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We consider the discretization of the 1d-integral Dirichlet fractional Laplacian by
hp-finite elements. We present quadrature schemes to set up the stiffness matrix
and load vector that preserve the exponential convergence of hp-FEM on geometric
meshes. The schemes are based on Gauss-Jacobi and Gauss-Legendre rules. We
show that taking a number of quadrature points slightly exceeding the polynomial
degree is enough to preserve root exponential convergence. The total number of
algebraic operations to set up the system is O(N5/2), where N is the problem
size. Numerical example illustrate the analysis. We also extend our analysis to
the fractional Laplacian in higher dimensions for hp-finite element spaces based on
shape regular meshes.

1 Introduction

Fractional differential equations have become an important modelling tool, which sparked
significant research in analysis and design and analysis of numerical methods, see, e.g., [BV16]
and, for numerical methods, [BBN+18, BLN20, LPG+20, DDG+20, JZ23, Kar19, ZWSK24]
and references therein.
We consider the fractional differential equation

(−∆)su = f in Ω := (−1, 1) ⊂ R, (1.1a)

u = 0 in Ωc := R \ Ω, (1.1b)

where s ∈ (0, 1), and f is analytic in Ω. Here, the operator (−∆)s is the Dirichlet integral
fractional Laplacian, defined in (2.1) below. Among the discretization techniques, methods
like the hp-finite element method (FEM) stand out as they achieve exponential convergence,
[BFM+23, FMMS23], so that significantly fewer degrees of freedom are required to achieve
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1 Introduction

the same accuracy compared to fixed order methods such as the classical h-FEM. This is par-
ticularly interesting for non-local problems such as fractional PDEs since there the stiffness
matrices are fully populated with corresponding high memory requirements and high complex-
ity to set up the matrices.
In fact, [BFM+23] considers hp-FEM approximations on suitably designed geometric meshes

in one space dimension and shows, for the hp-FEM approximation uN to the solution u of (1.1),
the energy-norm error estimate

∥u− uN∥
H̃s(Ω)

≤ C exp(−b
√
N), (1.2)

where b, C > 0 are constants independent of the problem size N . Such exponential convergence
results generalize to higher dimensions, e.g., in two space dimensions [FMMS23] asserts a
similar convergence estimate where the square root in the exponent is replaced by N1/4.
The exponential convergence in [BFM+23, FMMS23] is asserted ignoring variational crimes,

in particular, it is shown under the assumption that uN is the exact hp-finite element Galerkin
approximation to u. However, a practical realization of the Galerkin method (2.2) requires the
evaluation of singular integrals by numerical quadrature. In the present work we develop and
analyze quadrature schemes that preserve the exponential convergence (1.2). The quadratures
are based on Gauss-Legendre and Gauss-Jacobi rules, and the analysis is performed in the
framework of the First Strang Lemma. The key observation is that the hyper-singular integrand
can be transformed such that singularities are aligned with coordinate axes, which allows for
efficient treatment with Gauss-Jacobi rules.
The issue of evaluating singular integrals has already appeared in the context of boundary

element methods (BEMs), [SS11]. For the kernels of BEM-operators arising from second
order elliptic boundary value problems, regularizing transformations for the singular integrals
have been devised that fully remove the singularity so that standard quadrature techniques
can be brought to bear and a full quadrature error analysis is available, [SS11, Chap. 5].
For certain meshes with structure even the high order stiffness matrices of hp-BEM can be
computed explicitly, [Mai95, HMS96]. Generalizing the quadrature techniques described in
[SS11, Chap. 5] the works [CvPS11, CS12, CR13, CvPS15] present and analyze regularizing
transformations for a class of integrands that includes products of analytic/Gevrey-regular
functions and singular functions; computationally, an essential point of these transformations
is that they lead to the use of products of Gauss-Legendre and hp-quadrature or Gauss-Jacobi
quadrature. Using similar transformations (in 1d) and building on these works (for d > 1), our
analysis considers the specific case of hp-FEM for the fractional Laplacian, explicitly works
out the dependence on the polynomial degree p of the ansatz space, and asserts exponential
convergence of the fully discrete method. The work to set up the stiffness matrix is algebraic
in the problem size.
Implementations of the spectral fractional Laplacian have been proposed in the literature.

Low order (for d ≥ 1) Galerkin methods include [ABB17, AG18, FB23] and typically exploit
that a specific choice of basis is made in contrast to the present quadrature-based approach.
Especially for 1d fractional differential equations, spectral and spectral element methods are
available in the literature, see, e.g., [Kar19, LZZ19, SS19, ZK13, ZWSK24, LPG+20, MS18,
CSW16] and references therein. The 1d quadrature techniques employed in the present work on
shape regular meshes are closely related to those presented independently in [MS18]. Compared
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2 Main Results

to these works, an important novel aspect of the present work is the full quadrature error
analysis that rigorously establishes that taking n ≥ p + 1 quadrature points (p > 0 denoting
the employed polynomial degree) is sufficient to retain the exponential convergence of hp-FEM.
In the present article, we consider the 1d case in great detail to make key concepts appear

clearly. Extensions to d > 1 are possible, but come with additional (technical) difficulties. We
present an analysis for d > 1 for shape regular meshes based on the regularizing transformations
of [CS12] in Section 6. We hasten to add that exponential convergence (both in terms of error
versus number of degrees of freedom and error versus computational work) of hp-FEM in d ≥ 2
requires anisotropic elements with large aspect ratio, [FMMS23]. A quadrature error analysis
for meshes including anisotropic elements is the topic of a forthcoming work.
The present article is structured as follows: In Section 2, we introduce our model problem and

formulate the main result, exponential convergence of hp-FEM in the presence of quadrature, in
Theorem 2.4. Section 3 specifies the Gaussian quadrature rules and the resulting approximation
of the bilinear and linear forms in the weak formulation of the model problem. Section 3.1
shows stability of the method under quadrature. Section 4 provides the proofs of our main
results using the First Strang Lemma, while the consistency analysis is postponed to Section 5.
Section 6 extends the 1d-analysis to higher dimensions for shape regular meshes based on the
quadrature techniques developed in [CvPS11, CS12].

Finally, Section 7 provides numerical examples illustrating the performance of the quadrature
scheme.

2 Main Results

For s ∈ (0, 1), we consider the integral fractional Laplacian defined for univariate functions u
pointwise as the principal value singular integral

(−∆)su(x) := C(s) P.V.

∫
R

u(x)− u(y)

|x− y|1+2s
dy with C(s) := −22s

Γ(s+ 1/2)

π1/2Γ(−s)
, (2.1)

where Γ(·) denotes the Gamma function.
Appropriate function spaces for fractional differential equations are fractional Sobolev spaces,

defined for t ∈ (0, 1) and any open set ω ⊂ Rd by means of the Aronstein-Slobodeckij seminorm

|v|2Ht(ω) =

∫
ω

∫
ω

|v(x)− v(y)|2

|x− y|d+2t
dy dx, ∥v∥2Ht(ω) = ∥v∥2L2(ω) + |v|2Ht(ω).

In order to incorporate the exterior Dirichlet condition, we define r(x) := dist(x, ∂Ω) and
introduce the space H̃t(Ω) :=

{
u ∈ Ht(Rd) : u ≡ 0 on Rd\Ω

}
with norm

∥v∥2
H̃t(Ω)

:= ∥v∥2Ht(Ω) + ∥v/rt∥2L2(Ω).

With the exception of Section 6 the domain Ω = (−1, 1) always denotes the bounded open
interval from our model problem (1.1); in Section 6, we will consider polyhedral Ω ⊂ Rd. We
will use the fact that the norm ∥ · ∥

H̃s(Ω)
and the seminorm | · |Hs(R) are equivalent on H̃s(Ω),

[McL00]. The weak form of the fractional PDE (1.1) reads: find u ∈ H̃s(Ω) such that

a(u, v) :=
C(s)

2

∫
R

∫
R

(u(x)− u(y))(v(x)− v(y))

|x− y|1+2s
dy dx = ⟨f, v⟩L2(Ω) =: l(v) (2.2)

3



2 Main Results

for all v ∈ H̃s(Ω). Since a(·, ·) : H̃s(Ω) × H̃s(Ω) → R is continuous and coercive on H̃s(Ω),
(2.2) is uniquely solvable by the Lax-Milgram Lemma, see [AB17, Sec. 2.1].
For the discretization of the weak formulation, we employ piecewise polynomials on shape

regular meshes.

Definition 2.1 (Shape regular meshes and spline spaces). For an interval I ⊂ R, we denote
its length by hI := diam(I). For a bounded interval Ω = (x0, xM ) let the points x0 < x1 <
· · · < xM determine the mesh Tγ = {Ti := (xi−1, xi) : i = 1, . . .M}. The mesh Tγ is said to be
γ-shape regular, if

γ hTi ≤ hTj for all Ti, Tj ∈ Tγ with Ti ∩ Tj ̸= ∅. (2.3)

Based on Tγ, we define finite dimensional spline spaces by

Sp,1(Tγ) := {u ∈ H1(Ω) : u|T ∈ Pp(T ) for all T ∈ Tγ},
Sp,1
0 (Tγ) := Sp,1(Tγ) ∩H1

0 (Ω).

Here, Pp(T ) denotes the space of all polynomials with maximal degree p ∈ N on T .

The standard basis for Sp,1
0 (Tγ) is given by

B = Blin ∪ BLeg, (2.4)

where Blin := {φi : i = 1, . . . ,M − 1} are the hat functions associated with the interior nodes
xi, i = 1, . . . ,M − 1 and BLeg := ∪T∈TγBT with element bubble functions BT := {φT,i : i =
2, . . . , p}. For an element T = (xℓ, xr) with length hT = xr − xℓ, the element bubble functions
are given by

φT,i(x) =

{∫ −1+2(x−xℓ)/hT

−1 Pi−1(t) dt x ∈ T,

0 x ∈ Ω \ T ,
(2.5)

where Pi is the i-th Legendre polynomial.

The hp-FEM approximation uN is given by Galerkin discretization of (2.2): Find uN ∈
Sp,1
0 (Tγ) such that

a(uN , vN ) = l(vN ) for all vN ∈ Sp,1
0 (Tγ). (2.6)

For a given basis B := {φ1, . . . , φN} of Sp,1
0 (Tγ), finding the solution uN :=

∑N
i=1 xiφi is

equivalent to setting up and solving the linear system

Ax = b, (2.7)

where A ∈ RN×N with Aij = a(φj , φi) and b ∈ RN with bi := ⟨f, φi⟩L2(Ω). Setting up the linear
system requires evaluating the bilinear form a(·, ·) for all pairs of basis functions, which means
calculating (singular) double integrals. Computing the linear form l(·) for all basis functions
leads to a routine problem of calculating integrals involving f .

Our main convergence results are formulated for a specific kind of shape regular meshes,
so-called geometric meshes, defined in the following Definition 2.2. However, we emphasize
that the analysis of the consistency errors of the bilinear and linear forms in Chapter 5 hold
for arbitrary shape regular meshes.
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2 Main Results

Definition 2.2 (Geometric mesh T L
geo,σ and basis Bgeo of the spline space Sp,1

0 (T L
geo,σ)). Given

a grading factor σ ∈ (0, 1) and a number L ∈ N of layers, the geometric mesh T L
geo,σ = {Ti :

i = 1, ..., 2L+ 2} with 2L+ 2 elements Ti = (xgeoi−1, x
geo
i ) is defined by the nodes

xgeo0 := −1, xgeoi = −1 + σL−i+1 for i = 1, . . . , L,

xgeoi+1 = 1− σi−L for i = L, . . . , 2L, xgeo2L+2 := 1.

We note that N := dimSp,1
0 (T L

geo,σ) ∼ pL and that T L
geo,σ is shape regular with γ = σ.

The basis Bgeo for Sp,1
0 (T L

geo,σ) is taken as the basis of Definition 2.1 for the mesh T L
geo,σ.

In [BFM+23] the following exponential convergence results for the energy norm error between
the solution u in (2.2) and its hp-FEM approximation uN from (2.6) on geometric meshes
Tγ = T L

geo,σ is shown:

Proposition 2.3 ([BFM+23]). Let T L
geo,σ be a geometric mesh on the interval Ω := (−1, 1)

with grading factor σ ∈ (0, 1) and L layers of refinement towards the boundary points. Let the
data f be analytic in Ω. Let uN ∈ Sp,1

0 (T L
geo,σ) solve (2.6) with Tγ = T L

geo,σ and u solve (2.2).
Then, there are b, C > 0 and for all ε > 0 there is Cε > 0 such that for all p and L there holds

∥u− uN∥
H̃s(Ω)

≤ Ce−bp + Cεσ
(1/2−ε)L. (2.8)

The choice L ∼ p leads to convergence ∥u − uN∥
H̃s(Ω)

≤ C exp(−b′
√
N), where N is the

dimension of Sp,1
0 (T L

geo,σ) and C, b′ are constants independent of N .

In practice, it is not possible to set up the linear system of equations corresponding to (2.6)
exactly due to the presence of the kernel function |x − y|−1−2s. To implement the hp-FEM
method, we therefore have to work with computable numerical approximations ãn(·, ·) and
l̃n(·) of the bilinear form a(·, ·) and the right-hand side l(·), respectively. The fully discrete
problem then reads: Find ũN,n ∈ Sp,1

0 (Tγ) such that

ãn(ũN,n, vN ) = l̃n(vN ) for all vN ∈ Sp,1
0 (Tγ). (2.9)

In Section 3 below, we specify the approximations ãn(·, ·) and l̃n(·) based on (weighted) Gaus-
sian quadrature rules with n points. Our main result formulated in the following states that
the exponential convergence rate of ũN to the solution u is still preserved.

