

PROCEEDINGS OF THE 24TH
CONFERENCE ON FORMAL
METHODS IN COMPUTER-AIDED
DESIGN – FMCAD 2024

Nina Narodytska / Philipp Rümmer (Eds.)

24

 5

Nina Narodytska / Philipp Rümmer (Eds.)
PROCEEDINGS OF THE 24TH CONFERENCE ON FORMAL METHODS IN COMPUTER-AIDED
DESIGN – FMCAD 2024

Conference Series: Formal Methods in Computer-Aided Design
Volume 5

Conference Series: Formal Methods in Computer-Aided Design

Series edited by:
Warren A. Hunt, Jr., The University of Texas at Austin
	 Austin, TX 78705 | hunt@cs.utexas.edu
Georg Weissenbacher, TU Wien
	 Karlsplatz 13, 1040 Vienna, Austria | georg.weissenbacher@tuwien.ac.at

The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system
verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical
results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification,
synthesis, and testing.

Information on this publication series and the volumes published therein is available at www.tuwien.ac.at/academicpress.

Volume 4 edited by:
Nina Narodytska, VMware by Broadcom, Palo Alto, USA | n.narodytska@gmail.com
Philipp Rümmer, University of Regensburg, Germany and Uppsala University, Sweden | philipp.ruemmer@ur.de

Nina Narodytska / Philipp Rümmer (Eds.)

PROCEEDINGS OF THE 24TH
CONFERENCE ON FORMAL
METHODS IN COMPUTER-AIDED
DESIGN – FMCAD 2024

This work is licensed under a Creative Commons attribution 4.0 international license (CC BY 4.0).
https://creativecommons.org/licenses/by/4.0/

ISBN (online): 	 978-3-85448-065-5
ISSN (online):	 2708-7824
	
Available online:	 https://doi.org/10.34727/2024/isbn.978-3-85448-065-5

Media proprietor: TU Wien, Karlsplatz 13, 1040 Wien
Publisher: TU Wien Academic Press
Publication series editor: Warren A. Hunt, Jr. and Georg Weissenbacher
Editors (responsible for the content): Nina Narodytska and Philipp Rümmer

Cite as:
Narodytska, N., & Rümmer, P. (Eds.). (2024). Proceedings of the 24th Conference on Formal Methods in Computer-
Aided Design – FMCAD 2024. TU Wien Academic Press. https://doi.org/10.34727/2024/isbn.978-3-85448-065-5

TU Wien Academic Press, 2024

c/o TU Wien Bibliothek
TU Wien
Resselgasse 4, 1040 Wien
academicpress@tuwien.ac.at
www.tuwien.at/academicpress

https://www.tuwien.at/academicpress/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5

Preface

These are the proceedings of the twenty-fourth International Conference on Formal Methods in Computer-
Aided Design (FMCAD), which was held in Prague, Czech Republic, October 14–18, 2024. The first FMCAD
was organized in 1996, and FMCAD was a bi-annual conference until 2006, when the FMCAD and CHARME
conferences merged into a single FMCAD. Since then, FMCAD has been an annual event. FMCAD 2024 was the
twenty-fourth edition in the series, covering formal aspects of computer-aided system design including verification,
specification, synthesis, and testing. It provided a leading forum to researchers in academia and industry to present
and discuss groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about
computing systems. The program of FMCAD 2024 consisted of one tutorial, three invited talks, the presentation
of the Hardware Model Checking Competition HWMCC’24, a student forum, and the main program consisting of
presentations of 29 accepted peer-reviewed papers. FMCAD 2024 was co-located with the VSTTE 2024 conference,
when took place on October 14–15.

The joint VSTTE/FMCAD tutorial day (October 15) featured two tutorials:
• The VSTTE tutorial: The Lean Programming Language and Theorem Prover, given by Sebastian Ullrich and
Joachim Breitner;

• The FMCAD tutorial: Writing proofs in Dafny, given by Rustan Leino.

The main FMCAD conference (October 16–18) featured three invited talks:
• Tackling Scalability Issues in Bit-Vector Reasoning by Aina Niemetz;
• Some Adventures in Learning Proving, Instantiation and Synthesis by Josef Urban;
• Harnessing SMT Solvers for Reasoning about DeFi Protocols by Mooly Sagiv.

FMCAD 2024 received 56 submissions, out of which the committee decided to accept 29 for publication. Each
submission received at least four reviews. The topics of the accepted papers include machine learning, model
checking, hardware and software validation, SAT&SMT solving and proofs generation. Among the accepted papers,
there are 26 regular papers (23 long and 3 short) and 3 tool/case study papers (all short). FMCAD 2024 hosted the
twelfth edition of the FMCAD Student Forum, which has been held annually since 2013 and provides a platform
for graduate students at any career stage to introduce their research to the FMCAD community. The FMCAD
Student Forum 2024 was organized by Martin Blicha and Nestan Tsiskaridze and featured short presentations of 23
accepted contributions. The proceedings provide a detailed description of the Student Forum and lists all accepted
contributions.
FMCAD 2024 was made possible by the support of a large number of people, as well as our sponsors. The

program committee members and additional reviewers, listed on the following pages, did an excellent job providing
detailed and insightful reviews. The reviews helped us build a strong program and helped the authors improve their
submissions. We thank each and everyone of them for dedicating their time and providing their expertise. We would
like to thank the local organization chair, Mikoláš Janota, and the registration chair, Milena Zeithamlová, who did
an amazing job taking care of the organization and all practical matters. We thank our web master Julie Cailler, our
sponsorship chair Guy Amir, and the Student Forum organizers Martin Blicha and Nestan Tsiskaridze. We thank
the organizers of the HWMCC competition, Armin Biere, Nils Froleyks, and Mathias Preiner. We thank Georg
Weissenbacher, both for his exceptional assistance in organizing the event, communicating to us the decisions of
the steering committee, as well as being the publication chair.
Holding a conference like FMCAD would not be feasible without the financial support of our sponsors. We would

like to express our gratitude to the sponsors, given here in alphabetical order: AWS, Cadence, General Electric
Aerospace, Intel, NSF, Toyota, and VMware by Broadcom.

V

Last but not least, we thank all authors who submitted their papers to FMCAD 2024, and whose contributions and
presentations form the core of the conference. The conference proceedings are available as Open Access Proceedings
published by TU Wien Academic Press, and through the IEEE Xplore Digital Library.

We are grateful to everyone who presented their paper, gave a keynote or gave a tutorial. We thank all attendees
of FMCAD for supporting the conference and making FMCAD an engaging and enjoyable event.

October 2024 Nina Narodytska VMware by Broadcom, USA
Philipp Rümmer University of Regensburg, Germany and

Uppsala University, Sweden

VI

Organizing Committee

Program Co-Chairs

Nina Narodytska VMware Research by Broadcom, CA, USA
Philipp Rümmer University of Regensburg, Germany,

and Uppsala University, Sweden

Local Organization Chair

Mikoláš Janota Czech Technical University in Prague, Czech Republic

Registration Chair

Milena Zeithamlová Action M Agency, Prague, Czech Republic

Student Forum Chairs

Martin Blicha Università della Svizzera italiana, Switzerland
Nestan Tsiskaridze Stanford University, CA, USA

Sponsorship Chair

Guy Amir Cornell University, NY, USA

Web Chair

Julie Cailler University of Regensburg, Germany

Publication Chair

Georg Weissenbacher TU Wien, Austria

VII

FMCAD Steering Committee

Clark Barrett Stanford University, CA, USA
Armin Biere University of Freiburg, Germany
Ruzica Piskac Yale University, CT, USA
Anna Slobodova Intel Corporation, TX, USA
Georg Weissenbacher TU Wien, Austria

Board of the FMCAD Association

Armin Biere University of Freiburg, Germany
Roderick Bloem Graz University of Technology, Austria
Georg Weissenbacher TU Wien, Austria
Florian Zuleger TU Wien, Austria

VIII

Program Committee

FMCAD 2024 Program Committee

Nina Narodytska (co-chair) VMware Research by Broadcom
Philipp Rümmer (co-chair) University of Regensburg

Guy Amir Cornell University
Mohamed Faouzi Atig Uppsala University
Jaroslav Bendı́k Certora
Armin Biere University of Freiburg
Per Bjesse Synopsys Inc.
Nikolaj Bjørner Microsoft
Roderick Bloem Graz University of Technology
Shaowei Cai Chinese Academy of Sciences
Rayna Dimitrova CISPA Helmholtz Center for Information Security
Rohit Dureja Advanced Micro Devices, Inc.
Gabriel Ebner Microsoft Research
Grigory Fedyukovich Florida State University
Alberto Griggio Fondazione Bruno Kessler
Arie Gurfinkel University of Waterloo
Liana Hadarean Amazon Web Services
William Harrison Idaho National Laboratory
Bo-Yuan Huang Intel Corporation
William Hung Cadence
Warren Hunt The University of Texas at Austin
Ahmed Irfan SRI International
Mikoláš Janota Czech Technical University in Prague
Daniela Kaufmann TU Wien
Tim King Google
Anna Lukina TU Delft
Andreas Lööw Imperial College London
Ravi Mangal Colorado State University
Ken McMillan UT Austin
Baoluo Meng GE Aerospace Research
David Monniaux CNRS / VERIMAG
Alexander Nadel Technion & Intel
Ruzica Piskac Yale University
Mathias Preiner Stanford University
Mohammad Rahmani Fadiheh Stanford University
Andrew Reynolds University of Iowa
Kristin Yvonne Rozier Iowa State University
Christoph Scholl University of Freiburg
Natasha Sharygina University of Lugano, Switzerland
Aditya A. Shrotri Siemens Digital Industries Software
Carsten Sinz Karlsruhe University of Applied Sciences
Christoph Sticksel The MathWorks

IX

Martin Suda Czech Technical University in Prague
Tachio Terauchi Waseda University
Yakir Vizel The Technion
Tomáš Vojnar Brno University of Technology
Mike Whalen AWS
Thomas Wies New York University
Hongce Zhang Hong Kong University of Science and Technology (Guangzhou)
Shufang Zhu University of Liverpool
Florian Zuleger TU Wien
Ivana Černá Masaryk University

FMCAD 2024 Student Forum Committee

Martin Blicha (co-chair) Università della Svizzera italiana
Nestan Tsiskaridze (co-chair) Stanford University

Guy Amir Cornell University
Haniel Barbosa Universidade Federal de Minas Gerais
Armin Biere University of Freiburg
Nikolaj Bjørner Microsoft
William Eiers Stevens Institute of Technology
Katalin Fazekas TU Wien
Alberto Griggio Fondazione Bruno Kessler
Arie Gurfinkel University of Waterloo
Petra Hozzová Czech Technical University in Prague
Antti Hyvärinen Certora
Ahmed Irfan SRI International
Konstantin Korovin University of Manchester
Daniel Larraz University of Iowa
Ondřej Lengál Brno University of Technology
Alexander Nadel Technion & Intel
Andres Noetzli Stanford University
Rodrigo Otoni Università della Svizzera italiana
Sophie Rain TU Wien
Mark Santolucito Barnard College, Columbia University
Christoph Sticksel The MathWorks
Hari Govind V. K. University of Waterloo & Microsoft
Yoni Zohar Bar Ilan University

X

Additional Reviewers

Barbosa, Haniel
Bogaerts, Bart
Britikov, Konstantin
Brown, Chad

Cailler, Julie
Chadha, Rohit
Chvalovský, Karel

Dewes, Rafael

Esen, Zafer

Fazekas, Katalin
Feng, Jincao
Fleury, Mathias

Gauthier, Thibault
Govind, R

Hamza, Ameer
He, Fei
Herrmann, Roland
Hinnerichs, Tilman
Holı́k, Lukáš
Hu, Guangyu

Isac, Omri

Kern, Philipp
Kolárik, Tomáš
Konrad, Alexander

Labbaf, Faezeh
Lengal, Ondrej
Li, Elaine
Lipparini, Enrico
Lutz, Sterre

Maderbacher, Benedikt
Mony, Hari

Paul, Saswata

Rao, Vikas
Rebola Pardo, Adrian
Riley, Daniel
Rodriguez, Andoni
Rogalewicz, Adam

Saivasan, Prakash
Seufert, Tobias
Sextl, Florian
Sindoni, Giulia

Temel, Mertcan

Varanasi, Sarat Chandra

Zavalia, Lucas

XI

Table of Contents

Tutorial

Writing Proofs in Dafny . 1
K. Rustan M. Leino

Invited Talks

Tackling Scalability Issues in Bit-Vector Reasoning . 2
Aina Niemetz

Some Adventures in Learning Proving, Instantiation and Synthesis . 3
Josef Urban

Harnessing SMT Solvers for Reasoning about DeFi Protocols . 4
Mooly Sagiv

Student Forum

The FMCAD 2024 Student Forum . 5
Martin Blicha and Nestan Tsiskaridze

Hardware Model Checking Competition

Hardware Model Checking Competition 2024 . 7
Armin Biere and Nils Froleyks and Mathias Preiner

