
D I P L O M A R B E I T

Correlations in multi-orbital electronic systems:

parquet equations

ausgeführt zur Erlangung

des akademischen Grades des

Diplomingenieurs (Dipl.-Ing.)

im Rahmen des Studiums der

Technischen Physik

am Institut für Festkörperphysik

an der Technischen Universität Wien

unter der Anleitung von

Univ. Prof. Dr. Karsten Held

Univ. Ass. Dr. Anna Kauch

durch

Julian Mangott, BSc

Matrikelnummer 01627716

Serfaus, März 2022

Unterschrift Verfasser Unterschrift Betreuer



Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbständig verfasst,

andere als die angegebenen Quellen sowie Hilfsmittel nicht benutzt, und die den benutzten

Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Datum, Ort Unterschrift

Statutory declaration

Hereby I declare in lieu of oath, that I wrote this thesis myself, using only literature cited in

this volume. If text passages from sources are used literally, they are marked as such.

Date, Place Signature



K U R Z F A S S U N G

In vorliegender Arbeit wird der Parkettformalismus auf das Hubbardmodell im multi-

orbitalen Fall angewendet. Dieser aus den 1960er-Jahren stammende Formalismus [2, 3]

ermöglicht die selbstkonsistente Berechnung von Zwei-Teilchen-Korrelationsfunktionen

ohne Annahme eines dominanten Streukanals.

Die Parkettmethode besteht im Wesentlichen aus der Iteration vierer Gleichungen,

nämlich der Bethe-Salpeter-, Parkett-, Schwinger-Dyson- und der Dyson-Gleichung.

Da letztlich Zwei-Teilchen-Korrelationsfunktionen berechnet werden, die von vier Spin-

Orbitalen und je drei Frequenzen und Wellenvektoren abhängen, sind die Anforde-

rungen hinsichtlich Speicherbedarf einer Implementierung enorm. Erst in den letzten

Jahren wurden nennenswerte Fortschritte hinsichtlich Parallelisierung und Speicheref-

fizienz erzielt und erste physikalische Systeme mit dem Parkettformalismus etwa mit

victory [13], einer Implementierung für das Hubbardmodell für ein einzelnes Orbital,

behandelt.

Für den allgemeineren Fall des multi-orbitalen Hubbardmodells gibt es nach Wis-

sen des Verfassers noch keine Implementierung. Die Gleichungen für den Fall der zeit-

lichen Translations- und der SU(2)-Symmetrie werden in dieser Diplomarbeit erst-

mals abgeleitet und in einem Fortran-Programm namens multi-orbital-parquet

implementiert. Abschließend wird das Programm auf einfache physikalische Syste-

me angewendet: auf das Hubbardmodell im atomaren Limes und das Benzenmolekül.

multi-orbital-parquet wurde so konzipiert, dass eine Erweiterung auf Gittersys-

teme, die eine zusätzliche Wellenvektor-Abhängigkeit erforderlich macht, möglichst

einfach durchführbar ist.
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A B S T R A C T

In the present thesis, the parquet formalism is applied to the multi-orbital Hubbard

model. This formalism dating from the 1960s [2, 3] enables the self-consistent calculation

of two-particle correlation functions without assuming a dominant scattering channel.

The parquet method essentially consists of the iteration of four equations, namely

the Bethe-Salpeter, Parquet, Schwinger-Dyson and Dyson equations. Since two-particle

correlation functions are calculated, which depend on four spin orbitals and three fre-

quencies and momenta, the memory requirements of an implementation are substantial.

Only in the last few years significant progress has been made in terms of parallelizati-

on and memory efficiency. First physical systems have been studied for example with

victory [13], an implementation for the single-orbital Hubbard model.

To the author’s knowledge, there is still no implementation for the general case of

the multi-orbital Hubbard model. The required equations for time-translational and

SU(2) symmetry are derived for the first time in this thesis and are implemented in a

Fortran program called multi-orbital-parquet. Finally, this program is tested on

simple physical systems: the atomic-limit Hubbard model and the benzene molecule.

The structure of the code allows for direct extension to lattice systems which requires

including the momentum dependence.

III
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CHAPTER 1

I N T R O D U C T I O N

Materials with strongly correlated electrons are in the focus of condensed matter physics

for their intriguing properties and strong reaction to external perturbations. Thermo-

electricity, giant magnetoresistance and superconductivity are only some of the many

fascinating effects they show that lead to prospective new functionalities. Yet, under-

standing the complex behaviour of interacting quantum particles has proved one of the

most difficult and enduring challenges in computational science.

The basic theoretical tools to describe these phenomena are the n-particle correla-

tion functions or Green’s functions, which measure the correlation between n particles

moving through an equilibrium system. They are also the starting point for the cal-

culation of quantities which can be measured in experiment, the so-called response

functions. Calculation of the one-particle response function (spectral function) for

strongly correlated systems has become feasible after the introduction of the dynamical

mean-field theory (DMFT) [7]. However, the computation of non-local two-particle

Green’s function and the associated response functions (for example susceptibilities and

optical conductivity) still remains a major challenge.

The main reason is the highly unfavourable scaling of computational time and

memory with the number of orbitals and inverse temperature. Non-local calculation of

response functions in the two-particle extensions of DMFT [6, 8, 11, 14, 15, 20] are for

multi-orbital models only feasible in the so-called ladder approximation based on the

solution of the Bethe-Salpeter equation. For a full unbiased treatment of two-particle

response the parquet method is needed, which is a self-consistent algorithm consisting

of four equations, namely the Bethe-Salpeter, parquet, Schwinger-Dyson and the Dyson

equation, that provide equal treatment of scattering channels. In systems where the

physics is governed by competition of several types of fluctuations, high-temperature

superconductors being a prominent example, approximations based on Bethe-Salpeter

1
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equation alone induce a strong bias, already assuming dominance of one scattering

channel.

However, the parquet method poses a computational challenge already from the

sixties [2, 3]. Only recently the parquet equations could be solved with sufficient numeri-

cal efficiency with which interesting physical questions can be answered [1, 9, 16, 18].

Nonetheless, nothing beyond one orbital has been possible so far. The main problem is

storage: two-particle quantities depend on four spin-orbital indices, three momenta,

and three frequencies (two fermionic and one bosonic Matsubara frequency) due to

momentum and energy conservation. Compared to the single-band parquet method,

the multi-orbital implementation scales with an additional factor N 4
O ; therefore, new

ideas for reducing memory are needed. For the momentum indices the form-factor ba-

sis [5] has already been used in one-orbital models. For frequencies the newly developed

sparse modeling technique [23] is very promising.

With these new techniques at hand, multi-orbital calculations will become feasible

in the near future. In this thesis, we describe the equations needed for the multi-orbital

parquet algorithm in detail and present an implementation of these equations for a multi-

orbital impurity (or molecule) in Fortran called multi-orbital-parquet inspired

by [13], which can be directly extended further with the aforementioned form-factor

basis for momenta. In the one form-factor approximation the scaling in number of

momenta and orbitals is similar to ladder approximations, which means that up to 5

orbitals could be possible at reasonably high temperature. In the future the application

of sparse modelling methods will allow going to low temperatures.

The thesis is organised as follows. In chapter 2 we recapitulate basic concepts of

solid-state physics and quantum field theory for many-body physics. First, we briefly

touch the key points of the derivation of the multi-orbital Hubbard model from the

general Hamiltonian for n electrons in a periodic potential (with Coulomb interaction

between electrons) in section 2.1. Next, we summarize in section 2.2 the important

concepts of correlation functions and their properties. The Dyson equation and the

notion of one-particle reducibility are explained in section 2.3. Eventually, the full-

two particle vertex F and its properties for multi-orbital systems and the generalized

susceptibility X are described in sections 2.4 and 2.5.

Chapter 3 covers the concept of two-particle reducibility as well as the parquet and

Bethe-Salpeter equation in section 3.1.1. After a short introduction of the Schwinger-

Dyson equation in 3.1.2, explicit formulas for these three equations are derived in the
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cases of time-translation and SU(2) symmetry in sections 3.2 and 3.3. In 3.4 we give a

short outline of the parquet method; remarks on the concrete implementation of the

algorithm in multi-orbital-parquet can be found in section 3.5.

First benchmark results obtained with multi-orbital-parquet can be found

in chapter 4. The thesis is concluded by a discussion of possible improvements for

multi-orbital-parquet in chapter 5.





CHAPTER 2

C O R R E L A T I O N F U N C T I O N S A N D V E R T I C E S

Note that throughout this thesis, we use natural units by setting Planck’s reduced con-

stant ħ, the speed of light c, electrical permittivity �0 and Boltzmann’s constant kB as

follows:

ħ= 1, c = 1, �0 = 1

4π
and kB = 1.

2.1 Multi-orbital Hubbard model

In this section, we summarize the most important points of the derivation of the Hubbard

model as stated in [19, pp. 12–21], but making some adaptations for the multi-orbital case.

Neglecting the motion of atomic nuclei (the so-called Born-Oppenheimer approxima-

tion) and relativistic effects, the general Hamiltonian describing the dynamics of N

electrons in a crystal is given by

H =
N�

i=1

�
p2

i

2me
+V (ri )

�
+

N�
i=1

N�
j=i+1

e2

|ri − r j |
, (2.1)

where ri is the position operator for the i -th electron, pi = −i d
dri

the corresponding

momentum operator, e the electron charge, me the electron mass and

V (r) =V (r+R) (2.2)

the lattice potential at position r, being periodic for an arbitrary lattice vector R.

We are not interested in the exact multi-particle wave function of the system, but

only in the respose of the system to particle excitations, which are related to measurable

quantities as spin susceptibility or specific heat. Adding and removing particles is de-

scribed best with second quantization, therefore we will continue within this formalism.

5
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Thus we rewrite equation (2.1) as1

H =�
σ

�
d3r ψ†

σ(r)

�
− 1

2me
∇2 +V (r)

�
ψσ(r)� �� �

=H0

−µ�
σ

�
d3r ψ†

σ(r)ψσ(r)� �� �
=N

+ 1

2

�
σ,σ�

�
d3r d3r � ψ†

σ(r)ψ†
σ�(r�)

e2

|r− r�|ψσ�(r�)ψσ(r),

(2.3)

where ψ(†)
σ (r) annihilates (creates) an electron with spin σ at position r and µ denotes

the chemical potential.

Due to the periodicity condition (2.2), we can diagonalize the non-interacting

Hamiltonian H0 by using Bloch’s theorem with orthonormal eigenfunctions (so-called

Bloch functions) ψkn(r) = eik·rukn(r), with ukn(r) being R-periodic, i. e.

H0ψkn(r) = �knψkn(r) (2.4)

by means of Bloch’s theorem. n is a discrete band index (bands stem from different

orbitals as well as from multiple atoms in the unit cell), k a vector from the first Brillouin

zone and �kn the eigenenergy for ψkn(r). Moreover, the functions ukn(r) and energies

�kn are also periodic in k-space, i. e. ukn(r) = u(k+G)n(r) and �kn(r) = �(k+G)n(r), where

G is an arbitrary reciprocal lattice vector, fulfilling eiR·G = 1. Thus, by using Bloch’s

theorem we transform the original non-interacting Hamiltonian H0 of equation (2.1)

with a continuous spectrum into a set of Hamiltonians
�

H0,k



, with a discrete spectrum

indexed by n for every k in the first Brillouin zone [12, p. 3]. Although this is only exact for

the non-interacting system H0, it is also a good approximation for the case of nearly-free

electrons, when V (r) ≈ const. Bloch functions can be obtained from density-functional

calculations (DFT).

It is rather difficult to think about concepts in real space, for example chemical

bonds stemming from localized atoms with overlapping orbitals, in terms of spread-out

Bloch functions which “live” entirely in k-space. To overcome this, an orthogonal basis

in real space in which equation (2.1) is diagonal would be desirable. Unfortunately,

we cannot get everything we want. The Wannier basis
�
φn(r)



provides an adequate

orthonormal basis in real space. It is obtained by an orthogonal transformation (basically

1Here we perfom the replacement H → H −µN to obtain expectation values in the grand canonical
ensemble, since the particle number is in general not constant for the interacting system.
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a Fourier transformation) of the Bloch basis
�
ψkn(r)



, such that

ψkn(r) =�
R

eik·Rφn(r−R) and φn(r−R) = V

(2π)3

�
1.BZ

d3k e−ik·Rψkn(r), (2.5)

V being the volume of the first Brillouin zone. However, as the Wannier functions are

linear combinations of eigenfunctions of H0,k with different k, H0 is in general no longer

diagonal in the Wannier basis.

In the case of flat bands, i. e. �kn ≈ �n , where electrons are strongly localized, the

Wannier functions are indeed approximately eigenfunctions, H0φn(r−R) ≈φn(r−R).

The potential V (r) is then a linear combination of non-overlapping potentials of atomic

orbitals and also the Wannier functions can be expressed in terms of atomic orbitals.

Luckily, this is the case for strongly correlated systems (e. g. partially filled d- or f-shells

of transition or rare-earth metals), which we are interested in.

For further investigation we therefore rewrite the Hamiltonian in the so-called

tight-binding representation. Firstly, we perform an expansion of the operators in terms

of Wannier functions,

ψ(†)
σ = �

Ri ,n
φ(∗)

n (r−Ri )c(†)
i nσ, (2.6)

where c(†)
i nσ denotes the annihilation (creation) of an electron on lattice site i in “orbital”

n with spin σ.2 Secondly, we insert this expression into equation (2.3), which yields

H =�
σ

�
i j

�
nm

t̃ nm
i j c†

i nσc j mσ−
�
σ

�
i

�
n

µc†
i nσci nσ

+ 1

2

�
σσ�

�
nmop

�
i j kl

Ũ npmo
i k j l c†

i nσc†
j mσ�cloσ�ckpσ,

(2.7)

with hopping amplitudes t nm
i j and the two-body integrals Ũ npmo

i k j l , which are defined as

t̃ nm
i j =

�
d3r φ∗

n(r−Ri )

�
− 1

2me
∇2 +V (r)

�
φm(r−Ri ) and (2.8)

Ũ npmo
i k j l =

�
d3r d3r � φ∗

n(r−Ri )φp (r−Rk )
e2

|r− r�|φ
∗
m(r�−R j )φo(r�−Rl ). (2.9)

2Remember that the band index n indexes orbitals as well as different atoms in the unit cell, so by “orbital”
we actually mean orbital or atom in the unit cell.
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We introduce the spin-dependent, fully anti-symmetrized two-body integrals

U npmo
i k j l ,σiσkσ jσl

=−U nomp
i l j k,σiσlσ jσk

=U monp
j l i k,σ jσlσiσk

, (2.10)

demand the equality

1

4

�
σσ�

�
nmop

�
i j kl

U npmo
i l j k,σiσlσ jσk

c†
i nσi

c†
j mσ j

cl oσl
ckpσk

!= 1

2

�
σσ�

�
nmop

�
i j kl

Ũ npmo
i k j l c†

i nσc†
j mσ�cl oσ�ckpσ

(2.11)

and find the following relations:

U npmo
i k j l ,↑↑ = 2Ũ npmo

i k j l for
�
(n, i ) �= (m, j )

�∨ �
(p,k) �= (o, l )

�
, (2.12a)

U npmo
i k j l ,↑↓ = Ũ npmo

i k j l and (2.12b)

U npmo
i k j l ,↑↓ =−U nomp

i l j k,↑↓ by anti-symmetry, (2.12c)

with the shorthand notation ↑↑=↑↑↑↑, ↑↓=↑↑↓↓ and ↑↓ =↑↓↓↑. All other elements of U

have to be zero.

Analogously, we define spin-dependent hopping amplitudes t nm
i j ,σiσ j

= t̃ nm
i j δσi ,σ j .

