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ABSTRACT
This study presents a new approach for predicting forest aboveground biomass (AGB) from 
airborne laser scanning (ALS) data: AGB is predicted from sequences of images depicting 
vertical cross-sections through the ALS point clouds. A 3D version of the VGG16 convolutional 
neural network (CNN) with initial weights transferred from pre-training on the ImageNet 
dataset was used. The approach was tested on datasets from Canada, Poland, and the Czech 
Republic. To analyse the effect of training sample size on model performance, different-sized 
samples ranging from 10 to 375 ground plots were used. The CNNs were compared with 
random forest models (RFs) trained on point cloud metrics. At the maximum number of 
training samples, the difference in RMSE between observed and predicted AGB of CNNs and 
RFs ranged from −2 t/ha to 5 t/ha, and the difference in squared Pearson correlation coefficient 
ranged from −0.05 to 0.06. Additional pre-training on synthetic data derived from virtual laser 
scanning of simulated forest stands could only improve the prediction performance of the 
CNNs when only a few real training samples (10–40) were available. While 3D CNNs trained on 
cross-section images derived from real data showed promising results, RFs remain 
a competitive alternative.
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Introduction

Forests play an important role in the global carbon 
cycle, being the main terrestrial carbon sink (Pan et al.,  
2011). Deforestation and forest degradation contri-
bute to anthropogenic carbon emissions, while carbon 
is sequestered through forest growth and the expan-
sion of forest areas (Dixon et al., 1994). To effectively 
monitor forests and to investigate the effects of 
anthropogenic and non-anthropogenic influences on 
forest status, large-scale data on forest structure is 
required. Airborne laser scanning (ALS) allows to 
non-destructively obtain information on the three- 
dimensional structure of forests over large areas. It is 
therefore increasingly used for estimating stocks and 
changes of forest aboveground biomass (AGB) 
(Strîmbu et al., 2023).

In the most commonly applied area-based 
approach (Næsset, 2002), ground measurements of 
AGB are linked to metrics describing the distribution 
of the spatially co-located laser scanning returns. 
Regression models can subsequently be employed for 
wall-to-wall AGB prediction from the ALS data. Both 

non-linear and linear models as well as non- 
parametric machine learning methods, such as nearest 
neighbour interpolation, support vector machines, 
and random forest (RF), are frequently applied for 
relating the point cloud metrics to the AGB observa-
tions (Fassnacht et al., 2014). While many studies have 
shown that AGB can be predicted from point cloud 
metrics (e.g. Bouvier et al., 2015; Sheridan et al., 2015; 
Zhao et al., 2009), it remains an open question 
whether AGB estimates could be further improved 
by using more information from individual returns, 
i.e. the xyz-coordinates of the returns inherent in dis-
crete return ALS data, rather than aggregated point 
cloud metrics. Depending on the point density, infor-
mation about individual trees (e.g. their location, 
height, and volume) may be present in the raw point 
cloud data that is lost when using aggregated metrics 
at the plot level. Deep learning algorithms offer the 
potential to test this hypothesis without the need to 
specifically detect individual trees as done in earlier 
studies (e.g. Dalponte et al., 2018; Jucker et al., 2017), 
as they do not require handcrafted and pre-extracted 
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features. They can process raw data such as images or 
point clouds, thereby learning a latent representation 
of the data during the model optimization (LeCun 
et al., 2015).

Previous studies demonstrated that deep learning 
on ALS data can be used to classify tree species, con-
iferous and deciduous trees, as well as dead trees and 
snags (e.g. Briechle et al., 2021; Hamraz et al., 2019; 
Hell et al., 2022), and to estimate forest attributes such 
as growing stock volume and AGB (e.g. Ayrey & 
Hayes, 2018; Ayrey et al., 2021; Balazs et al., 2022; 
Oehmcke et al., 2022; Seely et al., 2023). The applied 
methods include 2D convolutional neural networks 
(CNNs) that are applied on 2D projections of the 
point clouds (e.g. Balazs et al., 2022; Briechle et al.,  
2021; Hamraz et al., 2019), 3D CNNs for which the 
point clouds are binned into a voxel space (e.g. Ayrey 
& Hayes, 2018; Ayrey et al., 2021; Balazs et al., 2022; 
Oehmcke et al., 2022), and deep learning algorithms 
that take the raw point clouds as input, such as 
PointNet, KPConv, 3DmFV-Net, or PointCNN (e.g. 
Hell et al., 2022; Oehmcke et al., 2022; Seely et al.,  
2023).

The limiting factor for the development of deep 
learning applications for inferring forest attributes 
from ALS data is the large demand for labelled train-
ing data (Hamedianfar et al., 2022). In the aforemen-
tioned studies that predicted forest attributes on a plot 
level, 1044–17432 plots were used for model training, 
an additional 225–1000 plots for model validation and 
225–3000 plots for model testing. Such large sample 
sizes are rarely available in forestry applications. In 
a review on remote sensing-based forest AGB estima-
tions, Fassnacht et al. (2014) reported that only 9 of 90 
reviewed studies had a sample size between 200 and 
500 plots, and 66 of 90 studies had a sample size 
smaller than 100 plots.

Common techniques for dealing with limited data 
availability are data augmentation and transfer learn-
ing (Hamedianfar et al., 2022). Data augmentation can 
increase the number of training data, for example, by 
flipping, rotating, and cropping images (Shorten & 
Khoshgoftaar, 2019), or rotating, scaling, jittering, 
and point-wise displacement of point clouds (R. Li 
et al., 2020). As the neural network learns how to 
represent the data in the optimization process, these 
examples show transformations of the data that are 
invariate with respect to the output. However, many of 
these methods were developed for classification or 
object detection but not for regression tasks and may 
not be directly applicable for some datasets, for exam-
ple, if the scales in the image are related to the 
response variable (Hwang & Whang, 2022). In transfer 
learning, models pre-trained on other data are further 
trained on a small sample of the target data, reducing 
the amount of labelled target data required 
(Hamedianfar et al., 2022). A lot of training efforts 

are required to recognize basic shapes like edges and 
corners, and these efforts can be transferred across 
domains. Transfer is generally more successful the 
closer the target and the source domain are, but it 
has been shown to work even across quite contrasting 
domain pairs (Niu et al., 2021). There are many pre-
defined CNN architectures available with weights 
derived from training on large image datasets, such 
as those from the ImageNet database (Deng et al.,  
2009; Kattenborn et al., 2021). In contrast, pre- 
trained models do not yet exist for point-based deep 
learning methods for vegetation analysis (Winiwarter 
et al., 2022).

