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Kurzfassung

Die klinische Ganganalyse ermöglicht die Bewertung des menschlichen Gangbildes. Sie
liefert die Grundlage für KlinikerInnen, um präzise Diagnosen zu stellen und effektive
Behandlungspläne zu entwickeln. Die klinische dreidimensionale Ganganalyse, die als
Goldstandard in der klinischen Praxis gilt, umfasst verschiedene Datenmodalitäten wie
z.B. kinematische Daten (z.B. Gelenkwinkel), die mithilfe optischer Bewegungserfassungs-
systeme berechnet werden, und kinetische Daten (z.B. Bodenreaktionskräfte), die über
Kraftmessplatten aufgezeichnet werden. Diese Daten sind multivariate hochdimensio-
nale Zeitreihen, die zeitliche Abhängigkeiten und nichtlineare Beziehungen zueinander
aufweisen. Die Komplexität dieser Daten und der entsprechenden klinischen Aufgaben-
stellungen, insbesondere bei der Identifikation spezifischer pathologischer Gangmuster,
hat zur Anwendung von Methoden des maschinellen Lernens (ML) geführt. Der Einsatz
von ML-Methoden zielt darauf ab, die Effizienz der klinischen Ganganalyse zu erhöhen
und zu einer besser informierten Entscheidungsfindung beizutragen. Durch den Einsatz
von ML-Methoden können ForscherInnen und KlinikerInnen große Mengen von Gangda-
ten analysieren, um neue Erkenntnisse zu gewinnen, die mit konventionellen Methoden
schwer zu erlangen wären. Viele dieser Ansätze sind jedoch mit Einschränkungen ver-
bunden, wie zum Beispiel die Verwendung von kleinen Datensätzen oder vereinfachten
Aufgabenstellungen mit wenigen Klassen.

In dieser Dissertation werden bestehende Limitationen in der klinischen Ganganalyse
behandelt, und es wird ein methodischer Beitrag dazu geleistet, komplexe Mehrklassen-
Klassifikationsaufgaben mit der Entwicklung erklärbarer ML-Ansätzen zu bewältigen. Zu
diesem Zweck werden traditionelle ML- und Deep-Learning-Ansätze entwickelt, und ihre
Anwendbarkeit auf Gangdaten und entsprechende Klassifikationsaufgaben untersucht.
In dieser Dissertation werden erstmals Erklärungsansätze für ML-Methoden (einschließ-
lich Deep-Learning-Methoden) für klinische Gangdaten vorgestellt, die es ermöglichen,
Entscheidungen für KlinikerInnen nachvollziehbar zu machen. Darüber hinaus wird die
Nützlichkeit von Erklärbarkeitsmethoden bei der Identifizierung von Verzerrungen inner-
halb der Daten und der trainierten ML-Modelle aufgezeigt. Neben einer systematischen
Evaluierung von Datenaufbereitungsstrategien in Bezug auf die Skalierung und Extrak-
tion von Merkmalen sowie Unausgewogenheit der Daten wird auch die diskriminative
Fähigkeit von Bodenreaktionskräften und kinematischen Daten untersucht.

ix



Die vorliegende Dissertation leistet einen bedeutenden Beitrag, indem sie einen großen rea-
len Datensatz namens GaitRec einführt. Dieser Datensatz soll als Benchmark-Datensatz
dienen und bildet eine entscheidende Grundlage für die standardisierte Bewertung der
Leistung von ML-Ansätzen. In dieser Arbeit werden zwei Anwendungsfälle mit unter-
schiedlich komplexen Klassifikationsaufgaben untersucht, die große Mengen klinischer
Daten nutzen. Der erste Anwendungsfall verwendet den GaitRec Datensatz und beinhaltet
Bodenreaktionskraftdaten sowohl von gesunden Personen als auch von PatientInnen mit
funktionellen Gangstörungen. Der zweite Anwendungsfall umfasst kinematische Daten
(z.B. Gelenkwinkel) und Bodenreaktionskraftdaten von PatientInnen mit Zerebralparese.

Abschließend werden in dieser Arbeit zukünftige Forschungsrichtungen aufgezeigt, die
das Potenzial haben, den Bereich der automatisierten Klassifizierung von klinischen
Gangdaten voranzubringen.



Abstract

Clinical gait analysis is a central approach for assessing human gait, which forms the
foundation for clinicians to make accurate diagnoses and to develop effective treatment
plans. Clinical three-dimensional gait analysis, considered as gold standard in clinical
practice, involves various data modalities such as kinematic data (e.g., joint angles)
calculated using optical motion capture systems and kinetic data (e.g., ground reaction
forces) recorded via force plates. These data represent multivariate high-dimensional
time series signals that exhibit temporal dependencies and non-linear relationships. The
complexity of these data and corresponding clinical tasks, particularly in the identifica-
tion of specific pathological gait patterns, has motivated researchers to investigate the
suitability of machine learning (ML) methods to solve gait analysis tasks. The use of
ML methods aims to improve the efficiency of clinical gait analysis and to contribute
to better informed decision-making. By using ML, researchers and clinical experts can
analyze large amounts of gait data to gain new insights, which would be difficult with
conventional methods. However, many of these approaches are also subject to limitations,
such as using small datasets for training or addressing simplified tasks with only a few
classes.

The present thesis addresses existing gaps and limitations and makes a significant
methodological contribution to explainable ML approaches for complex multi-class gait
classification tasks. For this purpose, traditional ML and deep learning approaches are
developed, and their suitability for gait data and corresponding classification tasks is
investigated. This thesis proposes for the first time explainability approaches for ML
methods (including deep learning methods) for clinical gait data that enable clinicians to
trace decisions. Additionally, it demonstrates the usefulness of explainability methods
in identifying biases within ML pipelines and gait data. In addition to a systematic
evaluation of data handling strategies concerning feature scaling, feature extraction, and
data imbalances, this thesis investigates the discriminative power of ground reaction force
and joint angle data.

A significant contribution of the current thesis lies in the publication of a large-scale
real-world dataset named GaitRec. This dataset serves as a benchmark, providing a
crucial foundation for assessing the performance of ML approaches in a standardized
way. In this work, two use cases with complex binary and multi-class classification tasks
are investigated, utilizing large-scale clinical datasets. The first use case utilizes the
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GaitRec dataset and involves ground reaction force data from both healthy individuals
and patients with functional gait disorders. The second use case encompasses kinematic
(i.e., joint angles) and ground reaction force data from patients with cerebral palsy.

Finally, the present thesis identifies future research directions that have the potential to
advance the field of automated classification of clinical gait data.



Contents

Kurzfassung ix

Abstract xi

Preface xv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Aims of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Synopsis and Publications . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.6 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . 34
1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Bibliography 43

2 Publications 53
2.1 GaitRec, a Large-Scale Ground Reaction Force Dataset of Healthy and

Impaired Gait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2 Automatic Classification of Functional Gait Disorders . . . . . . . . . 62
2.3 Input Representations and Classification Strategies for Automated Human

Gait Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.4 Explaining Machine Learning Models for Clinical Gait Analysis . . . . 86
2.5 Explainable Machine Learning in Human Gait Analysis: A Study on

Children With Cerebral Palsy . . . . . . . . . . . . . . . . . . . . . . . 128

xiii





Preface

The present thesis follows a cumulative approach, encompassing a collection of selected
publications derived from my contributions to machine learning in the field of clinical
gait analysis. The following five journal publications constitute the main body of this
thesis:

• Brian Horsak, Djordje Slijepcevic, Anna-Maria Raberger, Caterine Schwab, Mar-
ianne Worisch, and Matthias Zeppelzauer. GaitRec, a Large-Scale Ground
Reaction Force Dataset of Healthy and Impaired Gait. Scientific Data,
7(1):143, 2020. DOI: 10.1038/s41597-020-0481-z

• Djordje Slijepcevic, Matthias Zeppelzauer, Anna-Maria Gorgas, Caterine Schwab,
Michael Schüller, Arnold Baca, Christian Breiteneder, and Brian Horsak. Auto-
matic Classification of Functional Gait Disorders. IEEE Journal of Biomedi-
cal and Health Informatics, 22(5):1653–1661, 2017. DOI: 10.1109/JBHI.2017.2785682

• Djordje Slijepcevic, Matthias Zeppelzauer, Caterine Schwab, Anna-Maria Raberger,
Christian Breiteneder, and Brian Horsak. Input Representations and Classifi-
cation Strategies for Automated Human Gait Analysis. Gait & Posture,
76:198–203, 2020. DOI: 10.1016/j.gaitpost.2019.10.021

• Djordje Slijepcevic, Fabian Horst, Sebastian Lapuschkin, Brian Horsak, Anna-
Maria Raberger, Andreas Kranzl, Wojciech Samek, Christian Breiteneder, Wolfgang
Immanuel Schöllhorn, and Matthias Zeppelzauer. Explaining Machine Learning
Models for Clinical Gait Analysis. ACM Transactions on Computing for
Healthcare (HEALTH), 3(2):1–27, 2021. DOI: 10.1145/3474121

• Djordje Slijepcevic, Matthias Zeppelzauer, Fabian Unglaube, Andreas Kranzl,
Christian Breiteneder, and Brian Horsak. Explainable Machine Learning in
Human Gait Analysis: A Study on Children With Cerebral Palsy. IEEE
Access, 11:65906–65923, 2023. DOI: 10.1109/ACCESS.2023.3289986

Chapter 1 motivates the undertaking of the thesis (Section 1.1), outlines the aims
(Section 1.2), offers a synopsis and summary of the publications (Section 1.3), details the
methodology employed (Section 1.4), discusses the results (Section 1.5), and addresses
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both limitations and future research directions (Section 1.6). Section 1.1 provides a general
overview of the field of clinical gait analysis and motivates the use of machine learning for
the automated analysis of clinical gait data. Section 1.1 concludes with the current gaps
and limitations of machine learning application in clinical gait analysis that serve as the
foundation for motivating the aims of the thesis. The aims and corresponding research
questions of the thesis are presented in Section 1.2. Section 1.3 provides concise summaries
of the publications contributing to this thesis, along with individual contributions classified
according to the contributor roles taxonomy (CRedIT) [1]. Section 1.4 provides an
overview of the methodology (i.e., investigated datasets, machine learning methods, and
explainability methods) that was utilized to address the research questions and to achieve
the goals of this thesis. Section 1.4 concludes with a general overview of the field of
explainable artificial intelligence and matches the utilized methods to an established
taxonomy. Section 1.5 provides a comprehensive discussion of the research findings
from the perspective of the defined goals and the corresponding research questions.
Section 1.6 offers an extensive exploration of limitations in the addressed research field
while identifying potential directions for future research. Section 1.7 summarizes the
scientific contributions of the thesis.

Chapter 2 contains the publications that constitute the main body of this thesis in their
original form as they were published. The order in which the publications are presented
is selected to ensure logical coherence for the reader and alignment with the research
questions (independent of the chronological order of publication dates).



CHAPTER 1
Introduction

1.1 Motivation
Diseases or injuries of the musculoskeletal locomotor system as well as neurological disor-
ders can affect people of any age (although they are more prevalent in older populations),
regardless of gender and social status, and are one of the main causes of pathological
impairments of human motor function. Various factors, including, e.g., infections, in-
flammations, degenerative processes, traumatic events, neoplastic and vascular diseases,
as well as neurological conditions such as cerebral palsy, Parkinson’s disease, multiple
sclerosis, and stroke, can cause impairments in human motor function [2]. Affected people
may lose the ability to interact with their environment and participate fully in social
activities or the labor market as a result of these disabilities.

According to the Global Burden of Disease Study 2019, musculoskeletal disorders were
identified as one of the leading factors contributing to the growing burden on health
systems across 202 countries [3]. In Austria, similar trends can be observed, with diseases
related to the musculoskeletal system and connective tissues accounting for approximately
21.9% of the causes of sick leave in 2021 [4]. Furthermore, among the population aged 15
and above in Austria, 9.1% experienced challenges when walking longer distances, while
11.3% encountered difficulties while climbing stairs [5]. The aforementioned statistics,
their implications, and the burden they impose on national health care systems provide
strong motivation for conducting extensive research on causes and symptoms associated
with diseases related to the musculoskeletal system. Various factors can be linked to
diseases and injuries related to the musculoskeletal system, such as physical activity,
diet, obesity, and smoking. Extensive studies have been dedicated to human gait, due
to its role as an indicator of both physical activity and overall quality of life. To better
understand gait impairments and allow for an optimal patient treatment, an accurate
assessment of underlying movement mechanisms is essential. Different gait analysis
approaches of varying complexity have been developed for this purpose.
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1. Introduction

1.1.1 Clinical Gait Analysis
Clinical gait analysis serves as a tool for the evaluation of human gait, with the primary
aim to identify impairments that affect a patient’s gait pattern [6]. Clinical gait analysis
supports clinicians in making accurate diagnoses and developing individualized treatment
plans for their patients. For this reason, clinical gait analysis has become a crucial
assessment tool in hospitals and rehabilitation centers. There are different gait analysis
approaches with varying levels of complexity and accuracy, as well as different requirements
for equipment and personnel. These approaches range from observational gait analysis [7]
to more quantitative measures such as kinematic (e.g., joint angles) and kinetic (e.g., joint
moments) data derived from instrumented three-dimensional gait analysis (3DGA) [8].

Clinical 3DGA is well-established in clinical practice and regarded as the gold standard
for the quantification of a patient’s gait performance due to the high accuracy and
quality of derived information [6]. This approach relies primarily on motion capture
techniques in which retro-reflective markers are placed at specific anatomical landmarks
on the human body. Using the 3D trajectories of these markers in conjunction with
geometric biomechanical models, kinematic data such as joint angles can be accurately
calculated [6]. Alternatively, recent approaches use inertial measurement units (IMUs)
to extract kinematic information outside the gait laboratory [9, 10, 11]. In addition
to kinematic data, assessments often include the measurement of muscle activation via
electromyography as well as ground reaction forces via force plates [6]. The ground
reaction force (GRF) corresponds to the force generated by the ground as a reaction
force equal to the (averaged) force applied by the human body to the ground (i.e. body
weight) [8]. By utilizing these different data modalities, a comprehensive understanding of
the patient’s walking behavior can be obtained as they capture complementary information.
The general drawbacks of 3DGA are the need for highly trained staff as well as high
acquisition and maintenance costs. In addition, a major drawback is the time-consuming
and complex setup process, which includes the system calibration and the attachment
of markers or sensors to specific landmarks on the patient’s body. For certain groups
of patients, this time investment might not be feasible, leading to the recording of only
GRF data.

1.1.2 Automated Classification of Gait Data
The prevalent approach in the current clinical setting involves the manual analysis of
gait data obtained via 3DGA by representing it in the form of line plots during the
assessment and diagnostic process (see Figure 1.1). However, this approach is susceptible
to subjectivity, time-consuming, and can be costly. Furthermore, experienced and
qualified domain experts are necessary for the manual analysis of gait data due to the
high-dimensional nature and the presence of temporal dependencies, strong variability,
non-linear relationships, and inter-correlations within the different signals [12].

Clinical gait data and medical history are stored in databases that implicitly contain a
vast amount of valuable clinical knowledge, which is, however, currently hardly accessible.
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1.1. Motivation

Figure 1.1: Data typically presented in a 3D gait analysis report used in clinical practice.
Retro-reflective markers (depicted as pink spheres) are attached to specific anatomical
landmarks on the human body, enabling the quantification of human locomotion through
a 3D motion capture system. The 3D trajectories of these markers combined with
geometrical biomechanical models are utilized to determine joint angles. In addition,
ground reaction forces are determined via force plates. In clinical practice, these data are
typically used to inform medical decision-making. The data from clinical gait analysis
reports are typically presented as simple line plots. Blue and red colors encode the right
and left body sides, respectively. Deriving a diagnosis from these abstract line plots is a
challenging task that requires the expertise of trained medical professionals.

Automated data analysis methods that utilized machine learning (ML) bear the potential
to exploit this implicit knowledge and provide an efficient and data-driven way for the
automated detection of pathological gait patterns. The application of automated data
analysis methods can assist clinicians by providing efficient insights into gait data without
the need for extensive manual analysis of the complex data. The aim of developing
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1. Introduction

automated analysis approaches is not to replace clinicians, but rather to enhance their
capabilities and provide them with valuable tools for faster and more accurate assessment.
Clinicians could benefit from immediate insights and data-driven support that enable them
to make better-informed decisions and create personalized treatment plans. Furthermore,
accelerating the diagnosis and decision-making process through ML-based assistance
systems would also save time and thus healthcare costs.

In recent years, ML has made significant contributions to healthcare applications. For
example, in the medical domain, ML methods have already been able to detect skin and
breast cancer more efficiently and accurately than clinicians [13, 14, 15]. However, the
field of clinical gait analysis still lags behind despite having accumulated a wealth of data
through different measurement methods over the past decades. The demand for rapid and
accurate decision-making, coupled with the complexity of gait data, has driven research
efforts to leverage ML [16]. However, existing literature addressing ML approaches in
clinical gait analysis exhibits limitations, which are outlined in Section 1.1.4. To overcome
the limitations of existing ML approaches based on handcrafted domain-specific features
and linear compression using principal component analysis (PCA), there has been a
strong motivation to explore non-linear representations [17]. Utilizing deep learning
enables the autonomous learning of non-linear representations through a data-driven
approach. The motivation for the application of deep learning builds on the idea that
human motor actions consist of elementary building blocks, so-called motion primitives,
at different levels (e.g., neural or kinematic) [18, 19, 20]. Different transformations and
combinations of these motion primitives to more complex modules form increasingly
complex motor actions. Thus, the human gait as such a complex motor action is also
based on redundant modules on every level of the motor hierarchy. This structural
property makes gait data especially interesting for feature learning [18]. For hierarchically
structured data, e.g., images, music, or speech, deep learning methods have shown to be
particularly suitable to learn hierarchical representations that combine basic building
blocks to complex and abstract concepts [18]. The basic assumption for biomechanical
gait data is that specific pathologies are associated with distinct motion primitives that
compose the gait pattern of a patient. Deep learning-based approaches represent a
promising candidate to learn meaningful gait representations from the data. Furthermore,
the application of explainability methods could serve as a valuable tool in identifying the
location and pattern of motion primitives associated with the investigated pathologies.

1.1.3 Significance of Explainability

While ML approaches show promising outcomes in terms of classification performance,
they often suffer from a significant drawback, which is their black-box nature [21]. This
implies that even if we understand the underlying mathematical principles of these
methods, their decision-making process is often incomprehensible and their predictions
are hard to trace. Thus, the problem in the context of clinical gait analysis is that it
remains unclear to clinical experts whether predictions are based on clinically relevant
patterns or if they are influenced by spurious correlations or biases in the data that are
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1.1. Motivation

not causally related to the targeted pathologies. The inability to validate the functioning
of complex ML models and the challenge of understanding the learned patterns and rules
are currently restricting the application of ML-based decision-support systems in clinical
practice. However, clinicians require full transparency of decisions [22, 23]. The absence
of transparency in ML approaches poses a significant challenge in offering justifications
for their predictions. These justifications are essential for compliance with regulations
such as the General Data Protection Regulation (GDPR, EU 2016/679) [24] and the
recently proposed Artificial Intelligence Act [25] by the European Commission.

For simpler ML models that are inherently explainable, such as decision trees, generating
decision and model explanations can be relatively straightforward (e.g., by utilizing
feature importance). However, to identify patterns within the input data that contribute
to the predictions of complex ML models, methods from the field of explainable artificial
intelligence (XAI) are necessary. In general, these explainability methods aim to reveal the
workings of complex non-linear ML models and the way they produce their predictions.

1.1.4 Current Gaps and Limitations
In the context of clinical gait analysis and the automated analysis of gait data, various
limitations become evident. These limitations manifest across different levels, and the
subsequent listing is not intended to present a comprehensive compilation but a summary
of limitations that serve as motivation for the present thesis.

Data and annotation availability. Existing literature on ML approaches in clinical gait
analysis has primarily focused on simple use cases and small-scale datasets. Furthermore,
in the field of clinical gait analysis, there is a lack of comprehensive publicly available
datasets containing data from patients and healthy controls. An important constraint
for gait data is also the absence of annotations, which are particularly crucial in clinical
scenarios (e.g., pathological gait patterns) as the annotation process typically involves a
subjective and time-consuming evaluation by clinical experts. Each laboratory collects
the data independently, and the use of different laboratory settings further complicates
the merging of different data modalities. However, it is critical to consider incorporating
heterogeneous and large datasets to train and validate robust ML models. This approach
is central to ensuring the applicability of these models in diverse populations and to
improve their generalizability.

Differently expressive data modalities. As the gold standard for assessing human
gait, 3DGA considers the kinematic and kinetic aspects of movement. However, in
everyday clinical practice, clinicians and therapists face challenges due to the necessity
to examine a large number of patients. There is a trade-off between the accuracy
and time efficiency of 3DGA. Additionally, motion capture systems utilized for 3DGA
are expensive and the operation of such systems requires trained personnel, which
further complicates their integration into clinical practice. Thus, an alternative that
is sometimes used involves recording only GRFs using force plates. Considering the
time-efficient process of collecting only GRF data, as opposed to 3DGA, the accumulation
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1. Introduction

of datasets suitable for automated analysis becomes more feasible. Moreover, the
availability of GRF data is higher, as they can be obtained from regular 3DGA, as well
as from gait laboratories without motion capture systems and can include historic data
from periods when such complex recording systems were not utilized. In addition to
simplified data collection, GRF data also offers advantages such as easier integration
of datasets from different gait laboratories. This facilitates the setup of multi-center
studies, while the integration of kinematic data from different gait laboratories is more
complicated due to differences in marker setups and biomechanical models across gait
laboratories. As a result, numerous studies in the literature have utilized GRF data
and demonstrated high classification performance. However, these studies primarily
focused on distinguishing between one or two specific pathological gait patterns and
healthy controls (physiological gait) [16]. These studies investigated pathological gait
patterns associated with conditions such as Parkinson’s disease [26, 27, 28], cerebral
palsy [29], multiple sclerosis [29], osteoarthritis [30], transfemoral amputation [31], and
lower limb fracture [32]. The main drawback of utilizing only GRF data is that the
view on the biomechanical processes of the lower extremities is narrowed compared to
data derived from 3DGA, as kinematic processes are not explicitly represented. This
is also the reason why GRF data have often only been utilized for binary classification
tasks, e.g., to distinguish between healthy controls and a single pathological gait pattern.
The quantitative assessment of the discriminative power of GRF data for multi-class
classification tasks, in comparison to 3DGA data, remains unexplored in the literature.

Lack of systematic evaluation of data handling strategies. In the existing literature
on automated gait classification, evaluating the impact of different data processing
strategies on performance has not yet been thoroughly addressed for complex multi-class
classification tasks. In particular, there is a gap in the study of how factors such as
feature scaling and feature extraction, data imbalance, and dealing with various trials
per individual affect the performance of ML approaches. Understanding the impact of
these data factors on complex, clinically relevant datasets is crucial for optimizing the
performance and robustness of such approaches.

Limitations in systematically evaluating traditional ML and deep learning
approaches. The main difference between deep learning and traditional ML relates
to the concept of feature extraction. In deep learning, there is no need for explicit
feature extraction since the model inherently learns the features directly from the data
(i.e., feature learning). This capability is enabled by the architecture of deep neural
networks. These models are composed of multiple stacked layers that facilitate the
learning of higher-level, more abstract features from the raw input data. These high-level
features enable deep learning models to handle complex multi-class classification tasks [17].
There has been an increasing trend towards the use of deep learning methods for gait
data in the literature in recent years [17]. These studies are often subject to limitations
such as very small datasets or simplified classification tasks with few classes. Therefore,
uncertainties remain regarding the suitability of deep learning for complex multi-class gait
classification tasks and how deep learning methods compare to traditional ML methods.

6



1.1. Motivation

Lack of explainability. Explainability methods (see Section 1.4.3) have been successfully
used to explain ML models in a variety of domains and their application in the medical
field has also received considerable attention [33]. The motivation behind this is to increase
transparency and thereby trust in ML models among medical professionals [34]. However,
the use of explainability methods in the context of clinical gait analysis still needs to
be explored. This is particularly interesting because most explainability methods have
been developed for image data and structured data and evaluating explanations becomes
particularly challenging when dealing with more abstract data such as multivariate time
series. The suitability and usefulness of explainability methods for gait analysis and for
clinical practice in general is currently an open question.
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1.2 Aims of the Thesis
The primary aim of this thesis is to address and overcome the aforementioned gaps and
limitations through the development and investigation of novel ML approaches. These
approaches are intended for the automated analysis of measurement data obtained from
clinical gait analysis with the overall aim of supporting clinical decision-making.

The present thesis focuses on developing and evaluating the performance of explainable
ML and deep learning methods in modeling motion primitives at both kinematic (i.e., joint
angle) and kinetic (i.e., GRF) levels while addressing complex classification tasks and
larger datasets compared to the current state of the art. For the development and
evaluation of these methods, two use cases with binary and multi-class classification
tasks will be explored: i) the use case on functional gait disorders (UC: functional
gait disorders), which includes GRF data from healthy controls and four classes with
functional gait disorders related to the hip, knee, ankle, or calcaneus, and ii) the use case
on cerebral palsy (UC: cerebral palsy) that utilizes a dataset containing GRF and joint
angle data from patients with cerebral palsy with four distinct pathological gait patterns.
The UC: cerebral palsy aims to enable a quantitative assessment of the discriminative
power of both GRF and joint angle data for classifying multiple pathological gait patterns.

Overall, this thesis proposes a set of methodologies (published in high-ranked peer-
reviewed journals) designed and implemented to achieve the following research goals:

• Goal 1 – Creation of high-quality dataset: Creation and publication of a high-
quality (from a biomechanical point of view) gait dataset that contains clinically
relevant annotations and GRF data and is comprehensive concerning the quantity
of participants and number of trials per participant, as well as the diversity of
pathological gait patterns.

• Goal 2 – Evaluation of discriminative power of 3DGA modalities: Evalua-
tion of the discriminative power of different 3DGA data modalities, i.e., GRF and
joint angle data, for automated gait classification.

• Goal 3 – Evaluation of data handling strategies: Evaluation of the impact of
various data handling strategies (including feature scaling, feature extraction, data
imbalance, and different aggregation strategies) on the performance of automated
gait classification.

• Goal 4 – Comparison of traditional ML and deep learning: Development
and comparison of traditional ML models and deep neural networks in terms of the
classification performance.

• Goal 5 – Evaluation of explainability approaches: Development and eval-
uation of explainability approaches for traditional ML models and deep neural
networks and assessing their ability to utilize clinically relevant input features for
gait classification.
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In the context of the above-mentioned challenges and goals, the main research questions
(RQs) addressed in the present thesis are the following.

Research question related to Goal 1:

• RQ1.1: Which steps should a preprocessing pipeline for GRF data
include to facilitate the collaborative use of data gathered from different
gait laboratories?
A common challenge in using ML for gait analysis is the limited availability of large
datasets. Typically, ML models are trained and evaluated on small datasets from a
single gait laboratory. The absence of comprehensive benchmark datasets makes
it challenging to provide clear guidance on appropriate data preprocessing and
classification methods for specific classification tasks. Regarding data preprocessing
in the field of gait analysis, it is important to introduce and assess domain-specific
as well as ML-related preprocessing procedures. These procedures, including data
thresholding, data filtering, outlier detection, and data normalization, have been
evaluated on a large real-world dataset. The outcome is a standardized preprocessing
pipeline for GRF data that can be applied across various gait laboratory settings,
enabling the collaborative use of these data from different research laboratories.

Research questions related to Goal 2:

• RQ2.1: What level of classification performance can be achieved using
only GRF data for automated gait classification?
In the related literature, GRF data are commonly utilized for binary classifica-
tion tasks to distinguish between physiological and pathological gait. Multi-class
classification tasks using GRF data are less common and are usually employed to
identify patient groups exhibiting large differences in their gait patterns. To evalu-
ate the discriminative power of GRF data, two complex multi-class datasets were
employed. For the UC: functional gait disorders the classification performance
was evaluated in a binary classification task by merging all pathological classes
and distinguishing them from physiological gait. Subsequently, the classification
performance was evaluated on the more complex multi-class classification task (as
originally defined in the GaitRec dataset). The UC: cerebral palsy examined
the discriminative power of GRF data for different gait patterns within the cere-
bral palsy population. The outcome is a quantitative comparison of classification
performance, based exclusively on the use of GRF data, for the two given use cases.
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• RQ2.2: What is the advantage in classification performance when using
kinematic data compared to GRF data for automated gait classification,
and is there an improved classification performance when using both
inputs together as opposed to using them separately?
Recording only GRF data is a more time- and resource-efficient approach compared
to 3DGA. However, the exclusive use of GRF data represents a significant limitation
for understanding the biomechanical processes of the human body. The amount of
relevant information is significantly limited compared to the data obtained from
3DGA, as the exclusive use of GRF data excludes the explicit representation of
gait kinematics. This drawback emphasizes the importance of incorporating 3DGA
data, in particular for multi-class classification tasks. The experiments to assess
the classification performance of the different data modalities were carried out
on the complex multi-class classification task within the UC: cerebral palsy
(see Section 1.4.1). The outcome is a quantitative comparison of classification
performance, evaluating the effectiveness of each individual data modality separately
and in combination.

• RQ2.3: To what degree do the signals from the affected and unaffected
sides differ in terms of their discriminative power for automated gait
classification?
Conditions affecting the musculoskeletal locomotor system or neurological disorders
have consequences not only for the (more) affected leg but also for the unaffected
(less affected) leg. Individuals experiencing these conditions tend to develop com-
pensatory strategies in the unaffected side, primarily influenced by the increased use
of this side [35]. Leveraging these additional compensatory strategies encoded in the
data from the unaffected side could potentially enhance classification performance.
This research question was addressed by evaluating the classification performance
on the classification tasks defined in the UC: functional gait disorders. The
outcome is a quantitative comparison of classification performance, evaluating the
discriminative power of data from the affected and unaffected sides, both separately
and in combination.

Research questions related to Goal 3:

• RQ3.1: To what extent do different feature scaling and feature extraction
techniques impact the performance of automated gait classification?
In ML practice, it is well established that feature scaling and feature extraction
techniques can greatly aid in the training process of ML models. Feature scal-
ing is a necessary step before applying ML models to ensure uniform numerical
ranges across different input features and signals. Thus, feature scaling prevents
that signals with larger numeric ranges (amplitude) dominate those with smaller
dynamic ranges. The primary focus in this thesis is on different feature scaling
techniques (e.g., min-max normalization and z-standardization). Furthermore,
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various methods for feature extraction were evaluated, aiming to obtain diverse
data parameterizations. The investigated parameterizations encompass handcrafted
domain-specific parameters as well as PCA-derived representations of the raw data
and handcrafted parameters. The assessment of these feature scaling variants and
representations involved evaluating the classification performance on the tasks
defined in the UC: functional gait disorders. The outcome is a quantitative
comparison of classification performance, evaluating the different feature scaling
and feature extraction approaches.

• RQ3.2: What is the impact of data imbalance on the performance of
automated gait classification?

One of the most significant factors influencing the classification performance of
ML models is class imbalance [36]. Imbalanced data refers to a scenario with an
unequal distribution of samples among different classes. Imbalanced data can result
in the training of biased ML models, which in turn can lead to lower classification
performance especially for the minority classes. Real-world datasets in the field
of human gait analysis exhibit various imbalances. Certain pathological classes
are inherently much rarer than others. Furthermore, in some conditions, such
as those involving long therapy processes, subjects may have significantly more
sessions recorded than in other cases (in which only a low number of sessions are
recorded). In a single session, the number of recorded trials can also vary, influenced
by factors such as the patient’s condition. In this thesis, two causes of imbalance,
i.e., variations in the number of patients and sessions per patient, were investigated
both individually and in combination in the UC: functional gait disorders. To
this end, the classification performance was evaluated on subsets that are balanced
with respect to these two causes of imbalance. The outcome is a quantitative
comparison of achievable classification performance in balanced and imbalanced
scenarios.

• RQ3.3: To what extent do different data aggregation methods impact
the performance of automated gait classification?

In clinical practice, multiple trials are often recorded during a recording session.
Clinicians usually analyze these trials by averaging them to achieve more robust rep-
resentations. With multiple trials per recording session in the datasets, the question
arises whether these trials can be combined or aggregated to enhance prediction
robustness of ML models. The baseline approach involved using all available trials
from a session without aggregation to train ML models. Furthermore, different
early fusion techniques were investigated, such as aggregating (i.e., averaging) and
subselecting (i.e., using the median or the most representative trial) trials from a
session prior to training the ML model. Additionally, a late fusion strategy was
evaluated, which aggregated the predictions of the ML model trained on all trials
(i.e., baseline approach) using majority voting. The evaluation of these aggrega-
tion methods involved assessing the classification performance on the classification
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tasks within the UC: functional gait disorders. The outcome is a quantitative
comparison of classification performance for the three early fusion approaches, the
late fusion approach, and the baseline approach.

Research question related to Goal 4:

• RQ4.1: How do traditional ML models compare to deep neural networks
for the automated gait classification in terms of performance?
Deep learning and traditional ML methods differ in their learning paradigms,
as elaborated in Section 1.1.4 and Section 1.4.2. To assess the classification
performance of these methods, systematic comparisons using the datasets of the
two use cases were performed. Within the UC: functional gait disorders, the
classification performance of convolutional neural networks (CNNs), multi-layer
perceptrons (MLPs), and support vector machines (SVMs) was evaluated across
six tasks (comprising four binary and two multi-class tasks). In the UC: cerebral
palsy, the performance of convolutional neural networks, self-normalizing neural
networks, random forests, decision trees, support vector machines, and gradient
boosting classifiers was evaluated. The outcome is a quantitative comparison of
classification performance that should provide information regarding the strengths
and limitations of the ML methods when utilized in specific gait classification tasks.

Research questions related to Goal 5:

• RQ5.1: To what extent can explainability approaches be employed to
determine the input features on which ML models base their decisions
for automated gait classification, and are these relevant input features
statistically justified and in line with clinical assessment?
To develop decision-support systems for clinical practice using ML, it is essential
to integrate explainability approaches, which can be implemented at following
levels (see Section1.4.3): i) at the data level (i.e., data exploration), ii) at the
decision level (i.e., explanation of a specific prediction), and iii) at the model level
(i.e., explanation of class-specific and model-specific patterns and learning strategies).
Different explainability approaches were implemented and investigated explanations
on the three levels using the datasets of the two use cases. The evaluation of
explainability at the data level was performed through the use of linear discriminant
analysis (LDA). The evaluation of explainability at decision and model level was
conducted using two state-of-the-art methods, i.e., layer-wise relevance propagation
(LRP) [37] and gradient-weighted class activation mapping (Grad-CAM) [38]. For
the UC: functional gait disorders, LRP [37] was utilized to explain convolutional
neural networks, multi-layer perceptrons, and support vector machines across
the binary tasks. For the UC: cerebral palsy, Grad-CAM [38] was employed
to generate explanations for convolutional neural networks and self-normalizing
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neural networks. Additionally, for random forests and decision trees, the feature
importance based on Gini impurity served as model explanation. The outcomes
are i) a quantitative evaluation from a statistical perspective using statistical
parametric mapping (SPM) [39] to assess whether relevant input features exhibit
also statistical differences between the classes, and ii) a qualitative examination of
the explainability results and the differences in these results among the different
ML methods, conducted via a series of focus group interviews with clinical experts.

• RQ5.2: How effective are explainability approaches in detecting bias in
ML models used for automated gait classification?
In practice, ML approaches are prone to biases. These biases are often present in
the training data and originate from factors such as imbalanced data distributions,
differences in walking speeds among different populations (e.g., physiological vs.
pathological classes), or inadequate data preprocessing (e.g., unequal data scaling).
An explainability approach was utilized to identify biases in ML models caused
by the absence of feature scaling and variations in walking speed between healthy
controls and patients. The outcome is a qualitative evaluation of the explainability
results via focus group interviews with clinical experts to identify specific biases,
followed by experiments designed to address and mitigate the underlying causes of
these biases.
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1.3 Synopsis and Publications

In the following, the reader will find a brief summary of the publications that contribute
to this thesis. The emphasis lies on five journal publications encompassing methodological
advancements beyond the respective state of the art. Table 1.1 illustrates the relationship
between the publications and the research goals and questions defined in Section 1.2.
Table 1.2 states the personal contributions (indicated with ✓) for each paper according
to the contributor roles taxonomy (CRedIT) [1].

Publications Goal 1 Goal 2 Goal 3 Goal 4 Goal 5
RQ1.1 RQ2.1 RQ2.2 RQ2.3 RQ3.1 RQ3.2 RQ3.3 RQ4.1 RQ5.1 RQ5.2

Horsak & Slijepcevic et al. (2020)∗ ✓
Slijepcevic et al. (2017) ✓ ✓ ✓ ✓
Slijepcevic et al. (2020) ✓ ✓ ✓
Slijepcevic & Horst et al. (2022)∗ ✓ ✓ ✓ ✓ ✓
Slijepcevic et al. (2023) ✓ ✓ ✓ ✓

Table 1.1: Correspondence (indicated with ✓) between the publications comprising the
present thesis and the research goals and question (RQ) addressed within the thesis. The
asterisk (*) indicates publications with co-shared first authorship.

The research question RQ1.1 related to Goal 1 is addressed in Horsak et al. (2020),
a publication that was released along a real-world dataset containing clinical gait data.
This dataset forms also the fundamental basis for three of the other publications.

Several RQs have been explored in multiple publications, with RQ2.1 being the most
frequently addressed and covered in all of the publications. In Slijepcevic et al. (2017) [40],
Slijepcevic et al. (2020) [41], Slijepcevic et al. (2022) [42], and Slijepcevic et al. (2023) [43],
we utilized GRF data from the UC: functional gait disorders and examined various
classification tasks, offering a comprehensive evaluation related to RQ2.1. RQ2.2
was addressed in Slijepcevic et al. (2023) [43] due to the availability of both GRF and
joint angle data in the UC: cerebral palsy. The assessment of the discriminative
power between the affected and unaffected side (RQ2.3) was conducted in Slijepcevic et
al. (2020) [41] and Slijepcevic et al. (2022) [42].

Aspects related to RQ3.1, such as exploring different feature extraction methods
(i.e., handcrafted domain-specific parameters as well as PCA-derived representations
of the data), and investigating the influence of feature scaling techniques on classifi-
cation performance were examined in Slijepcevic et al. (2017) [40]. In Slijepcevic et
al. (2017) [40], we examined also the impact of data imbalance (RQ3.2), which guided
our approach to utilize balanced datasets in subsequent publications. Slijepcevic et
al. (2020) [41] evaluated the influence of different data aggregation approaches, i.e., early
and late fusion strategies, on the classification performance in scenarios with multiple
trials per person (RQ3.3).

The research question RQ4.1 related to Goal 4 was predominantly addressed in Slijepce-
vic et al. (2022) [42] and Slijepcevic et al. (2023) [43]. These two publications explored
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the comparison between traditional ML models and deep neural networks concerning
classification performance.

Slijepcevic et al. (2017) [40], Slijepcevic et al. (2022) [42], and Slijepcevic et al. (2023) [43],
examined RQ5.1 from different perspectives. In Slijepcevic et al. (2017) [40], explain-
ability was investigated on the data level by utilizing linear discriminant analysis. This
approach allowed the assessment of the discriminative power of handcrafted domain-
specific features and PCA representations. In Slijepcevic et al. (2022) [42] and Slijepcevic
et al. (2023) [43], various explainability approaches were proposed to obtain explanations
at the prediction, class, and model level. Finally, the investigation of how explainability
methods enable the identification of bias related to walking speed differences and data
scaling (RQ5.2) was addressed in Slijepcevic et al. (2022) [42].
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Horsak & Slijepcevic et al. (2020)∗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Slijepcevic et al. (2017) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Slijepcevic et al. (2020) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Slijepcevic & Horst et al. (2022)∗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Slijepcevic et al. (2023) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1.2: Correspondence (indicated with ✓) between the publications comprising the
present thesis and the personal contributions based on the contributor roles taxonomy
(CRedIT) [1]. The asterisk (*) indicates publications with co-shared first authorship.

The following subsections contain a brief summary of each publication included in
the present thesis. For more detailed information, please refer to the corresponding
publication in Chapter 2.
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1.3.1 GaitRec, a Large-Scale Ground Reaction Force Dataset of
Healthy and Impaired Gait

Brian Horsak, Djordje Slijepcevic, Anna-Maria Raberger, Caterine Schwab, Marianne
Worisch, and Matthias Zeppelzauer. GaitRec, a Large-Scale Ground Reaction
Force Dataset of Healthy and Impaired Gait. Scientific Data, 7(1):143, 2020. DOI:
10.1038/s41597-020-0481-z

The GaitRec dataset is derived from a clinical gait database maintained by an Austrian
rehabilitation center. The dataset contains anonymized GRF measurements from 2,085
patients with various musculoskeletal impairments and data from 211 healthy controls,
along with accompanying metadata such as age, sex, footwear, and walking speed. The
dataset covers the entire rehabilitation progress of a patient during the patient’s stay.
The labels provided in the dataset indicate the anatomical joint level of orthopedic
impairment, i.e., hip, knee, ankle, and calcaneus. During data collection, patients and
healthy controls were asked to walk unassisted at a self-selected walking speed on a
walkway equipped with two centrally embedded force plates that recorded bilateral GRF
data. The dataset contains multiple left and right foot contacts of one person from one
session. In addition to the unprocessed GRF data, the dataset also contains preprocessed
data that are ready for immediate use.