We can write the Hamiltonian with both operators and matrix-elements depending on

spin, orbital and site indices and thus obtain the multi-orbital Hubbard model:

H =−�
i j

ti j c†
i c j −

�
i
µc†

i ci +
1

4

�
i j kl

Ui k j l c†
i c†

j cl ck , (2.13)

where i , j ,k, l denote now spin-orbitals collecting spin, orbital and site indices, i. e.

i = (oi ,σi ,ri ) – this notation was adapted from [23, p. 1]. The anti-symmetry condition

can be written now concisely as Ui k j l = −Ui l j k = −U j ki l . We note that all elements

Ui k j l where i , j or k, l involve same spins, orbitals and sites must vanish. After a Fourier

transform of real to momentum space, also the momentum dependence can be included

(ki instead of ri ).
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(a) (b)

(c) (d)

Figure 2.1: Building blocks of Feynman diagrams. Diagrams consist of (a) one-particle Green’s functions
G(12), (b) two-particle Green’s functions G(1234), (c) bare interaction vertices U (1234) and (d)
other vertices (here the full interaction vertex F (1234) is shown).

2.2 Green’s function

Green’s functions measure the correlation between the addition and removal of particles

and are connected to quantities which can be directly observed in experiment, therefore

they are also termed as correlation functions. The one- and two-particle Green’s functions

are given by

G(12) =−〈Tc(1)c†(2)〉, (2.14)

G(1234) = 〈Tc(1)c†(2)c(3)c†(4)〉, (2.15)

respectively, where each bracketed number α = 1,2, . . . is now shorthand for a tuple

(iα,τα) of a spin-orbital index iα and a point in imaginary time τα. T denotes the

fermionic imaginary time-ordering operator and 〈. . .〉 = Tr(e−βH . . .) the thermal expecta-

tion value with inverse temperature β= 1
T .

Since we want to represent our equations as Feynman diagrams and all quantities

must therefore depend on both spin-orbitals and imaginary times, we introduce an
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imaginary time dependency for the interaction by writing [23, p. 1]

U (1234) = �
i j kl

Ui k j lδ(τ1 −τ2)δ(τ2 −τ3)δ(τ3 −τ4)δi1,iδi2,kδi3, jδi4,l . (2.16)

This expression is the so-called bare interaction vertex and describes an instantaneous

interaction. The order of indices 1. . .4 matches the order of indices in the U matrix, i k j l ,

to better match the convention of equation (2.15). One-particle Green’s functions and

bare interaction vertices are building blocks of Feynman diagrams and are depicted as

such in figure 2.1. Furthermore, also a Feynman diagram for the two-particle Green’s

function is shown, which is not so frequently used, and a diagram for the full interaction

vertex, which we will introduce in section 2.4.

2.2.1 Properties

Boundary conditions. As shown in [19, p. 26], if we assume that τ1 is the largest and τ4

the smallest imaginary time-argument of G(1234), and require that the Green’s function

must be finite, we get

τ4 +β> τ1 > τ2,τ3 > τ4, (2.17)

i. e. all imaginary time arguments have to be located in an interval of length β. Further-

more, one can show [19, pp. 27–28] that

Gi1i2i3i4 (τ1,τ2,τ3,τ4) =−Gi1i2i3i4 (τ1 −β,τ2,τ3,τ4) (2.18)

Gi1i2i3i4 (τ1,τ2,τ3,τ4) =−Gi1i2i3i4 (τ1,τ2,τ3,τ4 +β) (2.19)

if τ1 is the largest and τ4 the smallest imaginary time argument. Note that we deviate

here from the concise notation introduced in equation (2.13) and write out explicitly

imaginary time and spin-orbital dependencies. Whenever other dependencies are

written explicitly, as for example k1 or σ1, then i1 contains all remaining dependencies.

The same procedure for boundary conditions can be applied when the other two

frequencies ν2 and ν3 are smallest or largest, yielding similar boundary conditions as

eq. 2.18. Therefore, the two-particle Green’s function can be expanded as a Fourier sum,
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Gi1i2i3i4 (τ1,τ2,τ3,τ4) = 1

β4

�
ν1ν2ν3ν4

ei(ν1τ1+ν2τ2+ν3τ3+ν4τ4)Gi1i2i3i4 (ν1,ν2,ν3,ν4), (2.20)

Gi1i2i3i4 (ν1,ν2,ν3,ν4) =
�β

0
dτ1 · · ·

�β

0
dτ4 e−i(ν1τ1+ν2τ2+ν3τ3+ν4τ4)Gi1i2i3i4 (τ1,τ2,τ3,τ4),

(2.21)

where νi = (2ni +1)πβ , ni ∈Z are fermionic Matsubara frequencies. Equation 2.20 extends

the Green’s function for arguments which lie outside condition 2.17. The same holds

also for the one-particle Green’s function.

Crossing symmetry. Exchange of fermionic operators yields a minus sign, i. e.

G(1234) = 〈Tc(1)c†(2)c(3)c†(4)〉 =−〈Tc(1)c†(4)c(3)c†(2)〉. (2.22)

Therefore, the two-particle Green’s function obeys the so-called crossing symmetry,

G(1234) =−G(1432) =−G(3214) =G(3412). (2.23)

Note that this is a “symmetry” of crossing legs in Feynman diagrams stemming directly

from Pauli’s principle, it is not caused by a symmetry of H .

Complex conjugation. Complex conjugation switches order of the indices and imagi-

nary times become negative:

G∗(1234) = 〈Tc(1)c†(2)c(3)c†(4)〉∗ =

=
��

m
〈m|eβHTeτ1H ci1

e−τ1H eτ2H c†
i2

e−τ2H eτ3H ci3
e−τ3H eτ4H c†

i4
e−τ4H |m〉

�∗
= Tr

�
Tci4

(−τ4)c†
i3

(−τ3)ci2
(−τ2)c†

i1
(−τ1)

�
=Gi4i3i2i1 (−τ4, −τ3,−τ2, −τ1),

(2.24)

where the cyclic property of the trace, Tr(AB) = Tr(B A) for operators A,B was used.

Analogously we have for the two-particle Green’s function:

G∗(12) =Gi2i1 (−τ2, −τ1). (2.25)
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2.2.2 Symmetry relations

Depending on the symmetries of the Hamiltonian H , the Green’s function may obey

additional symmetry relations. A symmetry of H is a unitary transformation U which

fulfills [H ,U ] = 0. Then the Green’s function G �(1234) = 〈Tc�(1)c�†(2)c�(3)c�†〉 of the

transformed system H � =U−1HU with transformed operators c�(†) =U−1c(†)U must be

the same as the original Green’s function, i. e. G �(1234) =G(1234) [19, p. 32].

Time- and space-translation symmetry. For a time-independent Hamiltonian H(τ) =
H , the imaginary time evolution operator U = e−τH is a symmetry of H . For the trans-

formed two-particle Green’s function we have

G �
i1i2i3i4

(τ1,τ2,τ3,τ4) = Tr(eβHTeτ1H eτH ci1
e−τH e−τ1H · · ·eτ4H eτH c†

i4
e−τH e−τ4H )

= Tr(eβHTe(τ1+τ)H ci1
e−(τ1+τ)H · · ·e(τ4+τ)H c†

i4
e−(τ4+τ)H ).

(2.26)

Setting τ=−τ4 and requiring equality with the Green’s function of the original system,

we get

Gi1i2i3i4 (τ1 −τ4,τ2 −τ4,τ3 −τ4,0)� �� �
=:Gi1i2i3i4 (τ�1,τ�2,τ�3)

=G(1234), (2.27)

and for the one-particle Green’s function

Gi1i2 (τ1 −τ2,0)� �� �
=:Gi1i2 (τ)

=G(12) . (2.28)

When we use equation (2.27) in the Fourier expansion equation (2.21) and perform

a change of variables τ�i = τi −τ4, i = 1,2,3, we have

Gi1i2i3i4 (ν1,ν2,ν3,ν4) =
�β

0
dτ1 · · ·

�β

0
dτ4 ei(ν1τ1+ν2τ2+ν3τ3+ν4τ4) Gi1i2i3i4 (τ1,τ2,τ3,τ4)� �� �

Gi1i2i3i4 (τ1−τ4,τ2−τ4,τ3−τ4,0)

=
�β

0
dτ4

�β−τ4

−τ4

dτ�1 · · ·
�β−τ4

−τ4

dτ�3� �� ��β
0 dτ�1···

�β
0 dτ�3

ei(ν1τ
�
1−ν2τ

�
2+ν3τ

�
3)ei(ν1−ν2+ν3−ν4)τ4Gi1i2i3i4 (τ�1,τ�2,τ�3,0)

=βδν1−ν2+ν3−ν4,0

�β

0
dτ�1 · · ·

�β

0
dτ�3ei(ν1τ

�
1−ν2τ

�
2+ν3τ

�
3)Gi1i2i3i4 (τ�1,τ�2,τ�3,0)

=: βδν1−ν2+ν3−ν4,0Gi1i2i3i4 (ν1,ν2,ν3). (2.29)
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The shift of integration limits in the second line is possible because

ei(ν1τ
�
1−ν2τ

�
2+ν3τ

�
3)Gi1i2i3i4 (τ�1,τ�2,τ�3,0) (2.30)

is periodic with period β. Therefore the Green’s function conserves energy and only

three Matsubara frequencies are needed as arguments. This is a direct consequence of

Noether’s theorem for a system which is invariant under time-translation. Analogously,

for the one-particle Green’s function we find that only one frequency as argument is

needed.

For space-translation symmetry we require invariance of H under translation by

a lattice vector R. The annihilation (creation) operators in real space transform as

c�(†)
Ri

= T −1
R c(†)

Ri
TR = c(†)

Ri+R. After a similar calculation as for time-translation symmetry, we

find

G (R1−R4)(R2−R4)(R3−R4)(R0)
i1i2i3i4

(τ1,τ2,τ3,τ4) =G(1234) (2.31)

with R0 being the null vector.

In Fourier space, where integration is now replaced by summation over discrete

lattice vectors in the first Brillouin zone, the two-particle Green’s function is due to

momentum conservation fully determined with three k-vector arguments,

Gk1k2k3k4
i1i2i3i4

(τ1,τ2,τ3,τ4) = (2π)3

V
δ(k1 −k2 +k3 −k4)Gk1k2k3

i1i2i3i4
(τ1,τ2,τ3,τ4), (2.32)

and similarly for the one-particle Green’s function.

SU(2) symmetry. Here we want to motivate the most important relations, for explicit

proofs we refer to [19, pp. 37–42]. SU(2) symmetry simplifies the spin dependence of the

Green’s function, since total spin of ingoing and outgoing particles must be conserved

along an arbitrary z-axis, so

Gσ1σ2σ3σ4
i1i2i3i4

(τ1,τ2,τ3,τ4) =Gσ1σ2σ3σ4
i1i2i3i4

(τ1,τ2,τ3,τ4)δσ1−σ2+σ3−σ4,0. (2.33)

For the one-particle Green’s function this means it must be diagonal in the spin index

and the diagonal elements have to be completely spin-independent,

Gσ1σ2
i1i2

(τ1,τ2) =Gi1i2 (τ1,τ2)δσ1,σ2 . (2.34)
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Furthermore, the Green’s function must be invariant under a total spin flip, i. e.

Gσ1σ2σ3σ4
i1i2i3i4

(τ1,τ2,τ3,τ4) =G (−σ1)(−σ2)(−σ3)(−σ4)
i1i2i3i4

(τ1,τ2,τ3,τ4). (2.35)

Both relations imply that only 6 of the 24 combinations are non-vanishing, which are

↑↑, ↑↓, ↑↓ and ↓↓, ↓↑, ↓↑ (the latter three are not independent due to spin flip symmetry)

with the shorthand notation already introduced in section 2.1, σσ� =σσσ�σ� and σσ� =
σσ�σ�σ. Note that this symmetry relation affects only spin variables, therefore the same

relations hold also for the Fourier transformed quantities. Applying equation (2.23),

Gσ1σ2σ3σ4
i1i2i3i4

(ν1,ν2,ν3,ν4)� �� �
βG

σ1σ2σ3σ4
i1i2i3i4

δν1−ν2+ν3−ν4,0

=−
βG

σ1σ4σ3σ2
i1i4i3i2

δν1−ν4+ν3−ν2,0� �� �
Gσ1σ4σ3σ2

i1i4i3i2
(ν1,ν4,ν3,ν2), (2.36)

we obtain

Gσσ�
i1i2i3i4

(ν1,ν2,ν3) =−Gσσ�
i1i2i3i4

(ν1,ν2,ν3). (2.37)

Thus, only two-particle Green’s functions G↑↑
i1i2i3i4

(ν1,ν2,ν3) and G↑↓
i1i2i3i4

(ν1,ν2,ν3) are

independent.

Finally, by analyzing a rotation of spins by π
2 about the y-axis (transforming spins

in z- to spins in x-direction), we get the relation [19, p. 42]

G↑↑
i1i2i3i4

(ν1,ν2,ν3) =G↑↓
i1i2i3i4

(ν1,ν2,ν3)+G↑↑
i1i2i3i4

(ν1,ν2,ν3). (2.38)

Using again crossing symmetry, this yields

G↑↑
i1i2i3i4

(ν1,ν2,ν3) =G↑↓
i1i2i3i4

(ν1,ν2,ν3)−G↑↓
i1i4i3i2

(ν1,ν1 −ν2 +ν3,ν3), (2.39)

so knowledge of G↑↓ suffices to determine all other spin contributions.

Time- and space-reversal symmetry. For spin-independent systems, time reversal can

be achieved by complex conjugation of the wave function.3 Therefore, for a time-reversal

invariant system H must be a real function of creation and annihilation operators.

Then, in occupation number basis the matrix elements of c(†)
i and H are real and thus

G∗(1234) =G(1234). Writing out explicitly the imaginary time dependencies and using

3For a system with spin-dependent interaction a generalization is also possible [19, p. 42].
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Table 2.1: Summary of the most important (symmetry) relations for one- and two-particle Green’s func-
tions. We use the notation defined in equations (2.27) and (2.28) and for Fourier space in equation (2.29),
but with generalized frequencies ν= (ν̃,k), therefore we implicitly assume time- and space-translation
symmetry.

One-particle Green’s function Two-particle Green’s function

Anti-periodicity Gi1i2 (τ) =−Gi1i2 (τ±β)
Gi1i2i3i4 (−τ1,τ2,τ3) =−Gi1i2i3i4 (τ1 ±β,τ2,τ3),

similarly for τ2,τ3

Crossing symmetry — G(1234) =−G(1432) =−G(3214) =G(3412)

Complex conjugation
G∗

i1i2
(τ) =Gi2i1 (τ)

G∗
i1i2

(ν) =Gi2i1 (−ν)
G∗

i1i2i3i4
(τ1,τ2,τ3,τ4) =Gi4i3i2i1 (−τ4,−τ3,−τ2,−τ1)

G∗
i1i2i3i4

(ν1,ν2,ν3) =Gi4i3i2i1 (−ν1 +ν2 −ν3,−ν3,−ν2)

SU(2) symmetry — G↑↑
i1i2i3i4

(ν1,ν2,ν3) =G↑↓
i1i2i3i4

(ν1,ν2,ν3)−G↑↓
i1i2i3i4

(ν1,ν2,ν3)

Time-reversal symmetry Gi1i2 (ν) =Gi2i1 (ν) Gi1i2i3i4 (ν1,ν2,ν3) =Gi4i3i2i1 (ν1 −ν2 +ν3,ν3,ν2)

equations (2.18) and (2.24), we have

Gi1i2i3i4 (τ1,τ2,τ3,τ4) =Gi4i3i2i1 (−τ4,−τ3,−τ2,−τ1) =Gi4i3i2i1 (β−τ4,β−τ3,β−τ2,β−τ1).

(2.40)

A similar expression can be derived for the one-particle Green’s function.

When using this identity in a similar fashion as in equation (2.29), we obtain in

Fourier space

Gi1i2i3i4 (ν1,ν2,ν3) =Gi4i3i2i1 (ν1 −ν2 +ν3,ν3,ν2). (2.41)

For additional spacial Fourier transform, we arrive at

Gk1k2k3
i1i2i3i4

(ν1,ν2,ν3) =G (−k3+k2−k1)(−k3)(−k2)
i4i3i2i1

(ν1 −ν2 +ν3,ν3,ν2). (2.42)

If the system is also space-reversal symmetric, i. e. is invariant under transformation

R →−R, then signs of all k-arguments can be flipped,

Gk1k2k3
i1i2i3i4

(ν1,ν2,ν3) =G (k3−k2+k1)(k3)(k2)
i4i3i2i1

(ν1 −ν2 +ν3,ν3,ν2). (2.43)

The most important properties and symmetry relations are summarized in table 2.1.
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(a) (b) (c)

(d)

Figure 2.2: (a) One-particle reducible diagram (reducibility is indicated by the red, dashed line) and (b)
irreducible one. (c) Non-skeleton diagram, as it can be separated by cutting the G lines along the red,
dashed lines. (d) Feynman diagram of Dyson equation 2.44.