Pre-trained CNNs have been successfully applied 
for forestry applications, e.g. Briechle et al. (2021) used 
ResNet-18 models with pre-trained ImageNet weights 
for the classification of tree species and standing dead 
trees. However, there is a domain gap between the 
ImageNet images and those images that can be derived 
from laser scanning or other remote sensing techni-
ques of forest. Accordingly, Fuller et al. (2022) found 
that pre-training on satellite images instead of 
ImageNet images improved the performance of land- 
cover classification from satellite images when using 
a vision transformer architecture. Another possibility 
for model pre-training is the use of simulated data 
(Winiwarter et al., 2022). Data simulation is a cost- 
and time-efficient way to generate large amounts of 
labelled training data. Luo et al. (2022) used synthetic 
forest scenes composed of randomly placed individual 
tree point clouds to train a deep learning model for 
tree detection in forest laser scanning point clouds 
acquired by an unoccupied aerial vehicle (UAV) and 
Sun et al. (2022) trained a deep learning model on 
synthetic images generated by Generative Adversarial 
Networks to segment individual tree crowns from ALS 
canopy height models.

In this study, we investigated whether deep learning 
can be applied to predict AGB from point clouds when 
the size of the training dataset is rather small. To 
compensate for the limited amount of training data, 
we used a transfer learning approach. We employed 
a CNN architecture developed by Solovyev et al. 
(2022) that is fed with sequences of 2D frames. 
Solovyev et al. (2022) created 3D versions of popular 
2D CNNs that have been pre-trained on ImageNET 
images. These 3D CNNs have been successfully used 
to detect stalled brain capillaries in stacks of mouse 
brain images. Here, we apply this method to predict 
AGB from ALS tomography, i.e. the sequences of 
images derived from vertical cross-sections through 
ALS point clouds. Since the cross-section images 
look quite different from the ImageNet images, we 
tested whether implementing an additional pre- 
training step with cross-section images derived from 
simulated laser scanning point clouds can help in the 
domain transfer and increase prediction performance. 
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These synthetic data were generated by combining 
virtual forest stands and a laser scanning simulator. 
The performance of the 3D CNNs was evaluated using 
datasets obtained from four study sites. The number of 
ground plots used for training and validation was 
varied, starting from 10 and ranging up to 35, 97, 
167, and 375, depending on the study site. As 
a benchmark of model performance, AGB was also 
predicted from point cloud metrics using a random 
forest model.

The research questions we addressed in this study 
were: 

(1) To what extent can AGB of forest stands be 
estimated from stacked cross-section images 
derived from the ALS point clouds using a 3D 
version of the VGG16 CNN pre-trained on the 
ImageNet dataset?

(2) How does the training sample size influence the 
prediction performance of the CNN?

(3) How does additional pre-training on synthetic 
data influence the prediction performance of 
the CNN?

Material and methods

Study sites

We used ALS point clouds and corresponding forest 
inventory data from four sites that were collected 1) in 
the Petawawa Research Forest (PRF) in Ontario, 
Canada, 2) in the Milicz Forest (MF) district in the 
south-west of Poland, 3) in the Silesian Beskids (SB) 
in the east of the Czech Republic, and 4) in the 
DendroNET sites (DN) that are spread across the 
Czech Republic. Table 1 provides an overview on 

ground data including main tree species and ALS data 
acquisitions at the four sites. For MF, individual tree 
information (species, diameter at breast height (D1:3), 
and tree height) was available and AGB was estimated 
using the same models as for the synthetic data (see next 
section). For the other sites, we used the AGB reference 
values that were provided by the original data owners.

PRF is a remote sensing supersite that covers 
approximately 10000 ha of mixed-wood forests. The 
open-access data of PRF have been described in detail 
by White et al. (2019). The stand density in the 223 
circular ground plots ranged from 32 to 13024 trees/ 
ha, with a mean value of 2500 trees/ha (Figure 1). The 
AGB ranged from 1 to 529 t/ha, with a mean value of 
158 t/ha.

In MF, 70% of the 500 circular ground plots were 
located in pure stands of Pinus sylvestris L (Stereńczak 
et al., 2018). The stand density ranged from 20 to 3957 
trees/ha and AGB ranged from 15 to 368 t/ha, with 
mean values of 952 trees/ha and 160 t/ha, respectively.

For SB, ground data of 130 plots were available. 
Tree data were collected from nested circular plots. 
Trees with a D1:3 > 7 cm were sampled within a radius 
of 3 m, whereas trees with a D1:3 > 12 cm were 
sampled within a radius of 12.62 m. Information on 
stand density was not available. The average AGB was 
198 t/ha, ranging from 2 to 583 t/ha. More informa-
tion on the SB data can be found in Brovkina et al. 
(2022).

The 47 DN plots were mostly located in pure forest 
stands. Ground data were collected from square plots 
of 30 m � 30 m. ALS data were available for 20 m �
20 m plots, therefore plot AGB values have been cal-
culated from trees within these smaller plots based on 
individual tree positions. The stand density (measured 
in 30 m � 30 m) ranged from 89 to 1600 trees/ha, with 

Table 1. Ground data collection and laser scanning acquisition settings, and the resulting mean pulse density and mean planar 
point density of the four study sites. Numbers in square brackets indicate settings/values of the laser scanning simulations 
differing from the reported settings/values of the real acquisitions.

Petawawa Research Forest Milicz Forest Silesian Beskids DendroNET
(PRF) (MF) (SB) (DN)

Forest  
inventory time

2014 Summer 2015 July 2019 October 2021

Ground plot design circular plots, circular plots, nested circular plots, square plots,
radius: 14.1 m radius: 12.62 m max. radius: 12.62 m side length: 30 m

Number of ground plots 223 500 130 47
Main tree species Pinus strobus L., Pinus sylvestris L., Picea abies (L.) H. Karst, Picea abies (L.) H. Karst,

Populus tremuloides Michx., Fagus sylvatica L., Fagus sylvatica L. Pinus sylvestris L.,
Quercus rubra L., Quercus spp. L. Fagus sylvatica L.

Pinus resinosa Ait.,
Betula papyrifera,

Picea glauca Moench
ALS acquisition time 2012 Summer 2015 July 2019 October 2021
Sensor RIEGL LMS-Q680i RIEGL LMS-Q680i RIEGL LMS-Q780 RIEGL LMS-Q780
Altitude above ground 750 m 480–620 m [480 m] 819 m 515 m
Flight speed ? [54 m/s] 54 m/s 56 m/s 56 m/s
Flight line distance 250 m [� 242 m] ? [� 296 m] 440 m –
Flight pattern parallela parallela parallela perpendiculara

Mean pulse density 5.4 pulses/m2 9.4 pulses/m2 7.0 pulses/m2 13.2 pulses/m2

[4.3 pulses/m2] [12.4 pulses/m2] [9.7 pulses/m2] [18.0 pulses/m2]
Mean planar point density 11.7 points/m2 19.9 points/m2 12.8 points/m2 23.9 points/m2

[8.3 points/m2] [24.4 points/m2] [17.8 points/m2] [31.7 points/m2]
aThe laser scanning simulations were performed with flight strips that were not perfectly parallel/perpendicular to reflect deviations from the flight pattern 

in the real data.