We developed and published a preprocessing pipeline (including data filtering and
thresholding) with the aim of standardizing GRF datasets from various gait laboratories.
This pipeline facilitates the consolidation of GRF data from diverse laboratories, allowing
for their collaborative utilization.

1.3.2 Automatic Classification of Functional Gait Disorders
Djordje Slijepcevic, Matthias Zeppelzauer, Anna-Maria Gorgas, Caterine Schwab, Michael
Schüller, Arnold Baca, Christian Breiteneder, and Brian Horsak. Automatic Clas-
sification of Functional Gait Disorders. IEEE Journal of Biomedical and Health
Informatics, 22(5):1653–1661, 2017. DOI: 10.1109/JBHI.2017.2785682

This publication presents a comprehensive investigation on the UC: functional gait
disorders (i.e., automated classification of functional gait disorders using GRF data).
The main objective of the study was to assess the effectiveness of i) handcrafted domain-
specific GRF parameters and ii) PCA-based representations of GRF data for distinguishing
functional gait disorders, as well as to establish a performance baseline for the automated
classification of functional gait disorders using a large-scale dataset. This study was one
of the first to examine such a comprehensive dataset of domain-specific gait features for
automated gait classification.

We utilized a subset of the GaitRec datasets that included measurements from 279
patients with gait disorders and data from 161 healthy controls and resulted in a total
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of 9,496 gait measurements. The study included two classification experiments: i) a
binary task that distinguishes between healthy and impaired gait (healthy controls
vs. gait disorder patients) and ii) multi-class classification between healthy gait and
all four gait disorder classes. Various data parameterization methods were examined,
including domain-specific handcrafted GRF parameters, PCA-based representations, and
a combined representation using PCA on these handcrafted GRF parameters. Boxplots
were generated for each parameter and each class, allowing for an initial assessment
of both intra- and inter-class variation. These boxplots offered valuable insights into
the potential of the parameters to distinguish between the different classes. A more
comprehensive assessment of the discriminative power of each parameterization was
conducted using linear discriminant analysis.

The results of the experiments showed promising outcomes, but also highlighted the
impact of factors such as data imbalance (i.e., differences in class sizes and varying
numbers of measurements per patient) and feature scaling (i.e., min-max normalization
and z-standardization) on the classification performance. The overall results showed
that: i) for the multi-class classification task, the accuracy was 54.3%, and for the binary
classification task, it was 90.8%; ii) when considering balanced data with an equal number
of persons and sessions, the accuracies were 59.2% for multi-class and 85.4% for binary
classification (it should be noted that the accuracy was significantly higher than the
random baseline in this case compared to the unbalanced setting); iii) the linear support
vector machine outperformed the radial basis function kernel in terms of classification
performance; and iv) the application of PCA-based parameterization of the raw GRF
data yielded better results compared to using handcrafted domain-specific GRF features,
with a difference of 7.5% in classification accuracy.

1.3.3 Input Representations and Classification Strategies for
Automated Human Gait Analysis

Djordje Slijepcevic, Matthias Zeppelzauer, Caterine Schwab, Anna-Maria Raberger,
Christian Breiteneder, and Brian Horsak. Input Representations and Classification
Strategies for Automated Human Gait Analysis. Gait & Posture, 76:198–203,
2020. DOI: 10.1016/j.gaitpost.2019.10.021

In this study, we compared two data aggregation methods, i.e., early fusion and late
fusion, within the UC: functional gait disorders. In the gait classification literature,
prior approaches employed either an early fusion method, which involved averaging
multiple recorded trials of a subject into a single waveform, or a classification approach
without data aggregation was performed, in which all available trials were used to train
the ML models. In addition to these two methods, we further investigated an early fusion
approach which determined the most representative trial based on a statistical method.
Additionally, we explored a late fusion approach where the model was trained on all
trials, but during inference, a majority voting scheme was used to combine the decisions
from individual trials.
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Subsequently, we explored the optimal input representations and combinations thereof
for automated gait classification. This involved various options, such as using raw gait
waveforms, relative changes within these waveforms, or signal differences between the
affected and unaffected side.

We utilized a subset of the GaitRec dataset, which included measurements from 728
patients with gait disorders and data from 182 healthy controls. The dataset was balanced
in terms of the number of persons per class, recorded sessions per person, and trials per
person. The multi-class classification task focused on distinguishing between healthy
controls and each gait disorder class associated with the hip, knee, ankle, and calcaneus.
In line with the results from Slijepcevic et al. (2017) [40], we employed an ML pipeline
that involved PCA, z-standardization, and support vector machines as classifier.

The results demonstrated the advantage of aggregating multiple trials from a single
subject, especially when using late fusion or the mean waveform approach. In addition,
the results suggested that the inclusion of both the original signals and their derived
representations increased the informativeness of the data in feature extraction and
classification. Even when certain input signals or representations contain redundancies,
the combination of these signals, such as the GRF and center of pressure components
with derived representations, improved classification performance in this study. Thus,
the main finding from these experiments is that using a larger number of input signals
and representations, even when redundancies exist, can lead to better results. This
observation is especially true when combining GRF and center of pressure data and using
derivatives from both the affected and unaffected sides. In addition, the inclusion of both
the affected and unaffected side, whether explicitly or implicitly, seems to be beneficial.

1.3.4 Explaining Machine Learning Models for Clinical Gait Analysis
Djordje Slijepcevic, Fabian Horst, Sebastian Lapuschkin, Brian Horsak, Anna-Maria
Raberger, Andreas Kranzl, Wojciech Samek, Christian Breiteneder, Wolfgang Immanuel
Schöllhorn, and Matthias Zeppelzauer. Explaining Machine Learning Models for
Clinical Gait Analysis. ACM Transactions on Computing for Healthcare (HEALTH),
3(2):1–27, 2021. DOI: 10.1145/3474121

This publication investigated explainability methods to enhance transparency in auto-
mated gait classification within the UC: functional gait disorders. The main goal was
to investigate and explain the class-specific characteristics learned by ML models from
these data. To this end, various classification models, i.e., convolutional neural networks,
multi-layer perceptrons, and support vector machines, were trained for different gait
classification tasks, and prediction explanations were derived using a popular explain-
ability method for the image domain, i.e., layer-wise relevance propagation (LRP). In
addition, we proposed also two types of model explanations using the individual prediction
explanations: The initial approach involved averaging relevance scores across all samples
within a specific class. However, to conduct a more comprehensive analysis capable of
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identifying different learning strategies employed by the ML models, we adapted spectral
relevance analysis (SpRAy) [44] for GRF data. This approach clustered the relevance
scores obtained from various samples and classes and allowed to conduct a detailed
examination of the resulting clusters and subclusters.

The evaluation of the obtained explanations followed a two-step approach. First, a
statistical analysis was conducted using statistical parametric mapping (SPM) [39] to
assess whether relevant input features exhibit also statistical differences between the
classes. Second, two clinical experts interpreted the explainability results from a clinical
perspective to assess whether the explanations align with clinical practice. Additionally,
the investigation explored various aspects that could influence classification performance
and explainability. These aspects included the impact of different classification methods,
feature scaling techniques, and the role of various input signal components (i.e., horizontal
forces and measurements of the affected and unaffected side).

The study utilized a subset of the GaitRec dataset, comprising GRF measurements
during barefoot walking from 132 patients with lower-body gait disorders and data from
62 healthy controls with varying physical composition and gender. The dataset comprised
three classes of orthopedic gait disorders related to the hip, knee, and ankle, in addition
to a class representing healthy controls.

The results emphasize that ML models used in various clinical gait classification tasks
base their predictions mostly on meaningful features from GRF data. These features have
been validated through statistical and clinical evaluation. Within the scope of the analysis,
several significant observations were made. First, highly relevant regions were identified
in both the affected and unaffected sides, suggesting that the unaffected side contains
complementary information that is relevant for the classification. Second, statistical
parametric mapping proved to be a suitable statistical reference for the explainability
results. Regions identified as highly relevant by the explainability method were generally
found to be significantly different according to statistical parametric mapping and aligned
with clinical evaluation. Furthermore, our results showed that not only the vertical
GRF force but also the other force components exhibit highly relevant regions. This
observation is consistent with the existing literature on clinical gait analysis. The results
suggest that ML models tend to learn an over-complete set of features that may contain
redundant information. This finding potentially explains why certain changes, such as
occluding certain force components and using different input normalization methods, had
negligible influence on the classification performance. Furthermore, ML models for gait
classification exhibited the capability to learn different strategies for individual persons
and patient groups, reflecting the capability to adapt to different patterns in the data.
Finally, the implementation of the proposed explainability approaches allowed clinical
experts to identify a bias related to the walking speed in ML models and accurately
assess their functionality. This aspect is crucial for clinicians, as it is the only way to
strengthen their trust in the predictions generated by these models.
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1.3.5 Explainable Machine Learning in Human Gait Analysis: A
Study on Children With Cerebral Palsy

Djordje Slijepcevic, Matthias Zeppelzauer, Fabian Unglaube, Andreas Kranzl, Chris-
tian Breiteneder, and Brian Horsak. Explainable Machine Learning in Human
Gait Analysis: A Study on Children With Cerebral Palsy. IEEE Access,
11:65906–65923, 2023. DOI: 10.1109/ACCESS.2023.3289986

The main objective of this publication was to explore the effectiveness of various ML
methods for the UC: cerebral palsy. Similar to the work presented in Slijepcevic
et al. (2022) [42], this research also aimed to develop explainability approaches to
assess the clinical relevance of the features learned by these models. In our study, we
conducted a comparison between various traditional ML methods, such as random forests,
decision trees, and gradient boosting classifiers, and deep learning methods, including
convolutional neural networks and self-normalizing neural networks. For decision trees
and random forests, Gini impurity-based feature importance served as the basis for the
model explanation. For the deep neural networks, individual prediction explanations
determined via the gradient-weighted class activation mapping (Grad-CAM) [38] method,
were aggregated at different levels to provide insights at the decision, class, and model
levels.

The study investigated the discriminative power of two different data modalities recorded
during 3DGA, i.e., joint angle and GRF data, for classifying gait patterns associated
with cerebral palsy. We conducted experiments using a 3DGA dataset comprising 302
patients with cerebral palsy exhibiting four distinct gait patterns associated with this
condition.

The results indicate that joint angle data (peak performance of 93.4%) significantly
outperforms GRF data (peak performance of 47.2%) for this classification task. Moreover,
traditional ML approaches like random forests and decision trees achieved better results
and focused on clinically relevant regions more effectively than deep neural networks. The
best configuration, utilizing sagittal knee and ankle angles with a random forest, achieved
a classification accuracy of 93.4%. Deep neural networks employed both clinically relevant
features but also additional features for their predictions. These additional features
could offer novel insights into the data and raise new research questions. Overall, this
publication highlights the significance of explainability in fostering understanding of ML
models for clinical practice.
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1.4 Methodology
This section outlines the methodology that was utilized to address the research questions
and achieve the goals of this thesis. More detailed specification of the employed data,
approaches, and methods can be found in the publications presented in Chapter 2.

For each RQ, a systematic approach is followed, beginning with the experimental design,
followed by the selection of a suitable dataset or subset, then the ML pipelines are
implemented and finally an evaluation of the results is conducted. Almost all RQs were
evaluated quantitatively by evaluating standard performance metrics (e.g., classification
accuracy, precision, recall, and F1 score) of the ML methods either through a dedicated
train/validation/test split or a k-fold cross-validation approach. In all four publications,
when evaluating classification accuracy, a comparison was made with the zero-rule baseline
(i.e., representing the theoretical accuracy obtained by assigning class labels based on
selecting the most frequent class in the dataset). In the case of Slijepcevic et al. (2020) [41],
the zero-rule baseline equals the random baseline due to the perfectly balanced nature of
the utilized dataset. RQs associated with explainability were evaluated qualitatively in a
series of focus group interviews with the clinical experts. In addition to the qualitative
assessment, this thesis proposes an additional assessment of the explainability results
based on statistical analysis of the underlying data.

1.4.1 Clinical Use Cases and Datasets

To develop methods which are capable of learning higher-level and non-linear features,
certain prerequisites regarding the quality and size of the utilized datasets have to be
fulfilled. Primarily, the dataset should contain informative gait data and clinically relevant
annotations determined by clinical experts. Additionally, the dataset has to exhibit
substantial variability in the metadata that is specific to the respective population. These
metadata include anthropometric properties, such as body weight and height, as well as
other factors that influence gait, such as age, sex, and walking speed. Furthermore, a
subset of clinically relevant pathological classes has to be identified for the purpose of
automated analysis and classification. The literature demonstrates a broad range of use
cases, ranging from orthopedic issues related to post-joint replacement surgery, ligament
ruptures, and osteoarthritis, to complex diseases that cause neuromuscular mobility
impairments in the lower extremities, including e.g., cerebral palsy, Parkinson’s disease,
and Alzheimer’s disease. The dataset should contain data from several hundred people,
to allow for the modeling of inter-individual variability within a specific pathological
group. Generally, clinical gait analysis involves the recording of several trials (i.e., steps)
in order to account for intra-individual step variability. Thus, a representative sample size
per subject has to be ensured [45]. The imbalance of a dataset represents an additional
challenge. This imbalance can naturally occur when the number of patients with different
pathologies varies significantly. In order to model also healthy gait, a comprehensive
dataset should comprise not only data from pathological gait, but also data from healthy
controls.
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The proposed thesis investigates two clinical use cases employing two comprehensive
real-world datasets: i) a dataset comprising GRF data from patients with different
functional deficits associated with a patient’s condition after joint replacement surgery,
fractures, ligament ruptures, and osteoarthritis, and ii) a dataset containing joint angle
data and GRF data obtained via 3DGA from patients with cerebral palsy.

For the UC: functional gait disorders, different subsets of the GaitRec dataset [46]
served as the basis for addressing and exploring research questions RQ1.1, RQ2.1,
RQ2.3, RQ3.1, RQ3.2, RQ3.3, RQ4.1, RQ5.1, and RQ5.2. This dataset is one of
the largest publicly available collections of clinical gait data and it was published within
the scope of this thesis. The GaitRec dataset comprises anonymized GRF and center of
pressure data from an existing clinical gait database maintained by a rehabilitation center
of the Austrian Workers’ Compensation Board (Allgemeine Unfallversicherungsanstalt,
AUVA). Kinematic data was not recorded during the gait analyses. The entire dataset
comprises GRF measurements from 2,085 patients with gait disorders and data from
211 healthy controls, both of various physical composition and sex. Data were manually
classified into four classes – hip, knee, ankle, and calcaneus – by a physical therapist,
based on the available medical diagnosis of each patient. The individual pathological
gait patterns are related to joint replacement surgery, fractures, ligament ruptures, and
related disorders associated with the hip, knee, ankle, or calcaneus. Participants walked
unassisted at a self-selected walking speed on an approximately 10 m long walkway with
two force plates. In healthy controls, measurements were also conducted at different
walking speeds, which differ from the habitual speed. Each participant performed one
or several measurement sessions. In each session, at least eight valid recordings for
two consecutive steps were performed, leading to a total of 75,732 bilateral individual
measurements for the entire dataset. The preprocessed GRF data, which includes the
vertical, anterior-posterior, and medio-lateral force components, along with the center of
pressure data, were normalized to 100% stance phase and to the body weight.

The UC: cerebral palsy focuses on a dataset comprising anonymized 3DGA data from
an existing database created and maintained by the Laboratory of Gait and Human
Movement of the Orthopaedic Hospital Vienna-Speising (Austria). The dataset includes
3DGA measurements, which consist of simultaneously recorded kinematic and GRF
data. The dataset comprises anonymized data from 302 patients with cerebral palsy.
Furthermore, the dataset included anthropometric data, along with annotations of
four pathological gait patterns associated with cerebral palsy: true equinus, jump gait,
apparent equinus, and crouch gait. This dataset served as the basis for addressing and
exploring research questions RQ2.1, RQ2.2, RQ4.1, and RQ5.1. The 3DGA was
conducted on a 12 m walkway using a motion capture system consisting of a minimum of
14 infrared cameras and three force plates. Patients walked without a walking aid and at
a self-selected walking speed until a minimum of five valid recordings had been collected.
Kinematic data in terms of joint angles were computed using the raw marker trajectories.
Additionally, the kinematic data were time-normalized to 100% of the corresponding
gait cycle (or stance phase in the case of GRFs). Time normalization of the gait data to
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100% of the gait cycle or stance phase ensures that the input data has a uniform length
and therefore no additional padding is required. To obtain more robust data, average
curves were computed for each joint angle (for the pelvis, hip, knee, and ankle) and GRF
component by aggregating data from all gait cycles within one recording session.

1.4.2 Representation Learning and Classification Methods
The initial classification baseline was established on the UC: functional gait disorders
by applying traditional ML methods, such as k-nearest neighbor (k-NN) classifier, multi-
layer perceptron, and support vector machine. These methods were trained on handcrafted
domain-specific features derived from raw gait signals (e.g., local minima and maxima of
the waveforms, as well as spatio-temporal gait parameters such as cadence, walking speed,
and step length), which clinicians commonly use in clinical practice. For this purpose,
Slijepcevic et al. (2017) [40] examined a comprehensive set of handcrafted domain-specific
features.

In the automated analysis of gait data, another state-of-the-art approach employs PCA
as a feature extraction method on the raw data and combines it with traditional ML
methods [16]. Despite providing a linear feature representation, PCA has shown great
suitability for biomechanical gait data, resulting in higher classification performances
in the literature compared to handcrafted features [16]. Slijepcevic et al. (2017) [40]
assessed the suitability of using PCA and kernel PCA (with a polynomial kernel) [47]
as a feature extraction method for the UC: functional gait disorders. According to
RQ3.1, the suitability of various feature extraction techniques and the resulting data
parameterizations for gait analysis data is investigated in Slijepcevic et al. (2017) [40].

The ML methods most frequently used in the literature are support vector machines
with different kernel functions [48, 49, 50, 30, 51, 28].This served as motivation for
employing support vector machines as either the main classifier [40, 41, 42] or as a
baseline method [43] in the publications of this thesis. In addition, this thesis applied the
following traditional ML methods to handcrafted gait features, PCA-based representations,
or the raw gait data: k-nearest neighbor [40], multi-layer perceptron [40, 42], random
forest [43], decision tree [43], and gradient boosting classifier [43].

In order to compensate for the limitations of existing representations for clinical gait data,
higher-level and non-linear feature representations are investigated within the scope of
this thesis. Deep learning methods inherently learn feature representations directly from
the input data (i.e., feature learning) and do not demand specific feature engineering.
Therefore, no domain-specific knowledge is needed to derive specific input features. The
architecture of deep neural networks incorporates multiple stacked layers and enables the
learning of higher-level hierarchically related features that are employed by the top-most
(classification) layers to tackle complex tasks.

Recently, various deep learning approaches have been employed for the analysis of
human gait data [52, 17]. Matsushita et al. [17] identified convolutional neural networks,
recurrent neural networks, and auto-encoders as the most commonly employed deep

23



1. Introduction

learning methods within the existing literature for gait analysis. To this end, the present
thesis investigates the suitability of convolutional neural networks [42, 43] and self-
normalizing neural networks [43] for analyzing GRF and kinematic data. Additionally,
within the scope of this thesis, bi-directional long short-term memory (LSTM) networks
have been explored. However, despite their intended design to capturing temporal
dependencies in time series data, this recurrent network architecture yielded poorer
results when compared to other methods.

The increasing use of deep learning has raised questions concerning the suitability and
efficiency of deep learning versus traditional ML methods for gait analysis (see RQ4.1).
The comparison of the classification performance between traditional ML and deep
learning methods in Slijepcevic et al. (2023) [43] addresses this question.

1.4.3 Explainability Approaches
The lack of transparency in complex ML models has led to significant progress in the
development of explainability methods. These methods are specifically designed to provide
explanations for automated predictions and model behavior, aiding clinical experts in
understanding the patterns and rules behind specific predictions. The present thesis
involved the development and investigation of explainability approaches to tackle the
research questions RQ4.1 and RQ5.1.

Explainability methods can be classified based on the type of explanation they offer.
According to the taxonomy proposed by Arya et al. [53], these approaches can be catego-
rized into three coarse types: i) data exploration approaches, ii) decision explanations
(also known as local model explanations), and iii) global model explanations. These
different types of explanations complement each other.

Data exploration approaches do not provide explanations for an ML model, but instead
focus on the data that were used to train the model. These approaches aim to visualize
and transform the data, enabling domain experts to uncover significant structures and
patterns within the data with the final goal of generating novel insights from the data.
In the context of this thesis, various data exploration methods were employed, with a
focus on visualizing the various distributions in the data (Figure 1.2: static → data →
distributions). Slijepcevic et al. (2017) [40] employed boxplots to evaluate each manually
crafted gait parameter. The examination of boxplots for each parameter and class
allowed an assessment of both intra-class and inter-class variability, providing insights
into the parameters’ ability to distinguish between different classes. Subsequently, linear
discriminant analysis was applied to the individual parameters and their combinations,
as well as to the higher-dimensional PCA-based representations. The purpose of this
analysis was to quantify the discriminative power of the studied representations and assess
their suitability for the classification task. Furthermore, we employed one-dimensional
statistical parametric mapping [39], a method that allows for the statistical analysis of
time series data, to identify statistically significant differences in clinical gait data among
various patient groups [42].
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One-shot static or interactive explanations?
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visualize
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Figure 1.2: A taxonomy introduced by Arya et al. [53] classifies explanations based on
the following criteria: what is being explained (e.g., data or the model), the way in which
the explanation is determined/provided (e.g., direct or post-hoc explanations; static or
interactive explanations), and the level of explanation (whether it is local or global). The
color of the leaves indicates whether the explainability approach has been implemented
and evaluated within the context of this thesis. Blue leaves indicate the explainability
approaches that have been implemented for clinical gait data. Adopted from [53].

Decision explanation methods explain the local behavior of ML models. Thus, such
explanations can reveal the contributing regions of the input data responsible for the
prediction of a particular data sample. Most decision explanation methods are post-hoc
approaches that provide a certain flexibility as they can be directly applied to already
trained ML models [53]. These methods typically produce saliency maps, which highlight
the input features that are most relevant for a specific prediction [38]. When applied
to gait data, these methods have the ability to detect distinctive regions in the input
data that the ML model associates with a particular gait disorder [42]. Within the scope
of this thesis, two decision explanation methods were applied, with a specific emphasis
on post-hoc explanations of the features utilized by ML models (Figure 1.2: static →
model → local → post-hoc → features). At first, we implemented layer-wise relevance
propagation (LRP) [37] for clinical gait data [42]. This method propagates relevance
scores from the output layer to the input layer throughout the entire network. The
final relevance scores at the input layer can be mapped back to the original signals,
thereby highlighting the input features that contributed to the prediction. For the
final publication [43], we implemented gradient-weighted class activation mapping (Grad-
CAM) [38] for clinical gait data. Grad-CAM is a method that provides explanations based
on abstract features learned in the last convolutional layer. Unlike propagating gradients
(or relevance scores) back to the input space, Grad-CAM propagates the gradients with
respect to the class to be explained back to the last convolutional layer in a convolutional
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neural network. Subsequently, the activation map of the last convolutional layer is
weighted with these gradients and then averaged over all channels of the layer. This
results in an activation map that captures more abstract patterns used for the prediction.
For the final decision explanation, the activation pattern is upscaled and mapped to
the input signal. We recently developed gaitXplorer [54], a visual analytics approach
for classifying gait patterns associated with cerebral palsy, which utilizes Grad-CAM to
provide explanations for the predictions made by convolutional neural networks.

Both of the aforementioned methods are regarded as propagation-based approaches
because they identify the impact of input features on the model’s prediction by (partially)
back-propagating either the gradient or relevance scores from the output to the input of
the model. In this thesis, the focus has been on propagation-based methods instead of
perturbation-based methods, mainly due to the computational efficiency of the former and
the well-documented issues with reliability and consistency of the latter [55]. Additionally,
perturbation-based methods are highly depended on the choice of hyperparameters, such
as the number of perturbations.

Model explanation methods aim to explain which learning strategies and patterns a
trained ML model has learned at a global level. Model explanations enable the assessment
of whether an ML model has been trained correctly and whether the modeled classes
rely on meaningful patterns. As a result, model explanations facilitate the identification
of ambiguous features and biases that the model has learned, while also enabling the
detection of overlaps in learning strategies between different classes.

In the context of this thesis, multiple model explanation approaches have been developed
that rely on aggregating individual decision explanations (Figure 1.2: static → model →
global → post-hoc → visualize). In Slijepcevic et al. (2022) [42], we averaged the individual
decision explanations for each class, allowing to derive common patterns that ML models
use to predict a specific class. Building upon this approach, we developed an explanation
by incorporating the median, which proved to be more robust for Grad-CAM explanations
compared to the mean [43]. Additionally, we introduced a visualization of individual
decision explanations to allow visual evaluation of the distribution rather than relying
only on the median/mean relevances. Furthermore, we adopted a model explanation
approach based on SpRAy [44], which clusters individual decision explanations, enabling
the identification of learning strategies for subgroups in the data utilized by the ML
models [42]. The aforementioned approaches have been explored to explain sex- and
age-dependent gait patterns utilized by ML models [56, 57].

For inherently explainable models like decision trees, we employed feature importance
based on Gini impurity (Figure 1.2: static → model → global → direct) [43]. For more
complex tree-based models like random forests, we adopted a similar approach.

In the area of clinical gait analysis, there has been a lack of usage of explainable methods
to unveil the inner workings of black-box models and facilitate their application in clinical
settings. Our efforts in this domain have played an important role in introducing and
promoting explainability approaches specifically tailored for clinical gait analysis.
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1.5 Results and Discussion
The five goals and the corresponding research questions of the thesis, outlined in Sec-
tion 1.2, are utilized to present and discuss the obtained results.

1.5.1 Goal 1 – Creation of High-Quality Dataset
RQ1.1: Which steps should a preprocessing pipeline for GRF data include to
facilitate the collaborative use of data gathered from different gait laborato-
ries?
Despite the existence of publicly available gait datasets, access to fully annotated,
comprehensive datasets with patient data remains quite limited. The survey conducted
by Matsushita et al. [17] indicates that many of the publicly available gait datasets involve
only a limited number of subjects, typically in the range of a few dozen. Exceptions to
this trend are the dataset provided by Hausdorff via PhysioNet [58], which includes insole
force data from 93 patients with Parkinson’s disease and 73 healthy controls, as well as
the dataset by Ferrari et al. [59], which contains kinematic data (i.e., marker trajectories)
from 178 patients with cerebral palsy. The GaitRec dataset [46] is currently among the
largest publicly accessible gait datasets, containing GRF and center of pressure data
from 211 healthy controls and 2,085 patients with various musculoskeletal impairments.
The dataset exhibits a remarkable degree of diversity due to several factors, including the
number of subjects, multiple sessions, and trials within each session. This diversity also
extends to different orthopedic conditions as well as the heterogeneous conditions under
which the data were collected. To this end, each healthy control subject made walking
trials at three different walking speed conditions (i.e., slow, self-selected, and fast), both
with and without footwear and patients walked also under different conditions, such as
barefoot, with orthopedic or normal shoes, and with or without orthopedic insoles.
In combination with the dataset, we introduced a universal preprocessing pipeline suitable
for GRF data from different gait laboratories. Clinical experts were consulted to validate
this preprocessing pipeline, which was designed to address RQ1.1. This pipeline includes
several steps: i) ensuring uniform orientation of the medio-lateral and anterior-posterior
signals (independent of the walking direction in the gait laboratory); ii) applying a
threshold of 25 N to remove noise at the signal edges; iii) noise reduction using a second-
order low-pass Butterworth filter with a cutoff frequency of 20 Hz; iv) time normalization
to 100% stance; and v) normalization based on body weight. For the preprocessing of
center of pressure signals, we applied a threshold of 80 N with respect to the vertical
GRF component, aiming to reduce inaccuracies in calculation of the center of pressure
during lower force values. Additionally, the medio-lateral and anterior-posterior center of
pressure components were mean-centered and zero-centered, respectively. Furthermore,
to ensure a high level of data quality, we applied an outlier detection algorithm proposed
by Sangeux and Polak [60] to the data of a single session per individual.
In the course of this thesis, the same pipeline was also employed to preprocess and
publish the Gutenberg Gait Database [61]. This dataset is one of the largest publicly
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available GRF dataset containing data from healthy controls. Additionally, the same
pipeline was applied to the publicly available AIST Gait Database [62]. The combination
of these three datasets opened up unprecedented data dimensions and led us to the
exploration of research questions related to the uniqueness of gait data in person re-
identification [63] and the identification of sex-related [64] and age-related [65] walking
patterns. Furthermore, several research papers proposed ML approaches based on the
GaitRec dataset [66, 67, 68, 69, 70]. Additionally, the dataset has been employed for
transfer learning for an auditory feedback system based on GRF data [71, 72], and
in the context of biomechanical analysis [73]. This demonstrates that the proposed
standardization of GRF data from different gait laboratories already offers the possibility
to investigate innovative aspects in the field of gait analysis.

1.5.2 Goal 2 – Evaluation of Discriminative Power of 3DGA Modalities
RQ2.1: What level of classification performance can be achieved using only
GRF data for automated gait classification?

The results indicate that bilateral GRF data (especially when combining all three force
components) can be effectively utilized for a binary task of distinguishing physiological
gait from pathological gait. This was demonstrated using various subsets of the GaitRec
dataset. In the task of distinguishing the healthy control class from a combined gait
disorder class (i.e., encompassing all pathological patterns), we achieved peak classification
accuracies of 89.5% (90.8% in combination with center of pressure data) [40] and 88.8%[42]
using GRF data. Furthermore, in the tasks of distinguishing the healthy control class
from individual pathological classes (e.g., healthy control class versus hip class), we also
achieved high accuracies ranging from 86.5% to 88.8% [42]. In multi-class tasks, GRF data
did not yield the desired results in either of the use cases. For the UC: functional gait
disorders based on the GaitRec data, accuracies of 51.6% (54.3% in combination with
center of pressure data) [40], and a maximum of 60% (62.0% in combination with center
of pressure data) for a balanced setting [41] were achieved in the task with five classes.
When the calcaneus class was removed and only the barefoot condition was selected,
comparable results were achieved with an accuracy of 59.5% [42]. It is noteworthy that
lower classification results with a peak accuracy of 51.8% were obtained when attempting
to classify the hip, knee, and ankle classes [42]. This observation implies that GRF data
may have limited capability in capturing distinct patterns among pathological classes
in this specific context. This observation was also confirmed in experiments conducted
within the UC: cerebral palsy. In this multi-class task consisting of four classes, a peak
performance of 47.2% was achieved [43]. With respect to RQ2.1, it can be concluded
that GRF data have the potential to classify physiological and pathological gait patterns
(as a binary classification task). However, GRF data lack sufficient discriminative power
for multi-class classification tasks.

28



1.5. Results and Discussion

RQ2.2: What is the advantage in classification performance when using
kinematic data compared to GRF data for automated gait classification,
and is there an improved classification performance when using both inputs
together as opposed to using them separately?
The UC: cerebral palsy revealed that kinematic data are significantly more discrimina-
tive than GRF data. In the multi-class task involving four pathological gait patterns, the
kinematic data achieved a peak performance of 93.4%, marking a substantial difference of
46.2% compared to GRF data [43]. From a clinical perspective, this outcome may not be
surprising, as kinematic data alone often contain sufficient information for the analysis
and diagnosis. However, it is important to assess the discriminative power to identify
potential use cases where utilizing only GRF data might be sufficient. Furthermore, the
classification results showed that combining kinematic and GRF data does not yield any
advantage [43]. Moreover, for almost all classification methods the use of GRF data
resulted in a slight decrease in performance. This observation suggests that GRF data
do not offer complementary information compared to the kinematic data for the task at
hand. However, it is important to consider the potential benefits of including both types
of data for a more comprehensive analysis, even though the combination did not yield
benefits in this use case. By integrating kinematic and GRF data, ML models could gain
a more holistic picture of gait patterns.
RQ2.3: To what degree do the signals from the affected and unaffected sides
differ in terms of their discriminative power for automated gait classification?
In relation to RQ2.3, several studies within the UC: functional gait disorders
revealed that leveraging data from both the affected and unaffected side provides a slight
advantage [74, 41]. Including both the affected and unaffected sides, either explicitly or
implicitly through calculating the sample-wise difference between them, prove beneficial for
certain input scenarios. The explainability results presented in Slijepcevic et al. (2022) [42]
provide further support for this finding. In all classification tasks, relevant regions are
evident not only in the GRF data of the affected side but also in the unaffected side,
although to a slightly lesser degree. This observation suggests that the unaffected side
contains complementary information for the classification task.
Furthermore, it is essential to note that using only the GRF data from the unaffected
side resulted in significantly poorer classification results compared to utilizing only the
GRF data from the affected side [74, 41]. This observation contradicts the findings of
Williams et al. [75], who obtained higher classification performance for the less affected
side in classifying six pathological gait patterns associated with traumatic brain injury.

1.5.3 Goal 3 – Evaluation of Data Handling Strategies
RQ3.1: To what extent do different feature scaling and feature extraction
techniques impact the performance of automated gait classification?
With respect to RQ3.1, we explored various parameterizations for clinical gait data,
including handcrafted domain-specific parameters, PCA-based representations of raw
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gait data, and a combined representation using PCA on GRF parameters [40]. The
first parameterization involved 52 handcrafted parameters extracted from the GRF
and center of pressure data. To address the significant variation in parameter value
ranges, feature scaling was crucial. We evaluated both min-max normalization and
z-standardization, with z-standardization showing slightly better results. The second
parameterization relied on PCA of raw GRF data. PCA representations obtained from
only the three force components performed better than the handcrafted GRF parameters.
Incorporating PCA representations of the center of pressure further improved results
for both tasks. Normalization of PCA-based representations proved to be vital, as
performance significantly dropped without it. The third parameterization applied PCA
on the normalized handcrafted GRF parameters. However, the results did not exhibit
an improvement compared to using handcrafted GRF parameters without PCA. Based
on these findings, PCA-representations of raw GRF data are recommended as input
instead of relying only on handcrafted GRF parameters. These results are consistent
with a study by Burdack et al. [76], where the highest performance was also obtained by
employing PCA on raw GRF data along with support vector machines for the task of
person re-identification in healthy controls.
When taking into account additional aspects such as the explainability of the utilized
ML methods, it is advisable to employ raw input data. In the publications in which we
focused on explainability [42, 43], we intentionally avoided using PCA, as it introduces
an additional abstract feature space prior to the application of ML methods. Our main
goal was to provide explanations at the input level, which is crucial because it is the
domain where clinical experts analyze the data.
RQ3.2: What is the impact of data imbalance on the performance of automated
gait classification?
In Slijepcevic et al. (2017) [40], three experiments were conducted for both tasks of
UC: functional gait disorders to investigate the impact of imbalanced data on the
classification results, specifically addressing RQ3.2. The classification results were
compared to those of the unbalanced setting, which served as the baseline. Balanced
number of sessions: The dataset was balanced by randomly selecting only one session
per person (while the number of individuals per class remained unbalanced) to assess
the effect of balanced numbers of recorded sessions per individual. Balanced number of
persons: The dataset was balanced by randomly subselecting individuals per class to
match the size of the smallest class (while including all sessions from these individuals)
to examine the effect of balanced numbers of individuals per class. Balanced number of
persons and sessions: A fully balanced dataset was created, containing only one session
per person and equal numbers of persons per class (i.e., with respect to the smallest
class), to explore the combined effect of balancing the number of individuals and sessions.
In all three experimental settings, and especially in the last case, balancing the dataset led
to significant improvements in terms of the deviation from the random baseline compared
to the results without balancing. These findings emphasize the importance of considering
intra-patient variability and data imbalance when conducting automated analysis of
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clinical gait data. Moreover, these findings demonstrate that using balanced datasets, in
terms of both the number of sessions per person and the number of persons per class,
can lead to considerable improvements in classification performance (with respect to the
random baseline). This observation served as motivation to predominantly use balanced
datasets in subsequent publications.

RQ3.3: To what extent do different data aggregation methods impact the
performance of automated gait classification?

To address RQ3.3, we explored the effectiveness of different aggregation methods for
classifying gait analysis data. The baseline approach involved using all available trials
from a session without aggregation. We explored various early fusion approaches, which
involved aggregating or subselecting data samples from an individual before training
the ML model. Additionally, we considered a late fusion approach that aggregated the
predictions of the ML model, trained on all trials from an individual, using majority
voting. The median waveform and most representative trial approaches failed to surpass
the baseline performance. In contrast, among the early fusion approaches, the mean
waveform method showed the most significant improvement. The late fusion approach
demonstrated better results compared to early fusion methods, suggesting that introducing
an abstraction layer to the classifier’s outputs could enhance robustness.

1.5.4 Goal 4 – Comparison of Traditional ML and Deep Learning
RQ4.1: How do traditional ML models compare to deep neural networks for
the automated gait classification in terms of performance?

Regarding RQ4.1, we observed somewhat diverse outcomes when comparing deep learning
and traditional ML methods in the two examined use cases. In the UC: functional
gait disorder, convolutional neural networks, support vector machines, and multi-layer
perceptrons were examined across six classification tasks [42]. The classification results
revealed that there were no significant performance differences among the ML methods.

In the UC: cerebral palsy, we investigated the performance and explainability of
various ML models, including convolutional neural networks, self-normalizing neural
networks, random forests, and decision trees. For performance comparison, support
vector machines and gradient boosting classifiers served as baseline models. The results
revealed that random forests outperformed all other ML methods achieving consistent
results across diverse input scenarios with kinematic data (peak performance of 93.4%).
Gradient boosting exhibited slightly lower performance (peak performance of 92.0%),
while decision trees ranked third in most input scenarios (peak performance of 89.7%).
Both convolutional neural networks and self-normalizing neural networks achieved peak
performances of 86.6% and 85.7%, respectively, which were slightly inferior to the
performance of decision trees. Surprisingly, support vector machines achieved the lowest
overall performance, reaching only a peak performance of 78.8%. The higher performance
of tree-based ML models can be attributed to their robust generalization ability with
limited training data, a characteristic not shared by convolutional neural networks and
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self-normalizing neural networks. Deep learning methods tend to overfit when trained on
smaller datasets, which may have contributed to their comparatively lower performance.

1.5.5 Goal 5 – Evaluation of Explainability Approaches
RQ5.1: To what extent can explainability approaches be employed to de-
termine the input features on which ML models base their decisions for
automated gait classification, and are these relevant input features statisti-
cally justified and in line with clinical assessment?

The evaluation of RQ5.1 was conducted on different levels in three publications. The
study presented in Slijepcevic et al. (2017) [40] evaluated explainability on the data level
by employing linear discriminant analysis to assess the discriminative power of hand-
crafted domain-specific features and PCA representations. The publications focusing on
explainability [42, 43] proposed various explainability approaches to provide explanations
at the prediction, class, and model level.

Utilizing linear discriminant analysis and the visual assessment of boxplots of the hand-
crafted domain-specific features revealed that discrete parameters identified at the local
minima and maxima within the GRF signals, as well as spatio-temporal parameters,
showed the highest discriminative properties. These results are in line with clinical
research, as this subset of domain-specific features is frequently employed to evaluate the
progress of therapy in clinical practice [77].

For the UC: functional gait disorders, the model explanations for the three investi-
gated ML methods, i.e., convolutional neural networks, multi-layer perceptrons, support
vector machines, exhibited a high degree of overlap, particularly regarding the location
of relevant regions in the input data [42]. In certain signal regions, there were only
slight differences in the amplitude of relevance scores. Furthermore, in Slijepcevic et
al. (2022) [42], we proposed the use of statistical parametric mapping for the statistical
assessment of input data. By employing this method, we were able to identify regions in
the input data that exhibit significant statistical differences between the classes. This
analysis played a crucial role in evaluating the explainability results from a statistical
perspective. The results demonstrate that in the majority of cases, statistical parametric
mapping reveals statistically significant differences in regions that are highly relevant
according to the explainability method. Furthermore, according to clinical experts,
relevant regions are strongly linked to the existing clinical literature and are considered
clinically plausible.

Similarly, for the UC: cerebral palsy, model explanations demonstrated the highest
relevance in the two clinically most relevant signals, i.e., sagittal knee and ankle angles [43].
This observation aligns with clinical expectations and is consistent with findings from other
studies, which have also identified these signals as the most promising for distinguishing
crouch gait, apparent equinus, jump gait, and true equinus. The explainability results
revealed that deep neural networks showed a tendency to learn patterns from a wide
range of input signals, including clinically relevant regions but also on less relevant and
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potentially unrelated regions. In contrast, random forests and decision trees focused
specifically on the clinically relevant regions. Interestingly, for the deep neural networks
some of the relevant regions outside the sagittal knee and ankle angles were also considered
clinically meaningful by clinicians, such as the sagittal hip angle. On the other hand,
some regions were not considered clinically meaningful. These regions can be either
attributed to a bias in the data or might not have been considered in clinical practice
because they exhibit subtle differences that haven’t been recognized as clinically relevant
yet. These findings highlight the potential of explainability approaches not only to assist
in evaluating the behavior of ML models but also to gain novel clinical insights into the
underlying data.
RQ5.2: How effective are explainability approaches in detecting bias in ML
models used for automated gait classification?
Two experiments presented in Slijepcevic et al. (2022) [42] investigated the suitability
of explainability approaches for detecting biases related to differences in walking speed
between healthy controls and patients and the absence of feature scaling in ML models.
During the evaluation of the explainability results in the UC: functional gait disorders,
clinicians identified relevant regions in the unaffected side that they believed were not
directly linked to the specific gait disorders. The clinicians hypothesized that these
regions might be influenced by differences in walking speed between healthy controls
and patients (rather than compensatory strategies of the unaffected side in patients’
data), suggesting a potential bias in the trained ML model. We were able to confirm
this hypothesis in an experiment using a subset of the data in which walking speed was
not statistically significantly different between the two groups. We trained the same
model architecture on this subset and observed that relevant regions remained consistent
between the two models, except for the regions previously identified by the clinicians.
In this case, the explainability results provided the necessary information that led to a
deeper understanding of the ML model and the underlying data. This allowed clinicians
to identify the bias related to differences in walking speeds between the healthy controls
and patients with functional gait disorders.
To investigate the effect of feature scaling on ML models, we conducted experiments with
and without min-max normalization of the input data for the UC: cerebral palsy. For
the classification of non-normalized data, the most relevant input features were found in
the vertical GRF component. The absence of relevant regions in the horizontal forces
suggests that the ML models might not effectively utilize them, as a result of their small
value range. On the other hand, explainability results for min-max normalized input data
revealed highly relevant regions in the vertical and horizontal forces. The normalization
process expanded the value range of the horizontal forces, allowing them to contribute at
a level comparable to the vertical component. Despite the slightly better classification
results achieved with non-normalized data for the multi-class tasks, the explainability
results suggest that normalization is crucial for obtaining unbiased predictions. These
results underscore the effectiveness of explainability approaches in identifying biases
introduced by the absence of feature scaling techniques.
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1.6 Limitations and Future Work

This section discusses limitations observed in the research related to this thesis and
identifies future research directions that hold the potential to advance the field of
automated classification of clinical gait data.