2.3 Dyson equation

The non-interacting one-particle Green’s function is defined as G0(12) =−〈Tc(1)c†(2)〉0.

〈. . .〉0 = Tr(eβH0 . . .) denotes the expectation value with respect to the non-interacting

system and H0 is the non-interacting Hamiltonian. In Feynman diagrams we depict

G0(12) as a dotted line.

We can classify all Feynman diagrams made of G0 lines stemming from the per-

turbation series of G into one-particle irreducible diagrams, which do not separate

into disconnected pieces if we cut one G0 line, and one-particle reducible ones (see

figures 2.2(a) and 2.2(b)). If we consider only diagrams which contribute to self-energy Σ,

i. e. the diagrams where in- and outgoing lines were cut, we can reconstruct all Feynman

diagrams for G by connecting one-particle irreducible Σ pieces with G0 lines, as shown

in figure 2.2(c). Irreducibility is required to avoid double-counting of Feynman diagrams.

This reconstruction of G by means of Σ and G0 is formulated mathematically by the

Dyson equation,

G(12) =G0(12)+G0(13)Σ(34)G(42). (2.44)
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It is also possible to express diagrams of Σ in terms of the interacting one-particle

Green’s function G . To this end, skeleton diagrams have to be taken into account: these

are diagrams which do not separate when cutting two G lines and therefore lack self-

energy insertions (for a non-skeleton example, see figure 2.2(c)). The G lines contain

already all self-energy corrections, so self-energy insertions would lead to double count-

ing.

All diagrams which will be discussed from now on consist of interacting Green’s

function lines and are therefore skeleton diagrams.

2.4 Full two-particle vertex

For a non-interacting system, the two-particle Green’s function can be represented as a

sum of products of one-particle Green’s functions by Wick’s theorem,

G(1234) =G0(12)G0(34)−G0(14)G0(32)� �� �
=:X (U=0)

0 (4321)

, (2.45)

where X (U=0)
0 (4321) is the bare susceptibility in the non-interacting case, to which we

get back in section 2.5.

When U �= 0, an additional term arises describing the scattering process between

two particles or a particle and a hole. This additional term is called full two-particle or

full interaction vertex F , and the two-particle Green’s function is related to F by

G(1234) =G(12)G(34)−G(14)G(32)

−G(15)G(37) F (5678)G(62)G(84),
(2.46)

where for inner indices, summation over spin-orbitals and integration over imaginary

time is implied. A representation of equation (2.46) in terms of Feynman diagrams is

depicted in figure 2.3.

Note that vertices, as self-energy Σ, do not have in- and outgoing lines. This is the

reason why in Feynman diagrams the indices are placed directly at the vertex corners,

see for example figure 2.1(d) (nevertheless we draw in- and outgoing lines also for

vertices in order to keep track how Green’s function lines must be attached to vertex

corners). Moreover, if we compare the line in figure 2.1 at point 1 for Green’s functions

and vertices, we notice that it is an incoming line for Green’s functions and and outgoing



18 | CHAPTER 2 – CORRELATION FUNCTIONS AND VERTICES

Figure 2.3: Feynman diagram of equation (2.46). G(1234) consists of an disconnected part and and
an additional term with the full interaction vertex F , which describes a scattering process.

one for vertices. These different conventions are needed to attach Green’s function lines

correctly to vertex corners – as an analogy one can think of a jigsaw puzzle, where for a

given joint one part with a tab and one part with an indentation is needed.

The signs in equation (2.46) ensure that the lowest-order term in F is just the bare

interaction U , which can be verified by expanding both equations (2.15) and (2.46) in

their respective perturbation series and using Wick’s theorem:

G(1234)

= 〈c(1)c†(2)c(3)c†(4)〉0 − 1
4U (5678)〈c(1)c†(2)c(3)c†(4)c†(5)c†(7)c(8)c(6)〉0 +O(U 2)

=G0(12)G0(34)−G0(14)G0(32)−U (5678)G0(15)G0(37)G0(62)G0(84)+O(U 2).

(2.47)

2.4.1 Properties

Anti-periodicity. Anti-periodicity with period β for F does not directly follow from

anti-symmetry of one- and two-particle Green’s functions, but with the help of the Bethe-

Salpeter equation for the susceptibility (not shown here) one can derive that also the

vertices, including F , have the anti-symmetric property

Fi5i6i7i8 (τ5,τ6,τ7,τ8) =−Fi5i6i7i8 (τ5 ±β,τ6,τ7,τ8), (2.48)

and similarly for all other arguments. Then F can also be expanded as a Fourier sum in

terms of fermionic Matsubara frequencies. As a consequence, all formulas with brack-

eted number notation are also valid for quantities depending on Matsubara frequencies,

but integration over imaginary time has to be replaced by frequency summation includ-

ing a normalization factor, for example
�β

0 dτ1 → 1
β

�
ν1 .
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Crossing symmetry. We know from equation (2.23) that G(1432)+G(1234) = 0. Using

now equation (2.46) for both terms, we have

−G(15)G(37)F (5678)G(64)G(82)� �� �
G(15)G(37)F (5876)G(84)G(62)

−G(15)G(37)F (5678)G(62)G(84) = 0, (2.49)

where we relabeled indices which are summed over. This equation is fulfilled non-

trivially when F (1234) =−F (1432). By a similar argument, we find

F (1234) =−F (3214) = F (3412). (2.50)

Complex conjugation. Equation 2.24 yields Gi4i3i2i1 (−τ4,−τ3,−τ2,−τ1)−G∗(1234) = 0.

Inserting equation (2.46) for both terms gives

Gi5i1 (−τ5,−τ1)Gi7i3 (−τ7,−τ3)F∗(5678)Gi2i6 (−τ2,−τ6)Gi4i8 (−τ4,−τ8)

=Gi4i5 (−τ4,τ5)Gi2,i7 (−τ2,τ7)F (5678)Gi6i3 (τ6,−τ3)Gi8i1 (τ8,−τ1)

=Gi4i8 (−τ4,−τ8)Gi2i6 (−τ2,−τ6)Fi8i7i6i5 (−τ8,−τ7,−τ6,−τ5)Gi7i3 (−τ7,−τ3)Gi5i1 (−τ5,−τ1),

(2.51)

where we performed the substitution −τ j →−τ j , j = 5, . . . ,8, which changes also the

integration limits
�

0
βdτ j →

�−β
0 dτ j . However, when using equation (2.48), we can shift

and flip integration limits back to the original ones and since we have to do this four

times, no additional sign occurs. Thus, equation (2.51) can be fulfilled non-trivially only

by

F∗(5678) = Fi8i7i6i5 (−τ8,−τ7,−τ6,−τ5). (2.52)

2.4.2 Symmetry relations*

Time- and space-translation symmetry. We apply equation (2.28) on equation (2.46)

and get

Gi1i2i3i4 (τ1 −τ,τ2 −τ,τ3 −τ,τ4 −τ) =Gi1i2 (τ1,τ2)Gi3i4 (τ3,τ4)−Gi1i4 (τ1,τ4)Gi3i2 (τ3,τ2)

−Gi1i5 (τ1 −τ,τ5)Gi3i7 (τ3,τ7)Fi5i6i7i8 (τ5,τ6,τ7,τ8)Gi6i2 (τ6,τ2 −τ)Gi8i4 (τ8,τ4 −τ).

(2.53)
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If we demand this to be the same as equation (2.46), we only have to concentrate on the

last term, which can be rewritten as

Gi1i5 (τ1,

= τ�5, etc.� �� �
τ5 +τ)Gi3i7 (τ3,τ7 +τ)Fi5i6i7i8 (τ5,τ6,τ7,τ8)Gi6i2 (τ6,τ2)Gi8i4 (τ8,τ4)

=Gi1i5 (τ1,τ�5)Gi3i7 (τ3,τ�7)Fi5i6i7i8 (τ�5 −τ,τ�6 −τ,τ�7 −τ,τ�8 −τ)Gi6i2 (τ�6,τ2)Gi8i4 (τ�8,τ4).

(2.54)

The substitution τ�j = τ j +τ, j = 5, . . . ,8 shifts also the integration limits to
�β+τ
τ dτ�j , but

since the two-particle Green’s functions and F are anti-periodic in β in all imaginary

time arguments and thus the product is periodic, shifting the integration limits back to

the original ones is possible. Comparing this with the last term of equation (2.46), we

obtain

Fi5i6i7i8 (τ5,τ6,τ7,τ8) = Fi5i6i7i8 (τ5 −τ8,τ6 −τ8,τ7 −τ8,0)� �� �
=:Fi5i6i7i8 (τ�5,τ�6,τ�7)

. (2.55)

As for the two-particle Green’s function in equation (2.29) energy is also conserved for F ,

Fi1i2i3i4 (ν1,ν2,ν3,ν4) =βδν1−ν2+ν3−ν4,0Fi1i2i3i4 (ν1,ν2,ν3). (2.56)

If the system features also space-translation symmetry, a similar calculation as for

time-translation symmetry yields

F R1R2R3R4
i1i2i3i4

(τ1,τ2,τ3,τ4) = F (R1−R4)(R2−R4)(R3−R4)(R0)
i1i2i3i4

(τ1,τ2,τ3,τ4) (2.57)

and for the Fourier transform

F k1k2k3k4
i1i2i3i4

(τ1,τ2,τ3,τ4) = (2π)3

V
δk1−k2+k3−k4 F k1k2k3

i1i2i3i4
(τ1,τ2,τ3,τ4). (2.58)

SU(2) symmetry. First, we check whether F fulfills spin conservation. To this end, we

consider spin conservation for the two-particle Green’s function and use equations (2.34)

and (2.46):

G(15)δσ1,σ5 , etc.� �� �
G(15)G(37)F (5678)G(62)G(84)

δσ5−σ6+σ7−σ8,0� �� �
δσ1−σ2+σ3−σ4,0

=G(15)G(37)F (5678)G(62)G(84)δσ1,σ5δσ3,σ7δσ6,σ2δσ8,σ4 .

(2.59)
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It follows immediately that

F (1234) = F (1234)δσ1−σ2+σ3−σ4 . (2.60)

Secondly, for spin flip symmetry we get after a short calculation starting from equa-

tion (2.35) (without writing imaginary time/Matsubara frequency arguments for con-

ciseness) the equality

Gσ1σ5
i1i5

Gσ3σ7
i3i7

Fσ5σ6σ7σ8
i5i6i7i8

Gσ6σ2
i6i2

Gσ8σ4
i8i4

=G (−σ1)σ5
i1i5

G (−σ3)σ7
i3i7

Fσ5σ6σ7σ8
i5i6i7i8

G (−σ6)σ2
i6i2

G (−σ8)σ4
i8i4

. (2.61)

Performing a change of variables σ j →−σ j , j = 5, . . . ,8 on the right-hand side of the

equation and using equation (2.35) for the one-particle Green’s function yields

Fσ1σ2σ3σ4
i1i2i3i4

= F (−σ1)(−σ2)(−σ3)(−σ4)
i1i2i3i4

. (2.62)

Finally, we verify that equation (2.38) is also valid for F . Therefore, we start with the term

on the left-hand side of equation (2.38) and use equation (2.46) to obtain

G↑↑
i1i2i3i4

=G↑↑
i1i2

G↑↑
i3i4

−G↑↑
i1i4

G↑↑
i3i2

−G↑σ5
i1i5

G↑σ7
i3i7

Fσ5σ6σ7σ8
i5i6i7i8

Gσ6↑
i6i2

Gσ8↑
i8i4

, (2.63)

where imaginary time/Matsubara frequency arguments were neglected. Equally, for the

right-hand side of equation (2.38) we get

G↑↓
i1i2i3i4

+G↑↓
i1i2i3i4

=G↑↑
i1i2

G↓↓
i3i4

−G↑↑
i1i4

G↓↓
i3i2

−G↑σ5
i1i5

G↑σ7
i3i7

Fσ5σ6σ7σ8
i5i6i7i8

Gσ6↑
i6i2

Gσ8↑
i8i4

−G↑σ5
i1i5

G↓σ7
i3i7

Fσ5σ6σ7σ8
i5i6i7i8

Gσ6↓
i6i2

Gσ8↑
i8i4

,
(2.64)

where we used spin conservation 2.34 for the one-particle Green’s function. Thus equa-

tion (2.38) can be written as

G↑σ5
i1i5

δ↑,σ5 , etc.����
G↑σ5

i1i5
G↑σ7

i3i7
Fσ5σ6σ7σ8

i5i6i7i8
Gσ6↑

i6i2
Gσ8↑

i8i4
=G↑σ5

i1i5
G↑σ7

i3i7
Fσ5σ6σ7σ8

i5i6i7i8
Gσ6↑

i6i2
Gσ8↑

i8i4

−G↑σ5
i1i5

G↓σ7
i3i7

Fσ5σ6σ7σ8
i5i6i7i8

Gσ6↓
i6i2

Gσ8↑
i8i4

,

(2.65)

thus we find that

F ↑↑
i1i2i3i4

= F ↑↓
i1i2i3i4

+F ↑↓
i1i2i3i4

. (2.66)
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Table 2.2: Summary of the most important (symmetry) relations for full interaction vertex F . We use
the notation defined in equation (2.55) and for Fourier space in equation (2.56), but with generalized
frequencies ν= (ν̃,k), therefore we implicitly assume time- and space-translation symmetry.

Anti-periodicity
Fi1i2i3i4 (τ1,τ2,τ3) =−Fi1i2i3i4 (τ1 ±β,τ2,τ3),

similarly for τ2,τ3

Crossing symmetry F (1234) =−F (1432) =−F (3214) = F (3412)

Complex conjugation
F∗

i1i2i3i4
(τ1,τ2,τ3,τ4) = Fi4i3i2i1 (−τ4,−τ3,−τ2,−τ1)

F∗
i1i2i3i4

(ν1,ν2,ν3) = Fi4i3i2i1 (−ν1 +ν2 −ν3,−ν3,−ν2)

SU(2) symmetry F ↑↑
i1i2i3i4

(ν1,ν2,ν3) = F ↑↓
i1i2i3i4

(ν1,ν2,ν3)−F ↑↓
i1i2i3i4

(ν1,ν2,ν3)

Time-reversal symmetry Fi1i2i3i4 (ν1,ν2,ν3) = Fi4i3i2i1 (ν1 −ν2 +ν3,ν3,ν2)

Time- and space-reversal symmetry. In order to find a time-reversal symmetry relation

for F we apply equation (2.46) to equation (2.41),

Gi1i5 (ν1,ν5)Gi3i7 (ν3,ν7)Fi5i6i7i8 (ν5,ν6,ν7,ν8)Gi6i2 (ν6,ν2)Gi8i4 (ν8,ν4)

=
Gi5i4 (ν5,ν4), etc.� �� �
Gi4i5 (ν4,ν5)Gi2i7 (ν2,ν7)Fi5i6i7i8 (ν5,ν6,ν7,ν8)Gi6i3 (ν6,ν3)Gi8i1 (ν8,ν1)

(2.67)

which yields after renaming of summed over variables

Fi1i2i3i4 (ν1,ν2,ν3) = Fi4i3i2i1 (ν1 −ν2 +ν3,ν3,ν2). (2.68)

After a similar calculation we obtain for space-reversal symmetry

F k1k2k3
i1i2i3i4

(ν1,ν2,ν3) = F (k1−k2−k3)k2k3
i4i3i2i1

(ν1 −ν2 +ν3,ν3,ν2). (2.69)

In table 2.2 the most important relations for the full-interaction vertex F are sum-

marized.