Theorem 2.4 (Exponential convergence including quadrature). Let T L
geo,σ be a geometric mesh

on the interval Ω := (−1, 1) with grading factor σ ∈ (0, 1) and L layers of refinement towards
the boundary points. Let f be analytic in Ω, denote by u ∈ H̃s(Ω) the solution to (2.2) and by
ũN,n ∈ Sp,1

0 (T L
geo,σ) the solution to (2.9) with Tγ = T L

geo,σ, where ãn(·, ·) and l̃n(·) are defined
in (3.13) and (3.3), respectively. The index n indicates the number of quadrature points that
is used per integral and element.
There are constants C, b > 0 and, for each ε > 0 a constant Cε (depending on f , s, and σ)

such that for any n ≥ p+ 1, p, L ∈ N there holds

∥u− ũN,n∥H̃s(Ω)
≤ Ce−br + Cεσ

(1/2−ε)L + CL2r3p3ρ1+p+r−2n. (2.10)
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For L ∼ p and n ≥ p + 1 there holds in terms of the problem size N := dimSp,1
0 (T L

geo,σ) for
some C, b′ > 0 independent of N and n

∥u− ũN,n∥H̃s(Ω)
≤ C exp(−b′

√
N). (2.11)

For L ∼ p ∼ n and the basis Bgeo from Definition 2.2, the number of algebraic operations to
set up the linear system corresponding to (2.7) is O(L5) = O(N5/2).

3 Quadrature approximations

Throughout this section, we consider γ-shape regular meshes Tγ . We start with some general

definitions and notations. T̂ := (0, 1) denotes the reference element and, for each element
T := (xℓ, xr) ∈ Tγ , we define the affine element map by

FT : T̂ → T, x 7→ xℓ + xhT . (3.1)

With a slight abuse of notation, we will naturally extend FT to an affine function C → C when
needed. For a function v defined on T , we write v̂T for its pullback to the reference element

v̂T := v ◦ FT . (3.2)

Our approximations to a(·, ·) and l(·) are based on the following (weighted) Gaussian quadra-
ture rules.
Let ω : (0, 1) → R be a positive, integrable weight function. Then, we approximate

I(Φ) :=

1∫
0

Φ(x)ω(x) dx ≈
n∑

i=1

ωiΦ(ξi) =: Gn(Φ),

where ξi are the Gaussian quadrature nodes (zeros of orthogonal polynomials w.r.t. the ω-
weighted L2-inner product) and ωi =

∫ 1
0 ω(x)Li(x)dx with the i-th Lagrange interpolation

polynomials Li(x) =
∏n

j=1,j ̸=i
x−ξj
ξi−ξj

associated with the quadrature nodes ξ1, . . . , ξn.

For ω ≡ 1, we write GLn(Φ) (Gauss-Legendre quadrature) for the quadrature rule. For
integrands with singularities at the boundaries, we take ω(x) = (1 − x)αxβ, α, β > −1 and

write GJα,β
n (Φ) (Gauss-Jacobi quadrature). For multivariate functions Φ(x, y), we will indicate

by the subscript x, y the variable to which the quadrature rule is applied.

We start by deriving an approximation to the right-hand side l(v) := ⟨f, v⟩L2(Ω) in (2.6).
Dividing the integration domain Ω into the elements T ∈ Tγ , transforming them to the reference

element T̂ , and using Gauss-Legendre quadrature for each integral defines the linear form
l̃n(vN ) for vN ∈ Sp,1

0 (Tγ) by

l(vN ) =

∫
Ω
vN (x)f(x) dx =

∑
T∈Tγ

hT

∫
T̂

v̂N,T (x)f̂T (x) dx

≈
∑
T∈Tγ

hT GLn(v̂N,T (x)f̂T (x)) =: l̃n(vN ). (3.3)

6



3 Quadrature approximations

The approximation of the bilinear form a(·, ·) is more involved since we have to deal with
hyper-singular double integrals. Using symmetry and dividing the integration domain R × R
into the elements T ∈ Tγ and the complementary set Ωc leads to

a(vN , wN ) =
C(s)

2

( ∑
T∈Tγ

∑
T ′∈Tγ

IT,T ′(vN , wN ) + 2
∑
T∈Tγ

IT,Ωc(vN , wN )
)
, (3.4)

where, for arbitrary sets A,B ⊂ R, the symbol IA,B(vN , wN ) denotes

IA,B(vN , wN ) :=

∫
A

∫
B

(vN (x)− vN (y))(wN (x)− wN (y))

|x− y|1+2s
dy dx. (3.5)

The integral over Ωc can be integrated explicitly. All the other integrals have to be transformed
to a reference square and then approximated by a suitable quadrature rule, which leads to four
cases.

Identical elements (T = T ′):

We transform the double integral IT,T (u, v) to the reference square T̂ × T̂ and divide this
integration domain into the triangles A1 := {(x, y) | 0 < x < 1, 0 < y < x} and A2 :=
{(x, y) | 0 < y < 1, 0 < x < y}. As the integrand is invariant under the transformation (x, y) 7→
(y, x), we notice that both integrals are the same. Employing the Duffy transformation, i.e.,
(x, y) 7→ (x, xy), leads to

IT,T (vN , wN ) = 2h1−2s
T

∫
T̂

∫
T̂

(v̂N,T (x)− v̂N,T (xy))(ŵN,T (x)− ŵN,T (xy))

|x− xy|2
x2−2s(1− y)1−2sdydx

≈ 2h1−2s
T GJ0,2−2s

n,x ◦GJ1−2s,0
n,y

(
(v̂N,T (x)− v̂N,T (xy))(ŵN,T (x)− ŵN,T (xy))

|x− xy|2

)
=: Qn

T,T (vN , wN ). (3.6)

We note that after the separation of the weight function, the integrand in (3.6) is a polynomial
since only removable singularities are left.

Remark 3.1. Our choice of the Gauss-Jacobi weight function is not the only possible option,
as, e.g., one could cancel out one power of x in the first equality in (3.6). However, our choice
is optimal in the sense that it decreases the polynomial degree of the integrand as much as
possible.

Adjacent elements (T ̸= T ′ with T ∩ T ′ ̸= ∅):

Without loss of generality, we may assume that T is the left neighbor of T ′, otherwise T and
T ′ change their roles. Then, the element maps transform the singularity at T ∩ T ′ to the
point(1, 0) in the reference square. With an additional transformation (x, y) 7→ (1 − x, y) we
are now in a similar setting as in the previous case. The integral can be split into integrals over

7



3 Quadrature approximations

A1 and A2 and employing the Duffy transformation on A1 (for A2 we take (x, y) 7→ (xy, y))
leads to

IT,T ′(vN , wN ) = hThT ′

(∫
T̂

∫
T̂

(v̂N,T (1− x)− v̂N,T ′(xy))(ŵN,T (1− x)− ŵN,T ′(xy))

|hT + yhT ′ |1+2s x2
x2−2s dydx

+

∫
T̂

∫
T̂

(v̂N,T (1− xy)− v̂N,T ′(y))(ŵN,T (1− xy)− ŵN,T ′(y))

|xhT + hT ′ |1+2s y2
y2−2s dydx

)
. (3.7)

The singularities appear only in one variable in each integral, for which we employ Gauss-
Jacobi quadrature, while in the other variable Gauss-Legendre quadrature is sufficient. This
gives the approximation

Qn
T,T ′(vN , wN ) :=hThT ′

(
GJ0,2−2s

n,x ◦GLn,y

(
(v̂N,T (1− x)− v̂N,T ′(xy))(ŵN,T (1− x)− ŵN,T ′(xy))

|hT + yhT ′ |1+2s x2

)
(3.8)

+GLn,x ◦GJ0,2−2s
n,y

(
(v̂N,T (1− xy)− v̂N,T ′(y))(ŵN,T (1− xy)− ŵN,T ′(y))

|xhT + hT ′ |1+2s y2

))
.

(3.9)

Separated elements (T ∩ T ′ = ∅):

This time, the integrand is not singular. Therefore, one can directly transform the double
integral to the reference square and employ tensor product Gauss-Legendre quadrature, which
produces as the approximation of IT,T ′(vN , wN ) the expression

Qn
T,T ′(vN , wN ) := hThT ′ GLn,x ◦GLn,y

(
(v̂N,T (x)− v̂N,T ′(y))(ŵN,T (x)− ŵN,T ′(y))

|(1− x)hT + distT,T ′ +yhT ′ |1+2s

)
,

where distT,T ′ denotes the Euclidean distance between the elements T and T ′.

Complement part (IT,Ωc):

The inner integral over Ωc can be calculated explicitly exploiting that the functions vN , wN ∈
Sp,1
0 (Tγ) vanish outside of Ω = (−1, 1). The outer integral can be transformed to the reference

element T̂ , which gives

IT,Ωc(vN , wN ) :=
hT
2s

∫
T̂

v̂N,T (x)ŵN,T (x)

| distT,{−1}+xhT |2s
+

v̂N,T (x)ŵN,T (x)

|distT,{1}+(1− x)hT |2s
dx. (3.10)

If T is an interior element, i.e., T ∩ ∂Ω = ∅, we employ Gauss-Legendre quadrature

Qn
T,Ωc(vN , wN ) :=

hT
2s

(
GLn

(
v̂N,T (x)ŵN,T (x)

|distT,{−1}+xhT |2s

)
+GLn

(
v̂N,T (x)ŵN,T (x)

|distT,{1}+(1− x)hT |2s

))
.

8



3 Quadrature approximations

For T ∩ ∂Ω = {−1}, we set

Qn
T,Ωc(vN , wN ) :=

hT
2s

(
GJ0,2−2s

n

(
v̂N,T (x)ŵN,T (x)

x2h2sT

)
+GLn

(
v̂N,T (x)ŵN,T (x)

|distT,{1}+(1− x)hT |2s

))
,

(3.11)

and for T ∩ ∂Ω = {1}

Qn
T,Ωc(vN , wN ) :=

hT
2s

(
GLn

(
v̂N,T (x)ŵN,T (x)

| distT,{−1}+xhT |2s

)
+GJ2−2s,0

n

(
v̂N,T (x)ŵN,T (x)

(1− x)2h2sT

))
. (3.12)

Now, having defined Qn
A,B(vN , wN ) for all cases of integrals IA,B(vN , wN ), we obtain the ap-

proximated bilinear form as

ãn(vN , wN ) :=
C(s)

2

( ∑
T∈Tγ

∑
T ′∈Tγ

Qn
T,T ′(vN , wN ) + 2

∑
T∈Tγ

Qn
T,Ωc(vN , wN )

)
. (3.13)

3.1 Stability of the quadrature rule

Positivity of the kernel function (x, y) 7→ |x − y|−1−2s and the Gauss-Legendre/Gauss-Jacobi
weights as well as exactness of the Gauss-Legendre/Gauss-Jacobi quadrature allow us to prove
the following stability result:

Lemma 3.2. Let Tγ be a γ-shape regular mesh. Then, the following holds:
(i) For all n ≥ 1 and all T, T ′ ∈ Tγ ∪ {Ωc}, we have Qn

T,T ′(u, u) ≥ 0.

(ii) Let n ≥ p and u ∈ Sp,1
0 (Tγ). Then ãn(u, u) = 0 implies u = 0. In particular, the stiffness

matrix A in (2.7) is symmetric positive definite.
Furthermore, there is Ccoer > 0 depending only on γ and s such that for all u ∈ Sp,1

0 (Tγ) the
following assertions hold:
(iii) (Identical elements) For n ≥ p and T ∈ Tγ: Qn

T,T (u, u) = IT,T (u, u).
(iv) (Adjacent elements) For n ≥ p + 1 and (T, T ′) ∈ Tγ × (Tγ ∪ {Ωc}) with T ̸= T ′ and

T ∩ T ′ ̸= ∅: Qn
T,T ′(u, u) ≥ CcoerIT,T ′(u, u) ≥ 0.

(v) (Separated elements) For n ≥ p + 1 and (T, T ′) ∈ Tγ × (Tγ ∪ {Ωc}) with T ∩ T ′ = ∅:
Qn

T,T ′(u, u) ≥ CcoerIT,T ′(u, u) ≥ 0.

Proof. Proof of (i): This follows from the positivity of the kernel and the Gauss-Legendre/Gauss-
Jacobi weights.

Proof of (ii): From (i), we get for u ∈ Sp,1
0 (Tγ) with ãn(u, u) = 0

0 =
2

C(s)
ãn(u, u) =

∑
T∈Tγ∪{Ωc}

∑
T ′∈Tγ∪{Ωc}

Qn
T,T ′(u, u)

(i)

≥
∑
T∈Tγ

Qn
T,T (u, u)

(iii)
=

∑
T∈Tγ

IT,T (u, u) ≥ 0.

Hence, |u|Hs(T ) = 0 for each T ∈ Tγ so that u is constant on each element. By continuity of u,
it is constant on Ω, and the boundary conditions then imply u = 0.
Proof of (iii): For n ≥ p, the univariate Gauss-Jacobi quadrature in (3.6) is exact for

polynomials of degree 2p − 1. Inspection of (3.6) shows that the argument is the square of a
polynomial of degree p− 1 in each variable.