1.6.1 Performance Considerations

The results obtained in this thesis have demonstrated that the classification performance
is highly dependent on the data modality and the classification task at hand. For
example, when utilizing only GRF data, the multi-class classification yields relatively
moderate results, with the highest accuracy reaching 62.0% in the UC: functional gait
disorders [41] and 47.2% in the UC: cerebral palsy [43]. However, in the case of
employing GRF data for a binary task, such as distinguishing between physiological and
pathological gait, classification accuracy can reach up to 90.8% [40]. Compared to GRF
data, joint angles offer a more detailed representation of the kinematics during walking.
Consequently, the utilization of joint angles results in a significant enhancement of
performance in the multi-class classification task for the UC: cerebral palsy, achieving
a classification accuracy of 93.4% (i.e., a difference of 46.2%) [43]. In comparison to
previous studies addressing the same classification task (i.e., classification of four gait
patterns associated with cerebral palsy as defined by Rodda et al. [78]), our results
achieved a similar level of classification performance. Reported performances in the
literature ranged from 93.5% in the study by Zhang and Ma [79], which was based on a
dataset comprising 200 samples, to 94.0% as reported by Darbandi et al. [80], utilizing
a dataset of 60 samples. In comparison, our study comprises a much larger dataset
consisting of 302 children and shows that this performance level can be achieved even for
large-scale data [43].

Generally, the observed results leave room for improvement and may still not meet clinical
requirements. However, the assessment of whether this level of performance is adequate
and clinically suitable predominantly relies on comprehending the human baseline. A
promising direction for future research involves establishing a human baseline for a
range of classification tasks in the field of human gait analysis. To define this baseline
performance, an analysis of evaluations and annotations from multiple clinical experts
from different gait laboratories is essential. In the course of this thesis, we conducted
an evaluation of a human baseline for the multi-class classification task within the UC:
functional gait disorders. Interestingly, the performance of the human baseline was
significantly lower than the ML performance. One possible reason for this outcome
is that clinical experts had to assess only the GRF data, which deviated from their
typical clinical practice, without access to any contextual information (e.g., observing
the patients while walking). Moreover, it is important to acknowledge the presence of
uncertainties and class overlaps in annotations, resulting in classification outcomes that
may not be perfect.
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1.6.2 Unexplored ML Methodologies

Multi-label learning. Through the interviews with the clinical experts conducted
during the evaluation of the explainability results, we identified that the classes in the
UC: cerebral palsy are not always mutually exclusive in practice. These classes
can exhibit overlaps (e.g., different trends in the patterns of the knee and ankle) but
clinical experts inherently assess which pattern is more pronounced and use this for the
annotation. These uncertainties and class overlaps can introduce bias into the annotation
process. Within this context, a potential future research direction involves exploring the
appropriateness of a multi-label classification approach for gait pattern classification. With
suitable ML approaches, dependencies between variables that are relevant to different
classes can be modeled with greater accuracy and flexibility. A multi-label approach
might be closer to the real-world setting and therefore more suitable for clinical practice.

Few-shot and zero-shot learning. A related topic is the challenge of modeling out-of-
distribution samples, which include patterns that deviate from predefined categories, as
well as handling “unseen” classes, referring to patterns or conditions not encountered
during the training process. This is frequently the case in situations where data collection
is limited, especially when encountering rare or unusual pathological gait patterns. These
challenges underscore the significance of exploring few-shot and zero-shot learning in
future research. Few-shot learning allows to model effectively even sparsely sampled
classes, by extracting information from only a few training samples per class. Zero-shot
learning, an extreme case of few-shot learning, represents a learning paradigm that
enables the detection of classes that were not part of the initial training data at all.
Few-shot and zero-shot learning approaches have been rarely investigated in the context
of gait data analysis [81, 82, 83]. However, addressing the aforementioned challenges is
crucial for developing more adaptable and clinically relevant decision-support systems.

Multi-modal learning. An aspect we realized while determining the aforementioned
human baseline is that clinical experts utilize far more than just raw gait data during
the assessment process of patients. Clinical experts utilize also contextual information,
e.g., they can visually observe individuals walking and estimate anthropometric data.
This implies that clinicians employ a multi-modal approach when assessing gait patterns.
A promising future direction is multi-modal learning for human gait data. A preliminary
step in this direction was taken in this thesis by combining joint angles and GRF data.
The additional inclusion of GRF data did not impact the results in this case, but it
may yield different outcomes in other classification tasks. Promising modalities for
modeling gait patterns might encompass not only joint angles and GRF data, but also
subject-specific metadata (sex, age, walking speed, and anthropometric data), muscle
activation determined via electromyography, data from inertial measurement units, and
video recordings of patients.

Physics-informed ML approaches. Nowadays, ML approaches typically learn gait
representations in a completely data-driven way, with the consequence of neglecting
the biomechanical context and constraints in the data modeling process. Data-driven
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approaches have demonstrated limitations in effectively capturing gait primitives with
respect to biomechanical constraints. A promising direction for future research is to
incorporate kinematic and kinetic constraints directly in the ML process via physics-
informed ML methods (e.g., [84]). The loss function of these methods can be constrained
to follow biomechanical principles. This enables a more accurate modeling of the
underlying physics of biomechanical data and motion primitives. Consequently, the ML
models could demonstrate greater generalizability.

1.6.3 Effects of Influencing Factors on Gait Data
Human gait data exhibit a high level of inter-subject [63] and intra-subject [85] variability.
Furthermore, pathological and physiological gait patterns are strongly influenced by
numerous interacting factors, including sex, age, body height, body weight, walking
speed, and the use of footwear and prostheses. Hence, when evaluating a pathology using
gait data during walking, it is crucial to consider that these data can be affected not only
by the presence of an underlying pathology but also by the aforementioned influencing
factors. Preliminary investigations of some of these influencing factors, i.e., sex [56]
and age [57], were conducted within the scope of this thesis. Figure 1.3 illustrates the
outcomes with respect to the influencing factor of sex. In the subfigures B) and C), the
color coding represents relevance scores (obtained via layer-wise relevance propagation),
highlighting relevant input feature for the distinction between male and female healthy
controls. The results show a certain agreement of relevant features (according to the
explainability method), the gait literature, and statistical assessment. However, there
are also discrepancies among these three approaches. This motivates future research
regarding sex differences on larger datasets. Future research should conduct similar
investigations to explore the effects of all types of influencing factors on human gait as
well as their interactions. These investigations can provide insights into the actual extent
of these influences, opening up follow-up questions on how to incorporate these factors
into modeling and how to make automated gait analysis robust to their effects.

1.6.4 Data Availability
The limited size of gait datasets could be the reason why deep learning methods fail to
meet expectations in terms of outperforming traditional ML methods. Therefore, this
thesis emphasizes the importance of considering heterogeneous and large-scale benchmark
datasets to train and evaluate robust ML models and ensure their generalizability across
different populations and gait laboratories. Another important aspect of large-scale
benchmark datasets would be the potential to train foundational models for human gait
data (e.g., for various gait data modalities), which can then be adapted to specific gait use
cases using a transfer learning approach [92]. In addition to data quantity, benchmark
datasets should be controlled for various influencing factors, such as age, sex, body
height, body mass, and speed differences (i.e., to ensure they represent a wide range of
population variability and are balanced), enabling unbiased training and evaluation of
ML models. Moreover, benchmark datasets should incorporate also data obtained from
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Figure 1.3: Explainability results for sex classification (adapted from [56]). A) Averaged
GRF signals for both classes. The first three signals represent the three GRF components
of the right side and are followed by the three GRF components of the left side. The
shaded areas highlight the input features where statistical parametric mapping (two-
sample t-test (p < 0.05)) indicated a statistically significant difference between both
classes. B)–C) Averaged GRF signals for female/male class, with a band of one standard
deviation, color-coded via relevance scores. D) Effect size obtained from statistical
parametric mapping and total relevance (absolute sum of input relevance scores of both
classes). The total relevance indicates the common relevance of the input signal for
the classification task. E) Significant (filled boxes) and non-significant (empty boxes)
handcrafted GRF parameters according to the literature [86, 87, 88, 89, 90, 91].

different walking surfaces (i.e., including indoor and outdoor environments), as well as
various footwear conditions. This inclusion is important to enable future ML models to
capture the inter- and intra-subject variability observed in real-world biomechanical data.

To reach this goal, collaboration with various research institutes and health care facilities
is essential to gain access to a broader range of clinical gait data. In this regard, we have
made an initial step by merging the GRF data from the GaitRec [46] dataset and the
Gutenberg Gait Database [61] in a consistent and directly comparable data format. In
the future, it is crucial to expand such data sharing initiatives to encompass also further
data modalities (e.g., joint angles, joint moments, and muscle activation).

The imbalance within a dataset poses an additional challenge when working with real-
world data. Inequalities in class cardinality may arise naturally, as certain pathologies
may be less common than others, or healthy controls may be measured less frequently in
gait laboratories than pathological cases. There are various strategies for dealing with
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data imbalances, which can be divided into two main groups, i.e., data-centered and
algorithm-centered approaches [93]. In the present thesis, to address RQ3.2, the most
commonly employed data-centered approach of data subsampling has been explored.
Another frequently used data-centered approach involves upsampling the data using
either new measurements, data augmentation techniques, or the generation of synthetic
data. In the course of the present thesis, various data augmentation techniques for time
series data, as presented in the survey by Iwana and Uchita [94] (i.e., jittering, magnitude
warping, scaling, window slicing, window warping, guided warping, and time aligned
averaging) have been experimented with for the data in UC: cerebral palsy. However,
none of the augmentation approaches yielded improvements in the results for random
forests and convolutional neural networks. Promising algorithm-centered approaches
include the use of cost-sensitive methods, where upweighting is utilized for the samples
of the minority class (i.e., assigning more weight to those samples in terms of cost).
For gait analysis data, for example, Chia et al. [95] investigated the weighted Brier
score as a cost function for the classification of musculoskeletal impairments in cerebral
palsy, while Dumphart et al. [96] utilized the weighted cross-entropy loss to address
the high imbalance in gait event classification. Future work should investigate various
data-centered and algorithm-centered approaches to address data imbalances in real-world
gait datasets.

In addition to the recorded data collected in laboratories, synthetic data can be employed
to expand the volume of training data and compensate for data imbalances in the datasets.
For this purpose, generative adversarial networks (GANs) [97] have been employed for
other domains [98, 99]. In generative adversarial networks two models are trained
simultaneously, a generative model that learns the distribution of the training data and
generates synthetic data and a discriminative model which decides if a sample originates
from the training data or was generated artificially. The use of generative methods could
be particularly valuable, especially for imbalanced datasets and pathological gait patterns
that are rare. Alternatively, auxiliary classifier generative adversarial networks (AC-
GANs) [100] could be utilized to simultaneously generate synthetic data and model the
classification task. For this purpose, the discriminator is trained not only to discriminate
between real and artificial data, but also to classify the input data according to the task
at hand. Future research should explore whether generative methods are appropriate for
human gait data and the available datasets and whether the synthetic data they generate
can enhance the learning process of ML models.

1.6.5 From Explainability to Trustworthiness

The present thesis in particular underscores the significance of explainability in automated
gait classification. The proposed explainability approaches enable the identification and
comparison of learning strategies across various classification methods. They effectively
highlight the signal regions on which predictions of specific classes are grounded. However,
approaches that provide saliency maps provide explanations of which features are relevant
to a certain prediction and to what extent, but they fall short in exploring the underlying
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reasons for this relevance or the specific patterns and concepts involved. This circumstance
sometimes complicates the interpretation of explainability results and consequently limits
trustworthiness. Therefore, there is a need for the development of human-centered
interactive explanation methods (see Figure 1.2: interactive) that would enable clinicians
to manipulate the input data, create counterexamples, and observe the behavior of ML
models in near real-time. Another approach that could be combined with interactive
methods to further increase trust in ML models is the development of self-explaining
(deep) learning methods (see Figure 1.2: static → model → local → self-explaining) that
are inherently explainable by nature. Baumhauer et al. [101] introduced an appropriate
explainability method for this purpose, known as bounded logit attention. This approach
introduces a trainable explanation module that can be integrated into a deep neural
network (typically a one- or two-dimensional convolutional neural network), whether
it is pretrained or not. By training this module or the entire network, it serves as
a feature extractor at the final convolutional layer, inherently providing the features
used for classification as an explanation. A promising direction for future research is
the development of self-explaining and interactive explainability approaches as these
would provide a deeper understanding of the ML models’ decision-making process and
aid clinicians in gaining valuable insights from ML predictions. Developing models
with transparent decision-making processes and providing insightful explanations for
predictions would not only improve trust among clinicians but also pave the way for
wider adoption of such methods in clinical practice.
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1.7 Conclusion
The present thesis has made significant scientific contributions to the field of clinical gait
analysis, addressing key challenges and gaps in the automated analysis of human gait.
The publications of this thesis have accumulated a total of 159 citations according to
Google Scholar until May 2024 (Horsak et al. (2020) [46]: 42 citations, Slijepcevic et
al. (2017) [40]: 57 citations, Slijepcevic et al. (2020) [41]: 17 citations, Slijepcevic et al.
(2022) [42]: 39 citations, and Slijepcevic et al. (2023) [43]: 4 citation).

For more than two decades, machine learning has been applied to clinical gait data
with the aim to enhance the efficiency of clinical gait analysis and contribute to better
informed decision-making. However, many of the ML approaches proposed prior to the
present thesis fail to satisfy the prerequisites for clinical practice. These limitations
include reliance on small datasets for training, tackling simplified tasks, and utilizing
non-transparent ML approaches. The present thesis addressed the existing gaps and
limitations. The main conclusions from the thesis are summarized in the following:

• The creation of a high-quality publicly available dataset establishes a solid foun-
dation for further research, providing a valuable resource for the development
and validation of gait analysis algorithms. The evaluation of the discriminative
power of 3DGA modalities demonstrated significant quantitative benefits in favor of
kinematic data over GRF data, especially in complex multi-class classification tasks.
However, employing GRF data could be advantageous in efficiently differentiating
between physiological and pathological gait patterns (i.e., binary classification)
or longitudinally monitoring the gait pattern of individuals, for instance, on a
population basis utilizing wearable pressure insoles.

• The evaluation of data handling strategies offers effective solutions to manage the
complexities inherent in large-scale gait datasets. These complexities encompass,
e.g., variations in value ranges of gait signals, imbalances in the dataset, and the
requirement to handle multiple trials for each individual. The findings can serve as
valuable guidelines for data preprocessing and data aggregation in the domain of
automated gait analysis.

• This thesis involves the development and evaluation of various classification ap-
proaches, ranging from traditional ML to deep learning methods. Interestingly, the
performance of deep learning approaches did not meet expectations, as they either
performed at a comparable level to or were surpassed by traditional ML methods.
To assess further the full potential of deep learning for gait analysis, it is essential
to support data sharing initiatives and conduct experiments on datasets even larger
than those utilized in the present thesis.
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• Furthermore, the development and evaluation of explainability approaches for the
utilized classification models addresses a crucial aspect of translating automated
gait classification approaches and findings into real-world applications. By offering
techniques for data exploration and presenting methods for both decision and model
explanations, this thesis lays the groundwork for clinicians to establish trust in
automated gait classification.

In conclusion, the goals and outcomes attained in this thesis create a fertile foundation
for significant progress in patient care, elevating diagnostic standards and contributing
to the development of more efficient treatment plans in the future.
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GaitRec, a large-scale ground 
reaction force dataset of healthy 
and impaired gait
Brian Horsak  1,4 ✉, Djordje Slijepcevic  2,4, anna-Maria Raberger1, Caterine Schwab1, 
Marianne Worisch3 & Matthias Zeppelzauer2

The quantification of ground reaction forces (GRF) is a standard tool for clinicians to quantify and 
analyze human locomotion. Such recordings produce a vast amount of complex data and variables 
which are difficult to comprehend. This makes data interpretation challenging. Machine learning 
approaches seem to be promising tools to support clinicians in identifying and categorizing specific 
gait patterns. However, the quality of such approaches strongly depends on the amount of available 
annotated data to train the underlying models. therefore, we present GaitRec, a comprehensive and 
completely annotated large-scale dataset containing bi-lateral GRF walking trials of 2,084 patients with 
various musculoskeletal impairments and data from 211 healthy controls. The dataset comprises data 
of patients after joint replacement, fractures, ligament ruptures, and related disorders at the hip, knee, 
ankle or calcaneus during their entire stay(s) at a rehabilitation center. The data sum up to a total of 
75,732 bi-lateral walking trials and enable researchers to classify gait patterns at a large-scale as well as 
to analyze the entire recovery process of patients.

Background & Summary
The quantification of ground reaction forces (GRF) is a standard tool for clinicians to objectively measure human 
locomotion and to describe and analyze a patient’s gait performance in detail. The primary aim of instrumented 
gait analysis, regardless of which technology used, is to identify impairments that affect a patient’s gait pattern and 
to describe those quantitatively1. Recordings obtained during clinical gait analyses produce a vast amount of data 
which are difficult to comprehend and analyze due to their high-dimensionality, temporal dependencies, strong 
variability, non-linear relationships and correlations within the data2. This makes data interpretation challenging 
and requires an experienced clinician to draw valid conclusions. Therefore, there is a constantly growing interest 
in applying machine learning techniques to clinical gait analysis data for the purpose of pattern identification and 
automated classification. Such systems might bear potential to assist clinicians in identifying and categorizing 
specific gait patterns into clinically relevant categories2,3. Machine learning methods employed in this context 
comprise, but are not limited to, neural networks4–6, support vector machines7–9, nearest neighbor classifiers10,11, 
and different clustering approaches12.

Our research group is collaborating with a local Austrian rehabilitation center of the Austrian Workers’ 
Compensation Board (AUVA). The AUVA is the social insurance for occupational risks for more than 3.3 million 
employees and 1.4 million pupils and students in Austria. They have been using GRF assessments during walking 
to diagnose, plan and evaluate therapy outcomes for more than two decades. Our main research goal within this 
collaboration was to develop automatic classification algorithms which support clinicians during data inspection 
and interpretation. To this end, we have developed a machine learning framework for gait classification and 
have performed comprehensive experiments13–16. One conclusion of our experiments is that the performance of 
automatic classification methods strongly depends on the amount of available training data. One reason for this is 
that state-of-the-art classifiers such as deep neural networks17 are extremely data hungry and require large-scale 
data to learn meaningful and generalizable patterns from the data. The training process, however, requires each 
walking-trial in the dataset to be annotated and categorized exactly. Even though there are datasets available 

1St. Pölten University of Applied Sciences, institute of Health Sciences, St. Pölten, Austria. 2St. Pölten University of 
Applied Sciences, institute of creative Media technologies, St. Pölten, Austria. 3Rehabilitation center Weißer Hof, 
Austrian Workers’ compensation Board (AUVA), Klosterneuburg, Austria. 4these authors contributed equally: Brian 
Horsak, Djordje Slijepcevic. ✉e-mail: brian.horsak@fhstp.ac.at
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relevant to instrumented gait analysis, e.g.18, the availability of completely annotated large-scale datasets is very 
scarce. Our collaboration with the AUVA and their gait laboratory gave us the unique opportunity to process and 
manually annotate thousands of walking GRF trials from several years of clinical practice. These data have been 
used in our previous research and show a large potential for further research in gait analysis (see section usageN-
otes) to achieve the long-term goal to put assistive machine learning techniques into clinical gait analysis practice. 
For this purpose, we make these data available to the public as the GaitRec dataset.

Methods
Data recording & testing protocol. The presented dataset is part of an existing clinical gait database 
maintained by a local Austrian rehabilitation center, which offers care to patients across entire Austria. Prior 
to the experiments involved and the publication of the dataset, approval was obtained from the local Ethics 
Committee of Lower Austria (GS1-EK-4/299-2014). Data were recorded during clinical practice between 2007 
and 2018. Bi-lateral GRF were recorded by asking patients and healthy controls to walk unassisted and without 
a walking aid at self-selected walking speed on an approximately 10 m walkway with two centrally embedded 
force plates (Kistler, Type 9281B12, Winterthur, CH). The force plates were placed in a consecutive order and 
flush with the ground. Both plates were covered with the same walkway surface material, so that targeting was 
not an issue. During one session, subjects walked until a minimum number of (usually) ten valid recordings were 
available. These recordings were defined as valid by the assessor when the participant walked naturally (e.g. with 
respect to targeting) and there was a clean foot strike on each force plate. Left and right foot contacts for each 
force plate were identified and set by visual inspection by the assessor during each recording. Patients were asked 
to walk at their self-selected walking speed. Healthy controls walked at three different walking speeds (mean and 
standard deviation, m/s): slow 0.98 (0.14), self-selected 1.27 (0.13), and fast 1.55 (0.15). In accordance with the 
internal rehabilitation center’s standards, patients walked either barefoot, with their orthopedic or normal shoes, 
and with or without orthopedic insoles. Healthy controls walked either barefoot or with their normal shoes. 
Prior to the gait analysis session, each participant underwent rigorous physical examination by a physician. The 
three analog GRF signals (vertical, anterior-posterior and medio-lateral force components) as well as the center 
of pressure (COP) were converted to digital signals using a sampling rate of 2000 Hz and a 12-bit analog-digital 
converter (DT3010, Data Translation Incorporation, Marlboro, MA, USA) with a signal input range of ±10 V. 
COP and GRF were recorded in the local force plate coordinate system (reaction-orientated). For easier usage 
the orientation of the medio-lateral and anterior-posterior signals for all data were uniformed, so that medial and 
anterior forces are always represented as positive values. Due to the center’s internal standards raw signals were 
only available down-sampled to 250 Hz. To avoid noise and signal peaks at the beginning and end of the signals, a 
threshold of 25 N was applied to all force data and the COP was calculated afterwards. These data are referred to as 
unprocessed (raw) GRF signals. Additionally, we have generated processed “ready to use” data. For this purpose 
the COP was only calculated when the vertical force reached 80 N to avoid inaccuracies in COP calculation at 
small force values. Additionally, the medio-lateral COP coordinates were mean-centered and anterior-posterior 
coordinates zero-centered. This was in line with the internal standards of the rehabilitation center. The processed 
force signals were then filtered using a 2nd order low-pass butterworth filter with a cut-off frequency of 20 Hz 
to reduce noise and were time-normalized to 100% stance (i.e. 101 points). The choice of appropriate cut-off 
frequency ranges widely in the literature, 20 Hz seems as a good trade-off between reducing noise and attain-
ing as much physiological frequency content as possible19. The interested reader may also refer to [ref. 20, p.49]. 
Amplitude values of the three force components were expressed as a multiple of body weight (BW) by dividing 
the force by the product of body mass times acceleration due to gravity (g). Amplitude and time normalization 
are both necessary operations to reduce effects of covariates (such as anthropometry) on the signals and to reduce 
temporal differences which make comparisons of different steps difficult, e.g.21,22. Note that the processed and 
amplitude normalized data show small variations at the first and last frame of each signal. This might affect 
machine learning outcomes and therefore needs to be recognized. Sessions with less than three bi-lateral trials 
per participant were not included in the dataset. Additionally, we have used an algorithm proposed by Sangeux 
and Polak to eliminate any outliers before they were included in the GaitRec dataset23. This algorithm is based 
on the notion of depth, where the deepest signal is the equivalent to the median for univariate data and is sensitive 
to both shape and position of the signals. As suggested by Sangeux and Polak we have used a score of three to run 
their algorithm. All processing steps were performed in Matlab 2019a (The MathWorks Inc., Natick, MA, USA).

Dataset & annotation. The presented dataset comprises completely anonymized GRF measurements from 
2085 patients with different musculoskeletal impairments (“gait disorders”, GD) and data from 211 healthy con-
trols (HC) including additional metadata such as age, sex, shod condition, walking speed condition, etc. For 
details see Table 1. Note that there is a considerable large gender imbalance in all GD classes. Healthy controls 
were recruited in the geographical region around the clinic’s by public posting and considered eligible if they were 
free of pain and complaints at the lower extremity and spine and did not have any orthotics or orthopedic insoles. 
Exclusion criteria were any history of surgery or trauma at the spine or lower extremities. This was assessed by 
an experienced therapist. A typical stay of a patient at the rehabilitation center ranged from a few days to several 
weeks and depends on factors such as diagnosis, administered therapy/surgery, and progress in recovery. During 
that time a patient is usually administered once a week to the gait analysis. At the beginning of a patient’s stay, 
therapy outcomes are mutually defined between the therapist and the patient. After reaching these goals in whole 
or in part, patients are usually discharged. However, they can be readmitted if necessary. The present dataset 
contains the data gathered during the entire stay(s) of each patient and covers a patient’s entire rehabilitation 
progress. Different types of analyses can thus be performed on the data set: an inter-participant analysis based on 
the initial assessment (first measurement session), e.g. for gait pattern classification, an intra-participant analysis, 
e.g. for the assessment of rehabilitation progress, or combinations.
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Regarding annotation, the dataset was manually labeled by a well-experienced physical therapist (with more 
than a decade of clinical experience) based on the available medical diagnosis of each patient. The annotation 
labels are formed by two strings concatenated with an underscore “X_xxx”, where “X” denotes the general ana-
tomical joint level at which the orthopedic impairment was located, i.e. at the hip “H”, knee “K”, ankle “A”, or cal-
caneus “C”. The second string (“xxx”) gives a more detailed localization and is joint dependent, see the following 
paragraphs for details. An overview of the class structure is shown in Fig. 1.

• Hip class (H_xxx): The most common injuries present in the hip class are fractures of the pelvis and thigh as 
well as luxation of the hip joint, coxarthrosis, and total hip replacement. The second string “xxx” refers to the 
following specific anatomical regions: pelvis (H_P), coxa (H_C), the femur (H_F), and their combinations 
when two or more anatomical areas are affected (H_PC, H_PF, H_CF, H_PCF), as well as one class for other 
diagnoses (H_O).

• Knee class (K_xxx): The knee class comprises patients after patella, femur or tibia fractures, ruptures of the 
cruciate or collateral ligaments or the meniscus, and total knee replacements. The second string “xxx” refers 
to the following specific anatomical regions or diagnosis: patella (K_P), a fracture near the knee joint of the 
femur or the tibia (K_F), rupture of ligaments or the menisci (K_R), and their combinations (K_PF, K_PR, 
K_FR, K_PFR, as well as one class for other diagnoses (K_O).

• Ankle class (A_xxx): The ankle class includes patients after fractures of the malleoli, talus, tibia, or lower 
leg, and ruptures of ligaments or the Achilles tendon. The second string “xxx” refers to the following specific 
anatomical regions or diagnosis: fracture of the tibia, fibula or talus near the ankle joint (A_F), rupture of 
ligaments or the Achilles tendon (A_R), lower leg shaft fracture (A_L), and their combinations (A_FR, A_FL, 
A_RL, A_FRL, as well as one class for other diagnoses (A_O).

• Calcaneus class (C_xxx): The calcaneus class comprises patients after calcaneus fractures or ankle fusion 
surgery. The second string “xxx” refers to the following specific anatomical regions or diagnosis: fracture 
(C_F) or arthrodesis (C_A).

The hierarchical multi-level categorization allows for grouping the data into a dataset with four GD classes (H 
∪ K ∪ A ∪ C) and one healthy controls (HC) class, but also holds more details if needed. Figure 1 and Table 1 give a 
brief overview of the dataset. Although the metadata includes a structured labelling of musculoskeletal impairments 
for each subject, there is no information available about the history of similar or other types of musculoskeletal inju-
ries for both, the patient and the healthy controls. This limiting factors needs to be recognized when using GaitRec.

Class N Age (yrs.) Mean (SD) Body mass (kg) Mean (SD) Sex (m/f) Bi-lateral Trials
Healthy C. 211 34.7 (13.9) 73.9 (15.6) 104/107 7,755
Hip 450 42.6 (12.8) 82.4 (15.6) 373/77 12,748
Knee 625 41.6 (12.0) 84.3 (18.6) 426/199 19,873
Ankle 627 41.6 (11.4) 87.0 (18.0) 498/129 21,386
Calcaneus 382 43.5 (10.4) 84.0 (14.5) 339/43 13,970
Total 2,295 41.5 (12.1) 83.6 (17.3) 1,740/555 75,732

Table 1. Demographic overview of the dataset and the pre-defined classes.

HC GD

H K A C

H_P H_C H_F H_O

H_PC H_PF H_CF H_PCF

K_P K_F K_R K_O

K_PF K_PR K_FR K_PFR

A_F A_R A_L A_O

A_FR A_FL A_RL A_FRL

C_F C_A

Fig. 1 Class taxonomy. The class structure and the dependencies between the classes of the GaitRec dataset: 
Healthy Controls (HC), Gait Disorders (GD), Hip (H), Knee (K), Ankle (A), and Calcaneus (C). Details of the 
subclasses are described in Section Dataset & Annotation.
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Data Records
All published data are fully anonymized. The data records are available online from figshare24. The dataset consists 
of twenty files holding the GRF data (see Table 2) and one file holding the metadata, including the annotations and 
additional subjects’ information, e.g. category label, sex, body mass, etc. All files are available as comma-separated 
value files (CSV). The twenty GRF data files are organized according to the following naming convention: 
“GRF-type-processing-side.csv”. The type denotes, whether the file holds the vertical (“F_V”), anterior-posterior 
(“F_AP”), medio-lateral (“F_ML”) or the anterior-posterior or medio-lateral COP (“COP_AP”, “COP_ML”) 

Variables Associated file Format Dimension Unit Description
Vertical GRF GRF_F_V-RAW_*.csv double 1 × n Newton Raw vertical ground reaction force

Anterior-posterior GRF GRF_F_AP-RAW_*.csv double 1 × n Newton Raw breaking and propulsive 
shear force

Medio-lateral GRF GRF_F_ML_RAW_*.csv double 1 × n Newton Raw medio-lateral shear force

COP anterior-posterior GRF_COP_AP_RAW_*.csv double 1 × n Centimeter Raw COP coordinate in walking 
direction

COP medio-lateral GRF_COP_ML_RAW_*.csv double 1 × n Centimeter Raw COP coordinate in medio-
lateral direction

Vertical GRF GRF-F_V_PRO_*.csv double 1 × n Multiple of body 
weight

Post-processed vertical ground 
reaction force

Anterior-posterior GRF GRF_F_AP_PRO_*.csv double 1 × n Multiple of body 
weight

Post-processed breaking and 
propulsive shear force

Medio-lateral GRF GRF-F_ML_PRO_*.csv double 1 × n Multiple of body 
weight

Post-processed medio-lateral 
shear force

COP anterior-posterior GRF_COP_AP_PRO_*.csv double 1 × n % stance Post-processed COP coordinate in 
walking direction

COP medio-lateral GRF_COP_ML_PRO_*.csv double 1 × n % stance Post-processed COP coordinate in 
medio-lateral direction

Table 2. Description of the data stored in the “GRF_*.csv” files. “*” for the associated file name is a 
placeholder for “right” and “left”. n is either the number of frames during one step across the force plate for the 
unprocessed data (“RAW”) or a time-normalized vector of 101 points for the post-processed (“PRO”) data. Note 
that the first three columns of each file hold the SUBJECT_ID, SESSION_ID, and TRIAL_ID.

Categories/Variables Format Unit Description
Identifiers
SUBJECT_ID integer — Unique identifier of a subject
SESSION_ID integer — Unique identifier of a session
Labels
CLASS_LABEL string — Annotated class labels
CLASS_LABEL_DETAILED string — Annotated class labels for subclasses
Subject Metadata
SEX binary — female = 0, male = 1
AGE integer years Age at recording date
HEIGHT integer centimeter Body height in centimeters

BODY_WEIGHT double kg m
s2

Body weight in Newton

BODY_MASS double kg Body mass
SHOE_SIZE double EU Shoe size in the Continental European System
AFFECTED_SIDE integer — left = 0, right = 1, both = 2
Trial Metadata
SHOD_CONDITION integer — barefoot & socks = 0, normal shoe = 1, orthopedic shoe = 2
ORTHOPEDIC_INSOLE binary — without insole = 0, with insole = 1
SPEED integer — slow = 1, self-selected = 2, fast = 3 walking speed
READMISSION integer — indicates the number of re-admission = 0 … n

SESSION_TYPE integer — initial measurement = 1, control measurement = 2, initial 
measurement after readmission = 3

SESSION_DATE string — date of recording session in the format “DD-MM-YYYY”
Train-Test Split Information
TRAIN binary — is part (=1) or is not part (=0) of TRAIN
TRAIN_BALANCED binary — is part (=1) or is not part (=0) of TRAIN_BALANCED
TEST binary — is part (=1) or is not part (=0) of TEST

Table 3. Description of the information stored in the metadata file.
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time-series. Processing denotes, if the files hold the unprocessed raw data (“RAW”) or the post-processed data 
(“PRO”). The side denotes, if the data are from the “left” or “right” body side. The common prefix for all files 
is “GRF-”. An example filename is thus: “GRF_F_V_RAW_left.csv”.

Each of the “GRF-type-processing-side.csv” files is structured as a matrix with N rows × M columns. Each row 
holds the data of one subject and trial. The first column identifies each subject (“SUBJECT_ID”), the second col-
umn each recording session (“SESSION_ID”), and the third column each single trial within a recording session 
(“TRIAL_ID”). Note that due to the non-normalized nature of the data and the resulting different vector lengths 
in the “RAW” files, non-available numbers have been replaced by “NaN” to maintain a constant matrix-dimension.

The metadata file, which contains annotations and additional subject-related information is available in 
“GRF-metadata.csv”. It is structured as a matrix with N rows × M columns (see Table 3). Here, the first two 
columns hold the SUBJECT_ID and SESSION_ID, the other columns hold information such as class labels, 
sex, body mass, age, shod-condition, see Table 3 for details. Note that this information is available in all records. 
Missing values are identified as “NaN”. A particularly notable field is “AFFECTED_SIDE”, which indicates which 
leg is affected by a certain impairment (e.g. left knee) or if both sides are affected.

To foster comparability of classification results derived from the GaitRec dataset, we included a predefined 
randomized partitioning of the dataset into three subsets for training and testing. This information is stored in the 
metadata file. The GaitRec dataset is split into an unbalanced training set (TRAIN) and a test set (TEST). The 
first can be used for training and optimization of the machine learning models (e.g. by cross-validation) and the 
latter for the final evaluation. However, unbalanced classes might negatively affect the optimization of machine 
learning models, therefore we have created a balanced subset of TRAIN, referred to as TRAIN_BALANCED. The 
TRAIN_BALANCED subset comprises only data from initial assessments (first measurement session), which 
at least hold five trials for each body side per session. This is also the reason why the balanced splits populated 
sightly different amounts of trials. The data allocation to the different subsets was always performed on a random 
basis. Details of the train/test split configuration are depicted in Fig. 2.

technical Validation
The provided data are available in raw format and post-processed with well-established de-noising and normali-
zation procedures. This allows future researchers to either use the raw data and post-process them as desired (e.g., 
filtering, thresholding, normalization, etc.) or to employ the ready-to use post-processed data. The accuracy of 
the force plates was not specifically assessed during the data capturing period. However, the force plates and the 
measurement equipment has been checked and serviced regularly during clinical practice. To get a picture of the 
data integrity, the post-processed data are plotted in Fig. 3.

Usage Notes
The data records are stored in *.csv files and can be easily imported into any desired software package for further 
data analysis. The dataset also contains two scripts which allow easy data import for Matlab (The MathWorks, Inc., 
Natick, Massachusetts, United States, 2019a) and Python (Python Software Foundation, 3.7). Benchmarks for auto-
matically classifying the presented data based on the first annotation level into five classes, i.e. H vs. K vs. A vs. C 

Train-Test Split

U
nb

al
an

ce
d

 tr
ai

ni
ng

 s
et

Train: 52745 (70%)

Test: 22987 (30%)

Classes in Train Split

A:15213 (29%)

C:10728 (20%)
H:7900 (15%)

HC:5563 (11%)

K:13341 (25%)

Classes in Test Split

A:6173 (27%)

C:3242 (14%)

H:4848 (21%)

HC:2192 (10%)

K:6532 (28%)

B
al

an
ce

d
tr

ai
ni

ng
 s

et

Train: 6308 (22%)

Test: 22987 (78%)

A:1182 (19%)

C:1230 (19%)

H:1245 (20%)

HC:1434 (23%)

K:1217 (19%)

A:6173 (27%)

C:3242 (14%)

H:4848 (21%)

HC:2192 (10%)

K:6532 (28%)

Fig. 2 Dataset composition. Configuration of the balanced and unbalanced train/test splits of the GaitRec 
dataset. The pie-charts show the amount of trials populated (in total amount and percentage) within each class 
and split.
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vs. HC, can be found in our earlier work13–15. These works also provide a baseline approach that employs a signal 
representation based on Principal Component Analysis (PCA) combined with a Support Vector Machine (SVM) as 
a classifier for orientation and comparison. Note, however, that the presented dataset is an extended version of the 
dataset used in these studies and that results may thus slightly deviate from those of our previous studies. The studies 
further elaborate on the optimization of post-processing of GRF data for the purpose of gait classification.

Future work with the GaitRec dataset might focus on one of the research questions stated below. However, 
one should be aware that depending on the research question not all subsets of our dataset might be perfectly 
applicable due to their reduced sample size (i.e. for the balanced subsamples).

• Classifying healthy vs. pathological gait
• Build statistical models of normative walking
• Classify gait disorders
• Evaluation and prediction of therapy progress
• Gait data-record retrieval and similarity retrieval of trials
• Identification of subject-specific gait patterns
• Modeling dependencies between anthropometric/demographic data and the GRF signals

Fig. 3 Data overview. Visualization of all body-weight normalized vertical, anterior-posterior, and medio-
lateral GRF signals of the affected side available per subject and class. For healthy controls all available 
recordings are visualized. The plots also show the mean (solid line) and its one-fold standard deviation (dotted 
line). Note that for easier usage the orientation of the medio-lateral and anterior-posterior signals were 
uniformed, so that medial and anterior forces are always represented as positive values.
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For the purpose of comparability of derived results from the GaitRec dataset, we highly recommend per-
forming model optimization (e.g. by cross-validation) on the training set only and to keep the test set untouched 
until the final evaluation. However, it has to be noted that the train/test set split does not coincide exactly with the 
splits in our baseline experiments because both are larger now13–15.
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Automatic Classification of Functional
Gait Disorders

Djordje Slijepcevic , Matthias Zeppelzauer , Anna-Maria Gorgas, Caterine Schwab, Michael Schüller,
Arnold Baca , Christian Breiteneder, and Brian Horsak

Abstract—This paper proposes a comprehensive inves-
tigation of the automatic classification of functional gait
disorders (GDs) based solely on ground reaction force
(GRF) measurements. The aim of this study is twofold:
first, to investigate the suitability of the state-of-the-art
GRF parameterization techniques (representations) for the
discrimination of functional GDs; and second, to provide a
first performance baseline for the automated classification
of functional GDs for a large-scale dataset. The utilized
database comprises GRF measurements from 279 patients
with GDs and data from 161 healthy controls (N). Patients
were manually classified into four classes with different
functional impairments associated with the “hip”, “knee”,
“ankle”, and “calcaneus”. Different parameterizations are
investigated: GRF parameters, global principal component
analysis (PCA) based representations, and a combined
representation applying PCA on GRF parameters. The
discriminative power of each parameterization for different
classes is investigated by linear discriminant analysis.
Based on this analysis, two classification experiments are
pursued: distinction between healthy and impaired gait (N
versus GD) and multiclass classification between healthy
gait and all four GD classes. Experiments show promising
results and reveal among others that several factors, such
as imbalanced class cardinalities and varying numbers of
measurement sessions per patient, have a strong impact on
the classification accuracy and therefore need to be taken
into account. The results represent a promising first step
toward the automated classification of GDs and a first per-
formance baseline for future developments in this direction.
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parameters, machine learning.

I. INTRODUCTION

GAIT analysis is a tool for clinicians to objectively quantify
human locomotion and to describe and analyze a patient‘s

gait performance. The primary aim is to identify impairments
that affect a patient’s gait pattern [1].