SMT Solving and Applications

Efficiently Synthesizing Lowest Cost Rewrite Rules for Instruction Selection . 8
Ross Daly, Caleb Donovick, Caleb Terrill, Jackson Melchert, Priyanka Raina, Clark Barrett,
and Pat Hanrahan

Extending DRAT to SMT. 18
S Hitarth, Cayden R. Codel, Hanna Lachnitt, and Bruno Dutertre

Solving String Constraints with Concatenation Using SAT . 29
Kevin Lotz, Amit Goel, Bruno Dutertre, Benjamin Kiesl-Reiter, Soonho Kong, and Dirk Nowotka

SMT-D: New Strategies for Portfolio-Based SMT Solving . 39
Clark Barrett, Pei-Wei Chen, Byron Cook, Bruno Dutertre, Robert B. Jones, Nham Le, Andrew
Reynolds, Kunal Sheth, and Mike W. Whalen

Modernizing SMT-Based Type Error Localization . 49
Max Kopinsky, Brigitte Pientka, and Xujie Si

XII

Static Analysis

Context Pruning for More Robust SMT-based Program Verification . 59
Yi Zhou, Jay Bosamiya, Jessica Li, Marijn J. H. Heule, and Bryan Parno

Easter Egg: Equality Reasoning Based on E-Graphs with Multiple Assumptions 70
Eytan Singher and Shachar Itzhaky

Word Equations as Abstract Domain for String Manipulating Programs . 84
Antonina Nepeivoda

Machine Learning in Verification

Formally Verifying Deep Reinforcement Learning Controllers with Lyapunov Barrier Certificates . . . 95
Udayan Mandal, Guy Amir, Haoze Wu, Ieva Daukantas, Fletcher Lee Newell, Umberto
J. Ravaioli, Baoluo Meng, Michael Durling, Milan Ganai, Tobey Shim, Guy Katz, and Clark
Barrett

Leveraging LLMs for Program Verification. 107
Adharsh Kamath, Nausheen Mohammed, Aditya Senthilnathan, Saikat Chakraborty, Pantazis
Deligiannis, Shuvendu K. Lahiri, Akash Lal, Aseem Rastogi, Subhajit Roy, and Rahul Sharma

Translating Natural Language to Temporal Logics with Large Language Models and Model Checkers119
Daniel Mendoza, Christopher Hahn, and Caroline Trippel

Verification I

Recomposition: A New Technique for Efficient Compositional Verification . 130
Ian Dardik, April Porter, and Eunsuk Kang

Evaluating LLM-driven User-Intent Formalization for Verification-Aware Languages 142
Shuvendu Lahiri

Towards Verification Modulo Theories of asynchronous systems via abstraction refinement 148
Gianluca Redondi, Alessandro Cimatti, and Alberto Griggio

Hardware

Semi-open-state testing for in-silicon coherent interconnects . 153
Jasmin Schult, Ben Fiedler, David Cock, and Timothy Roscoe

Memory Consistency Model-Aware Cache Coherence for Heterogeneous Hardware 163
Rachel Cleaveland and Caroline Trippel

Proofs and Certificates

Translating Pseudo-Boolean Proofs into Boolean Clausal Proofs . 175
Karthik Nukala, Soumyaditya Choudhuri, Randal E. Bryant, and Marijn J. H. Heule

Verified Substitution Redundancy Checking . 186
Cayden R. Codel, Jeremy Avigad, and Marijn J. H. Heule

Satisfiability Solving and Applications

2-DQBF Solving and Certification via Property-Directed Reachability Analysis . 197
Long-Hin Fung, Che Cheng, Yu-Wei Fan, Tony Tan, and Jie-Hong Roland Jiang

XIII

Projective Model Counting for IP Addresses in Access Control Policies . 208
Loris D’Antoni, Andrew Gacek, Amit Goel, Dejan Jovanović, Rami Gökhan Kıcı, Dan Peebles,
Neha Rungta, Yasmine Sharoda, and Chungha Sung

Toward Exhaustive Sequential Redundancy Removal . 217
Rohit Dureja, Jason Baumgartner, Raj Kumar Gajavelly, Robert Kanzelman, and Kristin Y. Rozier

DAG-Based Compositional Approaches for LTLf to DFA Conversions . 227
Yash Kankariya, Yong Li, and Suguman Bansal

Clausal Equivalence Sweeping . 236
Armin Biere, Katalin Fazekas, Mathias Fleury, and Nils Froleyks

Algorithms and Arithmetic

Automatic Verification of Right-greedy Numerical Linear Algebra Algorithms . 242
Carl Kwan and Warren A. Hunt, Jr.

Formally Verified Rounding Errors of the Logarithm-Sum-Exponential Function 251
Paul Bonnot, Benoı̂t Boyer, Florian Faissole, Claude Marché, and Raphaël Rieu-Helft

Symbolic Computer Algebra for Multipliers Revisited – It’s All About Orders and Phases 261
Alexander Konrad and Christoph Scholl

Verification II

Combining Symbolic Execution with Predicate Abstraction and CEGAR . 272
Martin Jonáš, Jan Strejček, and Alberto Griggio

Efficient Synthesis of Symbolic Distributed Protocols by Sketching . 284
Derek Egolf, William Schultz, and Stavros Tripakis

Ownership in low-level intermediate representation . 295
Siddharth Priya and Arie Gurfinkel

XIV

Formal Methods in Computer-Aided Design 2024

Writing Proofs in Dafny
K. Rustan M. Leino
Amazon Web Services

Seattle, WA
leino@amazon.com

Abstract—Dafny is a verification-aware programming language. In a nutshell, the language is Java-like and has support for writing
specifications and proofs. It has a long history of being used in education, has been the cornerstone of several ambitious research
projects, and is in industrial use at AWS.
This tutorial teaches how to write various kinds of proofs in Dafny. It covers proofs of imperative and functional programs, as well
as the formalization of models and mathematical proofs. It demonstrates different proof styles and shows how to think about and
debug proofs in the Dafny setting.
The tutorial does not assume any prior experience in using Dafny or other proof assistants.

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 1 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0000-0003-2872-8039
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_1
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_1
https://creativecommons.org/licenses/by/4.0/

Formal Methods in Computer-Aided Design 2024

Tackling Scalability Issues in Bit-Vector Reasoning
Aina Niemetz
Stanford University
Stanford, CA

niemetz@cs.stanford.edu

Abstract—Efficiently reasoning about bit-vector constraints in Satisfiability Modulo Theories (SMT) has been an ongoing challenge
for many years. The dominant state-of-the-art approach for solving bit-vector formulas in SMT is bit-blasting, an eager reduction
to propositional logic that is typically combined with aggressive simplifications of the input constraints prior to the actual reduction
step. Even though this eager reduction may come at the cost of significantly increasing the formula size, it is surprisingly efficient
in practice—thanks to state-of-the-art SAT solvers, which are usually able to efficiently deal with complex formulas over millions of
variables. This size increase, however, is a potential bottleneck and the main reason why bit-blasting does not generally scale well
for increasing bit-widths, especially in the presence of arithmetic operators, which translate to large and complex Boolean circuits
on the bit-level.
To tackle these scalability issues, there are two (orthogonal) avenues to explore: developing alternative approaches that do not (mainly)
rely on translations to the SAT level, and improving the scalability of bit-blasting itself. In this talk, we will highlight techniques in
each category: a propagation-based local search procedure as an alternative to bit-blasting, which can only determine satisfiability
but improves performances over bit-blasting on satisfiable instances, and a CEGAR-style abstraction-refinement procedure that
significantly improves the scalability of bit-blasting. We extended the state-of-the-art SMT solver Bitwuzla with both techniques and
show that they significantly improve solver performance on a variety of benchmark sets across all logics supported by Bitwuzla,
including combinations of bit-vectors with arrays, uninterpreted functions and floating-point arithmetic.

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 2 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0000-0003-2600-5283
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_2
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_2
https://creativecommons.org/licenses/by/4.0/

Formal Methods in Computer-Aided Design 2024

Some Adventures in Learning
Proving, Instantiation and Synthesis

Josef Urban
Czech Institute of of Informatics, Robotics and Cybernetics

Prague, Czech Republic
josef.urban@cvut.cz

Abstract—Human problem solvers often combine deductive reasoning and exploration with learning and pattern matching. In the
recent years such combinations are also increasingly developed for building stronger automated theorem provers, SMT solvers and
conjecturing and synthesis systems.
The methods in this field include equipping the current deductive systems with efficient statistically learned guidance that controls
the choice of the inference steps, using for example fast decision trees, graph neural networks and their combinations.
Learning and AI methods can also be used to automatically design new symbolic strategies for today’s ATPs and SMTs. This has
the advantage of producing explainable ideas for steering the search space, which can be further taken up and modified by the
systems’ developers.
I will also discuss several methods that try to directly synthesize reasoning objects such as instantiations and OEIS explanations,
using various neural approaches.
Perhaps the most interesting aspect of this research are the positive feedback loops between the proving and the learning methods.
I will show that some of them can today go quite far and create quite interesting “alien” solutions.

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 3 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_3
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_3
https://creativecommons.org/licenses/by/4.0/

Formal Methods in Computer-Aided Design 2024

Harnessing SMT Solvers for Reasoning about DeFi
Protocols

Mooly Sagiv
Certora and Tel Aviv University

Tel Aviv, Israel
msagiv@acm.org

Abstract—DeFi (Decentralized Financial) Protocols implement financial programs using low-level programming. DeFi adoption
started to go parabolic in 2020, and it’s still very robust in different market conditions in 2024. Today, DeFi assets exceed 300
billion USD. A fundamental principle behind DeFi is that small open-source software called “smart contracts” precisely define the
trading conditions and create an open global economy not controlled by governments and people.
However, smart contracts are difficult to implement correctly since their behavior can radically change in different market conditions.
Moreover, hackers constantly try to abuse the code to drain the money stored in the smart contracts. On the positive side, it is pretty
natural to write high-level formal specifications of smart contracts since their economical utilities are well understood. Indeed, this
is a unique domain where software developers are eager to write formal specifications.
I will describe the challenges of harnessing existing SMT solvers for reasoning about smart contracts.

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 4 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_4
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_4
https://creativecommons.org/licenses/by/4.0/

Formal Methods in Computer-Aided Design 2024

The FMCAD 2024 Student Forum
Martin Blicha

University of Lugano & Ethereum Foundation
Prague, Czechia

martin.blicha@usi.ch

Nestan Tsiskaridze
Stanford University
Stanford, USA

nestan@stanford.edu

Abstract—The Student Forum at the International Confer-
ence on Formal Methods in Computer–Aided Design (FMCAD)
gives undergraduate and graduate students the opportunity to
introduce their research to the Formal Methods community
and receive feedback. In 2024, the event took place in Prague,
Czechia. Twenty three students were invited to give a short talk
and present a poster of their work.
Since 2013, the FMCAD Student Forum provides a platform

for undergraduate and graduate students at any career stage
to present their research to the audience of the FMCAD
conference. The 2024 edition of the FMCAD Student Forum
follows the tradition of its predecessors, which took place in:

• Portland, Oregon, USA in 2013 [1]
• Lausanne, Switzerland in 2014 [2]
• Austin, Texas in 2015 [3] and 2018 [4]
• Mountain View, California, USA in 2016 [5]
• Vienna, Austria in 2017 [6]
• San Jose, California, USA in 2019 [7]
• Virtual in 2020 [8] and 2021 [9]
• Trento, Italy in 2022 [10]
• Ames, Iowa, USA in 2023 [11]

FMCAD 2024 hosted the twelves edition of the Student
Forum. Graduate and undergraduate students were invited to
submit two-page reports of their current research and ongoing
work in the scope of the FMCAD conference. There were 24
submissions to the forum, 23 of them were accepted one of
which was withdrown. The Student Forum program committee
reviews were based on the overall quality, novelty of the work,
its potential impact on the Formal Methods community, as
well as the potential positive impact on the student to have
the opportunity to participate in the forum. The accepted
submissions covered a wide range of topics relevant to the
FMCAD community, from foundational aspects of automated
reasoning, to analysis and verification of software, hardware,
and neural networks, as well as applications of formal methods
to security and dynamical system. Each submission received
3 reviews. The following contributions have been accepted1

(excluding the withdrawn contribution):

• Csanád Telbisz and Dániel Szekeres Correctness Wit-
nesses for Concurrent Software Verification

• Levente Bajczi and Marian Lingsch-Rosenfeld Software
Verification Witnesses for Weak Memory

• Levente Bajczi CHCs for Weak Memory

1Only student authors listed for brevity.