9



3 Quadrature approximations

Proof of (iv): For n ≥ p+ 1, the univariate Gauss-Jacobi quadratures in (3.8) are exact for
polynomials of degree 2p + 1. We study the cases (T, T ′) ∈ Tγ × Tγ and (T, T ′) ∈ Tγ × {Ωc}
separately, starting with (T, T ′) ∈ Tγ × Tγ . We only consider the first term in (3.8), the other

one being handled analogously. Let u ∈ Sp,1
0 (Tγ). For the pull-backs ûT , ûT ′ to the reference

element T̂ of the functions u|T , u|T ′ , we get by continuity of u at T ∩ T ′ that ûT (1) = ûT ′(0).
Hence,

U(x, y) :=
ûT (1− x)− ûT ′(xy)

x

is a polynomial of degree p−1 in x and of degree p in y. Using the positivity of the quadrature
weights and the exactness of the quadrature rules (U2 is a polynomial of degree 2p ≤ 2p + 1
in each variable)

hThT ′GJ0,2−2s
n,x ◦GLn,y

(
(ûT (1− x)− ûT ′(xy))2

x2(hT + yhT ′)1+2s

)
= hThT ′GJ0,2−2s

n,x ◦GLn,y

(
U2(x, y)(hT + yhT ′)−(1+2s)

)
≥ hThT ′GJ0,2−2s

n,x ◦GLn,y

(
U2(x, y)(hT + hT ′)−(1+2s)

)
= hThT ′

∫
x∈T̂

∫
y∈T̂

U2(x, y)(hT + hT ′)−(1+2s)x2−2s dy dx

≥ (1 + hT ′/hT )
−(1+2s)hThT ′

∫
x∈T̂

∫
y∈T̂

U2(x, y)(hT + yhT ′)−(1+2s)x2−2s dy dx,

where we used in the last inequality that h
−(1+2s)
T ≥ (hT + yhT ′)−(1+2s). We conclude in view

of (3.7)

Qn
T,T ′(u, u) ≥ Ccoer IT,T ′(u, u),

where Ccoer := inf{(1 + hT ′/hT )
−(1+2s) |T ∈ Tγ , T ′ adjacent to T} depends only the shape

regularity constant γ and s. The case (T, T ′) ∈ Tγ ×{Ωc} leads to two terms of the form (3.11)
or (3.12). One term can always be analyzed in similar fashion as above and the other one can
be treated as in the following case (v).
Proof of (v): This is handled similarly to the case of adjacent elements in (iv). We consider

only the case (T, T ′) ∈ Tγ × Tγ , the case (T, T ′) ∈ Tγ × {Ωc} is handled similarly.
With ûT , ûT ′ as above and using that polynomials of degree 2p + 1 are integrated exactly

for n ≥ p+ 1 we estimate

Qn
T,T ′(u, u) = hThT ′GLn,x ◦GLn,y

(
(ûT (x)− ûT ′(y))2((1− x)hT + distT,T ′ +yhT ′)−(1+2s)

)
≥ hThT ′GLn,x ◦GLn,y

(
(ûT (x)− ûT ′(y))2(hT + distT,T ′ +hT ′)−(1+2s)

)
= hThT ′

∫
x∈T̂

∫
y∈T̂

(ûT (x)− ûT ′(y))2(hT + distT,T ′ +hT ′)−(1+2s) dy dx

≥
(

distT,T ′

hT + distT,T ′ +hT ′

)1+2s

hThT ′

∫
x∈T̂

∫
y∈T̂

(ûT (x)− ûT ′(y))2

((1− x)hT + distT,T ′ +yhT ′)1+2s
dy dx

≥ CcoerIT,T ′(u, u),
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4 Proof of Theorem 2.4

for a Ccoer > 0 that depends solely on the shape regularity constant γ and s.

Remark 3.3. The proof shows that the condition n ≥ p+ 1 for the case of adjacent elements
could be weakened in that p points suffice in one variable whereas p+1 point should be used in
the other one.

Corollary 3.4. Let Tγ be a γ-shape regular mesh. There is ccoer > 0 depending only on γ and
s such that for n ≥ p+ 1

ãn(u, u) ≥ ccoer∥u∥2H̃s(Ω)
∀u ∈ Sp,1

0 (Tγ). (3.14)

Proof. We write

ãn(u, u) =
C(s)

2

∑
T∈Tγ∪{Ωc}

∑
T ′∈Tγ∪{Ωc}

Qn
T,T ′(u, u)

and use Lemma 3.2 to bound Qn
T,T ′(u, u) ≥ CcoerI

n
T,T ′(u, u) for a Ccoer > 0 depending only on

γ and s.

Remark 3.5. (i) Lemma 3.2 shows that it suffices to use n ≥ p quadrature points for the
quadrature Qn

T,T to ensure solvability of the linear system (2.7). The condition n ≥ p + 1
stipulated in Corollary 3.4 leads to uniform (in p and Tγ) coercivity. (ii) Remark 3.3 shows
that for adjacent elements a “mixed” quadrature order could be employed to slightly reduce the
number of quadrature points. (iii) The stability result Corollary 3.4 exploits positivity of the
kernel and weights as well as a certain exactness property of the Gauss-Legendre/Gauss-Jacobi
quadratures. One can avoid exploiting these properties and rely on a perturbation argument that
uses consistency error estimates for the quadratures and the coercivity of the continuous bilinear
form a(·, ·). This approach, which results in the stronger requirement n ≥ p+O(log((p+1)(#Tγ+1)))
is discussed in Lemma 4.4 below.

4 Proof of Theorem 2.4

The proof is based on the classical Strang Lemma, see, e.g., [Bra07, Chap. 3]. In the present
setting, it takes the following form:

Lemma 4.1 (First Strang Lemma). Let T be a mesh on Ω and let α̃n > 0 be such that ãn
satisfies

α̃n∥vN∥2
H̃s(Ω)

≤ ãn(vN , vN ) for all vN ∈ Sp,1
0 (T ). (4.1)

Then, with the continuity constant Ca of the bilinear form a, the difference u − ũN,n between

the solutions u ∈ H̃s(Ω) of (2.2) and ũN,n ∈ Sp,1
0 (T ) of (2.9) satisfies

∥u− ũN,n∥H̃s(Ω)
≤
(
1 +

Ca

α̃n

)(
inf

v∈Sp,1
0 (T )

(
∥u− v∥

H̃s(Ω)
+ sup

w∈Sp,1
0 (T )

|a(v, w)− ãn(v, w)|
∥w∥

H̃s(Ω)

)

+ sup
w∈Sp,1

0 (T )

|l(w)− l̃n(w)|
∥w∥

H̃s(Ω)

)
.

11



4 Proof of Theorem 2.4

Lemma 4.1 indicates that we have to show lower bounds for the coercivity of ãn(·, ·) as well
as derive bounds for the consistency errors |l(w)− l̃n(w)| and |a(v, w)− ãn(v, w)|. This is the
subject of the following two lemmas, whose proofs are postponed to Section 5.

Lemma 4.2 (Consistency error for l). Let f be analytic in Ω, and let Tγ be a γ-shape regular

mesh. Let l(v) = ⟨f, v⟩L2(Ω) and let its approximation l̃n(·) be defined by (3.3). Then, there
exists a constant ρ > 1 depending only on f such that

|l(v)− l̃n(v)| ≤ Cs,fρ
p−2n+1p∥v∥

H̃s(Ω)
for all v ∈ Sp,1

0 (Tγ), (4.2)

where Cs,f > 0 is a constant that depends only on s and f .

Lemma 4.3 (Consistency error for a). Let Tγ be a γ-shape regular mesh, a(·, ·) be the bilinear
form of (2.2) and ãn(·, ·) be its approximation (3.13). Then, there exists a constant ρ > 1 that
depends only on the shape regularity constant γ such that for all u ∈ Sr,1

0 (Tγ) and v ∈ Sp,1
0 (Tγ)

there holds

|a(u, v)− ãn(u, v)| ≤ Cs,γ(#Tγ)2ρr+p−2n+1r3p3∥u∥
H̃s(Ω)

∥v∥
H̃s(Ω)

, (4.3)

where Cs,γ is a constant that depends only on γ and s.

As pointed out in Remark 3.5, the consistency error a−ãn allows one to infer uniform coercivity
by a perturbation argument:

Lemma 4.4 (Uniform coercivity). Let the assumptions of Lemma 4.3 hold. Then, there are
constants α̃, λ1, λ2 > 0 depending only on the shape regularity constant γ and s such that for
n ≥ p+ λ1 ln(p+ 1) + λ2 ln(#Tγ + 1) there holds

α̃∥vN∥2
H̃s(Ω)

≤ ãn(vN , vN ) for all vN ∈ Sp,1
0 (Tγ). (4.4)

Proof. The coercivity of a(·, ·), the triangle inequality and Lemma 4.3 applied with r = p give

α∥vN∥2
H̃s(Ω)

≤ a(vN , vN ) ≤ ãn(vN , vN ) + |a(vN , vN )− ãn(vN , vN )|

≤ ãn(vN , vN ) + Cs,γ (#Tγ)2ρ2p−2n+1p6∥vN∥2
H̃s(Ω)

.

As the second term on the right-hand side tends to zero for n → ∞, we may ensure for
n ≥ p+ λ1 ln(p+ 1) + λ2 ln(#Tγ + 1) with large enough constants λ1, λ2 that

Cs,γ (#Tγ)2p6ρ1−2λ1 ln(p+1)−2λ2 ln(#Tγ+1) ≤ α

2
(4.5)

so that coercivity of ãn follows with coercivity constant α̃ := α/2. To give more details: we
note that λ1, λ2 can be chosen independently of p and #Tγ as

• λ1 ≥
3

ln(ρ)
=⇒ (p+ 1)6−2λ1 ln(ρ) ≤ 1,

• λ2 ≥
2

ln(ρ)
=⇒ (#Tγ + 1)2−λ2 ln(ρ) ≤ 1,

12



4 Proof of Theorem 2.4

• λ2 ≥ max

(
ln(2ρ Cs,γ)− ln(α)

ln(ρ) ln(2)
, 0

)
=⇒ Cs,γ ρ (#Tγ + 1)−λ2 ln(ρ) ≤ α

2
,

which directly gives (4.5).

Proof of Theorem 2.4. Proof of (2.10): Under the assumptions made, we can apply the stabil-
ity result Corollary 3.4 with Tγ = T L

geo,σ noting that #T L
geo,σ = 2L+2. Hence, for r ∈ {1, . . . , p},

we can use the First Strang Lemma to estimate

∥u− ũN,n∥H̃s(Ω)
≤ C

(
inf

ur∈Sr,1
0 (T L

geo,σ)

(
∥u− ur∥H̃s(Ω)

+ sup
w∈Sp,1

0 (T L
geo,σ)

|a(ur, w)− ãn(ur, w)|
∥w∥

H̃s(Ω)

)

+ sup
ω∈Sp,1

0 (T L
geo,σ)

|l(w)− l̃n(w)|
∥w∥

H̃s(Ω)

)
. (4.6)

Taking ur ∈ Sr,1
0 (T L

geo,σ) as the hp-FEM approximation of (2.6) for the space Sr,1
0 (T L

geo,σ), we
get from Proposition 2.3 for the first term

∥u− ur∥H̃s(Ω)
≤ Ce−br + Cεσ

(1/2−ε)L. (4.7)

Lemma 4.3 and the a priori estimate ∥ur∥H̃s(Ω)
≤ C∥f∥L2(Ω) lead to

sup
w∈Sp,1

0 (T L
geo,σ)

|a(ur, w)− ãn(ur, w)|
∥w∥

H̃s(Ω)

≤ Cs,σ,f L2ρr+p−2n+1r3p3. (4.8)

Finally, Lemma 4.2 provides

sup
w∈Sp,1

0 (T L
geo,σ)

|l(w)− l̃n(w)|
∥w∥

H̃s(Ω)

≤ Cf ρp−2n+1p. (4.9)

This proves the convergence result (2.10).
Proof of (2.11): Follows from (2.10) by taking r = p/2.
Proof of the complexity estimate: We are left to show that, for L ∼ p ∼ n and the basis Bgeo =

Blin ∪BLeg from Definition 2.2, the number of algebraic operations to set up the linear system
Ax = b is O(L5), where A ∈ RN×N with Aij = a(φj , φi) and b ∈ RN with bi := ⟨f, φi⟩L2(Ω).
The key to the proof is that the evaluation of the p + 1 shape functions at the n quadrature
points always happens on the reference element T̂ and therefore can be precomputed. This
precomputation can be realized in O(np) operations using three-term recurrence relations by
noting that the integrated Legendre polynomials are orthogonal polynomials (see, e.g., [KS05,
(A.3), (A.9)]).
We recall that the support of the basis functions consists of two mesh elements for Blin and

one for BLeg. Therefore, in the definition of the approximated bilinear form

ãn(φi, φj) =
C(s)

2

( ∑
T∈T L

geo,σ

∑
T ′∈T L

geo,σ

Qn
T,T ′(φi, φj) + 2

∑
T∈T L

geo,σ

Qn
T,Ωc(φi, φj)

)
,
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4 Proof of Theorem 2.4

most of the summands are zero and only O(1) are left to calculate. Before we derive the stated
complexity bound, we show that a direct implementation is not enough to achieve O(L5).
Direct implementation: In terms of computational effort, the evaluation of the stiffness

matrix Aij dominates the computation of the load vector bi (which is of order O(Lpn) by the
same reasoning as below). For the stiffness matrix, a naive implementation contains nested
loops (starting from the outer loops) of

• 2 loops over the O(p L) basis functions Bgeo (thus complexity O(p2 L2)) with evaluation
of O(1) quadrature formulas of the type Qn

T,T ′(φi, φj) and Qn
T,Ωc(φi, φj);

• evaluation of each Qn
T,T ′(φi, φj) and Qn

T,Ωc(φi, φj): 2 loops over the quadrature points

with complexity O(n2).

In total this leads to a complexity of O(p2L2)O(n2) = O(L6), since L ∼ p ∼ n. We now show
that the complexity of setting up the stiffness matrix and therefore the overall complexity, can
actually be reduced from O(L6) to O(L5).

Step 1 (blockwise assembly): We assemble the stiffness matrix blockwise. Therefore, for
subsets of basis functions B̂, B̃ ⊂ B, we introduce the notation ãn(B̂, B̃) := (ãn(φi, φj))φi∈B̂,φj∈B̃
for a matrix block.

As B = Blin∪BLeg, we have A =

(
ãn(Blin,Blin) ãn(Blin,BLeg)
ãn(BLeg,Blin) ãn(BLeg,BLeg)

)
. The block ãn(Blin,Blin)

has O(L2) entries (as #Blin = O(L)) that can each be calculated in O(n2) operations. Simi-
larly, the blocks ãn(Blin,BLeg) and ãn(BLeg,Blin) have O(p L2) entries (as #BLeg = O(p L)),
which can be each calculated in O(n2) operations. Thus, the total complexity for the cal-
culation of these three blocks is O(p L2n2) operations. It thus remains to treat the block
ãn(BLeg,BLeg).

Step 2 (treatment of ãn(BLeg,BLeg)): Let T, T ′ ∈ T L
geo,σ be a pair of elements. We distinguish

three cases: the O(L) pairs of adjacent elements, the O(L) coinciding pairs T ′ = T , and the
O(L2) well-separated pairs. For the first two cases of adjacent pairs or identical pairs, one has
to consider O(p2) combinations of basis functions BLeg so that the total complexity for this
case is O(p2L n2), which is the desired O(L5) complexity.