Recordings obtained during clinical gait analyses produce
a vast amount of data which are difficult to comprehend
and analyze due to their high-dimensionality, temporal depen-
dences, strong variability, non-linear relationships and correla-
tions within the data [2]. This makes data interpretation chal-
lenging and requires an experienced clinician to draw valid
conclusions. Several automatic analysis approaches based on
machine learning have been published in recent years to tackle
these problems and to support clinicians in identifying and
categorizing specific gait patterns into clinically relevant cate-
gories [2], [3]. Machine learning methods employed in this con-
text comprise neural networks [4]–[6], support vector machines
(SVMs) [7]–[9], nearest neighbor classifiers [10], [11], and dif-
ferent clustering approaches (hierarchical, k-means, etc.) [12].
The performance of such methods strongly depends on the input
data representation [13]. Frequently used representations in gait
analysis comprise discrete kinematic gait parameters (e.g. local
minima and maxima of gait signals and time-distance parame-
ters) [11], [14], [15]. Additionally, previous research has shown
that global signal representations obtained by principal com-
ponent analysis (PCA) [16], [17], kernel-based PCA (KPCA)
[18], [19] and discrete wavelet transformation (DWT) [10], [11]
are suitable for subsequent classification [10], [16].

Typical use cases for automatic gait analysis described in
the literature show a moderate to high accuracy in distinguish-
ing between different pathologies or patient groups [4], [7]–[9],
[11], [16], [17]. However, most of the existing literature investi-
gated rather simple cases such as the differentiation between the
affected/non-affected limb in hemiplegic patients [20], and the
distinction of healthy gait from people with neurological dis-
orders [5], [11], transfemoral amputation [16], and lower limb
fractures [4], [17]. A more complex study is presented in [21],
where several disorders associated with traumatic brain injuries
are classified. The majority of published articles employed kine-
matic and kinetic data derived from three-dimensional gait

2168-2194 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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analysis (3DGA), which provide a vast amount of kinematic
and kinetic information for multiple joints. Drawbacks of such
3DGA measurement systems are the relatively time-consuming
data recording, the need for highly trained staff as well as high
acquisition and maintenance costs. Therefore, such analysis
tools are often not suitable for daily use in clinical practice.

To manage the high patient throughput in rehabilitation cen-
ters, a frequently used approach is to combine simple visual
inspection or 2D video recordings with the quantification of
ground reaction forces (GRF) by force platforms, as changes
in the morphology of the GRF waveforms reflect pathological
gait [11], [17]. One major drawback of this approach is the
loss of clinically relevant and quantifiable information (e.g. gait
kinematics), causing a potential decrease in classification ac-
curacy [22]. However, such simple approaches are common in
clinical practice as they overcome the before-mentioned limita-
tions of 3DGA. To date, few attempts have been published that
use only GRF data for automated gait pattern classification [16],
[23]. Most of these gait classification approaches show promis-
ing results. However, the majority of previous works employed
relatively small datasets. Alaqtash et al. [11], for example, com-
pared the data of 12 healthy adults to those of patients with
cerebral palsy and multiple sclerosis (4 patients each), Muniz
and Nadal [17] used data from 38 healthy controls and 13 pa-
tients with lower limb fracture, and Soares et al. [16] classified
GRF data of 20 able-bodied and 12 patients with transfemoral
amputation. Such small datasets make it difficult to train robust
and reliable classifiers that are applicable in complex real-world
scenarios. Furthermore, a majority of studies [10], [17], [23] re-
lies solely on the vertical ground reaction force for classification
purposes, rather than considering all available GRF components,
including the center of pressure (COP), for a more conclusive
picture of the underlying gait pattern. Previous classification at-
tempts mainly focused on the differentiation between specific
diseases rather than drawing a distinction between functional
gait disorders. The work of Köhle and Merkl [24], [25], who
clustered and classified GRF measurements into deficits of dif-
ferent body regions, represents an exception in this regard. Their
dataset was about half of the size of the one presented in this
article and their work also focused on patients walking with a
prosthesis. In this article we define a functional gait disorder as
the cause of a gait impairment, which is reflected by the indi-
vidual gait patterns. These may be associated with a patient’s
condition after joint replacement surgery, fractures, ligament
ruptures, osteoarthritis or related disorders. The classification
of functional gait disorders is of particular interest in clinical
examinations, as it may play a key role in detecting arthropathies
or diseases at an early stage. In addition, such a classification
may also indicate secondary disorders that otherwise might be
easily overlooked during clinical examination.

The aim of this article is to present a detailed investigation
of the automated classification of several functional gait disor-
ders solely based on GRF data. The presented approach builds
upon the aforementioned studies, e.g. [16], [17], [23], inves-
tigates the suitability of frequently used state-of-the-art GRF
parameterization techniques for gait classification and analyzes
their discriminative power. In the experiments we evaluate the

individual representations on a large-scale and real-world
dataset for different classification tasks. This paper therefore
presents a first performance baseline for the automatic classifi-
cation of different gait disorders in a real-world setting.

II. MATERIAL AND METHODS

A. Patients and Dataset

The presented retrospective study was approved by the lo-
cal Ethics Committee of Lower Austria (GS1-EK-4/299-2014).
The anonymized data used in this study are part of an existing
clinical gait database maintained by a rehabilitation center of the
Austrian Workers’ Compensation Board (AUVA). The AUVA
is the social insurance for occupational risks for more than 3.3
million employees and 1.4 million pupils and students in Aus-
tria. The utilized database comprises GRF measurements from
279 patients with gait disorders (GD) and data from 161 healthy
controls (N), both of various physical composition and gender
(see Table I for details on the dataset). Patients were manually
classified into four classes - calcaneus “C” (n = 82), ankle “A”
(n = 62), knee “K” (n = 69), and hip “H” (n = 66) - by a
physical therapist, based on the available medical diagnosis of
each patient. Thus, GD refers to C ∪ A ∪ K ∪ H. The individ-
ual GD classes include patients after joint replacement surgery,
fractures, ligament ruptures, and related disorders associated
with the above-mentioned anatomical areas. The most common
injuries present in the hip class are fractures of the pelvis and
thigh as well as luxation of the hip joint, coxarthrosis, and total
hip replacement. The knee class comprises patients after patella,
femur or tibia fractures, ruptures of the cruciate or collateral lig-
aments or the meniscus and total knee replacements. The ankle
class includes patients after fractures of the calcaneus, malleoli,
talus, tibia or lower leg, and ruptures of ligaments or the achilles
tendon. The calcaneus class comprises patients after calcaneus
fractures or ankle fusion surgery. All of the above-mentioned
injuries may occur individually or in combination within each
class.

Each patient performed one or several measurement sessions.
In each session, eight recordings for two consecutive steps were
performed. Each bilateral recording is referred to as one trial
in this paper. Thus, the utilized dataset contains 1,187 sessions
comprising 9,496 individual trials (see Table I for details).

B. Data Recording and Preprocessing

Gait analysis was performed on a 10 m walkway with two
centrally embedded force plates (Kistler, Type 9281B12). The
force plates were placed in a consecutive order, allowing a per-
son to walk across by placing one foot on each plate. Both plates
were flush with the ground and covered with the same walkway
surface material, so that targeting was not an issue. During a
session, participants walked unassisted and without a walking
aid at a self-selected walking speed until a minimum of eight
valid recordings were available. These recordings were defined
as valid by a supervisor when the participant walked naturally
and there was a clean foot strike on the force plate. Prior to
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TABLE I
DETAILS OF THE DATASET AND CLASSES

Class Amount Age (yrs.) Mean ± SD Body Mass (kg) Mean ± SD Sex (m/f) Num. Sessions Num. Trials

Healthy Control (N) 161 32.4 ± 13.6 74.1 ± 16.2 84/77 161 1,288
Calcaneus (C) 82 42.4 ± 9.9 84.5 ± 12.1 74/8 320 2,560
Ankle (A) 62 40.0 ± 11.5 88.3 ± 16.9 56/6 259 2,072
Knee (K) 69 41.5 ± 11.4 83.7 ± 19.6 44/25 258 2,064
Hip (H) 66 43.6 ± 14.7 81.6 ± 18.3 53/13 189 1,512
SUM 440 38.4 ± 13.3 80.7 ± 17.3 311/129 1,187 9,496

the gait analysis session, each participant underwent rigorous
physical examination by a physician.

All processing steps and subsequent analyses were performed
in Matlab 2016a (The MathWorks Inc., Natick, MA, USA). The
three analog GRF signals as well as the two COP signals were
converted to digital signals using a sampling rate of 2000 Hz
and a 12-bit analog-digital converter (DT3010, Data Translation
Incorporation, Marlboro, MA, USA) with a signal input range of
± 10 V. A threshold of 10 N was used for step detection and 30 N
for COP calculation. Raw signals were filtered using a 2nd order
low-pass butterworth filter with a cut-off frequency of 20 Hz.
All gait measurements were temporally aligned so that they all
started with the initial contact and ended with toe-off. They
were further time-normalized to 100% stance by re-sampling
the data to 1000 points. The processed signals are referred to as
waveforms in this article. Amplitude values of the three force
components, i.e. vertical (V), medio-lateral (ML), and anterior-
posterior (AP), were expressed as a multiple of body weight
(BW ) by dividing the force by the product of body mass times
acceleration due to gravity (g). The COP waveforms from each
trial were normalized by the foot length (FL) determined during
each session, expressed as a multiple of foot length.

C. Signal Representation

The representations employed in our investigation comprise
(1) discrete GRF parameters (DP) in combination with time-
distance parameters (TDP) [11], [14], [15]; (2) PCA-based pa-
rameterizations of the entire GRF waveforms [4], [8], [16] and
(3) a combination of the first two approaches, i.e. PCA applied
to DPs and TDPs [7]. In the following, all three approaches are
described in detail.

DPs were calculated for the affected limb and extracted from
all three force components, FV (t) (vertical), FAP (t) (anterior-
posterior), and FML (t) (medio-lateral), as well as from the
COP displacement in the anterior-posterior (walking) direction
COPAP (t) and in the medio-lateral direction COPML (t). An
example of the GRF and corresponding COP waveforms is pre-
sented in Fig. 1. Furthermore, a more detailed visualization of
the mean GRF waveforms over each class is illustrated in Fig. S1
(supplementary material). DPs include a set of predefined (most
prominent) local minima and maxima of the waveforms, which
were extracted by peak detection in a fully automatic way from
each trial. Furthermore, impulses were calculated over different
segments of the waveform by multiplying the average force (in
N ) by the time this force is active. To account for differences

Fig. 1. (Top) The characteristic shape of the three components of the
GRF: the vertical force (FV ), the anterior-posterior shear (FAP ), and the
medio-lateral shear (FM L ). (bottom) The corresponding COP path for
one step. Note that x and y axes are scaled slightly differently for better
visualization.

in body mass between participants [26], all impulses were di-
vided by the product of body mass times acceleration due to
gravity (g) and then multiplied by 100 (%BW�s). TDPs such as
cadence (CAD), double support time (DS), gait velocity (GV ),
step length (STEPLEN ), and stance time (ST ) were calcu-
lated from two consecutive steps (affected and unaffected limb)
and averaged over the eight valid trials. Table II lists all 52
extracted parameters.

In contrast to the GRF parameters (DPs and TDPs), the PCA
takes the entire waveforms1 of the affected limb into account
and provides a holistic representation of the data. Complemen-
tary information to the parameters is thus captured. The main
goal of PCA is to reduce the dimensionality of a dataset by
transforming the data into a set of uncorrelated variables, i.e.
the principal components (PCs) [27]. Each PC points in (and
thus explains) one orthogonal direction of variance in the data.

1For the purpose of the present study, every third sample was used in order
to reduce redundancy in the data, thereby improving the robustness of the
decomposition.
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TABLE II
DISCRETE AND TIME-DISTANCE PARAMETERS, DESCRIPTION, TYPE OF NORMALIZATION AND PHYSICAL UNIT

Abbreviation Description Normalization Unit

ST Stance time is the duration of the stance phase of one foot − s
FV 1 Maximum value of FV within the breaking phase of stance Body weight BW
TV 1 Time of FV 1 Stance time %ST
FV 2 Minimum value of FV between TV 1 and TV 3 Body weight BW
TV 2 Time of FV 2 Stance time %ST
FV 3 Maximum value of FV within the propulsive phase of stance Body weight BW
TV 3 Time of FV 3 Stance time %ST
FAP 1 Maximum value of FAP between initial contact and TAP 2 Body weight BW
TAP 1 Time of FAP 1 Stance time %ST
FAP 2 Minimum value of FAP within the breaking phase of stance Body weight BW
TAP 2 Time of FAP 2 Stance time %ST
FAP 3 Maximum value of FAP within the propulsive phase of stance Body weight BW
TAP 3 Time of FAP 3 Stance time %ST
FM L 1 Minimum value of FM L within the breaking phase of stance Body weight BW
TM L 1 Time of FM L 1 Stance time %ST
FM L 2 Maximum value of FM L within the breaking phase of stance Body weight BW
TM L 2 Time of FM L 2 Stance time %ST
FM L 3 Maximum value of FM L within the propulsive phase of stance Body weight BW
TM L 3 Time of FM L 3 Stance time %ST
FV AV G Mean value of FV Body weight BW
FAP AV G Mean value of FAP Body weight BW
FM LAV G Mean value of FM L Body weight BW
IFV Impulse of FV during stance Body weight %BW·s
IFAP Impulse of FAP during stance Body weight %BW·s
IFM L Impulse of FM L during stance Body weight %BW·s
IFV 1 Impulse of FV between initial contact and TV 1 Body weight %BW·s
IFV 2 Impulse of FV between initial contact and TV 2 Body weight %BW·s
IFV 3 Impulse of FV between initial contact and TV 3 Body weight %BW·s
IFAP DEC Impulse of FAP during the breaking phase Body weight %BW·s
IFAP AC C Impulse of FAP during the propulsive phase Body weight %BW·s
IFLAT Impulse of the lateral component of FM L Body weight %BW·s
IFM ED Impulse of the medial component of FM L Body weight %BW·s
COPANG COP angle is the horizontal angle between the COP linear regression line and the x-axes (b= foot rotation) − deg
COPDEV COP deviation is the root mean square error of the COP linear regression Foot length FL
COPAP COP range is the range in the anterior-posterior direction during stance phase Foot length FL
COPV COP velocity is calculated as the ratio of foot length and stance time Foot length FL/s
COPM L COP range is the range in the medio-lateral direction during stance phase Foot length FL
DECT Deceleration time (breaking phase) is the duration of FAP being negative − s
ACCT Acceleration time (propulsive phase) is the duration of FAP being positive − s
LR0080 Loading rate represented as the slope of FV from the initial contact to 80% of FV 1 Body weight N/s
LR2080 Loading rate represented as the slope of FV from 20% to 80% of FV 1 Body weight N/s
UR8000 Unloading rate represented as the slope of FV from 80% of FV 3 to the toe-off Body weight N/s
UR8020 Unloading rate represented as the slope of FV from 80% to 20% of FV 3 Body weight N/s
DS Double support time during one stride − s
STEPLEN Step length is the distance of the COP position from initial contact to following contralateral initial contact − m
STEPV Step velocity is calculated as the ratio of step length and step time − km/h
STRIDET Stride time is the duration from initial contact to initial contact of the ipsilateral foot − s
BF Basic frequency is the mean number of strides per second (1/STRIDET ) − Hz
CAD Cadence is the number of steps per minute − 1/min
STEPWD Step width is the medio-lateral distance of the mean COP between both feet − m
STRLEN Stride length is the distance of the COP position from initial contact to following ipsilateral initial contact − m
GV Gait velocity is calculated as the mean step velocity of both feet − km/h

Body weight (BW): product of body mass and acceleration due to gravity;
%ST: percentage of stance time; %BW: percentage of body weight; FL: multiple of foot length.

The main intention is to obtain a lower-dimensional representa-
tion of our time- and weight-normalized waveforms similar to
[4], [8], [16] by projecting the data onto those PCs which ex-
plain most variance in the data. This dimensionality reduction
fosters subsequent machine learning [3]. We performed PCA on
each of the five signals separately and concatenated the resulting
PCs to obtain a feature vector for classification. This approach
proved to be superior to other PCA-based representations in a
preliminary study [28]. The final dimensionality of the obtained
representations is specified by the amount of variance preserved

in a particular projection, i.e. 98%, 95%, and 90%. An ex-
emplary visualization of the different PCA representations is
presented in Fig. S2 (supplementary material). A preliminary
evaluation indicated that preserving 98% of the variance results
in a good trade-off between data reduction and classification
performance. Thus, all results presented in the following are
based on the approach in which 98% of the variance is preserved
(the number of resulting PCs is waveform-specific and ranges
from four to twelve, i.e. for all five signals there are 39 PCs in
total).
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As a third representation, PCA was applied to the previously
extracted DPs and TDPs (a vector comprising of 52 parameters),
similarly to Wu et al. [7]. This approach combines both method-
ologies and aims at extracting the most important information
from the (possibly redundant) parameters.

D. Statistical Analysis

Our first aim was to investigate the suitability of different pa-
rameterization techniques for subsequent gait classification. For
this purpose we analyzed the variance and discriminative power
of each DP and TDP across the different classes by descriptive
statistics in a first step. We calculated the median, interquartile-
range (IQR) and range of each parameter within each class and
visualized them as boxplots. This enabled us to visually inspect
variances and distributions in and across the classes, thereby
allowing a first estimation of the discriminative power of each
parameter.

In a second step, we investigated the discriminative power
of the parameters and the global PCA-based representations by
linear discriminant analysis (LDA). A natural measure to de-
scribe the separation of two distributions (classes) is the Fisher
criterion, which represents the core of LDA [29]. We applied
(multi-class) LDA to assess the discriminative power of individ-
ual parameters for two (or more) classes. The advantage of this
approach is that the discriminative power of a parameter (even
across multiple classes) can be expressed by one scalar value
that directly reflects the statistical properties of the input data.
Hence, there is no need to apply additional modelling and data
transformations (which may influence results) prior to LDA,
which would be necessary for other methods such as SVM. Fur-
thermore, this approach can easily be extended to estimate the
discriminative power of a combination of several parameters by
multi-dimensional LDA (e.g. in case of PCA-based represen-
tations). We computed the accuracy of LDA and reported the
divergence from a random baseline [30] to quantify to which
degree an input parameter or input representation is able to sepa-
rate the underlying classes. The random baseline was estimated
by the zero rule (always choosing the most frequent class in the
dataset). Thus, in the case of five classes where the largest class
contains 30% of the data the random baseline equals 30%.

E. Classification

We applied two classification tasks to the dataset by using
SVMs as classifiers: (1) (binary) classification between nor-
mal gait and all gait disorders (N/GD) and (2) (multi-class)
classification between N and each of the four GD classes
(N/C/A/K/H). In the first task, the class priors are imbal-
anced, i.e. there are many more observations in the combined
GD class than in the normal class (see Table I). The second task
separates each type of disorder from each other and from the
normal class.

For the classification experiments the dataset was split into a
training (65%) and a test set (35%), thereby mutually disjoining
the groups of patients in both sets. The training dataset in combi-
nation with a k-fold cross-validation approach served to train the
classifiers and to optimize their parameters (model selection),

whereas the test dataset was used to evaluate the generalization
ability of the trained models (and was not considered during
model selection and hyper-parameter optimization). The calcu-
lated DPs and TDPs as well as the PCA-based representations
served as input to classification. The parameters (DPs and TDPs)
were normalized (each independently) in a twofold way, by min-
max normalization and z-standardization, in order to determine
the more suitable approach. The PCA representations were z-
standardized. We employed SVMs for the classification with
linear and radial basis function (RBF) kernels, provided by the
LIBSVM library [31]. For hyper-parameter selection we applied
a grid search over the regularization parameter C ∈ [2−5 , 215 ]
for the linear SVM and overC ∈ [2−1 , 215 ] and the kernel hyper-
parameter γ ∈ [2−15 , 25 ] for the RBF SVM. During the grid
search, a 5-fold cross-validation was performed on the training
dataset. Finally, an SVM with the best parameters estimated
during model selection was trained on the entire training set
and evaluated on the test set. Additionally a k-nearest neighbor
(k-NN) classifier and a multi-layer perceptron (MLP) were em-
ployed as a reference to compare their results to the performance
of the SVM. Grid search was performed over various values of
k for the k-NN. For the MLPs different numbers and sizes of
hidden layers were employed. As a performance measure we
use the classification accuracy, which is the percentage of cor-
rect classifications among all classes and input samples. Since
in different experiments the random baseline varies, the abso-
lute values of accuracy are of limited expressiveness. To enable
a fair comparison, we employ the divergence from a random
baseline approach [30] and thus provide for each experiment
the difference between the random baseline and the absolute
classification accuracy.

III. RESULTS AND DISCUSSION

This section presents and discusses the results of the statistical
analysis and the classification experiments.

A. Statistical Analysis

The statistical analysis aimed at assessing the suitability of the
individual GRF parameters (DPs and TDPs) for distinguishing
different classes of gait disorders. In order to be considered a
”good” parameter, intra-class variation should be low (e.g. small
IQR inside a given class), while the inter-class variation should
be high (e.g. significantly different means or medians between
the samples of different classes) [15].

The visual inspection of the boxplots for each parameter en-
ables a first assessment of the intra- and inter-class variation and
thereby gives an impression of the parameters’ potential to dif-
ferentiate between different classes. Fig. 2 shows boxplots for
selected parameters. A presentation of boxplots for all 52 inves-
tigated parameters for all classes is provided in Fig. S3 (supple-
mentary material). Parameters such as FV 3 (see Fig. 2(a)) show
a clear difference in the median and the IQR between the healthy
controls and all four GD classes. This indicates a high potential
to discriminate between normal gait and arbitrary gait disor-
ders. However, the overlap of the distributions within the GD
classes indicates a low potential to discriminate between them.
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Fig. 2. Example of boxplots for three parameters. Each boxplot shows
the median and the IQR (box) for each class (outliers were removed for
better visualization). Box-whiskers correspond to 1.5 of the box-length,
thus show approximately ± 2.7 standard deviations. The overlap of dis-
tributions between the classes gives an impression of the parameters’
discriminative power. (a) FV3 [BW]. (b) TAP3 [%ST]. (c) IFAP [%BW·s].

Other parameters such as TAP 3 (see Fig. 2(b)) vary strongly
in the IQR and the median across the classes. While the IQR
is high for calcaneus and ankle, the classes hip, knee, and the
normal controls exhibit a very similar distribution. Thus, such
a parameter has solely limited potential to separate normal gait
from general gait disorders. There may be, however, a certain
potential to separate individual classes (in this case calcaneus)
from other classes. Other parameters may lack in discrimina-
tive power. An example is IFAP (see Fig. 2(c)), which shows
a similar median and overlapping distributions with a similar
IQR across all classes. Several parameters are discriminative
for particular classes or a group of classes. However, none of
the observed parameters discriminates well between all classes.
Therefore, the combination of several parameters for the dis-
tinction between classes seems advisable. These assumptions
are further corroborated by the LDA results.

LDA was applied to the individual parameters and their com-
bination, as well as to the higher-dimensional PCA-based repre-
sentations. This analysis aimed at quantifying the discriminative
power of the investigated representations and thereby evaluat-
ing their suitability for automated classification. Fig. 3 illustrates
discriminativity scores obtained by LDA in terms of deviation
from the random baseline (zero rule). In detail, results for dif-
ferent combinations of classes (rows) are illustrated: rows 1-4
provide results for the discrimination of normal gait vs. ankle,
calcaneus, hip or knee (each class separately). Row 5 shows
how well all 5 classes can be differentiated from each other.
Row 6 illustrates how well normal gait can be differentiated
from all types of gait disorders. Rows 7–12 show how all possi-
ble pairs of gait disorder classes can be differentiated from each
other. Positive discriminativity scores are represented by a color
scale from blue (corresponding to low values) to yellow (rep-
resenting high values), whereas negative values are colored in
gray. Positive values mean that the random baseline is exceeded
and that the respective input parameter or input representation
exhibits a certain discriminative power (the higher the value
the better). Negative values indicate the absence of discrimi-
native power, i.e. the random baseline is not reached. It has to
be noted that, since the different class partitions represented
by the rows of Fig. 3 have different random baselines, the val-
ues across rows cannot be compared directly. Comparisons are
solely valid along the rows. In general, however, columns includ-
ing a larger number of high values indicate parameters or repre-
sentations with a higher discriminative power. Similarly, rows

with higher values represent tasks that are easier to solve than
others.

The leftmost part of Fig. 3 illustrates the discriminativity
scores for the individual parameters. Several parameters achieve
high scores for individual classes or combinations of classes, e.g.
FAP 3 , FV 3 , FV AV G , FV 1 , TV 3 , TAP 3 , GV , STEPV , DS,
STRLEN , FV 2 , STEPWD, CAD, BF , and STRIDET .
No parameter, however, performs well across all tasks. This
indicates that individual parameters are quite limited in ex-
pressiveness. The second part (ALL PARAMS) of Fig. 3
illustrates the results from the combination of all parameters.
The combination yields much better discrimination across all
rows of Fig. 3. This demonstrates that the individual param-
eters contain complementary information and attain synergies
when they are combined. The third part of Fig. 3 visualizes the
results of the PCA-based representations of the five input sig-
nals FV , FAP , FML , COPAP , and COPML . The three GRF
components achieved higher scores compared to the COP sig-
nals. The rightmost part of Fig. 3 shows the discriminativity
scores for combined PCA representations, i.e all three GRF
components combined (PCA FALL ), both COP signals com-
bined (PCA COPAP,M L ), and all five components combined
(PCA ALL). In general, the combination of components im-
proved the results, which indicates that the individual GRF com-
ponents are complementary to each other. The addition of the
COP further improved the discriminative power. Thus, adding
COP to a classification may contribute positively to the re-
sults. The representations (PCA ALL and ALL PARAMS)
are combined able to contribute to all evaluated tasks (rows)
of Fig. 3.

The evaluated representations are more suitable for differen-
tiating between the healthy control group and a functional gait
disorder (rows 1-4) than between two functional gait disorders
(rows 7-12). Regarding the task N/GD, solely a few parame-
ters are able to exceed the random baseline. This is due to the
fact that the combined set of all gait disorders contains much
more samples than the class of healthy controls (i.e. 279 vs. 161
samples). This yields a random baseline around 87.1% which is
more difficult to exceed than random baselines in other tasks.

B. Classification

The results of the classification experiments, which were per-
formed on data from the test set, are summarized in Table III.
The test set was not presented to the classifier during the training
phase and the selection of its parameters. Results are provided
for the two classification tasks (N/C/A/K/H and N/GD) and
for three different parameterizations. The results of the addi-
tional experiments with other classifiers such as the multi-layer
perceptron (MLP) and the k-nearest neighbors algorithm (k-
NN) were all outperformed by the SVM results, which confirms
also the results of Janssen, Schöllhorn et al. [32]. Therefore,
and due to the limited space available, these results will not be
discussed in detail.

The first evaluated parameterization comprises of 52 GRF
parameters (DPs and TDPs) that are extracted from all five GRF
input signals. Due to the strong variation in the parameters’ value
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Fig. 3. Discriminativity scores obtained by LDA for different selections of classes (rows). The figure is divided into four blocks. Each column
represents a different input parameter or higher-dimensional input representation. Best viewed in color.

TABLE III
CLASSIFICATION RESULTS (%) OF TWO TASKS - N/C/A/K/H AND N/GD - AND THREE DIFFERENT PARAMETERIZATION APPROACHES

Parameterization Norm. Dim. N/C/A/K/H (RB: 31.8%) N/GD (RB: 87.1%)

linear SVM RBF SVM linear SVM RBF SVM

GRF Parameters (DPs and TDPs) z-score 52 15.0 (46.8) 8.8 (40.6) 2.4 (89.5) −0.8 (86.3)
GRF Parameters (DPs and TDPs) min-max 52 14.3 (46.1) 9.5 (41.3) 1.6 (88.7) −3.8 (83.3)
PCA on FV , FAP , FM L z-score 30 19.8 (51.6) 15.4 (47.2) 2.4 (89.5) 2.0 (89.1)
PCA on FV , FAP , FM L , COPAP , COPM L z-score 39 22.5 (54.3) 19.4 (51.2) 3.7 (90.8) 1.9 (89.0)
PCA on z-standardized GRF parameters z-score 28 13.8 (45.6) 8.8 (40.6) 2.6 (89.7) −0.6 (86.5)
PCA on min-max normalized GRF parameters z-score 28 13.5 (45.3) 7.9 (39.7) 2.8 (89.9) 0.1 (87.2)

Note that the random baseline (RB) is stated next to the task name and that the values in the table represent the deviation from the random baseline (RB) and the corresponding absolute
accuracy in brackets.

ranges, a suitable normalization of the data is essential. We eval-
uated min-max normalization as well as z-standardization. The
use of z-standardization resulted in a slightly higher deviation
from the RB for both tasks (except for the RBF SVM in task
N/C/A/K/H) compared to min-max normalization. Further-
more, the RBF SVM failed to exceed the random baseline for
both methods in the task N/GD.

The second parameterization was obtained by PCA of the
raw GRF waveforms. PCAs obtained solely from the three
force components clearly outperform the GRF parameters
(DPs and TDPs). By adding the COP measurements the results
were further improved for both tasks. Normalization of the
PCA-based representations is crucial as performance otherwise
drops significantly.

The third parameterization applied PCA on the z-standardized
and min-max normalized DPs and TDPs. The dimensionality
reduction resulted in a 28-dimensional vector which was also z-
standardized prior to classification. In this case, results for both
normalizations (last two rows of Table III) were improved for
the taskN/GD compared to the representation with the original
GRF parameters (first two rows of Table III). However, this is
not the case for task N/C/A/K/H , where the deviation from
the RB slightly decreased.

In summary, the best performance (marked in bold in
Table III) was achieved by applying PCA to all five GRF sig-
nals. The linear SVM achieved the highest deviation from the
RB (22.5%) for task N/C/A/K/H as well as for task N/GD
(3.7%). Alternative classifiers which were also evaluated yielded

a lower deviation from the RB: MLP 21.0% and k-NN 13.4%
for task N/C/A/K/H and MLP 2.6% and k-NN 2.2% for task
N/GD. In terms of accuracy and deviation from the RB, the
linear SVM performed better in all experiments. The RBF SVM
has an advantage solely in terms of runtime.

The main reason for the great difference in the performance
between the two tasks is the strong class imbalance in task
N/GD, which makes this task particularly difficult to solve.
One way of dealing with unbalanced datasets in SVMs is the
use of different weights for different classes, thereby emphasiz-
ing the importance of the under-represented classes. Therefore,
additional class-weighted experiments were performed. Results
with different cost functions showed that no further performance
increase can be achieved. The uniform cost function seems to
work best on the data.

C. Discussion and Further Aspects

We presented a study on the classification of different func-
tional gait disorders, stemming from a wide range of possible
impairments, into categories that represent the main affected
body region. The motivation for selecting these broad cate-
gories is that identifying the region of impairment is essential
for clinical practice and may allow to pinpoint impairments al-
ready at an early stage. In addition, it could indicate secondary
impairments which may easily be overlooked by the physician
during clinical examination. The present study represents a first
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TABLE IV
RESULTS (%) OF ANALYSES ASSESSING THE INFLUENCE OF SEVERAL
FACTORS ON THE RESULTS OF THE TWO TASKS - N/C/A/K/H AND

N/GD

Partitions of the dataset N/C/A/K/H N/GD

Session are balanced 23.7 (60.2) 20.6 (84.1)
Persons are balanced 28.3 (59.5) 5.3 (84.7)
Persons & sessions are balanced 39.2 (59.2) 35.4 (85.4)
Male population 20.9 (51.3) 0.6 (91.4)

The experiments are performed with a PCA on all five signals in combination
with a linear SVM. Note that the values represent the deviation from the
random baseline (RB) and the corresponding absolute accuracy in brackets.

performance baseline for the classification of gait disorders.
Results are particularly promising for task N/GD. However, an
absolute classification accuracy of 91% still lies below an ac-
ceptable threshold for clinical practice. For the classification of
individual disorder categories, the results indicate that further
improvements are necessary. To date, the proposed approach
could, however, already serve as a support for clinicians indi-
cating the presence of (additional) arthropathies or diseases. In
order to reduce the classification complexity, while still provid-
ing support for clinicians, similar classes could be merged, i.e.
the hip and knee classes into a thigh class and the ankle and cal-
caneus classes into a shank class. The results of this additional
experiment showed a deviation from the RB of 26.8% (using a
linear SVM, RB: 51%, absolute accuracy: 77.8%). Compared
to the distinction of all five classes (N/C/A/K/H), this is a
clear increase in accuracy and deviation from the RB.

Different influencing factors, i.e. the imbalance of the class
priors, the variability in the number of sessions per person and
gender-specific aspects may introduce a bias into the afore-
mentioned analyses. To investigate the effect of these factors
on classification performance, we performed additional experi-
ments. To this end, we used the best configuration found so far
as a baseline, i.e. PCA on all five signals with a linear SVM (4th
parametrization in Table III) and applied it to different balanced
subsets of our dataset. The results are presented in Table IV and
are discussed in the following.

For the experiments in Section III-B we decided to use all
available sessions of patients recorded in the course of their re-
habilitation to account for different progression stages of impair-
ments. This, however, may introduce a bias in the experiments
as more trials exist for some patients than for others. To eval-
uate to which extent the varying number of recorded sessions
per patient influences the overall result, we balanced the dataset
by selecting only one random session per person. Interestingly,
the deviation from the RB improved for task N/C/A/K/H
to 23.7% (+1.2%) and for task N/GD to 20.6% (+16.9%), as
presented in the first row of Table IV. These results show that
intra-patient variability needs to be taken into account and re-
quires additional modeling in a classification approach.

Another factor causing an imbalance in the data are the dif-
ferent class cardinalities, i.e. different numbers of persons per
class. In order to investigate the influence of this imbalance we
performed an experiment for both tasks with a dataset contain-
ing the same number of participants per class (but keeping all

sessions in the dataset). For task N/C/A/K/H the balanced
dataset is composed of data from 62 persons from each class
(overall 310 persons, 7616 trials). For task N/GD the bal-
anced dataset contained data from 160 healthy controls and 160
persons with a deficit (40 from each GD class, overall 320 per-
sons and 6096 trials). The deviation from the RB improved for
task N/C/A/K/H to 28.3% (+5.8%) and for task N/GD to
5.3% (+1.6%), as shown in the second row of Table IV. Although
the results show that balancing the number of patients among
classes is beneficial, the results of task N/GD reveal the still
existing imbalance in the dataset (due to the fact that healthy con-
trols have only one session and patients up to several sessions).

The next question deals with the effect of balancing the num-
ber of patients and the number of sessions at the same time. We
performed experiments with a completely balanced version of
our dataset for each task, containing only one session per person
and equal numbers of persons per class. For task N/C/A/K/H
the balanced dataset is composed of data from 62 persons from
each class (overall 310 persons, 2480 trials). For taskN/GD the
balanced dataset contained data from 160 healthy controls and
160 persons with a deficit (40 from each GD class, overall 320
persons and 2560 trials). The results of our experiments showed
clear performance improvements of +16.7% in the deviation
from the RB compared to the baseline for task N/C/A/K/H
and +31% compared to the baseline for task N/GD (see the
third row in Table IV).

Other biases in the data may be introduced by variations in
gender, walking velocity, leg length and other parameters [33]
leading to a variability of GRF parameterizations in the indi-
vidual disorder classes. Additional normalization of the input
data may be necessary to reduce intra-class variation and im-
prove classification accuracy. Several studies have shown that in
particular gender causes strong variability in gait signals [34],
[35]. To assess the influence of gender on our results, an ex-
periment was performed on a reduced dataset containing only
data from male participants (note that the number of female
participants in our dataset is not sufficient to perform separate
experiments). Surprisingly, the results did not improve (see the
last row in Table IV). This indicates that for our data, gender
has rather little influence on the results, which, however, does
not imply that the influence of gender can be neglected a priori.
A detailed study on the influence of gender is subject to future
investigation.

IV. CONCLUSIONS

The present study aimed at classifying patients with different
orthopedic gait impairments at the hip, knee, ankle, and calca-
neus from healthy controls using GRF measurements. For this
purpose a dataset of 9,496 gait measurements from clinical prac-
tice was utilized. In a first step we investigated the suitability of
state-of-the-art GRF parameterizations and analyzed their sta-
tistical properties and discriminative power among the classes.
Based on these results, the use of entire GRF waveform param-
eterizations as input (such as PCA), rather than relying on GRF
parameters (DPs and TDPs) seems advisable. Furthermore, the
use of GRF force components paired with the respective COP
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measurements yielded the best results. Our experiments further
showed that balancing the dataset significantly improves re-
sults (e.g. increasing the deviation from the random baseline by
+16.7% for the classification into healthy controls and all four
GD classes and by +31% for distinguishing between healthy
controls and patients).

The presented study shows that results heavily depend on
the employed GRF representation. Future work will investi-
gate and evaluate adaptively learned signal representations [36],
[37] to obtain more discriminative and expressive parameteri-
zations of GRF measurements. Furthermore, we will focus on
establishing a large, open-source, and balanced data set to fos-
ter further developments in this area. Our results thereby pro-
vide a first performance baseline for the classification of func-
tional gait disorders and can serve as a reference for future
improvements.
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(a) FV

(b) FAP

(c) FML

Fig. S1. Mean pattern of the three ground reaction forces (GRF) enveloped
by ± 1 standard deviations for each class. Data normalized by body weight
and 100% stance.

(a) FV

(b) FAP

(c) FML

Fig. S2. Comparison of different PCA representations. The final dimension-
ality of the obtained representations is specified by the amount of variance
preserved in a particular projection, i.e. 98%, 95%, and 90%. Data normalized
by body weight and 100% stance.
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Fig. S3. Boxplots for all 52 GRF parameters. Each boxplot shows the median and the IQR (box) for each class (outliers were removed for better visualization).
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A B S T R A C T

Background: Quantitative gait analysis produces a vast amount of data, which can be difficult to analyze.
Automated gait classification based on machine learning techniques bear the potential to support clinicians in
comprehending these complex data. Even though these techniques are already frequently used in the scientific
community, there is no clear consensus on how the data need to be preprocessed and arranged to assure optimal
classification accuracy outcomes.
Research question: Is there an optimal data aggregation and preprocessing workflow to optimize classification
accuracy outcomes?
Methods: Based on our previous work on automated classification of ground reaction force (GRF) data, a se-
quential setup was followed: firstly, several aggregation methods – early fusion and late fusion – were compared,
and secondly, based on the best aggregation method identified, the expressiveness of different combinations of
signal representations was investigated. The employed dataset included data from 910 subjects, with four gait
disorder classes and one healthy control group. The machine learning pipeline comprised principle component
analysis (PCA), z-standardization and a support vector machine (SVM).
Results: The late fusion aggregation, i.e., utilizing majority voting on the classifier's predictions, performed best.
In addition, the use of derived signal representations (relative changes and signal differences) seems to be ad-
vantageous as well.
Significance: Our results indicate that great caution is needed when data preprocessing and aggregation methods
are selected, as these can have an impact on classification accuracies. These results shall serve future studies as a
guideline for the choice of data aggregation and preprocessing techniques to be employed.

1. Introduction

Gait disorders can affect anyone, regardless of age, and often im-
pede an individual's ability to participate in daily living activities such
as walking and might even reduce movement efficiency in terms of
energy consumption [1,2]. Gait analysis based on ground reaction force
(GRF) assessment is a well-established method to diagnose the me-
chanisms that underlie gait disorders. The quantitative analysis of such
data can provide relevant information for clinicians in diagnosing gait
impairments, planning therapies and surgeries, supporting rehabilita-
tion processes, or evaluating treatment outcomes [3]. However, quan-
titative gait analysis produces a vast amount of data, which are difficult
to comprehend and analyze due to their high-dimensionality, temporal

dependencies, strong variability, non-linear relationships, and inter-
correlations [4]. Therefore, there is growing interest in employing
machine learning techniques that allow for a cost-effective, fast and
objective analysis of large amounts of gait measurements. Recently,
automated gait classification has been successfully used for various
patient groups [5] affected by stroke [6], Parkinson's disease [7], cer-
ebral palsy [8], multiple sclerosis [9], osteoarthritis [10], or by age-
related impairments [11].

Automated classification of gait is, however, a complex task con-
sisting of many different processing steps which have to be carried out
in a methodically correct way and for which various approaches exist.
According to Figueiredo et al. [5] gait pattern recognition comprises the
following main steps: (1) feature extraction, (2) feature normalization,
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(3) feature selection, (4) forming a training and a testing dataset, (5)
training a classification model, and (6) evaluating the performance. To
date, there is no clear consensus on how to proceed in each of these
steps. For tasks (2) to (6), the systematic review by Figueiredo et al. [5]
might serve as a first guideline. For the first step of feature extraction, a
variety of options can be found in the current literature, but so far no
clear recommendation can be derived. However, different approaches
in feature extraction might significantly effect classification accuracies.

Firstly, in the literature on gait classification, several recorded trials of a
subject are usually either averaged to a single waveform [12–14] or all
available trials are provided to a classifier [15,16,10]. To date, it is unclear
which of these data aggregation strategies serves best for gait classification.
Recently, a statistical method based on the notion of depth was suggested
which identifies the most representative trial [17]. This approach, however,
has not been employed in the gait classification community yet.