2.5 Generalized susceptibility

The generalized susceptibility can be obtained by adding the two-particle vertex with

reattached legs to the bare susceptibility X0(1234):

X (1234) =G(23)G(41)� �� �
X0(1234)

+G(25)G(61)F (5678)G(83)G(47). (2.70)
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(a)

(b)

Figure 2.4: (a) Feynman diagram of equation (2.70), which is the sum of a bare susceptibility X0 and
full interaction vertex F with attached Green’s function lines. (b) Diagram of equation (2.71). One can
clearly see the difference in index conventions for Green’s function G(1234) and vertex X .

Figure 2.4(a) shows equation (2.70) in terms of Feynman diagrams.

Note that with this definition, the creation and annihilation operators in X are in

the “vertex” convention (2.46) rather than the “Green’s function” convention, i.e., one

has to permute indices when moving from G to X :

G(1234) =G(12)G(34)−X (2143). (2.71)

This convention (see figure 2.4(b) for a diagrammatical representation) for X and X0

from [23, p. 2] is more natural for two reasons: Firstly, physical susceptibilities, depending

on one frequency argument only, can be obtained by gluing together legs 1 and 2 as

well as 3 and 4, which amounts to taking limits τ2 → τ−1 , τ3 → τ−4 and τ4 → 0. Secondly,

this definition leads to a more straightforward composition rule in the Bethe-Salpeter

equation, as we will see in chapter 3. The general susceptibility defined in [19, p. 65]

would correspond to X (2143) in our convention.

Due to equation (2.71) adaptation of properties and symmetry relations of G(1234)

for X is straightforward.





CHAPTER 3

M U LT I - O R B I T A L PA R Q U E T E Q U A T I O N S

3.1 General case

3.1.1 Two-particle reducibility

All contributions to F must be one-particle irreducible, which can be seen seen from fol-

lowing argument: if a contribution would be one-particle reducible, then one would have

either a bare interaction vertex violating particle number conservation (figure 3.1(a))

or a self-energy insertion, which would contradict the fact that we exclusively work

with skeleton diagrams (figure 3.1(b)). One-particle irreducibility is an intrinsic prop-

erty of two-particle diagrams; three-particle diagrams for example can be one-particle

irreducible [19, p. 67].

However, contributions to F can be classified into two-particle irreducible digrams,

which do not separate into disconnected pieces when cutting two Green’s function lines,

and into two-particle reducible ones.

Unlike in the single-particle case there are three notions of two-particle reducibility:

labelling the outer legs of our diagram by 1,3 as outgoing and 2,4 as ingoing lines, we call

the vertex reducible with respect to the longitudinal particle-hole channel (ph) when 1,2

can be separated from 3,4 (figure 3.2(a)), reducible with respect to the transversal particle-

hole channel (ph) when 1,4 can be separated from 2,3 (figure 3.2(b)), and reducible

with respect to the particle-particle channel (pp) when 1,3 can be separated from 2,4

(figure 3.2(c)).

In each of the channels, the full vertex F decomposes into a reducible part Φ and

an irreducible part Γ:

F (1234) = Γr (1234)+Φr (1234), r = ph,ph,pp. (3.1)

25
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(a) (b)

Figure 3.1: (a) Hypothetical one-particle reducible diagram, which violates particle number conservation
and (b) diagram with a self-energy insertion, which contradicts the fact that we use skeleton diagrams
only.

(a)

(b)

(c)

Figure 3.2: Two-particle reducible diagrams with respect to (a) ph-, (b) ph-, and (c) pp-channel.

The irreducible and reducible parts in each channel are related by the Bethe-Salpeter

equations:

Φph(1234) = Γph(1256)G(67)G(85) F (7834), (3.2a)

Φph(1234) =−Γph(1654)G(67)G(85) F (7238), (3.2b)

Φpp(1234) = 1
2Γ

pp(1536)G(67)G(58) F (7284). (3.2c)

We can interpret the Bethe-Salpeter equations as follows: For a given channel r , F

is the sum of all diagrams that are reducible in r and all diagrams that are irreducible
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in r (3.1). Every r -reducible diagram of Φr can be represented by splitting it into two

subdiagrams connected by two Green’s function lines, where one diagram is irreducible

and the other diagram is in the set of F . To make this decomposition of Φr unique, we

require that the leftmost subdiagram has to be the irreducible one [19, p. 70]. Therefore,

the Bethe-Salpeter equations are the two-particle counterpart of the Dyson equation.

The signs of equation (3.2) can be computed by attaching operators to each of the

quantities, e. g., G(67) →G(67)c(6)c†(7), and then permuting the operators until they lie

in the sequence generated by the perturbation series for F (1234) [23, p. 3].

The factor 1
2 of equation (3.2c) is of topological nature: we notice that relabelling the

outer legs 1 ↔ 3 and 2 ↔ 4 does not change the Bethe-Salpeter equation for pp-channel,

therefore this factor is needed for compensating overcounting. Moreover, relabelling the

legs for ph- yields the Bethe-Salpeter equation for ph-channel up to a sign – this is the

reason for the peculiar crossing symmetry for channels, which will be described below.

Each diagram in F can only be reducible in at most one channel: a diagram re-

ducible in two channels would allow us to sever a single external point from two others.

This would require terms violating particle number conservation to be present in the

interaction. The parquet equation expresses this fact by classifying all diagrams by

reducibility:

F (1234) =Λ(1234)+Φph(1234)+Φph(1234)+Φpp(1234), (3.3)

where Λ is the fully irreducible vertex collecting terms irreducible in all channels.

Crossing symmetry. While the full vertex is crossing symmetric, the situation for the

channels is slightly more involved. By applying equation (2.50) to equation (3.1) and

equation (3.2a) and relabelling, we obtain for ph-channel

F (1234) =−Γph(1432)+Γph(1456)G(67)G(85) F (7238), (3.4)

and for ph-channel

F (1234) = Γph(1234)−Γph(1654)G(67)G(85) F (7238). (3.5)

Comparing the two equations and using again (3.1) to get relations for Φ, we have

Γph(1234) =−Γph(1432), Φph(1234) =−Φph(1432), (3.6)
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(a)

(b)

(c)

Figure 3.3: Bethe-Salpeter equations for (a) ph-, (b) ph- and (c) pp-channel. Note that the crossing
symmetry forΦ can be explained by the fact that the diagrams of side of the Bethe-Salpeter equations
for ph- and ph-channel can be transformed into each other up to a sign by relabelling 1 ↔ 3 or 2 ↔ 4.
For pp the diagrams remain the same under relabelling – this is the reason why an additional factor of
1
2 for compensating overcounting is needed.



3.1 GENERAL CASE | 29

Figure 3.4: Parquet equation and exemplary first order diagrams of each channel. Red, dashed lines
indicate two-particle reducibility for the corresponding channel.

i. e., under crossing the ph- and ph-channel trade place.

The parquet equation (3.3) then dictates that the pp-channel must be crossing

symmetric:

Γpp(1234) =−Γpp(1432), Φpp(1234) =−Φpp(1432), (3.7)

which alternatively can also be verified by inserting (2.50) into (3.2c) and relabelling.

Bethe-Salpeter picture. Equations (3.1), (3.2) and (3.3) are formulated in the “parquet

picture”, where all channels share a global incoming and outgoing convention. This

makes it easy to sum them up through the parquet equation (3.3) in order to obtain

the full vertex. However, it comes at the cost of channel-dependent Bethe-Salpeter

equations (3.2). An alternative formulation can be obtained by introducing F in each of

the channels:

F (1234) = F ph(12 |34) = F ph(14 |32) = F pp(13 |24). (3.8)

By replacing each channel vertex by its “channel-native” convention, e.g., by replacing

Γph(1234) with Γph(14 |32), for all channels the Bethe-Salpeter equation has the same

structure:

Φr (12 |34) = κrΓ
r (12 |56) X r

0 (56 |78) F r (78 |34), (3.9)

with the channel-dependent bare susceptibilities

X ph
0 (12 |34) =G(23)G(41), κph = 1, (3.10a)

X ph
0 (12 |34) =G(23)G(41), κph =−1, (3.10b)

X pp
0 (12 |34) =−G(23)G(14), κpp =−1

2 . (3.10c)
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Note the extra bar separating the “incoming” and “outgoing” side in the channel-native

convention.

In each of the channel conventions, the parquet equation then reads:

F ph(12 |34) =Λph(12 |34)+Φph(12 |34)+Φph(14 |32)+Φpp(13 |24), (3.11a)

F ph(12 |34) =Λph(12 |34)+Φph(14 |32)+Φph(12 |34)+Φpp(13 |42), (3.11b)

F pp(12 |34) =Λpp(12 |34)+Φph(13 |24)+Φph(14 |23)+Φpp(12 |34). (3.11c)

In the “parquet picture” we had one parquet equation (3.3) and distinct Bethe-Salpeter

equations (3.2) for each channel, while in this picture there are distinct parquet equations

for each channel but all Bethe-Salpeter equations have the same structure [23, pp. 4–5].

Frequency convention. When applying time-and space-translation symmetry, it is

convenient to depart from our bracketed-number notation and write frequency and

momentum dependencies explicitly. We introduce the following convention with gen-

eralized frequencies, ν = (ν̃,k), which inherently guarantees energy and momentum

conservation:

ph and ph

����������
ν1= ν

ν2= ν+ω

ν3= ν�+ω

ν4= ν�

ν1= ν

ν2=ω−ν�

ν3=ω−ν

ν4= ν�

����������
pp (3.12)

Here ν̃ and ν̃1 denote fermionic Matsubara frequencies, whereas ω̃ denotes a bosonic

Matsubara frequency, ω̃ = 2n π
β , n ∈ Z. With this convention ph- and ph-reducible

diagrams describe an interaction of a particle propagating forward in time with energy

ν̃ and a hole propagating backward in time with energy −ν̃�, whereas pp-reducible

diagrams describe an interaction of two particles with energies ν̃ and ν̃� (see also the

lowest order diagrams of figure 3.4), thus justifying the channel names.

We introduce also the following shorthand notation for the vertices showing fre-

quency dependence,

Φ
ph,νν�ω
(i1 i2 | i3 i4) :=Φ

ph
i1i2i3i4

(ν,ν+ω,ν�+ω,ν�), (3.13a)

Φ
ph,νν�ω
(i1 i2 | i3 i4) :=Φ

ph
i1i4i3i2

(ν,ν�,ν�+ω,ν+ω), (3.13b)

Φ
pp,νν�ω
(i1 i2 | i3 i4) :=Φ

pp
i1i3i2i4

(ν,ω−ν,ω−ν�,ν�), (3.13c)
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analogously for F r , Γr and Λr . Then two important crossing symmetry relations in this

notation are

Φ
ph,νν�ω
(i1 i2 | i3 i4) =+Φph,(ν�+ω)(ν+ω)(−ω)

(i3 i2 | i1 i4) , (3.14a)

Φ
ph,νν�ω
(i1 i2 | i3 i4) =−Φph,ν(ν�+ω)(ν�−ν)

(i1 i2 | i3 i4) . (3.14b)

According to the second equation, the vertices for ph- and ph-channel are not indepen-

dent – therefore it is sufficient to restrict calculations to ph- and pp-channel vertices

only. For the channel-dependent bare susceptibilites we introduce a similar shorthand

notation showing frequency dependence:

X ph,νν�ω
0(i1 i2 | i3 i4) =βGi2i3 (ν)Gi4i1 (ν�+ω)δν,ν� , (3.15a)

X pp,νν�ω
0(i1 i2 | i3 i4) =−βGi2i3 (ν)Gi1i4 (ω−ν�)δν,ν� . (3.15b)

3.1.2 Schwinger-Dyson equation

In this section we are going to derive an equation which relates the one-particle quantity

Σ to the full interaction vertex F (1234).

We start by taking the derivative of the one-particle Green’s function,

d

dτ1
Gi1i2 (τ1,τ2) =− d

dτ1
〈Tci1

(τ1)c†
i2

(τ2)〉. (3.16)

Using the definition of the imaginary time-ordering operator we obtain for the thermal

expectation value

〈Tci1
(τ1)c†

i2
(τ2)〉 = 〈ci1

(τ1)c†
i2

(τ2)〉θ(τ1 −τ2)−〈c†
i2

(τ2)ci1
(τ1)〉θ(τ2 −τ1). (3.17)

The derivative is

d

dτ1
〈Tci1

(τ1)c†
i2

(τ2)〉 = 〈ci1
(τ1)c†

i2
(τ2)+ci2

(τ2)c†
i1

(τ1)〉� �� �
=〈{ci1

(τ1),c†
i2

(τ1)}〉=〈δi1,i2 〉=δi1,i2

δ(τ1 −τ2)+〈T d

dτ1
ci1

(τ1)c†
i2

(τ2)〉.

(3.18)

Therefore, we have

d

dτ1
Gi1i2 (τ1,τ2) =−δi1,i2 δ(τ1 −τ2)−〈T d

dτ1
ci1

(τ1)c†
i2

(τ2)〉. (3.19)
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Consider the Heisenberg equation

d

dτ1
ci1

(τ1) = d

dτ1
eHτ1 ci1

e−Hτ1 = [H ,ci1
(τ1)] = [H ,ci1

](τ1), (3.20)

if H has no explicit time dependence. In the following we consider our multi-orbital

Hubbard Hamiltonian (2.13), where this is certainly the case.

With the commutation relations

[AB ,C ] = A[B ,C ]+ [A,C ]B = A{B ,C }− {A,C }B ,

[AB X Y ] = AB [X Y ,C ]+ [AB ,C ]X Y = AB(X {Y ,C }− {X ,C }Y )+ (A{B ,C }− {A,C }B)X Y

we get for the one- and two-particle terms in our Hamiltonian

[c†
i c j ,ci1

] =−δi ,i1 c j

[c†
i c†

j cl ck ,ci1
] = (c†

i δ j ,i1 −δi ,i1 c†
j )cl ck .

Thus we can write the commutator in the Heisenberg equation (3.20) as

[H ,ci1
] =�

j
(ti1 j c j +µδi1, j c j )+ 1

2

�
i kl

Ui1l i k c†
i cl ck . (3.21)

Using this for equation (3.19), we find

d

dτ1
Gi1i2 (τ1,τ2) =−δi1,i2δ(τ1 −τ2)+�

j
(ti1 j +µδi1, j )G j i2 (τ1,τ2)

+ 1

2

�
i kl

Ui1l i kGl i ki2 (τ1,τ1 +0+,τ1 +0+,τ2).
(3.22)

Next we Fourier transform this equation and use time-translation symmetry (2.28):

�
j

�
(iν1 +µ)δi1, j + ti1 j

�
G j i2 (ν1) = δi1,i2 −

1

2

�
i kl

Ui1l i kGl i ki2 (ν1,ν1,ν1), (3.23)

which can be interpreted as a BBGKY-hierarchy, relating one- to two-particle Green’s

functions. For the non-interacting one-particle Green’s function G0 we find in (3.23) by

setting Ui1l i k = 0 �
j

�
(iν1 +µ)δi1, j + ti1 j

�
G0, j i2 (ν1) = δi1,i2 . (3.24)
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Figure 3.5: Feynman diagram of the Schwinger-Dyson equation.