Therefore, let T, T ′ be separated, i.e., T ∩ T ′ = ∅ and φT ∈ BT , φT ′ ∈ BT ′ be fixed. For this
case, the bilinear form ãn(φT , φT ′) simplifies to

ãn(φT , φT ′)

hThT ′
= GLn,x ◦GLn,y

(
φ̂T (x)φ̂T ′(y)

|(1− x)hT + distT,T ′ +yhT ′ |1+2s

)
= (ωi φ̂T (xi))

⊤
i=1,...,n · (kT,T ′(xi, yj))i,j=1,...,n · (ωj φ̂T ′(yj))j=1,...,n, (4.10)

where kT,T ′(x, y) := (|(1 − x)hT + distT,T ′ +yhT ′ |1+2s)−1. The key observation is that the
vectors (ωi φ̂T (xi))

⊤
i=1,...,n and (ωj φ̂T ′(yj))j=1,...,n can be precomputed in O(pn) operations

using recurrence relations since φ̂T and φ̂T ′ are the integrated Legendre polynomials on the
reference element T̂ and therefore independent of T and T ′. Thus, we can compute the products
in (4.10) as: For all pairs of separated elements T , T ′ and all φT ∈ BT , compute the vectors

• M := (ωi φ̂T (xi))
⊤
i=1,...,n · (kT,T ′(xi, yj))i,j=1,...,n in O(n2);

• then, loop over all basis functions φT ′ ∈ BT ′ and compute the scalar product M ·
(ωj φ̂T ′(yj))j=1,...,n in O(n).
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5 Consistency errors

This leads to a total complexity of O(L2 p (n2 + p n)) = O(L5), which finishes the proof.

5 Consistency errors

In this chapter, we present the proofs for the consistency error estimates in Lemmas 4.2 and
4.3.

We start with a well-known basic error estimate for Gaussian quadrature. Recall that

I(Φ) :=

∫
T̂
Φ(x)ω(x) dx ≈

n∑
i=1

ωiΦ(xi) =: Gn(Φ),

with
∑

i ωi = Cω :=
∫
T̂
ωdx and that the numerical integration is exact for Π ∈ P2n−1(T̂ ).

Thus, for an arbitrary polynomial Π ∈ P2n−1(T̂ ) we get (using also the positivity of the weights
ωi)

En := |I(Φ)−Gn(Φ)| = |I(Φ−Π)−Gn(Φ−Π)|

≤ Cω∥Φ−Π∥
L∞(T̂ )

+

n∑
i=1

ωi ∥Φ−Π∥
L∞(T̂ )

≤ 2Cω∥Φ−Π∥
L∞(T̂ )

,

which gives the best approximation estimate

En ≤ 2Cω inf
Π∈P2n−1(T̂ )

∥Φ−Π∥
L∞(T̂ )

. (5.1)

By tensorization, this result for univariate Gaussian quadrature can be extended to the 2d-case.
We consider the special case ω ≡ 1 and for

I2D(Φ) :=

∫
T̂

∫
T̂
Φ(x, y) dy dx ≈ G2D

n (Φ) := Gn,x ◦Gn,y(Φ) = Gn,y ◦Gn,x(Φ) =
n∑

i,j=1

ωiωjΦ(xi, yj)

we estimate the error using Cω = 1 for ω ≡ 1:

E2D
n := |I2D(Φ)−G2D

n (Φ)| (5.2)

=

∣∣∣∣∫
T̂

∫
T̂
Φ(x, y) dy −Gn,y(Φ(x, ·)) dx

∣∣∣∣+ ∣∣∣∣∫
T̂
Gn,y(Φ(x, ·)) dx−Gn,y ◦Gn,x(Φ)

∣∣∣∣
≤ sup

x∈T̂
|I(Φ(x, ·))−Gn,y(Φ(x, ·))|+

∣∣∣∣Gn,y

(∫
T̂
Φ(x, ·) dx−Gn,x(Φ)

)∣∣∣∣
≤ sup

x∈T̂
|I(Φ(x, ·))−Gn,y(Φ(x, ·))|+

n∑
i=1

ωi

∣∣∣∣∫
T̂
Φ(x, yi) dx−Gn,x(Φ(·, yi))

∣∣∣∣
∑

i ωi=1

≤ sup
x∈T̂

|I(Φ(x, ·))−Gn,y(Φ(x, ·))|+ sup
y∈T̂

|I(Φ(·, y))−Gn,x(Φ(·, y))| .

In view of (5.1), these two univariate integration errors are estimated by best approximation
errors. For analytic integrands, the best approximation errors will be quantified in Proposi-
tion 5.2.
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5 Consistency errors

Definition 5.1 (Bernstein ellipse). For ρ > 1, we define the Bernstein ellipse Eρ and its scaled

version Êρ by

Eρ := {z ∈ C : |z − 1|+ |z + 1| < ρ+ ρ−1}, (5.3)

Êρ := F−1
(−1,1)(Eρ), (5.4)

where F(−1,1) : C → C, x 7→ 2x− 1 is the affine map transforming (−1, 1) to (0, 1). We note

that the focal points of Êρ are 0 and 1.

Proposition 5.2. Let Φ be holomorphic on Êρ̃, ρ̃ > 1. Then, for every 1 < ρ < ρ̃, we have

inf
v∈Pn

∥Φ− v∥L∞(0,1) ≤
2

ρ− 1
ρ−n∥Φ∥

L∞(Êρ). (5.5)

Proof. This proposition is just a transformed version of [DL93, Chap. 7, Thm. 8.1].

With this estimate for the best approximation error, we obtain exponential convergence for
the quadrature errors.

Lemma 5.3. Let ρ̃ > 1.
(i) Let Φ : Êρ̃ → C be holomorphic. Then, for every 1 < ρ < ρ̃, the quadrature error can be

estimated by

|I(Φ)−Gn(Φ)| ≤ Cρ−2n+1∥Φ∥
L∞(Êρ), (5.6)

where the constant C is independent of n and Φ.
(ii) Let Φ : Êρ̃ × Êρ̃ → C be such that for each y ∈ (0, 1) the function Φ(·, y) is holomorphic

on Êρ̃ and such that for each x ∈ (0, 1), Φ(x, ·) is holomorphic on Êρ̃. Then, for every
1 < ρ < ρ̃, the quadrature error can be estimated by

|I2D(Φ)−G2D
n (Φ)| ≤ Cρ−2n+1

(
sup

y∈(0,1)
∥Φ(·, y)∥

L∞(Êρ) + sup
x∈(0,1)

∥Φ(x, ·)∥
L∞(Êρ)

)
, (5.7)

where the constant C is independent of n and Φ.

The norms in the previous estimates do not involve the ∥·∥
H̃s(Ω)

norm required in the Strang

Lemma. This is achieved with an inverse estimate or a Poincaré type estimate.

Lemma 5.4. Let I = (xℓ, xℓ + hI) ⊂ R be an interval with diameter hI := diam(I) < ∞.
(i) There is a constant independent of I such that for every ρ > 1 and p ∈ N there holds

for all polynomials v ∈ Pp(I) and their pullbacks v̂ := v ◦ FI∥∥∥∥ d

dx
v̂

∥∥∥∥
L∞(Êρ)

≤ Cρpp3h
s−1/2
I |v|Hs(I), (5.8)

∥v̂∥
L∞(Êρ) ≤ Cρpp h

−1/2
I ∥v∥Hs(I). (5.9)
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5 Consistency errors

(ii) Denote Isym = (xℓ − hI , xℓ + hI) and let v ∈ Hs(Isym) with v|(xℓ−hI ,xℓ) = 0. Then,
there is C > 0 depending only on s such that

∥v∥L2(I) ≤ C hsI |v|Hs(Isym). (5.10)

The same estimate holds for Isym = (xℓ, xℓ + 2hI) and v ∈ Hs(Isym) with v|(xℓ+hI ,xℓ+2hI) =
0.

Proof. With the Bernstein inequality [DL93, Chap. 4, Thm. 2.2]

∥q∥
L∞(Êρ) ≤ ρp∥q∥L∞(0,1) for all q ∈ Pp(0, 1)

and inserting the mean v̂ :=
∫ 1
0 v̂(x) dx, we obtain∥∥∥∥ d

dx
v̂

∥∥∥∥
L∞(Êρ)

≤ Cρp
∥∥∥∥ d

dx
v̂

∥∥∥∥
L∞(0,1)

= Cρp
∥∥∥∥ d

dx
(v̂ − v̂)

∥∥∥∥
L∞(0,1)

.

Employing inverse inequalities of Markov type, see [Sch98, Thm 3.91, Thm. 3.92] together with
a fractional Poincaré inequality, see [Heu14], and a scaling argument, we arrive at∥∥∥∥ d

dx
(v̂ − v̂)

∥∥∥∥
L∞(0,1)

≤ Cp2
∥∥v̂ − v̂

∥∥
L∞(0,1)

≤ Cp3
∥∥v̂ − v̂

∥∥
L2(0,1)

(5.11)

≤ Cp3|v̂|Hs(0,1) ≤ Cp3h
s−1/2
I |v|Hs(I). (5.12)

This shows (5.8). Inequality (5.9) follows with the same arguments.
The fractional Poincaré inequality (5.10) can be shown by a scaling argument and the com-

pact embedding Hs ⊂ L2; the fact that the seminorm appears on the right-hand side of (5.10)
is a consequence of the fact that v is assumed to vanish on parts of Isym. See also [AB17] for
the proof of a closely related result.

The following lemma provides the key technical estimates for the quadrature errors appearing
in the approximated bilinear and linear forms.

Lemma 5.5. Let co(T, T ′) denote the convex hull of two sets T and T ′. Let Tγ be a γ-shape
regular mesh on Ω. There exists a constant ρ > 1 that depends only on γ and s such that for
all v ∈ Sr,1

0 (Tγ), w ∈ Sp,1
0 (Tγ) and T , T ′ ∈ Tγ there holds∣∣IT,T ′(v, w)−Qn
T,T ′(v, w)

∣∣ ≤ Cs,ρ,γr
3p3ρr+p−2n+1|v|Hs(co(T,T ′))|w|Hs(co(T,T ′)), (5.13)∣∣IT,Ωc(v, w)−Qn

T,Ωc(v, w)
∣∣ ≤ Cs,ρ,γr

3p3ρr+p−2n+1|v|
H̃s(Ω)

|w|
H̃s(Ω)

. (5.14)

Proof. We distinguish the cases of pairs of adjacent elements, identical pairs, well-separated
pairs, and combinations of elements T with Ωc.
Case of adjacent elements: We start with the case for adjacent elements T ̸= T ′ with

T ∩ T ′ ̸= ∅. Due to Lemma 5.3 it is sufficient to estimate the L∞-norms of the integrands in
(3.7). As both integrands can be treated in the same way, we only consider the first one

ĝ1(x, y) := h−1−2s
T

(v̂T (1− x)− v̂T ′(xy))

x
· (ŵT (1− x)− ŵT ′(xy))

x
· 1

|1 + yhT ′/hT |1+2s
.
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5 Consistency errors

Note that the first two fractions of the product on the right-hand side have removable singular-
ities and are therefore holomorphic on C in each variable. The function y 7→ |1 + yhT ′/hT | =√
(1 + yhT ′/hT )2 > 0 on the closed interval [0, 1] and therefore has a holomorphic extension to

an ellipse Êρ for some ρ > 1 that solely depends on γ since hT ′/hT ≤ 1/γ by shape regularity.
We conclude that ĝ1(·, y) is holomorphic on C for fixed y ∈ [0, 1] and ĝ1(x, ·) is holomorphic on
Êρ for fixed x ∈ [0, 1]. Using that v̂T (1) = v̂T ′(0), the fundamental theorem of calculus implies

for (x, y) ∈ [0, 1]× Êρ and for (x, y) ∈ Êρ × [0, 1]

∣∣∣∣1x(v̂T (1− x)− v̂T ′(xy))

∣∣∣∣ =
∣∣∣∣∣∣∣
1

x

 x∫
0

d

dz
v̂T (1− z)dz −

xy∫
0

d

dz
v̂T ′(z)dz


∣∣∣∣∣∣∣

≤ 2max

(∥∥∥∥ d

dz
v̂T

∥∥∥∥
L∞(Êρ)

,

∥∥∥∥ d

dz
v̂T ′

∥∥∥∥
L∞(Êρ)

)
.

Analogously, the same can be shown for the function ŵ. With Lemma 5.4, this implies

sup
y∈(0,1)

∥ĝ1(·, y)∥L∞(Êρ) + sup
x∈(0,1)

∥ĝ1(x, ·)∥L∞(Êρ)

≤ Cs,ρ,γr
3p3ρr+pmax(|v|Hs(T ), |v|Hs(T ′))max(|w|Hs(T ), |w|Hs(T ′)).

Together with (5.7) and max(|v|Hs(T ), |v|Hs(T ′)) ≤ |v|Hs(co(T,T ′)), this finishes the proof for the
case of adjacent elements T, T ′.

Case of identical elements: The case T = T ′ follows with similar arguments. We note that
in this case the integrand

ĝ2(x, y) :=
(ûT (x)− ûT (xy))(v̂T (x)− v̂T (xy))

|x− xy|2
h−1−2s
T (5.15)

is a polynomial of degree ≤ r + p− 1 and thus is integrated exactly for n ≥ max(r, p).

