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Irradiation Damage
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• Compact fusion devices – high fields for confinement

• Currently REBCO coated conductors most promising

• High quality, long lengths (800+ m)

• Change of properties under irradiation conditions “well” known

https://doi.org/10.1007/s10948-020-05589-w



6

• Compact fusion devices – high fields for confinement

• Currently REBCO coated conductors most promising

• High quality, long lengths (800+ m)

• Change of properties under irradiation conditions “well” known

15 T  30 K

Irradiation Damage
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Compact devices

• Much higher neutron flux at the magnets

• Magnets reach EOL at approx. 3-3.3 . 1022 m-2

15 T  30 K

Irradiation Damage

https://doi.org/10.1007/s10948-020-05589-w
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Compact devices

• Much higher neutron flux at the magnets

• Magnets reach EOL at approx. 3-3.3 . 1022 m-2 Environment dependent!

15 T  30 K

Irradiation Damage

https://doi.org/10.1007/s10948-020-05589-w
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Lifetime is field, temperature, radiation environment and tape dependent 

Q: How can we predict the lifetime? – What has to be done?

15 T  30 K

Irradiation Damage

https://doi.org/10.1007/s10948-020-05589-w
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15 T  30 K

Irradiation Damage

https://doi.org/10.1007/s10948-020-05589-w

What drives the degradation?

<

First we need to answer:



Irradiation Methods



Samples
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Supplier Type REBCO APCs method nomenclature

SuperPower SCS4050 

2009

GdBCO None MOCVD SP SCS09

SuperPower SCS4050 

2013

(Y,Gd)BCO BaZrO3 MOCVD SP SCS13

SuNAM HCN04150 GdBCO None RCE-DR SuNAM HCN

[1] SuperPower®, superpower-inc.com 

• chem. stabilized: 1 µm Ag

• el. stabilized: Cu

• substrate: Hastelloy

• HTS thickness: ~1 µm

Thorough pre-characterization!
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Neutron irradiation at TU Wien

TRIGA Mark II Fission Reactor General Ionix 1.7 MV Acc.

Irradiation at MIT
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Neutron irradiation at TU Wien

1
Fast Neutrons

High Energy collisions

collision cascades

TRIGA Mark II Fission Reactor General Ionix 1.7 MV Acc.

Irradiation at MIT
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Neutron irradiation at TU Wien

TRIGA Mark II Fission Reactor General Ionix 1.7 MV Acc.

1 2
Fast Neutrons Thermal Neutrons

High Energy collisions

collision cascades

n – γ capture reactions

point like defects

Irradiation at MIT
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Neutron irradiation at TU Wien Irradiation at MIT

1.2 MeV p+ Control Experiment

TRIGA Mark II Fission Reactor General Ionix 1.7 MV Acc.

1 2 3
Fast Neutrons Thermal Neutrons

High Energy collisions

collision cascades

n – γ capture reactions

point like defects



Neutron Irradiation – Shielded
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< 70 °C at sample

- can be shielded with Cd

TRIGA MARK II at TU Wien

• Irradiation in the central irradiation facility

• Fast / thermal neutron flux 3.2 / 4 x 1016 m-2 s-1

• Irradiation with and without thermal (< 0.55 eV) neutrons

• Sample identifiers denoted with “S”



Neutron Irradiation – Unshielded
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< 70 °C at sample

TRIGA MARK II at TU Wien

• Irradiation in the central irradiation facility

• Fast / thermal neutron flux 3.2 / 4 x 1016 m-2 s-1

• Irradiation with and without thermal (< 0.55 eV) neutrons

• Sample identifiers denoted with “U”

full spectrum



p+ Irradiation - Bridged
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to accelerator

General Ionix 1.7 MV tandem accelerator

• Irradiation with 1.2 MeV protons

• Room temperature irradiation

• Bridged samples 0.2 mm width

• Samples pre-characterized in Vienna

• On-sample temperature control to 
monitor beam heating

AR Devitre 2024



Defect Formation



left – TEM picture of neutron induced defects

right – FFT of selected regions 1

Fast Neutron Irradiation

[1] with friendly permission by Yatir Linden, Analysing neutron radiation damage in YBa2Cu3O7–x high-

temperature superconductor tapes, https://doi.org/10.1111/jmi.13078
Department of Materials, University of Oxford, Oxford, UK

1. Undisturbed GdBCO

2. Crystalline BZO rod

3. Amorphous cascade

22

3.3 x 1019 – 5 x 1022 cascades per 1022

~ 0.01 % reduction of superconducting cross section 
(Linden et al. 2022)