Inserting the Dyson equation (2.44) into the left side of (3.23) and using (3.24) yields

�
j

�
(iν1 +µ)δi1, j + ti1 j

�
G0, j i2 (ν1) = δi1,i2 +

�
j
Σi1 j (ν1)G j i2 (ν1). (3.25)

Comparing this with the right side of equation (3.23), we find

(ΣG)i1i2 (ν1) = 1

2
Ui1i3i4i5Gi5i4i3i2 (ν1,ν1,ν1) (3.26)

and for imaginary times

(ΣG)i1i2 (τ1,τ2) = 1

2
Ui1i3i4i5Gi5i4i3i2 (τ1,τ1 +0+,τ1 +0−,τ2). (3.27)

As a last step, we insert equation (2.46) into (3.27),

(ΣG)i1i2 (τ1,τ2) =Ui1i3i4i5

�〈c†
i4

(τ1)ci5
(τ1)〉Gi3i2 (τ1,τ2)

− 1

2
Gi5i6(τ1,τ6)Gi3i7(τ1,τ7)Fi6i8i7i9(τ6,τ8,τ7,τ9)Gi8i4(τ8,τ1)Gi9i2(τ9,τ2)

�
,

(3.28)

and after relabelling summed over indices and factoring out Gi9i2 (τ9,τ2) on both sides

we obtain the Schwinger-Dyson equation,

Σi1i2 (τ1,τ2) =−Ui1i4i3i2

Gi4i3 (τ1+0−,τ1)� �� �
〈c†

i3
(τ1)ci4

(τ1)〉δ(τ2 −τ1)

− 1

2
Ui1i3i4i5Gi5i6 (τ1,τ6)Gi3i8 (τ1,τ8)Fi6i7i8i2 (τ6,τ7,τ8,τ2)Gi7i4 (τ7,τ1),

(3.29)

which is shown as a Feynman diagram in figure 3.5.
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3.2 Time-translation symmetry*

In this and the next section we will apply symmetries to the equations needed in the

parquet formalism, in order to obtain the formulas which are actually implemented in

multi-orbital-parquet. We consider only equations in ph- and pp-channel, since

ph is related to ph by crossing symmetry (3.14).

Bethe-Salpeter equation. We start from equation (3.9) and explicitly write the fre-

quency dependencies. For ph-channel, we obtain

κphΓ
ph(12 |56) X ph

0 (56 |78) F ph(78 |34)

= κphΓ
ph
i1i2i5i6

(ν1,ν2,ν5,ν6)Gi6i7 (ν6,ν7)Gi8i7 (ν8,ν7)F ph
i7i8i3i4

(ν7,ν8,ν3,ν4).
(3.30)

Using time- and space-translation symmetry for Φ and G , the frequency convention

(3.12) and the notation defined in equations (3.13) and (3.15), we have

Φ
ph,νν�ω
(i1 i2 | i3 i4) =

1

β2

�
ν1ν2

κphΓ
ph,νν1ω

(i1 i2 | i5 i6) X ph,ν1ν2ω

0(i5 i6 | i7 i8)F
ph,ν2ν

�ω
(i7 i8 | i3 i4)� �� �

=:F̃
ph,ν1ν

�ω
(i5 i6 | i3 i4)

, (3.31)

where we wrote the frequency summations explicitly for keeping track of the normaliza-

tion factors, but summation over repeated spin-orbitals is still implicit.

A similar calculation yields for the pp-channel

Φ
pp,νν�ω
(i1 i2 | i3 i4) =

1

β2

�
ν1ν2

κppΓ
pp,νν1ω

(i1 i2 | i5 i6) X pp,ν1ν2ω

0(i5 i6 | i7 i8)F
pp,ν2ν

�ω
(i7 i8 | i3 i4)� �� �

=:F̃
pp,ν1ν

�ω
(i5 i6 | i3 i4)

. (3.32)

Parquet equation. We take equation (3.11) and use the vertex notation equation (3.13)

which inherently respects time-translation symmetry. In order to get rid of Φph in

equations (3.11), we have to apply crossing symmetry (3.14b). As the left-hand side

of equation (3.11a) has frequencies in ph-convention (3.12), Φpp on the right-hand

side however in pp-convention, the latter has to be expressed also with ph-channel

frequencies. The relation between the two different convention can be read off from

equation (3.13). We get for the ph-channel the parquet equation

F ph,νν�ω
(i1 i2 | i3 i4) =Λ

ph,νν�ω
(i1 i2 | i3 i4) +Φ

ph,νν�ω
(i1 i2 | i3 i4) −Φ

ph,ν(ν+ω)(ν�−ν)
(i1 i4 | i3 i2) +Φ

pp,νν�(ω+ν+ν�)
(i1 i3 | i2 i4) (3.33)
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and for the pp-channel

F pp,νν�ω
(i1 i2 | i3 i4) =Λ

pp,νν�ω
(i1 i2 | i3 i4) +Φ

pp,νν�ω
(i1 i2 | i3 i4) +Φ

ph,νν�(ω−ν−ν�)
(i1 i3 | i2 i4) −Φ

ph,ν(ω−ν�)(ν�−ν)
(i1 i4 | i2 i3) . (3.34)

Schwinger-Dyson equation. Assuming time-translation symmetry for G and Σ and

using the notations defined in equations (3.13) and (3.15), Fourier transformation of

equation (3.29) yields

Σi1i2 (ν) =− 1

β

�
ν�

Ui1i4i3i2Gi4i3 (ν�)eiν�0− − 1

2β3

�
ν�ν��ω

Ui1i3i4i5Gi3i8 (ν+ω) X ph,ν�ν��ω
0(i4 i5 | i6 i7)F

ph,ν��νω
(i6 i7 | i8 i2)� �� �

=F̃ ph,ν�νω
(i4 i5 | i8 i2)

,

(3.35)

where summation over repeated spin-orbitals is again implicit.

We can improve results for Schwinger-Dyson equation by using Fourier transformed

quantities for both terms and considering the asymptotic behaviour of F for the second

term.

Let us start with the first, so called ‘tadpole’ term (due to the form of the Feyn-

man diagram in figure 3.5). This term is numerically problematic, as can be seen by

considering the non-interacting Green’s function for a system without hopping (e. g.

atomic limit in section 4.1). Then the tadpole diagram is proportional to
�

ν�
1

iν�−µ and

summing the terms naively in a loop would lead to almost equal negative and positive

imaginary contributions and a vanishing result, whereas analytically one would get the

non-zero occupation number n. Note that due to the fully anti-symmetric definition

of the interaction used here, the tadpole diagram contains both the Hartree and Fock

contributions.

We rewrite the tadpole (Hartree-Fock) term as

1

β

�
ν�

Ui1i3i4i2Gi3i4 (ν�)eiν�0− = 1

β

�
ν�

Ui1i3i4i2

�β

0
dτGi3i4 (τ)e−iν�(τ−0−)

= 1

β
Ui1i3i4i2

�β

0
dτβδ(τ−0−)Gi3i4 (τ) =Ui1i3i4i2Gi3i4 (0−).

(3.36)

Thus we have replaced the summation over infinitely many bosonic Matsubara frequen-

cies by a evaluation of the imaginary time-dependent Green’s function at 0−. The factor

eiν�0− was crucial for the calculation here, taking the limit from the other side would

change the order of operators in G .



36 | CHAPTER 3 – MULTI-ORBITAL PARQUET EQUATIONS

For the second term we write

− 1

2β3

�
ν�ν��ω

Ui1i3i4i5 Gi3i8 (ν+ω)X ph,ν�ν��ω
0(i4 i5 | i6 i7)

�
F ph,ν��νω

(i6 i7 | i8 i2) − (Ui6i7i8i2 )ν��νω
�

− 1

2β2

�
ν�ω

Ui1i3i4i5Gi3i8 (ν+ω)Gi5i6 (ν�)Gi7i4 (ν�+ω)Ui6i7i8i2 .
(3.37)

The full interaction vertex is asymptotic to U , cf. [25, p. 4], therefore subtracting

it and calculating a simpler expression for the U 2-term in the second line yields better

results for the summation over ν�� and ω, since in any implementation only limited

frequency box sizes are available.

This simpler expression for the U 2-term is obtained by replacing G(ν) again with

the Fourier transformed G(τ), i. e.

1

2β2

�
ν�ω

Ui1i3i4i5Ui6i7i8i2Gi3i8 (ν+ω)Gi4i6 (ν�)Gi7i5 (ν�+ω)

=−1

2

�β

0
dτUi1i3i4i5Ui6i7i8i2Gi3i8 (τ)Gi4i6 (τ)Gi7i5 (β−τ)e−iντ

(3.38)

Thus the double sum over infinitely many fermionic and bosonic Matsubara frequencies

was replaced by a Fourier transformed multiplication of three imaginary time-dependent

Green’s functions.

Collecting all terms of equations (3.36) to (3.38) yields

Σi1i2 (ν) =−Ui1i3i4i2Gi3i4 (0−)+ 1

2

�β

0
dτUi1i3i4i5Ui6i7i8i2Gi3i8 (τ)Gi4i6 (τ)Gi7i5 (β−τ)e−iντ

− 1

2β3

�
ν�ν��ω

Ui1i3i4i5 Gi3i8 (ν+ω)X ph,ν�ν��ω
0(i4 i5 | i6 i7)

�
F ph,ν��νω

(i6 i7 | i8 i2) − (Ui6i7i8i2 )ν��νω
�
.

(3.39)
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3.3 SU(2) symmetry*

In addition to time-translation symmetry assumed in the last section, we will now also

make use of SU(2) symmetry.

Bethe-Salpeter equation. We take the right-hand side of 3.30 and apply SU(2) symme-

try relations (2.34) and (2.60):

Φ
ph,νν�ω
(i1 i2 | i3 i4)
σ1σ2σ3σ4

= κph
1

β

�
σ

�
ν1

Γ
ph,νν1ω

(i1 i2 | i5 i6)
σ1σ2σ(σ−σ3+σ4)

Gi6i7 (ν1)Gi8i5 (ν1 +ω)F ph,ν1ν
�ω

(i7 i8 | i3 i4)
(σ−σ3+σ4)σσ3σ4

δσ1−σ2+σ3−σ4,0

(3.40)

Inserting spin combinations ↑↑ and ↑↓, we find

Φ
ph,νν�ω
(i1 i2 | i3 i4),↑↑ = κph

1

β2

�
ν1ν2

�
σ

Γ
ph,νν1ω

(i1 i2 | i5 i6),↑σX ph,ν1ν2ω

0(i5 i6 | i7 i8)F
ph,ν2ν

�ω
(i7 i8 | i3 i4),σ↑, (3.41a)

Φ
ph,νν�ω
(i1 i2 | i3 i4),↑↓ = κph

1

β2

�
ν1ν2

�
σ

Γ
ph,νν1ω

(i1 i2 | i5 i6),↑σX ph,ν1ν2ω

0(i5 i6 | i7 i8)F
ph,ν2ν

�ω
(i7 i8 | i3 i4),σ↓, (3.41b)

with both spin combinations occuring in each of the two equations. These equations

can be decoupled by introducing

Φd,νν�ω
(i1 i2 | i3 i4) :=Φ

ph,νν�ω
(i1 i2 | i3 i4),↑↑+Φ

ph,νν�ω
(i1 i2 | i3 i4),↑↓, (3.42)

Φm,νν�ω
(i1 i2 | i3 i4) :=Φ

ph,νν�ω
(i1 i2 | i3 i4),↑↑−Φ

ph,νν�ω
(i1 i2 | i3 i4),↑↓, (3.43)

and similarly for F and Γ. The Bethe-Salpeter equations in the density- and magnetic-

channels are

Φd,νν�ω
(i1 i2 | i3 i4) = κph

1

β2

�
ν1ν2

Γ
d,νν1ω
(i1 i2 | i5 i6)X ph,ν1ν2ω

0(i5 i6 | i7 i8)F
d,ν2ν

�ω
(i7 i8 | i3 i4), (3.44a)

Φm,νν�ω
(i1 i2 | i3 i4) = κph

1

β2

�
ν1ν2

Γ
m,νν1ω
(i1 i2 | i5 i6)X ph,ν1ν2ω

0(i5 i6 | i7 i8)F
m,ν2ν

�ω
(i7 i8 | i3 i4). (3.44b)

For the pp-channel we apply again SU(2) symmetry and with the definitions

Φt,νν�ω
(i1 i2 | i3 i4) :=Φ

pp,νν�ω
(i1 i2 | i3 i4),↑↓+Φ

pp,νν�ω
(i1 i2 | i3 i4),↑↓, (3.45)

Φs,νν�ω
(i1 i2 | i3 i4) :=Φ

pp,νν�ω
(i1 i2 | i3 i4),↑↓−Φ

pp,νν�ω
(i1 i2 | i3 i4),↑↓, (3.46)
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we obtain the Bethe-Salpeter equations in the triplet- and singlet-channels:

Φt,νν�ω
(i1 i2 | i3 i4) = κpp

1

β2

�
ν1ν2

Γ
t,νν1ω
(i1 i2 | i5 i6)X pp,ν1ν2ω

0(i5 i6 | i7 i8)F
t,ν2ν

�ω
(i7 i8 | i3 i4), (3.47a)

Φs,νν�ω
(i1 i2 | i3 i4) =−κpp

1

β2

�
ν1ν2

Γ
s,νν1ω
(i1 i2 | i5 i6)X pp,ν1ν2ω

0(i5 i6 | i7 i8)F
s,ν2ν

�ω
(i7 i8 | i3 i4). (3.47b)

Note the additional minus sign for the s-channel. The vertices for d-, m-, t and s-channels

do not depend on spin, so the memory requirement for a single vertex is reduced by a

factor of 16. However, now four instead of two channels are needed, therefore memory

is reduced effectively by a factor of 8.

Parquet equation. To obtain a relation between F , Φ, Λ in d-channel, we start from

definition (3.42) and use the more general parquet equation (3.33):

F d,νν�ω
(i1 i2 | i3 i4) =Λ

ph,νν�ω
(i1 i2 | i3 i4)↑↑+Φ

ph,νν�ω
(i1 i2 | i3 i4)↑↑−Φ

ph,ν(ν+ω)(ν�−ν)
(i1 i4 | i3 i2)↑↑ +Φ

pp,νν�(ω+ν+ν�)
(i1 i3 | i2 i4)↑↑

+Λph,νν�ω
(i1 i2 | i3 i4)↑↓+Φ

ph,νν�ω
(i1 i2 | i3 i4)↑↓−Φ

ph,ν(ν+ω)(ν�−ν)

(i1 i4 | i3 i2)↑↓ +Φ
pp,νν�(ω+ν+ν�)
(i1 i3 | i2 i4)↑↑

(3.48)

Applying (2.66), we obtain a relation between ph-channel vertices with spin combination

↑↓ and m-channel vertices:

Φ
ph,νν�ω
(i1 i2 | i3 i4)↑↓ =Φm,νν�ω

(i1 i2 | i3 i4). (3.49)

With this equality and definitions (3.42), (3.43), (3.45) and (3.46) we obtain the parquet

equation in the density-channel:

F d,νν�ω
(i1 i2 | i3 i4) =Λd,νν�ω

(i1 i2 | i3 i4) +Φd,νν�ω
(i1 i2 | i3 i4) −

1

2
Φd,ν(ν+ω)(ν�−ν)

(i1 i4 | i3 i2) − 3

2
Φm,ν(ν+ω)(ν�−ν)

(i1 i4 | i3 i2)

+ 3

2
Φt,νν�(ω+ν+ν�)

(i1 i3 | i2 i4) + 1

2
Φs,νν�(ω+ν+ν�)

(i1 i3 | i2 i4) .
(3.50)

A similar calculation yields for magnetic-channel

F m,νν�ω
(i1 i2 | i3 i4) =Λm,νν�ω

(i1 i2 | i3 i4) +Φm,νν�ω
(i1 i2 | i3 i4) −

1

2
Φd,ν(ν+ω)(ν�−ν)

(i1 i4 | i3 i2) + 1

2
Φm,ν(ν+ω)(ν�−ν)

(i1 i4 | i3 i2)

+ 1

2
Φt,νν�(ω+ν+ν�)

(i1 i3 | i2 i4) − 1

2
Φs,νν�(ω+ν+ν�)

(i1 i3 | i2 i4) .
(3.51)
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For triplet-channel we obtain

F t,νν�ω
(i1 i2 | i3 i4) =Λt,νν�ω

(i1 i2 | i3 i4) +Φt,νν�ω
(i1 i2 | i3 i4) +

1

2
Φd,νν�(ω−ν−ν�)

(i1 i3 | i2 i4) + 1

2
Φm,νν�(ω−ν−ν�)

(i1 i3 | i2 i4)

− 1

2
Φd,ν(ω−ν�)(ν�−ν)

(i1 i4 | i2 i3) − 1

2
Φm,ν(ω−ν�)(ν�−ν)

(i1 i4 | i2 i3) ,
(3.52)

and for singlet-channel the parquet equation becomes

F s,νν�ω
(i1 i2 | i3 i4) =Λs,νν�ω

(i1 i2 | i3 i4) +Φs,νν�ω
(i1 i2 | i3 i4) +

1

2
Φd,νν�(ω−ν−ν�)

(i1 i3 | i2 i4) − 3

2
Φm,νν�(ω−ν−ν�)

(i1 i3 | i2 i4)

+ 1

2
Φd,ν(ω−ν�)(ν�−ν)

(i1 i4 | i2 i3) − 3

2
Φm,ν(ω−ν�)(ν�−ν)

(i1 i4 | i2 i3) .
(3.53)

Schwinger-Dyson equation. We take equation (3.35) and apply SU(2) symmetry rela-

tions (2.34) and (2.60). For the first term we have

− 1

β

�
ν�

�
σ

U i1i3i4i2
σ1σσσ2

Gi3i4 (ν�)eiν�0−δσ1,σ2

(σ1σ2)=↑↑−→ − 1

β

�
ν�

(Ui1i3i4i2,↑↑+Ui1i3i4i2,↑↓)Gi3i4 (ν�)eiν�0− .