EUROPEAN JOURNAL OF REMOTE SENSING 3



a mean value of 846 trees/ha. The AGB ranged from 1 
to 528 t/ha, with a mean value of 268 t/ha.

Synthetic data

Four datasets of synthetic forest inventory informa-
tion and corresponding simulated ALS point clouds 
were generated, one for each study site. Forest stand 
compositions were simulated using Forest Factory 2.0 
(Henniger et al., 2023), a software that makes use of 
the individual-based forest gap model FORMIND 
(Köhler & Huth, 1998). The original Forest Factory 
2.0 version is calibrated to generate square forest plots 
of 20 m � 20 m. Because the ground plots of the real 
data exceeded this size, we used a modified version of 
Forest Factory 2.0 that enables to generate forest plots 
of 30 m � 30 m. The virtual forest stands were com-
posed of Pinus sylvestris L., Picea abies (L.) H. Karst, 
Fagus sylvatica L., and Quercus spp. L. Tree biomass 
was calculated using species-specific allometric mod-
els of the German National Forest Inventory that are 
implemented in the R package “rBDAT” (Vonderach 
et al., 2021). By default, Forest Factory 2.0 generates 

many more small AGB plots than large AGB plots 
(Schäfer, Winiwarter, et al., 2023). To avoid the effects 
of unbalanced training data, we sought to simulate 
data with AGB values equally distributed over 
a range of the real datasets. We therefore simulated 
a large number of forest stands (4565200). Of these 
virtual stands, all stands with an AGB of 0–600 t/ha 
were grouped into 12 bins, each bin with an AGB 
range of 50 t/ha. We then randomly sampled 200 
stands per bin, resulting in a selection of 2400 forest 
stands in total. Forest Factory 2.0 randomly assigns 
tree locations within a forest stand, which means that 
trees can be located unrealistically close together. We 
therefore implemented a workflow to generate new 
tree locations: For each forest stand, we created 
a grid of possible tree locations with an Euclidean 
distance of 1 cm between the locations and 
a minimum distance of 20 cm to the plot borders. 
We randomly selected one of these possible locations 
and assigned it to the first tree in the plot. All locations 
that were within the crown radius of that tree were 
then excluded from the remaining possible locations. 
This allowed for partial overlaps of trees, as the stem of 

Figure 1. Stand density and aboveground biomass (AGB) of the real and simulated forest plots for the four study areas of 
Petawawa Research Forest (PRF), Milicz Forest (MF), Silesian Beskids (SB), and DendroNET sites (DN). Mean values are indicated by 
the dashed vertical lines. Information on stand density was not available for the Silesian Beskids (SB). 
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the second tree could be placed directly at the edge of 
the first tree’s crown. This procedure was continued 
for all trees within the plot.

Laser scanning of the virtual stands was simulated 
with the open-source laser scanning simulation frame-
work HELIOS++ version 1.1.2 (Winiwarter et al.,  
2022). 3D representations of the virtual forest stands 
were created using tree point clouds that were 
extracted from real laser scanning data of temperate 
forests in the south-west of Germany. These data were 
acquired by a RIEGL miniVUX-1UAV mounted on 
a UAV during leaf-on conditions. The dataset of tree 
point clouds and the corresponding tree metrics has 
been published by Weiser, Schäfer, Winiwarter, 
Krašovec, Seitz, et al. (2022) and described in detail 
by Weiser, Schäfer, Winiwarter, Krašovec, Fassnacht, 
et al. (2022). For each tree in the virtual forest stands, 
a tree point cloud of matching tree species and a tree 
height within �4 m of the virtual tree’s height were 
randomly selected and placed at the location of the 
virtual tree. If no tree point cloud was available in the 
specified height range, the one with the smallest dif-
ference in height was selected. The tree point clouds 
were randomly rotated around the z-axis and uni-
formly scaled in all three dimensions such that the 
height of the point cloud matched the height of the 
virtual tree. All points outside of the 30 m � 30 m 
stands were removed. Laser scanning was simulated 
for scenes of 90 m � 90 m composed of nine virtual 
forest stands. The forest point clouds were voxelized 
with a voxel size of 3 cm. Filled voxels (with at least 
one point) were set to be opaque, and empty voxels 
were transparent for the simulation (following Weiser 
et al., 2021). The ground was represented by 
a horizontal plane. Airborne laser scanning of the 
virtual forest scenes was simulated according to the 
acquisition settings of the real campaigns (Table 1), i.e. 
four different ALS simulations were conducted over 
the same scenes.

The virtual forest stands and simulated ALS point 
clouds were cropped to match the real ground plots 
(circular plots with radii of 12.62 m or 14.1 m, and 
square plots with side lengths of 20 m, depending on 
the dataset used, see Table 1). When there was no tree 
located within the cropped plot area, the synthetic 
forest stand was removed from the dataset. This 
resulted in 2379 synthetic plots for PRF, 2362 for SB, 
and 2340 for DN. Due to an error in the sampling of 
the virtual forest stands, the dataset for MF consisted 
of 2426 synthetic plots (of which 2362 resulted from 
the sampling with regard to a uniform AGB distribu-
tion). Since the distribution was barely influenced by 
the additional 64 plots, the sampling was not repeated. 
Plot AGB was calculated as the sum of AGB of all trees 
within a plot divided by the plot area. The character-
istics of the synthetic forest stands differed slightly 
depending on plot size and shape. The stand density 

ranged from 16 to 9414 trees/ha and the AGB ranged 
from 1 to 1028 t/ha, with mean values of 377 trees/ha 
and 298 t/ha, respectively (Figure 1).

Cross-section images

In order to feed point cloud data into a CNN, 
a rasterization is required. Therefore, vertical cross- 
section images were extracted from real and simulated 
ALS point clouds. To that end, the point clouds were 
height normalized using the “normalize height” func-
tion of the R package “lidR” (Roussel et al., 2020), and 
cut into 1 m thick vertical non-overlapping slices, both 
in the x-direction and in the y-direction. The slices 
were 45 m high (corresponding to the tallest trees) and 
the width corresponded to the respective plot extent 
(20–28.2 m). A binary image of 128 (width) � 256 
(height) pixels was generated from each slice. Pixel 
values were set to black (0) if the volume represented 
by the pixel contained at least one ALS return and to 
white (1) otherwise. Preliminary experiments on the 
MF dataset revealed that using RGB-images with 
a height-related colour map (viridis) did not improve 
the results. Figure 2 shows exemplary cross-section 
images for one MF ground plot.

Experimental set-up

All experiments were conducted individually for each 
of the four study sites. The real data were split into 
25% test and 75% training data using a stratified sam-
pling approach, so that both test and training datasets 
represented the full range of AGB values of the respec-
tive study sites. This resulted in 56, 125, 33, and 12 test 
plots for PRF, MF, SB, and DN, respectively. The 
remaining plots were used for model training and 
validation.