• Islam Hamada Incremental Construction of Inductive
Invariants for Model Checking

• Zsófia Ádám, Levente Bajczi, Marek Jankola and Marian
Lingsch-Rosenfeld Towards Validation of More Expres-
sive Software Non-Termination Witnesses

• Luke Miga Verifying Axiomatic Microarchitectural Mod-
els in the Coq Proof Assistant

• Konstantin Britikov Analysis of Multiloop Programs With
Nested Loops Using Transition Power Abstraction

• Rachel Cleaveland Theory of Strings in Symbolic Execu-
tion

• Siddharth Priya Optimizing Rust Programs Using Own-
ership

• Daneshvar Amrollahi Towards Improved Stability for
SMT Solvers

• John Kolesar Coinductive Proofs of Regular Expression
Equivalence in Zero Knowledge

• Feitong Qiao Timed Data Types for Hardware
• Elizaveta Pertseva and Alex Ozdemir Multimodular Rea-
soning for Satisfiability Modulo Theories

• Fuqi Jia A Theory-Agnostic SMT Sampling Framework
• Milan Ganai Hamilton-Jacobi Reachability Estimation
• Samantha Archer SymLeak: Quantifying Side Channel
Leakage with Symbolic Execution

• Daniel Mendoza Towards LLM-assisted hardware verifi-
cation

• Edward Wang Work-in-Progress: An SMT-Based,
Correct-by-Construction Place-and-Route Framework

• Michal Hečko Automata-based Decision Procedure for
Presburger Arithmetic Augmented with Algebraic Rea-
soning

• Áron Ricardo Perez-Lopez and Samantha Archer Word-
Level Model Checking with IC3 in Pono

• Roxana-Mihaela Timon Verification of a dynamic
programming-based algorithm for the Activity Selection
Problem in Dafny

• Márk Somorjai and Mihály Dobos-Kovács Stack Abstrac-
tion for Interprocedural Software Verification

We formed a program committee to cover a wide range
of topics so students could receive expert feedback on their
work. The 2024 FMCAD Student Forum program committee
consisted of Martin Blicha (co-chair), Nestan Tsiskaridze (co-
chair), Guy Amir, Haniel Barbosa, Armin Biere, Nikolaj
Bjørner, William Eiers, Katalin Fazekas, Alberto Griggio,

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 5 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0000-0001-8140-4098
https://orcid.org/0000-0002-4729-9770
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_5
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_5
https://creativecommons.org/licenses/by/4.0/

Arie Gurfinkel, Petra Hozzová, Antti Hyvärinen, Ahmed Irfan,
Konstantin Korovin, Daniel Larraz, Ondřej Lengál, Alexander
Nadel, Andres Noetzli, Rodrigo Otoni, Sophie Rain, Mark
Santolucito, Christoph Sticksel, Hari Govind V. K., and Yoni
Zohar.
We would like to thank the organizers of FMCAD, as well

as the FMCAD Student Forum program committee, who have
made the FMCAD Student Forum possible. We would like
to thank FMCAD, NSF, Amazon Web Services, Cadence, GE
Aerospace, Intel, Toyota, and VMWare for providing student
travel support and making it possible to award travel grants
to all students. Additionally, we are grateful to the student
authors and their research mentors who have contributed their
excellent work to the program.

REFERENCES

[1] T. Wahl, “The FMCAD graduate student forum,” in Formal Methods
in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
October 20-23, 2013. IEEE, 2013, pp. 16–17. [Online]. Available:
https://doi.org/10.1109/FMCAD.2013.7035523

[2] R. Piskac, “The FMCAD 2014 graduate student forum,” in Formal
Methods in Computer-Aided Design, FMCAD 2014, Lausanne,
Switzerland, October 21-24, 2014. IEEE, 2014, p. 13. [Online].
Available: https://doi.org/10.1109/FMCAD.2014.6987589

[3] G. Weissenbacher, “The FMCAD 2015 graduate student forum,”
in Formal Methods in Computer-Aided Design, FMCAD 2015,
Austin, Texas, USA, September 27-30, 2015, R. Kaivola and
T. Wahl, Eds. IEEE, 2015, p. 8. [Online]. Available: https:
//doi.org/10.1109/FMCAD.2015.7542246

[4] D. Jovanović and A. Reynolds, “The FMCAD 2018 graduate student
forum,” in 2018 Formal Methods in Computer Aided Design (FMCAD).
IEEE, 2018, pp. 1–1, https://www.cs.utexas.edu/users/hunt/FMCAD/
FMCAD18/student-forum/.

[5] H. Hojjat, “The FMCAD 2016 graduate student forum,” in Formal
Methods in Computer-Aided Design (FMCAD), 2016. IEEE, 2016,
pp. 8–8, https://fmcad.forsyte.at/FMCAD16/student-forum.html.

[6] K. Heljanko, “The FMCAD 2017 graduate student forum,” in Proceed-
ings of the 17th Conference on Formal Methods in Computer-Aided
Design. FMCAD Inc, 2017, pp. 10–10, https://fmcad.org/FMCAD17/
student-forum/.

[7] G. Fedyukovich, “The FMCAD 2019 student forum,” in 2019 Formal
Methods in Computer Aided Design (FMCAD). IEEE, 2019, pp. 1–1,
https://fmcad.forsyte.at/FMCAD19/student-forum/.

[8] P. Schrammel, “The FMCAD 2020 student forum,” in 2020 Formal
Methods in Computer Aided Design (FMCAD). IEEE, 2020, pp. 1–1,
https://fmcad.forsyte.at/FMCAD20/student-forum/.

[9] M. Santolucito, “The FMCAD 2021 student forum,” in 2021 Formal
Methods in Computer Aided Design (FMCAD). IEEE, 2021, pp. 1–1,
https://fmcad.org/FMCAD21/student forum/.

[10] M. Preiner, “The FMCAD 2023 student forum,” in 2022 Formal Methods
in Computer Aided Design (FMCAD). IEEE, 2022, pp. 1–1, https:
//fmcad.org/FMCAD22/student forum/.

[11] M. Janota and N. Narodytska, “The FMCAD 2023 student forum,” in
2023 Formal Methods in Computer Aided Design (FMCAD). IEEE,
2023, pp. 1–1, https://fmcad.org/FMCAD23/student forum/.

6

https://doi.org/10.1109/FMCAD.2013.7035523
https://doi.org/10.1109/FMCAD.2014.6987589
https://doi.org/10.1109/FMCAD.2015.7542246
https://doi.org/10.1109/FMCAD.2015.7542246
https://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD18/student-forum/
https://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD18/student-forum/
https://fmcad.forsyte.at/FMCAD16/student-forum.html
https://fmcad.org/FMCAD17/student-forum/
https://fmcad.org/FMCAD17/student-forum/
https://fmcad.forsyte.at/FMCAD19/student-forum/
https://fmcad.forsyte.at/FMCAD20/student-forum/
https://fmcad.org/FMCAD21/student_forum/
https://fmcad.org/FMCAD22/student_forum/
https://fmcad.org/FMCAD22/student_forum/
https://fmcad.org/FMCAD23/student_forum/

Formal Methods in Computer-Aided Design 2024

Hardware Model Checking Competition 2024
Armin Biere

University of Freiburg
Freiburg, Germany

biere@cs.uni-freiburg.de

Nils Froleyks
Johannes Kepler University

Linz, Austria
nils.froleyks@jku.at

Mathias Preiner
Stanford University

Stanford, United States
preiner@cs.stanford.edu

Abstract—The Hardware Model Checking Competition 2024
(HWMCC’24) was the 12th competitive event for hardware
model checking tools. The competition was affiliated to the 24th
conference on Formal Methods in Computer-Aided Design 2024
(FMCAD’24), which took place in Prague, Czech Republic, from
October 14 to 18, 2024.

Index Terms—Automated Reasoning, Model Checking, Hard-
ware Verification, Word-level Reasoning, Bit-Vectors, Certificates
The Hardware Model Checking Competition (HWMCC’24)

in 2024 is the 12th incarnation in this series of competitive
events to evaluate hardware model checking. Since it started
in 2007 it was repeated annually with some exceptions. After
the previous competition in 2020 the organizers took a break
to resume the competition in 2024. The competition in 2024 is
affiliated, as most of the time, with the conference on Formal
Methods in Computer-Aided Design (FMCAD), which is
considered the primary venue for formal hardware verification.
Alternatively in 2007, 2008, 2010 and 2014 it was affiliated
with the conference of Computer-Aided Verification (CAV).
The previous competition in 2020 continued with word-

level tracks, which were introduced in 2019. These word-level
tracks focus on bit-vector models with and without arrays in
the BTOR2 format [1]. This suggests that model checkers
participating in this track should make use of SMT solvers
over the theory of bit-vectors. Before 2019 all competition
tracks used bit-level models in the AIGER format [2], but were
split into safety, multi-property, liveness and deep tracks. Since
2014 and particularly in 2017, the last competition before
2019, the ABC tool [3] dominated almost all bit-level tracks.
One motivation for moving to word-level tracks is the

conjecture that SMT solving is more effective than plain
SAT solving if the models are given in terms of bit-vectors.
However, in 2019 the word-level model checkers could not
fulfill this promise and were trailing ABC by a large margin
in terms of performance. This was particularly the case for
unsatisfiable properties, where a bad state violating the single
safety property can not be reached. Note, that ABC was run on
AIGER models obtained from the BTOR2 models through bit-
blasting, except for the array track, as bit-blasting of BTOR2
models with arrays is difficult. Having arrays, modelling
memory or caches, is considered a feature of SMT solvers
and should give them an advantage over bit-level reasoning.
In 2020 the picture changed and word-level model checkers

started to become competitive to ABC on the bit-vector
track without arrays, while not losing their advantage on bit-
vector models with arrays, as bit-blasting arrays was still not

available. Therefore, the organizers of HWMCC’24 decided to
continue both word-level tracks, i.e., with and without arrays.
While the previous competition in 2020 focused on word-

level exclusively, the single safety property track came back
in 2024. However, as a novel feature, participating model
checkers are required to produce model-checking certificates.
These certificates were actually AIGER circuits and should
have an inductive property. They further need to simulate
the original circuit as formalized in [4], [5], [6]. The tool
CERTIFAIGER is used to check both requirements using SAT
solvers. The goal of the certified track is to increase trust in
verification results produced by model checkers, following the
success story of proof producing SAT solvers in both academia
and industry, e.g., producing proofs became mandatory in the
main track of the SAT competition in 2016 [7].
More details on the competition, including provided tools,

submission procedure and deadlines, the results and their
presentation are available at the competition home page [8].

REFERENCES

[1] A. Niemetz, M. Preiner, C. Wolf, and A. Biere, “Btor2 , BtorMC and
Boolector 3.0,” in Computer Aided Verification - 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I, ser.
Lecture Notes in Computer Science, H. Chockler and G. Weissenbacher,
Eds., vol. 10981. Springer, 2018, pp. 587–595.

[2] A. Biere, K. Heljanko, and S. Wieringa, “AIGER 1.9 and beyond,”
Institute for Formal Models and Verification, Johannes Kepler University,
Altenbergerstr. 69, 4040 Linz, Austria, Tech. Rep. 11/2, 2011.

[3] R. K. Brayton and A. Mishchenko, “ABC: an academic industrial-strength
verification tool,” in Computer Aided Verification, 22nd International
Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings,
ser. Lecture Notes in Computer Science, T. Touili, B. Cook, and P. B.
Jackson, Eds., vol. 6174. Springer, 2010, pp. 24–40.

[4] E. Yu, N. Froleyks, A. Biere, and K. Heljanko, “Stratified certification
for k-induction,” in 22nd Formal Methods in Computer-Aided Design,
FMCAD 2022, Trento, Italy, October 17-21, 2022, A. Griggio and
N. Rungta, Eds. IEEE, 2022, pp. 59–64.

[5] ——, “Towards compositional hardware model checking certification,”
in Formal Methods in Computer-Aided Design, FMCAD 2023, Ames, IA,
USA, October 24-27, 2023, A. Nadel and K. Y. Rozier, Eds. IEEE,
2023, pp. 1–11.

[6] N. Froleyks, E. Yu, A. Biere, and K. Heljanko, “Certifying phase ab-
straction,” in Automated Reasoning - 12th International Joint Conference,
IJCAR 2024, Nancy, France, July 3-6, 2024, Proceedings, Part I, ser.
Lecture Notes in Computer Science, C. Benzmüller, M. J. H. Heule, and
R. A. Schmidt, Eds., vol. 14739. Springer, 2024, pp. 284–303.

[7] T. Balyo, M. J. H. Heule, and M. Järvisalo, “SAT Competition 2016:
Recent developments,” in Proceedings 31st AAAI Conference on Artifi-
cial Intelligence, February 4-9, 2017, San Francisco, California, USA,
S. Singh and S. Markovitch, Eds. AAAI Press, 2017, pp. 5061–5063.