Secondly, there is no clear consensus on how the raw signals should
be preprocessed and transformed to form an appropriate input feature
vector for the machine learning algorithm. Regarding the available
input data (ground reaction force (GRF) and center of pressure (COP)
components), it is still unclear which form of representation (i.e. raw
data, relative changes, or signal differences) is best suited for machine
learning. Based on our earlier work [18] the two primary aims of this
article are: to (i) evaluate the effects of different data aggregation
methods on gait classification performance and to (ii) investigate which
input representations and combinations of representations perform best
for automated gait classification. To facilitate the comparability of
machine learning approaches and to optimize performance, it is critical
to identify best practice procedures for the individual steps of gait
classification. The results of this article shall serve future studies as a
guideline on machine learning for gait analysis.

2. Methods

2.1. Patients and dataset

The anonymized data used in this study are part of an existing
clinical gait database maintained by a rehabilitation center of the
Austrian Workers’ Compensation Board (AUVA). The AUVA is the social
insurance for occupational risks for more than 3.3 million employees
and 1.4 million pupils and students in Austria. This retrospective study
was approved by the local Ethics Committee of Lower Austria (GS1-EK-
4/299-2014).

The dataset utilized comprises GRF measurements from 728 pa-
tients with gait disorders (GD) and data from 182 healthy controls, both
of various physical composition and gender (see Table 1).The dataset is
balanced regarding the number of persons per class, the number of
recorded sessions per person and the number of trials per person. The
dataset includes gait disorders associated with the calcaneus (n = 182),
ankle (n = 182), knee (n = 182), and hip (n = 182). A well-experi-
enced physical therapist (with more than a decade of clinical experi-
ence) has manually labeled the dataset based on the available medical
diagnosis of each patient. The individual GD classes include patients

after joint replacement surgery, fractures, ligament ruptures, and re-
lated disorders associated with the above-mentioned anatomical areas.
The most common injuries present in the hip class are fractures of the
pelvis and thigh as well as luxation of the hip joint, coxarthrosis, and
total hip replacement. The knee class comprises patients after patella,
femur or tibia fractures, ruptures of the cruciate or collateral ligaments
or the meniscus, and total knee replacements. The ankle class includes
patients after fractures of the malleoli, talus, tibia or lower leg, and
ruptures of ligaments or the Achilles tendon. The calcaneus class
comprises patients after calcaneus fractures or ankle fusion surgery. All
of the injuries mentioned above may occur individually or in combi-
nations within each class.

2.2. Data recording and preprocessing

Gait analysis was performed on a 10 m walkway with two centrally
embedded force plates (Kistler, Type 9281B12). The force plates were
placed in consecutive order, allowing a person to walk across by placing
one foot on each plate. Both plates were flush with the ground and
covered with the same walkway surface material, so that targeting was
not an issue. During a session, participants walked unassisted and
without walking aid at self-selected walking speed until a minimum of
eight valid recordings were available.

All processing steps and subsequent analyses were performed in
Matlab 2017b (The MathWorks Inc., Natick, MA, USA). The three
analog GRF signals, as well as the two COP signals, were converted to
digital signals using a sampling rate of 2000 Hz and a 12-bit analog-
digital converter (DT3010, Data Translation Incorporation, Marlboro,
MA, USA) with a signal input range of ± 10 V. A threshold of 10 N was
used for step detection and 30 N for COP calculation. Raw signals were
filtered using a 2nd order low-pass Butterworth filter with a cut-off
frequency of 20 Hz. All gait measurements were time-normalized to
1000 points (100% stance). Amplitude values of the three force com-
ponents, i.e., vertical (V), medio-lateral (ML), and anterior–posterior
(AP), were expressed as a multiple of body weight by dividing the force
by the product of body mass times acceleration due to gravity.

2.3. Gait classification

The present paper builds upon the general gait classification pipe-
line established by Slijepcevic et al. [18] and uses it as a baseline for the
performed experiments. A schematic illustration of the pipeline is
shown in Fig. 1. In a first step, Principal Component Analysis (PCA) is
applied to the raw input data, i.e. to each input representation sepa-
rately (feature extraction).1 Next, the resulting features, i.e., the prin-
cipal components that retain 98% of the overall variance in the input
data, are concatenated and z-standardized (feature normalization). The
features are provided to a classifier which is trained and evaluated in a
cross-validation manner. For the best parameters found during cross-
validation the model is trained on the entire training set. To account for
generalizability of this model we evaluated it on a completely in-
dependent and unseen dataset (see Figure S1 in the supplementary
material). As demonstrated in [18], Support Vector Machines (SVM) are
a suitable classifier for gait data outperforming several competitors,
e.g., multi-layer perceptrons and the k-nearest neighbors algorithm.
The SVM is trained in a multi-class fashion using a one-vs-one strategy.

2.3.1. Data aggregation methods
Usually, several trials per person are recorded during gait analysis.

Thus, the question arises whether and how the information from these
different trials can be aggregated. Such an aggregation step could be

Table 1
Details on the dataset employed, the demography of the participants and the
pre-defined classes.

Age (yrs.) Body Mass (kg) Sex

Class n Mean (SD) Mean (SD) (m/f) Num. trials

Healthy controls 182 34.3 (14.0) 74.6 (15.8) 94/88 1,456
Calcaneus 182 44.3 (10.5) 86.3 (16.4) 167/15 1,456
Ankle 182 40.6 (10.9) 88.3 (18.2) 151/31 1,456
Knee 182 40.4 (12.3) 86.2 (20.3) 133/49 1,456
Hip 182 40.6 (12.8) 81.5 (15.0) 153/29 1,456
Total 910 40.0 (12.1) 83.4 (17.1) 698/212 7,280

1 For each original input signal and derived representation a PCA is per-
formed on a matrix of size 334 (samples) × t (trials), where t depends on the
considered dataset.
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implemented in an early fusion or a late fusion manner (see Fig. 1). The
former directly affects the input data and thus precedes the feature
extraction step, whereas the latter is directly applied to the classifier's
predictions and affects mostly the classification scheme. Popular early
fusion approaches include: (i) mean waveform, (ii) median waveform,
and (iii) the most representative trial.

The mean waveform approach consists of averaging each measure-
ment from a session (in this case, eight trials) pointwise. The resulting
waveform should result in a more robust representation than the ori-
ginal signals by removing inter-trial variations and retaining the overall
characteristic shape. The median waveform approach is similar but uti-
lizes the point-wise median instead. It is more robust to outliers but
may generate less smooth waveforms than the mean waveform ap-
proach. Both approaches could diminish informative waveform char-
acteristics, or even cause artifacts that provide a distorted representa-
tion [19]. To overcome this problem, Sangeux et al. [17] proposed a
statistical method to determine the most representative trial. Thereby,
this approach assures that original measurement data is used. For ma-
chine learning, however, performance might be affected by the fact that
not all available and potentially essential information is considered. A
schematic illustration of the early fusion approaches is given in Fig. 2.

The late fusion approach utilizes all available original trials for the

training of the model. As a result, the classifier returns one prediction
per trial. These predictions are considered weak because they are based
on individual measurements. The late fusion approach combines these
weak predictions into a strong prediction. A robust approach for the
combination of several predictions is majority voting. The majority vote
is calculated based on the statistical mode, which returns the element
(class label) that occurs most often in a set of predictions. For majority
voting, only predictions with a likelihood of more than 40% for one of
the five classes are used. Thereby, the negative influence of ambiguous
trials is reduced. A schematic illustration of the late fusion approach is
presented in Fig. 2.

To provide a baseline without aggregation of the available data, we
employ all eight trials per person individually during the training and
testing. Thus, each trial was predicted separately, and the information
about the membership of the trial to a specific person was not utilized.

2.3.2. Input representations
We further investigate the expressiveness and suitability of different

input representations for gait classification. Two different types of input
representations are distinguished here: original input signals and derived
signals.

Original input signals comprise the time and body weight

Fig. 1. Illustration of the employed gait classification framework. The dataset consisted of a training set (blue, dashed) and an independent test set (orange, solid).
The latter was used to evaluate the generalizability of our classification.

Fig. 2. (a) Schematic for the early fusion aggregation, i.e., mean, median, and most representative trial (MRT) approaches. Prior to training, the eight signals of one
subject are aggregated by calculating a mean or median waveform, respectively or one trial is selected by MRT. (b) Schematic for the late fusion aggregation, which
employs majority voting. For the training of an SVM, all recorded trials of the subjects are used. For the actual prediction of the test set, majority voting is applied to
obtain a decision at subject level.
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normalized waveforms, i.e., FV, FAP, FML, COPAP, and COPML compo-
nents of the affected (A) and unaffected (U) lower extremity. The af-
fected and unaffected body side were defined by the physical therapist
during data annotation. In case of healthy controls or bi-laterally af-
fected patients the affected side was chosen randomly to avoid a bias.

The derived signal representations are calculated based on the ori-
ginal input signals. Two types of derived signals are investigated: the
approximate first derivative (DA,DU) of each original input signal and
the absolute difference between the input signals of the affected and
unaffected lower extremity (Δ).

Furthermore, the expressive power of different combinations of the
individual signal representations is examined, i.e., the combination of
the original input signals and the derived representations of the affected
and unaffected sides.

2.4. Experimental setup

Prior to the experiments, the dataset was randomly divided into a
training set (65%) and an independent test set (35%), see Fig. 1. This
split remained unchanged for all experiments. The classification ex-
periments utilized a probabilistic SVM with a linear kernel (provided by
the LIBSVM library [20]). For hyper-parameter selection, a grid search
over the regularization parameter C ∈ [2−5;210] was employed. During
the grid search, a five-fold cross-validation was performed on the
training set. After hyper-parameter selection an SVM with the best
parameters was trained on the entire training set. To assess the gen-
eralizability of the methods, the test set was divided into three equally
large and balanced test splits, on which we evaluated the SVM. By using
multiple splits, it was possible to estimate not only the generalization
ability but also the expected variation in performance for different
subsets of test samples. The evaluation was conducted by calculating
four performance measures, i.e. classification accuracy (Acc), precision
(P), recall (R), and F1-score (F1), defined in terms of number of true
positives (TP), true negatives (TN), false positives (FP), and false ne-
gatives (FN) as follows:

= ++ + +Acc TP TN
TP TN FP FN

= + = + = × ×+P R F P R
P R

TP
TP FP

, TP
TP FN

, 1 2

Furthermore, a sequential setup was followed: first, different ag-
gregation methods were examined, and second, based on the best ag-
gregation method the expressiveness of different (combinations of)
signal representations was investigated. All results are reported as mean
(SD), unless otherwise stated.

3. Results

The results of the first experiment investigating different aggregation
methods over several trials are summarized in Table 2. The performances of
the five-fold cross-validation and the evaluation on the independent test set
showed similar trends. This demonstrates the generalization ability of our
method. In the following, we discuss the results of the independent test set,
which are more objective than the results on the training set. The baseline

approach, where all available trials are employed (without aggregation),
yielded an accuracy of 56.5% (2.3) (RB2 : 20%). The use of the median
waveform and MRT did not outperform the baseline performance. Within
the group of early fusion approaches the mean waveform approach showed
the greatest improvement with an accuracy of 58.9% (2.8). The late fusion
approach, i.e., majority voting, achieved the highest absolute scores in all
performance measures (although not statistically significant in this experi-
ment).

The results of the second experiment in which we investigated the
expressiveness of different signal representations on the independent
test set are presented in Table 3 (further performance measures can be
found in the supplementary material). The results obtained during the
five-fold cross-validation follow a trend similar to that of the in-
dependent test set and are presented in the supplementary material.
The first column in Table 3 indicates which components were used in
each experiment: (1) each input signal separately (first five rows), (2)
the combination of all three GRF components (row 6), (3) the combi-
nation of both COP components (row 7), and (4) the combination of all
signals (GRF + COP, last row). For each of these selections, the columns
show which (combinations of) derived representations were employed
for both affected (A) and unaffected (U) sides. Most notably, column {A,
Δ, DA} shows the highest performance for most input configurations (in
six of the eight rows), including also the overall best result with
a classification accuracy of 62% (GRF+COP). For the FML component
(row three), combination {A, DA} provides the best result. The combi-
nation {A, DA, U, DU} provides the best results for the COPML compo-
nent (row four) and the combination of both COP components (row
seven). The comparison between the individual GRF and COP compo-
nents (first five rows) and the three combinations, GRF, COP, and
GRF + COP (last three rows) indicates that the combination of all
components (last row) performed best. Furthermore, incorporating the
information from both legs (via Δ) as well as using the first derivative
(in particular of the affected leg) shows to be beneficial.

4. Discussion

From the first experiment (see Table 2) we observe that achieved
performances of all approaches are higher for the test set than for the
training set. The reason for this is that for experiments on the test set
the SVM was trained on the entire training data with the optimal
parameters determined during cross-validation and grid search. The
improved results on the test set show that additional training data are
beneficial for the classifier. Furthermore, the first experiment indicates
that the inclusion of membership information can be beneficial. Two
aggregation methods, i.e. the mean waveform approach and majority

Table 2
Classification results (%) of the experiment investigating different aggregation methods over several trials (RB: 20%). Highest achieved results are highlighted bold.

Trial selection Five-fold cross-validation on training set Independent test set

Acc P R F1 Acc P R F1

Baseline without aggregation 52.0 (2.0) 51.8 (1.8) 52.7 (2.6) 51.4 (1.7) 56.5 (2.3) 56.2 (2.7) 56.6 (2.3) 56.0 (2.6)
Mean waveform approach 53.9 (5.2) 53.5 (6.5) 54.4 (5.9) 52.7 (5.9) 58.9 (2.8) 59.5 (1.0) 58.6 (2.2) 58.5 (1.8)
Median waveform approach 51.4 (3.3) 51.1 (3.7) 52.0 (3.7) 50.3 (3.8) 56.7 (3.5) 57.9 (2.7) 56.9 (2.9) 56.4 (2.6)
Most representative trial (MRT) 50.1 (2.0) 50.4 (2.1) 50.7 (2.4) 49.0 (2.0) 56.9 (5.3) 57.7 (4.6) 57.0 (4.3) 56.5 (4.8)
Majority voting 55.5 (2.4) 54.4 (2.5) 56.6 (2.3) 54.3 (2.5) 61.0 (2.4) 60.9 (2.9) 61.1 (2.4) 60.1 (2.7)

2 RB refers to the analytical “random baseline” and represents the theoretical
accuracy obtained when assigning class labels randomly, i.e. the case where
nothing is learned from the data. For a balanced dataset the analytical RB is the
reciprocal of the number of classes, i.e. 20% in our case. The empirically esti-
mated RB according to [21] which further takes the sample size into account is
approximately 26% in our case. Every increase over the RB means that the
underlying model has learned something from the data.
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voting, achieved an improvement compared to the baseline where no
aggregation was performed. Specifically, the late fusion approach, i.e.,
majority voting, achieved better results in absolute scores than the early
fusion approaches.

To evaluate the robustness of our approach in more detail, we repeated
the experiment with 10 different (randomly selected) train-test splits. The
results are presented in the supplementary material in Table S1 due to space
limitations. For all 10 repetitions, the previously determined optimal SVM
parameters (obtained from grid search on the original train-test split)
remained unchanged to avoid overfitting. Additional statistical comparisons
on the F1-scores from Table S1 in the supplementary material revealed
that majority voting and the mean waveform approach significantly
outperformed all other methods (see supplementary material for details). In
total numbers and on average, majority voting showed the best
performance results. We assume that this is because in early fusion large
parts of the available input information are removed at an early stage and
are not available during the training process. For late fusion, this is not the
case. Furthermore, a comparison of the baseline method and the late fusion
approach revealed that the aggregation of weak predictions by majority
voting allows for a more accurate prediction at subject level. Majority
voting adds a layer of abstraction to the outputs of the classifier, which
seems to increase robustness. The performance level from the results in
Table S1 (supplementary material) are equivalent to that of Table 2. This
shows that the employed training-test split does not bias the test result in
Table 2.

The conclusion from the first experiment is that as much informa-
tion as possible should be retained during the classification process and
thus late fusion is recommended. Aggregation of information at later
stages of the process seems to be superior to aggregation at an early
stage, as relevant information of the individual trials is lost. The second
experiment suggests that using only the original input signals might not
always be the best choice. In most of our experiments, a combined
representation of input signals and derived representations was ad-
vantageous, especially the combinations {A, Δ, DA} and {A, DA, U, DU}
in Table 3. Considerably lower accuracy was achieved when only the
individual signals (first five rows in Table 3) were used. The use of a
single COP signal (rows 4 and 5) lead to degeneration of the classifier in
some cases, i.e., one class could not be modeled at all by the classifier.
The combination of the three GRF components is considerably more
expressive than the combination of the COP components. The best
choice seems to be a combination of all signals (GRF + COP). This also
supports our previous findings [16,18,22].

We further observed that the signals of the affected side are more
expressive than those of the unaffected side ({A} vs. {U} in Table 3).
This observation contradicts the findings of Williams et al. [23]. The
combination of affected and unaffected input signals improved the re-
sults in five out of eight cases.

The Δ-waveform represents the difference between the affected and
the unaffected side and thus explicitly captures the symmetry between
both sides. When combined with the signals of the affected side, a
moderate increase in accuracy was present in three of eight cases ({A}
vs. {A, Δ}). This result suggests that the classifier is able to derive
symmetry-related information also from the raw input signals and does
not necessarily need it to be explicitly provided. For the unaffected side,

the Δ-waveform provides an improvement in seven of eight cases ({U}
vs. {U, Δ}). Therefore, the Δ-waveform seems to carry important in-
formation. Adding the first derivative as an additional input re-
presentation to the signals of the affected or unaffected side showed
improvements in 30 out of 40 cases (evident by comparing the first five
columns with the last five columns in Table 3).

To obtain additional indicators for the usefulness of the re-
presentations, we conducted further experiments with the overall best
input representation (GRF + COP, last row in Table 3). We have cal-
culated all (25 − 1 =31) possible combinations of A, DA,U,DU and Δ for
the case GRF+COP and examined how often each representation oc-
curs within the best 10 results. The most useful representations seem to
be DA (contained in 8 of the 10 best results) as well as Δ and A (each
contained in 6 of the 10 best results). DU (5/10 results) and U (4/10
results) seem less important.

The overall recommendation that can be derived from these ex-
periments is that the combination of more input signals and input re-
presentations (even when they contain redundant information) can lead
to better results. This is especially true for combining GRF and COP
components but also for using the derivatives of the affected and un-
affected sides. Even though the derivatives represent redundant in-
formation to the original signals, they might still help the classifier to
better grasp class differences. Furthermore, the combination of the af-
fected and unaffected side (either explicitly or implicitly trough Δ)
seems to be beneficial as well. The results of our study provide a first
indication of which signals to use and how to fuse them. Further in-
vestigations with alternative datasets are required to corroborate these
findings.

5. Conclusions

The presented work aims at clarifying which aggregation method
and which signal representations are best suited for the classification of
data obtained from gait analysis (based on GRF assessment).The results
show that the aggregation of several trials of one subject is beneficial
especially when late fusion or mean waveform is used. Furthermore, the
results indicate that the combination of the original signals with de-
rived representations increases the expressive power of the data during
feature extraction and classification. The combination of GRF and COP
components with derived representations, even though they may be
partially redundant, improved classification performance on our data.

Future research will investigate adaptively-learned feature re-
presentations as well as the modeling of relationships within a gait
cycle to derive more expressive representations.
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Table 3
Classification accuracies (%) for different combinations of input signals and derived representations (RB: 20%). Highest achieved results are highlighted bold.

Signals {A} {U} {A,U} {A,Δ} {U,Δ} {A,DA} {U,DU} {A,DA,U,DU} {A,Δ,DA} {U,Δ,DU}

FV 42.6 38.7 47.2 44.9 47.5 47.5 37.1 46.6 48.9 44.3
FAP 44.3 40.7 45.6 42.0 42.3 42.6 40.3 44.3 46.6 45.3
FML 44.3 32.5 44.6 43.3 34.8 45.6 37.7 44.6 44.3 38.4
COPML 28.2 26.9 31.2 26.6 25.3 43.6 34.1 44.9 44.6 35.4
COPAP 36.4 26.9 35.1 40.0 33.1 45.3 30.8 45.3 46.2 35.1
GRF 56.7 45.6 54.4 55.7 46.9 55.1 45.6 55.4 60.0 48.2
COP 37.1 30.8 43.0 41.6 32.1 48.2 34.1 52.8 51.8 36.1
GRF + COP 61.0 47.2 58.7 60.3 49.8 59.3 49.8 61.3 62.0 51.2
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.gaitpost.2019.10.021.
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Abstract

Background: Quantitative gait analysis produces a vast amount of data, which can be difficult to
analyze. Automated gait classification based on machine learning techniques bear the potential
to support clinicians in comprehending these complex data. Even though these techniques are
already frequently used in the scientific community, there is no clear consensus on how the data
need to be preprocessed and arranged to assure optimal classification accuracy outcomes.
Research question: Is there an optimal data aggregation and preprocessing workflow to opti-
mize classification accuracy outcomes?
Methods: Based on our previous work on automated classification of ground reaction force
(GRF) data, a sequential setup was followed: firstly, several aggregation methods - early fusion
and late fusion - were compared, and secondly, based on the best aggregation method identified,
the expressiveness of different combinations of signal representations was investigated. The em-
ployed dataset included data from 910 subjects, with four gait disorder classes and one healthy
control group. The machine learning pipeline comprised principle component analysis (PCA),
z-standardization and a support vector machine (SVM).
Results: The late fusion aggregation, i.e., utilizing majority voting on the classifier’s predictions,
performed best. In addition, the use of derived signal representations (relative changes and signal
differences) seems to be advantageous as well.
Significance: Our results indicate that great caution is needed when data preprocessing and ag-
gregation methods are selected, as these can have an impact on classification accuracies. Our
results shall serve future studies as a guideline for the choice of data aggregation and preprocess-
ing techniques to be employed.

1. Methods

Figure S1 shows how the dataset is split for evaluation purposes during the conducted ex-
periments. We have randomly divided the dataset into a training (65%) and a test set (35%).
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5-fold cross validation is performed on the training set to determine the best parameters for the
employed classifier, i.e. a probabilistic linear support vector machine (SVM), and to evaluate its
dependency on the training data. Once the best configuration for the SVM was determined, it was
trained on the entire training data. The test set was divided into three equal and balanced splits,
which are used to evaluate the generalization ability of the best obtained model on previously
unseen data.

valtrain train train train

train train train trainval

train train train train

train train train trainval

train train train trainval

fold 1 fold 2 fold 3 fold 4 fold 5

val

train set test set

dataset

5-fold cross validation

evaluation on 
independent test set splits

train set

train model with best parameters

t1 t2 t3

t1 t2 t3

Figure S1: The dataset was randomly divided into a training set and an independent test set. For hyper-parameter
selection, a 5-fold cross-validation grid search was employed on the training set. The SVM with the best parameters was
trained on the entire training set and evaluated on the three test set splits.
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2. Results

To further assess the generalizability of the first experiment, i.e. investigating different ag-
gregation methods over several trials, we repeatedly evaluated the experiment with 10 different
train-test splits. Results of these experiments are presented in Table S1. A repeated measures
ANOVA with a Greenhouse-Geisser correction determined that the F1-score differed statistically
significantly between the five methods (F(2.157,19.411) = 15.969, p < 0.001). A Shapiro-Wilk test
confirmed the normal distribution of all variables. Bonferroni-Holm corrected post hoc tests re-
vealed that majority voting was superior to all other methods (p < 0.01), except for the mean
waveform approach. Here the difference between majority voting and the mean waveform ap-
proach slightly missed significance (p = 0.102). The mean waveform approach was superior
to the baseline and median waveform approach, but slightly missed significance for the most
representative trial approach (p = 0.053).

Table S1: Classification results (%) of the experiment investigating different aggregation methods over several trials
evaluated on 10 different train-test splits (RB: 20%).

Trial selection Measure Independent test set (10 different train-test splits) Mean (SD)1 2 3 4 5 6 7 8 9 10

Baseline without aggregation Acc 56.5 53.2 53.2 53.0 56.1 53.7 52.9 55.4 57.2 59.1 55.0 (2.2)
P 55.9 51.7 53.1 52.7 55.8 53.7 52.8 54.3 57.0 58.3 54.5 (2.1)
R 56.5 53.2 53.2 53.1 56.1 53.7 53.0 55.5 57.2 59.1 55.1 (2.1)
F1 56.0 52.1 53.1 52.8 55.8 53.7 52.9 54.6 57.1 58.5 54.7 (2.1)

Mean waveform approach Acc 59.0 55.9 54.6 56.2 56.4 55.4 52.6 55.6 58.4 61.6 56.6 (2.5)
P 58.8 55.0 54.9 56.2 56.3 55.6 52.0 54.9 58.6 60.9 56.3 (2.5)
R 59.0 56.0 54.6 56.3 56.4 55.4 52.7 55.6 58.4 61.6 56.6 (2.5)
F1 58.7 55.2 54.5 55.9 56.2 55.4 52.0 55.1 58.4 61.1 56.3 (2.6)

Median waveform approach Acc 56.7 53.6 52.9 52.9 57.1 53.4 51.0 54.3 59.3 57.4 54.9 (2.6)
P 56.5 52.7 52.9 52.3 57.1 53.7 50.6 53.2 59.0 56.6 54.5 (2.7)
R 56.7 53.7 53.0 53.0 57.1 53.4 51.0 54.3 59.3 57.4 54.9 (2.6)
F1 56.2 52.8 52.7 52.3 56.7 53.5 50.6 53.5 59.1 56.6 54.4 (2.6)

Most representative trial (MRT) Acc 57.1 48.0 50.7 51.3 55.4 56.1 54.3 52.0 53.4 52.1 53.0 (2.8)
P 57.1 47.1 50.7 51.1 55.3 55.3 53.6 51.0 52.7 51.4 52.5 (2.9)
R 57.1 48.1 50.7 51.4 55.4 56.1 54.3 52.1 53.4 52.1 53.1 (2.7)
F1 56.7 47.3 50.7 51.2 55.3 55.6 53.8 51.4 53.0 51.4 52.6 (2.8)

Majority voting Acc 62.6 54.9 55.9 56.2 60.7 56.7 59.5 59.5 62.3 63.6 59.2 (3.1)
P 62.2 52.8 55.5 55.7 60.1 56.5 58.9 58.6 62.0 62.9 58.5 (3.4)
R 62.6 55.0 55.9 56.3 60.7 56.7 59.6 59.6 62.3 63.6 59.2 (3.1)
F1 62.0 52.9 55.5 55.3 60.1 56.5 59.1 58.5 61.9 62.9 58.5 (3.3)
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The following tables contain additional results from our second experiment, where effects of
different combinations of input signals and derived representations were examined. Table S2,
Table S3, Table S4, and Table S5 show the classification accuracy, precision, recall and F1-score
results obtained during 5-fold cross-validation. Table S6, Table S7, and Table S8 show precision,
recall and F1-score results obtained during the evaluation on the independent test set.

Table S2: Mean (SD) of classification accuracy (%) obtained within 5-fold cross-validation for different combinations
of input signals and derived representations (RB: 20%).

Signals {A} {U} {A,U} {A,Δ} {U,Δ} {A,DA} {U,DU} {A,DA,U,DU} {A,Δ,DA} {U,Δ,DU}
FV 44.8 (2.7) 35.9 (1.5) 45.3 (1.8) 47.6 (2.2) 47.1 (2.2) 46.1 (2.7) 35.7 (3.5) 47.6 (1.9) 49.8 (3.1) 47.3 (2.2)
FAP 44.5 (3.8) 38.0 (4.3) 48.3 (1.1) 46.9 (2.1) 44.0 (4.5) 42.5 (2.7) 37.2 (2.2) 45.5 (2.1) 45.6 (2.1) 44.0 (3.2)
FML 40.8 (4.1) 32.2 (4.6) 43.3 (5.4) 45.1 (4.5) 34.9 (2.2) 41.0 (2.1) 33.2 (2.8) 40.7 (4.9) 44.1 (4.4) 36.0 (3.5)
COPML 27.1 (4.2) 25.0 (2.9) 30.2 (5.6) 28.1 (4.4) 25.3 (3.2) 37.9 (4.8) 33.6 (4.1) 40.5 (4.3) 38.0 (6.1) 34.2 (4.0)
COPAP 35.9 (6.2) 26.6 (6.6) 35.7 (6.8) 38.0 (4.1) 31.2 (4.3) 39.2 (2.8) 32.9 (2.2) 43.0 (3.2) 41.0 (2.4) 36.9 (3.8)
GRF 55.2 (2.3) 46.0 (2.1) 55.0 (4.8) 55.9 (3.3) 49.6 (3.3) 54.9 (2.5) 45.8 (1.2) 53.1 (2.5) 55.7 (1.9) 51.2 (4.3)
COP 38.0 (4.6) 29.4 (5.3) 39.8 (4.0) 38.8 (2.9) 31.2 (4.5) 42.1 (3.9) 34.4 (3.4) 46.4 (2.3) 43.1 (3.3) 36.2 (4.0)
GRF + COP 55.4 (3.0) 49.1 (3.6) 55.9 (3.2) 57.9 (3.1) 52.9 (1.9) 55.9 (4.4) 48.6 (1.7) 54.9 (4.1) 57.9 (3.3) 52.7 (2.1)

Table S3: Mean (SD) of precision (%) obtained within 5-fold cross-validation for different combinations of input signals
and derived representations (RB: 20%). If the performance measure is specified as 0, one of the five classes is not modeled
at all by the classifier.

Signals {A} {U} {A,U} {A,Δ} {U,Δ} {A,DA} {U,DU} {A,DA,U,DU} {A,Δ,DA} {U,Δ,DU}
FV 41.1 (3.5) 34.0 (1.7) 43.7 (1.8) 46.1 (2.0) 45.6 (2.3) 44.7 (3.8) 33.1 (4.0) 46.8 (2.2) 48.4 (4.1) 45.5 (1.9)
FAP 41.5 (3.5) 37.5 (3.8) 46.6 (2.4) 44.9 (2.5) 41.6 (5.5) 40.0 (3.2) 34.7 (1.9) 43.5 (2.7) 44.5 (1.3) 40.9 (3.4)
FML 36.8 (3.5) 29.3 (7.7) 41.8 (5.5) 42.3 (5.5) 30.5 (3.0) 38.3 (2.6) 32.6 (4.4) 39.2 (6.0) 42.0 (4.0) 34.5 (3.1)
COPML 5.1 (10.2) 0 (0) 22.1 (12.4) 0 (0) 0 (0) 37.3 (5.1) 32.5 (9.2) 39.3 (4.1) 37.1 (6.7) 33.3 (8.4)
COPAP 34.3 (4.0) 0 (0) 31.0 (7.0) 29.0 (14.7) 7.7 (9.6) 39.2 (2.2) 33.6 (5.6) 41.9 (3.8) 40.3 (1.4) 36.8 (6.7)
GRF 54.2 (2.7) 46.9 (2.7) 54.7 (5.6) 55.4 (3.5) 48.7 (4.2) 54.3 (2.4) 45.7 (1.1) 53.1 (2.6) 54.7 (2.0) 51.1 (5.2)
COP 38.0 (6.6) 0 (0) 38.9 (3.1) 36.3 (2.7) 12.3 (10.3) 41.9 (3.4) 32.8 (2.1) 46.5 (4.0) 43.0 (2.8) 34.0 (3.8)
GRF + COP 54.3 (2.8) 49.0 (2.5) 55.9 (3.3) 57.2 (3.5) 53.0 (3.1) 55.7 (4.5) 48.7 (2.0) 54.7 (4.1) 57.2 (3.1) 52.4 (1.8)

Table S4: Mean (SD) of recall (%) obtained within 5-fold cross-validation for different combinations of input signals
and derived representations (RB: 20%).

Signals {A} {U} {A,U} {A,Δ} {U,Δ} {A,DA} {U,DU} {A,DA,U,DU} {A,Δ,DA} {U,Δ,DU}
FV 45.2 (1.6) 37.0 (3.2) 45.7 (1.8) 48.3 (0.8) 48.2 (3.9) 46.3 (3.1) 36.7 (3.3) 48.0 (1.7) 50.0 (2.6) 48.9 (1.0)
FAP 44.9 (1.9) 39.2 (2.7) 48.9 (2.4) 47.4 (0.5) 45.1 (4.7) 43.0 (2.2) 37.3 (2.0) 45.8 (2.5) 46.3 (2.9) 44.6 (4.1)
FML 41.3 (2.7) 34.1 (5.9) 43.8 (4.5) 45.6 (2.9) 36.0 (2.7) 41.9 (1.5) 35.0 (5.0) 41.5 (4.0) 44.8 (3.0) 37.6 (2.4)
COPML 28.3 (3.0) 25.6 (1.9) 31.0 (2.8) 28.8 (3.1) 26.1 (1.3) 38.6 (4.0) 34.3 (2.1) 41.5 (3.6) 38.6 (4.7) 35.4 (2.0)
COPAP 36.4 (3.7) 26.8 (2.2) 36.0 (4.1) 38.6 (2.6) 31.7 (1.4) 39.5 (2.0) 33.5 (2.1) 43.4 (3.7) 41.5 (2.1) 37.5 (2.0)
GRF 56.1 (3.4) 47.5 (3.1) 56.0 (6.1) 56.6 (2.2) 51.0 (3.8) 55.6 (2.1) 46.4 (2.3) 53.6 (2.9) 56.3 (1.3) 52.8 (3.2)
COP 39.1 (3.9) 29.8 (1.9) 40.6 (3.0) 39.6 (3.0) 31.5 (1.4) 42.3 (4.0) 35.0 (2.0) 47.3 (4.3) 43.6 (3.5) 36.8 (3.1)
GRF + COP 56.3 (3.0) 50.0 (2.2) 56.5 (4.3) 58.2 (2.1) 53.9 (2.9) 56.4 (4.8) 49.2 (2.7) 55.6 (5.3) 58.4 (3.0) 53.7 (2.1)

Table S5: Mean (SD) of F1-scores (%) obtained within 5-fold cross-validation for different combinations of input signals
and derived representations (RB: 20%). If the performance measure is specified as 0, one of the five classes is not modeled
at all by the classifier.

Signals {A} {U} {A,U} {A,Δ} {U,Δ} {A,DA} {U,DU} {A,DA,U,DU} {A,Δ,DA} {U,Δ,DU}
FV 33.9 (17.0) 32.7 (1.9) 43.0 (1.9) 45.4 (2.0) 44.8 (2.6) 44.4 (3.5) 32.6 (4.1) 46.3 (2.1) 48.1 (3.6) 45.4 (2.1)
FAP 41.2 (3.5) 34.8 (4.9) 45.8 (1.3) 44.5 (2.4) 41.0 (4.5) 39.7 (2.9) 27.4 (13.8) 43.4 (2.4) 43.7 (1.9) 32.9 (16.7)
FML 36.5 (4.2) 5.8 (11.6) 40.7 (6.2) 41.8 (5.3) 18.7 (15.4) 37.5 (2.8) 30.8 (2.9) 38.6 (5.9) 41.1 (4.8) 33.3 (3.7)
COPML 0 (0) 0 (0) 11.0 (13.7) 0 (0) 0 (0) 35.8 (5.3) 17.8 (14.8) 37.8 (4.2) 35.8 (6.6) 12.0 (14.9)
COPAP 23.8 (12.9) 0 (0) 14.0 (17.1) 20.6 (16.9) 0 (0) 36.9 (2.3) 28.1 (2.2) 40.6 (3.1) 38.3 (2.1) 26.5 (13.6)
GRF 54.1 (2.6) 44.8 (2.5) 54.3 (5.3) 54.9 (3.2) 48.4 (3.6) 53.8 (2.2) 44.7 (1.4) 52.6 (2.8) 54.5 (1.8) 50.4 (4.8)
COP 27.8 (14.5) 0 (0) 36.7 (2.8) 34.3 (3.0) 0 (0) 40.4 (3.1) 30.6 (3.5) 45.0 (2.9) 41.6 (2.8) 32.8 (4.5)
GRF + COP 54.1 (3.0) 48.0 (3.2) 55.3 (3.2) 56.7 (3.1) 51.8 (2.2) 55.0 (4.3) 47.8 (1.7) 54.3 (4.3) 56.9 (2.9) 51.8 (1.8)
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Table S6: Precision (%) for different combinations of input signals and derived representations obtained on the indepen-
dent test set. If the performance measure is specified as 0, one of the five classes is not modeled at all by the classifier.

Signals {A} {U} {A,U} {A,Δ} {U,Δ} {A,DA} {U,DU} {A,DA,U,DU} {A,Δ,DA} {U,Δ,DU}
FV 40.3 35.9 45.4 42.8 46.0 46.1 35.4 46.7 48.9 44.3
FAP 40.6 40.3 43.8 37.6 42.2 41.6 42.1 43.6 45.2 45.5
FML 40.2 29.5 42.0 38.9 32.8 43.5 37.2 42.5 41.6 35.7
COPML 0 0 23.4 0 0 42.9 34.2 42.6 43.7 34.3
COPAP 33.7 0 30.8 35.4 27.6 44.1 25.9 43.8 44.3 31.3
GRF 55.8 44.8 54.0 54.6 45.8 54.5 44.8 55.8 59.6 47.6
COP 32.0 49.7 41.5 40.6 34.4 47.7 32.8 52.7 50.9 30.8
GRF + COP 60.9 45.8 58.2 59.5 49.2 59.0 48.9 61.5 61.5 50.8

Table S7: Recall (%) for different combinations of input signals and derived representations obtained on the independent
test set (RB: 20%).

Signals {A} {U} {A,U} {A,Δ} {U,Δ} {A,DA} {U,DU} {A,DA,U,DU} {A,Δ,DA} {U,Δ,DU}
FV 42.6 38.7 47.2 44.9 47.5 47.5 37.1 46.6 48.9 44.3
FAP 44.3 40.7 45.6 42.0 42.3 42.6 40.3 44.3 46.6 45.3
FML 44.3 32.5 44.6 43.3 34.8 45.6 37.7 44.6 44.3 38.4
COPML 28.2 26.9 31.2 26.6 25.3 43.6 34.1 44.9 44.6 35.4
COPAP 36.4 26.9 35.1 40.0 33.1 45.3 30.8 45.3 46.2 35.1
GRF 56.7 45.6 54.4 55.7 46.9 55.1 45.6 55.4 60.0 48.2
COP 37.1 30.8 43.0 41.6 32.1 48.2 34.1 52.8 51.8 36.1
GRF + COP 61.0 47.2 58.7 60.3 49.8 59.3 49.8 61.3 62.0 51.2

Table S8: F1-score (%) for different combinations of input signals and derived representations obtained on the indepen-
dent test set. If the performance measure is specified as 0, one of the five classes is not modeled at all by the classifier.

