSP from time point t(i) 252 
is larger than the current qSPV, 3) the change of the qSPV within the last 20 minutes (∆qSPV) was negative. In case all three conditions are 253 
true, qSSP is be reduced by 10%. Since in case of substrate limitation qSPV should always increase upon a qSSP (federate) increase, if qSPV 254 
is smaller than qSSP and qScrit is not reached, this logical query provides a simple method to detect qScrit. b  If the system hits its natural limit, a 255 
setpoint higher than this limit cannot be achieved and therefore has to be adapted 256 
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 257 

The benefit of the introduced control approach is displayed in Fig. 6. Although the same qSSP as in Fig. 4 has been used, no 258 

accumulation occurs upon decline of qScrit. The controller effectively avoids substrate accumulation throughout the whole 259 

induction phase by reducing qSSP in case of reaching qScrit. 260 

 261 

Fig. 6 Closed loop control of qS with adaption of qSSP (solid line) helps to avoid a breach of qScrit and facilitates an accurate control of qS; 262 
Real-time estimation of qS process value (dotted line) compared to actually achieved qS process value (dashed line). No significant glucose 263 
accumulation (blue dots) due to adaption of qSSP 264 

Owned to the fact that this controller is merely based on first principle balances and a permittivity probe, the analytical as 265 

well as the computational effort is relatively lean. Consequently the introduced concept appears highly transferable even to 266 

an industrial environment. 267 

 268 

 269 
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Discussion 271 

Within this contribution we introduced a process control approach capable of physiological feedback control and real time 272 

sensing of the physiological capacity to metabolize substrate (qScrit). 273 

 274 

Feedback control approaches are highly challenging and require a high accuracy of estimation. Only if a viable signal to 275 

noise ratio can be obtained a physiological closed loop approach becomes feasible. Nevertheless, various contributions have 276 

claimed closed loop control up to this date. 277 

In the contribution of Sagmeister et al., using a first principle softsensor, closed loop control of qS was claimed. A real time 278 

estimation of biomass was used to control the substrate feed rate in order maintain qS throughout induction [31]. Although 279 

real time process data was utilized for the estimation of biomass, no process value of qS or other physiological variables was 280 

obtained. Hence, the feed rate is being controlled but lacks the calculation of the process value of any physiological variable 281 

not as physiological closed loop control approach. 282 

A very similar concept has been introduced by Jobe et al. [27] to sense the metabolic status of the cell in real time. 283 

Nevertheless, this approach did not fulfill the requirements of a closed loop control, since no process value of controlled 284 

physiological variable was calculated. Calculating an oxidative and an oxireductive metabolic model every 4 min a statistical 285 

test was used for the evaluation of the current metabolic state. The substrate feed rate was controlled by an exponential 286 

feeding profile, of which the exponent was subjected to controller actions based on the decision concerning the statistical 287 

test. Hereby, no process value of the controlled variable µ was calculated and consequently the prerequisites for a closed loop 288 

control approach not met. Besides the nomenclature, although the acetic acid was being accumulated the approach of Jobe et 289 

al. lacked the sensitivity to take action. The accumulation of acetate was not pronounced enough to trigger controller action; 290 

instead the µ controller remained idle. The growth in biomass subsequently decreased the specific growth rate to a level 291 

which allowed the uptake of acetate. In contrast the approach presented within this contribution did effectively circumvent 292 

the accumulation of acetate and substrate.  293 

Dabros et al. [32] introduced an algorithm for physiological closed loop control and illustrated its feasibility in non-induced 294 

E.coli cultures. Using an exponential feed profile a basic substrate feed rate was calculated. The deviation of the process 295 

value of µ from µ setpoints triggered an additional PI controller action. Although accumulation was measured using FTIR, 296 

the data was only used for reconciliation to improve biomass estimation. If the decline in qScrit leads to an inevitable decrease 297 

in specific growth rate, despite substrate accumulation the controller action would lead to a continuous feed rate increase.  298 