[8] A. Biere, N. Froleyks, and M. Preiner, 2024. [Online]. Available:
https://hwmcc.github.io/2024/

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 6 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0000-0001-7170-9242
mailto:biere@cs.uni-freiburg.de
https://orcid.org/0000-0003-3925-3438
mailto:nils.froleyks@jku.at
https://orcid.org/0000-0002-7142-6258
mailto:preiner@cs.stanford.edu
https://hwmcc.github.io/2024/
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_6
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_6
https://creativecommons.org/licenses/by/4.0/

Formal Methods in Computer-Aided Design 2024

Efficiently Synthesizing Lowest Cost Rewrite Rules
for Instruction Selection

Ross Daly
Stanford University
Stanford, CA, USA

rdaly525@cs.stanford.edu

Caleb Donovick
Stanford University
Stanford, CA, USA

donovick@cs.stanford.edu

Caleb Terrill
Stanford University
Stanford, CA, USA

cdterrill26@gmail.com

Jackson Melchert
Stanford University
Stanford, CA, USA

melchert@stanford.edu

Priyanka Raina
Stanford University
Stanford, CA, USA

praina@stanford.edu

Clark Barrett
Stanford University
Stanford, CA, USA

barrett@cs.stanford.edu

Pat Hanrahan
Stanford University
Stanford, CA, USA

hanrahan@cs.stanford.edu

Abstract—Compiling programs to an instruction set architec-
ture (ISA) requires a set of rewrite rules that map patterns
consisting of compiler instructions to patterns consisting of ISA
instructions. We synthesize such rules by constructing SMT
queries, whose solutions represent two functionally equivalent
programs. These two programs are interpreted as an instruc-
tion selection rewrite rule. Existing work is limited to single-
instruction ISA patterns, whereas our solution does not have
that restriction. Furthermore, we address inefficiencies of existing
work by developing two optimized algorithms. The first only
generates unique rules by preventing synthesis of duplicate and
composite rules. The second only generates lowest-cost rules
by preventing synthesis of higher-cost rules. We evaluate our
algorithms on multiple ISAs. Without our optimizations, the
vast majority of synthesized rewrite rules are either duplicates,
composites, or higher cost. Our optimizations result in synthesis
speed-ups of up to 768× and 4004× for the two algorithms.

I. INTRODUCTION

As we approach the end of Moore’s law and Dennard
scaling, drastically improving computing performance and
energy efficiency requires designing domain-specific hardware
architectures (DSAs) or adding domain-specific extensions to
existing architectures [22]. As a result, many DSAs have
been developed in recent years [4], [8], [24], [27], [30], each
with its own custom instruction set architecture (ISA) or ISA
extension.
Targeting such ISAs from a compiler’s intermediate repre-

sentation (IR) requires a custom library of instruction selection
rewrite rules. A rewrite rule is a mapping of an IR pattern
to a functionally equivalent ISA pattern. Manual specification
of rewrite rules is error-prone, time-consuming, and often
incomplete. It is therefore desirable to automatically generate
valid rewrite rules.

When specifying instruction selection rewrite rules, there
are two common cases. When ISAs have complex instructions,
rewrite rules will often map multi-instruction IR patterns to a
single ISA instruction. When ISAs have simple instructions,
rewrite rules will often map a single IR instruction to a multi-
instruction ISA pattern. A rewrite rule generation tool should
be able to create rewrite rules for both cases. We call such
rewrite rules many-to-many rules.
Generating instruction selectors is not a new idea. Most

relevant to this work is Gulwani et al. [21] who use a satisfia-
bility modulo theories (SMT) solver to synthesize a loop-free
program that is functionally equivalent to a given specification.
Their approach is called component-based program synthesis
(CBPS), as each synthesized program must include functional
components from a given component library. Buchwald et
al. [6] use and extend CBPS to efficiently generate multi-
instruction loop-free IR programs equivalent to a single ISA
instruction program; that is, they solve the many-to-one rewrite
rules synthesis problem. However, multi-instruction ISA pro-
grams cannot be synthesized.
Both of these algorithms produce many duplicate rules,

which are removed during a post-processing step. As we show,
this adds significant additional cost. Another issue is that
CBPS as currently formulated does not incorporate the notion
of optimizing for cost. In practice, we often want only the set
of lowest-cost rules, making it unnecessary (and expensive) to
generate equivalent higher-cost rules.
This paper presents an algorithm for automatically gen-

erating a complete set of many-to-many rewrite rules. We
address the above issues by preventing the synthesis of both
duplicate and high-cost rules at rule generation time, using
exclusion techniques. As a further optimization, we generate

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 7 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0000-0002-4938-5250
https://orcid.org/0000-0001-9336-1267
https://orcid.org/0000-0002-8232-1603
https://orcid.org/0000-0002-8834-8663
https://orcid.org/0000-0002-9522-3084
https://orcid.org/0000-0002-3474-9752
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_6
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_6
https://creativecommons.org/licenses/by/4.0/

rules in stages and exclude composite rules, i.e., rules that
can be composed of smaller rules found in previous stages.
These ensure we produce a small but complete set of rewrite
rules. Compared to previous work, our approach eliminates
unnecessary rules and significantly reduces the time required
to produce the unique necessary ones.
Our contributions are as follows:
• We define generalized component-based program synthe-
sis (GCBPS) as the task of synthesizing two functionally
equivalent programs using two component libraries. We
then present an SMT-based synthesis approach inspired
by Gulwani et al. to solve it.

• We present an iterative algorithm genAll to generate
all unique many-to-many rules up to a given size. We
identify a set of equivalence relations for patterns encoded
as programs and for rules that map IR programs to
ISA programs. We use these relations to enumerate and
exclude duplicate rules. Furthermore, we directly exclude
composite rewrite rules. These result in up to a 768×
synthesis speed-up.

• We present an algorithm genAllLC which generates only
the lowest-cost rules by incorporating a cost metric in
addition to excluding duplicate and composite rewrite
rules. This results in a synthesis speed-up up to 4004×.

The rest of the paper is organized as follows. Section II
discusses instruction selection, existing rule generation meth-
ods, SMT, and program synthesis. Section III describes a
program synthesis query for generating many-to-many rules.
Section IV presents an algorithm for generating only unique
rewrite rules and defines duplicates and composites. Section V
presents an algorithm for synthesizing only the lowest-cost
rules. Section VI evaluates both algorithms, and Section VII
discusses limitations and further optimizations.

II. BACKGROUND AND RELATED WORK

A. Instruction Selection

Instruction selection is the task of translating code in the
compiler’s intermediate representation (IR) to functionally
equivalent code for a target ISA. Typically, a library of rewrite
rules is used in instruction selection. A rewrite rule is a
mapping from an IR pattern consisting of IR instructions
to a functionally equivalent ISA pattern consisting of ISA
instructions. Such patterns can be expression trees or directed
acyclic graphs (DAGs).
Significant work has been devoted to developing rewrite rule

tiling algorithms to perform instruction selection [1], [5], [12],
[14]–[17], [19], [26], [29]. For each rule in the rule library, a
tiling algorithm first finds all fragments from the IR program
in which the rule’s IR pattern exactly matches that fragment.
Then, the instruction selector finds a tiling of these matches
that completely covers the basic block and minimizes the total
rule cost according to some cost metric.
Simple instruction selectors only handle tree-based IR pat-

terns, which is inefficient for reused computations. Modern
instruction selectors like LLVM use DAG-based matching that

allows for both richer rules and better tiling. Koes et al.
[26] describe a similar near-optimal DAG-based instruction
selection algorithm [5]. We want to generate rules that can be
used with such modern DAG-based instruction selectors.

B. Generating Instruction Selectors

Generating instruction selectors from instruction semantics
has been a topic of research interest [6], [7], [9], [10], [23].
Dias and Ramsey [10] introduce an algorithm for generating
rewrite rules based on a declarative specification of the ISA.
While this solves part of the many-to-many rule task, their
work relies on an existing set of algebraic rewrite rules for
synthesizing semantically equivalent rules. Our work uses
SMT for the instruction and program semantics. However,
incorporating certain kinds of algebraic rewrite rules could
be an avenue for future optimizations.
Daly et al. [9] propose a way to synthesize instruction

selection rewrite rules from the register-transfer level (RTL)
specification of a processor. Their algorithm requires a set
of pre-specified IR patterns. In contrast, we can efficiently
synthesize rules that consider all possible multi-instruction IR
patterns up to a given size. Their approach for synthesizing
complex instruction constants and handling floating point
types could be combined with the approaches in this paper.
The most relevant to this work is the work by Buch-

wald et al. [6], which leverages component-based program
synthesis to generate rules with multi-instruction IR patterns
and single-instruction ISA patterns. In contrast, our work
synthesizes rules with both multi-instruction IR patterns and
multi-instruction ISA patterns. We additionally prevent the
synthesis of duplicate, composite, and high-cost rewrite rules,
unlike any of the above approaches.

C. Program Synthesis and Equivalence

We use SMT-based program synthesis to enumerate a com-
plete set of instruction selection rewrite rules. In program
synthesis enumeration, it is common to remove equivalent
solutions [3]. We use the equivalence relation defined in
Section IV-A to determine equivalent rewrite rules. In prior
work [2], observational equivalence (i.e., programs with the
same semantics) has been used for de-duplication [2], however
observational equivalence does not take into account the
structure of the program, which is essential for rewrite rule
pattern matching.

D. Logical Setting and Notation

We work in the context of many-sorted logic (e.g., [13]),
where we assume an infinite set of variables of each sort
and the usual notions of terms, formulas, assignments, and
interpretations. Terms are denoted using non-boldface symbols
(e.g., X). Boldface symbols (e.g., X) are used for sets,
tuples, and multisets, whose elements are either terms or other
collections of terms. Y := (Y1, ..., YN) defines a tuple, where
|Y| = N and Yi refers to the i-th element. Z := {zn} defines
a multiset, where the multiplicity of element z is n ∈ N.
Both ψ and φ are used to denote formulas. ψ(X) is a formula

9

whose free variables are a subset of X. We useM ⊨ ψ(X) to
denote the satisfiability relation between the interpretationM
and the formula ψ. Assuming X is a collection of variables,
MX denotes the assignment to those variables induced byM.
For an assignment α, we write α |= ψ(X) if M |= ψ(X) for
every interpretation M such that MX = α.

E. Component-based Program Synthesis

CBPS is a program synthesis task introduced by Gulwani
et al. The inputs to the task are:

• A specification S := (IS , OS , φspec(I
S , OS)) containing

a tuple of input variables IS , a single output variable OS ,
and a formula φspec(I

S , OS) relating the inputs and the
output.

• A library of components (e.g., instructions) K, where the
k-th component Kk := (Ik, Ok, φk(Ik, Ok)) consists of
a tuple of input variables Ik, a single output variable
Ok, and a formula φk(Ik, Ok) defining the component’s
semantics.

An example component for an addition instruction is shown
below using the theory of bit-vectors, QF BV, where BV [n]

is an n-bit sort and +[n] is addition modulo 2n.

((I0 : BV [16], I1 : BV [16]), O : BV [16], I0 +[16] I1 = O)

The task is to synthesize a valid program functionally
equivalent to the specification using each component from K
exactly once.
For notational convenience, we group together the

set of all inputs and outputs of the components:
W := ∪(Ik,Ok,)∈K (Ok ∪ (∪Ik)). Gulwani et al. encode
the program structure using a connection constraint:
φconn(L, IS , OS ,W). This is a formula representing how the
program inputs (IS) and program output (OS) are connected
via the components. The connections are specified using
location variables L. We do not go into the details of how
location variables encode connections (they are in [21]). It
is sufficient for our purposes to know that these are integer
variables, and an assignment to them uniquely determines a
way of connecting the components together into a program.
The program semantics φprog are defined as the components’
semantics conjoined with the connection constraint:

φprog(L, IS , OS ,W) := (1)(︄⋀︂
k

φk(Ik, Ok)

)︄
∧ φconn(L, IS , OS ,W).

They define a verification constraint that holds if a par-
ticular program is both well-formed (specified using a well-
formedness constraint ψwfp) and satisfies the specification
φspec :

φverif := ψwfp(L) ∧ ∀IS , OS ,W. (2)

φprog(L, IS , OS ,W) =⇒ φspec(I
S , OS).

A synthesis formula φsynth existentially quantifies L in (2):

φsynth := ∃L.∀IS , OS ,W. (3)

ψwfp(L) ∧
(︁
φprog(L, IS , OS ,W) =⇒ φspec(I

S , OS)
)︁
.

This formula can be solved using a technique called counter-
example guided inductive synthesis (CEGIS). CEGIS solves
such exist-forall formulas by iteratively solving a series of
quantifier-free queries and is often more efficient than trying
to solve the quantified query directly. More details are in
[21]. For our purposes, we assume the existence of a CEGIS
implementation, CEGIS , which takes an instance of φsynth

and returns a model M with the property that ML |= φverif ,
from which a program that is a solution to CBPS can be
constructed.