For model training, we utilized CNNs that had been 
pre-trained on ImageNet data (Section 2.4.1). Then, 
we compared the performance of models trained on 
cross-section images obtained from real data with 
models that were first additionally pre-trained on 
cross-section images derived from synthetic data 
before being trained on cross-section images derived 
from real data. As a benchmark, we employed random 
forest models (RFs) (Breiman, 2001) with point cloud 
metrics as AGB predictors. Both CNNs and RFs were 
trained on randomly selected subsamples of varying 
sizes, as well as on the complete training datasets of 
each study site (167 plots for PRF, 375 plots for MF, 97 
plots for SB, and 35 plots for DN). The size of the 
subsamples ranged from 10 to 100 (in increments of 
10) training plots for PRF and MF, 10–90 plots for SB, 
and 10–30 plots for DN (due to the different numbers 
of available plots for each study site). For the CNNs, 
the training datasets were further randomly split into 
80% actual training data and 20% validation data, used 
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for optimizing the model hyperparameters. Both 
CNNs and RFs were also trained using synthetic data 
only (no real forest plots).

For each sample size, the random sampling of the 
training data and subsequent model training were 
repeated 10 times to enhance the informative value 
of the performance metrics to account for the influ-
ence of the randomly selected subsamples on the per-
formance metrics. Due to the extensive time required 
for training, conducting additional repetitions was not 
feasible. Model performance was assessed using the 
median values of the root mean squared error 
(RMSE), the squared Pearson correlation coefficient 
(r2) and, as a measure of systematic error, the mean 
error (ME) of observed and predicted AGB values for 
the test datasets.

The CNNs were conducted on a system with an 
NVIDIA RTX A4000 GPU, 16 GB VRAM, 256 GB 
RAM, and an Intel® Xeon(R) Silver 4210 R CPU @ 
2.40 GHz × 40. The RFs were conducted on a system 
with 256 GB RAM, an Intel® Xeon(R) CPU E5–2630 
v3 @ 2.40 GHz × 16, and no dedicated GPU. We did 
not systematically assess the run time of the models. 
CNN training took between 4 minutes and 6 hours, 
depending on the training sample size and the number 
of epochs before early stopping. Because of the large 

training data size, pre-training on the synthetic data 
took more than a day. In contrast, the RF training took 
only a few seconds for each run.

Neural network architecture
The backbone of our method is a VGG16 2D CNN 
(Simonyan & Zisserman, 2015) pre-trained on the 
ImageNet dataset (Deng et al., 2009). In order to 
apply it on 3D data, we used a re-designed architecture 
by Solovyev et al. (2022) in which all 2D convolutions 
are replaced by 3D convolutions. Thereby, the convo-
lutions can be moved in x-, y- and z-direction through 
a stack of images. The initial weights of the 3D kernel 
were transferred from the weights of the pre-trained 
VGG16. We fed the cross-sections, ordered by depth, 
in both x- and y-directions separately through the 
CNN and concatenated the two feature vectors result-
ing from the two directions. We then passed the con-
catenated vector through a dense layer to obtain 
a scalar AGB value. The network architecture is 
shown in Figures 3 and 4. For optimization of the 
weights, we used the Adam algorithm (Kingma & Ba,  
2017), employing an exponentially decaying learning 
rate. The following hyperparameter values were 
selected based on the results of parameter tuning in 
preliminary experiments: initial learning rate = 10� 7, 

Figure 2. Generation of cross-section images from an ALS point cloud of a ground plot located in the Milicz Forest. For better 
visualization, the black pixels in the cross-section images have been enlarged compared to the actual images and only a selection 
of images is shown. Each pixel represents a volume of approximately 19.5 cm � 17.6 cm � 100 cm. The vertical and horizontal 
black lines indicate the borders of the transects extracted from each plot point cloud.
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Figure 3. Neural network architecture of the CNN trained on real data only. For a single data point, a block of images in x- and 
y-directions are fed through the 3D-VGG16 separately, but with shared weights between the networks. The output is flattened and 
concatenated, before being fed through a dense layer, further reducing the dimensionality to 1, i.e. the scalar AGB value as the 
regression target. Initial weights were derived from pre-training on the ImageNet database. Numbers in brackets indicate the 
output shape of each layer.

Figure 4. Neural network architecture of the CNN pre-trained on synthetic data. For a single data point, a block of images in x- and 
y-directions are fed through the 3D-VGG16 separately, but with shared weights between the networks. The output is flattened and 
concatenated, before being fed through a dense layer, further reducing the dimensionality to 1, i.e. the scalar AGB value as the 
regression target. Initial weights were derived from pre-training on the ImageNet database. An additional pre-training step was 
performed on synthetic forest data. Numbers in brackets indicate the output shape of each layer.
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decay steps = 100 000, decay rate = 0.96, staircase =  
TRUE. Because of the limited GPU memory, the 
batch size was set to 1. Training was carried out for 
up to 600 epochs using the mean squared error as loss 
metric. An epoch refers to the complete iteration of 
the entire training dataset through the CNN during 
which the model weights are updated. After each 
epoch, the validation RMSE was calculated from the 
withheld validation data which was never used for 
training. Early stopping of model training was applied 
if the RMSE did not decline over 20 consecutive 
epochs. For the pre-training on the synthetic data, 
the same neural network architecture was first applied 
on cross-section images derived from the simulated 
point clouds. The weights of the best model according 
to the validation on the synthetic dataset were then 
used as initial weights in the further training on the 
real data cross-section images.

Random forest models
For the benchmark models, point cloud metrics were 
derived from all returns, first returns, and all returns 
with a normalized height > 2 m. We used a subset of 
the pre-defined standard metrics from the “cloud_-
metrics” function implemented in the R package 
“lidR” (Roussel et al., 2020), precisely: the mean and 
the maximum of return heights, the standard devia-
tion, the entropy, the kurtosis, and the skewness of the 
height distribution, the percentage of returns with 
a height > 2 m, the percentage of returns above the 
mean height, the percentage of the 1st–5th returns, the 
percentage of ground returns, the 5th to 95th height 
percentiles in increments of 5%, the cumulative per-
centage of returns in each of nine equally spaced 
height layers, and the total number of returns.

The point cloud metrics served as predictors in 
a random forest regression. The function “tuneRF” 
of the “randomForest” package (Liaw & Wiener,  
2002) in R was employed to search for the optimal 
number of predictors to sample at each split, starting 
at 14 predictors and inflating or deflating the number 
of predictors by 2 in each iteration. The number of 
trees was set to 500.