Case of well-separated elements: For separated elements T ∩ T ′ = ∅ the integrand is con-
tinuous. Thus, by [MS98, Lem. 4.6], the Gaussian quadrature error can be estimated by the
best approximation error for the function ĝ3(x, y) := |distT,T ′ +(1− x)hT + yhT ′ |−1−2s in L∞

using polynomials of maximal degree rc := 2n − p − r − 1 and L2-norms of the polynomials
v̂T (x)− v̂T ′(y) and ŵT (x)− ŵT ′(y):∣∣∣∣IT,T ′(v, w)−Qn

T,T ′(v, w)

∣∣∣∣ ≤ Cp2hThT ′ inf
q̂∈Qrc ((0,1)

2)
∥ĝ3 − q̂∥

L∞(T̂×T̂ )
·(∫

T̂

∫
T̂
(v̂T (x)− v̂T ′(y))2dydx

)1/2(∫
T̂

∫
T̂
(ŵT (x)− ŵT ′(y))2dydx

)1/2
, (5.16)

where Qrc((0, 1)
2) denotes the tensor product space Prc(0, 1) ⊗ Prc(0, 1) = span{(x, y) 7→

xiyj : 0 ≤ i, j ≤ rc}. Similarly to the case of adjacent elements, the function ĝ admits a holo-
morphic extension to Êρ×Êρ for some ρ > 1 since ĝ3(x, y) = ((distT,T ′ +(1−x)hT+yhT ′)2)−1/2−s

and the argument of (·)−1−2s is bounded away from 0 for (x, y) ∈ [0, 1]2. In fact, we only require
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5 Consistency errors

that for each fixed x ∈ [0, 1] the function ĝ3(x, ·) can be extended holomorphically to Êρ and for

each fixed y ∈ [0, 1] the function ĝ3(·, y) can be extended holomorphically to Êρ. As in the case
of adjacent element, we have by shape regularity hT / distT,T ′ ≤ 1/γ and hT ′/ distT,T ′ ≤ 1/γ.

We may employ Proposition 5.2 and a tensor product argument akin to that employed in
(5.2) to get with inequality (5.2) the existence of ρ > 1 such that

inf
q̂∈Qrc ((0,1)

2)
∥ĝ3 − q̂∥

L∞(T̂×T̂ )
≤ Cs,ρ,γρ

−rc dist−1−2s
T,T ′ . (5.17)

For the remaining terms in (5.16), we transform back to the physical elements, insert the
mean vco(T,T ′) :=

∫
co(T,T ′) v(x)dx/hco(T,T ′) over the convex hull co(T, T ′) of T and T ′ and

integrate in one variable to obtain∫
T̂

∫
T̂
(v̂T (x)− v̂T ′(y))2dydx = h−1

T h−1
T ′

∫
T

∫
T ′
(vT (x)− vT ′(y))2dydx

≤ 2h−1
T h−1

T ′

∫
T

∫
T ′
(v(x)− vco(T,T ′))

2 + (vco(T,T ′) − v(y))2dydx

= 2h−1
T ∥v − vco(T,T ′)∥2L2(T ) + 2h−1

T ′ ∥v − vco(T,T ′)∥2L2(T ′). (5.18)

Both terms can be treated in the same way, we thus only focus on the first one. Increasing
the domain of integration to the convex hull co(T, T ′) and employing a Poincaré inequality,
see [Heu14, Prop. 2.2], gives

∥v − vco(T,T ′)∥2L2(T ) ≤ ∥v − vco(T,T ′)∥2L2(co(T,T ′)) ≤ Csh
2s
co(T,T ′)|v|

2
Hs(co(T,T ′)). (5.19)

Inserting everything into (5.16) gives∣∣IT,T ′(v, w)−Qn
T,T ′(v, w)

∣∣ ≤ Cp2ρr+p−2n+1 dist−1−2s
T,T ′ (hT + hT ′)h2sco(T,T ′)|v|Hs(co(T,T ′))|w|Hs(co(T,T ′)).

(5.20)

We note that, for shape regular meshes, we can estimate

hT ≤ γ−1 distT,T ′ , hT ′ ≤ γ−1 distT,T ′ , hco(T,T ′) ≤ distT,T ′ +hT + hT ′ ≤ distT,T ′

(
1 +

2

γ

)
.

Thus, there holds dist−1−2s
T,T ′ (hT ′+hT )h

2s
co(T,T ′) ≤ (2/γ)(1+2/γ)2s, which concludes the argument

for the case of separated elements.

Case of combination of T with Ωc: For the complementary part, see (3.10), we consider
integrals of the form

hT

∫
T̂

v̂T (x)ŵT (x)

|distT,{−1}+xhT |2s
dx. (5.21)

We have to distinguish two cases. If T is at the left boundary, −1 ∈ T and therefore distT,{−1} =
0, we can treat the singular integral (5.21) as a one dimensional version of the adjacent case.
If distT,{−1} > 0, the proof uses similar techniques as the separated case. The only difference
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6 Outlook: the multidimensional case on shape regular meshes

is that, instead of the convex hull of two elements, the convex hull of the element and the
boundary point −1 is used and [Heu14, Prop. 2.2] is replaced with (5.10) to bound the L2-
norms

∥v∥L2(T ) ≤ ∥v∥L2(co(T,{−1})) ≤ C hsco(T,{−1})∥v∥Hs(Ω). (5.22)

This finishes the proof.

Now, the consistency errors follow from summation of the elementwise contributions.

Proof of Lemma 4.3. With the triangle inequality, basic integration and Lemma 5.5 we obtain

|a(v, w)− ãn(v, w)| ≤
∑
T∈Tγ

∑
T ′∈Tγ

∣∣IT,T ′(v, w)−Qn
T,T ′(v, w)

∣∣+ 2
∑
T∈Tγ

∣∣IT,Ωc(v, w)−Qn
T,Ωc(v, w)

∣∣
≤ Cs,ρ,γr

3p3ρr+p−2n+1

( ∑
T∈Tγ

∑
T ′∈Tγ

|v|Hs(co(T,T ′))|w|Hs(co(T,T ′))

+ 2
∑
T∈Tγ

∥v∥
H̃s(Ω)

∥w∥
H̃s(Ω)

)
≤ Cs,ρ,γ(#Tγ)2r3p3ρr+p−2n+1∥v∥

H̃s(Ω)
∥w∥

H̃s(Ω)
, (5.23)

which finishes the proof.

Proof of Lemma 4.2. As f is analytic on [0, 1] there exists an analytic extension to a Bernstein
ellipse Êρ for some ρ > 1. Using (5.6) of Lemma 5.3 gives for each element∣∣∣∣∫

T̂
f̂T (x)v̂T (x)dx−GLn(f̂T v̂T )

∣∣∣∣ ≤ Cρ−2n+1∥f̂T v̂T ∥L∞(Êρ) ≤ Cρ,fρ
−2n+1∥v̂T ∥L∞(Êρ)

(5.9)

≤ Cs,ρ,fpρ
p−2n+1h

−1/2
T ∥v∥Hs(T ).

Summation over all elements T ∈ Tγ together with the Cauchy-Schwarz inequality gives

|l(v)− l̃n(v)| ≤
∑
T∈Tγ

hT

∣∣∣∣∫
T̂
f̂T (x)v̂T (x)dx−GLn(f̂T v̂T )

∣∣∣∣
≤ Cs,ρ,fpρ

p−2n+1
∑
T∈Tγ

h
1/2
T ∥v∥Hs(T ) ≤ Cs,ρ,fpρ

p−2n+1
√
|Ω|
( ∑

T∈Tγ
∥v∥2Hs(T )

)1/2
≤ Cs,ρ,f pρp−2n+1∥v∥Hs(Ω),

which finishes the proof.

6 Outlook: the multidimensional case on shape regular meshes

In this section, we discuss how the preceding 1d-analysis can be generalized to the multidimen-
sional case d > 1 for bounded polyhedral Lipschitz domains Ω ⊂ Rd. In this case, the weak
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6 Outlook: the multidimensional case on shape regular meshes

formulation is given by: Find u ∈ H̃s(Ω) such that

a(u, v) :=
C(s, d)

2

∫
Rd

∫
Rd

(u(x⃗)− u(y⃗))(v(x⃗)− v(y⃗))

|x⃗− y⃗|d+2s
dy⃗ dx⃗ = ⟨f, v⟩L2(Ω) =: l(v) (6.1)

for all v ∈ H̃s(Ω), where C(s, d) := 22ssΓ(s + d/2)/(πd/2Γ(1 − s)) (see, e.g., [AB17]). Thus,
we have to numerically compute integrals of the form

IS1,S2(v, w) :=

∫
S1

∫
S2

(v(x⃗)− v(y⃗))(w(x⃗)− w(y⃗))

|x⃗− y⃗|d+2s
dy⃗ dx⃗, (6.2)

IS1,Ωc(v, w) :=

∫
S1

v(x⃗)w(x⃗)

∫
Ωc

1

|x⃗− y⃗|d+2s
dy⃗ dx⃗, (6.3)

where S1 and S2 denote d-dimensional simplices.
In the following, we will consider regular, γ-shape regular triangulations Tγ of Ω, i.e., de-

compositions of Ω into simplices. γ-shape regularity means that the affine element maps
F : Ŝ → S from the reference simplex Ŝ to S ∈ Tγ with diamS = hS satisfy ∥F ′

S∥L∞ ≤ γhS
and ∥(F ′)−1∥L∞ ≤ γh−1

S . As usual, we set Sp,1
0 (Tγ) := {u ∈ H1

0 (Ω) |u|S ∈ Pp(Rd) ∀S ∈ Pp},
where Pp(Rd) denotes the space of d-variate polynomials of (total) degree p. We will also
require the tensor-product space Qp(Rd) := span{xα1

1 · · ·xαd
d | 0 ≤ α1, . . . , αd ≤ p}.

6.1 Quadrature on pairs of simplices

In the present case of shape regular triangulations, techniques developed in [CS12] can be
adapted to numerically integrate (6.2). Similarly to the case d = 1 in the previous sections,
singularities in the integrand can be transformed such that suitable combinations of Gauss-
Legendre and Gauss-Jacobi quadrature can be employed. In the following we state the main
result of [CS12] regarding numerical integration of certain singular integrals.

Proposition 6.1 ([CS12]). Let Tγ be a γ-shape regular mesh and S1, S2 ∈ Tγ be closed simplices
in Rd with k := dim(S1 ∩ S2) (setting k := −1 if S1 ∩ S2 = ∅) and consider integrals of the
form

I =

∫
S1

∫
S2

|x⃗− y⃗|αF (x⃗, y⃗, x⃗− y⃗) dy⃗ dx⃗, (6.4)

where α ∈ R and F is a real analytic function, i.e., F ∈ Cω(S1 × S2 × (S2 − S1)).
Then, there exist Kk ∈ N depending only on k and polynomial transformations Φj, j =

0, . . . ,Kk of degree qΦ := maxj deg(Φj), depending only on d, such that the integral I takes the
form

I =

Kk∑
j=0

∫
[0,1]2d

F ◦ Φj (⃗ t)Rj (⃗ t) JΦj (⃗ t) t
α+2d−k−1
1 d⃗ t, (6.5)

where Rj ∈ Cω([0, 1]2d) are real analytic functions given by
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6 Outlook: the multidimensional case on shape regular meshes

Rj (⃗ t) :=
|(x⃗− y⃗) ◦ Φj (⃗ t)|α

tα1
(6.6)

and the Jacobians JΦj are polynomials of degree at most d(qΦ − 1).

In particular, the condition α > k− 2d ensures that (6.5) is integrable and tα+2d−k−1
1 can be

used as a Gauss-Jacobi weight function.

Proof. See [CS12, Sec. 3] for the explicit construction of the transformations Φj and the re-
sulting polynomial degree qΦ as well as [CS12, Thm. 4.1, Rem. 2], where a slightly different
formulation is shown, which even includes the more general case that F is in a Gevrey class.
In [CS12] the condition α > k− 2d is required, but it follows from inspection of the proof that
it is only needed to ensure integrability of the integrand.

Remark 6.2. (i) The transformations Φj are, similarly to the case d = 1, combinations of
affine transformations and Duffy-like transformations that transform simplices to hyper-
cubes and thus are polynomials. The parameter Kk ∈ N accounts for different cases that
have to be treated with different transformations (as can be seen in the case d = 1 as well,
compare (3.6) and (3.7)). If d > 1, this requires even more cases; however, structurally
they are all similar, which allows for the compact notation.

(ii) An important observation of (6.5) is that the transformations (by employing relative
coordinates) can be constructed such that the singularity of the function |x⃗ − y⃗|−d−2s

appears after transformation only in a single variable labelled t1.

(iii) Since the term tα+2d−k−1
1 with α+ 2d− k − 1 > −1 can be handled as a weight function

with Gauss-Jacobi quadrature, an approximation to (6.5) can be achieved by a tensor
quadrature rule.

Unfortunately, the integrals in (6.2) do not fulfill the requirement of the final statement of
Proposition 6.1 to be integrable since α = −d−2s > k−2d does not hold for all 0 ≤ k ≤ d and
s ∈ (0, 1). Therefore, we have to modify the analysis of [CS12] to suit our integrand by showing
that, after application of the transformations Φj , the term (v(x) − v(y))(w(x) − w(y)) takes
the form t21 q(t1, . . . , t2d) where q is a polynomial in 2d variables, i.e., q ∈ Pk(R2d) for some k.
Consequently, the singular term in the integral takes the form tα̃1 with α̃ := α+2d−k+1 > −1.
More precisely, we have the following Corollary 6.3, which can be seen as an extension of [CS12,
Thm. 4.1] to the present specific case (6.2).