III. COMPONENT-BASED PROGRAM SYNTHESIS FOR
MANY-TO-MANY RULES

Given the IR and ISA instruction sets KIR and KISA,
Buchwald et al. [6] use CBPS to synthesize rewrite rules.
They use a single ISA instruction kISA ∈ KISA for the CBPS
specification and a subset of the IR instructions for the CBPS
components. A solution to the resulting φsynth formula gives
a program PIR. If PISA is the single-instruction program
consisting of kISA, they interpret the pair (PIR,PISA) as an
instruction selection rewrite rule.
However, Buchwald et al.’s solution is insufficient for gen-

erating many-to-many rules, as they cannot synthesize IR and
ISA programs that both contain multiple instructions. Instead,
two functionally equivalent programs need to be synthesized.
We first define an extension to CBPS called generalized
component-based program synthesis (GCBPS) to address this
problem. Then, we show how to construct a synthesis query
whose solutions represent pairs of functionally equivalent
programs.

A. Generalized Component-based Program Synthesis

We define the GCBPS task as that of synthesizing two
programs, Pa and Pb, represented using location variables
La and Lb, given two sets of components Ka and Kb, two
sets of inputs Ia, Ib where |Ia| = |Ib|, and two outputs Oa, Ob

where the following conditions hold true:
1) Pa uses each component in Ka exactly once.
2) Pb uses each component in Kb exactly once.
3) Pa is functionally equivalent to Pb.

B. Solving GCBPS

We start with the CBPS verification constraint from (2)
using components Ka (and a corresponding set of inputs and
outputs Wa), but modify it slightly by introducing variables
(Ia, Oa) that are fresh copies of (IS , OS):

ψwfp(L
a) ∧ ∀Ia, Oa,Wa, IS , OS . (4)

(φaprog(L
a, Ia, Oa,Wa) ∧ φspec(I

S , OS)) =⇒(︁(︁∧i Iai = ISi
)︁

=⇒ Oa = OS
)︁
.

10

Assuming the formulas for both the program and the specifi-
cation, if their inputs are the same, their outputs must also be
the same.
We next replace the specification program with a different

component-based program using components Kb and quantify
over that program’s inputs Ib, output Ob, and component
variables Wb:

φverif := ψwfp(L
a) ∧ ψwfp(L

b) ∧ ∀Ia, Ib, Oa, Ob,Wa,Wb.
(5)(︁

φaprog(L
a, Ia, Oa,Wa) ∧ φbprog(L

b, Ib, Ob,Wb)
)︁
=⇒(︁(︁∧i Iai = Ibi

)︁
=⇒Oa = Ob

)︁
.

This is our generalized verification constraint stating the
correctness criteria for when two component-based programs
are semantically equivalent.
To synthesize such a pair of programs, a synthesis formula

φsynth is defined by existentially quantifying La and Lb in the
verification formula (5):

φsynth := ∃La,Lb.∀Ia, Ib, Oa, Ob,Wa,Wb. (6)

ψwfp(L
a) ∧ ψwfp(L

b)∧(︃(︁
φaprog(L

a, Ia, Oa,Wa) ∧ φbprog(L
b, Ib, Ob,Wb)

)︁
=⇒

(︁(︁∧i Iai = Ibi
)︁

=⇒ Oa = Ob
)︁)︃

.

As above, we assume that calling CEGIS on φsynth returns
a model M such that MLa∪Lb |= φverif . This can be
converted into a pair of programs (Pa,Pb) representing a
rewrite rule that is a solution for the GCBPS task. We
write rewriteRule(Ka,Kb,MLa ,MLb) for the rewrite rule
constructed from a specific model M using the component
sets Ka and Kb.

IV. GENERATING ALL MANY-TO-MANY REWRITE RULES

Buchwald et al. [6] describe an iterative algorithm,
IterativeCEGIS , to synthesize rewrite rules using CBPS. This
algorithm iterates over all multisets of IR instructions up to
a given size and only runs synthesis on each such multiset.
Compared to running synthesis using all the IR instructions at
once, this iterative algorithm works better in practice.
However, IterativeCEGIS cannot synthesize rewrite rules

with both multi-instruction IR programs and multi-instruction
ISA programs. Furthermore, it produces duplicate rewrite
rules which are then filtered out in a post-synthesis filtering
step. Although the results are correct, this approach is highly
inefficient because each call to CEGIS is expensive, and a
CEGIS call is made, not just for some duplicate rules, but for
every duplicate rule. In our approach, we make the requirement
that a solution is not a duplicate part of the CEGIS query itself,
ensuring that each successful CEGIS query finds a new, non-
redundant rewrite rule.
Our iterative algorithm, genAll , is shown in Figure 1. It

takes as parameters the IR and ISA component sets, KIR

1 genAll(KIR,KISA, N IR, N ISA) :
2 SR ← {}
3 f o r n1, n2 ∈ [1, N IR]× [1, N ISA] :
4 f o r mIR ∈ multicomb(KIR, n1) :
5 f o r mISA ∈ multicomb(KISA, n2) :
6 f o r IIR, IISA ∈ allInputs(mIR,mISA) :
7 φ,LIR,LISA ←

GCBPS(mIR,mISA, IIR, IISA)
8 φ← φ ∧ ¬AllComposites(SR, . . .)
9 SR ← SR ∪

CEGISAll(φ,mIR,mISA,LIR,LISA)
10 re turn SR

Fig. 1: Iterative algorithm to generate all unique rewrite rules
up to a given size.

1 CEGISAll(φ,mIR,mISA,LIR,LISA) :
2 SR = {}
3 whi le True :
4 M ← CEGIS(φ)
5 i f M = ⊥ : re turn SR
6 R ← rewriteRule(mIR,mISA,MLIR ,MLISA)
7 SR ← SR ∪ {R}
8 φ← φ ∧ ¬ψdup(R, (L

IR,LISA))

Fig. 2: AllSAT algorithm to synthesize all unique rules. Line 8
excludes all rules that are duplicates of the current synthesized
rewrite rule.

and KISA respectively, as well as a maximum number of
components of each kind to use in rewrite rules, N IR and
N ISA, and iteratively builds up a set SR of rewrite rules,
which it returns at the end. Line 3 shows that n1 and n2

iterate up to these maximum sizes. Line 4 iterates over all
multisets of elements from KIR of size n1 using a standard
multicombination algorithmmulticomb [25] (not shown). Line
5 is similar but for multisets from KISA of size n2. Next, for a
given choice of multisets, line 6 enumerates all possible ways
of selecting input vectors from those multisets that could create
well-formed programs by constructing two fresh sets of input
variables. Line 7 constructs fresh sets of location variables LIR

and LISA and returns them along with the instantiated GCBPS
synthesis formula (using Equation (6)).1 Line 8 excludes all
composite rules from the synthesis search space. Composite
rules are rules that can be constructed using the current set
of rules SR and are thus unnecessary for instruction selection.
We discuss this in more detail in Section IV-B. Finally, on
line 9, the current set of rules SR is updated with the result
of calling CEGISAll , which we describe next.
Figure 2 shows the CEGISAll algorithm that performs

the AllSAT [20], [31] task. Its parameters are the synthesis
formula φ, the multisets mIR and mISA, and the location
variables LIR and LISA. It returns a set SR of rewrite rules.
Initially, this set is empty. The algorithm iteratively calls

1We augment the well-formed program constraint in (6) to prevent syn-
thesizing programs containing dead code and unused inputs. This can be
accomplished by enforcing that each input and intermediate value is used
in at least one location.

11

a standard CEGIS algorithm to solve the synthesis query,
constructing a new rewrite rule R, which is added to the set
SR of rewrite rules, when the call to CEGIS is successful. The
iteration repeats until the CEGIS query returns ⊥, indicating
that there are no more rewrite rules to be found. Note that
after each iteration, the φsynth formula is refined by adding
the negation of a formula capturing the notion of duplicates
for this rule. We describe how this is done next.

A. Excluding Duplicate Rules

Consider the two distinct rules below. As a syntactical con-
vention, infix operators are used for IR patterns and function
calls for ISA patterns.

I1 + (I2 · I3)→ add(I1,mul(I2, I3))

(I1 · I3) + I2 → add(I2,mul(I1, I3))

The two IR patterns represent the same operation despite the
fact that the variable names and the order of the commutative
arguments to addition are both different. Both rules would
match the same program fragments in an instruction selector
and would result in the same rewrite rule application. Thus, we
consider such rules to be equivalent and would like to ensure
that only one is generated by our algorithm.
We first define a rewrite rule equivalence relation, ∼rule .

Informally, two rules are equivalent if replacing either one
by the other has no discernible effect on the execution of an
instruction selection algorithm. We make this more formal by
considering various attributes of standard instruction selection
algorithms.
Commutative Instructions Modern pattern matching algo-
rithms used for instruction selection try all argument orderings
for commutative instructions [5]. We define the commutative
equivalence relation ∼CIR as PIR

1 ∼CIR PIR
2 iff PIR

2 is a
remapping of PIR

1 ’s commutative instruction’s arguments.
Same-kind Instructions Programs P generated by GCPBS
have a unique identifier, the program line number, for each
instruction. This means that if two instructions of the same
kind appear in a program, interchanging their line numbers
results in a different program, even though it makes no
difference to the instruction selection algorithm. We define
the same-kind equivalence relation ∼KIR as PIR

1 ∼KIR PIR
2

iff PIR
2 is the result of remapping the line numbers for same-

kind instructions in PIR
1 .

Data Dependency Modern instruction selection algorithms
perform pattern matching, not based on a total order of instruc-
tions, but on a partial order determined by data dependencies.
Many different sequences may thus lead to the same partial
order. We define ∼DIR as PIR

1 ∼DIR PIR
2 iff PIR

1 and PIR
2

have the same data dependency graph.
Rule Input Renaming For a given rewrite rule, the input vari-
ables used for the IR program must match the input variables
used for the ISA program, but the specific variable identifiers
used do not matter. We define the equivalence relation ∼Irule

on rules (i.e., pairs of programs) as R1 ∼Irule R2 iff R2 is
the result of remapping variable identifiers in R1.

Rule Equivalence The first three equivalence relations defined
above are for IR programs, but the analogous relations (∼CISA ,
∼KISA , ∼DISA) for ISA instructions are also useful.
Putting everything together, we define rule equivalence

∼rule as follows.

∼IR := ⊎{∼CIR ,∼KIR ,∼DIR} (7)
∼ISA := ⊎{∼CISA ,∼KISA ,∼DISA} (8)
∼rule := ⊎{(∼IR ⊗ ∼ISA),∼Irule} (9)

Overall IR equivalence is defined as the transitive closure
of the union (notated with ⊎) of the three individual IR
relations. ISA equivalence is defined similarly. Overall rewrite
rule equivalence is then defined using the ⊗ operator, where
∼⊗=∼a ⊗ ∼b is defined as: (a1, b2) ∼⊗ (a2, b2) iff a1 ∼a a2

and b1 ∼b b2. Specifically, rule equivalence is obtained by
combining IR equivalence in this way with ISA equivalence,
and then combining the result with ∼Irule using ⊎.
The set of all duplicates of rule R is the rule equivalence

class [R]rule , where R′ ∈ [R]rule ⇐⇒ R ∼rule R′. ψdup

can be constructed as the disjunction of all elements of the
equivalence class [R]rule

B. Excluding Composite Rules

We also exclude any rule whose effect can already be
achieved using the current set of generated rules (line 8
of Figure 1). We elucidate this using a simple example.
Assume the algorithm just constructed a new query for the
multisets mIR, mISA, and the input IIR (line 7 of Fig-
ure 1), and assume that the rule library SR currently contains
rules for addition (I1 + I2 → add(I1, I2)) and multiplication
(I1 · I2 → mul(I1, I2)). Consider the following cases.
1) If IIR = (I1), mIR = {+}, and mISA = {add}, then

the rule I1 + I1 → add(I1, I1) will be synthesized by
CEGISAll . But this rule is a specialization of the existing
rule for addition. Any use of this specialized rule could
instead be replaced by the more general rule, and this
rule can thus be excluded. Note that we order the inputs
on line 6 of Figure 1 to guarantee that the most general
version of a rule is found first.

2) If IIR = (I1, I2, I3), mIR = {+, ·}, and mISA =
{add,mul}, then the composite rule (I1 + (I2 · I3)) →
add(I1,mul(I2, I3)) will be synthesized by CEGISAll .
Using similar logic, any use of this composite rule
could instead use the simpler and more general rules
for addition and multiplication, and this rule can thus
be excluded. The multiset ordering used in lines 4 and
5 of Figure 1 ensures that subsets are visited before
supersets, guaranteeing that smaller rules are found first.
A specialized rule can be interpreted as a composite rule
composed of the general rule with fewer inputs.

Only composite rules that would have been synthesized
for a particular query need to be excluded. In general, for a
specific query based on mIR, mISA, and IIR, we enumerate
and exclude composite rules R := (PIR,PISA) that meet the
following criteria:

12

1 genAllLC(K
IR,KISA, N IR, N ISA, cost) :

2 Ksorted ← sortByCost(KISA, NISA, cost)
3 SR ← {}
4 f o r n ∈ [1, N IR] :
5 f o r mIR ∈ multicomb(KIR, n) :
6 f o r mISA ∈ Ksorted :
7 ccur ← cost(mISA)
8 f o r IIR, IISA ∈ allInputs(mIR,mISA) :
9 φ,LIR,LISA ←

GCBPS(mIR,mISA, IIR, IISA)
10 φ← φ ∧ ¬AllCompositesLC (SR, ccur, . . .)
11 SR ← SR ∪

CEGISAllLC (φ,mIR,mISA,LIR,LISA)
12 re turn SR

Fig. 3: Iterative algorithm to generate all lowest-cost rules.
ISA multisets are ordered by cost. CEGISAll is modified to
exclude rules with duplicate IR programs.