As physiological closed loop controller Jenzsch et al. [22] used an extended Kalman filter for biomass estimation in 299 

combination with generic model control. Merely using a set of three experiments the model was trained and verified with an 300 

additional experiment prior the utilization for process control. This approach was shown to accurately achieve different 301 

distinct µsp in induction phase of a microbial bioprocess producing GFP. Despite the good performance the generic model 302 

control was based on a constant value for the qScrit as well as a static value of the biomass yield. Owned to the underlying 303 

hypothesis of a constant biomass YX/S and qScrit this approach appears sensitive to reaching the physiological capacity qScrit.  304 

Schaepe et al. [18] used a feedback control of total OUR to avoid overfeeding in high cell density cultures of E. coli. Three 305 

experiments were needed to first determine the qScrit profile and subsequently the OUR setpoint profile for feedback control. 306 
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qScrit was quantified using a sigmoid function to detect saturation of total OUR as a result of increasing feed rate. Taking a 307 

safety distance from qScrit the derived qS profile was used to obtain the OUR setpoint profile. The approach showed high 308 

reproducibility in the cultivations although it neglected the dynamics of the biomass yield to calculate the feed rate profile. 309 

During OUR feedback control neither real time detection of reaching qScrit nor biomass estimation was realized. 310 

Accumulation of substrate could occur in case of deviations in the initial conditions, e.g. the initial biomass or substrate 311 

concentrations or disturbances appearing during the process, e.g. problems with the oxygen mass transfer or temperature 312 

control. 313 

Conclusions 314 

The goal of this paper was the introduction of a transferable control concept capable of effectively avoiding substrate 315 

accumulation as well as the illustration of the feasibility of the introduced approach. In respect of the state of the art we were 316 

able to establish the following points: 317 

è Using a combination of first principle mass balances and permittivity measurement we were able illustrate a 318 

transferable concept to independently estimate biomass concentration as well as the rate of oxidative substrate 319 

metabolization. 320 

è Physiological feedback control makes a process value of the physiologic variable accessible but is not sufficient in 321 

order to avoid substrate accumulation. This circumstance is owned to the fact that physiologic capacity to 322 

metabolize substrate declines over time, making it impossible to maintain the setpoint if qScrit is reached. 323 

è Using a simple step controller substrate accumulation can be effectively avoided by setpoint adaptation in response 324 

to the violation of physiologic capacities. 325 

The illustrated approach facilitates robust process development without relying on comprehensive strain characterization. 326 

This concept is theoretically not limited to the specific substrate uptake rate. Owned to the underlying first principle mass 327 

balances this concept appears highly transferable in comparison to data driven alternatives. Furthermore, physiologic 328 

feedback control including the introduced controller could be used to complete replace conventional strain characterization in 329 

terms of physiological capacities. This will ultimately decrease the effort for process development significantly since not 330 

only the effort for strain characterization can be minimized but also number of fail batches owned to substrate accumulation 331 

can be greatly reduced. 332 

  333 
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4 SUMMARIZING DISCUSSION AND OUTLOOK 
The goal to investigate effects of combined qS and temperature oscillations during induction 
phase on inclusion body solubility in E. coli could not be achieved due to technical 
limitations of the reactor setup. Literature and previous work of the working group describe 
effects of temperature and qS in USP on IBs, which could be used to customize IBs (Luo, 
Leeman et al. 2006, Margreiter, Schwanninger et al. 2008, Brillmann 2015). Brillmann 
showed a negative correlation between the qS amplitude during qS oscillations and the IB 
solubility (Brillmann 2015), which could possibly be compensated for by diametrically 
opposed temperature oscillations as solubility increases with lower temperatures. 
Nevertheless, one must look at the bigger picture because temperature also affects the 
maximum physiological capacity. This again could have negative effects on specific product 
titer, which contradict the original idea of process optimization. The direct investigation of 
the effects of qS and temperature oscillations on IB properties remains to be done. 

Using NTA, a particle-based method, allowed high throughput IB sizing. IBs were labeled 
with Alexa 488 and measured with and without chemical fixation. Results indicate that 
chemical fixation on the one hand leads to decreased standard deviation as well as particle 
count but on the other hand increases reproducibility of NTA measurements. Furthermore, 
it can be concluded that high-pressure homogenization eliminates differences in IB size 
caused by USP. Additionally, comparing particle count of native and fixated samples could 
allow a measure for IB stickiness. 