Corollary 6.3. Let Tγ be a γ-shape regular mesh and S1, S2 ∈ Tγ be closed simplices in Rd

with k := dim(S1 ∩ S2) (setting k := −1 if S1 ∩ S2 = ∅) and, for v, w ∈ Sp,1
0 (Tγ) consider the

integral

IS1,S2(v, w) :=

∫
S1

∫
S2

(v|S1(x⃗)− v|S2(y⃗))(w|S1(x⃗)− w|S2(y⃗))

|x⃗− y⃗|d+2s
dy⃗ dx⃗. (6.7)
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6 Outlook: the multidimensional case on shape regular meshes

Then, employing, for k ≥ 0, the polynomial transformations Φj of Proposition 6.1 of degree
(at most) qΦ the integral IS1,S2(v, w) takes the form

IS1,S2(v, w) =

∫
[0,1]2d

Kk∑
j=0

Pv,j (⃗ t) Pw,j (⃗ t)Rj (⃗ t) JΦj ( t⃗)︸ ︷︷ ︸
=:Fj

t2−2s+d−k−1
1 d⃗ t. (6.8)

Here, the Jacobians JΦj are polynomials of degree (at most) ≤ d(qΦ− 1), Rj ∈ Cω([0, 1]2d) are
analytic functions given by

Rj (⃗ t) :=
td+2s
1

|(x⃗− y⃗) ◦ Φj (⃗ t)|d+2s
, (6.9)

and Pv,j , Pw,j ∈ P(R2d) are polynomials of degree (at most) ≤ pqΦ − 1, defined by

Pv,j (⃗ t) :=
(v|S1 − v|S2) ◦ Φj (⃗ t)

t1
and Pw,j (⃗ t) :=

(w|S1 − w|S2) ◦ Φj (⃗ t)

t1
. (6.10)

For k = −1, we get the form

IS1,S2(v, w) =

∫
[0,1]2d

Pv,−1(⃗ t) Pw,−1(⃗ t)R−1(⃗ t) JΦ−1 (⃗ t)︸ ︷︷ ︸
=:F−1

d⃗ t, (6.11)

with polynomial Jacobian JΦ−1, R−1(⃗ t) := |(x⃗ − y⃗) ◦ Φ−1(⃗ t)|−d−2s analytic and polynomials
Pv,−1, Pw,−1 ∈ PpqΦ−1(R2d) defined by

Pv,−1(⃗ t) := (v|S1 − v|S2) ◦ Φ−1(⃗ t) and Pw,−1(⃗ t) := (w|S1 − w|S2) ◦ Φ−1(⃗ t). (6.12)

Proof. For k ≥ 0, with Proposition 6.1 it is only left to show that Pv,j and Pw,j from (6.10)
are polynomials. We only prove the statement for Pv,j .

Since v ∈ Sp,1
0 (Tγ) is a piecewise continuous polynomial, the singularity points x⃗ = y⃗ of

|x⃗ − y⃗|−d−2s are a subset of the roots of the polynomial (v|S1(x⃗) − v|S2(y⃗)). Since Φj is a
polynomial, it follows that (v|S1 − v|S2) ◦ Φj is also a polynomial (of degree bounded by pqΦ)
that vanishes at the singularities of |x⃗− y⃗|−d−2s ◦Φj . So the separated singularity t1 has to be
a root of (v|S1 − v|S2) ◦ Φj . The fundamental theorem of algebra finishes the proof.
For k = −1 the proof follows immediately from Step 1 and 2 of the transformations of [CS12,

Sec. 3].

[CS12, Thm. 5.4] also asserts exponential convergence of a suitable combination of Gauss-
Jacobi and Gauss-Legendre quadrature employed to integrands covered by Proposition 6.1.

Proposition 6.4. Let R ∈ Cω([0, 1]d
′
) and β1 > −1. Then, there exist C, b > 0 independent

of d′ such that for all n ∈ N there holds∣∣∣∣ ∫
[0,1]d′

tβ1
1 R(⃗ t) d⃗ t−GJ0,β1

n,t1
◦GLn,t2 ◦ · · · ◦GLn,td′ (R)

∣∣∣∣ ≤ C exp(−b N1/d′), (6.13)

where N = O(nd′) is the total number of quadrature points.
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6 Outlook: the multidimensional case on shape regular meshes

Propositions 6.1 and 6.4 are formulated for fairly general integrands. However, in order
to obtain exponential convergence results for hp-FEM discretizations, as in the case d = 1,
an explicit dependence of the convergence rate on the employed polynomial degree has to be
derived, which is not directly deducible from Proposition 6.4.
In the following we extend our 1d-quadrature analysis, which was explicit in p, to higher

dimension d > 1 specifically for the easier case of γ-shape regular meshes Tγ with a finite
number of patch configurations.
We will make the following assumption on the structure of the underlying triangulation of

Ω:

Assumption 6.5. The triangulation Tγ is γ-shape regular and there exists, up to dilations,
rotations, and translations a finite number (independent on the number of elements in the
mesh) of different patches (i.e., unions of elements sharing a vertex). This is, for example,
ensured for d ∈ {2, 3}, if the mesh is generated from a coarse mesh by “newest vertex bisection”,
[KPP13, Ste08].

Remark 6.6. For exponential convergence results in terms of “error vs. number of degrees
of freedom” as in Proposition 2.3 or Theorem 2.4, special geometric meshes Tgeo are required
that include anisotropic elements, [FMMS23]. A quadrature analysis on such meshes requires
a more careful analysis of elements with large aspect ratio and is postponed to a forthcoming
work.

6.2 Consistency error analysis

We start with a standard quadrature rule on a simplex S. To that end, we can also use the
affine transformation [CS12, Sec. 3 (Step 1)] to map a given simplex S to the reference simplex
Ŝd := {(x1, . . . , xd) | xi ≥ 0 ∀i = 1, . . . , d, x1+ · · ·+xd ≤ 1} and afterwards with the Duffy type
transformation [CS12, (2.12)] to [0, 1]d. This then allows to use tensor product Gauss-Legendre
rules to obtain∫

S
f(x⃗) dx⃗ =

∫
[0,1]d

f ◦ ΦS (⃗ t) JΦS
(⃗ t) d⃗ t ≈ GLn,t1 ◦ · · · ◦GLn,td(f ◦ ΦS JΦS

) =: GLn
S(f),

(6.14)

where ΦS denotes the composed polynomial transformations [CS12, Sec. 3 (Step 1) with (2.12)]
depending only on the simplex S with its polynomial Jacobian JΦS

. Since ΦS is an affine
transformation composed with a Duffy type transformation, it holds for polynomials u ∈ Pp(S)
that u ◦ ΦS ∈ Qp(Rd).

The approximation of the right-hand side l(v) := ⟨f, v⟩L2(Ω) follows immediately.

Definition 6.7 (Approximate linear form for d > 1). For a piecewise polynomial v ∈ Sp,1
0 (Tγ),

we define the approximate linear form by

l(v) := ⟨f, v⟩L2(Ω) =
∑
S∈Tγ

∫
S
f(x⃗)v(x⃗) dx⃗ ≈

∑
S∈Tγ

GLn
S

(
f v
)
=: l̃n(v), (6.15)

where GLn
S denotes the tensor product Gauss-Legendre rule (6.14).
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6 Outlook: the multidimensional case on shape regular meshes

Consistency error estimates for the linear form l follows with the same arguments as for the
one dimensional case in Lemma 4.2.

Lemma 6.8 (Consistency error for l). Let f be analytic in Ω, and let Tγ be a γ-shape regular

mesh on Ω ⊆ Rd. Let l(v) := ⟨f, v⟩L2(Ω) and let its approximation l̃n(·) be defined by (6.15).
Then, there exist constants ρ > 1 and Cf,γ,s > 0 depending only on f , γ, s, and Ω such that

|l(v)− l̃n(v)| ≤ Cf,γ,s p ρp−2n+1∥v∥
H̃s(Ω)

for all v ∈ Sp,1
0 (Tγ). (6.16)

Next, we define the approximation to the bilinear form a(·, ·).

Definition 6.9 (Approximate bilinear form for d > 1). Let Tγ be a γ-shape regular mesh and
S1, S2 ∈ Tγ be closed simplices in Rd with k := dim(S1 ∩ S2) (setting k := −1 if S1 ∩ S2 = ∅).
For piecewise polynomials v ∈ Sp,1

0 (Tγ), w ∈ Sr,1
0 (Tγ), using the notations Fj, j = −1, . . . ,Kk

from Corollary 6.3, we define the following tensor product quadrature rules

Qn
S1,S2

(v, w) := GJ0,β1
n,t1

◦GLn,t2 ◦ · · · ◦GLn,td

(∑Kk
j=0 Fj

)
for k ≥ 0, (6.17)

Qn
S1,S2

(v, w) := GLn,t1 ◦ · · · ◦GLn,td

(
F−1

)
for k = −1, (6.18)

where β1 := 1− 2s+ d− k.
The final approximation to the bilinear form a(·, ·) reads

ãn(v, w) :=
C(s, d)

2

∑
S1∈Tγ

∑
S2∈Tγ

Qn
S1,S2

(v, w) +
∑

S1∈Tγ
Qn

S1,Ωc(v, w). (6.19)

Here Qn
S1,Ωc(v, w) denotes an approximation to IS1,Ωc(v, w) given by (6.37).

We now employ scaling arguments to work out the dependence on the element sizes and the
polynomial degree when estimating a(·, ·)− ãn(·, ·).

Adjacent or identical simplices

We start with the case of two simplices S1, S2 with k := dim(S1 ∩ S2) ≥ 0. We define the
reference simplex as Ŝd := {(x1, . . . , xd) | xi ≥ 0 ∀i = 1, . . . , d, x1 + · · · + xd ≤ 1}. As the
simplices Si, i = 1, 2 share, by assumption, k + 1 vertices, we may label the vertices v⃗(i,ℓ) of
Si such that v⃗(1,ℓ) = v⃗(2,ℓ) for all 0 ≤ ℓ ≤ k and v⃗(1,ℓ) ̸= v⃗(2,ℓ) for all k + 1 ≤ ℓ ≤ d. With the
d× d - matrices

A(i) :=
(
v⃗(i,1) − v⃗(i,0) · · · v⃗(i,d) − v⃗(i,0)

)
, i = 1, 2, (6.20)

the pullback transformation FS1×S2 is given by

FS1×S2 : Ŝd × Ŝd → S1 × S2, (x⃗, y⃗) 7→
(
FS1(x⃗), FS2(y⃗)

)
:=
(
v⃗(1,0) +A(1)x⃗, v⃗(2,0) +A(2)y⃗

)
(6.21)
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6 Outlook: the multidimensional case on shape regular meshes

with its Jacobian JFS1×S2
= |detA(1) detA(2)|. Denoting by v̂Si := v|Si ◦ FSi and ŵSi :=

w|Si ◦FSi for i = 1, 2 the pullbacks to the reference simplex Ŝd, FS1×S2 transforms the integral
(6.7) to

IS1,S2(v, w) =

∫
Ŝd

∫
Ŝd

(v̂S1(x⃗)− v̂S2(y⃗)) (ŵS1(x⃗)− ŵS2(y⃗))

|FS1(x⃗)− FS2(y⃗)|d+2s
JFS1×S2

dy⃗ dx⃗. (6.22)

As, for all elements in a γ-shape regular mesh Tγ , the lengths of all edges | v⃗(j,i) − v⃗(j,0)| are
controlled by the element diameter hSj , we obtain JFS1×S2

≤ Cγ,d h
d
S1

hdS2
with a constant Cγ,d

that depends only on γ and the dimension d.
To simplify the notation we introduce Nv̂(x⃗, y⃗) := v̂S1(x⃗)− v̂S2(y⃗) and Nŵ(x⃗, y⃗) := ŵS1(x⃗)−

ŵS2(y⃗). Corollary 6.3 yields for (6.22)

IS1,S2(v, w) = JFS1×S2

∫
[0,1]2d

Kk∑
j=0

Nv̂ ◦ Φj (⃗ t)

t1

Nŵ ◦ Φj (⃗ t)

t1

td+2s
1

|(A(1)x⃗−A(2)y⃗) ◦ Φj (⃗ t)|d+2s
JΦj (⃗ t)︸ ︷︷ ︸

=:I( t⃗)

t1−2s+d−k
1 d⃗ t.

(6.23)

The estimate of the consistency error is again based on Lemma 5.3, which directly generalizes to
higher dimensions. Corollary 6.3 shows that I allows for a holomorphic extension to a Bernstein
ellipse Êρ in each variable with fixed ρA(1),A(2) > 1, ostensibly dependent on the transformation

matrices A(1), A(2) but independent of v ∈ Sp,1
0 (Tγ), w ∈ Sr,1

0 (Tγ). By Assumption 6.5, there
is only a finite number of patch configurations in Tγ , which leads, up to scaling, to a finite
number of different matrices A(1), A(2). To remove the scaling dependence, we note that

A(1)x⃗−A(2)y⃗ = hS1

(
h−1
S1

A(1)x⃗− h−1
S1

A(2)y⃗
)
. (6.24)

For γ-shape regular meshes we have hS1 ∼ hS2 and the diameter of each simplex is proportional
to all edge lengths, which leads for Âi := h−1

S1
A(i) to ∥Âi∥1 = O(1) for i = 1, 2 and subsequently

to a finite number of different values ρ
Â(1),Â(2) > 1. Thus, we have a holomorphic extension of

I to a Bernstein ellipse Êρ with a fixed ρ := min
Â(1),Â(2)(ρÂ(1),Â(2)) > 1. To finish the estimate

of the consistency error, it suffices to bound each of the three quotients in (6.23) in the norms
∥ · ∥

L∞(Î2d\ℓ×Êℓ
ρ)
, where Î := (0, 1) and Î2d\ℓ × Êℓ

ρ := Î × · · · × Î × Êℓ
ρ × Î × · · · × Î denotes the

set where the ℓ-th component of Î2d is extended to the Bernstein ellipse Êρ.
Using v̂S1 (⃗0) = v̂S2 (⃗0) for k ≥ 0, the first term can be bounded as in Lemma 5.4 using the

Bernstein and Markov inequalities by∥∥Nv̂ ◦ Φj t
−1
1

∥∥
L∞(Î2d\ℓ×Êℓ

ρ)
=

∥∥∥∥∫ t1

0
∂τ
(
Nv̂ ◦ Φj(τ, t2, . . . , td)

)
dτ t−1

1

∥∥∥∥
L∞(Î2d\ℓ×Êℓ

ρ)

≤
∥∥∂t1(Nv̂ ◦ Φj (⃗ t)

)∥∥
L∞(Î2d\ℓ×Êℓ

ρ)
≤ ρqΦp

∥∥∂t1(Nv̂ ◦ Φj (⃗ t)
)∥∥

L∞(Î2d)

≲ (qΦp)
2ρqΦp

∥∥Nv̂ ◦ Φj (⃗ t)
∥∥
L∞(Î2d)

= (qΦp)
2ρqΦp

∥∥Nv̂

∥∥
L∞(Φj(Î2d))

≤ (qΦp)
2ρqΦp

∥∥Nv̂

∥∥
L∞(Ŝd×Ŝd)

= (qΦp)
2ρqΦp

∥∥v̂S1 − v̂S1 (⃗0) + v̂S2 (⃗0)− v̂S2

∥∥
L∞(Ŝd×Ŝd)