15 T  30 K

Cascades Enhance Pinning

https://doi.org/10.1111/jmi.13078


left – TEM picture of neutron induced defects

right – FFT of selected regions 1

[1] with friendly permission by Yatir Linden, Analysing neutron radiation damage in YBa2Cu3O7–x high-

temperature superconductor tapes, https://doi.org/10.1111/jmi.13078
Department of Materials, University of Oxford, Oxford, UK

Defect size   ≤ 10  nm
Mean            ~   4  nm
ξ0ab ~ 1.4 nm
ξ77

ab ~    3  nm
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Cascades Enhance Pinning

1. Undisturbed GdBCO
2. Crystalline BZO rod
3. Amorphous cascade

Fast Neutron Irradiation

https://doi.org/10.1111/jmi.13078
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• 3.3 x 1019 – 5 x 1022 cascades per 1022

• ~ 0.01 % reduction of superconducting cross-section

What drives the degradation?
Must be small (invisible) defects

Fast Neutron Irradiation

https://doi.org/10.1111/jmi.13078


Thermal neutrons excite Gd Recoil of 29 – 32 eV gamma 

emission displaces the nucleus

K.E. Sickafus et al., Phys. Rev. B 46 (1992) 11862

Thermal Neutron Irradiation

25

• Very high defect densities achievable

• Add to fast neutron induced defects



Thermal Neutron Irradiation
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CuO2 Plane

• position enables introduction of many 

defects close to the planes

• defects are small in comparison to coll. cascades

• defects may be modelled with MDS

• 3 energies close to experimental value simulated

(30, 35, 40 eV)



Thermal Neutron Irradiation - MDS

• Most defects are oxygen vacancies

• Gd returns / stays in lattice position

• Different defects originating from Gd 

PKA (primary knock on atom)

• Defect distribution changes with 

energy

• 1-2 defects per incident particle 

27

430 simulation runs per energy
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Thermal Neutron Irradiation - MDS
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Thermal Neutron Irradiation - MDS
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Thermal Neutron Irradiation - MDS



Thermal Neutron Irradiation - MDS
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• Mainly point-like defects

• Small defects form clusters

• Up to 1 nm in size

• Slightly improves pinning behavior



• SRIM/TRIM

• Most defects are oxygen 

displacements (low binding energy)

• Little is known about actual defects 

and recombination

• Large defects are possible but 

improbable

• Most defects are point-like or small 

clusters like with thermal neutrons

32

1.2 MeV p+ Irradiation



Results



Influence of thermal neutrons - Tc
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Tc degrades ~14 x faster due to Gd-point defects

= Tc
np

np… normalized to 

pristine value

More on 

Small Defects



Influence of thermal neutrons - Tc
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= Tc
np

np… normalized to 

pristine value

Fluence is not a good measure for the disorder!

More on 

Small Defects



Influence of thermal neutrons - Jc
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15 T, 30 K

• maximum occurs at much 

lower neutron fluences

• Jc at maximum is smaller

• degradation is much faster

15 T, 30 K

More on 

Small Defects



Influence of thermal neutrons - Jc
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15 T, 30 K

• Jc maximum shifted to lower Tc

• Degradation with similar slope

• Accumulation of similar defects?

• Tc is efficient disorder parameter

(decrease of superfluid density)

-



Influence of thermal neutrons - Jc
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• Different defect densities

• Parallel degrading branch

• Specific defects origin of 

degradation?

• Accumulation in all irradiation 

techniques?

15 T, 30 K

Focus on degrading branch

-
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• Different defect densities

• Parallel degrading branch

• Specific defects origin of 

degradation?

• Accumulation in all irradiation 

techniques?

15 T, 30 K

Sample irradiated with 1.2 MeV proton at room temperature

-



Influence of thermal neutrons - Jc
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• Different defect densities

• Parallel degrading branch

• Specific defects origin of 

degradation?

• Accumulation in all irradiation 

techniques?

Sample irradiated with 1.2 MeV proton at room temperature

15 T, 30 K

Shielded sample with APCs

-



Influence of thermal neutrons - Jc
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• Different defect densities

• Parallel degrading branch

• Specific defects origin of 

degradation?

• Accumulation in all irradiation 

techniques?