Signals {A} {U} {A,U} {A,Δ} {U,Δ} {A,DA} {U,DU} {A,DA,U,DU} {A,Δ,DA} {U,Δ,DU}
FV 39.3 35.6 45.8 43.5 46.0 46.4 35.5 46.3 47.9 43.0
FAP 41.2 38.6 43.5 38.8 40.4 41.5 38.8 43.7 45.2 44.2
FML 38.6 27.6 41.6 38.8 30.2 43.3 35.2 42.3 41.5 35.7
COPML 0 0 0 0 0 41.4 27.8 42.5 42.3 29.5
COPAP 28.8 0 29.7 33.5 22.8 43.2 25.2 43.4 43.8 29.7
GRF 55.4 45.0 54.1 55.0 46.1 54.6 44.9 55.4 59.6 47.7
COP 30.9 21.4 39.0 38.0 23.4 46.5 31.7 51.3 50.5 31.4
GRF + COP 60.7 46.1 58.3 59.7 49.3 59.0 49.1 61.2 61.7 50.7

5
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Machine Learning (ML) is increasingly used to support decision-making in the healthcare sector. While ML approaches pro-
vide promising results with regard to their classification performance, most share a central limitation, their black-box charac-
ter. This article investigates the usefulness of Explainable Artificial Intelligence (XAI) methods to increase transparency in au-
tomated clinical gait classification based on time series. For this purpose, predictions of state-of-the-art classification methods
are explained with a XAI method called Layer-wise Relevance Propagation (LRP). Our main contribution is an approach that
explains class-specific characteristics learned by MLmodels that are trained for gait classification. We investigate several gait
classification tasks and employ different classification methods, i.e., Convolutional Neural Network, Support Vector Machine,
and Multi-layer Perceptron. We propose to evaluate the obtained explanations with two complementary approaches: a statis-
tical analysis of the underlying data using Statistical Parametric Mapping and a qualitative evaluation by two clinical experts.
A gait dataset comprising ground reaction force measurements from 132 patients with different lower-body gait disorders and
62 healthy controls is utilized. Our experiments show that explanations obtained by LRP exhibit promising statistical prop-
erties concerning inter-class discriminativity and are also in line with clinically relevant biomechanical gait characteristics.
CCS Concepts: • Computing methodologies→ Neural networks; • Applied computing→ Health care information
systems;
Additional Key Words and Phrases: Explainable artificial intelligence, clinical gait analysis, human gait classification, layer-
wise relevance propagation, statistical parametric mapping, ground reaction forces, convolutional neural networks
ACM Reference format:
Djordje Slijepcevic, Fabian Horst, Sebastian Lapuschkin, Brian Horsak, Anna-Maria Raberger, Andreas Kranzl, Wojciech
Samek, Christian Breiteneder, Wolfgang Immanuel Schöllhorn, and Matthias Zeppelzauer. 2021. Explaining Machine Learn-
ing Models for Clinical Gait Analysis. ACM Trans. Comput. Healthcare 3, 2, Article 14 (December 2021), 27 pages.
https://doi.org/10.1145/3474121

1 INTRODUCTION
Artificial Intelligence (AI) and Machine Learning (ML) techniques have become almost ubiquitous in our
daily lives by supporting or guiding our decisions and providing recommendations. Impressively, there are cer-
tain medical tasks, such as the detection of skin or breast cancer, that ML approaches have already been able to
solve more efficiently and effectively than humans [16, 21, 42]. Therefore, it is not surprising that ML approaches
are currently becoming popular in the healthcare sector [73]. This trend has also been recognized in the field
of clinical gait analysis (CGA) [18, 61]. CGA focuses on the quantitative description and analysis of human
gait from a kinematic (i.e., joint angles), kinetic (i.e., ground reaction forces and joint moments), and muscular
(i.e., electromyographic activity) point of view [9, 79]. Thereby, CGA produces a vast amount of data [22, 54],
which are difficult to comprehend due to their multi-dimensional and multi-correlated nature [13, 80]. In recent
years, ML methods have been successfully employed in CGA for the classification of patient groups [18, 61],
such as stroke [36], Parkinson’s disease [76], cerebral palsy [74], multiple sclerosis [3], osteoarthritis [50], and
patients suffering from different functional gait disorders [66]. While ML approaches yield promising results re-
garding classification performance, most share a central limitation, which is their black-box character [1]. This
means that even if the underlying mathematical principles of these methods are understood, it is often unclear
why a particular prediction has been made and if meaningfully grounded patterns have led to this prediction.
Additionally, the black-box character hinders ML approaches to provide justifications of their predictions. This is,
however, necessary for compliance with legislation such as the General Data Protection Regulation (GDPR,
EU 2016/679) [1, 17, 23]. These factors currently limit the application of ML-based decision-support systems in
medical practice [26, 59].
Due to the aforementioned reasons, the field of Explainable Artificial Intelligence (XAI) gained increasing

attention in recent years. Different approaches have been proposed (see Section 2: Related work). In general,
XAI methods intend to illustrate how complex and non-linear ML models operate and how they produced their
predictions. However, explanation is understood in the sense of providing more differentiated insights into the
behaviour of ML models to fathom the dependence of the results on input variables (without claiming to give
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causation). Even though research in XAI is still in an early stage, the application of such approaches in medicine
has already raised attention [26, 72]. Themotivation is to increase the traceability of MLmodels and trust in them
among medical professionals [27]. However, the application of XAI methods to the field of CGA remains to be
investigated. A first step in this direction has recently been taken by Horst et al. [29] for explaining predictions
in gait-based person recognition.
The primary aim of this article is to investigate and explain which class-specific characteristics ML models

learn from CGA data, i.e., time series. For this purpose, we train several classification models for different gait
classification tasks and extract prediction explanations from the trained models via Layer-wise Relevance
Propagation (LRP). Subsequently, the explanations of the individual predictions are aggregated to obtain class-
specific model explanations. The assessment of the resulting explanations is, however, a challenge, since no
ground truth exists for automatically generated explanations in CGA. In contrast to images, which are more
frequently subject to explainability studies [2, 19, 57, 58], the evaluation of explanations becomes particularly
challengingwhen the input signals aremore abstract and thus not straightforward to interpret, as often is the case
with biomedical signals. Recently, it has been shown that XAI approaches do not necessarily refer to the actual
prediction of the classification model and sometimes even build upon unrelated information [2]. Thus, a more
comprehensive investigation of explanations obtained by XAI methods is necessary to verify whether they are
meaningful and justified. To account for the above-mentioned challenges, we suggest a two-step approach for the
evaluation of the obtained explanations. First, we analyze the discriminatory power of the obtained explanations
from a statistical perspective. For this purpose, we leverage Statistical Parametric Mapping (SPM) [51], a
method building upon randomfield theory, to derive statistical measures alongwith the input signals and thereby
investigate how statistically justified the obtained explanations are. Second, two experienced clinical experts
interpret the explainability results from a clinical perspective to evaluate whether obtained explanations match
characteristics from clinical practice.
Our investigation focuses on two leading research questions:
(1) Which input features or signal regions are most relevant for automatic gait classification?
(2) To what extent are input features or signal regions identified as being relevant for a given gait classification

task statistically justified and in line with clinical assessment?
In addition to these two leading questions, we investigate several further aspects that may influence classi-

fication performance as well as explainability in more detail, including the influence of different classification
methods, the impact of data normalization, and the role of different input signal components (i.e., the horizontal
forces, measurements of the affected leg, and measurements of the unaffected leg). We perform our investigation
on the GaitRec dataset [28], which contains ground reaction force (GRF)measurements from clinical practice.
We design prediction models for different gait classification tasks and derive possible explanations from the re-
sulting models that are based on relevance scores. These relevance scores are directly related to specific regions
in the input signal. Subsequently, we analyze the explanations from a statistical as well as a clinical perspec-
tive. The results show that explanations share promising statistical properties concerning class discriminativity
and thus indicate that predictions are grounded on statistically justified information for the task. Further, we
show that input features considered as relevant can also be interpreted as meaningful and clinically relevant
biomechanical gait characteristics. Overall, our investigation demonstrates the usefulness of XAI in the domain
of gait classification, exemplifies how to apply XAI methods to gait measurement data, and suggests approaches
to evaluate their quality. The performed study suggests that XAI methods can be useful to better understand
and interpret automatic predictions in clinical gait analysis and thus has the potential to yield an added value
for clinical practice in the future.

2 RELATED WORK
Methods from XAI can be grouped according to the type of explanation they provide. We distinguish between
XAI approaches for (i) data exploration, (ii) prediction explanation, and (iii)model explanation based on
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an adaptation of the taxonomy introduced by Arya et al. [6]. In the following, we briefly introduce the three
different types of approaches and their capabilities.
Data exploration includes methods from the fields of visual analytics, statistics and unsupervised machine

learning. As such, the methods are not capable of explaining a model but rather the data on which the model is
trained. Thesemethods focus on projecting the data into a space where it is possible to findmeaningful structures
or clusters and thus understand the data in more detail. A popular approach for data exploration introduced
by Maaten and Hinton [39] is t-distributed Stochastic Neighbor Embedding (t-SNE), which projects high-
dimensional data into a lower-dimensional and visualizable space. The projection is performed in a way that
the cluster structure in the original data space is optimally exposed. Thereby, an understanding of the data and
the identification of typical patterns and clusters in the data is facilitated. Other approaches in this category are
visual analytics approaches that employ advanced techniques for the interactive visualization of data to support
data exploration, i.e., finding characteristic patterns or dependencies within data [75, 77].
Prediction explanation aims at explaining the local behavior of a model, i.e., the prediction for a given

input instance. For a classification task, these methods can provide, for example, explanations about which part
of the input influenced the classifier’s prediction the most. For classification of gait data, the explanation should
highlight all relevant signal regions and characteristic signal shapes in the input data, which are associated with a
particular gait disorder. Two main categories can be distinguished for explaining the local behavior of a machine
learning model: (i) self-explaining models and (ii) post-hoc methods.

Self-explaining models integrate components that learn relationships between input data and predictions dur-
ing training. Simultaneously, they learn how these relationships relate to terms from a predefined dictionary
and consequently generate explanations from them. A self-explaining approach that does not visually highlight
relevant regions in input data but generates textual explanations was proposed by Hendricks et al. [24]. This
self-explaining model combines aConvolutional Neural Network (CNN) and aRecurrent Neural Network
(RNN). The CNN learns discriminative features to perform a classification task, while the RNN generates tex-
tual explanations of the prediction. This approach cannot be applied to a previously trained model in a post-hoc
manner, which limits its practical applicability.

Post-hoc methods provide much greater applicability, as they can be applied to already-trained models.
These methods can be further categorized into (i) propagation-based, (ii) perturbation-based, and (iii) Shapley-
value-based methods. Propagation-based methods determine the contributions of each input feature by (back-)
propagating some quantity of interest from the model’s output layer to the input layer. Sensitivity Analy-
sis [82, 83] has been introduced to Support Vector Machines (SVMs) [8] and CNNs [65] in the form of
saliency maps. Layer-wise Relevance Propagation (LRP) [7, 44] and Deep Learning Important FeaTures
(DeepLIFT) [63] are methods that propagate importance scores from the output layer back to the input, thereby
enabling the identification of positive and negative evidences for a specific prediction. Sensitivity Analysis and
the therewith obtained explanations, in general, suffer from the effects of shattered gradients [10], especially
so in more complex (deeper) networks. Modern approaches to CNN explainability, such as LRP or DeepLift, do
not have this problem and work well for a wider range of network architectures and models in general [32, 46].
Perturbation-based methods, such as those introduced by Fong and Vedaldi [19] or Zintgraf et al. [81], treat the
model as a black box and estimate the importance of input features by (partially) occluding the input and mea-
suring the effect on the model output. While some methods produce explanations directly from a perturbation
process, others employ a learning component, e.g., the Interpretable Model-agnostic Explanations (LIME)
method [55], to estimate locally interpretable surrogate models mimicking the prediction process of the black-
box model. Perturbation-based methods can be considered to be model-agnostic, as they do not require access
to internal model parameters or structures to operate. However, this model-agnosticism is bought at a consid-
erable computational cost, compared to propagation-based approaches. Shapley-value-based methods are rooted
in game theory [84] and attempt to approximate the Shapley values of a given prediction. For this purpose,
the effect of omitting an input feature is examined, taking into account all possible combinations of other input
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features, which can be included or excluded [71]. Lundberg and Lee [38] proposed the SHapley Additive exPla-
nations (SHAP) method, which is a unified approach building upon the theory of Shapley values and existing
propagation-based and perturbation-based methods, e.g., LIME, DeepLIFT, and LRP.
Model explanation provides an interpretation of what a trained model has learned, i.e., the most character-

istic representations or prototypes for an entire class are visualized (e.g., a class of gait disorders in CGA). These
methods can indicate which classes overlap and point out ambiguous input features. In addition to saliency maps,
Simonyan et al. [65] proposed a method for generating a representative visualization for a specific class that was
learned by a CNN. For this purpose, they applied activation maximization, i.e., starting with a blank image, each
pixel is changed by utilizing back-propagation so the activity of a neuron is increased. The resulting visualiza-
tions give a first impression about the patterns learned but are highly abstract and can only be interpreted to
a limited extent. To generate visualizations that are easier to interpret, Nguyen et al. [48] proposed a method
to constrain the optimization process by image priors that were learned automatically. Lapuschkin et al. [35]
proposed the Spectral Relevance Analysis (SpRAy), which summarizes a model’s learned strategies by ana-
lyzing similarities and dissimilarities over large quantities of input relevance maps computed with respect to a
category of interest.
For gait classification, prediction explanation is desirable to provide clinical experts with detailed information

about which patterns in the input signals are important for a specific prediction. Additionally, based on aggre-
gations of these explanations, differences between patient groups can be assessed, i.e., in terms of class-specific
model explanations. In this context, post-hoc methods are preferable, because they provide a classifier-agnostic
approach (can be applied to any classification model) and do not require retraining or additional labels. We,
therefore, choose an established post-hoc explainability method, i.e., LRP, in our experiments.

3 APPROACH AND METHODOLOGY
The general approach we followed in this study was to design and train classification models for automated gait
classification tasks (see Figure 1(B)) based on three-dimensional ground reaction forces (GRFs) of both legs
(see Figure 1(A)), to explain the predictions of these models based on relevance scores that are related to the
input signal space by using LRP (see Figure 1(C)) and to evaluate these results from a statistical (see Figure 1(D))
and a clinical perspective (see Figure 1(E)). The experimental setup, including a detailed description of the data
(pre-) processing and classification pipeline, can be found in Section 4.

3.1 Gait Classification
The main task in automated gait classification is to determine whether a person has a healthy or pathological
gait pattern based on gait measurements. We employed three-dimensional GRFs of the affected and unaffected
sides as input signals and investigated the classification performance of several state-of-the-art classification
methods. Furthermore, the input signals were fed directly into the classification models. This ensures that the
results of the employed explainability method (LRP) can be directly mapped to the original signals. For easier
interpretation of the XAI results, we refrained from using data reduction techniques such as, e.g., Principal
Component Analysis (PCA), which is a common practice in automated gait classification [12, 22, 68].

3.2 Prediction Explanation
We employed Layer-wise Relevance Propagation (LRP) for prediction explanation [7] as a propagation-based
post-hoc method that provides explanations in the input space, which is the space where the signals are usually
interpreted by experts in clinical practice. LRP reversely iterates over the layered structure of an ML model to
produce an explanation. Consider a neural network:

f (x ) = fL ◦ · · · ◦ f1 (x ). (1)
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Fig. 1. Overview of our workflow for data acquisition, prediction, and prediction explanation in automated gait classification,
showing the data of one participant belonging to the knee disorder class. (A) The clinical gait analysis consists of five
recordings of each participant walking barefoot (unassisted) a distance of 10 m at a self-selected walking speed. Two centrally
embedded force plates capture the three-dimensional ground reaction forces (GRFs) during the stance phase of the right
and left foot. (B) The GRF comprising the medio-lateral (GRFML), anterior-posterior (GRFAP ), and vertical (GRFV ) force
components of the affected and unaffected side are used as time-normalized and concatenated input vector x (1 × 606-
dimensional) for the prediction of the knee disorder class using a classifier (e.g., CNN). (C) Decomposition of input relevance
scores is achieved using LRP. The color spectrum for the visualization of input relevance scores of the model predictions is
shown in the bottom right corner. Black line segments are irrelevant to the model’s prediction. Warm hues identify input
segments causing a prediction corresponding to the class label, while cool hues are features contradicting the class label. (D)
Statistical and (E) Clinical evaluation of class-specific (averaged) relevance scores.

An SVM model can be regarded as a single-layer neural network and thus a special case of Equation (1). In
a forward pass, activations are computed at each layer fl of the neural network, depending on the learned
parameters of the model and the previous layers’ activations. The activation score in the output layer fL forms
the prediction f (x ), which is then, for a specific class and neuron of interest, back-propagated and redistributed
layer by layer until the input is reached. Themethod yields time- and signal-resolved input relevance scoresRi for
each individual value of the input vectorxi . The redistribution process follows a conservation principle analogous
to Kirchhoff’s laws in electrical circuits, i.e., all relevance assigned to any neuron during the back-propagation
process is redistributed without loss to its inputs in the underlying layer. The relevance back-propagation flow
is illustrated in Figure 2.
Various purposeful propagation rules have been proposed in the literature [7, 32, 44]. For example, the

LRPε rule [7] is defined as:

R j←k =
zjk

zk + ε · sign(zk )Rk , (2)

where zjk = ajw jk is the quantity propagated from the jth input neuron to the kth output neuron within a given
layer, depending on the input activation aj and the learned weight parameters w jk . The zk =

�
j zjk is the pre-

activation of the kth output neuron, aggregating all forward-propagated zjk , which includes any potential bias
terms. The variable ε ≥ 0 is a free parameter to tune the decomposition rule with the intent to suppress noisy
forward activations zjk and divisions by zero.1 Equation (2) redistributes Rk proportionally based on the relative
contribution of zjk to zk towards all input components j. After the step of relevance decomposition, lower layer

1Note that for this purpose the sign function is defined as: sign(x ) = 1 iff. x ≥ 0; else − 1; [7].
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Fig. 2. Illustration of the LRP back-propagation procedure applied to a neural network function f (x ) = fL ◦ · · · ◦ f1 (x ).
The prediction at the output is propagated backward in the network, until the input features are reached and relevance
scores are obtained for all input features and hidden units as Ri , Rj , and Rk , respectively. The propagation flow is shown in
red color.

neuron relevance is aggregated from incoming relevance messages as R j =
�

k R j←k . Other propagation rules,
such as LRPγ [44], LRPα β , LRPzB , or LRP� , are suitable for other application scenarios, layer types, or particularly
deeper neural networks [32, 44, 58] and have been shown to work well in practice [57].
LRP enables to explain the prediction of an ML model as partial contributions of an individual input value.

LRP indicates which information a model uses to predict in favor or against an output class. Thereby, it enables
the interpretation of input relevance scores and their dynamics as representation for a certain class (i.e., healthy
controls or functional disorders in ankle, knee, or hip).
For the explanation of predictions, we decomposed the input relevance scores of each gait trial with LRP.

To analyze patterns learned for a specific class, we used LRP to decompose the ground truth label (and not
necessarily the predicted value) of the trial. For the visualization of the explanations, we averaged the underlying
GRF signals and the resulting input relevance scores over all trials of a class.
Given that the models investigated in this study are comparatively shallow and are largely unaffected by

detrimental effects such as gradient shattering [10, 44, 45], we performed relevance decomposition according to
LRPε with ε = 10−5 in all layers across the different models (except for the CNN for which we employed the
LRP� rule at the input layer, which uniformly distributes a neuron’s relevance score Rk across its receptive field,
disregarding any applied transformationsw jk or input activations aj ) [32].

3.3 Statistical Evaluation
To evaluate the derived relevance scores of LRP, we employed Statistical Parametric Mapping (SPM) [51, 52],
which recently received increased attention in the gait analysis community [11, 49]. While standard inference
statistical approaches tend to reduce time-continuous signals to single time-discrete values for statistical testing,
SPM allows to use the entire time-continuous signals to make probabilistic conclusions. It follows the same
notion and logic as classical inference statistics. The main advantages of SPM are that the statistical results are
presented in the original sampling space and that there is no need for a (potentially biasing) parameterization
technique [51, 52]. Since the LRP explanations and the results of SPM reside in the same space (the input signal
space), we can leverage SPM to demonstrate the meaningfulness of LRP explanations from a statistical point of
view.
LRP and SPM can both be considered explainability approaches, however, they target different goals. SPM

fits linear models (e.g., general linear models) to the data and tries to explain differences in the data (i.e., differ-
ences between groups or classes). SPM can thus be considered a data-centric explainability method. LRP tries to
explain the inner working of complex (non-linear) models and can thus be considered a model-centric explain-
ability method. Both methods are thus complementary to each other. Another difference is that LRP can explain
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Table 1. Demographic Details of the Employed Dataset for Each Pre-defined Class

Classes N Age (yrs.)
Mean (SD)

Body Mass (kg)
Mean (SD)

Gender
(m/f)

Walking Speed
(m/s)

Num.
Trials

Healthy Control 62 36.0 (10.8) 72.3 (15.0) 28/34 4.1 (0.3) 310
Hip 37 44.2 (12.5) 81.4 (14.1) 31/6 3.7 (0.3) 185
Knee 52 43.5 (13.8) 85.6 (16.4) 37/15 3.5 (0.4) 260
Ankle 43 42.6 (10.9) 91.6 (20.4) 36/7 3.4 (0.4) 215
Total 194 41.1 (12.4) 81.9 (18.0) 132/62 3.7 (0.5) 970

individual model predictions (even without using ground-truth information), while SPM explains data charac-
teristics by taking the ground truth information (group or class information) into account. As part of Section 6.3,
we will discuss the results obtained with both approaches to address the additional value of LRP in CGA.
For the statistical evaluation, we computed independent t-tests using the SPM1D2 package provided by

Pataky [52] for Matlab and investigate differences between each GRF signal between two classes (for visual-
ization purposes, we concatenated the results obtained on each GRF component). To take into account the de-
pendence of SPM results on the choice of a distinct alpha level, we performed experiments with three different
alpha levels: 0.01, 0.05, and 0.1. The output of SPM provides t-values for each point of the investigated time series
and the threshold corresponding to the chosen alpha level. The t-values exceeding this threshold indicate statis-
tically significant differences in the corresponding sections of the time series. For a better visibility, we depicted
these significant sections as gray-shaded areas in Figure 5 and Figure 6. We used three different shades of gray
for the three different alpha levels, i.e., dark gray for 0.01, gray for 0.05, and light gray for 0.1. Additionally, we
computed the effect size by transforming the resulting t-values to Pearson’s correlation coefficient r using the
definition by Rosenthal [56]. The effect size provides an indicator for the discriminativeness of a given signal
region independent of the alpha level.

3.4 Clinical Evaluation
To evaluate the derived relevance scores of LRP from a clinical perspective, two clinical experts with more than
10 and more than 25 years’ experience in human gait analysis analyzed the explainability results. The experts
evaluated the extent to which regions with the highest input relevance scores correspond to GRF characteristics
from clinical practice and assessed the usefulness of explainability approaches for CGA.

4 EXPERIMENTAL SETUP

4.1 Data Recording and Dataset
For the gait classification task, we utilized a subset of the large-scale GaitRec dataset [28]. This dataset is
part of an existing clinical gait database maintained by a local Austrian rehabilitation center. Before conduct-
ing our experiments approval was obtained from the local Ethics Committee (#GS1-EK-4/299-2014). The em-
ployed dataset contains bilateral three-dimensional GRF recordings of patients and healthy controls walking
unassisted at self-selected walking speed on an approximately 10 mwalkway with two centrally embedded force
plates (Kistler, Type 9281B12, Winterthur, CH). Data were recorded at 2,000 Hz, filtered with a zero-lag Butter-
worth filter of 2nd order with a cut-off frequency of 20 Hz, time-normalized to 101 points (100% stance phase),
and amplitude-normalized to 100% body weight. During one session, participants walked barefoot or in socks
until a minimum of five valid recordings were available. Recordings were defined as valid by an experienced
assessor.

2SPM1D v.0.4, http://www.spm1d.org/.
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Fig. 3. Visualization of vertical (left panel), anterior-posterior (central panel), and medio-lateral (right panel) force com-
ponents of the body weight-normalized GRF measurements of the affected side available per participant and class. For
healthy controls, all available measurements are visualized. Mean and standard deviation signals (calculated per class) are
highlighted as solid and dashed colored lines.

In total, the dataset comprises GRF measurements from 132 patients with lower-body gait disorders (GD)
and data from 62 healthy controls (HC), both of various physical composition and gender. The dataset includes
three classes of orthopaedic gait disorders associated with the hip (H , N = 37), knee (K , N = 52), and ankle (A,
N = 43). For class-specific demographic details of the data, refer to Table 1. The dataset is balanced regarding
the number of recorded sessions per person and the number of trials per person. Figure 3 shows an overview
of all GRF measurements of the affected side (except for healthy controls where each step is visualized) per
class and the associated mean and standard deviation. The GD classes (A, H , and K ) include patients after joint
replacement surgery, fractures, ligament ruptures, and related disorders associated with the above-mentioned
anatomical areas. A well-experienced physical therapist with more than a decade of clinical experience manually
labeled the dataset based on the available medical diagnosis of each patient.
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4.2 Input Data Preparation
The input data for each classification task is a concatenated version of the three-dimensional GRF signals from
both force plates (see Figure 1). The concatenation of all six GRF signals (three force components per force plate)
results in a 1 × 606-dimensional input vector for each gait trial. The three-dimensional GRF signals are the
medio-lateral horizontal force (GRFML), anterior-posterior horizontal force (GRFAP ), and vertical force (GRFV ).
The dataset includes only unilateral gait disorders, i.e., disorders where the main physical limitation can be
attributed to one leg (the affected leg/side in the following). The signal components of the affected leg (input
features: 1 to 303) are concatenated first and are followed by the signal components of the unaffected leg (input
features: 304 to 606) in the input vector. For the healthy controls there is no affected and unaffected side (both
sides are unaffected). Thus, the order of the signals was randomly assigned, while ensuring an equal distribution,
to avoid any bias regarding the side.

4.3 Data Normalization
Normalization of input vectors is applied to ensure an equal contribution of all six GRF signals to the classification
models and thus avoids that signals with larger numeric ranges dominate those with smaller numeric ranges
[14, 31]. We applied min-max normalization to the input signals and thereby scaled each signal to the range
[0, 1]. The global minimum and maximum values were determined separately for each of the six GRF signals
over all trials.

4.4 Classification Tasks
We investigate different classification tasks on the dataset introduced above to provide a more comprehensive
picture of the investigated problem and to enable the differentiation between task-specific and general observa-
tions. Classification tasks include:
• binary classification between healthy controls and all gait disorders (HC/GD),
• binary classification between healthy controls and each gait disorder separately (i.e., HC/H , HC/K , and
HC/A),
• multi-class classification between healthy controls and all gait disorders (HC/H/K/A),
• and multi-class classification between all gait disorders (H/K/A).

4.5 Classification Methods
In our experiments, three representative machine learning approaches, i.e., (linear) SVM, MLP, and CNN were
compared in terms of prediction accuracy and learned input relevance patterns. The SVM models were trained
using a standard quadratic optimization algorithm, with an error penalty parameterC = 0.1 and �2-constrained
regularization of the learned weight vector w . The MLP models comprised three consecutive fully connected
layers with ReLU non-linearities activating the hidden neurons and a final SoftMax activation in the output
layer. The size of both hidden layers is 768, whereas the size of the output layer is c , where c is the number of
target classes. The CNN models process the given data via three consecutive convolutional layers, with a <filter
size>-<stride>-<output channel> configuration of 8-2-24, 8-2-24, and 6-3-48, and ReLUs for non-linear neuron
activation. The resulting 48 × 48 feature mapping is then unrolled into a 2,304-dimensional vector and fed into
a fully connected layer, which directly maps to the model output. This fully connected layer is topped with a
SoftMax output activation, which is acting as a multi-class predictor output towards the c target classes. Both,
the MLP and CNN models, have been trained via standard error back-propagation using stochastic gradient de-
scent [37] and a mean absolute (�1) loss function. The training procedure was executed for 3 · 104 iterations of
mini batches of five randomly selected training samples and an initial learning rate of 5 · 10−3. The learning rate
was gradually decreased after every 104-th training iteration to 10−3 by a factor of 0.2 and then to 5 · 10−4 by a
factor of 0.5. Model weights were initialized with random values drawn from a normal distribution with μ = 0
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and σ =m− 12 , wherem is the number of inputs to each output neuron of the layer [37]. Since the CNN receives
as input a 1 × 606-dimensional input vector, its convolution operations can be understood as 1D convolutions,
moving over the time axis only. We used 1D convolutions to maintain comparability with the two other classifi-
cation methods (MLP and SVM). Preliminary experiments demonstrated negligible differences between 1D and
2D CNNs.

4.6 Performance Evaluation
The prediction accuracies were reported over a stratified 10-fold cross-validation configuration, where eight
partitions of the data are used for training, one partition is used as validation set, and the remaining partition is
reserved for testing. The samples from each class were distributed evenly while ensuring that all gait trials from
an individual participant were placed in the same partition of the data to rule out person-related information
influencing the measured model performance during testing. All results are reported as mean with standard
deviation (SD), unless otherwise stated. Additionally, we calculated the Zero-Rule baseline (ZRB) for each
classification task. The ZRB refers to the theoretical accuracy obtained by assigning class labels according to the
prior probabilities of the classes, i.e., the target labels are always set to the class with the greatest cardinality in
the training dataset.

4.7 Implementation
The implementation of the threeMLmethods and the LRPmethodwas conductedwithin the software framework
Python 3.7 (Python Software Foundation, USA). Data preprocessing, SPM, and the visualization of the results
were performed in Matlab 2017b (MathWorks, USA). Our source code and the utilized dataset are publicly avail-
able at: https://github.com/sebastian-lapuschkin/explaining-deep-clinical-gait-classification.

5 RESULTS
We first present the results obtained in our classification experiments as well as from the explainability analysis
and then discuss them in detail in Section 6. We start with a presentation of the classification accuracies achieved
for the different classification methods, tasks, and normalization methods (Section 5.1) and continue with a
presentation of the explainability results obtained by LRP (Section 5.2).

5.1 Classification Results
The mean prediction accuracy showed a clear superiority over the ZRB for all three classification methods (CNN,
SVM, and MLP) and all classification tasks (see Figure 4 and supplementary Table S1). A 2 × 2 repeated measures
analysis of variance (ANOVA) (classification method: CNN, SVM, and MLP; normalization: min-max and non-
normalized) conducted for each classification task only indicated a significant difference in classification accuracy
between the three classifiers for task HC/GD (F2,18 = 4.038, p = 0.036, η2p = 0.310). However, differences were in
general not relevant (<2%) and additional pairwise Bonferroni-corrected post-hoc tests failed to identify any dif-
ferences as significant. No other significant differences were found for the classifiers’ performances. Regarding
normalization, ANOVA revealed two simple main effects of normalization for taskH/K/A (F1,9 = 7.269, p = 0.025,
η2p = 0.447) and task HC/H/K/A (F1,9 = 9.054, p = 0.015, η2p = 0.502). Estimated marginal means for normaliza-
tion during Bonferroni-corrected post-hoc tests showed a performance increase of 6% and 3% for H/K/A and
HC/H/K/A, respectively. No further significant effects and differences were found.

5.2 Explainability Results
In the following, we present in detail the results for classification task HC/GD together with respective result
visualizations. Figure 5 shows an exemplary result for prediction explanation by LRP, i.e., the averaged signals
together with the color-coded averaged relevance values for each of the 606 input values for task HC/GD with
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Fig. 4. Overview of the prediction accuracy obtained for the three employed classification methods (CNN, SVM, and MLP)
and all classification tasks with min-max normalized and non-normalized input signals, reported as boxplots enhanced with
the classification accuracies obtained over 10-fold cross-validation (represented as individual dots).

min-max normalized GRF signals. The input relevance values point out which GRF characteristics were most
relevant for (or contradictory to) the classification of a certain class (HC or GD). For visualization, input values
neutral to the prediction (Ri ≈ 0) are shown in black color, while warm hues indicate input values supporting
the prediction (Ri 	 0) of the analyzed class and cool hues identify contradictory input values (Ri 
 0). For
binary classification tasks (HC/GD, HC/H , HC/K , and HC/A), note that a high input relevance value for one
class results in a contradictory input relevance value for the other class. Therefore, the total relevance, which
is the absolute sum of the relevance scores of both classes, is a good indicator for the overall relevance of an
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Fig. 5. Results overview for the classification of healthy controls (HC) and the aggregated class of all three gait disorders (GD)
based on min-max normalized GRF signals using a CNN as classifier. (A) Averaged GRF signals for HC and GD. The first
three signals represent the three GRF components of the affected side and are followed by the three GRF components of
the unaffected side. Note that the data for both sides are composed of three GRF components (e.g., input features of the
affected side: 1 to 101 (GRFML), 102 to 202 (GRFAP ), and 203 to 303 (GRFV )). This means, for example, that input features 21
(GRFML), 122 (GRFAP ), and 233 (GRFV ) all correspond to the relative time of 20% of the same stance phase. The areas that
are depicted in three different shades of gray for the three different alpha levels, i.e., dark gray for 0.01, gray for 0.05, and
light gray for 0.1, highlight regions in the input signals where SPM indicates statistically significant differences between
both classes (i.e., HC and GD). (B) Averaged GRF signals of all test trials as a line plot for the healthy controls class, with a
band of one standard deviation, color-coded via input relevance values for the class (HC) obtained by LRP. (C) Averaged GRF
signals of all test trials are shown as a line plot for the class of all the gait disorders (GD), in the same format as in (B). (D)
Line plots showing the effect size computed as Pearson’s correlation coefficient and total relevance based on the absolute
sum of the LRP relevance values of both classes (HC and GD). The total relevance correlates with the local discriminativity
of the input signal for the classification task.

input value for a respective classification task. The higher the total relevance at a certain signal region, the more
discriminative is this region for the two underlying classes.
Figure 5 illustrates the signal regions of high input relevance for the classification between the HC and GD

class. These regions are prevalent within all GRF signal components. Themost relevant regions for distinguishing
between the two classes have been found to include the local minima and maxima in the affected GRFV signal.
A similar pattern, though less pronounced, appears in the unaffectedGRFV . For GRFAP , LRP identified relevant
regions in the affected and unaffected signals, with the maximum peak in the affected signal being the most
pronounced. ForGRFML , relevant information appears to be predominantly located around the first lateral peak
of the affected side and the second lateral peak of the unaffected side. The identified regions of high total relevance
according to LRP agree to a large extent with the signal regions assessed as significantly different by SPM (gray-
shaded areas in Figure 5).
Figure 6 shows the effect size obtained via SPM and the total relevance according to LRP for the task HC/GD

(with min-max normalized GRF signals as in Figure 5) and all three employed classification methods (CNN, SVM,

ACM Transactions on Computing for Healthcare, Vol. 3, No. 2, Article 14. Publication date: December 2021.

2.4. Explaining Machine Learning Models for Clinical Gait Analysis

99



14:14 • D. Slijepcevic et al.

Fig. 6. Comparison of different classification methods (CNN, SVM, and MLP) for the classification of healthy controls and
the class of all three gait disorders (HC/GD) based on min-max normalized GRF signals. The comparison is based on the
total relevance of the LRP results as well as statistically significant differences (gray-shaded areas) and effect size computed
as Pearson’s correlation coefficient. Note that the gray-shaded areas and the effect size (green curve) are the same, while
the total relevance varies between the three classification methods.

andMLP). The relevance scores agree strongly between the three classificationmethods. In fact, only some signal
regions are prioritized differently, e.g., the affected and unaffected GRFML at the beginning and the end of the
signal. These results show that the investigated classification methods rely on the same regions in the input data
with only small exceptions.
For the sake of brevity, only the results for the classification task HC/GD were presented. For results of the

other classification tasks, we refer the reader to the supplementary Figures S4, S7, S10 (CNN), Figures S6, S9, S12
(SVM), and Figures S5, S8, S11 (MLP). In the following, the discussion will incorporate all binary classification
tasks.

6 DISCUSSION
The primary aim of this article is to investigate whether XAI methods can enhance explainability of ML pre-
dictions in clinical gait classification. In this section, the classification results are analyzed, compared, and inter-
preted in terms of classification accuracy and relevance-based explanations. These explanations are, furthermore,
evaluated from a statistical and clinical viewpoint. Additionally, we discuss dependencies, influences, and inter-
esting observations with respect to different classification methods, tasks, normalization methods, and signal
components (horizontal forces and affected/unaffected leg signals).

6.1 Classification Results
The results expressed in terms of classification accuracy (presented in Figure 4 and supplementary Table S1)
demonstrate a comparable level of performance between the three different machine learning methods (CNN,
SVM, and MLP). The achieved performance level is not only interesting by itself but also important informa-
tion for further explainability experiments. The reason is that an objective analysis of explainability by a post
hoc method like LRP is only meaningful if the classification model can robustly differentiate between the target
classes, i.e., a certain model quality is necessary to draw meaningful conclusions from explainability results. An
analysis of unreliable classification models bears the potential risk that unstable patterns, noise, and spurious
correlations bias the explainability results. For this reason, we excluded the classification tasks HC/H/K/A and
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H/K/A from our further investigation, as the tasks could not be solved with sufficient accuracy (average clas-
sification accuracy above 80%). For the binary classification tasks this risk is much lower, because the higher
classification accuracies (and deviations from ZRB) obtained suggest that robust features can be found in the
input data.
Another aspect we assessed is the influence of normalization on the input data (see Figure 4 and supplementary

Table S1). The normalization of the input data is important for machine learning, since highly differing value
ranges can have a negative influence on the classification model, i.e., input variables with a higher value range
have a stronger influence on the predictions [14, 31]. The same appears to be the case for gait data, where
the normalization of the input data strongly influences the classification models, as can be observed from the
relevance scores of the horizontal forces in Figure 5 and supplementary Figure S13. Surprisingly, however, min-
max normalization does not significantly improve the classification results (see Figure 4 and supplementary
Table S1) for the investigated classification tasks. This raises the question of whether the use of GRFV alone
would already be sufficient to solve the classification tasks. We discuss this seemingly contradictory behavior in
the following section.

6.2 Explainability Results
In the following, we discuss different related aspects with regard to our first leading research question:Which
input features or signal regions are most relevant for automatic gait classification? The visualizations
for all classification tasks and classification methods can be found in the supplementary Figures S1–S12.

Which input features are relevant for the classification of functional gait disorders? LRP identified
several regions of high relevance in the GRF signals for all classification tasks. The MLmodels often used regions
(and not single time-discrete values) encompassing peaks and valleys in the GRF signals to distinguish between
the different classes, e.g., for task HC/GD using the CNN (see Figure 5) in the affected and unaffectedGRFV (all
three local maxima and minima), affected GRFAP (both peaks), unaffected GRFAP (first peak), affected GRFML
(first lateral peak), and unaffected GRFML (both lateral peaks). The highest total relevance scores are present in
the signals of the affected side and most commonly inGRFV for all investigated classification tasks. This is in line
with earlier studies, e.g., where the peaks and valley (as time-discrete parameters) of the affectedGRFV showed
the highest discriminatory power [66].

Are signal regions of the unaffected side important for the classification of functional gait disorders?
Across all classification tasks, relevant regions are also pronounced in the GRF signals of the unaffected side, but
less than in those of the affected side. In earlier studies [67, 68], we showed that the omission of the unaffected
side during classification negatively affected classification accuracy. The explainability results confirm this obser-
vation. The unaffected side seems to capture complementary information relevant to the classification task under
consideration. In particular, the identified relevant regions in the GRF signals occur at similar relative (e.g., in
both peaks ofGRFV ) or absolute (e.g., the second peak of the affectedGRFAP and the first peak of the unaffected
GRFAP ) time points of the stance phases of the unaffected and affected side.

Are the anterior-posterior and medio-lateral forces relevant for the task? While the highest total rele-
vance scores can be observed inGRFV in most cases, relevant regions are always also observed in the horizontal
GRF signals (GRFAP and GRFML). However, the locations and degree of relevance within the horizontal signals
vary for different classification tasks, e.g., for task HC/A, the highest relevance scores occur in the affected
GRFAP (and GRFV ) and hardly any relevant regions exist in GRFML (see supplementary Figure S10), while the
highest relevance score for the task HC/H appears at the beginning of the affected GRFML (see supplementary
Figure S4).

What is the impact of normalization on explainability results? Normalization of input data is a standard
procedure prior to classification with ML models to ensure equal numerical ranges of different signals [14, 31].
XAI methods such as LRP allow to visualize the effects of normalization on the predictions of ML models directly
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at the level of the input signals. To gain a deeper understanding of these effects and the underlying data, we
also conducted experiments without normalization of input data (see supplementary Figures S13–S24). For the
classification of non-normalized GRF signals, the most relevant input values are located inGRFV , i.e., especially
the two peaks and the valley in between are relevant for the tasks. Aminimal degree of relevance can be observed
in the peaks of the affected and unaffectedGRFAP signals. The reason for the absence of relevant regions in the
horizontal forces could be their small value range. The rather small range compared to the GRFV component
may lead to a smaller influence on the training of the classification models. Explainability results for min-max
normalized input data show that highly relevant regions are identified in the horizontal forces of the affected
and unaffected side (e.g., Figure 5). Thus, normalization amplifies the relevance of values in the horizontal forces
and thereby makes them similarly important as GRFV . Based on the LRP relevance scores, we conclude that
normalization is important to obtain unbiased predictions of ML models (bias introduced by different signal
amplitudes).

Are all identified relevant regions necessary for the task? For all classification tasks and classification
methods, with min-max normalized input data, many regions of the GRF signals are identified to be relevant for
classification according to LRP. The classification performance with and without normalization does, however,
not vary significantly for the binary classification tasks (see classification results in Section 5.1). This raises the
question of whether all regions identified as relevant are necessary to achieve peak performance in classifica-
tion or whether some of them are redundant (i.e., not yielding an increase in classification performance when
combined). Note that the assumption of redundancy is supported by the fact that the three GRF components
represent individual dimensions of the same three-dimensional physical process. Thus, a strong correlation is a
priori given in the data.
To answer the question, we conducted additional experiments with occluded parts of the input vector and eval-

uated the changes in classification performance. Occlusion is realized by replacing the horizontal forces (GRFAP
and GRFML) of both sides (affected and unaffected) with zero values. Table 2 shows the classification results for
the experiments with occluded input signals as deviation from the mean classification accuracy of the experi-
ments with non-occluded input signals. The results decrease on average when the horizontal forces are occluded
(except for tasks HC/GD and HC/A using the CNN). Thus, relevant regions in the horizontal forces cannot be
completely redundant to those in GRFV and, therefore, represent also complementary information. This is in
line with previous quantitative performance evaluations [67, 68]. However, the classification results of the bi-
nary classification tasks are not influenced by the occlusion of horizontal forces in a statistically significant way.
This was confirmed by several dependent t-tests (p > 0.05) with Bonferroni-Holm [25] correction. Our results
indicate that the relevant regions identified by LRP may represent an over-complete set, which exhibits a certain
degree of redundancy, as removing relevant sections does not necessarily lead to reduced classification perfor-
mance. However, redundancy is not necessarily a negative property, as it may help to achieve higher robustness
to noise and possibly also to outliers and missing data [29].

Do different ML methods rely on different patterns? A comparison of the three employed classification
methods is depicted in Figure 6. Across all binary classification tasks, relevant signal regions for all three classi-
fication methods are largely consistent, especially with respect to their location. Minor differences exist in the
amplitude of the relevance scores, e.g., at the beginning of the affectedGRFV or the second peak in the affected
GRFAP (see Figure 6). The similarities between MLP and SVM are more pronounced. The remaining binary clas-
sification tasks, i.e., HC/H (see supplementary Figures S4, S5, and S6), HC/K (see supplementary Figures S7, S8,
and S9), and HC/A (see supplementary Figures S10, S11, and S12) confirm these findings. Although LRP clearly
shows where the prediction is grounded, it cannot explain why these patterns are important. However, it allows
to identify and compare the learning strategies of different classification methods.