Results

Model performance of CNNs (without pre-training 
on synthetic data) compared to random forest 
models

The difference in CNN and RF performance var-
ied between the study sites. Performance metrics 
were aggregated by taking the median over 10 
repetitions, for each of which the training/test 
split was randomized. Figure 5 shows the perfor-
mance metrics for the different models and train-
ing sample sizes (the accuracy metrics are also 

provided in Tables A1-A4 in the Appendix). For 
all study sites, using the maximum number of 
samples for model training resulted in the highest 
model accuracies as expressed by RMSE and r2. 
For PRF and SB, the best results were achieved by 
CNNs, with a lowest median RMSE of 34 t/ha and 
69 t/ha and a highest median r2 of 0.87 and 
0.79 per respective study site. For MF, the lowest 
median RMSE was 20 t/ha and the highest median 
r2 was 0.87, both achieved by RFs. For DN, using 
RFs for model training resulted in the lowest 
median RMSE of 63 t/ha, while using CNNs 
resulted in the highest median r2 of 0.88. 
However, when using the maximum number of 
training samples, differences in prediction perfor-
mance and systematic error between CNNs and 
RFs were small. The difference in RMSE between 
observed and predicted AGB of CNNs and RFs 
ranged from −2 t/ha to 5 t/ha (20–71 t/ha for 
RFs and 24–70 t/ha for CNNs), and the difference 
in r2 ranged from −0.05 to 0.06 (0.77–0.87 for RFs 
and 0.78–0.88 for CNNs), depending on the study 
site. The ME of the CNNs ranged from −23 t/ha 
for DN (indicating an overprediction of AGB) to  
+18 t/ha for SB (indicating an underprediction of 
AGB), and from −21 t/ha to +12 t/ha when using 
RFs. The absolute ME of the RFs was 2–6 t/ha 
lower than that of the CNNs. For PRF, SB, and 
DN, the CNNs performed similarly or slightly 
better than the RFs with regard to RMSE and r2, 
whereas they performed slightly worse for MF.

The prediction performance of both CNNs and RFs 
depended on the number of samples that were used for 
model training. When the training sample sizes were 
small, the CNNs had – in most cases – a slightly lower 
prediction performance than RFs, but the predictive per-
formance of CNNs and RFs tended to converge as the 
training sample size increased. For PRF and MF, the RFs 
performed better than the CNNs when trained on 10–100 
samples. The difference in model performance was more 
pronounced in r2 than in RMSE. For both model types, 
the systematic error was rather small, especially for MF. 
Only at a training sample size of 10, the CNNs showed 
a much higher mean error than the RFs did.

For SB, the RFs outperformed the CNNs when 
trained on 10–20 samples. At higher sample sizes, 
the difference in prediction performance between 
both model types was small. At some sample sizes, 
the CNNs resulted in a higher prediction perfor-
mance, while at other sample sizes, the RF predictions 
were better. The systematic error was in most cases 
slightly lower for the RFs than for the CNNs.

The results for the DN dataset differed the most 
from the other study sites. Because of the small 
number of ground plots, models could only be 
trained on 10–35 samples (including validation 
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data). The RMSE of the CNNs and the RFs were 
similar for sample sizes > 10, while it was slightly 
higher for the CNNs at a sample size of 10. The 
systematic error of the CNNs was much lower than 
that of the RFs for sample sizes of 10–20 (ME of −2 
to 3 t/ha for the CNNs, −21 to 23 t/ha for the RFs), 
and similar for sample sizes of 30–35. With regard to 
the r2, CNNs did not reach the prediction perfor-
mance of RFs when trained on 10–20 samples, but 
outperformed RFs when trained on 30 and 35 
samples.

Pre-training on synthetic data

Using CNNs that were pre-trained on synthetic data 
only improved the prediction performance when the 
number of real training samples was very small 
(Figure 5, blue and red cross marks). For PRF and SB, 
the performance of the CNNs in terms of RMSE and r2 

only improved by pre-training when no more than 10 
and 20 samples were used for model training, respec-
tively. A positive effect of pre-training on the systematic 
error could be observed when using 10–30 training 
samples for PRF, and 10–40 samples for MF. For SB, 

RMSE and r2 of the predictions could be improved by 
pre-training on synthetic data for 10–20 and 10–30 
training samples, respectively. Pre-training could only 
reduce the systematic error at a sample size of 10.

The results for MF, PRF, and SB datasets 
showed that pre-training often not only failed to 
improve the models but rather substantially wor-
sened them. At larger sample sizes, pre-training 
strongly increased the RMSE for PRF, decreased 
r2 for PRF and MF, and increased the underpredic-
tion of AGB for SB. The most positive effect of 
pre-training on synthetic data was observed for the 
DN dataset. Here, the pre-training decreased the 
RMSE by 4–29 t/ha and increased r2 by 0.13–0.28 
for training sample sizes of 10–30 and 10–20, 
respectively. For higher training sample sizes, the 
pre-trained CNNs performed slightly worse than 
the non-pre-trained models, but the differences 
were small (0.5 t/ha for RMSE, 0.02–0.03 for r2). 
In contrast, pre-training strongly increased the 
overprediction of the CNNs for 10–30 training 
samples.

When the models were trained only on synthetic 
data, the RFs performed better than the CNNs for PRF 

Figure 5. Median root mean squared error (RMSE), mean error (ME) and squared Pearson correlation coefficient (r2) of the AGB 
predictions for different model types and sample sizes. Training sample count included 20% validation data for the CNNs. Model 
training and testing was repeated 10 times for each training sample size, except for the CNNs that were only trained on synthetic 
data. For these models, model training and testing was not repeated due to the long computing times.
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and SB (Figure 5, values for 0 real training samples). 
For MF, CNNs and RFs performed similarly in terms 
of RMSE, while r2 was better for the RFs and the ME 
was better for the CNNs. For DN, the CNNs outper-
formed the RFs when no real data were used for model 
training.

Model stability

Figure 6 shows scatter plots of predicted and observed 
AGB of the four study sites resulting from the best and 
worst models for each model type (CNN pre-trained 
on ImageNet data, CNN pre-trained on synthetic for-
est data, and RF) and the minimum (10) and max-
imum (dependent on the study site) number of 
training samples. Differences in the prediction perfor-
mance between the best and the worst of the rando-
mized repetitions of models indicate how the models 
were influenced by the selection of training data and 
random processes within the models. The samples that 
were used for model training were randomly sampled 
from the training datasets. In case of the CNNs (both 
ImageNet pre-trained and synthetic forest pre- 

trained), 20% of these data were further removed to 
serve as validation data. Hence, when 10 training 
samples were available, eight were used as actual train-
ing samples and two as validation samples. When 
comparing models trained and validated on 10 sam-
ples, it is striking that in the case of the CNNs that 
were not pre-trained on synthetic data, the worst 
models resulted in a very narrow range of predicted 
AGB values, albeit not the mean value of the training 
data AGB (Figure 6, top left panel of each study site: 
red markers appearing in an approximate vertical 
line). For example, for PRF, the worst CNN trained 
on 10 samples predicted AGB values of 43–66 t/ha 
while the reference was in the range of 1–399 t/ha. 
This effect did not occur for the largest sample size nor 
for CNNs that were pre-trained on synthetic data. We 
could not find a direct relation between the prediction 
range and the training data samples, as the AGB range 
of the training data of these models was much wider 
than the predicted AGB. However, using only two 
samples for validation could also have negatively 
affected model performance if validation accuracy 
leads to stopping model training too early.