The decline of qScrit over induction time has been shown previously (Schaepe, Kuprijanov et 
al. 2014, Reichelt, Brillmann et al. 2017) and was also demonstrated in the experiments of 
this thesis. This decline represents a challenge for physiological process control since 
substrate accumulation needs to be avoided to maximize productivity. A first-time real-time 
estimation of qS allowed a closed loop control of qS. Furthermore, a logical query to detect 
reaching qScrit enabled automatic adaption of the setpoint to avoid substrate accumulation. 
Schaepe et al. (Schaepe, Kuprijanov et al. 2014) established a similar physiological closed 
loop control, using the CER signal of earlier batches to keep the culture just below qScrit 
during induction time. Although this approach lacks a real-time estimation of qS, it offers a 
simpler setup since off-gas analysis is the only measurement necessary. The method 
developed in this work offers the advantage that no previous batches are necessary and 
different temperatures or biomass concentrations in USO can easily be used without new 
experiments to obtain needed data. Using this approach strain characterization experiments 
can be greatly reduced or even eliminated. 
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5 APPENDIX 

5.1 LIST OF ABBREVIATIONS 

CPP  Critical process parameters 

DCW  Dry cell weight 

DSP   Downstream processing 

IB   Inclusion body 

IB-QA  Inclusion body quality attributes 

IPTG  Isopropyl-β-D-thiogalactopyranosid 

NTA  Nano-particle tracking analysis 

QbD  Quality by Design 

USP   Upstream processing 

5.2 LIST OF SYMBOLS 

𝐵𝑀x OIy^z  Real-time estimated biomass based on the C-balance (g) 

𝐵𝑀x GF^_  Real-time estimated biomass based on the N-balance, the DoR balance and a 
permittivity measurement (g) 

𝑐"   Substrate concentration in feed (g/L) 

𝐹̇*  Starting feed rate (mL/h) 

𝜇   Specific biomass growth rate (1/h) 

𝑞"  Specific substrate uptake calculated offline (g/g/h) 

𝑞"|D,s Critical specific substrate uptake rate as defined by Åkesson, Hagander, & 
Axelsson, 1999 (g/g/h) 

𝑞"𝑃𝑉  Real-time process value of 𝑞" (g/g/h) 

𝑞"𝑆𝑃  Setpoint of 𝑞" (g/g/h) 

∆𝑞"𝑃𝑉, Change of 𝑞"𝑃𝑉 within the last control interval (20 min) (g/g/h) 

𝑟 ||   Rate of accumulating substrate and acetate (c-mol/h) 

𝑟OQR  CER, carbon dioxide evolution rate (mol/h) 

𝑟QR  OUR, oxygen uptake rate (mol/h) 

𝑟"   Substrate conversion rate calculated offline (g/h or c-mol/h) 

𝑟"u   Real-time estimated substrate conversion rate (g/h or c-mol/h) 

𝑟%   Biomass growth rate calculated offline from DCW (g/h or c-mol/h) 

𝑟%u    Real-time estimated biomass growth rate (g/h or c-mol/h) 
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RQ  Respiratory quotient (mol/mol) 

𝑉*   Volume at t = 0 (L) 

𝑋,   Biomass dry cell weight at t = 0 batch end or at time point t = I (g) 

𝑌%/"  Biomass yield on substrate (g/g or c-mol/c-mol) 
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5.3 LIST OF FIGURES 
Figure	1:	Flow	diagram	depicting	the	qs	control	based	on	first	principle	softsensor;	Constants	(Biomass	

elemental	composition,	Substrate	elemental	composition,	Feed	concentration,	Densities),	and	online	
process	signals	(off-gas	measurements	and	substrate	inflow)	are	used	as	inputs	for	total	biomass	
estimation;	From	this	feed-rate	set-points	to	maintain	a	certain	qs	are	calculated	(Sagmeister,	
Wechselberger	et	al.	2013).	......................................................................................................................................................	5	