Canwe derive additional properties of themodels from the explanations, e.g., different learning strate-
gies? Explanations provided by local XAI methods, such as LRP, inform about a model’s reasoning on individual
samples. A more general understanding about the model’s learned patterns can be obtained via the evaluation of
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Table 2. Classification Results for the Experiment with
Occluded Horizontal Forces (GRFAP , GRFML), in Percent

Task Normalization CNN SVM MLP
HC/GD min-max 0.2 –1.4 –1.4
HC/H min-max –4.5 –6.5 –4.9
HC/K min-max –2.1 –3.7 –4.2
HC/A min-max 1.5 –0.9 –1.3

The results are reported as mean deviation from the prediction
accuracy of the original input signals presented in Figure 4 and
supplementary Table S1, i.e., negative values signify a decrease and
positive values an improvement in classification performance.

larger sets of sample-specific explanations [34]. In the previous sections, we achieved this by averaging relevance
patterns across all samples of a given class. To perform a more detailed analysis that is able to identify different
learning strategies of the ML models, we propose the use of SpRAy [35] as described in [5] for clinical gait data.
The basic idea of this approach is to cluster the relevance patterns obtained for different samples and classes and
to analyze the resulting clusters and subclusters.
SpRAy is a statistical analysis method for the explorative discovery of a model’s characteristic prediction

strategies from XAI-based relevance patterns. With its core in Spectral Clustering [43, 47], the method discov-
ers structure within the set of given relevance patterns and yields, among its outputs, a spectral embedding Φ
together with suggested groupings within the embedding in form of k cluster labels. Here, the embedding Φ
directly corresponds to the individual relevance patterns, under consideration of their local, global, and poten-
tially non-linear affinity structure. Sets of samples with similar relevance patterns are tightly grouped together
in the spectral embedding space, while samples with dissimilar patterns are located far apart. Together with the
suggested cluster labels, the analytically derived solution in Φ can then be visualized in R2, e.g., via a t-SNE
projection [5, 39]. We implemented and evaluated SpRAy using the CoRelAy3 framework [4] for Python.
Figure 7 shows exemplary SpRAy results for task HC/GD (with min-max normalized GRF signals) using the

CNN as classification method. Based on the clustering provided in Figure 7(C) and 7(F), we see that the relevance
patterns are grouped into clusters. This indicates that the ML model learned different classification strategies.
Considering the ground truth class labels (see Figure 7(D)), we see that the model’s explanations for the overall
gait disorder (GD) class are grouped into distinct clusters that contain samples from the individual gait disorder
classes (H , K , andA), even though the model was never explicitly trained to do so in this classification task. This
means that the model learned different strategies for different pathological subclasses in GD. Considering the
participant labels (see Figure 7(B) and Figure 7(E)), we can see that the relevance patterns of the five trials of a
participant are often clustered together (Figure 7(B) and 7(E)). This means that the model learns similar strategies
for the samples belonging to one participant. From a biomechanical perspective, this is plausible because each
individual person has unique gait patterns that differ from the gait patterns of other individuals [30]. For clinical
experts, it is important to see that the model is able to reflect such patterns.
In conclusion, SpRAy demonstrates the ability of ML models to learn patterns and dependencies in the data

without explicit label information. For the clinical domain, this ability is of great value, since pathologies have
various manifestations (that are sometimes even beyond the expertise of a clinical expert).

6.3 Statistical Evaluation
In the following, we investigate the statistical properties of the signal regions found to be relevant by LRP to
answer the second leading research question: To what extent are input features or signal regions identified

3https://github.com/virelay/corelay.
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Fig. 7. The spectral embedding Φ derived via SpRAy from LRP explanations for the CNN model on test data, visualized
via t-SNE for samples labeled as healthy controls (HC ; N = 30; subfigures A-C) and the aggregated class of all three gait
disorders (GD = {H ,K ,A}; N = 65; subfigures D-F). Each column of panels marks the embedded sample explanations with
respect to different sets of labels as indicated by color: (subfigures A/D) ground truth class labels (HC , H , K , A), (subfigures
B/E) ground truth participant labels, and (subfigures C/F) cluster labels inferred via SpRAy for k = 8 clusters on Φ before
projecting the spectral embedding into R2 via t-SNE. The figure shows that the relevance patterns are grouped into clusters,
indicating that the ML model learned different classification strategies.

as being relevant for a given gait classification task statistically justified? To answer this question, we
leverage SPM, which provides statistical inference estimates for each value of the input vector. We compare the
LRP regions with those considered as significantly different by SPM. Results show that in the vast majority of
cases, the SPM analysis shows statistically significant differences in regions that are also highly relevant for clas-
sification according to LRP. Thus, for binary classification tasks, it seems that ML models base their predictions
primarily on features that are also significantly different between the two classes. This can be observed across
all classification tasks (e.g., see Figure 5(D) for task HC/GD). As the total relevance increases, the effect size
usually also increases. We performed a cross-correlation to determine the relationship between the effect size
and the total relevance. Both curves show highly correlated behavior for the min-max normalized input data
for all classification tasks: HC/GD (r = 0.76), HC/H (r = 0.66), HC/K (r = 0.76), and HC/A (r = 0.78). However,
minimal differences between the results of LRP and SPM can be detected, e.g., the location of the first relevant
signal region in the unaffected GRFV . For all classification tasks, we observed that LRP already considers the
slope to the firstGRFV peak of the unaffected leg as relevant for the classification, whereas SPM, slightly shifted,
emphasizes the region encompassing the peak itself with a high effect size. Future research is needed to address
this observation and examine differences between LRP and SPM in more detail.
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Fig. 8. Overview of the most relevant gait events during the stance phase. In clinical gait analysis, a gait cycle (100%) is
defined from the initial contact of one foot to the subsequent initial contact of the same foot. During the first approximately
60% of the gait cycle, referenced as the stance phase (relevant time range for the present work), the foot has contact to the
ground. The beginning of the stance phase is defined as initial contact with the ground (typically by the heel), then body
weight is shifted to the supporting leg (loading response and mid-stance), followed by terminal stance (forward propulsion),
pre-swing (preparation of the swing phase), and toe-off. Adapted from References [9, 62].

Concerning our second research question, we conclude that the relevance estimates according to LRP are to
the greatest extent statistically justified. The second part of the research question regarding the validity of the
explanations with respect to clinical assessment is investigated in the following section.

6.4 Clinical Evaluation
To what extent are input features or signal regions identified as being relevant for a given gait classifica-
tion task in line with clinical assessment? This question is answered in the following by two clinical experts
in human gait analysis. To assist the reader in following the discussion and to facilitate the interpretation of the
input signals, the domain-specific terms and gait cycle definitions are described in Figure 8. For further details
on the principles of human gait and its clinical implications, the interested reader is referred to literature such
as Perry and Burnfield [53] or Winter [79].
The explainability results for classification of healthy controls (HC) and the aggregated class of all three gait

disorders (GD) based on min-max normalized GRF signals illustrate clinically meaningful patterns (see Figure 5).
High LRP relevance scores occurred during loading response, terminal stance, and pre-swing in GRFAP and
GRFML as well as in loading response, mid-stance, terminal stance, and pre-swing inGRFV . These phases are es-
pecially sensitive toward gait anomalies as loading response requires the absorption of body weight and terminal
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stance plays an essential role for forward propulsion [33]. Both aspects are affected in case of gait impairments
due to a diminished walking speed (requiring less absorption or push-off) as well as factors that go along with
an injury, such as the presence of pain, a decreased range of motion, and/or lessened muscle strength [64, 78].
When analyzing the explainability results in more detail, one can identify specific gait dynamics that can be
traced back to an impairment at a certain joint level.
For classification task HC/A (see supplementary Figure S10), we can observe pronounced peaks in the total

relevance curves of GRFAP and GRFV caused by alterations in the terminal stance and pre-swing phase of the
affected side. This is in agreement with the observations of Son et al. [69], who found a significantly increased
propulsive force (GRFAP in terminal stance) for patients with chronic ankle instability. They also identified an
increased GRFV during late terminal stance (push-off) compared to healthy controls, which is also in line with
the relevance scores obtained in our study. Both our explainability results and the study of Son et al. [69] did not
indicate any relevance or difference to healthy controls in theGRFML .
For classification task HC/K , the highest LRP relevance scores are present in GRFV , GRFAP , and GRFML (see

supplementary Figure S7). Changes inGRFV may result from lessened knee flexibility that hinders typical knee
dynamics over the entire course of the stance phase. More precisely, healthy walking requires a slightly flexed
knee joint during initial contact followed by a knee flexion thereafter, by definition called loading response.
During the mid-stance phase the walker’s center of gravity is shifted forward and thus demands further knee
extension. This is in line with the study of Cook et al. [15], who analyzed the effects of restricted knee flexion
and walking speed on the GRFV . According to their results, the loading rate (slope during loading response),
unloading rate (slope during pre-swing), and peak GRFV of the restricted leg showed significant speed-knee
flexion restriction interactions.
Highest LRP relevance values for the classification taskHC/H are obtained during loading response and termi-

nal stance inGRFV of the affected side (see supplementary Figure S4). McCrory et al. [41] and Martinez-Ramirez
et al. [40] identified the GRFV as an objective measure of gait for patients following hip arthroplasty. McCrory
et al. [41] found significant differences between patients and healthy controls in several variables of the GRFV
such as the first and second local peaks, impulse, and stance time. They also identified that the unaffected side
holds relevant information, as significant differences were found in the GRFV either compared to the control
group or the affected side. This is also seen in our obtained LRP relevance scores for the classification taskHC/H
where two distinct relevance peaks are present forGRFV for the first and secondGRFV peak of the affected side.
These results are also in agreement with Martinez-Ramirez et al. [40], who demonstrated that patients after suc-
cessful hip arthroplasty still show significantly altered GRFV for both the affected and unaffected leg including
a continuing GRFV asymmetry between both sides.
With regard to our second research question, we conclude that signal regions with high relevance according

to LRP can be largely associated with clinical gait analysis literature and are plausible from a clinical point of
view according to two domain experts.

6.5 On the Usefulness of XAI Methods for Clinical Gait Analysis
XAI methods increase transparency and can make the decision process of ML models more comprehensible
for clinical experts. Transparency of state-of-the-art ML models is crucial to promote the acceptance of such
systems in clinical practice, allowing clinicians to benefit from high, and in some cases already better than human
[16, 21, 42], classification accuracy that ML models achieve.
In the previous subsections (i.e., Sections 6.3 and 6.4), we showed that explainability results are consistent from

a statistical and domain experts’ point of view. In particular, regions of high relevance according to LRP are highly
discriminatory according to SPM, and the clinical experts associated these regions with clinical explanations.
Having evaluated the explainability results, we now want to address the question: What is the added value
that XAI methods can provide to clinical practice?
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Fig. 9. Comparison of explainability results of the original (top) and walking speed-matched (bottom) data for the classifi-
cation task HC/K based on the min-max normalized GRF signals using CNN.

The two experts reported that they mainly focus on regions in theGRFV signals during the evaluation process
of patients in clinical practice. In particular, the evaluation of the unaffected GRFV is very important for the
clinicians. The main motivation for this is that many compensatory patterns manifest in this signal, i.e., as
patients try to put as little weight on the affected leg as possible, they take shorter steps with the unaffected leg.
This is reflected in a reduced slope in the unaffectedGRFV during loading response.
Our explainability results show that in addition to regions in GRFV , regions in GRFML and GRFAP are also

highly relevant for the classification tasks. These signals are less considered in clinical practice. However, the
relevant regions in GRFML and GRFAP indicate additional information about the classification of pathological
gait patterns.
Explainability approaches can lead to novel insights and a deeper understanding of the models and the un-

derlying data as illustrated in the following example. In the clinical evaluation of the explainability results, the
experts identified also relevant regions for the ML models that are not directly related to the specific functional
gait disorders, according to their personal expertise and the literature. The experts assumed that, e.g., the relevant
regions in the affected and unaffectedGRFV , in particular during mid-stance, terminal stance, and pre-swing, are
strongly influenced by differences in walking speed between healthy controls and patients. From this observation
the clinical experts derived the hypothesis that the trained ML models might be biased by the walking speed.
Using the HC/K classification task as an example, we examined whether there is a significant difference in

walking speed between HC and K . An independent samples t-test revealed a statistically significant difference
in walking speed between HC and K (p < 0.001). The differences in walking speed affect the shape of the signals
(although the signals were time-normalized) and the ML models could have learned these dissimilarities. To
assess the influence of walking speed on the ML models, we repeated the experiment for the task HC/K on a
subsample of the original data. This subsample does not exhibit statistically significant differences with respect
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to walking speed (independent samples t-test; p = 0.068). A comparison of the explainability results obtained for
task HC/K (with min-max normalized GRF signals) using CNNs that were trained on the original and walking
speed-matched data are presented in Figure 9. The results for the walking speed-matched data clearly show that
most of the relevant regions according to LRP agree with the regions obtained for the original data (with only
small changes in amplitude). However, relevant regions in the unaffected GRFV after loading response are less
relevant for the model trained on walking speed-matched data. Thus, in contrast to the model trained on the
original data, this model barely takes these regions into account. The conclusion that can be drawn is that these
regions are related to differences in walking speed.
Using our XAI approach, we have been able to show that some degree of walking speed-related bias was

learned in the original models, but that this influence was not as strong as assumed by the clinical experts.
Another interesting aspect of the experiment concerns the SPM results. While the trend of effect size and the
total relevance remain similar, the statistically significant regions are clearly reduced (compare gray-shaded areas
for both settings in Figure 9), showing the sensitivity of SPM to the alpha level.
Overall, we showed that our proposed XAI approach exhibits substantial usefulness for the clinical setting,

as we were able to demonstrate that: (i) regions in the signals that are less focused on in the literature and
clinical evaluation, i.e.,GRFAP andGRFML , also contain informative and relevant regions that can be associated
to the underlying pathology, (ii) ML models learn different strategies for different samples and patient groups
(experiment with SpRAy; see Section 6.2), and (iii) XAI methods allow the identification of biases in ML models,
e.g., with respect to normalization or walking speed-related differences between classes.
The increased transparency provides additional insights into the working mechanisms of the trained ML mod-

els, enabling clinicians to better understand them and increase their level of trust [70].

6.6 Limitations and Future Work
A fundamental problem in evaluating the explainability results is the absence of a ground truth. A challenge
in interpreting the explainability results is that alterations of the input signals can be caused not only by the
influence of a pathology, but also by other independent parameters, e.g., a lower walking speed or an increased
body mass. To minimize potential biases introduced by independent parameters on prediction explanations,
future research should attempt to develop normalization procedures for input signals that compensate such
influencing factors or develop classification models that inherently learn the relationship between influencing
factors and input signals.
Another limiting factor is that we solely used GRF signals for classification. This does not perfectly reflect best

practice in clinical gait analysis where clinicians usually base medical decisions on a combination of GRF and
3D kinematic data [9]. The additional use of kinematic data is expected to improve the classification accuracy
to an appropriate level for clinical application, in particular for multi-class classification tasks. However, 3D
kinematic data are prone to several difficulties such as inconsistencies due to inter-assessor and inter-laboratory
differences [20, 60]. This makes it more difficult to create a homogeneous, large-scale, and real-world dataset
compared to using simple data, such as GRF signals. Thus, the utilized GaitRec data [28] provide a large-scale
dataset with an easy to comprehend clinical example, which allows to showcase how XAI methods can support
transparency of ML models and their predictions.
Besides visual explanations as presented in this article, a translation into human-understandable textual expla-

nations would be desired for clinical application. An interesting direction for future research is the generation
of textual explanations based on biomechanical parameters estimated from the input signals. This would en-
able approaches that exceed pure explainability and provide deeper interpretations for clinical experts in the
form of, e.g., “there is a high probability of a pathology in the knee due to a limited knee extension during the
mid-stance phase.”
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We will conduct further research to compare different explanation methods and rule-based approaches [32]
for different classification tasks and datasets. In addition, we want to point out that quantitative and objective
methods are necessary to assess the quality of prediction explanations [57] including datasets with respective
ground truth explanations.

7 CONCLUSION
The present findings highlight that the investigated ML models base their predictions on meaningful features of
GRF signals in various clinical gait classification tasks. These features are in accordance with a statistical and
clinical evaluation. Hence, XAI methods that provide explainability for predictions provided by MLmodels, such
as LRP, can be promising to increase justification of automatic classification predictions in CGA and can help to
make the prediction processes comprehensible to clinical experts. Thereby, XAI may facilitate the application of
ML-based decision-support systems in clinical practice. Within the scope of our analysis, we were able to show
that:
• Highly relevant regions were identified in the signals of the affected and unaffected sides. Thus, the unaf-
fected side captures additional information that are relevant for automated gait classifications.
• For time-series data such as GRF signals, SPM has shown to be a suitable statistical reference. Highly
relevant regions in the input data (according to LRP) are inmost cases also significantly different (according
to SPM) and in line with clinical evaluation.
• In addition to GRFV , the horizontal forces contain regions of high relevance, which is consistent with
clinical gait analysis literature.
• ML models seem to learn an over-complete set of features that may contain redundant information. This
might explain why the occlusion of horizontal forces and input normalization in our experiments had
negligible influence on the classification accuracies.
• ML models for gait classification are able to learn different strategies for individual persons and patient
groups.
• Explainability approaches can help to detect bias in ML models and help to assess their correct working,
which is important for clinicians to enable building trust in the predictions of these models.

This article represents a first step towards establishing explainability of ML approaches for time-series classifi-
cation. Thereby, we want to promote the application of ML in clinical gait analysis to support medical decision-
making in the future.
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The primary aim of this article is to explain which class-specific characteristics Machine Learning (ML)
models learn from clinical gait analysis (CGA) data. For this purpose, we investigate different gait classifica-
tion tasks, employ a representative set of classification methods, i.e., (linear) Support Vector Machine (SVM),
Multi-layer Perceptron (MLP), and Convolutional Neural Network (CNN), and an Explainable Artifi-
cial Intelligence (XAI) method, i.e., Layer-wise Relevance Propagation (LRP), to explain predictions at
the signal (input) level. Subsequently, the explanations of the individual predictions are aggregated to obtain
class-specific model explanations. Since there is no ground truth for automatically generated explanations in
this context, we we suggest a two-step approach for the evaluation of the obtained explanations. First, we ana-
lyze the discriminatory power of the obtained explanations from a statistical perspective. For this purpose, we
leverage Statistical Parametric Mapping (SPM) to derive statistical measures along with the input signals and
thereby investigate how statistically justified the obtained explanations are. Second, two experienced clinical ex-
perts interpret the explainability results from a clinical perspective, to evaluate whether obtained explanations
match characteristics from clinical practice.
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The dataset employed, comprises ground reaction force (GRF) measurements from 132 patients with gait
disorders (GD) and data from 62 healthy controls (HC). TheGD class is furthermore differentiated into three
classes of gait disorders associated with the hip (H ), knee (K), and ankle (A). The classification tasks, which
represent the basis of the XAI investigation, due to high classification accuracies obtained, include a binary clas-
sification between healthy controls and all gait disorders (HC/GD), and a binary classification between healthy
controls and each gait disorder separately, i.e., HC/H , HC/K , and HC/A. The classification results obtained for
all classification tasks, are presented in supplementary Table S1.
The following figures visualize the relevance-based explanations obtained with LRP. The input vector for the

classifiers comprises concatenated affected and unaffected GRF signals. These GRF signals are time-normalized
to 101 points (100% stance phase), thus the input vector contains 606 values. For each value, LRP provides whether
they are relevant or not for the classification. Sub-figure (A) shows mean GRF signals averaged over each class of
the classification task. The shaded areas in all sub-figures highlight areas in the input signals where SPM resulted
in a statistically significant difference between both classes. Sub-figure (B) shows mean GRF signals (including
a band of one standard deviation) for the HC class. The input relevance indicates, which GRF characteristics
were most relevant for (or contradictory to) the classification of a certain class. For visualization, input values
neutral to the prediction (Ri ≈ 0) are shown in black, while warm hues indicate input values supporting the
prediction (Ri 	 0) of the analyzed class and cool hues identify contradictory input values (Ri 
 0). Sub-
figure (C) depicts mean GRF signals averaged over a pathological class (H , K , or A) or all gait disorders (GD),
in the same format as in sub-figure (B). Sub-figure (D) shows the effect size computed as Pearson’s correlation
coefficient and the total relevance, which is calculated as the sum of the absolute input relevance values of both
classes. The total relevance indicates the common relevance of the input signal for the classification task.

CLASSIFICATION RESULTS

Table S1. Overview of the Prediction Accuracy Obtained for the Three Employed
Classification Methods (CNN, SVM, and MLP) and All Classification Tasks with
Min–Max Normalized and Non-Normalized Input Signals, Reported as Mean

(Standard Deviation) Over the Ten-Fold Cross Validation in Percent

Task Normalization ZRB CNN SVM MLP
HC/GD no norm. 68.0 87.8 (4.5) 88.6 (4.9) 88.1 (4.8)
HC/GD min-max 68.0 88.0 (5.0) 88.4 (5.3) 88.8 (5.0)
HC/H no norm. 62.6 85.1 (8.2) 85.9 (8.4) 86.6 (7.9)
HC/H min-max 62.6 85.5 (8.0) 87.1 (7.6) 86.7 (8.5)
HC/K no norm. 54.4 84.8 (9.9) 85.7 (9.0) 86.1 (7.9)
HC/K min-max 54.4 85.9 (9.3) 88.5 (7.2) 88.5 (7.6)
HC/A no norm. 59.0 88.7 (5.5) 89.1 (5.9) 88.3 (6.3)
HC/A min-max 59.0 86.7 (8.3) 87.6 (7.4) 86.5 (8.1)
H/K/A no norm. 39.4 48.0 (10.1) 46.4 (9.5) 45.9 (11.0)
H/K/A min-max 39.4 50.7 (9.8) 51.8 (9.6) 47.4 (10.9)
HC/H/K/A no norm. 32.0 55.0 (8.7) 58.7 (7.5) 55.6 (7.6)
HC/H/K/A min-max 32.0 57.5 (7.0) 59.5 (8.5) 59.2 (7.6)
Note that the Zero-Rule Baseline (ZRB) is task-specific.
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EXPLAINABILITY RESULTS

Classification Task: HC/GD | Classification method: CNN

Fig. S1. Result overview for the classification of healthy controls and the aggregated class of all three gait disorders (HC/GD)
based on min–max normalized GRF signals using a CNN as classifier.

Classification Task: HC/GD | Classification method: MLP

Fig. S2. Result overview for the classification of healthy controls and the aggregated class of all three gait disorders (HC/GD)
based on min–max normalized GRF signals using an MLP as classifier.
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Classification Task: HC/GD | Classification method: SVM

Fig. S3. Result overview for the classification of healthy controls and the aggregated class of all three gait disorders (HC/GD)
based on min–max normalized GRF signals using an SVM as classifier.

Classification Task: HC/H | Classification method: CNN

Fig. S4. Result overview for the classification of healthy controls (HC) and hip injury class (H ) based on min–max normalized
GRF signals using a CNN as classifier.
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Classification Task: HC/H | Classification method: MLP

Fig. S5. Result overview for the classification of healthy controls (HC) and hip injury class (H ) based on min–max normalized
GRF signals using an MLP as classifier.

Classification Task: HC/H | Classification method: SVM

Fig. S6. Result overview for the classification of healthy controls (HC) and hip injury class (H ) based on min–max normalized
GRF signals using an SVM as classifier.
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Classification Task: HC/K | Classification method: CNN

Fig. S7. Result overview for the classification of healthy controls (HC) and knee injury class (K ) based on min–max normal-
ized GRF signals using a CNN as classifier.

Classification Task: HC/K | Classification method: MLP

Fig. S8. Result overview for the classification of healthy controls (HC) and knee injury class (K ) based on min–max normal-
ized GRF signals using an MLP as classifier.
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Classification Task: HC/K | Classification method: SVM

Fig. S9. Result overview for the classification of healthy controls (HC) and knee injury class (K ) based on min–max normal-
ized GRF signals using an SVM as classifier.

Classification Task: HC/A | Classification method: CNN

Fig. S10. Result overview for the classification of healthy controls (HC) and ankle injury class (A) based on min–max
normalized GRF signals using a CNN as classifier.
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Classification Task: HC/A | Classification method: MLP

Fig. S11. Result overview for the classification of healthy controls (HC) and ankle injury class (A) based on min–max nor-
malized GRF signals using an MLP as classifier.

Classification Task: HC/A | Classification method: SVM

Fig. S12. Result overview for the classification of healthy controls (HC) and ankle injury class (A) based on min–max nor-
malized GRF signals using an SVM as classifier.
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EXPLAINABILITY RESULTS – NON-NORMALIZED DATA

Classification Task: HC/GD | Classification method: CNN

Fig. S13. Result overview for the classification of healthy controls and the aggregated class of all three gait disorders
(HC/GD) based on non-normalized GRF signals using a CNN as classifier.

Classification Task: HC/GD | Classification method: MLP

Fig. S14. Result overview for the classification of healthy controls and the aggregated class of all three gait disor-
ders (HC/GD) based on non-normalized GRF signals using an MLP as classifier.
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Classification Task: HC/GD | Classification method: SVM

Fig. S15. Result overview for the classification of healthy controls and the aggregated class of all three gait disor-
ders (HC/GD) based on non-normalized GRF signals using an SVM as classifier.

Classification Task: HC/H | Classification method: CNN

Fig. S16. Result overview for the classification of healthy controls (HC) and hip injury class (H ) based on non-normalized
GRF signals using a CNN as classifier.
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Classification Task: HC/H | Classification method: MLP

Fig. S17. Result overview for the classification of healthy controls (HC) and hip injury class (H ) based on non-normalized
GRF signals using an MLP as classifier.

Classification Task: HC/H | Classification method: SVM

Fig. S18. Result overview for the classification of healthy controls (HC) and hip injury class (H ) based on non-normalized
GRF signals using an SVM as classifier.
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Classification Task: HC/K | Classification method: CNN

Fig. S19. Result overview for the classification of healthy controls (HC) and knee injury class (K ) based on non-normalized
GRF signals using a CNN as classifier.

Classification Task: HC/K | Classification method: MLP

Fig. S20. Result overview for the classification of healthy controls (HC) and knee injury class (K ) based on non-normalized
GRF signals using an MLP as classifier.
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Classification Task: HC/K | Classification method: SVM

Fig. S21. Result overview for the classification of healthy controls (HC) and knee injury class (K ) based on non-normalized
GRF signals using an SVM as classifier.

Classification Task: HC/A | Classification method: CNN

Fig. S22. Result overview for the classification of healthy controls (HC) and ankle injury class (A) based on non-normalized
GRF signals using a CNN as classifier.
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Classification Task: HC/A | Classification method: MLP

Fig. S23. Result overview for the classification of healthy controls (HC) and ankle injury class (A) based on non-normalized
GRF signals using an MLP as classifier.

Classification Task: HC/A | Classification method: SVM

Fig. S24. Result overview for the classification of healthy controls (HC) and ankle injury class (A) based on non-normalized
GRF signals using an SVM as classifier.
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ABSTRACT This work investigates the effectiveness of various machine learning (ML) methods in
classifying human gait patterns associated with cerebral palsy (CP) and examines the clinical relevance of the
learned features using explainability approaches. We trained different ML models, including convolutional
neural networks, self-normalizing neural networks, random forests, and decision trees, and generated
explanations for the trained models. For the deep neural networks, Grad-CAM explanations were aggregated
on different levels to obtain explanations at the decision, class and model level. We investigate which subsets
of 3D gait analysis data are particularly suitable for the classification of CP-related gait patterns. The results
demonstrate the superiority of kinematic over ground reaction force data for this classification task and show
that traditional ML approaches such as random forests and decision trees achieve better results and focus
more on clinically relevant regions compared to deep neural networks. The best configuration, using sagittal
knee and ankle angles with a random forest, achieved a classification accuracy of 93.4 % over all four CP
classes (crouch gait, apparent equinus, jump gait, and true equinus). Deep neural networks utilized not only
clinically relevant features but also additional ones for their predictions, which may provide novel insights
into the data and raise new research questions. Overall, the article provides insights into the application of
ML in clinical practice and highlights the importance of explainability to promote trust and understanding
of ML models.

INDEX TERMS Explainable artificial intelligence, explainability, human gait analysis, biomechanical gait
data, kinematics, ground reaction forces, convolutional neural network, self-normalizing neural network,
random forest, decision tree.

I. INTRODUCTION
Walking impairments can severely affect a person’s ability to
participate in social activities and work life and negatively
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impact quality of life. Causes of walking impairments can
range from traumatic events to various diseases such as
stroke, Parkinson’s disease, or cerebral palsy (CP). One of
the most common causes of physical disability in children
is CP, which occurs in approximately 2.5 out of every
1,000 births in developed countries [1]. This group of
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neurological disorders can cause tremors, muscle weakness,
stiffness, and spasticity, which can affect a child’s motor
functions and ability to walk [2]. One of the most frequent
causes of CP are brain lesions that occur before, during,
or shortly after birth, mostly leading to musculoskeletal
impairments that can worsen throughout childhood and
adolescence [3].

Accurate examination and quantification of underlying
movement mechanisms are necessary to ensure the best
possible treatment for children with CP. Such information
is essential for clinicians to offer targeted treatment plans to
their patients. The worldwide established gold standard for
this purpose is clinical 3D gait analysis (3DGA). This method
allows to objectively and quantitatively describe and analyze
the human motor function of patients from a kinematic (joint
angles) and kinetic (ground reaction forces, joint reaction
forces, and joint moments) point of view [4]. The basis for
3DGA is motion capturing and assessment of ground reaction
forces (GRF). Both data sources capture complementary
information on walking behavior.

This work investigates the automated classification of
gait patterns associated with CP using data from clinical
3DGA, i.e., kinematic data, GRF data, and a combination
of both. Recordings obtained during 3DGA produce a vast
amount of data. A typical report in clinical practice contains
up to a few dozen discrete parameters along with more
than 20 waveforms describing kinematic and kinetic gait
variables across a gait cycle. A gait cycle refers to the interval
between the initial contact of a foot and the subsequent
initial contact of the same foot and is the standard ‘‘time
frame’’ used in clinical practice to describe human gait.
Due to the complexity, characterized by high dimensionality,
temporal dependence, strong variability, non-linear relation-
ship, and inter-correlation [5], these data are challenging
to comprehend and analyze manually (see Figure 1 for
an example of a data record obtained by 3DGA). Hence,
data interpretation in clinical practice is highly challenging,
and a lot of experience is required to draw valid medical
conclusions.

The complexity of the data in 3DGA combined with the
need for timely and precise decision-making has motivated
research to utilize Machine Learning (ML) to aid decision-
making [6]. ML approaches increasingly leverage non-linear
classification models, such as multi-layer (deep) neural
networks, which have shown to provide promising results
concerning classification accuracy in the field of clinical
gait analysis [7], [8]. However, such complex classification
models share a major limitation: their black-box nature [9].
This means that it is hard to trace back and understand
how a certain model has reached a specific decision, how
it is grounded in the input data, and what kind of patterns
and rules it actually learned from the data. Consequently,
even well-performing ML models are rarely used in clinical
practice [10].

Given an ML model trained on 3DGA data, it is a
non-trivial task to trace back which patterns in the signal

are responsible for its predictions. Furthermore, it is unclear
whether predictions are based on clinically relevant patterns
or rather on signals that relate to the targeted pathologies
due to a spurious correlation or a bias in the data but
are not causally related to them. The experts’ skepticism
regarding automatically generated predictions and diagnostic
suggestions is, therefore, well justified. At the same time,
the strong performance obtained by state-of-the-art ML
models shows great potential to significantly support the
diagnostic process and, thus, to save costs and time in
everyday clinical practice. Therefore, their application in
clinical practice would be of great value. This, however,
requires ML approaches to become more transparent and
traceable, e.g., via explainability mechanisms [8]. In addition,
this would further help to fulfill legal requirements, such as
the EUGeneral Data Protection Regulation (GDPR) [11], that
require the traceability of ML predictions.

The primary aim of this work is to investigate the
effectiveness of various ML methods in automatically
classifying gait patterns associated with CP and to employ
explainability approaches to examine whether the features
learned by these models are clinically relevant. To this
end, we trained different ML models, including convo-
lutional neural networks (CNNs), self-normalizing neural
networks (SNNs) [12], random forests (RFs), and decision
trees (DTs) and generated and compared explanations for the
trained models. We utilized model-specific explanations for
DTs and RFs in terms of Gini impurity-based feature impor-
tance. For the investigated deep neural networks (DNNs),
we adapted the well-known Grad-CAM algorithm [13] to be
applicable to one-dimensional time series input data. This
explainability method has been shown to be robust [14] in
explaining the internal workings of DNNs.

Our investigation focuses on the following leading research
questions:

1) How advantageous is the use of kinematic data over
GRF data in the automated classification of gait
patterns associated with CP, and are the two inputs
more effective in combination than used individually?

2) How do traditionalMLmodels compare to state-of-the-
art DNNs for the automated classification of clinical
3DGAdata in terms of performance and explainability?

3) To what extent do the investigated ML models base
their decisions on clinically meaningful features when
classifying CP-related gait patterns?

4) To what extent are the explanations obtained from
DNNs robust to variations in architecture?

We performed experiments on a dataset of 302 patients
with CP (375 limbs) and four different gait patterns related
to this condition. Our results show an unexpected outcome.
DNNs have not met initial expectations and fall behind
traditional methods in classification performance. Compared
to traditional methods that provide concise explanations and
identify and utilize clinically relevant regions in the input data
for the classification task, DNNs are less informative in their
explanations.
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FIGURE 1. Visualization of a 3DGA data record as used in clinical practice. Several retro-reflective markers (pink spheres) are attached to specific
anatomical landmarks of the human body and allow quantifying human locomotion using 3D motion-capturing techniques. The 3D trajectories of
these markers combined with geometrical biomechanical models are used to calculate, e.g., joint angles. In clinical practice, this information is used to
inform medical decision-making. The data from clinical 3DGA are typically reported in simple line plots. Blue and red colors encode the right and left
body sides, respectively. Deriving a diagnosis from these abstract line plots is a challenging task that requires trained medical personnel. Thus,
machine learning models are highly desirable to assist decision-making.

II. RELATED WORK
The research in this paper combines methodology from
multiple disciplines, namely automated classification in
clinical gait analysis and explainable machine learning,
a branch of explainable artificial intelligence (XAI). For this
reason, the related work is structured in two subsections, one
for each field.

A. AUTOMATED CLASSIFICATION OF PATIENTS WITH CP
There is a growing interest in using ML in the field of clinical
gait analysis due to its ability to analyze large amounts of gait
data in a cost-effective, fast, and objective manner [6], [15],
[16]. ML methods have been successfully applied to analyze
gait patterns of patients with different conditions, such as

stroke [17], Parkinson’s disease [18], multiple sclerosis [19],
osteoarthritis [20], and various functional gait disorders [21],
[22]. One area that has received particular attention in the
literature is the use of ML for automated classification of gait
patterns associated with CP [23].

Several studies have compared the performance of differ-
ent ML approaches for this task. Ferrari et al. [24] compared
the use of multi-layer perceptrons (MLPs), support vector
machines (SVMs), and long short-term memory networks
(LSTMs) for the classification of four CP-related gait
patterns defined by Ferrari et al. [25]. According to their
results, the LSTMs achieved the highest classification
accuracy of 67.4 %. The authors utilized kinematic data and
frequency information (obtained via fast Fourier transform)
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from 174 patients. Zhang and Ma [26] compared seven
ML methods, including MLP, SVM, DT, and RF, for the
classification of CP-related gait patterns as defined by Rodda
and Graham [27], i.e., crouch gait, apparent equinus, jump
gait, and true equinus. The MLPs performed best with a
classification accuracy of 93.5 %. The DT, RF, and SVM
had considerably lower accuracy rates of 84.3 %, 83.6 %,
and 85.0 %, respectively. The dataset comprised discrete
parameters from kinematic waveforms of 200 children.
Darbandi et al. [28] also used discrete parameters of
kinematic data of 66 children in a stochastic approach to
translate expert knowledge into rules and to perform fuzzy
clustering. For the classification of gait patterns as defined
by Rodda and Graham [27], their approach achieved a
classification accuracy of 94.0 %. Chia et al. [29] developed
a decision support system that used discrete parameters from
kinematic waveforms, physical examinations, and anthropo-
metric data to identify 14 different CP-related impairments
(e.g., hamstring spasticity, gastrocnemius spasticity, and
gluteal weakness) and provide surgical recommendations.
The dataset comprised 689 3DGA recordings of 423 children.
The authors evaluated the performance of a stratified and
standard RF, with the latter achieving better results, i.e., a
misclassification rate of 0.13 (corresponding to a classifica-
tion accuracy of 87.0 %). Furthermore, feature importance
served as decision explanation and partial dependence plots
as model explanation.

B. EXPLAINABLE MACHINE LEARNING
The inherent non-transparency of modern ML models,
in particular DNNs, has greatly advanced research on explain-
ability methods in the field of XAI in recent years. These
methods are designed to provide explanations for automated
predictions and to help clinical experts understand how and
why a particular prediction was made. XAI methods can be
categorized according to the type of explanation they provide.
Following the taxonomy of Arya et al. [30], we distinguish
between XAI approaches for (i) data exploration, (ii) decision
explanation, and (iii) model explanation.

Data exploration methods cannot explain an ML model,
but rather the data on which the model was trained. These
methods include techniques from the field of visual analyt-
ics [31], statistics (e.g., statistical parametric mapping) [8],
and unsupervised machine learning [32], [33]. The goal
is to visualize and adequately transform the data, thereby
enabling domain experts to find meaningful structures
and patterns that will allow them to better understand
the data, their distribution, and cluster structures. This
process should result in novel insights from the data. Data
exploration is generally recommended before anMLmodel is
trained.

Decision explanation methods explain the local behavior
of an ML model, i.e., providing an explanation for the
prediction of an individual data sample. For a classification
task, such an explanation can, for example, indicate which

parts of the input are responsible for the prediction. In the case
of gait classification, suchmethods can identify characteristic
sections in the input time series related to a specific gait
disorder [8]. The majority of decision explanation methods
are post-hoc methods, which offer great flexibility as they
can be directly applied to previously trained classification
models [30]. Typical results of post-hoc methods are saliency
maps that highlight which input features are most relevant to
a particular prediction [13]. Post-hoc methods can be divided
into propagation-based and perturbation-based approaches.
Propagation-based methods determine the effect of input
features on the model’s prediction by (partially) back-
propagating an entity of interest (e.g., gradients) from the
output to the input of the model. Popular examples for
such approaches are SmoothGrad [34], Grad-CAM [13], and
Layer-wise Relevance Propagation (LRP) [35]. Perturbation-
based methods, e.g., Local Interpretable Model-Agnostic
Explanations (LIME) [36] and SHapley Additive exPla-
nations (SHAP) [37], estimate the importance of input
features by partially masking the input and measuring the
effect on the model output. Perturbation-based methods are
model-agnostic since no access to the internal architecture
of the models is necessary. Compared to propagation-
based methods, however, they require a significantly higher
computational effort. Propagation-based methods are com-
putationally more efficient and allow the explanation of
classifier-specific characteristics, thus enabling a more pro-
found analysis.

Besides decision explanations, there are model explana-
tion methods that aim to explain what a trained model
has learned at a global level, e.g., by providing class-
specific prototypes [38] or synthesized samples reflecting
the characteristic patterns learned for a certain class [39].
Consequently, ambiguous features that the model learned can
be identified and overlaps between classes can be detected.
Model explanation allows to check whether a model has been
trained correctly and whether the predicted classes are based
on meaningful patterns. Decision and model explanation,
thus, complement each other.

In clinical gait analysis, only a few studies have used
XAI to shed light on the underlying black-box models
and promote their use within the clinical setting. We have
recently proposed several approaches for model and decision
explanation based on LRP to explain the functioning
of different ML models (i.e., linear SVMs, MLPs, and
CNNs) for the classification of GRF data into different
functional gait disorders [8]. The investigated ML models
utilized GRF waveforms as input. Consequently, to obtain
class-specific explanations, the averaged relevance scores
were superimposed over the averaged GRF waveforms.
Furthermore, we proposed the use of a model explanation
based on SpRAy [40], which is a method for identifying
clusters within the explanations. These approaches have been
further investigated to explain sex- and age-dependent gait
patterns learned by ML models [41], [42]. Dindorf et al. [43]
used LIME to explain a linear SVM that was trained to
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distinguish between healthy controls and patients after total
hip arthroplasty. In their study, two input scenarios were
examined, one with kinematic and kinetic waveforms, while
the other employed discrete parameters derived from these
waveforms. The explainability results showed that the SVMs
were highly sensitive to the input representation employed
and that each of the models often focused on different
biomechanical features. Kokkotis et al. [44] leveraged SHAP
to explain which discrete kinematic and kinetic parameters
contributed most to the decisions of an SVM for the
classification of patients with anterior cruciate ligament
injury (with and without reconstruction surgery) and healthy
controls. The authors noted that SHAP highlighted several
discrete parameters that were consistent with biomechanical
findings reported in the literature. However, a discrepancy
was observed between the explainability results and the
results of conventional statistical analysis. Recently, we pro-
posed gaitXplorer [45], a visual analytics approach for
the classification of CP-related gait patterns that employed
Grad-CAM [13] to explain predictions of CNNs. This work
employs the same dataset and explainability method as the
present paper, but focuses solely on decision explanations.
Figure 2 shows the interactive visual interface of the
gaitXplorer.

The present work investigates for the first time the
suitability of different DNN architectures and their explain-
ability in terms of decision and model explanations for
the classification of CP-related gait patterns as defined
by Rodda et al. [47]. Moreover, our research addresses the
ability of DNNs and conventional ML approaches to capture
clinically significant features from kinematic and kinetic
waveforms.