Figure 6. Predicted and observed AGB of the ground plots in the test datasets of each study site. Results are shown for models 
trained on 10 real training samples and on the maximum number of available training samples. Model training and prediction 
were repeated 10 times for each model type and training sample size, resulting in 10 predictions per ground observation. The 
training datasets consisting of 10 samples were randomly selected from the total training data in each run. Only the best and the 
worst predictions (in terms of RMSE) of the 10 model iterations are depicted.
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In most cases, the difference in performance 
between best and worst prediction was highest for 
the ImageNet pre-trained CNNs and lowest for the 
synthetic forest pre-trained CNNs. Accordingly, pre- 
training on synthetic data had a stabilizing effect on 
the CNNs. The positive effect of the pre-training 
diminishes with increasing training sample size.

Discussion

In our study, CNNs using images of ALS point cloud 
cross-sections performed similar to RFs using tradi-
tional point cloud metrics in the prediction of AGB on 
plot level, but there were differences in model perfor-
mance between study sites and depending on how 
many samples were used for model training. In an 
attempt to identify patterns of when CNNs performed 
substantially better or worse than RFs, we visually 
examined point clouds of some of the test plots. 
However, there were no obvious connections between 
performance differences and forest structure types, 
e.g. clearings, stand density, and subcanopy layers.

Differences between real and synthetic data

Regarding the use of pre-trained CNNs, our results 
showed that the use of simulated data for additional 
pre-training (on top of the ImageNet weights) did not 
improve model performance with the exception of 
cases of extremely limited training data availability. 
In all other cases, performance was actually decreased 
by the addition of the pre-training step with simulated 
data, suggesting that the CNN finds patterns in the 
synthetic data that do not exist in a similar way in the 
real data. This effect may be caused by either the 
synthetic forest stands or by the simulation of laser 
scanning. The simulated forest stands that were 
selected for the synthetic training datasets differ in 
their composition from the real forest stands at our 
study sites: They have a different species composition 
and they have on average higher AGB values but 
a lower number of trees per hectare than the real 
stands (cf. Figure 1). In addition, they lack understorey 
elements, and the crowns of neighbouring trees may 
overlap unrealistically due to our simple approach of 
assigning tree positions. It should be tested whether 
synthetic datasets generated using alternative forest 
growth simulators, such as SILVA (Pretzsch et al.,  
2002), which incorporate competition between neigh-
bouring trees at the individual tree level, output actual 
realistic tree positions, and allow the simulation of 
different forest management strategies, would 
improve the performance of the pre-trained CNNs. 
The differences between simulated and real pulse den-
sity and planar point density (cf. Table 1) indicate that 
our simulations could not exactly replicate the real 
laser scanning of the four study sites, which can in 

part be explained by the missing understorey. In 
a previous study, we also observed that the height 
distribution of the simulated laser scanning returns 
can differ substantially from the real one, depending 
on the stand characteristics (Schäfer, Weiser, et al.,  
2023). Other studies using HELIOS++ for virtual 
laser scanning have found that the quality of the gen-
erated point cloud is also subject to the representation 
of the 3D scene and can be improved either by precise 
fine-tuning of the voxelization model (Weiser et al.,  
2021) or by the use of procedurally generated, highly 
detailed mesh models of trees (Esmorís et al., 2024). In 
the latter study, a successful transfer of a deep-learning 
model trained on purely synthetic data to a real dataset 
was shown for the case of leaf-wood separation. We 
conclude that more effort is needed to fine-tune the 
scene model (e.g. use a different representation, such 
as high-detail mesh models of trees) and the para-
meters for the HELIOS++ simulations to make the 
resulting point clouds more realistic. To investigate 
whether the poor results for the pre-training on syn-
thetic data are more affected by the forest stand simu-
lations or the laser scanning simulations, two potential 
pathways exist: 1) the use of virtual laser scanning 
based on real forest inventory data, thereby excluding 
effects from the forest stand synthetization, and 2) the 
use of real laser scanning point clouds of trees stitched 
together based on the compositions given from the 
synthetic forest stands, excluding the laser scanning 
simulation. For the latter case, the flight- and sensor- 
parameters of the available tree point cloud database 
would have to match the ones of the real training and 
test data, which was not the case in our study.

Uncertainty of AGB reference data

To precisely evaluate model performance, accurate 
reference values (i.e. AGB) are necessary. AGB values 
in this study were calculated using allometric models, 
which have been shown to contain significant uncer-
tainty (Vorster et al., 2020). Additionally, tree crowns 
reaching out of or into the ground plots contribute to 
errors in the reference AGB (Knapp et al., 2021), as the 
AGB plot is calculated as the total AGB of all trees with 
a stem position within the plot. While these sources of 
uncertainty can only be removed by extensive and 
potentially destructive fieldwork with real data, the 
use of 3D mesh models for synthetic data allows the 
accurate quantification of wood volume and thus the 
derivation of AGB estimates that are not affected by 
allometric errors. Synthetic data also include informa-
tion on tree parts exceeding or reaching into the plot, 
making it easy to precisely quantify the amount of 
AGB that is within the plot area. Accounting for 
these boundary effects in real data is much more 
difficult as it requires detailed tree information and 
is subject to uncertainties due to assumptions about 
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tree shape and crown projection area that need to be 
made (Kleinn et al., 2020).

Differences between study sites

In a previous study on ALS-based AGB predictions that 
solely investigated RFs and their response to simulated 
training data using the same real-world ALS and ground 
data, we also observed that results differed substantially 
between the four study sites (Schäfer, Winiwarter, et al.,  
2023). We note that these differences partially result 
from different AGB distributions, which are not repre-
sented equally well by the simulated data. Most substan-
tially, in the current study, the mean AGB value of the 
simulated data of DN was much closer to the one of the 
real data than for the other study sites (cf. Figure 1). 
This was also the dataset for which pre-training of the 
CNNs on synthetic data was most successful.

Augmentation of training data

While the metrics used in the RF models usually 
describe the vertical distribution of the returns, and 
the horizontal distribution is less frequently taken into 
account (Bouvier et al., 2015), the CNNs are able to 
consider both vertical and horizontal distributions in 
the convolutions. Limited data augmentation was car-
ried out to achieve larger training sets but could be 
exploited more in the future, e.g. by mirroring images 
or by extracting cross-sections in other directions. As 
this would not solve any issues related to the domain 
of AGB values present in the training data, the effect of 
such efforts may, however, be limited.