• R has exactly |IIR| inputs.
• PIR has the same components as mIR.
• PISA has the same components as mISA.
• PIR is built from the IR programs of already-found rules
in SR.

• PISA is the result of applying the rewrite rules used to
build PIR.

This enumeration is encapsulated by the call to
AllComposites on line 8 of Figure 1.

V. GENERATING ALL LOWEST-COST RULES

Because all duplicates are excluded, the genAll algorithm
generates only unique rewrite rules. However, two unique rules
can share the same IR pattern. For a particular IR pattern, only
the lowest-cost rule is needed for some cost metric. Knowing
the instruction selection cost metric at rule-generation time
presents another time-saving opportunity because we can also
prevent the synthesis of high-cost rules.
We make a few assumptions about such a cost metric.
• The cost for an instruction selection tiling is equal to the
sum of the costs of each tiling rule’s ISA program.

• The cost of an ISA program PISA only depends on the
instruction contents, not the program structure. This cost
is the sum of the cost of each instruction in the program.

While these assumptions are a restriction on the space of
possible cost metrics, they are sufficient to represent common
ones like code size and energy. If the compiler’s cost metric
violates these assumptions, the genAll algorithm can be used
instead. This restricted space of cost metrics has the important
property that the cost of any rule that would be synthesized
using the components mISA can be determined up front as
the sum of the cost of each component.
Figure 3 shows our synthesis algorithm updated to only

synthesize the lowest-cost rules for each unique IR pattern.
The first change is to sort all possible mulitsets of ISA
instructions up to size N ISA by cost (lower cost first) (line
2). This ordering ensures that the first rule synthesized for a

particular IR program will be the lowest-cost version of that
rule. Therefore, after synthesizing a new rule, all rules with
a duplicate IR program can be excluded. The second change
excludes rules with duplicate IR programs. A duplicate IR
program is defined using the IR equivalence relation:

∼IRLC := ⊎{∼CIR ,∼KIR ,∼DIR ,∼IIR} (10)

This is the same definition as (7), but with an additional
relation ∼IIR defined as PIR

1 ∼IIR PIR
2 iff PIR

2 is the result
of remapping variable identifiers in PIR

1 . The CEGISAllLC

function called on line 11 is the same as CEGISAll , except
that it uses ∼IRLC instead of ∼IR when constructing ψdup .
The third change modifies AllComposites to use the

known up-front cost cost(mISA). To see how this works,
we consider again the example from Section IV-B. As be-
fore, we assume SR currently contains two rules: one for
addition (I1 + I2 → add(I1, I2)) and one for multiplication
(I1 · I2 → mul(I1, I2)). We assume the target (ISA) expres-
sions for these rules have cost 5 and 10, respectively. Consider
the following situation:

• Suppose IIR = (I1, I2, I3), and mIR = {+, ·}. It
might be possible to synthesize a rule that has IR pat-
tern (I1 + (I2 · I3)). We know that the composite rule
(I1 + (I2 · I3)) → add(I1,mul(I2, I3)) would have a
cost of 15 since rule costs are additive. Therefore, we
can exclude any rule that matches this IR pattern and has
cost(mISA) ≥ 15.

To implement this, only one adjustment needs to be made
to the conditions in Section IV-B. Instead of requiring PISA

to have the same components as mISA, we simply require
cost(PISA) ≥ cost(mISA), i.e., for rules matching the other
conditions, if the ISA program has a cost equal to or greater
than cost of the ISA program in the current rule, it is
excluded. These conditions are encapsulated by the call to
AllCompositesLC (line 10).

VI. EVALUATION

Our evaluation strategy is threefold. We first show that our
algorithm is capable of producing a variety of many-to-many
rules. A good set of rewrite rules involves both many-to-
one and one-to-many rules. We also show that by removing
duplicate, composite, and high-cost rules, we produce a much
smaller set of rewrite rules. Second, we analyze the effect on
performance of the optimizations described above. We show
that they all significantly reduce the time spent in synthesis.
Finally, we show that by using different cost metrics, we can
generate different sets of lowest-cost rewrite rules.

A. Implementation

All instructions are formally specified using the hwtypes
Python library [11], which leverages pySMT [18] to construct
(quantifier-free) SMT queries in the theory of bit-vectors.
We also use annotations indicating which instructions are
commutative. We use Boolector [28] as the SMT solver and
set a timeout of 12 seconds for each CEGIS invocation. Every
synthesized rewrite rule is independently verified to be valid.

13

B. Instruction Specifications

To evaluate our algorithms, we selected small but non-trivial
sets of IR and ISA instructions operating on 4-bit bit-vectors.

IR We define the IR instruction set to be constants (0, 1),
bitwise operations (not, and, or, xor), arithmetic operations
(neg, add, sub), multiplication (mul), unsigned comparison
operations (ult, ule, ugt, uge), equality (eq), and dis-equality
(neq).

ISA 1 This is a minimal RISC-like ISA containing only 6
instructions: nand, sub, three comparison instructions (cmpZ,
cmpN , cmpC) which compute the zero (Z), sign (N), and
carry (C) flags respectively for a subtraction, and a flag
inverting instruction (inv).

ISA 2 This is an ISA specialized for linear algebra. It supports
the 5 instructions: neg, add, add3 (addition of 3 values), mul,
and mac (multiply-accumulate).

C. Rewrite Rule Synthesis

For each ISA we run three experiments. The first experiment
(All Rules) is the baseline that generates all many-to-many
rules, including duplicate, composite, and high cost rules. This
is an implementation of Buchwald et al.’s IterativeCEGIS al-
gorithm extended to use GCBPS for many-to-many rules (no-
tated as IterativeCEGISGCBPS). The second (Only Unique)
generates only unique rules by excluding all duplicates and
composites using the genAll algorithm. The third (Only
Lowest-Cost) generates only the lowest-cost rules using the
genAllLC algorithm in Figure 3. A code-size cost metric is
used, i.e., cost(K) is just the number of components in K.
For ISA 1, we split the rule generation into two parts.

The first part (ISA 1a) synthesizes rules composed of bitwise
and arithmetic IR instructions using the ISA’s nand and
sub instructions. The second part (ISA 1b) synthesizes rules
composed of constants and comparison instructions using the
four instructions cmpZ, cmpN , cmpC, and inv.
For 1a and 1b, we synthesize rewrite rules up to an IR

program size of 2 and an ISA program size of 3 (written 2-to-
3). For (Only Lowest-Cost), we increase the ISA program size
to 5 and 4 respectively. For ISA 2, we synthesize all rewrite
rules composed of constant, and arithmetic (including mul)
IR instructions up to size 3-to-2.
The number of rewrite rules produced for each configuration

for ISA 1a, 1b, and 2 is shown in Tables I, II, and III,
respectively. Each table entry is the number of rewrite rules
synthesized for a particular IR and ISA program size. For all
ISAs, the extra synthesized rules in (All Rules) were compared
against the duplicate and composite rules excluded by (Only
Unique). Entries in (All Rules) marked with a ‘(-n)’ represent
‘n’ rules that (Only Unique) synthesized, but (All Rules)
missed due to CEGIS timeouts. The (All Rules) experiment
for the entry marked with an asterisk could not complete in 70
hours, so the number calculated from (Only Unique) is shown.
For both ISAs we were able to synthesize 1-to-many

and many-to-1 rules for both IR and ISA instructions.

genAll produced a more complete set of rules than
IterativeCEGISGCBPS .
Table IV shows the percentage of rules that are duplicates

or composites in the first column, and the percentage of rules
that are high cost in the second column. Most rules in (All
Rules) are duplicates, composites, or high cost. Out of the
349179 rules up to size 3-to-2 for ISA 2 (i.e., the sum of the
(All Rules)), 99.5% are duplicates or composites. Similarly,
most rules are high cost. In ISA 1a, 59672 out of 59822 rules
(99.7%) up to size 2-to-3 are high cost.

D. Synthesis Time Improvement with genAll

In this section we showcase the synthesis time im-
provements of genAll . The first experiment is the baseline
IterativeCEGISGCBPS . The second excludes duplicate rules
(i.e., with line 8 of Figure 2). The third, genAll , excludes both
duplicates and composites (i.e. with line 8 of both Figure 2
and Figure 1).
For each GCBPS query, we note the time required (tsat)

to run CEGISAll . Next, we measure the number of unique
rules (Nunique) found by CEGISAll . We then add the pair
(Nunique , tsat) to our dataset. We plot the cumulative synthesis
time versus the number of unique rules found by doing the fol-
lowing. Each data point is sorted by its slope (tsat/Nunique).
Then, the increase in both tsat and Nunique is plotted for each
sorted point. Some data points have Nunique = 0 indicating
that every synthesized rule was redundant and is shown using
a vertical slope.
The synthesis time plot for unique rewrite rules for ISA

1b up to size 2-to-3 is shown in Figure 4a. Excluding all
duplicates shows a 5.3× speedup. Excluding both duplicates
and composites shows a 6.2× speedup. Both optimizations
find an additional 5 unique rules.

E. Synthesis Time Improvement with genAllLC

We also showcase the synthesis time improvements of
genAllLC using a similar setup. The first experiment is the
baseline IterativeCEGISGCBPS . The second excludes IR du-
plicate rules. The third, genAllLC , excludes both IR duplicates
and IR composites.
We use the same experimental setup as before, except when

computing Nunique , all higher-cost rules are filtered instead.
The synthesis time plot for lowest-cost rewrite rules for ISA
1b up to size 2-to-3 is shown in Figure 4b.
Excluding rules with duplicate IR programs provides a 41×

speed-up. Also excluding high-cost composites provides a
1254× speed-up over the baseline (All Rules) configuration.

F. Total Speed-up

We summarize the speed-ups of genAll and genAllLC
compared to the IterativeCEGISGCBPS baseline for all con-
figurations in Table V. We compare the synthesis time in the
“Synth” column. We compare the total algorithm runtime in
the “Total” column (including time for iterating, solving, rule
filtering, etc.). The last row’s baseline did not complete in 70
hours, so we provide lower bounds for speed-up.

14

ISA Program Size
All Rules Only Unique Only Lowest-Cost

1 2 3 1 2 3 1 2 3 4 5
IR Prog
Size

1 5 32 1096 3 10 96 3 4 2 1 0
2 76 1719 56894 40 189 1940 40 67 34 12 6

TABLE I: Number of synthesized rewrite rules for ISA 1a.
ISA Program Size

All Rules Only Unique Only Lowest-Cost
1 2 3 1 2 3 1 2 3 4

IR Program
Size

1 17 71 3662 9 51 873 7 3 0 0
2 89 3942 (-5) 199572 78 717 21511 52 64 9 0

TABLE II: Number of synthesized rewrite rules for ISA 1b.
IR Program Size

All Rules Only Unique Only Lowest-Cost
1 2 3 1 2 3 1 2 3

ISA Program
Size

1 11 287 3998 3 14 315 3 14 315
2 10 3115 341758∗ 3 69 1337 1 32 760

TABLE III: Number of synthesized rewrite rules for ISA 2.

(a) genAll (b) genAllLC

Fig. 4: Cumulative synthesis time comparison for ISA 1b up to size 2-to-3.

ISA Rule Size up % Duplicate % High-cost
to (IR, ISA) or Composite

1a (2, 3) 96.2% 99.7%
1b (2, 3) 88.8% 99.9%
2 (3, 2) 99.5% 99.7%

TABLE IV: Percent of rewrite rules up to (IR, ISA) size that
are a duplicate or a composite, and percent that are high-cost.

The speed-ups depend on many parameters including the
maximum size of the rewrite rules, the number of possible
instructions, the commutativity of the instructions, and the
semantics of the instructions. The optimizations discussed
produce several orders of magnitude speed-ups. Further op-
timizing the non-solver portions (e.g., re-coding in C) would
drastically increase the “Total” speed-ups to be closer to the
“Synth” ones. Clearly, the combination of all optimizations
discussed in this paper can produce speed-ups of several orders
of magnitude.

G. Cost Metric Comparisons

Our final experiment explores how the choice of cost metric
influences the rules. We have implemented two cost metrics:
a code size metric (CS) and an estimated energy metric (E).

ISA Rule Size up genAll Speed-up genAllLC Speed-up
to (IR, ISA) Synth Total Synth Total

1a (2, 2) 3.5× 1.3× 11× 2.8×
1b (2, 2) 3.1× 1.7× 26× 2.8×
2 (2, 2) 11× 2× 53× 2.5×
1a (2, 3) 12× 6.8× 601× 57×
1b (2, 3) 6.2× 2.7× 1254× 63×
2 (3, 2) > 768× > 81× > 4004× > 171×

TABLE V: Speed-ups compared to IterativeCEGISGCBPS .