Uniform degradation 

15 T, 30 K

-



Thermal stability of small vs large defects
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• Tc regenerates “linearly” with Ta

• All neutron and proton irradiated 

samples anneal to same point

• Annealing defects have same/similar 

distribution and activation barrier

• ntherm, nfast & p+ irradiated samples

annealing

Samples annealed in pure O2 atmosphere at 1 atm

More on

Defect Annealing



Thermal stability of small vs large defects

43

• Tc regenerates “linearly” with Ta

• All neutron and proton irradiated 

samples anneal to same point

• Annealing defects have same/similar 

distribution and activation barrier

• ntherm, nfast & p+ irradiated samples

annealing

Normalizing  ΔTc(Ta) to  ΔTc(Ta = 25 °C)

More on

Defect Annealing
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Thermal stability of small vs large defects
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• Large defects were shown to be stable 

up to at least 350 °C

• The same defects which are annealed 

occur in comparable densities in all 

samples

annealing

Normalizing  ΔTc(Ta) to  ΔTc(Ta = 25 °C)

More on

Defect Annealing
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𝐽c 𝐽c
p 𝐽d 𝐽

𝐸

∝ 𝐽𝑛

𝜌n ∙ 𝐽

flux creep

flux 

flow

norm. cond. • n-value decreases

• Tc decreases

• Normal state resistivity 𝜌n
increases

Degrading

𝐽𝑐
𝑝
= 𝜂 𝐽𝑑



Modelling

48

𝐽c 𝐽c
p 𝐽d 𝐽

𝐸

𝐽𝑐
𝑝
= 𝜂 𝐽𝑑

∝ 𝐽𝑛

flux creep

flux 

flow

𝜌n ∙ 𝐽norm. cond. • n-value decreases

• Tc decreases

• Normal state resistivity 𝜌n
increases

Degrading



Modelling

49

𝐽c 𝐽c
p 𝐽d 𝐽

𝐸

∝ 𝐽𝑛

flux creep

flux 

flow

𝜌n ∙ 𝐽norm. cond. • n-value decreases

• Tc decreases

• Normal state resistivity 𝜌n
increases

Degrading

• 𝜂 – pinning efficiency

Enhancing

𝐽𝑐
𝑝
= 𝜂 𝐽𝑑



Modelling
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𝟏 𝑫 ∝ − 𝚫𝑻𝐜

Fast neutron fluence shielded

Fast neutron fluence unshielded

Proton Fluence

Φf

Φf
therm, Gd

Φp

Disorder parameter

measure for scattering



Modelling
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=
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Modelling
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Degrading - 𝐹D Enhancing - 𝜂
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Modelling - Degradation
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Derived using only BCS, GL and Drudes’ model

Norm. state resistivity 𝜌n = 48 𝜇Ω 𝑐𝑚

attempt frequency 𝜈0 = 2.5 × 107 Hz

el. field criterion 𝐸c= 1 μV cm

𝐽c
np

=
𝐽c
irr

𝐽c
0 =

𝐸c

𝜈0 Φ0
𝐵 𝐵

1
𝑛irr

−
1
𝑛0 𝑇c

irr

𝑇c
0

3
2 𝜌n

0

𝜌0
irr

1
2 𝜂max

𝜂0
tanh

𝐷

𝐷𝜂max

𝜋 − 𝐴 + 𝐴

• Universal behavior

• All parameters fairly easy accessible

• Curve hard to measure directly 

due to pinning

Degradation Model
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Derived using only BCS, GL and Drudes’ model

Norm. state resistivity 𝜌n = 48 𝜇Ω 𝑐𝑚

𝐽c
np
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irr

𝐽c
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𝐵 𝐵

1
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𝜂0
tanh
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𝜋 − 𝐴 + 𝐴

• Influences degradation

• measured on YBCO thin film on MgO

Talk - Alexander Bodeseher

4MOr2B-02 – right now, right here

Degradation Model



Modelling - Enhancement
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• tanh was chosen for the good 

correspondence to the data 

• Pinning efficiency can not increase 

indefinitely physical limit ~ 0.3

• At low defect densities linear 

behavior was observed

Degradation Model
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Degradation is universal and mainly driven by the loss of superfluid density

But: Influence of pinning term shapes the curve

Relevant Parameters:

For the degradation: 𝒏𝟎, Δ𝑛0, 𝑇c
0, 𝑇c

irr

Degradation of these parameters linear as function of fluence in area of interest

For the enhancement:
𝜂max

𝜂0
and 𝐷𝜂max

Fit parameters which define the interaction of the radiation environment with the existing

pinning landscape
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𝐴 = tanh−1
𝜂0

𝜂max

Degradation Model