Figure	2:	Open	loop	control	for	qS	including	real	time	biomass	estimation	based	on	a	Softsensor	with	
incremental	calculations	of	the	suitable	substrate	flow	rate.	The	figure	shows	that	the	system	does	
not	return	any	information	about	the	achieved	process	value	of	the	controlled	variable.	..........................	6	

Figure	3:	Base	consumption	–	biomass	growth	correlation;	The	plot	shows	the	linear	correlation	between	
biomass	growth	and	consumption	of	base	(NH4)	during	phase	of	induction	of	experiment	WR45-A.	
The	correlation	was	used	to	estimate	the	growth	of	biomass	independently	of	the	C-balance	and	
therefor	of	substrate	accumulation.	.....................................................................................................................................	8	

Figure	4:	Biomass	–	permittivity	correlation;	The	plot	shows	the	linear	correlation	between	DCW	in	g/l	
and	permittivity	measurement	during	the	fed-batch	phase	of	experiment	WR45-A	which	was	used	to	
estimate	DCW	in	g/l	during	phase	of	induction	independently	of	the	C-balance.	............................................	9	

Figure	5:	Closed	loop	control	provides	the	possibility	of	comparing	the	wanted	setpoint	with	the	actually	
achieved	process	value.	Therefore	an	interference	of	the	process	can	improved	the	quality	of	the	
control	strategy	..........................................................................................................................................................................	10	

Figure	6:	Logical	query	for	closed	loop	control	to	adapt	the	setpoint	of	qs	if	qs	crit	is	reached	and	the	
setpoint	cannot	be	achieved.	.................................................................................................................................................	11	

Figure	7:	Closed	loop	control	with	logical	query	to	adapt	qSSP	provides	the	possibility	to	stay	within	the	
oxidative	maxima	of	the	culture	..........................................................................................................................................	11	

Figure	8:	Biomass	fitting	for	rate	smoothing.	The	plots	show	the	quadratic	fits	used	for	total	biomass	(top	
row)	and	biomass	concentration	(bottom	row)	used	to	give	a	smoothened	rX	upon	rate	calculation.	
The	red	line	shows	the	fit	and	the	black	dashed	line	shows	the	actual	measured	offline	biomass.	.......	13	

Figure	9:	Temperature	oscillations	during	phase	of	induction;	The	plot	shows	large	deviations	of	the	
actual	process	value	TPV	(dashed	line)	from	the	desired	setpoint	TSP	(solid	line)	due	to	insufficient	
heating	and	cooling	performance	.......................................................................................................................................	13	

Figure	10:	Quality	control	of	WR40-C;	Temperature	oscillations	(upper	plot)	impacts	on	pH	(middle	plot)	
and	pO2	(lower	plot)	control,	which	could	not	be	controlled	in	the	desired	way.	.........................................	14	

Figure	11:	Specific	substrate	uptake	rate	calculated	from	feed	rate	and	OUR	of	WR27;	The	upper	plot	
(WR27-A)	shows	continuous	underestimation	of	qSFeed	(solid	line)	compared	to	qSOUR	(dashed	line)	
because	of	to	low	biomass	estimation	respectively	inaccurate	feed	pump	calibration.	The	lower	plot	
(WR27-D)	shows	escalating	of	qSFeed	due	to	substrate	accumulation.	Both	plots	show	deviations	from	
the	setpoint	(dotted	line)	........................................................................................................................................................	27	

Figure	12:	h-value	of	WR27-A	(upper	plot)	and	QR27-D	(lower	plot);	The	upper	plot	shows	a	spike	of	the	
h-value	due	to	mistakenly	calculated	OUR	and	the	constant	increase	of	the	h-value	during	growing	
substrate	accumulation.	..........................................................................................................................................................	28	

Figure	13:	Spikes	in	RQ	(dotted	line)	occur	at	changes	of	oxygen	concentration	of	gassing	(solid	line)	
shown	in	WR35-C	(upper	plot)	and	WR35-D	(lower	plot)	.......................................................................................	29	