III. METHODS
A. CLINICAL USE CASE AND TARGET CLASSES
The clinical use case of this paper is the identification
of clinically well-defined gait patterns in children with
CP and neuro-muscular disorders. This patient group is
associated with varying symptoms such as muscle weakness
and stiffness, tremors, and limited joint range of motion,
among other impairments [2]. All of these can strongly affect
motor function and the ability to walk. The present study
uses 3DGA data from patients who can walk independently
and have well-recognizable gait deviations such as toe-
walking, flexed-stiff knees, flexed hips, and an anteriorly
tilted pelvis [47]. The correct classification and identification
of these underlying impairments are essential as clinicians
base their decisions about optimal treatment interventions on
this information.

All patients in our study were categorized into four patho-
logical gait patterns by a clinically established procedure, the
so-called ankle plantarflexor-knee extension couple (PFKE)
index [48]. This categorization served as the ground truth
during the training and evaluation of the ML model. The
method compares the sagittal knee and ankle angles of
patients with those of a speed-matched healthy control cohort

and automatically determines the four classes using a set
of rules. These rules provide a well-suited reference for the
evaluation of the appropriateness of the explainability results.
In our experiment we expect that a trustworthy classification
model for CP would base its decisions on the same signal
regions as the PFKE method.

The gait patterns associated with CP are illustrated
in Figure 3 and briefly described in the following [47]:

• True equinus: The ankle is in plantar flexion throughout
the stance phase (‘‘toe-walking’’).

• Jump gait: Equinus at the ankle (partly in late stance),
flexion at knee and hip (especially in early stance),
anterior pelvis tilt, and increased lumbar lordosis.

• Apparent equinus: The ankle has a normal range, but
the knee and hip are excessively flexed throughout the
stance, and the heel is off the ground during walking.

• Crouch gait: The ankle is excessively dorsiflexed
throughout the stance, and the knee and hip are
excessively flexed.

B. DATASET
The data used for this study are retrospective gait anal-
ysis data from an existing clinical database maintained
by the Laboratory for Gait and Movement Analysis at
the Orthopaedic Hospital Vienna-Speising. Gait analysis
data are, briefly described, obtained by motion capturing
techniques where spherical retroreflective markers with a
diameter of approximately 1 cm are placed directly on the
patient’s skin above anatomical landmarks. Then the patient
is asked to walk freely up and down a walkway of roughly
ten meters in a gait laboratory. A motion capture system
comprising several infrared-based cameras then records the
2D trajectories of each reflective marker for each camera.
These redundant 2D coordinates are then triangulated to
derive the 3D coordinates in space for each marker [49]
at any instant of time. The obtained marker positions are
then used to fit a multibody biomechanical model into these
3D trajectories by a least square algorithm. The model then
allows describing kinematic and kinetic variables of human
locomotion in detail [4].

The local ethics committee approved this retrospective
study (EK 19-083-VK). The dataset comprises anonymized
data from 302 patients with CP (375 affected legs) and
includes the aforementioned four gait patterns: true equinus
(N = 129), jump gait (N = 72), apparent equinus
(N = 92), and crouch gait (N = 82). Table 1 presents
class-specific demographic details. The 3D clinical gait
analysis was performed on a 12 m walkway using a motion
capture system (150 Hz, Vicon, Oxford, United Kingdom)
comprising at least 14 infrared cameras and three force
plates (1500 Hz, Advanced Mechanical Technology Inc.,
MA, USA). The force plates were embedded in the ground
flush with the walkway and covered with the same surface
material as the floor. Patients walked unassisted (without
a walking aid) and at self-selected walking speed until at
least five valid recordings had been obtained. A record was
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FIGURE 2. Visual interface of the gaitXplorer [45] showing the classification prediction and corresponding explanations for both legs of a patient. The
top right corner (a) features a compact overview of the Grad-CAM-based explanations. The main panel (b) illustrates the patient’s 3D gait analysis data
as line plots, with color intensity indicating the relevance for the predictions (i.e., blue for the left and red for the right leg). Figure adapted from [46].

FIGURE 3. Four motion patterns in patients with cerebral palsy, i.e., true
equinus (toe-walking), jump gait, apparent equinus, and crouch gait [47].
One indicator for these four gait patterns is the sagittal ankle angle
(dorsi-plantarflexion). The typical value range of this angle is displayed
for each gait pattern.

considered valid if the patient walked naturally and had
a clean foot strike on one of the force plates. The raw
data were preprocessed with Vicon Nexus (Vicon, Oxford,
United Kingdom) and custom-made Matlab routines (The
MathWorks, Inc., Matrick, MA, USA). Marker trajectories
were filtered with a Woltring filter (mean square error of
15 mm2) and GRF data with a third-order Savitzky-Golay
filter. Joint angles and moments were calculated according
to the modified Cleveland clinical marker set. Based on
distinct gait events, i.e., initial contact and foot off, data of
all valid gait cycles were linearly time normalized to 100 %

of the respective gait cycle. Subsequently, the average curve
was computed for each joint angle, joint moment, and GRF
component by aggregating data from all gait cycles within
one recording session.

The dataset includes information about the joint angles
(kinematics) of the pelvis, hip, knee, and ankle and GRFs in
all three planes of motion. For the gait kinematics, the sagit-
tal, frontal, and transverse plane of motion correspond to the
flexion/extension, abduction/adduction, and internal/external
rotation of a joint, respectively. Consistent with standard
practice in this domain, data were time-normalized to one
gait cycle. As a result, each signal has 101 data samples
after time-normalization, i.e., corresponding to 0–100 % of
the gait cycle for joint angles and stand phase for GRFs.
The data are multi-dimensional and consist of 13 signals in
total, i.e., vertical (GRFV ), anterior-posterior (GRFAP), and
medio-lateral (GRFML) GRFs as well as sagittal (PelvisS ),
frontal (PelvisF ), transversal (PelvisT ) pelvis angles, sagittal
(HipS ), frontal (HipF ), transversal (HipT ) hip angles, sagittal
(KneeS ), frontal (KneeF ), transversal (KneeT ) knee angles,
and sagittal ankle angle (AnkleS ). Each signal represents
either one of the GRF components or the kinematic profile
at a particular joint and anatomical plane during one
gait cycle. Several gait cycles were available for each
patient. The signals from these gait cycles were averaged
to one waveform per body side to account for intra-subject
gait variability. The classification was conducted at the
level of individual legs, i.e., only the affected legs were
classified.
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TABLE 1. Demographic information for each class within the employed dataset.

For our experiments we employed different subsets of
the captured data to investigate the influence of different
signals on the classification performance and on the obtained
explanations. For each subset we concatenated the respective
signals into a one-dimensional vector. We defined the
following four subsets for our experiments:

• the lower body kinematic and GRF data (i.e., a 1×1313-
dimensional input vector for each patient, consisting of
13 signals, with 101 samples each);

• only lower body kinematic data (a 1×1010-dimensional
input vector for each patient);

• only GRF data (a 1×303-dimensional input vector for
each patient);

• the sagittal knee and ankle joint angles which are
the signals that are actually used to determine the
ground truth (a 1×202-dimensional input vector for each
patient).

Since the signal amplitudes differ in their dynamic ranges,
we normalized the input features component-wise to the
range [0,1]. Hence, it is ensured that each signal can
contribute equally to the decision process and signals with
a smaller amplitude range are not disadvantaged.

C. CLASSIFICATION METHODS
For the classification task, we examined various ML models,
including CNNs, SNNs, RFs, and DTs, and generated and
compared explanations for the trained models. We selected
CNNs because they have not been previously employed
in the literature for this purpose, despite their success in
other gait analysis tasks [8]. SNNs utilize scaled expo-
nential linear units (SELUs) as activation function, which
exhibit self-normalizing properties, causing the output of
the layers to converge to zero mean and unit variance [12].
Klambauer et al. [12] demonstrated that SNNs exhibit great
robustness due to these properties, since vanishing and
exploding gradients are eliminated by construction. As tra-
ditional ML methods, RFs and DTs performed well for
classifying CP-related gait patterns, and thus we utilized them
as baseline approaches. We evaluated the ML models in a
stratified five-fold cross-validation approach. Hence, three
folds served as training data, one fold served as a validation
set on which the optimal architecture and hyperparameters
were determined, and the remaining fold served as a test set.

1) NEURAL NETWORKS
CNNs and SNNs learn abstract feature representations for
the provided data via several consecutive 1D convolutional

layers. The filter size and stride1 remained fixed for all
convolutional layers. We investigated whether compressing
information across the convolutional stack provides an
advantage in both performance and explainability. To this
end, we examined a stride of one (baseline without com-
pression) and two (compression by half). For both model
types, CNNs and SNNs, the filter size was set to three.
Simonyan and Zisserman [50] showed the advantage of using
a stack of 3 × 3 convolutional layers over filters with larger
receptive fields in image classifiers. This approach employs
multiple non-linearities, resulting in a more discriminative
decision function as well as a reduction in the number
of parameters [50]. Non-linear neuron activations in terms
of ReLUs for CNNs and SeLUs for SNNs were applied
in each convolutional layer. The feature maps in the last
convolutional layer were flattened and linked to a fully-
connected (dense) layer stack. This stack consists of one
dense layer (with ReLU for CNNs and SeLU for SNNs as
an activation function) and an output layer situated on top
that has four output neurons. To promote generalizability
and counteract potential overfitting during training, a dropout
was applied to the last two dense layers (including the
output layer). The output layer has a softmax activation
function attached to scale the outputs to class likelihoods.
The fully-connected layers (including the output layer) can be
considered a non-linear multi-class predictor, which operates
on top of a hierarchically learned stack of 1D filters. The
convolutional layer stack is strongly non-linear, which makes
this part of the architecture very flexible in modeling but at
the same time non-transparent.

During the training process, the weights were updated via
back-propagation using the Adam optimizer (1000 training
epochs with early stopping using the validation loss as
the monitored metric and a patience of 100 epochs) and
a categorical cross-entropy loss function. For each input
setting, we determined the optimal hyperparameters via a grid
search, i.e., stride {1, 2}, number of convolutional layers and
number of filters {{32, 32}, {32, 32, 32, 32}, {32, 32, 32, 32,
32, 32}, {32, 64}, {32, 32, 64, 64}}, size of the dense layer
{64, 128}, dropout rate {0.1, 0.25, 0.5}, batch size {32, 64},
and learning rate {10−4, 10−3}. The optimal hyperparameters
for the CNNs are presented in Table 2 and for the SNNs in
Table 3.

1The number of input features that the convolution filter moves across the
input of the convolutional layer.
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TABLE 2. Optimal hyperparameters, i.e., stride (S), number of layers and
filters in the convolution stack, size of dense layer, dropout rate (DR),
batch size (BS), and learning rate (LR), for the CNN architectures.

TABLE 3. Optimal hyperparameters, i.e., stride (S), number of layers and
filters in the convolution stack, size of dense layer, dropout rate (DR),
batch size (BS), and learning rate (LR), for the SNN architectures.

2) TREE-BASED MODELS
In addition to DNNs, we explored traditional ML methods
such as DTs and RFs. The non-parametric, non-linear, and
intrinsically interpretable nature of DTs makes them popular
for gait classification [6]. DTs have a tree structure containing
decision nodes and leaf nodes. A decision node uses a suitable
input feature to try to split the data into two homogeneous
subsets. To determine which feature is suitable for a decision
node, different metrics can be used. The most commonly
used metrics are Gini impurity and information gain based
on entropy. These metrics can also be used to calculate the
importance of each input feature for the entire model, which
can be used as a model explanation. Since a feature can
be used at different levels of the tree, the importance of a
feature is determined as the total contribution in reducing the
impurity.

Different algorithms exist for the construction of a
DT, e.g., ID3 [51], C4.5 [52], and CART [53]. For
our experiments, we utilized the DT implementation of
Scikit-learn [54], which is based on the CART algorithm.
To construct the DT, we used Gini impurity and the feature
importance based on this metric serves as explanation
method.

Since individual DTs can be sensitive to even small
changes in the input data, we also investigated RFs. RFs are
also supervised non-parametric ML methods built on a set
of simple DTs. To generate an RF, a predetermined number
of DTs are first trained on different subsets of the training
data, and then the predictions of these simpler models are
combined. As RFs are sensitive to the number of individual
DTs, we performed a grid search over this hyperparameter

NDT ∈ {100, 200, 300}. The number of individual DTs that
performed best in all settings was 100. For our experiments,
we utilized the RF implementation of Scikit-learn [54] with
Gini impurity as metric. Similar to an individual DT, the
feature importance can be calculated for the entire RF using
Gini impurity. This can directly serve as an explanation for
the trained model.

D. EXPLAINABILITY METHODS FOR NEURAL NETWORKS
Once the networks were trained, a central question was how
to explain these models to examine their internal functioning
and plausibility. With regard to DNNs, the ever-growing
ecosystem of XAI methods offers many choices. However,
as demonstrated by Adebayo et al. [14], not all of the
proposed XAImethods are robust and the validity of obtained
explanations should be questioned. Unfortunately, most of
the popular gradient-based methods, which are particularly
well-suited for DNNs, are heavily exposed to artifacts
caused by the problem of gradient shattering [55]. Thus, the
explanations in the input space are not continuous, and single
input features show considerably different or even opposite
importance values (regarding a given prediction) compared
to input features in their immediate neighborhood [34].
Furthermore, it is questionable whether the information
obtained for individual input features represents an adequate
abstraction level to explain a decision, especially when the
input signal is a continuous time series. Justifications based
on local and consecutive signal features in the time series
may lead to more comprehensible and intuitive explanations.
For this reason, we decided to perform the explanation
at a higher semantic level. A suitable level is the last
layer of the convolutional filter stack. This layer represents
higher-level signal filters with a larger receptive field and,
thus, potentially captures more meaningful signal features for
human observers.

A method that provides explanations at this level is Grad-
CAM [13]. This method does not propagate the gradients
back to the input space, but the final prediction of the
network is directly explained in terms of the abstract features
learned in the last convolutional layer. Grad-CAM weighs
the activation map of the last convolutional layer with the
gradients (which flow into this layer) with respect to the
target class to be explained. The weighted activation map
is averaged over all channels of the layer. This results in
an activation pattern that reflects higher-level signal patterns
and captures contextual information. For easier interpretation
of the results, the activation pattern can be upscaled (via
interpolation) and mapped (e.g., via color coding) to the input
signal. The upscaled activation pattern highlights continuous
but local sections in the input signal that have a strong relation
to the target class under investigation. An overview of how
Grad-CAM functions for 1D gait analysis data is provided in
Figure 4.

In our experimental setup, we employed a five-fold cross-
validation, which results in five distinct models. We decided
to explain the model that performed closest to the median
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FIGURE 4. A schematic representation of the Grad-CAM method adapted for deep neural networks trained on 1D gait
data. This example illustrates the process of generating a decision explanation for the true equinus class. To generate a
Grad-CAM explanation, the gradients of the feature maps of the last convolutional layer are averaged channel-wise (x̄)
and used as weights to calculate a weighted sum of the activations of this layer. Then, a ReLU function is applied to
obtain only positive values, because these contribute to the prediction of the specific target class. In a final step, the
Grad-CAM explanation is scaled up to match the size of the input.

among the five models because we intended to emulate
real-life scenarios where usually a single model is used in
practice rather than multiple models. For this model, we gen-
erated explanations at different levels, i.e., at the decision
level and subsequently by aggregating these explanations at
the class and model level. The motivation for this approach
is to gain a comprehensive understanding of the model by
explaining not only a single decision, but also which features
are important for each class and the overall model.

First, we computed decision explanations for each record
in the dataset (training, validation, and test samples) using
the ground truth label as target for the explanation. Next,
we calculated the median over the Grad-CAM activations
of all records assigned to a particular class to obtain
explanations on the class level. The obtained activation
pattern highlights class-specific patterns for an entire target
class. The calculation of the median, however, can cause
interpretation difficulties by obscuring the existence of
different decision strategies that the model may have learned
for different patient subgroups within a class. As shown
in our previous research [8], CNNs have the ability to
learn different strategies for distinct patient subgroups.
Consequently, if a model learns complementary strategies to
distinguish different patient subgroups of a particular class,
the median plot of that class may not provide sufficient
information to understand the model’s functioning. There-
fore, similar to individual conditional expectation (ICE) [56]
plots, we propose an additional subplot that also visualizes
the individual Grad-CAM activations.

Furthermore, we propose an explanation at the model level
that goes beyond the interpretation of individual classes.
For this type of model explanation, we calculated the total
relevance as the sum of Grad-CAM activations over all
samples for all four classes. This model explanation should

serve as an informative indicator for the overall relevance of
an input feature for the underlying classification task.

The implementation of all classification and explainability
methods was conducted within the software framework
Python 3.7.10 (Python Software Foundation, USA), Tensor-
Flow 2.3.0 (Google Brain Team, Google LLC, USA), and
Scikit-learn 1.0.2 [54].

IV. RESULTS
Subsection IV-A presents the quantitative results in terms
of classification accuracy for all investigated ML models
which were used to classify the four CP-related patterns
presented in Subsection III-A. The explainability results
for the examined ML models, which aim to explain the
functioning of the models on the class and model level, are
presented in Subsection IV-B.

A. CLASSIFICATION RESULTS
Classification results are provided for the four classification
methods from Section III-C, i.e., CNN (with stride of one
and two), SNN (with stride of one and two), RF, and DT.
Each model has been trained and evaluated on the four
different input configurations (signal sub-selections) defined
in Section III-B, i.e., i) all 3DGA signals, ii) only kinematic
signals, iii) only sagittal knee and ankle angles, and iv) only
GRF signals. The zero rule baseline (ZRB), which refers to
the theoretical accuracy obtained by assigning always the
class label with the highest prior probability, is 34.4 % for
this classification task. Since we evaluated theMLmodels via
stratified five-fold cross-validation, we report the averaged
classification accuracy over all five folds for the training,
validation and test set. Table 4 summarizes all quantitative
results.
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In addition to the presented methods, we also conducted
experiments with linear support vector machines (SVMs) and
gradient boosting classifiers to evaluate their potential. For
the SVMs, we performed a grid search on the hyperparameter
C = {10−4, 10−3, . . . , 103, 104}. The results of the SVMs
(All: 75.5%, Kinematics: 72.3%, and AnkleS & KneeS :
78.8%) showed suboptimal performance for the employed
dataset and classification task and thus the classifier was
not further investigated. We also evaluated the performance
of a gradient boosting classifier using a grid search on the
hyperparameters: learning rate {10−4, 10−3, 10−2, 10−1} and
number of trees {100, 200, 300}. Since RF outperformed
gradient boosting (All: 91.4%, Kinematics: 91.2%, and
AnkleS & KneeS : 92.0%), we focus on the RF results in the
following.

The results in Table 4 show that all models overfitted on
the training data, as evidenced by their significantly higher
performance on the training set compared to the test set,
even though the optimal parameters were selected using
a validation split. RF outperformed all other models, with
CNNs and SNNs showing the lowest test accuracies. The
performance of DTs lies between that of the DNNs and RFs.
RFs consistently achieved peak performance for all three
input configurations where kinematic data were present. RFs
are outperformed by CNNs and SNNs only when exclusively
GRF data are used.

CNNs performed slightly better than SNNs across all
input configurations. For CNNs and SNNs, there was little
difference in performance between using a stride of one and
two. There is no consistent trend in performance with respect
to stride. Only in the first input configuration where all
3DGA signals were used, a stride of one performed slightly
better.

For CNNs and SNNs, reducing the data to signals that
are most relevant for the classification task, i.e., sagittal
ankle (AnkleS ) and knee (KneeS ) angles, showed a significant
advantage. The pre-selection of input signals seems to help
the networks to find the most relevant information for solving
the task. This effect can also be observed with DTs, but it is
less pronounced. Remarkably, RFs demonstrate a high degree
of invariance towards the pre-selection of input signals. For
all input configurations where sagittal ankle and knee angles
are included, RFs achieved a similarly high performance level
independent of input dimensionality. This shows that RFs
are very good at identifying the most relevant information
and are hardly distracted by information in unrelated
signals.

Furthermore, the results in Table 4 allow to compare
the classification performance achievable with GRF and
kinematic data. This is an important question for clinical
practice, as the acquisition of 3D data is much more
demanding than capturing GRF data via force plates. Our
results show that 3DGA data (i.e., kinematic data) are
essential for automated gait classification. We observed
a significant drop in performance when classification is
restricted to the use of GRF data. We further discuss the

TABLE 4. Classification accuracy (averaged over all five folds, in %) for
the four classification methods (CNN, SNN, RF, and DT) and two variations
of CNN and SNN (each with different stride S) and different input signal
selections.

results as well as their relevance in the context of the driving
research questions of our study in Section V.

B. EXPLAINABILITY RESULTS
In the following, we present the explainability results of the
investigated classification models. We start with CNNs and
show their explanations at the class level (Figure 5) andmodel
level (Figure 6). Subsequently, we compare them with the
explanations of DTs and RFs at the model level.

1) EXPLANATIONS OF NEURAL NETWORKS
Here we focus on the CNN with a stride of two, since the
explanations generated by this model were found to be the
most satisfactory compared to the other DNNs. In addition,
we focus on the scenario in which the kinematic signals
were utilized as input data, as these are the signals most
commonly considered for CP. Figure 5 shows the respective
explainability results on the class level. The results are
presented in four panels, each showing the results of a
particular gait class. The top of each panel shows the averaged
input signals (in this case 10 concatenated kinematic signals)
per class. These are colored with a sequential red palette
based on the median of the Grad-CAM relevances of all
samples assigned to the particular class. The higher the
degree of red coloration of a region in the averaged input
signal, the greater its relevance is to the corresponding
class. The bottom part of each panel shows the Grad-CAM
explanations for individual input samples, with the median
visualized in blue. The lower part of each panel provides a
more comprehensive overview by showing the distribution
of individual decision explanations, from which we can
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derive additional information. For instance, considering the
HipS signal in the jump gait class in Figure 5C, the lower
visualization reveals at least two strategies the model learned
for classifying this class, i.e., one focuses on the central
regions of HipS , while the other focuses on the regions at the
beginning and the end of HipS .

In general, the explanations on the class level show
different relevance patterns for the different classes. Very
similar regions were considered relevant for crouch gait and
apparent equinus. The relevant regions for these two classes
primarily reside during the stance phase (approximately the
first 60 % of the signal) of AnkleS (markers b and d in
Figure 5), the swing phase (approximately the last 40 % of
the signal) of KneeS (markers a and c in Figure 5), and the
beginning and the end of HipS . In addition to these regions,
for the apparent equinus class, the other signals also exhibit
moderate relevance (e.g., most prominent in HipF , PelvisF ,
and KneeF ). The jump gait class shares some of the relevant
regions (i.e., the swing phase ofKneeS (marker e in Figure 5),
as well as the start and end of HipS ) with the two classes
described previously. However, there are certain differences,
especially to crouch gait, such as the moderate relevance in
PelvisS , HipS , HipT , KneeF , and KneeT as well as for some
samples the stand phase in HipS is highly relevant, whereas
for others it is not. The true equinus class is clearly dominated
by relevant regions during the stance phase inHipS andKneeS
(markers f and g in Figure 5). This relevance pattern is clearly
different from all other classes.

The highlighted regions in Figure 5 represent class-specific
activations and do not have to be discriminative for the
classification task per se. To identify which regions are
most relevant for the overall classification task we calculate
the total relevance as the sum of Grad-CAM activations of
all samples over all four classes. The higher this overall
activation, the more relevant is a given signal portion for the
classification task. Figure 6 shows the min-max normalized
overall activation as blue lines. Figure 6A shows the mean
and standard deviation of the raw input signals (calculated
per class) as solid and dashed lines, respectively. Figure 6B-E
shows the overall activation for models trained using
the four different input configurations (Subsection IV-A).
Figure 6B-E shows the Gini impurity-based feature impor-
tance for the RFs and DTs in orange and red, respectively.

As with the class level explanations, we observed very
high relevances for the CNN in the signals HipS , KneeS , and
AnkleS in the corresponding model explanation in Figure 6C.
This is independent of whether GRF signals are used
(Figure 6B) or not (Figure 6C). In case GRF is used in
addition, the propulsion peak inGRFAP (marker d in Figure 6)
is very relevant for the classification task.

When using only the signals that are most relevant to
clinicians for classification (Figure 6D), we can see that i) for
KneeS the relevance shifts more to the stance phase (marker h
in Figure 6D) while decreasing for the swing phase (marker i
in Figure 6D) and ii) for AnkleS the relevance shifts to the
swing phase (marker j in Figure 6D) while decreasing overall.

Similar regions exhibit high relevance when only GRF data
are utilized (Figure 6E) as in the case when all 3DGA signals
are used (Figure 6B).

2) EXPLANATIONS OF TREE-BASED MODELS
Figure 6 shows relevance scores (Gini impurity-based feature
relevances) for both DTs (red) and RFs (orange) at the
model level. RFs and DTs both exhibit locally similar
regions that are considered highly relevant. The DT places
a high emphasis on a single input feature, while the RF
distributes the relevance to a more widespread area, which
is strongly related to the relevant features of DT. For the
first three input configurations (Figure 6B-D) there is a
strong correspondence between these regions, showing that
both DT and RF find the most relevant information for
the classification task in a highly targeted manner. The
identified regions further correlate with those of the CNN
(except for AnkleS in Figure 6D where the CNN activation
is shifted towards the swing phase). Interestingly, RF and DT
provide explanations which are much more focused on the
clinically relevant signals, compared to the CNNs, for which
the activations are distributed across a broad range of input
signals.

Finally, we want to point out that for the case where
only GRF data are used (Figure 6E), a very noisy pattern is
observed in the relevances of RF and DT, focusing mainly
on the beginnings of the signals, which is in contrast to
the regions relevant to the CNN. We assume that the low
expressiveness of the GRF signals for the CP-related gait
patterns is the reason for the unfocused activation patterns.

V. DISCUSSION
In the following, we analyze and interpret the classification
and explainability results from a technical and clinical per-
spective. Additionally, we discuss the influence of different
input configurations on the performance of the investigated
classification methods. We structurally organize this section
according to the research questions and provide answers to
each of them.

1) HOW ADVANTAGEOUS IS THE USE OF KINEMATIC DATA
OVER GRF DATA IN THE AUTOMATED CLASSIFICATION OF
GAIT PATTERNS ASSOCIATED WITH CP, AND ARE THE TWO
INPUTS MORE EFFECTIVE IN COMBINATION THAN USED
INDIVIDUALLY?
The classification results in Table 4 demonstrate a significant
difference in classification performance between the use of
kinematic data and GRF data as input in all experiments.
The absolute differences range from 32.6 % for the SNN
(stride of two) to 51.4 % for the RF. The results on GRF
data also show that DNNs are more effective than traditional
ML approaches in modeling this type of data (the absolute
difference between CNN and RF is 5.2 %). The model level
explanation provides a possible rationale for this observation:
The CNNs use very similar regions in the GRF signals for
both input conditions, which is not the case for traditional
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FIGURE 5. Explainability results on the class level for the classification of gait patterns associated with cerebral palsy based on
min-max normalized kinematic data using a CNN (with stride of two). The results are shown in four panels, each showing the
results for a pathological gait pattern. The top of each panel displays the class-averaged kinematic signals that are colored with a
sequential red palette, based on the median Grad-CAM relevance for that class (i.e., the redder, the more relevant). The bottom of
each panel shows the Grad-CAM relevances for individual samples, with the median plotted in blue.
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FIGURE 6. Explainability results on the model level for the classification of gait patterns associated with cerebral palsy based on min-max normalized
kinematic data using a CNN (stride of two), a DT, and an RF. The results are presented in five subfigures (A-E). Subfigure A) displays the mean and
standard deviation of the raw input signals as solid and dashed lines, respectively. The following four subfigures show the model explanations in terms
of relevance for models trained on four different input configurations: B) all signals from 3DGA, C) only kinematic signals, D) only sagittal knee and
ankle angles, and F) only ground reaction forces. The model explanations (relevances) for the CNN (blue) are calculated by adding the Grad-CAM
relevances for all input samples and then applying min-max normalization. For DT and RF we provide the Gini impurity-based feature relevances in
orange (RF) and red (DT).

ML approaches. For illustration, refer to Figure 6B and E,
where the relevance of the CNNs (blue curves) are similar
in both subfigures (apart from the high relevance at the
end of GRFV , which is not particularly meaningful from a
clinical perspective). The distribution of feature importance
for RF and DT shown in Figure 6E is highly scattered and
noisy, and there is also a lack of agreement between the two
models. This suggests that RF and DT exhibit difficulties
in learning the most important input features from GRF
data.

When considering kinematic data, using only AnkleS
and KneeS for the classification task results in a sig-
nificant improvement in performance. Given that these
signals are considered by the clinicians to be most rel-
evant to the classification task, these improvements in
performance are not surprising. Our experiments show that
these two signals are also the most important and useful
ones for the ML models. Using all kinematic signals
as input slightly decreases performance (except for RF),

which indicates that (i) the models are distracted to a
certain degree by the additional input and (ii) the other
signals do not contribute additional information to the
task.

Combining kinematic and GRF data does not provide any
advantage and leads to a slight degradation in performance
in the majority of cases. This suggests that there is no
complementary information in the GRF signals compared to
the kinematic data for the evaluated task.

In the literature, GRF data have been utilized in multiple
studies examining pathological gait patterns associated with
Parkinson’s disease [18], [57], [58], cerebral palsy [19],
multiple sclerosis [19], osteoarthritis [59], transfemoral
amputation [60], and lower limb fracture [61]. However,
notable success in classification has been achieved primarily
for the relatively simple classification tasks of distinguishing
between one or two pathological gait patterns and healthy
controls. Furthermore, the majority of previous research
employed relatively small datasets. For the few studies that
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addressed more complex research questions, such as the
classification of various functional gait disorders [8], [21],
[22], the exclusive use of GRF data has yielded less promising
results. This tendency is also evident in our results. The
lower body motion information aggregated in GRF signals is
(i) insufficient when used alone and (ii) does not contribute
complementary information for the classification of gait
patterns associated with CP.

2) HOW DO TRADITIONAL ML MODELS COMPARE TO
STATE-OF-THE-ART DNNS FOR THE AUTOMATED
CLASSIFICATION OF CLINICAL 3DGA DATA IN TERMS OF
PERFORMANCE AND EXPLAINABILITY?
For the given task and data, RFs performed significantly
better compared to the other ML methods including DNNs.
When analyzing all input scenarios, RFs have consistently
shown the best performance ranging from 92.9 % to 93.4 %,
except for the scenarios involving only GRF signals. DTs
demonstrated the second-best performance in almost all input
scenarios, with the exception of scenarios involving only
GRF signals. One explanation for the superior performance
of the traditional ML methods can be attributed to the good
generalization ability of these methods to a small number
of training samples. This is not the case for CNNs and
SNNs, which have a strong tendency to overfit on smaller
datasets.

In comparison with related work focusing on the classi-
fication of the four CP-related gait patterns as defined by
Rodda et al. [27], we achieved similar classification perfor-
mance with the traditional ML models. Zhang and Ma [26]
reported that MLPs achieved the highest classification
accuracy of 93.5%, while DTs and RFs achieved lower
accuracy rates of 84.3% and 83.6%, respectively, using
a dataset of 200 children and the four classes. Similarly,
Darbandi et al. [28] achieved a classification accuracy of
94.0% with their stochastic approach, using a dataset of
66 children and the four classes. In our study, utilizing a
significantly larger dataset of 302 children, RFs demonstrated
the highest performance.

The explainability results show that DNNs attempt to learn
features from a broad range of signals for classification
(e.g., Figure 6B shows high relevances for PelvisS , KneeS ,
AnkleS , and GRFAP, while other signals are also considered
relevant to a certain degree). A cause for this behaviour
can be the limited dataset size. In contrast, RFs and DTs
focus much more on the regions in KneeS and AnkleS that
are actually relevant. We assume that their lower complexity
in terms of numbers of parameters compared to DNNs
is beneficial for the task and dataset. Interestingly, the
feature importance for DT and RF is consistent for all
input configurations (Figure 6B-D), which confirms that both
models are not distracted by additional (obviously mostly
unrelated) input signals. The feature relevance for the DNNs
is more sensitive and varies stronger between the different
input configurations.

3) TO WHAT EXTENT DO THE INVESTIGATED ML MODELS
BASE THEIR DECISIONS ON CLINICALLY MEANINGFUL
FEATURES WHEN CLASSIFYING CP-RELATED GAIT
PATTERNS?
In clinical practice, the four investigated CP-related gait
patterns mainly differ in the sagittal knee (KneeS ) and sagittal
ankle (AnkleS ) angles during the stance phase. The model
explanations for the three input configurations with kinematic
data show the highest relevance in these signals (markers
a/e/h and c/g/j in Figure 6). This matches expectations from
clinical practice and is in agreement with other studies [48]
which identified both signals as the most promising to
distinguish crouch gait, apparent equinus, jump gait, and true
equinus.

As previously discussed, DNNs tend to learn patterns
from a broad range of input signals, in contrast to RFs
and DTs, which focus only on the most clinically rel-
evant signals, i.e., KneeS and AnkleS . Considering the
case where all kinematic data are used (Figure 6C), the
CNN shows the highest activations in KneeS and AnkleS
as well, but also in HipS , which is clinically reason-
able. Interestingly, although clinically relevant, HipS does
not contribute to the classification performance in our
experiments.

From a clinical point of view, the main characteristic of
the gait pattern true equinus is an increased plantarflexion
during stance. One could expect a strong activation in AnkleS
for true equinus. However, true equinus has a plantarflexed
pattern in the ankle, which is similar to jump gait. Apparent
equinus (neutral ankle angle) and crouch gait (dorsiflexed
ankle angle) are more similar in AnkleS compared to jump
gait and true equinus. However, they also differ from each
other in AnkleS . Therefore, the high activation in AnkleS
for crouch gait and apparent equinus (markers b and d in
Figure 5) and the non-activation in this signal in jump gait
and true equinus seem plausible from a clinical point of
view.

In KneeS we see less activation for crouch gait and
apparent equinus during stance (Figure 5A and B). This
seems plausible from a clinical perspective because both gait
patterns are associated with increased knee flexion during
stance compared to normative data. Both jump gait and
especially true equinus are gait patterns associated with
a decrease in knee flexion or even hyperextension during
stance. The classification algorithm clearly picked up this
pattern associated with knee hyperextension as we observed
increased relevance scores during stance in KneeS for both
classes, i.e., for some jump gait samples, but especially for
true equinus (marker g in Figure 5).

Our experiments have further revealed that the explain-
ability approaches highlight certain signal regions as highly
relevant, which may not be considered important from a
clinical perspective. We observed a high activation during
early to mid-swing in KneeS (markers b, f, and i in Figure 6),
which is not expected from a clinical point of view. The
reason might be twofold, either this attribution is due to a
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bias in the data (e.g., a spurious correlationwith the respective
classes), or it indicates a potentially useful signal region that
the ML model has discovered during learning, which is not
considered in clinical practice (either because it shows too
subtle differences that have not been considered as clinically
relevant yet, or it has not been observed in practice yet). These
results demonstrate that explainability approaches have the
potential to assess not only the correctness of the trained
models but also to gain new clinical insights about the data
and the investigated task.

Overall, we conclude that the ML models successfully
learn clinically relevant patterns for the distinction of dif-
ferent CP-related gait patterns. All three model explanations
have a high activation in the clinically most relevant signal
regions, i.e., KneeS (markers a, e, and h in Figure 6)
and AnkleS (markers c and g in Figure 6) during stance.
In addition, the CNN also considered regions that were
not expected from a clinical perspective, e.g., KneeS during
swing (markers b,f, and i in Figure 6) and AnkleS during
swing (marker j in Figure 6D). Explainability approaches
can reveal such unexpected patterns and are essential for
clinicians to verify the correct working of the model, to gain
trust in its decisions and to support gaining new insights
into the data. We can conclude that all employed methods
primarily focus on clinically relevant input signals, whereas
this pattern is much more distinct for DT and RF than for the
DNN models.

4) TO WHAT EXTENT ARE THE EXPLANATIONS OBTAINED
FROM DNNS ROBUST TO VARIATIONS IN ARCHITECTURE?
CNNs and SNNs show significant differences in their expla-
nations. A visualization of the explanations on the class level
for all input configurations can be found in the supplementary
material in Figure S1. A direct comparison shows that SNNs
lack activations for entire classes in the scenario where all
signals (kinematic and GRF data) are used. This means that
in some situations the Grad-CAM explanation does not high-
light any signal as important, which is counter-intuitive and
not credible. However, whenwe reduce the number of signals,
we obtain more reasonable explanations. This behavior may
be attributed to the high dimensionality of the input data,
which potentially leads to an over-parameterization of the
model and which in turn impedes Grad-CAM to identify
distinct features. For CNNs (with stride of one) we also
observe this problem, but only for the apparent equinus
class in the configuration where all signals are used. This
indicates that the normalization introduced by SNNs is not
the (only) reason for this behavior. It is more likely that
the high input dimensionality is responsible for the partly
meaningless explanations. Further experiments with stronger
regularization are needed to investigate this problem in more
detail.

For the other input configurations (except for SNN with
a stride of one and the kinematic data as input), there are
more similarities in the explanations of CNNs and SNNs,
especially for the crouch gait, apparent equinus, and true

equinus classes. In general, there is also more similarity
between the two CNNs with different strides except for
GRF signals, where the CNN with a stride of 1 learns
patterns that are more similar to those of SNNs. The two
SNNs with different strides show very high similarities for
two input configurations, i.e., GRF and AnkleS & KneeS .
We conclude that small changes in the model architecture
may lead to larger variations in the explanations, which
should not be the case if the models are able to robustly
model the given task. The input dimensionality seems to be
one factor that impedes the robustness of explainability, but
not the only one. Different network architectures (compo-
nents, layers and connection schemes between layers) may
further either impede or facilitate the explainability of the
model.

VI. FUTURE WORK & LIMITATIONS
An important prerequisite for reliable and well-functioning
MLmodels, particularly DNNs, is a sufficient amount of data,
but this is often a limitation in practice. The more data are
available, the more robust patterns may be learned by the
classifiers leading to more intuitive explanations. Especially
regarding the use of DNNs for the domain of human gait
analysis we are optimistic for two reasons. First, depending
on the model type and architecture it is possible to train
models which provide meaningful explanations for clinical
experts even with the currently available data. Second,
it is very likely that further advances in performance and
generalizability will be made in the future, as new data are
constantly being recorded (just as in other domains where
DNNs have proven their superiority after being trained on
large datasets). The limitation of training data underlines
the need to analyze and combine 3DGA data from multiple
laboratories in the future. Merging 3DGA data from different
laboratories would provide a much larger and heterogeneous
dataset that could improve the generalizability of the models.
Subsequently, this could lead to the development of more
robust and diverse models that can be employed across
multiple laboratories.

During our study and in previous research [45],
we observed discrepancies between clinicians’ expectations
and the explanations of the trained models. Clinicians
expected ML models to use all regions that are charac-
teristic (from a clinical perspective) for a particular class
(independent of which other classes are modeled). However,
the models often used only a subset of these regions. This
discrepancy is exemplified by the true equinus class in our
experiments, in which the model used regions in HipS and
KneeS , whereas the clinicians expected the model to use also
regions in AnkleS . From an ML perspective, it is logical that
ML models mainly use features that exhibit large differences
between classes. The high similarity of AnkleS between the
true equinus and jump gait class (Figure 5A) seems to be
the reason why its features are not used for the classification
of true equinus. On the other hand, there are significant
differences inHipS andKneeS that are relevant to true equinus
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in contrast to the other classes. Therefore, the high relevance
in these two signals (and missing relevance in AnkleS ) is
reasonable from an ML perspective.

A further reason for this discrepancy could originate from
the diagnostic approach of clinicians, which often compares
a patient’s walking pattern to the walking pattern of healthy
controls. To this end, clinicians typically employ methods
such as statistical parametric mapping (SPM) [62], which
allows to identify statistically significant differences in the
3DGA data between a patient group and healthy controls.
The experience with such methods may contribute to the
expectation that an ML model’s relevant regions should
include all regions that are considered different between
a pathological gait pattern and healthy controls. However,
in our case, the ML model learns to differentiate the
four different pathological gait patterns in a discriminative
manner. The ML model does not use a reference to
physiological gait and mainly focuses on discriminative
patterns that effectively separate two or more pathological
classes.

A future direction may be to develop novel approaches
that mimic the diagnostic approach of clinicians, while still
being explainable and trustworthy. One possible approach is
to regularize the ML model with input from clinicians, which
would force the network to use specific regions in the data
during the training process. Still, there is a trade-off between
sacrificing potential insights into the data and building
trust in the ML model that should be explored in future
work.

VII. CONCLUSION
Building trust in ML models is essential in the medical
field to facilitate their use in clinical practice. Explainability
approaches provide a useful tool to explain on which
information a model bases its predictions. Building upon
the post-hoc explainability method Grad-CAM – initially
introduced for images and adapted by us to time series – we
generated explanations for DNNs trained to differentiate
CP-related gait patterns on several levels, i.e., on the decision,
class and model level. Furthermore, we trained traditional
models (DTs and RFs) for the given problem and explained
them via feature importance.

We investigated which subsets of 3DGA data are particu-
larly suitable for the classification of gait patterns associated
with CP. Our results confirm the superiority of kinematic over
GRF data for this complex classification task, with the former
achieving a classification accuracy of up to 93.4 % compared
to 47.2 % with GRFs. Our results further demonstrate
that the employed ML models base their predictions on
clinically relevant features. Traditional ML approaches such
as RFs and DTs achieve not only better results in classifying
CP-related gait patterns, but also focus more on the clinically
relevant regions in the 3DGA data compared to DNNs.
An interesting point from the clinical perspective is that
DNNs use additional (initially unexpected) features for their
predictions. This may facilitate providing novel insights

into the data, and thereby raise novel questions in the
field.
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