Comparison between CNNs and RF

Although the predictive performance of CNNs and 
RFs was similar, there are several reasons to use RFs 
rather than CNNs, both in terms of data pre- 
processing and the modeling itself. Generating images 
of point cloud cross-sections is much more compli-
cated, takes more time and needs more disk space than 
extracting point cloud metrics. In addition, CNNs 
require a high-performance GPU to satisfy the com-
putational demands and still take much longer to train 
than RFs. A drawback of using CNNs is also the “black 
box” characteristic of the approach that makes it more 
difficult to interpret the results, e.g. to explain why the 
pre-trained CNNs sometimes predicted negative AGB 
values for one plot in PRF (cf. Figure 6).

Other studies comparing deep-learning methods to 
traditional machine learning models for AGB predic-
tions from ALS data often found that deep learning 
results in higher prediction performance. Ayrey and 
Hayes (2018) adapted several 2D CNNs (LeNet, 
AlexNet, GoogLenet, Inception-V3, and ResNet-50) 
to run on 3D voxel representations of the ALS point 

clouds and compared the model performance to RF 
and linear mixed models trained on point cloud 
metrics. In their study, all deep learning models except 
for AlexNet resulted in lower RMSE but higher or 
similar systematic error compared to RF and linear 
mixed models. Oehmcke et al. (2022) applied 
PointNet, the kernel point convolution (KPConv) 
approach, and the Minkowski CNN in comparison to 
linear regression and power regression models for 
ALS-based AGB predictions and found that their adap-
tations of the Minkowski CNN and KPConv clearly 
surpassed the linear regression and power regression, 
while PointNet performed worse. When comparing RF 
to an Octree CNN-HRNet and a Dynamic Graph 
CNN, Seely et al. (2023) showed that AGB predictions 
with RF had a slightly lower R2 and a slightly higher 
RMSE than the deep learning predictions. In contrast 
to our study, Ayrey and Hayes (2018) used 15373 
samples for model training and 1000 samples for vali-
dation, Oehmcke et al. (2022) used 4271 and 919 
samples, and Seely et al. (2023) used 1635 and 350, 
respectively. Compared to our sample sizes of up to 
35–375 plots (including 20% validation samples), these 
datasets are much better suited for deep learning 
approaches. We expect that the performance of the 
AGB prediction on cross-section images with CNNs 
could be improved when using more training samples. 
While we hypothesized that synthetic data could be 
used to extend training datasets when limited data are 
available, our results did not support that claim.

Outlook

We see potential for future research in multiple 
directions:

● Improvement of a) the synthetic forest stand com-
position and the positions of the individual trees 
within a plot, b) the 3D models of individual trees, 
and c) the laser scanning simulation parameters.

● Systematic investigations on how the CNN perfor-
mance is affected by forest structure as well as by 
ground plot and point cloud characteristics (e.g. 
stand density, tree species, plot size and shape, 
point density, and penetration into subcanopy 
layers).

● Experiments with hyperparameter tuning and 
different deep learning network architectures 
for which pre-trained ImageNet weights are 
available (e.g. ResNet, EfficientNet, and 
DenseNet), as well as investigation of the effect 
of these pre-training efforts by running models 
on randomly initialized weights using the same 
model architecture for comparison.

● Additional data augmentation by rotation, mir-
roring, and random jittering of points, as shown 
in previous studies using CNNs for point cloud 
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tasks (Briechle et al., 2021; H. Li et al., 2020; 
Oehmcke et al., 2022).

Conclusion

This study demonstrated that CNNs can predict 
AGB from cross-section images and achieve similar 
accuracies as RFs trained on traditional point cloud 
metrics. When the maximum number of available 
training samples was used, the CNN performance 
slightly surpassed the performance of the RFs for 
three of the four study sites, indicating that the 
CNN performance could be further improved by 
increasing the training sample size. We investigated 
whether the need of deep learning models for large 
amounts of training data could be satisfied by data 
simulations but found that pre-training on synthetic 
data did only improve model performance when 
very little training data were available. Notably, pre- 
training on synthetic data even decreased model 
performance at larger training sample sizes. Since 
the use of simulated data has been shown to provide 
benefits in other applications, even in the domain of 
forestry remote sensing, there is reason to believe 
that a gap between real and simulated data needs to 
be closed before such transfer can be successful for 
our use-case. For the time being, RF remains 
a competitive alternative to data-hungry deep learn-
ing models.
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Appendix A. Model accuracies of CNNs and RFs for all training sample sizes and all study sites

Table A1. Model accuracies for Petawawa Research Forest (PRF). N is the number of real 
training samples used for model training, RMSE is the median root mean squared error, 
ME is the median mean error, and r2 is the median squared Pearson correlation 
coefficient. A positive mean error indicates an underprediction of biomass.

ModelType N RMSE ME r2

CNN pre-trained on ImageNet data 10 82.82 25.97 0.39
CNN pre-trained on ImageNet data 20 54.41 6.76 0.73
CNN pre-trained on ImageNet data 30 56.53 9.64 0.68
CNN pre-trained on ImageNet data 40 45.04 0.30 0.78
CNN pre-trained on ImageNet data 50 41.06 −1.84 0.80
CNN pre-trained on ImageNet data 60 38.94 0.75 0.83
CNN pre-trained on ImageNet data 70 38.76 2.34 0.83
CNN pre-trained on ImageNet data 80 39.46 5.52 0.82
CNN pre-trained on ImageNet data 90 37.00 1.46 0.84
CNN pre-trained on ImageNet data 100 39.30 0.52 0.82
CNN pre-trained on ImageNet data 167 34.62 8.90 0.87
CNN pre-trained on synthetic data 0 108.00 89.53 0.56
CNN pre-trained on synthetic data 10 60.65 25.35 0.60
CNN pre-trained on synthetic data 20 54.80 4.75 0.65
CNN pre-trained on synthetic data 30 55.30 5.06 0.64
CNN pre-trained on synthetic data 40 53.05 4.38 0.67
CNN pre-trained on synthetic data 50 54.34 1.80 0.67
CNN pre-trained on synthetic data 60 51.02 2.85 0.71
CNN pre-trained on synthetic data 70 49.65 6.74 0.72
CNN pre-trained on synthetic data 80 50.78 8.18 0.71
CNN pre-trained on synthetic data 90 49.30 8.00 0.72
CNN pre-trained on synthetic data 100 48.25 5.95 0.73
CNN pre-trained on synthetic data 167 45.90 11.15 0.77
RF trained on real data 10 62.50 6.74 0.71
RF trained on real data 20 50.20 9.54 0.76
RF trained on real data 30 42.84 6.19 0.81
RF trained on real data 40 39.50 5.80 0.83
RF trained on real data 50 37.65 6.76 0.85
RF trained on real data 60 36.17 5.79 0.85
RF trained on real data 70 35.86 5.60 0.86
RF trained on real data 80 35.28 6.39 0.86
RF trained on real data 90 35.74 5.01 0.85
RF trained on real data 100 35.59 6.47 0.86
RF trained on real data 167 36.61 7.13 0.85
RF trained on synthetic data 0 77.70 59.60 0.71
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Table A2. Model accuracies for Milicz Forest (MF). N is the number of real training 
samples used for model training, RMSE is the median root mean squared error, ME is the 
median mean error, and r2 is the median squared Pearson correlation coefficient. 
A positive mean error indicates an underprediction of biomass.