(3.54)

For the second term we obtain

− 1

2β2

�
ν�ω

�
σ

U i1i3i4i5
σ1σ1σσ

Gi3i8 (ν+ω)Gi5i6 (ν�)Gi7i4 (ν�+ω)F ph,ν�νω
(i6 i7 | i8 i2)
σσσ2σ2

δσ1,σ2

(σ1σ2)=↑↑−→

− 1

2β2

�
ν�ω

Gi3i8 (ν+ω)Gi5i6 (ν�)Gi7i4 (ν�+ω)
�
Ui1i3i4i5,↑↑F ph,ν�νω

(i6 i7 | i8 i2),↑↑+Ui1i3i4i5,↑↓F ph,ν�νω
(i6 i7 | i8 i2),↑↓

�
.

(3.55)

We perform the same numerical improvements for the bubble- and U 2-term as described

in the previous section and use definitions (3.42) and (3.43), which yields

Σi1i2,↑↑(ν) =−(Ui1i3i4i2,↑↑+Ui1i3i4i2,↑↓)Gi3i4 (0−)

+ 1

2

�β

0
dτ

�
Ui1i3i4i5,↑↑Ui6i7i8i2,↑↑+Ui1i3i4i5,↑↓Ui6i7i8i2,↑↓

�
Gi3i8 (τ)Gi4i6 (τ)Gi7i5 (β−τ)e−iντ

− 1

4β3

�
ν�ν��ω

Gi3i8 (ν+ω)
�
Ui1i3i4i5,↑↑X ph,ν�ν��ω

0(i4 i5 | i6 i7)

�
F d,ν��νω

(i6 i7 | i8 i2)+F m,ν��νω
(i6 i7 | i8 i2)−2(Ui6i7i8i2,↑↑)ν��νω

�
+Ui1i3i4i5,↑↓X ph,ν�ν��ω

0(i4 i5 | i6 i7)

�
F d,ν��νω

(i6 i7 | i8 i2)−F m,ν��νω
(i6 i7 | i8 i2)−2(Ui6i7i8i2,↑↓)ν��νω

��
.

(3.56)
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3.4 Parquet method

The parquet formalism is a self-consistent method for calculating self-energies, full-

interaction vertices and as a consequence response functions (e. g. generalized suscepti-

bility X ) for given Hamiltonian H , irreducible vertex Λ and suitable starting guesses for

F , Φ, and Σ. Note that the method is a fix-point iteration, but neither convergence nor

uniqueness of the solution is guaranteed [4, p. 38].

As described in section 2.1, the Hamiltonian (or more precisely, hopping amplitudes

ti j and two-body integrals Ui j kl ) can be obtained by means of density-functional theory

and Wannierization. The irreducible vertex can be approximated simply by the bare

interaction,

Λ
ph,νν�ω
(i1 i2 | i3 i4) ≈

�
Ui1i2i3i4

�
νν�ω,

Λ
pp,νν�ω
(i1 i2 | i3 i4) ≈

�
Ui1i3i2i4

�
νν�ω,

which is called parquet approximation [4, p. 38] and was first suggested in [2, p. 44]. A

more sophisticated approach would be the usage of Λ calculated by dynamical vertex

approximation [10]. Λ does not change during the iteration – this approximation is the

reason why only a subset of all possible diagrams is summed over in equation (3.3). For

the parquet approximation we neglect all but one fully irreducible diagrams, which is

a rather strong simplification (the next, neglected, fully irreducible diagram is of order

U 4).

Algorithm 1 sketches the single steps for the parquet method. Details on how

convergence is measured and how vertices and self-energy are initialized depend on

the actual implementation – specific information for our multi-orbital Hubbard model

implementation multi-orbital-parquet is found in appendix B.

3.5 Implementation*

3.5.1 General remarks

Algorithm 1 was implemented in the Fortran program multi-orbital-parquet with

a core solver based on the Dyson equation (2.44) and on equations (3.31) to (3.34)

and (3.39) for time-translation symmetry only, and, when input flag SU2_BOOL is ac-

tivated, with additional SU(2) symmetry using equations (3.44), (3.47), (3.50) to (3.53)
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Algorithm 1 Parquet method with equations using time-translation or additionally SU(2) symmetry.
1: Approximate Λ

2: Initialize Σ(0) ← 0, F (0), Φ(0) and Γ(0) = F (0) −Φ(0) depending on Λ

3: Calculate G0 and G (0) by (2.44)
4: for i = 1, imax do
5: Calculate Φ(i ) from F (i−1), Γ(i−1) & G (i−1) by (3.31) & (3.32) or (3.44) & (3.47)
6: Calculate F (i ) from Λ and Φ(i ) by (3.33) & (3.34) or (3.50)–(3.53)
7: Calculate Γ(i ) = F (i ) −Φ(i )

8: Calculate Σ(i ) from F (i ) and G i−1 by (3.39) or (3.56)
9: Calculate G (i ) from G0 and Σ(i ) by (2.44)

10: if F (i ), Σ(i ) converged then
11: break
12: end if
13: end for

and (3.56) for calculation.

Note that the current version of multi-orbital-parquet only handles frequen-

cies, however, a generalization for generalized frequencies, ν= (ν̃,k) with momenta k,

is straightforward. Another possibility to add momentum dependence would be the

implementation of the truncated unity scheme, which is much more memory efficient

than an implementation with generalized frequencies [4, p. 55]. The truncated unity

scheme requires a Schwinger-Dyson equation with contributions from all channels,

specific formulas for the multi-orbital Hubbard model are derived in appendix A.

The frequency range can be reduced due to symmetries. For fermionic Matsubara

frequencies the range includes positive and negative frequencies, but only positive for

bosonic ones due to complex conjugation (2.52) and time-reversal symmetry (2.68):

�
Φr,νν�ω

(i1 i2 | i3 i4)

�∗ =Φr,(−ν)(−ν�)(−ω)
(i1 i2 | i3 i4) (3.57)

for an arbitrary channel r . So by using this symmetry relation, vertex values for negative

bosonic frequencies can be obtained on demand and thus memory required for a vertex

can be reduced approximately by a factor of two. The NF fermionic frequencies in the

code are spread symmetrically around zero, νi = (2ni +1)πβ with ni = −NF
2 , . . . , NF

2 −1;

therefore, NF has to be even. The NB bosonic frequencies start from zero, so ω j = 2m j
π
β

with m j = 0, . . . , NB −1.

Bottleneck of the code is memory consumption. Memory requirement for an entire

vertex is tabulated in table 3.1. To reduce the size of arrays, the code uses the Message
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Table 3.1: Memory consumption for an entire vertex with fermionic Matsubara frequency number NF

and number of orbitals NO in GB (number of spins NS = 2). Bosonic Matsubara frequency number is
fixed as NB = 32, SU(2) symmetry is not used.

NO/NF 4 8 16 32 64

2 0.002 0.008 0.034 0.134 0.537

6 0.170 0.679 2.718 10.872 43.487

10 1.310 5.243 20.972 83.886 335.544

Parsing Interface (MPI) and vertices are divided in ω-chunks between different nodes.

All other quantities are stored on every node in order to avoid extensive communication.

Therefore, the total memory consumption grows slightly larger than O(N 4
O N 2

F NB ), NO

denoting the number of orbitals used in the code. Calculation with SU(2) symmetry

is enabled by an input flag, it reduces memory consumption (roughly) by a factor of 8,

as mentioned in section 3.3. Before calculation multi-orbital-parquet prints the

projected memory consumption.1

The imaginary-time Green’s function G(τ) required for asymptotic corrections is

calculated from G(ν) with asymptotic flanks removed, G(τ) = 1
β

�
ν(G(ν)− 1

ν )eiντ and

then G(τ) ←G(τ)− 1
2 . Quantities which are Fourier transformed from imaginary time

to frequency domain are approximated by a cubic spline and then integrated by using

analytical formulas.2

3.5.2 Technical remarks

Numbers refer to lines in algorithm 1.

ad 5: Since the Bethe-Salpeter equations are diagonal in ω, every node can perform

calculations independently and no communication is needed. By introducing

combined indices i = (i1, i2,ν) the Bethe-Salpeter equations can be reformu-

lated as a matrix-multiplication for a fixed value of ω., i. e. it can be written as

(Φi j )ω = κ(Γi k )ω(F̃k j )ω, with (F̃k j )ω = (X0kl )ω(Fl j )ω. This matrix multiplication is

implemented with LAPACK routine zgemm. Furthermore, over-relaxation for Φ is

implemented to improve convergence, meaning that the new vertices Φ are mixed

with the older ones by Φ(i ) ← (1−α)Φ(i )+αΦ(i−1), with relaxation parameter α≥ 0.

1This feature was contributed by Kayran Schmidt.
2The code in fourier_routines.f90, f_gamma_functions.f90 and mpi_routines.f90 was con-

tributed by Anna Kauch.
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ad 6: Due to the structure of parquet equations vertices from different ω-chunks and

thus from different nodes have to be added. This requires extensive data exchange,

making the parquet equations the computational bottleneck of the code. Data

exchange is realized in multi-orbital-parquet with MPI_Bcast in the same

way as in [13, pp. 6–7], which was originally proposed in [21, p. 13]. Due to crossing

symmetry applied to ph-vertices in order to convert them to ph-notation, the

second fermionic frequency argument is shifted as ν� → (ν+ω) and values can

exceed the frequency box. multi-orbital-parquet overcomes this problem

by using Kernel functions which employ the scan-edge method [25, p. 7]: if ν+ω

exceeds the box, we approximate Φν(ν+ω)(ν�−ν) ≈ Φνν̃(ν�−ν) by taking the nearest

value at the edge, i.e. ν̃= ν−NF /2 or ν̃= νNF /2−1, as Φνν�ω is asymptotically constant

along ν� for fixed ν and ω. Note that for vertices with bosonic frequencies outside

the box no approximation with Kernel functions is provided, they are set to 0.

ad 8: Correction terms for the Schwinger-Dyson equation are computed only on the

master node, whereas the terms with ω-summation are computed on all nodes in

ω-chunks and summation is then performed by MPI_Allreduce, similarly as [13,

p. 7]. For faster computation quantities which are summed over ν� are evaluated

first, i. e. F̃ red,ν�νω
i k = 1

β

�
ν�� X ν�ν��ω

0 i j (Fν��νω
j k −(U j k )ν��νω), then the ν�-summation is per-

formed and subsequently zgemm used for multiplication of Ui j and 1
β

�
ν� F̃ red,ν�νω

j k .

ad 9: LAPACK routines zgetrf and zgetri are used for Dyson equation G(ν) = [G0(ν)−
Σ(ν)]−1, and also for G0 = [iν+µ−H0]−1. If G(ν) is needed for a value ν outside

the frequency box, the code approximates it by G(ν) ≈ [iν−µ−Σstatic]−1, where

Σstatic is the Hartree-Fock term in the Schwinger-Dyson equation (3.39) or (3.56).





CHAPTER 4

R E S U LT S

4.1 Atomic limit*

Throughout the development of multi-orbital-parquet the code was tested with

the atomic limit single-orbital Hubbard model with effective Coulomb interaction U ,

H =U n↑n↓−µ (n↑+n↓), (4.1)

where nσ = c†
σcσ and µ= U

2 (half-filling). The built-in test option also uses the atomic-

limit Hubbard model; results can be validated with the included Jupyter notebooks (see

appendix B for more details).

Numerical results in this section were checked against analytical results derived

in [22]. All calculations were performed on a MacBook Pro (2016) with a 2 GHz Dual-Core

processor and 8 GB DDR3 RAM. The number of orbitals was set to N_ORBITAL= 1, and

calculations were performed with ti j = 0, U↑↑↓↓ = U↓↓↑↑ = U , U↑↓↓↑ = U↓↑↑↓ = −U and

otherwise 0. Except for general time-translation and time-reversal symmetry (and SU(2)

symmetry for figure 4.5) no hard-coded symmetries were used for this problem.

We tested convergence of the parquet equation depending on the box size NF

by using analytic vertices Λ
ph
exact, Φ

ph
exact and Φ

pp
exact as input. The used parameters are

demanding, as they lie slightly over the first divergence line [24, fig. 14]. The left diagram

of figure 4.1 shows the results with and without usage of Kernel functions (scan edge

procedure). Apparently they are crucial for convergence; this was also the problem

which [21] was facing when implementing the parquet equations without Kernels.

Furthermore, the convergence of the Bethe-Salpeter equation was tested in a similar

fashion, with analytic vertices Γ
ph
exact, F ph

exact and X ph
0exact as input. The full interaction

vertex was calculated from the reducible vertex by F ph = Γ
ph
exact +Φph, the right plot in

figure 4.1 shows the results.
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Figure 4.1: Convergence of parquet equation with and without Kernel functions for NB = NF (left) and
convergence of Bethe-Salpeter equation (right) for full-interaction vertex F ph with ω= 0 (no SU(2)
symmetry used). Parameters β= 2.3,U = 1.55 (and µ= U

2 ) are slightly above the first divergence
line for 1

βU ≈ 0.276, as shown in [24, fig. 14]. Note that according to the plot, Kernel functions are
crucial for the convergence of the parquet equations.

In figures 4.2 and 4.4 we show the real and imaginary parts of the converged self-

energy in spin-sector ↑↑ as well as the full interaction vertex F and reducible vertices Φ

in spin-sector (↑↓ | ↓↑) after a successful run of multi-orbital-parquet with default

convergence parameters as tabulated in appendix B. Parameters were choosen as NF =
NB = 20, β= 1.0, U = 0.5 and µ= U

2 ; no SU(2) symmetry was used. The values for Σ and

F are in good agreement with the analytic results, the offset of Φ stems from the rather

small frequency box. The results for NF = NB = 64 in the right plot of figure 4.3) indicate

that the discrepancies vanish for large frequency boxes.

The same calculation with parameters NF = NB = 20, β = 1.0, U = 0.5 and µ = U
2

was repeated with SU(2) symmetry. We remark again the good agreement for F with the

analytic results, whereas the offset for Φ is again present, except for the t-channel, which

is in accordance with the analytical values (see figure 4.5).
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Same parameters as in figure 4.2. For this plot SU(2) symmetry was used.
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4.2 Benzene molecule

In this section we reproduce some results of Kayran Schmidt’s project thesis on studying the

benzene molecule with multi-orbital-parquet on Vienna Scientific cluster (VSC4).

Benzene (C6H6) is a molecule consisting of 6 carbon and 6 hydrogen atoms. The 1s-

orbital of each hydrogen atom hybridizes with the 2s-, 2px- and 2py -orbitals of carbon,

forming σ-bonds, which connect the carbon atoms by a hexagonal ring. The remaining

pz-orbitals of the carbon atoms also overlap and form π-bonds [17, pp. 6].

In the low-temperature regime the σ-bonds are completely filled and affect the

system only by screening. Therefore, dynamics and correlations stem mainly from the

unsaturated π-electrons. They are mapped in the Pariser-Parr-Pople (PPP) model to

creation and annihilation operators c(†)
i , i denoting the carbon site [17, p. 6–7].