≤ (qΦp)
2ρqΦp

(∥∥v̂S1 − v̂S1 (⃗0)
∥∥
L∞(Ŝd)

+
∥∥v̂S2 − v̂S2 (⃗0)

∥∥
L∞(Ŝd)

)
, (6.25)
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6 Outlook: the multidimensional case on shape regular meshes

where, again, qΦ is the maximal degree of the polynomial transformations Φj . On the reference
simplex, there holds by Markov’s inequality and inductive application of the inverse inequality
from [Sch98, Thm. 3.92] that∥∥v̂S1 − v̂S1 (⃗0)

∥∥
L∞(Ŝd)

≲
∥∥∇v̂S1

∥∥
L∞(Ŝd)

=
∥∥∇(v̂S1 − v̂S1)

∥∥
L∞(Ŝd)

≲ (qΦp)
2
∥∥v̂S1 − v̂S1

∥∥
L∞(Ŝd)

≲ (qΦp)
2+d
∥∥v̂S1 − v̂S1

∥∥
L2(Ŝd)

≲ (qΦp)
2+d
∣∣v̂S1

∣∣
Hs(Ŝd)

≤ Cγ,d,s(qΦp)
2+dh

s−d/2
S1

∣∣v|S1

∣∣
Hs(S1)

,

(6.26)

where Cγ,d,s is a constant that depends only on γ, d, s. This finishes the upper bound for the
first quotient in (6.23)∥∥Nv̂ ◦ Φj t

−1
1

∥∥
L∞(Î2d\ℓ×Êℓ

ρ)
≤ Cγ,d,s ρ

qΦp (qΦp)
4+dmax

(
h
s−d/2
S1

∣∣v|S1

∣∣
Hs(S1)

, h
s−d/2
S2

∣∣v|S2

∣∣
Hs(S2)

)
≤ Cγ,d,s ρ

qΦp (qΦp)
4+dh

s−d/2
S1

∣∣v∣∣
Hs(co(S1,S2))

. (6.27)

The second factor in the integrand in (6.23) can be treated in the same way. The estimate
for the third factor in the integrand follows again, as discussed above, by Assumption 6.5 and
(6.24)∥∥∥∥ td+2s

1

|(A(1)x⃗−A(2)y⃗) ◦ Φj (⃗ t)|d+2s

∥∥∥∥
L∞(Î2d\ℓ×Êℓ

ρ)

= h−d−2s
S1

∥∥∥∥∥ td+2s
1∣∣(h−1

S1
A(1)x⃗− h−1

S1
A(2)y⃗

)
◦ Φj (⃗ t)

∣∣d+2s

∥∥∥∥∥
L∞(Î2d\ℓ×Êℓ

ρ)

≤ Cγ,s,ρ,d h
−d−2s
S1

,

where the last estimate follows from the observation that we only have a finite number of cases
for the function inside the norm. Now, we have deduced the appropriate scaling in terms of
the element sizes for each factor in (6.23) in the L∞-norm and inserting everything into the
higher-dimensional analog of Lemma 5.3 yields

|IS1,S2(v, w)−Qn
S1,S2

(v, w)| ≤ Cs,γ,ρ,d (qΦp)
d+4(qΦr)

d+4ρqΦ(p+r)−2n+1
∣∣v∣∣

Hs(co(S1,S2))

∣∣w∣∣
Hs(co(S1,S2))

(6.28)

for adjacent or identical simplices S1, S2.

Separated simplices

For the case S1∩S2 = ∅, i.e. k = −1, we start with the same transformation as in (6.22), where
we labelled the vertices such that there holds v⃗(1,0)− v⃗(2,0) = mini,j v⃗

(1,i)− v⃗(2,j). Corollary 6.3
yields for (6.22)

IS1,S2(v, w) = JFS1×S2

∫
[0,1]2d

Nv̂ ◦ Φ−1(⃗ t)Nŵ ◦ Φ−1(⃗ t) |(FS1(x⃗)− FS2(y⃗)) ◦ Φ−1(⃗ t)|−d−2s JΦ−1( t⃗) d⃗ t.

(6.29)

For simplices S1, S2 define dS1,S2 := dist(S1, S2) and pick a closed ball BS1,S2 with S1, S2 ⊆
BS1,S2 and diamBS1,S2 ≤ hS1 + hS2 + dS1,S2 .
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6 Outlook: the multidimensional case on shape regular meshes

The integrand can be estimated with a combination of arguments applied to the case k ≥ 0
and the case d = 1 in Lemma 5.5. Inserting the mean vBS1,S2

:=
∫
BS1,S2

v(x)dx/|BS1,S2 | gives∥∥Nv̂ ◦ Φ−1

∥∥
L∞(Î2d\ℓ×Êℓ

ρ)
≤ ρqΦp

∥∥∥∥Nv̂ ◦ Φ−1

∥∥∥∥
L∞(Î2d)

≤ CρqΦp
∥∥∥∥v̂S1 − v̂S2

∥∥∥∥
L∞(Ŝd×Ŝd)

≤ CρqΦp
(∥∥v̂S1 − vBS1,S2

∥∥
L∞(Ŝd)

+
∥∥v̂S2 − vBS1,S2

∥∥
L∞(Ŝd)

)
. (6.30)

With an L∞–L2 inverse estimate on the reference simplex and a Poincaré type estimate for
the ball BS1,S2 there holds∥∥v̂S1 − vBS1,S2

∥∥
L∞(Ŝd)

≤ Cd(qΦp)
d
∥∥v̂S1 − vBS1,S2

∥∥
L2(Ŝd)

≤ Cγ,d,s h
−d/2
S1

(qΦp)
d
∥∥v − vBS1,S2

∥∥
L2(S1)

≤ Cγ,d,s h
d/2
S1

(hS1 + hS2 + dS1,S2)
s(qΦp)

d
∣∣v∣∣

Hs(BS1,S2
)
, (6.31)

where Cγ,d,s is a constant that depends only on γ, d, s. For the third factor in the integrand in
(6.29), we note

|(FS1(x⃗)− FS2(y⃗)) ◦ Φ−1(⃗ t)|−d−2s = |( v⃗(1,0) − v⃗(2,0) +A(1)x⃗−A(2)y⃗) ◦ Φ−1(⃗ t)|−d−2s. (6.32)

It follows that∥∥|(FS1(x⃗)− FS2(y⃗)) ◦ Φ−1(⃗ t)|−d−2s
∥∥
L∞(Î2d\ℓ×Êℓ

ρ)

≤ d−d−2s
S1,S2

∥∥|(d−1
S1,S2

( v⃗(1,0) − v⃗(2,0)) + d−1
S1,S2

A(1)x⃗− d−1
S1,S2

A(2)y⃗) ◦ Φ−1(⃗ t)|−d−2s
∥∥
L∞(Î2d\ℓ×Êℓ

ρ)
.

(6.33)

By Assumption 6.5, there is only a finite number of patch configurations in Tγ , which leads, up
to scaling, to a finite number of different matrices A(1), A(2). The γ-shape regularity and choice
of numbering of the vertices yield |( v⃗(1,0) − v⃗(2,0))| ∼ dS1,S2 and ∥d−1

S1,S2
A(1)∥, ∥d−1

S1,S2
A(2)∥ =

O(1). This leads to a finite number of holomorphic extensions. Hence, there is a ρ > 1 for
which a holomorphic extension in each variable to the Bernstein ellipse Êρ is possible, and this
extension can be bounded by∥∥|(FS1(x⃗)− FS2(y⃗)) ◦ Φ−1(⃗ t)|−d−2s

∥∥
L∞(Î2d\ℓ×Êℓ

ρ)
≤ Cγ,s,ρ,d d

−d−2s
S1,S2

. (6.34)

Inserting everything into the higher-dimensional analog of Lemma 5.3 yields for separated
simplices S1, S2

|IS1,S2(v, w)−Qn
S1,S2

(v, w)| ≤ Cs,γ,d (qΦp)
d(qΦr)

dρqΦ(p+r)−2n+1
∣∣v∣∣

Hs(BS1,S2
)

∣∣w∣∣
Hs(BS1,S2

)
,

(6.35)

where we used that for γ-shape regular meshes there holds dS1,S2 ≥ Cmax{hS1 , hS2} for some
C > 0 depending on γ so that the combined effect of the scaling parameters of all contributions
in (6.29) can be uniformly bounded by

d−d−2s
S1,S2

hdS1
hdS2

(hS1 + hS2 + dS1,S2)
2s
(
h
−d/2
S1

+ h
−d/2
S2

)2 ≤ Cγ,s.

Combining the estimates for all cases with the simple observation co(S1, S2) ⊆ BS1,S2 yields
the following lemma for the quadrature error.
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6 Outlook: the multidimensional case on shape regular meshes

Lemma 6.10. Let Tγ be a γ-shape regular mesh satisfying Assumption 6.5. Let S1, S2 ∈ Tγ
be closed simplices in Rd and denote by BS1,S2 a closed ball with diamBS1,S2 ≤ hS1 + hS2 +
dist(S1, S2) that contains the simplices S1, S2 ⊆ BS1,S2. Then, for the integral IS1,S2(v, w)
from (6.7) and its approximation Qn

S1,S2
(v, w) by quadrature, there exists a constant ρ > 1 that

depends only on γ and Ω such that for all v ∈ Sp,1
0 (Tγ), w ∈ Sr,1

0 (Tγ) there holds

|IS1,S2(v, w)−Qn
S1,S2

(v, w)| ≤ Cs,γ,d (qΦp)
d+4(qΦr)

d+4ρqΦ(p+r)−2n+1
∣∣v∣∣

Hs(BS1,S2
)

∣∣w∣∣
Hs(BS1,S2

)

(6.36)

with the constant Cs,γ,d depending only on s, γ, d and Ω; qΦ is given by Proposition 6.1.

6.3 Treatment of Ωc

In this section, we discuss the issue that the evaluation of the bilinear form a(·, ·) requires the
evaluation of IS1,Ωc given by (6.2). This is addressed using two ingredients:

(i) we select a set BR with Ω ⊂ BR (for convenience, this set will be taken to be a hyper-
cube [−R,R]d below) and extend the mesh Tγ to a triangulation T R

γ of BR satisfying
Assumption 6.5. For this triangulation, we may employ the quadrature technique used
above.

(ii) We develop a quadrature rule for integration over Bc
R := Rd \ BR and exploit that

dist(T,Bc
R) ≥ dist(Ω, Bc

R) > 0 together with analyticity of the integrand.
We focus on (ii). Let BR := [−R,R]d for a fixed R > 0. Introduce the cones C1 :=
{(y1, y1y′) | y1 > R, y′ ∈ [−1, 1]d−1} as well as Ci, i = 2, . . . , 2d obtained by rotating C1 so
that the centerline of Ci is aligned with one of the unit vectors (±1, 0, . . . , 0), (0,±1, 0, . . . , 0).
An integral of the kernel function over C1 can be evaluated using the transformation η = 1/y1
as follows:

G1(x⃗) :=

∫
y⃗∈C1

|x⃗− y⃗|−(d+2s) dy⃗ =

∫
y′∈[−1,1]d−1

∫ ∞

y1=R
|x⃗− y1(1, y

′)⊤|−(d+2s)yd−1
1 dy′ dy1

=

∫
y′∈[−1,1]d−1

∫ 1/R

η=0
|ηx⃗− (1, y′)⊤|−(d+2s)︸ ︷︷ ︸

=:G1(x⃗,η,y′)

η2s−1 dη dy′.

This suggests to use a tensor product quadrature with (product) Gauss-Legendre quadrature
in the y′-variables and a Gauss-Jacobi quadrature with weight η2s−1 in the η-variable. Key to
the performance of the quadrature rule is the analyticity of the function G1:

Lemma 6.11. Let Ω ⊂ BR. Then:
(i) The function G1 is analytic on Ω.
(ii) The function G1 is analytic on Ω× [0, 1/R]× [−1, 1]d−1.
(iii) The functions G1 and G1 are positive on Ω and Ω× [0, 1/R]× [−1, 1]d−1, respectively.
Analyticity of a function G on a closed set A ⊂ Rn means that there is a complex neighborhood
Aε ⊂ Cn of A and a function Gε holomorphic on Aε with Gε|A = G.

Proof. Proof of (ii): Consider the function Ĝ(x1, . . . , xd, η, y
′
2, . . . , y

′
d) := (ηx1−1)2+

∑d
i=2(ηxi−

y′i)
2, which is an entire function on C2d. We claim that Ĝ(x⃗, η, y′) > 0 on K := Ω× [0, 1/R]×
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6 Outlook: the multidimensional case on shape regular meshes

[−1, 1]d−1. By smoothness of Ĝ and compactness of the set K it suffices to show pointwise
positivity of Ĝ. By construction of Ĝ, we have Ĝ ≥ (η dist(Ω, Bc

R))
2 > 0 for η > 0. For η = 0,

we have Ĝ(x⃗, 0, y′) = |(1, y′)|2 ≥ 1. Next, by positivity of Ĝ on K and the smoothness of Ĝ,
there is a complex neighborhood Kε := ∪z∈KBε(z) ⊂ C2d such that Re Ĝ > 0 on Dε. Hence,
with the principal branch of the logarithm, the function exp(−d+2s

2 log Ĝ(z)) is holomorphic
on Kε and coincides with G1 on K.

Proof of (i): This follows from (ii).