ISA Rule Size up Unique Unique Common
to (IR, ISA) (CS) (E)

1a (2, 5) 121 161 48
1b (2, 4) 99 198 36
2 (3, 2) 134 137 991

TABLE VI: Number of unique and common rewrite rules
synthesized for code size (CS) and energy (E) cost metrics.

The energy metric was created to correspond to real hardware
energy data. For example the cost ratio for mul and add is
1 : 1 for code size, but is 2.5 : 1 for energy. The number of
common and unique lowest-cost rewrite rules for each ISA is
shown in Table VI.

15

While there is some overlap in common rules, each cost
metric produces a differing set of unique lowest-cost rules.

VII. CONCLUSION AND FUTURE WORK

We showed that many-to-many instruction selection rewrite
rules can be synthesized for various ISAs using program
synthesis. This supports two major trends in computer archi-
tecture. The first is the trend towards simple or reduced instruc-
tion architectures where multiple instructions are needed for
simple operations. It also supports the trend to introduce more
complex domain-specific instructions for energy efficiency.
In this case, a single instruction can implement complex
operations.
We showed that our algorithms are efficient. Removing

duplicates, composites, and higher-cost rules results in mul-
tiple orders of magnitude speed-ups. Synthesizing many-to-
many rewrite rules for modern IRs and ISAs may require
further optimizations. Many of our synthesized rules contain
program fragments that a compiler would optimize during IR
optimization or peephole optimization. A modified version of
GCBPS could be used to directly synthesize and exclude such
program fragments.
Buchwald et al. [6] presented generalizations for multi-

sorted instructions, multiple outputs, preconditions, and inter-
nal attributes, enabling the modeling of memory and control
flow instructions. Our synthesis query and algorithms are
orthogonal and could incorporate these features, allowing for
a broader range of possible instruction sets.
As is the case in prior work, we limit synthesis to loop free

patterns. Relaxing this constraint and using other instruction
selection algorithms would be an interesting research avenue.
Another promising research direction involves exploring the

trade-offs between synthesis time, compile time, and code
quality. This could be done by varying the maximum size
of rewrite rules, changing the instruction selection algorithms,
relaxing the completeness guarantee, or incorporating IR or
peephole optimizations.
We believe this research area is fertile ground and hope our

work inspires and enables future research endeavors towards
the goal of automatically generating compilers for emerging
domain-specific architectures.

REFERENCES

[1] Alfred V. Aho, Mahadevan Ganapathi, and Steven W. K. Tjiang. Code
generation using tree matching and dynamic programming. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 11(4):491–
516, 1989.

[2] Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. Recursive
program synthesis. In Computer Aided Verification: 25th International
Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.
Proceedings 25, pages 934–950. Springer, 2013.

[3] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. Scaling
enumerative program synthesis via divide and conquer. In International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 319–336. Springer, 2017.

[4] Rick Bahr, Clark Barrett, Nikhil Bhagdikar, Alex Carsello, Ross Daly,
Caleb Donovick, David Durst, Kayvon Fatahalian, Kathleen Feng, Pat
Hanrahan, et al. Creating an agile hardware design flow. In 2020 57th
ACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE,
2020.

[5] Eli Bendersky. A deeper look into the LLVM code generator, Part 1,
Feb 2013.

[6] Sebastian Buchwald, Andreas Fried, and Sebastian Hack. Synthesizing
an instruction selection rule library from semantic specifications. In
Proceedings of the 2018 International Symposium on Code Generation
and Optimization, pages 300–313, 2018.

[7] R. G. Cattell. Automatic derivation of code generators from machine
descriptions. ACM Transactions on Programming Languages and
Systems (TOPLAS), 2(2):173–190, 1980.

[8] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial archi-
tecture for energy-efficient dataflow for convolutional neural networks.
ACM SIGARCH Computer Architecture News, 44(3):367–379, 2016.

[9] Ross Daly, Caleb Donovick, Jackson Melchert, Rajsekhar Setaluri,
Nestan Tsiskaridze Bullock, Priyanka Raina, Clark Barrett, and Pat
Hanrahan. Synthesizing instruction selection rewrite rules from RTL
using SMT. In Conference on Formal Methods in Computer-Aided
Design (FMCAD), page 139, 2022.

[10] Joao Dias and Norman Ramsey. Automatically generating instruction
selectors using declarative machine descriptions. ACM Sigplan Notices,
45(1):403–416, 2010.

[11] Caleb Donovick, Ross Daly, Jackson Melchert, Lenny Truong, Priyanka
Raina, Pat Hanrahan, and Clark Barrett. Peak: A single source of truth
for hardware design and verification. arXiv preprint arXiv:2308.13106,
2023.

[12] Helmut Emmelmann, F.-W. Schröer, and Rudolf Landwehr. BEG: A
generator for efficient back ends. ACM Sigplan Notices, 24(7):227–237,
1989.

[13] Herbert Enderton and Herbert B. Enderton. A mathematical introduction
to logic. Elsevier, 2001.

[14] Christopher W. Fraser and David R. Hanson. A retargetable C compiler:
Design and implementation. Addison-Wesley Longman Publishing Co.,
Inc., 1995.

[15] Christopher W. Fraser, David R. Hanson, and Todd A. Proebsting.
Engineering a simple, efficient code-generator generator. ACM Letters on
Programming Languages and Systems (LOPLAS), 1(3):213–226, 1992.

[16] Mahadevan Ganapathi. Retargetable code generation and optimization
using attribute grammars. PhD thesis, 1980. AAI8107834.

[17] Mahadevan Ganapathi and Charles N. Fischer. Description-driven
code generation using attribute grammars. In Proceedings of the 9th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’82, page 108–119, New York, NY, USA, 1982.
Association for Computing Machinery.

[18] Marco Gario and Andrea Micheli. PySMT: A solver-agnostic library
for fast prototyping of SMT-based algorithms. In SMT Workshop 2015,
2015.

[19] R. Steven Glanville and Susan L. Graham. A new method for compiler
code generation. In Proceedings of the 5th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL ’78, page
231–254, New York, NY, USA, 1978. Association for Computing
Machinery.

[20] Orna Grumberg, Assaf Schuster, and Avi Yadgar. Memory efficient all-
solutions SAT solver and its application for reachability analysis. In For-
mal Methods in Computer-Aided Design: 5th International Conference,
FMCAD 2004, Austin, Texas, USA, November 15-17, 2004. Proceedings
5, pages 275–289. Springer, 2004.

[21] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkate-
san. Synthesis of loop-free programs. In Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2011.

[22] John L. Hennessy and David A. Patterson. A new golden age for
computer architecture. Commun. ACM, 62(2):48–60, January 2019.

[23] Roger Hoover and Kenneth Zadeck. Generating machine specific
optimizing compilers. In Proceedings of the 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
219–229, 1996.

[24] Norman P. Jouppi, Cliff Young, Nishant Patil, and David Patterson. A
domain-specific architecture for deep neural networks. Communications
of the ACM, 61(9):50–59, 2018.

[25] Donald E. Knuth. The Art of Computer Programming, Volume 4,
Fascicle 3: Generating All Combinations and Partitions. Addison-
Wesley Professional, 2005.

[26] David Ryan Koes and Seth Copen Goldstein. Near-optimal instruction
selection on DAGs. In Proceedings of the 6th Annual IEEE/ACM

16

International Symposium on Code Generation and Optimization, pages
45–54, 2008.

[27] Jackson Melchert, Kathleen Feng, Caleb Donovick, Ross Daly, Ritvik
Sharma, Clark Barrett, Mark A Horowitz, Pat Hanrahan, and Priyanka
Raina. APEX: A framework for automated processing element design
space exploration using frequent subgraph analysis. In Proceedings of
the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3, pages 33–
45, 2023.

[28] Aina Niemetz, Mathias Preiner, and Armin Biere. Boolector 2.0. J.
Satisf. Boolean Model. Comput., 9(1):53–58, 2014.

[29] Eduardo Pelegri-Llopart and Susan L. Graham. Optimal code generation
for expression trees: An application BURS theory. In Proceedings of the
15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 294–308, 1988.

[30] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian
Zhao, Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle
Olukotun. Plasticine: A reconfigurable architecture for parallel patterns.
ACM SIGARCH Computer Architecture News, 45(2):389–402, 2017.

[31] Takahisa Toda and Takehide Soh. Implementing efficient all solutions
sat solvers. Journal of Experimental Algorithmics (JEA), 21:1–44, 2016.

17

Formal Methods in Computer-Aided Design 2024

Extending DRAT to SMT
S Hitarth ∗¶, Cayden Codel †, Hanna Lachnitt ‡, and Bruno Dutertre §

∗Hong Kong University of Science and Technology, Hong Kong
¶IMDEA Software Institute, Madrid, Spain

Email: hitarth.singh@connect.ust.hk
†Carnegie Mellon University, Pittsburgh, PA, USA

Email: ccodel@cs.cmu.edu
‡Stanford University, Stanford, CA, USA

Email: lachnitt@stanford.edu
§Amazon Web Services, Santa Clara, CA, USA

Email: dutebrun@amazon.com

Abstract—The soundness of Satisfiability Modulo Theories
(SMT) solvers is critical in many applications. One way to
ensure soundness is to have solvers generate proofs that can
be independently verified. Unfortunately, generating proofs can
have a significant overhead. We propose a new proof format
(eDRAT) that extends the well-known DRAT format from SAT to
SMT. eDRAT proofs can be generated with little overhead and can
be verified by combining existing tools for propositional reasoning
with specialized theory checkers. We instrument the CVC5 solver
to generate eDRAT proofs and we develop checkers for two SMT
theories. Our checkers include an untrusted elaborator written
in Rust and a formally verified component written in Lean that
validates results from the elaborator. Empirical evaluation shows
that eDRAT has a much lower proof generation overhead than
other formats supported by CVC5, and it has comparable or
better proof checking times.

I. INTRODUCTION
Satisfiability Modulo Theories (SMT) solvers are used as

back-ends in a variety of applications including software
verification and testing [24], [18], [19], the verification of
distributed systems [26], model checking [20], [9], [8], and
security policy analysis [2], [29]. The soundness of SMT
solvers is critical for these applications, especially because
SMT solvers have become increasingly complex over the years
and are therefore subject to bugs.
When an input formula is satisfiable, solvers can produce a

model that can generally be checked, but this approach is not
applicable when the SMT solver says that the input formula
is unsatisfiable. To increase trust in the unsat case, the SMT
community has developed solvers that generate a proof that can
be independently validated by a trusted checker. Solvers such
as CVC5 [3], OpenSMT [23], SMTInterpol [10], veriT [7] and
Z3 [12] can produce proofs, for at least some of the logical
theories they support. Some have had proof support for many
years.
Several proof formats have been proposed for SMT [33],

[30], [22], but none has emerged as a standard. One limitation
of these formats is that they require fine-grained proofs with
small inference steps. While this simplifies proof checking,
generating such detailed proofs is expensive and slows down
solvers, and the resulting proofs can be very large and slow to
validate.

To address these concerns, we propose extended DRAT
(eDRAT), a new SMT proof format that extends DRAT [21],
a standard proof format for Boolean satisfiability. Proofs in
eDRAT are coarse-grained and clausal. They include Boolean
resolution steps (as in DRAT and its predecessor DRUP) and
SMT-specific clauses called theory lemmas.
Along with eDRAT, we present VALIDO, a modular and

extensible toolchain for checking eDRAT proofs. Proof check-
ing with VALIDO is a two-step process. First, we validate the
propositional part of the proof with DRAT-trim [34] to extract
an unsat core. Second, we check that all the theory lemmas
in the unsat core are valid using theory-specific checkers.
Currently, VALIDO supports two SMT theories: QF_LRA and
QF_UF. The VALIDO theory checkers for these two theories
have two components:

• An elaborator does most of the heavy lifting. It validates
theory lemmas using theory-specific decision procedures
and generates an unsatisfiability certificate for the negation
of each lemma.

• A certificate validator checks the unsatisfiability certifi-
cates produced by the elaborator.