The system is described by a Hamiltonian with periodic boundary conditions,

H =−t
6�

i=1

�
σ

�
c†

iσc(i+1)σ+c†
(i+1)σciσ

�−µ
6�

i=1

�
σ

c†
iσciσ+

6�
i=1

U c†
i↑ci↑c†

i↓ci↓

+ 1

2

6�
i=1

�
σσ�

c†
iσciσ

�
V1

�
c†

(i+1)σ�c(i+1)σ� +c†
(i−1)σ�c(i−1)σ�

�
+V2

�
c†

(i+2)σ�c(i+2)σ� +c†
(i−2)σ�c(i−2)σ�

�+V3c†
(i+3)σ�c(i+3)σ�

�
,

(4.2)

with nearest-neighbor hopping amplitude t , on-site interaction U = 3.962t , non-local

interaction V1 = 2.832t , V2 = 2.014t , V3 = 1.803t and chemical potential µ= ( 1
2U +2V1 +

2V2 +V3). Figure 4.6 depicts the structure of benzene and the interaction terms of the

PPP model.

Calculations were performed on VSC4 for β= 1.0 and β= 2.0 with default conver-

gence parameters and box sizes NF = 24 and NB = 12. Carbon atoms were treated as

distinct orbitals, thus the number of orbitals was set as N_ORBITAL= 6. In order to fully

test the code, no translational symmetry in space or SU(2) symmetry were assumed. The

hopping amplitude was set to t = 1.0, and all interactions were scaled by a factor 0.1 for

figures 4.7 and 4.8 and by a factor 0.5 for figure 4.9 in order to reduce the number of iter-

ations and the size of frequency box needed for convergence. The results are compared

with values calculated by Anna Kauch using a parquet implantation for single-band

Hubbard models called victory (see [13] for details). All resulting quantities (self-energy

and vertices) were checked for fulfillment of translational, SU(2) and particle-hole sym-

metries in the framework of Kayran Schmidt’s project thesis. Figures 4.7 to 4.9 show that



4.2 BENZENE MOLECULE | 51

Figure 4.6: Schematic picture of benzene (C6H6) showing σ- and π-bonds, on-site interaction U ,
interaction terms Vi and hopping amplitude t for PPP model. Adapted from Kayran Schmidt.

indeed the results fulfill the translational and particle-hole symmetry relations

Re
�
Σk=0(ν)

�+Re
�
Σk=π(ν)

�= 2µ,

Im
�
Σk=0(ν)

�= Im
�
Σk=π(ν)

�
,

Re
�
Σk=π

3
(ν)

�= Re
�
Σk= 5π

3
(ν)

�
,

Im
�
Σk=π

3
(ν)

�= Im
�
Σk= 5π

3
(ν)

�
.

The agreement between the results for interaction terms scaled by 0.1 obtained with the

victory and multi-orbital-parquet codes is excellent. For interaction terms scaled

by 0.5 differences in the asymptotic corrections of both codes and box size effects due to

the rather high inverse temperature β= 3.0 are the reasons for the small quantitative

discrepancies in figure 4.9; they should vanish for larger box sizes.
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right) for β = 1.0, with interaction terms scaled by a factor 0.1. Blue crosses are results obtained
by Kayran Schmidt using multi-orbital-parquet on VSC4, red dots were calculated by Anna
Kauch using victory code.
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right) for β= 2.0, with interaction terms scaled by a factor 0.1.
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CHAPTER 5

O U T L O O K

As described in the previous lines, we have developed a parquet solver for multi-orbital

Hubbard models and applied it to two simple benchmark problems, the Hubbard model

in the atomic limit and the benzene molecule.

Before tackling bigger problems with non-local correlations, though, k-dependence

of the vertices has to be implemented in a memory-efficient way. This is feasible with

the truncated unity approximation, which was already implemented for a single-orbital

parquet solver by [5]. The Schwinger-Dyson equation has to be rewritten to yield con-

tributions not only for the ph-, but also for all other channels – the explicit formulas

with asymptotic corrections can be found in appendix A and it is already programmed

in multi-orbital-parquet.

The truncated unity approximation assumes that the vertices, for example Φph,kk�q

do not depend strongly on k, k�, but only on the transfer momentum q. Another pos-

sibility would be to generalize the code to treat all momenta without approximations

as in [13]. This would be straightforward: one had to introduce another multi-index

with both frequencies ν and momenta k, with all equations staying the same, except for

addition of momenta – here one has to ensure that the sum is always restricted to the

first Brillouin zone. Though this generalization can be achieved with not much effort, the

truncated unity approximation would be preferable, because the memory requirements

for real systems with “full” momentum treatment is out of scope for current hardware.

Concerning memory, there are several ways to make our code more efficient in this

regard: one possibility would be the exploitation of the SO(3) symmetry of systems and

the usage of the resulting symmetry relations for Green’s functions and vertices in orbital

indices.

As we have seen in figure 4.1, correct treatment of the asymptotic frequency-

behaviour of vertices in the parquet equation is crucial for convergence. Recently, [25]

55
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proposed a parametrization scheme for high-frequency asymptotics based on diagram-

matic analysis. This scheme could replace the scan-edge method in our code, ensuring

a consistent frequency treatment in the asymptotic regime.
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APPENDIX A

C H A N N E L - W I S E

S C H W I N G E R - D Y S O N E Q U A T I O N

Note that the Schwinger-Dyson equation (3.39) depends only on the full interaction

vertex F in the ph-channel, whereas ph- and pp-channels do not contribute. In order

to implement the truncated unity scheme for multi-orbital-parquet in a possible

future version, a Schwinger-Dyson equation with equal contributions from all channels

would be desirable to get non-local contributions also from ph- and pp-channels [4,

pp. 53–54]. Therefore, we will derive in this appendix expressions for what we call

channel-wise Schwinger-Dyson equation.

A.1 Time-translation symmetry*

We take equation (3.39) and insert for F ph the parquet equation equation (3.33). Then

we get six contributions to self-energy:

Σi1i2 (ν) =Σbubble
i1i2

+ΣU 2

i1i2
(ν)+ΣΛ

i1i2
(ν)+Σ

ph
i1i2

(ν)+Σ
ph
i1i2

(ν)+Σ
pp
i1i2

(ν). (A.1)

The correction terms Σbubble
i1i2

(frequency independent) and ΣU 2

i1i2
(ν) are the same as

equations (3.36) and (3.38). For the Λ-contribution we subtract U , as it has the same

asymptotics as F , thus we have

ΣΛ
i1i2

(ν) =− 1

2β3

�
ν�,ν��,ω

Ui1i3i4i5Gi3i8 (ν+ω)X ph,ν�ν��ω
0(i4 i5 | i6 i7)

�
Λ

ph,ν��νω
(i6 i7 | i8 i2) − (Ui6i7i8i2 )ν��νω

�
, (A.2)

For the ph-contribution we obtain

Σ
ph
i1i2

(ν) =− 1

2β3

�
ν�,ν��,ω

Ui1i3i4i5Gi3i8 (ν+ω)X ph,ν�ν��ω
0(i4 i5 | i6 i7)Φ

ph,ν��νω
(i6 i7 | i8 i2), (A.3)
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whereas for the ph-contribution we get

Σ
ph
i1i2

(ν) = 1

2β3

�
ν�,ν��,ω

Ui1i3i4i5Gi3i8 (ν+ω)X ph,ν�ν��ω
0(i4 i5 | i6 i7)Φ

ph,ν��(ν��+ω)(ν−ν��)
(i6 i2 | i8 i7)

= 1

2β3

�
ν�,ν��,ω

Ui1i3i4i5Gi3i8 (ν+ω)X ph,ν�ν��ω
0(i4 i5 | i6 i7)Φ

ph,(ν+ω)ν(ν��−ν)
(i8 i7 | i6 i2) ,

(A.4)

where crossing symmetry (3.14a) was used. After relabelling summation indices, we get

the same contribution as for ph-channel, therefore we can write

Σ
ph
i1i2

(ν)+Σ
ph
i1i2

(ν) =−κph
1

β3

�
ν�,ν��,ω

Ui1i3i4i5Gi3i8 (ν+ω)X ph,ν��νω
0(i4 i5 | i6 i7)Φ

ph,ν��νω
(i6 i7 | i8 i2). (A.5)

Finally for the pp-contribution we have

Σpp =−κpp
1

β3

�
ν�,ν��,ω

U pp
(i1 i3 | i4 i5)Gi8i3 (ω−ν)X pp,ν�ν��ω

0(i4 i5 | i6 i7)Φ
pp,ν��νω
(i6 i7 | i8 i2), (A.6)

after relabelling summation indices and defining U pp
(i1 i2 | i3 i4) :=Ui1i3i2i4 .

A.2 SU(2) symmetry*

For additional SU(2) symmetry we proceed as in the section before, but we start now

from equation (3.56) and use parquet equations (3.50) and (3.51). The correction terms

Σbubble
i1i2

and ΣU 2

i1i2
(ν) are the same as the first and second line in equation (3.56).

For the contribution stemming from the irreducible vertex Λ we get

ΣΛ
i1i2

(ν) =− 1

4β3

�
ν�,ν��,ω

Gi3i8 (ν+ω)X ph,ν�ν��ω
0(i4 i5 | i6 i7)

×
�
Ui1i3i4i5,↑↑

�
Λd,ν��νω

(i6 i7 | i8 i2) +Λm,ν��νω
(i6 i7 | i8 i2) −2(Ui6i7i8i2,↑↑)ν��νω

�
+ Ui1i3i4i5,↑↓

�
Λd,ν��νω

(i6 i7 | i8 i2) −Λm,ν��νω
(i6 i7 | i8 i2) −2(Ui6i7i8i2,↑↓)ν��νω

��
.

(A.7)

Contributions to ph- and ph-channels have the same form after applying eq. (3.14a):

Σ
ph
i1i2

(ν)+Σ
ph
i1i2

(ν)=− 1

4β3

�
ν�,ν��,ω

Gi3i8 (ν+ω)X ph,ν�ν��ω
0(i4 i5 | i6 i7)

�
Ui1i3i4i5,↑↑

�
2Φd,ν��νω

(i6 i7 | i8 i2)+4Φm,ν��νω
(i6 i7 | i8 i2)

�
+Ui1i3i4i5,↑↓

�
Φd,ν��νω

(i6 i7 | i8 i2)−3Φm,ν��νω
(i6 i7 | i8 i2)

��
.

(A.8)
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Finally, for pp-channel we obtain the contribution

Σ
pp
i1i2

(ν) = 1

4β3

�
ν�,ν��,ω

Gi8i3 (ω−ν)X pp,ν�ν��ω
0(i4 i5 | i6 i7)

�
U pp

(i1 i3 | i4 i5),↑↑2Φt,ν��νω
(i6 i7 | i8 i2)

+U pp
(i1 i3 | i4 i5),↑↓

�
Φt,ν��νω

(i6 i7 | i8 i2) +Φs,ν��νω
(i6 i7 | i8 i2)

��
.

(A.9)

A.3 Asymptotic corrections*

All contributions to channel-wise Schwinger-Dyson equation have the form

1

β2

�
ω

Gi3i8 (ν+ω)Ui1i3i4i5

�
ν�
Φ̃r,ν�νω

(i4 i5 | i8 i2) (A.10)

with

Φ̃r,ν�νω
(i1 i2 | i3 i4) =

1

β

�
ν��

X ph,ν�ν��ω
0(i1 i2 | i5 i6)Φ

r,ν��νω
(i5 i6 | i3 i4) (A.11)

for channels r = ph or r = (d,m) and similary for the other channels.

We can treat asymptotics for the ν�-summation in the same as we did already for F

and Λ with the U 2-term. To this end we consider Φ̄r,νω
(i1 i2 | i3 i4) =Φr,(ν��→∞)νω

(i1 i2 | i3 i4) , which can be

obtained by Kernel functions (see section 3.5) and replace the reducible vertices in the

Schwinger-Dyson equation, which gives us terms of the form

1

β2

�
ω

Gi3i8 (ν+ω)Ui1i3i4i5

�
ν�

Gi5i6 (ν�)Gi7i4 (ν�+ω)Φ̄r,νω
(i6 i7 | i8 i2). (A.12)

As the asymptotic irreducible vertex does not depend on ν�, we can derive an expression

for the ν�-summation of the two Green’s functions for the ph-channel:

1

β

�
ν�

Gi5i6 (ν�)Gi7i4 (ν�+ω) =−
�β

0
dτeiωτGi5i6 (τ)Gi7i4 (β−τ) =: X̃ ph,ω

(0 i4 i5 | i6 i7). (A.13)

This a Fourier transformation of two multiplied Green’s functions with respect to a

bosonic Matsubara frequency ω. After a similar calculation, taking account of the

different frequency argument of Gi7i4 and switched indices, we find for the pp-channel

X̃ pp,ω
0(i4 i5 | i6 i7) :=−

�β

0
dτe−iωτGi5i6 (τ)Gi4i7 (τ). (A.14)

Therefore, we can take account of the asymptotic behaviour of Φ in the channel-
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wise Schwinger-Dyson equation for r = ph or r = (d,m) by writing

1

β2

�
ω

Gi3i8 (ν+ω)Ui1i3i4i5

�
ν�
Φ̃r,ν�νω

(i4 i5 | i8 i2)

= 1

β3

�
ω

Gi3i8 (ν+ω)Ui1i3i4i5

�
ν�ν��

X ph,ν�ν��ω
0(i4 i5 | i6 i7)

�
Φr,ν��νω

(i6 i7 | i8 i2) − (Φ̄r,νω
(i6 i7 | i8 i2))ν��

�
+ 1

β

�
ω

Gi3i8 (ν+ω)Ui1i3i4i5 X̃ ph,ω
(0 i4 i5 | i6 i7)Φ̄

r,νω
(i6 i7 | i8 i2)

(A.15)

and likewise for r = pp or r = (t,s):

1

β2

�
ω

Gi8i3 (ω−ν)U pp
(i1 i3 | i4 i5)

�
ν�
Φ̃r,ν�νω

(i4 i5 | i8 i2)

= 1

β3

�
ω

Gi8i3 (ω−ν)U pp
(i1 i3 | i4 i5)

�
ν�ν��

X pp,ν�ν��ω
0(i4 i5 | i6 i7)

�
Φr,ν��νω

(i6 i7 | i8 i2) − (Φ̄r,νω
(i6 i7 | i8 i2))ν��

�
+ 1

β

�
ω

Gi8i3 (ω−ν)U pp
(i1 i3 | i4 i5)X̃ pp,ω

0(i4 i5 | i6 i7)Φ̄
r,νω
(i6 i7 | i8 i2).

(A.16)
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G I T L A B D O C U M E N T A T I O N

In this appendix we reproduce the README.md on the TUGitLab repository from March

16, 2022 (see figure B.1), in which information about installing and compiling the soft-

ware multi-orbital-parquet is provided. Furthermore, input and output storage

conventions and advanced parameters are explained.

Figure B.1: (a) Part of README.md as rendered on the TUGitLab repository.
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Parquet solver for multi-orbital Hubbardmodels

• Objective
• Prerequisites
• Configuring the build
• Preparing input data
• Running the executable
• Output files
• Jupyter notebook environment
• Testing

Objective

Calculate the full interacting vertex F of the multi-orbital Hubbard model

H = −
	
ij

tijc†
i cj −

	
i

µ c†
i ci + 1

4
	
ijkl

Uikjlc
†
i c

†
jclck,

where i, j, k, l are combined indices for spin-orbitals, i.e. i = (oi, σi), where oi and σi denote the i-th
orbital and spin, respectively. c

(†)
i denotes the fermionic annihilation (creation) operator for spin-

orbital i, tij are the hopping amplitudes, Uikjl the fully anti-symmetrized two-body integrals in the
chemists’ convention, i.e.,Uikjl = −Uiljk = −Ujkil and µ is the chemical potential.

Note that when F is written in the following without an explicit channel r = (ph, pp) (ph not needed)
or with SU(2) symmetry r = (d, m, s, t), the entire set {F r} is meant and similarly for verticesΛ,Φ
and Γ.

Prerequisites

• HDF5
• LAPACK
• MPI
• CMake (>3.15.1)
• Python (>3.8)

The hdf5_wrapper byMatthias Pickem is already provided in src/hdf5_wrapper andwill be installed
automatically.