In total, we have arrived at

IS1,Ωc(v, w) =
∑

S2∈T R
γ \Tγ

IS1,S2(v, w) +
2d∑
i=1

∫
x⃗∈T

Gi(x⃗)v(x⃗)w(x⃗) dx⃗,

where the functions Gi, i ≥ 2, are defined as G1 with C1 replaced with Ci. Analogous to
Lemma 6.11, the functions Gi and the corresponding integrands Gi are analytic. For a fully
discrete approximation of IS1,Ωc(v, w), we denote by Qn

S1,C1(v, w) the quadrature rule to eval-
uate ∫

x⃗∈S1

v(x⃗)w(x⃗)

∫
y′∈[−1,1]d−1

∫ 1/R

η=0
G1(x⃗, η, y

′)η2s−1 dηdy′dx⃗

with a tensor product Gauss-Legendre rule (with n points for each variable) for the integration
in y′, a Gauss-Jacobi rule (with n points) for the integration in η, and the tensor product
Gauss-Legendre rule (6.14) for the integration in x⃗ over the simplex S1. Analogously, we
define rules Qn

S1,Ci , i ≥ 2. The fully discrete approximation is then given by

IS1,Ωc(v, w) ≈ Qn
S1,Ωc(v, w) :=

∑
S2∈T R

γ \Tγ
Qn

S1,S2
(v, w) +

2d∑
i=1

Qn
S1,Ci(v, w). (6.37)

Remark 6.12. The function x⃗ 7→
∫
Bc

R
|x⃗ − y⃗|−(d+2s) dy⃗ is analytic on Ω. Hence, it could

be approximated by a (piecewise) polynomial on a coarse mesh. A computational speed-up is
then possible since the evaluation of the Qn

S1,Ci(v, w) can be replaced with the evaluation of∫
S1

v(x⃗)w(x⃗)π(x⃗) dx⃗ for some polynomials π. Precomputing on the reference element is an
option.

6.4 Exponential convergence under quadrature

Combining the approximation results for the integrals IS1,S2(v, w) and IS1,Ωc(v, w) from the
previous subsections, we directly arrive at an error estimate for the consistency error for the
bilinear form a(·, ·).

Lemma 6.13 (Consistency error for a for d > 1). Let Tγ be a γ-shape regular mesh of Ω ⊂ Rd,
R > 0 be such that Ω ⊂ [−R,R]d and T R

γ be a γ-shape regular mesh that extends the mesh Tγ
to [−R,R]d. Assume T R

γ satisfies Assumption 6.5. Let a(·, ·) be the bilinear form of (6.1) and
ãn(·, ·) be its approximation given by (6.19). Then, there exists a constant ρ > 1 that depends
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6 Outlook: the multidimensional case on shape regular meshes

only on the shape regularity constant γ and Ω such that for all v ∈ Sp,1
0 (Tγ) and w ∈ Sr,1

0 (Tγ)
there holds

|a(v, w)− ãn(v, w)| ≤ Cs,γ,d(#T R
γ )2pd+4rd+4ρqΦ(r+p)−2n+1∥v∥

H̃s(Ω)
∥w∥

H̃s(Ω)
, (6.38)

with constants Cs,γ,d depending only on s, γ, d and Ω; qΦ is given by Proposition 6.1.

Proof. By definition of an(·, ·), we have to distinguish the cases of double integrals over sim-
plices IS1,S2 and integrals involving the complement IS1,Ωc and their approximation. The first
case can be done in the same way as for d = 1 in (5.23).

For the integrals IS1,Ωc and their approximations Qn
S1,Ωc , we mention that the contribution

Qn
S1,S2

with S2 ∈ T R
γ \ Tγ can be treated as in the first case, replacing only the term #Tγ

by #T R
γ . The other contributions of the form Qn

S1,Ci(v, w) correspond to approximation of∫
S1

v(x⃗)w(x⃗)Gi(x⃗) dx⃗ with analytic functions Gi and thus take the same form as the integrals
involved in the linear form l(·). Thus, a combination of Lemma 6.10 and Lemma 6.8 together
with summation over all simplices gives the result.

With the estimate for the consistency error, we directly obtain uniform coercivity as in the
one dimensional case by a perturbation argument as described in Lemma 4.4. Note that the
integral transformations for d > 1 induce an additional constant qΦ in the exponential term in
the consistency error. In order to compensate for that the number of quadrature points now
has to grow like λp for some λ > 1.

Theorem 6.14 (Uniform coercivity, d > 1). Let the assumptions of Lemma 6.13 hold. Then,
there are constant α̃, λ1, λ2 > 0 depending only on s, the shape regularity constant γ, the
dimension d, and Ω such that for n ≥ λ1p+ λ2 ln(#T R

γ + 1) there holds

α̃∥v∥2
H̃s(Ω)

≤ ãn(v, v) for all v ∈ Sp,1
0 (Tγ). (6.39)

Now, employing the Strang Lemma, we can derive a result similar to Theorem 2.4 for d > 1
by the exact same arguments. The error of the fully discrete FEM approximation can be
bounded by the exact FEM error and a consistency error that decays exponentially in the
number of quadrature points.

Theorem 6.15 (exponential convergence under quadrature, d > 1). Let Tγ be a γ-shape regular
mesh of the bounded polyhedron Ω ⊂ Rd. Let R > 0 be such that Ω ⊂ [−R,R]d and T R

γ be a γ-

shape regular mesh that extends the mesh Tγ to [−R,R]d. Assume T R
γ satisfies Assumption 6.5.

Let f be analytic in Ω. Denote by u ∈ H̃s(Ω) the solution to (6.1), by ur ∈ Sr,1
0 (Tγ) the

FEM solution for the exact variational formulation in the space Sr,1
0 (Tγ) ⊆ Sp,1

0 (Tγ) and by

ũN,n ∈ Sp,1
0 (Tγ) the solution to

ãn(ũN,n, vN ) = l̃(vN ) ∀vN ∈ Sp,1
0 (Tγ),

where ãn(·, ·) and l̃n(·) are defined in (6.19) and (6.15). The index n indicates the number of
quadrature points that is used per coordinate direction per integral and element.
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7 Numerical experiments

Then, there exist constants ρ > 1, λ1, λ2, Cs,γ,d > 0 (depending only on s, Ω, d, γ), such
that for all p, #T R

γ and n with n ≥ λ1p + λ2 ln(#T R
γ + 1)) and r ∈ N with 1 ≤ r ≤ p there

holds

∥u− ũN,n∥H̃s(Ω)
≤ ∥u− ur∥H̃s(Ω)

+ Cs,γ,d(#T R
γ )2pd+4rd+4ρqΦ(p+r)−2n+1; (6.40)

the constant is qΦ given by Proposition 6.1. The number of operations to compute the stiffness
is O((np)2d(#T R

γ )2).

Remark 6.16. The treatment of the complementary part Ωc in the bilinear form induces the
appearance of the term #T R

γ in the error estimate (6.40). In the context of shape-regular hp-
FEM a natural choice for our model problem are “boundary concentrated meshes” both for Tγ
and T R

γ that are refined towards ∂Ω as discussed in [KM03]. The total number of elements

is then proportional to the number of elements touching the boundary ∂Ω and thus #T R
γ is

proportional to #Tγ.

7 Numerical experiments

In this section, we present some numerical examples that underline the theoretical estimates
in our main results, Theorem 2.4. We consider

(−∆)su = 1 in Ω := (−1, 1) and u = 0 on Ωc,

with exact solution u(x) = 2−2s√π(Γ(s+ 1/2)Γ(1 + s))−1(1− x2)s.

In the following, we will present three different approaches to estimate the energy norm error
between the exact solution u and the fully discrete hp-FEM approximation ũN,n√

a(u− ũN,n, u− ũN,n) =
√

a(u, u)− a(ũN,n, ũN,n)− 2a(u− ũN,n, ũN,n).

If the quadrature error is ignored, i.e., if it is assumed that uN = ũN,n, then Galerkin or-
thogonality a(u− ũN,n, ũN,n) = 0 holds and, assuming that a(u, u) is known, the error can be
computed as the square root of the difference of the energies. The exact energy a(ũN,n, ũN,n)
of ũN,n can in general only be approximated by quadrature, leading to an error estimate of the
form √

a(u− ũN,n, u− ũN,n) ≈
√
a(u, u)− ãm(ũN,n, ũN,n), (7.1)

where m ≥ n denotes a number of quadrature points used.
However, for ũN,n the Galerkin orthogonality holds only up to the consistency error as uN

and ũN,n solve different variational formulations. For a high number of quadrature points n
the consistency error is small in comparison with the approximation error. However, for n
close to the polynomial degree p we need a different approach. The idea is to calculate an
additional reference solution ũN,m with an increased number of quadrature points m ≫ n and
use the triangle inequality to estimate the energy norm error by√

a(u− ũN,n, u− ũN,n) ≤
√

a(u− ũN,m, u− ũN,m) +
√
a(ũN,m − ũN,n, ũN,m − ũN,n). (7.2)
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7 Numerical experiments

By choosing m sufficiently large, we can again use approximation (7.1) for the first term of the
right hand-side. The second term can be approximated with the same small consistency error√

a(ũN,m − ũN,n, ũN,m − ũN,n) ≈
√
ãm(ũN,m − ũN,n, ũN,m − ũN,n). (7.3)

We can interpret the first term in (7.2) as a good approximation of the energy norm error√
a(u− uN , u− uN ) and the second term in (7.2) as the implementation error. The following

example shows that the difference between the approximation methods (7.1) and (7.2) can be
significant.
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Figure 1: Three different methods (see Example 7.1) to calculate the energy norm error of
hp-FEM with n = O(p) quadrature points on a geometric mesh with grading factor
σ = 0.172, polynomial degree p = L, s = 3/4.

Example 7.1. We employ a geometric mesh T L
geo,σ with grading factor σ = 0.172 and take

piecewise polynomials of degree p = L. In Figure 1, three different error measures are plotted
versus the number of refinement layers L for different numbers of quadrature points n = O(p)
used to calculate the solution ũN,n:

• Method 1: Use approximation (7.1) with the same number of quadrature points m for
ãm(·, ·) as for the solution ũN,n, i.e. m = n.
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7 Numerical experiments

• Method 2: Use approximation (7.1) and increase the number of quadrature points for the
bilinear form ãm(·, ·) to m = 6p.

• Method 3: Use approximation (7.2) with m = 6p quadrature points for the reference
solution ũN,m and the bilinear form ãm(·, ·).

For the cases n = ⌊1.9 p⌋ and n = 3p all three methods produce nearly identical results, whereas
for n = p and n = ⌊1.3 p⌋ the method of calculating the norm has a significant impact. We
observe that method 1 overestimates the energy norm error significantly and also increasing the
number of quadrature points for the norm calculation (method 2) does not help either. This is
consistent with the fact that method 2 does not decrease the consistency error that is made in
the Galerkin orthogonality. We also note that for the cases n = p and n = ⌊1.3p⌋ the computed
“energies” were larger than the exact energy so that no errors are reported for these cases in
Fig. 1.

The next example is similar to an example in [BFM+23] that shows exponential convergence
of hp-FEM, where the linear system was assembled using the quadrature approach (2.9) in this
article.

Example 7.2. We employ a geometric mesh T L
geo,σ with grading factor σ = 0.25 and take

piecewise polynomials of degree p = L. In Figure 2, the energy norm error (approximation
(7.2) with m = 6p) is plotted versus the number of refinement layers L for different fractional
parameters s. For the number of quadrature points, we used n := ⌊1.2 p⌋ and, as predicted by
Theorem 2.4, we observe exponential convergence with respect to the number of layers L noting
that N ∼ L2. In fact, the convergence behavior is O(σL/2L−1) and thus slightly faster than
asserted by Theorem 2.4. An argument for this observation is given in [BFM+23, Sec. 4].
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Figure 2: Exponential convergence in the energy norm (approximation (7.2) with m = 6p) of
hp-FEM on geometric mesh with grading factor σ = 0.25, polynomial degree p = L,
n := ⌊1.2 p⌋ quadrature points and different fractional parameters s.

Next, we discuss the number of quadrature points used. Although Theorem 2.4 suggests
that a choice of quadrature points n ≥ p+1 and in particular n := p+ λ̃ p for all λ̃ > 0, suffices
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7 Numerical experiments

to obtain exponential convergence, the rate, or more precisely, the constant in the exponent,
is impacted by the choice of λ̃.

Example 7.3. Figure 3 plots the energy norm error (approximation (7.2) with m = 6p) for
different numbers of quadrature points n := p + λ̃p versus the number of layers L for two
different choices of grading parameters, σ = 0.172 and σ = 0.5. Again, we choose p = L and
fix the fractional parameter s = 3/4. We notice that the grading factor σ has a direct impact
on the number of quadrature points needed to achieve the same accuracy. For the smaller
σ = 0.172, the rate of the exponential convergence depends on the choice of λ̃, while, for
σ = 0.5, the convergence always appears to be O(σL/2L−1). This can also be observed in the
theoretical estimates in Theorem 2.4 as the term L2p6ρ1+2p−2n may be dominant in the case
of small σ.
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Figure 3: Exponential convergence in the energy norm (approximation (7.2) with m = 6p) of
hp-FEM with n = O(p) quadrature points on geometric mesh, polynomial degree
p = L, s = 3/4. Left: grading factor σ = 0.172. Right: grading factor σ = 0.5.

Finally, we consider the elementwise contributions in Lemma 5.5 and observe exponential
convergence for two different configurations.

Example 7.4. Figure 4 considers the case of adjacent elements T := (xgeo0 , xgeo1 ), T ′ :=
(xgeo1 , xgeo2 ) (left) and separated elements T := (xgeo0 , xgeo1 ), T ′ := (xgeo2 , xgeo3 ) (right) in a geo-
metric mesh T L

geo,σ with L = 2 layers and different grading parameters σ (see Def. 2.2). We
plot the absolute quadrature errors |IT,T ′(v, w)−Qn

T,T ′(v, w)| for two integrated Legendre poly-
nomials v : T → R and w : T ′ → R versus the number of quadrature points n. On the reference
domain (−1, 1) they are defined as

v(x) =

∫ x

−1
P5(t)dt and w(y) =

∫ y

−1
P7(t)dt, (7.4)

where Pi(t) ∈ Pi denotes the i-th Legendre polynomial. We used Q50
T,T ′(v, w) with 50 quadrature

points, as the reference solution IT,T ′(v, w) and observe the predicted exponential convergence
rate as well as that the rate decreases with σ. This is in line with Lemma 5.5 since ρ → 1 as
σ → 0. We stress that Figure 4 shows the absolute error; the final relative error is close to
machine precision.
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Figure 4: Exponential convergence of the elementwise contributions |IT,T ′(v, w)−Qn
T,T ′(v, w)|

for the integrated Legendre polynomials (7.4) on geometric meshes T L
geo,σ with L = 2

layers and different grading parameters σ. Left: adjacent elements. Right: sepa-
rated elements.
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