Figure	14:	Correlation	of	OUR	(dashed	line)	and	h-value	(bars)	with	changes	in	oxygen	concentration	of	
gassing	(solid	line)	shown	in	WR35-C	(upper	plot)	and	WR35-D	(lower	plot).	The	feed	rate	(dotted	
line)	is	shown	to	understand	the	trend	of	OUR.	............................................................................................................	30	
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Figure	15:	Oxygen	concentration	of	inlet	(solid	line)	and	outlet	(dotdashed	line)	of	reactor	and	calculated	
OUR	(dashed	line)	......................................................................................................................................................................	31	

Figure	16:	Real-time	biomass	estimation	of	WR44-A	(upper	plot)	and	WR44-C	(lower	plot)	compared	to	
DCW;	horizontal	error	bars	indicate	accuracy	of	DCW	measurement	of	approximately	+/-	1.5	%	.....	31	

Figure	17:	Relative	error	(bar)	and	average	of	relative	error	(dash-dotted	line)	on	real-time	biomass	
estimation	from	WR44-A	(upper	plot)	and	WR44-C	(lower	plot).	.......................................................................	32	

Figure	18:	Real-time	estimation	of	biomass	growth	rate	(dashed	line)	from	WR44-A	(upper	plot)	and	
WR44-C	(lower	plot)	compared	to	rx	from	DCW	(solid	line)	...................................................................................	33	

Figure	19:	Real-time	estimation	of	qs	(dashed	line)	compared	to	actually	achieved	specific	substrate	
uptake	rate	qsour	(solid	line)	...................................................................................................................................................	34	

Figure	20:	h-value	of	WR44-A	(upper	plot)	and	WR44-C	(lower	plot);	The	figure	shows	spikes	of	the	h-
value	at	the	beginning	of	induction	phase	due	to	transient	condition	...............................................................	34	
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5.4 DATA RECONCILIATION FOR K2S1 SOFTSENSOR 
% reconcilation 
 
function [ output ] = K2S1_v2(F_s, c_s, M_s, F_a_in, F_o2_in, y_o2_out, 
y_co2_out, y_wet, y_o2_in_air, y_co2_in_air, gamma_s, gamma_o2, 
gamma_x, Vol) 
  
% inputs:--------------------------------------------------------------
--- 
  
% calculated variables (internally)------------------------------------
--- 
  
y_o2_in=(F_a_in.*y_o2_in_air+F_o2_in)./(F_a_in+F_o2_in); 
y_co2_in=(F_a_in.*y_co2_in_air)./(F_a_in+F_o2_in); 
  
ex_h2o=1-(y_wet./y_o2_in_air); 
Ra_inert = (1-y_o2_in_air-y_co2_in_air)./(1-y_o2_out-y_co2_out-ex_h2o); 
V_m=22.4;    
  
% calculated rates-----------------------------------------------------
--- 
  
rco2 = (((F_a_in+F_o2_in).*60)./V_m).*(y_co2_out.*Ra_inert-y_co2_in); 
ro2  = (((F_a_in+F_o2_in).*60)./V_m).*(y_o2_out.*Ra_inert-y_o2_in); 
rs_ox = (rco2+rx_ext)./Vol; % rs oxidative in c-mol/h/l, for comparison 
rx   = rx_ext % estimation comes from external measurement 
 
xm=[r_s; r_o2; r_co2]; 
E=[+1 0 +1 +1;gamma_s gamma_o2 gamma_x 0]; 
Em=[+1,0,+1;gamma_s,gamma_o2,0]; % First row C balance 2nd row DR 
balance 
Ec =[1; gamma_x]; % Biomass Estimation 
  
e_s=0.03; 
e_o2=0.03; 
e_co2=0.03; 
  
Xi=[e_s 0 0;0 e_o2 0 ;0 0 e_co2]; 
    
Ec_star=(inv(Ec'*Ec))*Ec'; 
  