ModelType N RMSE ME r2

CNN pre-trained on ImageNet data 10 44.42 13.22 0.59
CNN pre-trained on ImageNet data 20 36.21 8.28 0.65
CNN pre-trained on ImageNet data 30 32.42 6.43 0.68
CNN pre-trained on ImageNet data 40 30.44 4.21 0.71
CNN pre-trained on ImageNet data 50 29.44 2.20 0.74
CNN pre-trained on ImageNet data 60 27.74 2.52 0.75
CNN pre-trained on ImageNet data 70 26.87 1.99 0.77
CNN pre-trained on ImageNet data 80 25.94 −0.48 0.78
CNN pre-trained on ImageNet data 90 26.19 −0.02 0.78
CNN pre-trained on ImageNet data 100 26.61 0.42 0.78
CNN pre-trained on ImageNet data 375 24.48 2.63 0.81
CNN pre-trained on synthetic data 0 38.10 −10.41 0.57
CNN pre-trained on synthetic data 10 37.04 −2.76 0.58
CNN pre-trained on synthetic data 20 33.82 −0.37 0.65
CNN pre-trained on synthetic data 30 33.35 −0.29 0.64
CNN pre-trained on synthetic data 40 32.67 2.23 0.65
CNN pre-trained on synthetic data 50 31.59 1.74 0.68
CNN pre-trained on synthetic data 60 31.40 1.83 0.69
CNN pre-trained on synthetic data 70 29.91 −1.32 0.71
CNN pre-trained on synthetic data 80 29.15 −1.60 0.73
CNN pre-trained on synthetic data 90 29.31 0.82 0.72
CNN pre-trained on synthetic data 100 29.31 0.61 0.73
CNN pre-trained on synthetic data 375 26.91 3.67 0.77
RF trained on real data 10 41.59 3.33 0.63
RF trained on real data 20 33.54 3.35 0.69
RF trained on real data 30 28.79 4.21 0.75
RF trained on real data 40 26.96 2.95 0.77
RF trained on real data 50 25.94 3.22 0.79
RF trained on real data 60 24.75 2.43 0.81
RF trained on real data 70 24.05 2.03 0.82
RF trained on real data 80 23.71 2.07 0.82
RF trained on real data 90 23.45 2.50 0.83
RF trained on real data 100 22.40 1.61 0.83
RF trained on real data 375 19.57 1.05 0.87
RF trained on synthetic data 0 35.57 20.72 0.74
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Table A3. Model accuracies for Silesian Beskids (SB). N is the number of real training 
samples used for model training, RMSE is the median root mean squared error, ME is 
the median mean error, and r2 is the median squared Pearson correlation coefficient. 
A positive mean error indicates an underprediction of biomass.

ModelType N RMSE ME r2

CNN pre-trained on ImageNet data 10 124.36 50.13 0.58
CNN pre-trained on ImageNet data 20 84.80 11.55 0.71
CNN pre-trained on ImageNet data 30 77.05 9.30 0.74
CNN pre-trained on ImageNet data 40 74.68 15.13 0.77
CNN pre-trained on ImageNet data 50 73.50 16.06 0.77
CNN pre-trained on ImageNet data 60 70.69 12.97 0.78
CNN pre-trained on ImageNet data 70 68.58 17.70 0.79
CNN pre-trained on ImageNet data 80 71.93 18.57 0.76
CNN pre-trained on ImageNet data 90 70.12 14.52 0.78
CNN pre-trained on ImageNet data 97 70.16 18.29 0.78
CNN pre-trained on synthetic data 0 101.48 74.49 0.77
CNN pre-trained on synthetic data 10 74.34 26.40 0.77
CNN pre-trained on synthetic data 20 76.89 23.39 0.76
CNN pre-trained on synthetic data 30 79.44 31.60 0.77
CNN pre-trained on synthetic data 40 76.38 30.41 0.76
CNN pre-trained on synthetic data 50 77.17 28.84 0.76
CNN pre-trained on synthetic data 60 76.76 29.97 0.77
CNN pre-trained on synthetic data 70 77.01 27.41 0.76
CNN pre-trained on synthetic data 80 76.95 28.08 0.76
CNN pre-trained on synthetic data 90 76.89 27.44 0.76
CNN pre-trained on synthetic data 97 76.13 25.76 0.76
RF trained on real data 10 91.81 3.70 0.70
RF trained on real data 20 77.67 3.30 0.75
RF trained on real data 30 74.89 9.49 0.75
RF trained on real data 40 71.25 13.49 0.76
RF trained on real data 50 72.06 12.87 0.77
RF trained on real data 60 71.00 12.52 0.77
RF trained on real data 70 72.52 11.30 0.76
RF trained on real data 80 71.60 10.57 0.77
RF trained on real data 90 72.31 12.58 0.76
RF trained on real data 97 71.34 12.34 0.77
RF trained on synthetic data 0 89.86 60.07 0.79

Table A4. Model accuracies for DendroNET sites (DN). N is the number of real training 
samples used for model training, RMSE is the median root mean squared error, ME is the 
median mean error, and r2 is the median squared Pearson correlation coefficient. 
A positive mean error indicates an underprediction of biomass.

ModelType N RMSE ME r2

CNN pre-trained on ImageNet data 10 93.72 −2.24 0.56
CNN pre-trained on ImageNet data 20 74.08 −2.86 0.71
CNN pre-trained on ImageNet data 30 68.31 −21.08 0.87
CNN pre-trained on ImageNet data 35 63.87 −22.58 0.88
CNN pre-trained on synthetic data 0 97.3 70.4 0.78
CNN pre-trained on synthetic data 10 65.01 −17.12 0.84
CNN pre-trained on synthetic data 20 66.54 −21.13 0.84
CNN pre-trained on synthetic data 30 64.65 −27.11 0.85
CNN pre-trained on synthetic data 35 64.37 −21.65 0.85
RF trained on real data 10 88.4 −11.32 0.66
RF trained on real data 20 74.05 −28.69 0.77
RF trained on real data 30 67.96 −20.27 0.8
RF trained on real data 35 63.64 −20.64 0.83
RF trained on synthetic data 0 128.92 99.71 0.58
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