See HowToVSC.md for detailed instructions for how to use the solver on the VSC cluster.
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Configuring the build

Build in the project root directory with

1 $ cd multi-orbital-parquet
2 $ cmake -B build -DCMAKE_BUILD_TYPE=Release
3 $ cmake --build build

The generated executable can be found in bin/. To enable compiler options for debugging use -
DCMAKE_BUILD_TYPE=Debug instead.

Preparing input data

The solver reads the parameters.ini and HDF5 files as input from input/. There are helper scripts
and notebooks in that folder that allow to generate the input files based on different preconfigured
setups. A Python environment is necessary for using them. Setting up a Python environment is
explained below.

Following model parameters must be set in parameters.ini:

Parameter name Type Description Condition

N_ORBITAL int32 # orbitals > 0

N_F int32 # fermionic Matsubara
frequencies

even, > 0

N_B int32 # bosonic Matsubara
frequencies

integer multiple of
<n_tasks>, > 0

MAX_ITE int32 maximum # iterations > 0

BETA real64 inverse temperature β >= 1.0e-16

MU real64 chemical potential µ

Following advanced parameters can be set in parameters.ini (if not set, default values are taken):

Parameter name Type Description Default value

SU2_BOOL logical flag for calculating
with SU(2)
symmetry

.true.
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Parameter name Type Description Default value

ALL_SELF_ENERGIES_BOOL logical output flag for
storingΣ for every
iteration step
permanently

.false.

ALL_G_TAU_BOOL logical output flag for
storingGi,j(τi, τj)
for every iteration
step permanently

.false.

READ_IN_LAMBDA_PHI_BOOL logical input flag forΛ
andΦ

.false.

READ_IN_LAMBDA_ONLY_BOOLlogical input flag forΛ
only

.false.

ABS_TOL_SIGMA_MEAN real64 convergence
parameter forΣ

1.0e-8

ABS_TOL_SIGMA_MAX real64 convergence
parameter forΣ

1.0e-7

REL_TOL_SIGMA real64 convergence
parameter forΣ

1.0e-6

ABS_TOL_F real64 convergence
parameter for F

1.0e-7

REL_TOL_F real64 convergence
parameter for F

1.0e-6

ALPHA_MIX real64 mixing parameter
forΦ

0.4

<n_tasks> (andN_TASKS) denotes the number of processes launched when calling mpirun (see
also below).

From these values the following constants are calculated:
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N_SPIN = 2,

N_SPIN_EFFECTIVE = 2 or 1, depending on SU2_BOOL,

CHUNK_SIZE = N_B
N_TASKS ,

N_SO = N_SPIN_EFFECTIVE × N_ORBITAL,

N_SO2 = N_SO × N_SO,

N_MAX = N_SO2 × N_F.

Note thatN_SPIN_EFFECTIVE denotes the effective number of spins. When the calculations are
performed with SU(2) symmetry, this number is set to 1 and thememory consumption is considerably
smaller.

Furthermore, the arrays u_matrix and h0 always have to be provided. They have to be stored as
u_matrix_input.hdf5 and h0_input.hdf5 respectively, in the convention described in the next
sections. Input arrays u_matrix and h0 always have the same size, regardless of SU2_BOOL. Note
that all input arrays have to be stored in column-major order.

Input convention for u_matrix_input.hdf5

u_matrix_input.hdf5 contains the dataset u_matrix which consists of a complex(128)
((N_ORBITAL × N_SPIN)2, (N_ORBITAL × N_SPIN)2)-array. u_matrix stores the interaction
matrixUikjl of the multi-orbital Hubbard model. To storeUikjl as a two-dimensional array u_matrix,
combined indices i� = g (i, k) and j� = g (j, l) are introduced (which are not tuples, but ordinary inte-
gers). We use them to construct a matrix Ũi�j� which has the same structure as u_matrix. Remember
that the indices i, j, k, l are spin-orbital indices and therefore tuples, so i� = g ((oi, σi) , (ok, σk)) and
analogously for j�. The function g is defined by

g ((oi, σi) , (ok, σk)) = σi + N_SPIN (oi − 1)
+ N_SPIN × N_ORBITAL ((σk − 1) + N_SPIN(ok − 1)) .

Here, spins were replaced as ↑= 1 and ↓= 2. Thus,
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g ((1, ↑) , (1, ↑)) = 1,

g ((1, ↓) , (1, ↑)) = 2,

g ((2, ↑) , (1, ↑)) = 3,

...

g ((1, ↑) , (1, ↓)) = N_SO + 1

and so on. There exists also an inverse function with g−1
i (i�) = i and g−1

k (i�) = k. Ũi�j� =
Ug−1

i (i�)g−1
k

(i�)g−1
j (j�)g−1

l
(j�) is stored in u_matrix.

Input convention for h0_input.hdf5

h0_input.hdf5 contains the dataset h0 which consists of a complex(128) (N_ORBITAL ×
N_SPIN, N_ORBITAL × N_SPIN)-array. h0 stores the hopping matrix tij of the multi-orbital
Hubbard model. Remember that i, j are spin-orbital indices and thus tuples, i.e. i = (oi, σi). Formally
we introduce again combined indices i� = h (i) and j� = h (j), where h is defined by

h ((oi, σi)) = σi + N_SPIN (oi − 1) .

There exists also the inverse function with h−1(i�) = i and h−1(j�) = k. t̃i�j� = th−1(i�)h−1(j�) is finally
stored in h0.

Input flags

Depending on the set input flags, one has to provide additional .hdf5-files as input. The self-energy is
always initialized asΣ = 0.

Case 1: READ_IN_LAMBDA_PHI_BOOL and READ_IN_LAMBDA_ONLY_BOOL both set to
.false. No further input files needed. The vertices are initialized as

• F as lowest-order approximation
• Λ = F ,
• Φ = 0,
• Γ = F .
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Case 2: READ_IN_LAMBDA_ONLY_BOOL set to .true. When this flag is activated,Λ (possibly
obtained from a DΓA calculation) has to be additionally provided. The size of these input arrays
depends on SU2_BOOL.

SU2_BOOL set to false Here,Λph, νnν�
mωk

(ij|lp) andΛpp, νnν�
mωk

(ij|lp) are distributed in ωk-chunks between
the launched processes. Therefore, every launched process with MPI identifier <id> (or in mathemat-
ical notation ID = 0, . . . , N_TASKS − 1) must be provided with a file lambda_input-<id>.hdf5
with datasets lambda_ph and lambda_pp, where <id> needs to be formatted as a three-digit integer.
Every dataset consists of a complex(128) (N_MAX, N_MAX, CHUNK_SIZE)-array and stores a
portion of the full vertex,Λph/pp νnν�

mωk̃

(ij|lp) forCHUNK_SIZE values ωk̃, where

k̃ = CHUNK_SIZE × ID, . . . , CHUNK_SIZE × (ID + 1) − 1.

As an example, take N_B = 10 and N_TASKS = 5, then CHUNK_SIZE = 2. According to the
formula above, the process with ID = 0 has to be provided with lambda_input-000.hdf5which
storesΛph/pp νnν�

mωk̃

(ij|lp) with k̃ = 0, 1 (all other indices n, m, i, j, l, p span their full range), and similarly
for the remaining four processes.

Note that ωk = 2k
β π and νn = 2n−N_F−1

β π, which is different from the usual definition of the fermionic
Matsubara frequency.

To store the vertices with as three-dimensional arrays, we introduce the index k� = f(k̃) and the
combined indices i� = s (i, j, νn) and j� = s (l, p, ν �

m), with

f(k̃) = k̃ − CHUNK_SIZE × ID + 1, and
s ((oi, σi) , (oj , σj) , νn) = σi + N_SPIN_EFFECTIVE (oi − 1)

+ N_SO ((σj − 1) + N_SPIN_EFFECTIVE(oj − 1) + N_SO (n − 1)) .

Also the corresponding inverse functions exist with s−1
i (i�) = i, s−1

k (j�) = j, s−1
n (j�) = n and

f−1(k�) = k̃. Λ̃ph
i�j�k� = Λ

ph, ν
s−1

n (i�)ν�
s−1

m (j�)
ωf−1(k�)

(s−1
i (i�)s−1

j (i�)|s−1
l

(j�)s−1
p (j�)) is stored in lambda_ph, and analogously the

vertex for the pp-channel.

The remaining vertices are initialized as

• Γ = Λ,
• F as lowest-order approximation,
• Φwith the Bethe-Salpeter equation.
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SU2_BOOL set to .true. As written in the previous section, the verticesΛr, νnν�
mωk

(ij|lp) , r = d, m, s, t)
are distributed in ωk-chunks between the launched processes. Again, every process with MPI identifier
<id>must be provided with a file lambda_input-<id>.hdf5, but now with datasets lambda_d,
lambda_m, lambda_s and lambda_t.

In theSU(2)-symmetric case,N_SPIN_EFFECTIVE = 1andweno longer have to take spin variables
σi into account. Therefore, spin-orbital indices are no longer tuples, but scalars (they are just the
orbital indices). Consequently, we have to modify the function s(i, j, νn) = s(oi, oj , νn) such that

s (oi, oj , νn) = oi + N_ORBITAL ((oj − 1) + N_ORBITAL (n − 1)) .

to store the vertices as three-dimensional arrays in the SU(2)-symmetric case, whereas f(k̃) remains
unchanged. By means of the inverse functions, which can be defined in the samemanner as in the
previous section, the vertices have to be stored in datasets lambda_d, lambda_m, lambda_s and
lambda_t. The initialization of the remaining vertices is the same as described above.

Case3: READ_IN_LAMBDA_PHI_BOOL set to.true. Here,Λph, νnν�
mωk

(ij|lp) ,Λpp, νnν�
mωk

(ij|lp) ,Φph, νnν�
mωk

(ij|lp)

andΦpp, νnν�
mωk

(ij|lp) must be provided as datasets lambda_ph and lambda_pp in files lambda_input-<
id>.hdf5 as well as phi_ph and phi_pp in files phi_input-<id>.hdf5, and analogously for the
channels in the SU(2)-symmetric case. The storage convention depends again on SU2_BOOL and is
the same as described in the previous section.

The remaining vertices are initialized as

• F with the Parquet equation,
• Γ = F − Φ.

Convergence parameters

Convergence is attained when the following conditions are fulfilled:

�|Σ(i) − Σ(i−1)|� < ABS_TOL_SIGMA_MEAN,

max
�
|Σ(i) − Σ(i−1)|

�
< ABS_TOL_SIGMA_MAX,

max
�

|Σ(i) − Σ(i−1)|
|Σ(i)|

�
< REL_TOL_SIGMA,

max
ID

�
|max(F r (i)

ID ) − max(F r (i−1)
ID )|

�
< ABS_TOL_F,

max
ID

�
|max(F r (i)

ID ) − max(F r (i−1)
ID )|

|max(F r (i)
ID )|

�
< REL_TOL_F,
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for the i-th iteration step and r = (ph, pp) or (d, m, s, t), �·� being the mean value and | · | the element-
wise absolute value. When all elements ofΣ(i) or F r (i) are close to zero, then convergence is deter-
mined only by absolute tolerances.

Mixing parameter

After the Bethe-Salpeter equation is performed, the newly obtainedΦ is mixed with the one from the
previous iteration step, such that for the i-th iteration step

Φ(i) ← ALPHA_MIX × Φ(i−1) + (1 − ALPHA_MIX) × Φ(i).

Mixing improves the convergence of the algorithm. It is recommended to use similar values for
ALPHA_MIX as the default one.

Running the executable

Run the executable in the project root directory with suitable <n_tasks> (must be commensurate
with N_B) by

1 $ mpirun -np <n_tasks> ./bin/multi-orbital-parquet.out

All paths in the code are set relative to the project root directory. The generated output is written to
output/.

Output files

General data

After reading in parameters.ini, the program saves the following parameters to general_data.
hdf5:

Parameter Dataset name Type

N_ORBITAL general/n_orbital int32

N_F general/n_f int32

N_B general/n_b int32

BETA general/beta real64
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Parameter Dataset name Type

MU general/mu real64

N_TASKS general/n_tasks int32

Vertices

After every iteration, the newest calculated verticesF andΦ are stored as f-<id>.hdf5 and phi-<id
>.hdf5 respectively, where every process with MPI identifier <id> (formatted as three-digit integer)
writes a file for a certain ωk-chunk. Vertices of the previous iteration step are moved to f-old-<id>.
hdf5 and phi-old-<id>.hdf5. If the calculation is interrupted, this output scheme guarantees that
the calculation can be continued with the latest vertex (and self-energy values).

Every file contains datasets f/f_ph and f/f_pp or phi/phi_ph and phi/phi_pp respectively (or
for SU(2) symmetry the corresponding channels d, m, s, t), each consisting of a complex(128)
(N_MAX, N_MAX, CHUNK_SIZE)-array.

The storage convention for the vertices F andΦ is the same as for the irreducible ones.

In addition to that, every .hdf5 file also contains attributes f/ite or phi/ite respectively, which
store the iteration step as an integer.

Self-energy

The self-energy Σij(νn) is stored after every iteration in a similar fashion as the vertices. If
ALL_SELF_ENERGIES_BOOL is set to .true., the self-energy is stored permanently for every
iteration step <ite> (formatted as three-digit integer) as sigma-<ite>.hdf5 and the last one is
stored as sigma.hdf5.

In contrast to the vertices, the self-energy is not split-up in chunks, but comprises the full fermionic
Matsubara range νn = 2n−N_F−1

β π, with n = 1, . . . , NF. Therefore, the files contain a dataset sigma
which consists of a complex128 (N_SO, N_SO, N_F)-array.

The storage convention for thefirst twodimensions is the sameas forh0_input.hdf5, sowe introduce
again combined indices i� = h (oi, σi) and j� = h (oj , σj)with h defined as above, i and j are again
spin-orbital indices. For the third dimension we leave the index n unchanged. Thus,Σi�j�n is finally
stored in sigma.

Additionally, the self-energy.hdf5files also containanattributesigma/ite, which stores the iteration
step as an integer.
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One-particle Green’s function

The one-particle Green’s functionGi,j(τi, τj), i, j denoting spin-orbital indices, is stored after every
iteration in a similar fashion to the self-energy. IfALL_G_TAU_BOOL is set to .true.Gi,j(τi, τj) is
stored permanently for every iteration step <ite> (formatted as three-digit interger) as g_tau-<ite
>.hdf5 and the last one is stored as g_tau.hdf5.

The file contains a dataset g_tauwhich consists of a a complex128 (N_SO, N_SO, N_F)-array. The
storage convention is the same as for the self-energy. The third dimension is to be seen as the values
for τ = l−1

N_F−1β, with l = 1, . . . , N_F. Additionally, the one particle Green’s function’s .hdf5 files also
contain an attribute g_tau/ite, which stores the iteration step as an integer.

Gi,j(τi, τj) is related to the occupation number nl for a given spin-orbital l via

nl =
� �

c†
l (τ)cl(τ)

� �
= −Gl,l(β−) = 1

β

	
ν

e−iντ G̃l,l(ν).

Jupyter notebook environment

Touse thePython scripts and Jupyter notebooks included ininput andnotebooks/ aPythonenviron-
ment with the packages specified in pip-requirements.txt needs to be configured and enabled.
For Python venv:

1 $ python -m venv path/to/my_venv
2 $ source path/to/my_venv/bin/activate
3 $ pip install -r pip-requirements.txt

For anaconda:

1 $ conda create -n my_venv python --file pip-requirements.txt
2 $ conda activate my_venv

Testing

Tests are provided which check the code against the atomic limit (single-site, single-orbital Hub-
bard model). The user has to set the internal flag TEST_BOOL in parameters.f90 to .true., then
special test parameters located in test/ are used, which should not be changed and the user is
asked in terminal, if tests should be performed with SU(2) symmetry. Furthermore, for both sym-
metry settings notebooks for visulization and checking symmetries are included in notebooks/
atomic_limit_comparison. The numerical results of the core solver are checked against the ana-
lytic results of Phys. Rev. B, 98, 235107 (2018) in the notebooks.
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