R=Em-Ec*Ec_star*Em; 
[U,S,V]=svd(R); 
Sconv=[1 0]; 
C=Sconv*S; 
K=C*S'*U'; 
Rred=K*R; 
eps = Rred * xm; 
sai = diag(diag(xm * xm' * Xi * Xi')); 
Phi = Rred * sai *Rred'; 
delta = (sai*Rred'*inv(Phi) * Rred)* xm; 
xmbest=xm-delta;calc 
xcbest = -Ec_star*Em*xmbest; 
h = eps' * inv(Phi) * eps; 
  
calc.(Fexn).rS_rec(j,2)=xmbest(1); 
calc.(Fexn).OUR_rec(j,2)=xmbest(2); 
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calc.(Fexn).CER_rec(j,2)=xmbest(3); 
calc.(Fexn).rX_rec(j,2)=xcbest; 
calc.(Fexn).h_value(j,2)=h; 
  
end 

 

5.5 DATA RECONCILIATION FOR K2S1_V2 SOFTSENSOR 
 
function [ output ] = K2S1_v2(F_s, c_s, M_s, F_a_in, F_o2_in, y_o2_out, 
y_co2_out, y_wet, y_o2_in_air, y_co2_in_air, gamma_s, gamma_o2, 
gamma_x, Vol, rx_ext, e_x, e_o2, e_co2, e_s) 
  
% inputs:--------------------------------------------------------------
---- 
  
% calculated variables (internally)------------------------------------
----  
  
y_o2_in=(F_a_in.*y_o2_in_air+F_o2_in)./(F_a_in+F_o2_in); 
y_co2_in=(F_a_in.*y_co2_in_air)./(F_a_in+F_o2_in); 
  
ex_h2o=1-(y_wet./y_o2_in_air); 
Ra_inert = (1-y_o2_in_air-y_co2_in_air)./(1-y_o2_out-y_co2_out-ex_h2o); 
V_m=22.4;    
  
% calculated rates-----------------------------------------------------
---- 
  
rco2 = (((F_a_in+F_o2_in).*60)./V_m).*(y_co2_out.*Ra_inert-y_co2_in); 
ro2  = (((F_a_in+F_o2_in).*60)./V_m).*(y_o2_out.*Ra_inert-y_o2_in); 
rs_ox = (rco2+rx_ext)./Vol; % rs oxidative in c-mol/h/l, for comparison 
rx   = rx_ext % estimation comes from external measurement 
  
xm=[rx; ro2; rco2]; 
Em=[+1,0,+1;gamma_x,gamma_o2,0]; % input rates: First row C balance 2nd 
row DoR balance 
Ec =[1; gamma_s]; % estimated rate: oxidative substrate conversion 
Estimation 
  
Xi=[e_x 0 0;0 e_o2 0 ;0 0 e_co2]; 
    
Ec_star=(inv(Ec'*Ec))*Ec'; 
  
R=Em-Ec*Ec_star*Em; 
[U,S,V]=svd(R); 
Sconv=[1 0]; 
C=Sconv*S; 
K=C*S'*U'; 
Rred=K*R; 
eps = Rred * xm; 
sai = diag(diag(xm * xm' * Xi * Xi')); 
Phi = Rred * sai *Rred'; 
delta = (sai*Rred'*inv(Phi) * Rred)* xm; 
xmbest=xm-delta; 
xcbest = -Ec_star*Em*xmbest; 
h = eps' * inv(Phi) * eps; 
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%Outputs---------------------------------------------------------------
--- 
 
%h_value---------------------------------------------------------------
--- 
h_value=h; 
  
% valumetric reconciled rates------------------------------------------
--- 
rx_rec=xmbest(1,1)./Vol;    %rs from C-balance in c-mol/h/l 
ro2_rec=xmbest(2,1)./Vol;   %OUR in mol/h/l 
rco2_rec=xmbest(3,1)./Vol;  %CER in c-mol/h/l 
rs_rec=xcbest./Vol;         %rx from C-balance in c-mol/h/l 
  
% reconciled yields----------------------------------------------------
--- 
Yx_s=-rx_rec./rs_rec; 
Y_o2_s=ro2_rec./rs_rec; 
Y_co2_s=-rco2_rec./rs_rec; 
Y_o2_x=-ro2_rec./rx_rec; 
Y_co2_x=rco2_rec./rx_rec; 
  
output=[h_value,rs_rec,ro2_rec,rco2_rec,rx_rec,Yx_s,Y_o2_s,Y_co2_s,Y_o2
_x,Y_co2_x,rs_ox]; 
  
end 
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