The validator is the only trusted component, as the validity
of a certificate is enough to ensure that a lemma is valid,
irrespective of how the certificate was generated. To achieve a
high degree of confidence in the correctness of our toolchain,
we use the Lean theorem prover [14] to develop and prove the
soundness of our validators.
Because theory lemmas are individually validated, we can

precisely identify incorrect lemmas when proof validation fails.
This can aid debugging and guide the search for a minimal
counterexample.
We have instrumented the CVC5 solver to generate eDRAT

proofs, and we have evaluated VALIDO on SMT-LIB bench-
marks. Empirical results show that eDRAT proof generation has
low overhead (less than 10%), as opposed to between 2x and
17x for two other formats supported by CVC5. eDRAT proofs
are generally smaller, and proof checking time is comparable
to or better than with the alternative proof formats.
Our toolchain can generate eDRAT proofs for any theory that

cvc5 supports, including theories with quantifiers and theory

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_8 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0000-0001-7419-3560
https://orcid.org/0000-0003-3588-4873
https://orcid.org/0000-0003-3355-7828
https://orcid.org/0000-0002-6284-380X
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_8
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_8
https://creativecommons.org/licenses/by/4.0/

combinations. Our current proof-checking pipeline, VALIDO,
is only implemented for QF_UF and QF_LRA. However,
validating a theory lemma boils down to solving a (small)
SMT problem. For instance, we could leverage CVC5 itself (or
some other proof-producing solver) as an elaborator and the
associated ALF/LFSC proof checker as the validator. Therefore,
our approach is quite general and not limited to simple theories.
A limitation of eDRAT is that it requires problem instances

to be in conjunctive normal form (CNF), while SMT problems
can be arbitrary formulas. The preprocessing, simplification,
and rewriting steps that SMT solvers perform to convert
formulas to CNF are not expressible in eDRAT. Complementary
proof techniques are required for checking that the conversion
steps the SMT solver used were sound. We discuss possible
approaches to bridge this gap.

II. BACKGROUND

SMT is the problem of deciding the satisfiability of formulas
in some (typically first-order) logical theory [13], [6]. The
mainstream method employed by SMT solvers is conflict-driven
clause learning modulo theories (CDCL(T)). This combines the
CDCL algorithm from SAT [25] with theory-specific reasoning
implemented by theory solvers. Given a formula φ in a theory
T , the SMT solver first creates a Boolean abstraction φabs of
this formula. The abstraction process replaces atoms in the
background theory T with Boolean variables. The CDCL(T)
algorithm then alternates between Boolean search and theory
reasoning. The CDCL solver enumerates (possibly partial)
models σ of φabs that are interpreted as conjunctions of literals
in theory T . The theory solver checks whether this conjunction
is satisfiable in T . If it is, Boolean search can continue and try to
extend the assignment to a full model of φabs. If the conjunction
of literals is not satisfiable, the theory solver produces a theory
lemma that is added to the sets of clauses in the CDCL solver.
This clause must be inconsistent with σ and will cause the
CDCL solver to backtrack.
Modern SMT solvers extend this basic scheme in many

ways—for example, with the dynamic creation of new variables
and atoms on the fly and with mechanisms such as theory
propagation—but the general principle remains. In one direc-
tion, the CDCL solver sends candidate Boolean assignments to
the theory solver. In the other direction, the theory solver sends
new clauses—that is, theory lemmas—to the CDCL solver. As
in SAT, an SMT formula is unsatisfiable if the empty clause
is derived by this process.
Generating proofs for CDCL(T) solvers is an active area of

research, and several proof formats have been proposed. Proofs
may include reasoning steps used during preprocessing and
simplification of the original formula, conversion to clauses,
Boolean resolution in CDCL, and theory-specific reasoning
for justifying theory lemmas. Notable proof formats include
Alethe [30] (supported by VeriT [7] and CVC5 [3]) and
LFSC [33] (supported by CVC5 and ts predecessors CVC4 and
CVC3). Both Alethe and LFSC have dedicated checkers [1],
[32]. Other proof-producing SMT solvers [12], [10], [23] use

solver-specific proof formats [11], [22], [27] and do not use
independent checkers.
Most of these formats represent proofs as terms in a proof

calculus. Such terms describe a traditional proof tree (or DAG)
with the empty clause at the root. Each node in the tree
represents a step that derives a conclusion (stored in the
node) from the child nodes using a rule of proof calculus.
Leaves represent axioms or assumptions (e.g., assertions from
the original formula). One can distinguish generic logical
frameworks such as LFSC that encode a particular proof
calculus, and formats such as Alethe that come with a fixed
calculus for a fixed set of theories. Logical frameworks are
more flexible, since proof rules can be added to cover new
theories and reasoning steps, but not all rules employed by
SMT solvers can be compactly encoded in a logical framework.
Most solvers use a fixed proof calculus and a dedicated proof
format, which is similar to what Alethe provides. The recently
introduced AletheLF format (ALF) is a logical framework that
relies on an SMT-like syntax (similar to Alethe) in which SMT
constructs can be more easily represented. ALF is supported
by CVC5-1.1.0 and newer releases.
Coverage and proof granularity vary across solvers. Some

solvers, such as CVC5, can generate low-level, high-detail
proofs for almost all of the theories they support.1 Other solvers,
such as Z3, support proofs for a subset of theories and use more
coarse-grained proofs. Detailed proofs with small inference
steps are easier to verify, but generating such proofs can be
costly and can introduce significant overhead both in runtime
and memory usage.
We propose a coarse proof format that records the clauses

produced (and deleted) during execution of the CDCL(T)
algorithm. This extends the DRAT format used by Boolean
SAT solvers, which is known to have low overhead.

III. DRAT EXTENSIONS FOR SMT
Our new proof format, eDRAT records the reasoning steps

performed during the execution of the CDCL(T) algorithm.
We do not attempt to express preprocessing, simplification,
or conversion of a formula to CNF. Instead, eDRAT focuses
on capturing the theory reasoning (the theory lemmas) and
Boolean reasoning steps (the resolution clauses) that the SMT
solver generates. We extend DRAT with syntax for defining
theory terms and atoms, describing how these atoms map to
Boolean variables, and distinguishing between the different
types of clauses involved in SMT. We distinguish between
three types of clauses: assertions, which are clauses from the
CNF representation of the original formula; theory lemmas
generated by the theory solver; and regular clauses generated
by the CDCL solver.
An eDRAT proof consists of four components:
• The definitions of literals and terms used in the problem.
• The input problem converted to CNF.
• The theory lemmas that were emitted by the theory solver
during the course of solving.

1As far as we know, CVC5 can generate proofs for all theories that do not
involve floating points.

19

• The DRAT proof of the unsatisfiability of the formula as
produced by the underlying SAT solver.

A. Syntax of eDRAT

SMT-LIB [5] is the standard input format for SMT solvers.
The eDRAT syntax for term and atom definition is similar to
SMT-LIB with a few extensions. Sort and term declarations in
eDRAT use the following SMT-LIB syntax:

1 (declare-sort <name> <arity>)
2 (declare-fun <name> (<sort>*) <sort>)

The eDRAT syntax for datatypes and terms is also the same as
in SMT-LIB. We introduce two new commands to give names
to terms and to map DIMACS variables to literals:

1 (define-let <term-name> <smt-term>)
2 (define-literal <varid> <atom-name>)

The define-let command assigns a name to a term. It
is a variant of the SMT-LIB define-fun command that
omits the type of the term. The define-literal command
states that a Boolean variable is mapped to a given atom. As
in DIMACS, boolean variables are represented by positive
integers. To simplify processing, the atom is specified by its
name, which must appear either as a declaration or in a previous
define-let command.
As in DRAT, a clause is represented by a list of non-zero

literals terminated by 0. A positive integer denotes a positive
literal, and a negative integer denotes its negation. The syntax
for clausal reasoning is as follows:

1 a <list-of-integers> 0 Input problem clause
2 t <list-of-integers> 0 Theory reasoning clause
3 <list-of-integers> 0 Boolean reasoning clause
4 d <list-of-integers> 0 Clause deletion

eDRAT adds then two new prefixes to the DRAT syntax: one
for assertions, and one for theory lemmas.

Example III.1. The following small example illustrates the
eDRAT syntax.

1 (declare-sort T 0)
2 (declare-sort S 0)
3 (declare-fun f (T) S)
4 (declare-fun y () T)
5 (declare-fun x () T)
6 (define-let aux!312 (f y))
7 (define-let aux!338 (= (f x) (aux!312)))
8 (define-let aux!339 (= x y))
9 (define-literal 1 aux!338)
10 (define-literal 2 aux!339)
11 a 2 0
12 a -1 0
13 t 1 -2 0
14 0

This proof tells us that literals 1 and 2 are mapped to the atoms
f(x) = f(y) and x = y, respectively, where f : T → S is an
uninterpreted function. Lines 11 and 12 state two assertions
x = y and ¬f(x) = f(y), respectively, that come from the
input problem. Line 13 is a theory lemma: f(x) = f(y)∨x ̸= y.

The final step is the empty clause, which is derived by Boolean
resolution of the three preceding clauses. This shows that the
formula x = y ∧ f(x) ̸= f(y) is unsatisfiable.

B. Valido: A Toolchain for Checking eDRAT Proofs

eDRAT proof checking consists of two separate tasks:
checking that the Boolean reasoning steps derive the empty
clause, assuming that the theory lemmas are valid; and checking
the validity of the theory lemmas. VALIDO is our toolchain
for performing these two tasks.
To check the propositional part of the proof, VALIDO

constructs a CNF formula φ with the input clauses (those with
prefix a) and the theory lemmas (those with prefix t). It then
extracts the DRAT proof π from the eDRAT file. This proof
includes all the clauses corresponding to Boolean resolutions
and all the clause deletions, keeping them in the same order
as they occur in eDRAT. We then use a restricted version of
the DRAT-trim tool to check that π is valid for φ. In this
step, we treat all the theory lemmas as axioms and add them
to the input clauses.
We restrict DRAT-trim to allow only clause additions that

satisfy the reverse-unit-propagation (RUP) property and not the
more general resolution-asymmetric-tautology (RAT) property,
because accepting RAT clauses is not sound for SMT. It is
possible for a formula φ to be satisfiable in the background
theory T and for a clause C to be RAT with respect to φ, but
for φ ∧ C to be unsatisfiable in T . This occurs because the
addition of RAT clauses may eliminate some of the Boolean
models for φ. RUP is sound for SMT as adding a RUP clause
preserves all the satisfying models of the original formula.

Example III.2. Consider the formula φ := (¬p ∨ q) ∧ (p ∨
r) ∧ (q ∨ ¬r) where the propositional variables represent real
arithmetic theory terms defined as follows: p := x < 0, q :=
x ≥ 1, and r := x ≥ 2. It follows from the definition that the
unit clause p is RAT with respect to φ.
We can hence conclude that in propositional logic, φ is

equisatisfiable to φ ∧ p. However, in SMT, it can be readily
checked that while the original formula φ is satisfiable with a
model x→ 2, φ ∧ p is unsatisfiable.

When DRAT-trim successfully validates a DRAT proof, it
also returns a set of clauses U ⊆ φ that forms the unsat core
of the DRAT proof. To check the rest of the eDRAT proof, we
only need to check the validity of the core theory lemmas that
appear in the unsat core U .
One way of validating a theory lemma t is to employ existing

SMT technology to generate a proof of the unsatisfiability
of ¬t in another proof format, and then to check it with a
corresponding proof checker. This works, but we pursue a
different approach to provide a higher degree of assurance:
relying on purpose-built checkers that are provably sound.
In VALIDO, the theory lemmas are checked by two comple-

mentary tools that we call the elaborator and the validator.
These tools are instantiated for each background theory T
separately.

20

• An elaborator checks the unsatisfiability of a conjunctive
formula in theory T and generates a proof certificate.

• A validator is a provably correct tool that takes a proof
certificate and a theory lemma as input, and checks that
the proof certificate validates the theory lemma.

Algorithm 1 gives an overview of this method. The architecture
allows us to write an efficient but untrusted elaborator that
generates a proof certificate for every theory lemma in the
core. The validator is a simpler component that we develop
and prove correct within the Lean 4 theorem prover [14].

Algorithm 1 General Method for Checking eDRAT Proofs
Input: An eDRAT Proof
Output: Result of eDRAT proof validation

1: (input, ▷ Input problem in DIMACS format
t_lemmas, ▷ Theory Lemmas in DIMACS format
drat_proof, ▷ Boolean Reasoning as DRAT Proof
definitions) ← Decompose(eDRAT Proof) ▷ Term and Literal
Definitions

2: (e_res, unsat_core) ← DRAT-Trim(input, t_lemmas, drat_proof)
3: if e_res = Success then
4: core_lemmas ← t_lemmas ∩ unsat_core
5: proof_cert ← Elaborator(core_theory_lemmas, definitions)
6: val_res ← Validator(proof_cert, core_lemmas, definitions)
7: if val_res = Success then
8: return Proof Validation Successful
9: else
10: return Theory Lemma Validation Failed
11: end if
12: else
13: return DRAT Proof Check Failed
14: end if

The key benefit of this approach is that it reduces the trusted
code base. If the validator says that a proof certificate is valid,
then we can trust that the corresponding lemma is also valid,
independent of how the certificate was generated. In other
words, we do not need to trust the elaborator, only the validator.
We have implemented elaborators and validators for

two SMT-LIB theories: quantifier-free linear real arithmetic
(QF_LRA) and quantifier-free uninterpreted functions with
equality (QF_UF).

IV. ELABORATOR AND VALIDATOR FOR QF_LRA

Let V be a set of variables. A theory lemma in QF_LRA is
of the form ψ :=

⋁︁
i∈[n](Fi ▷◁1 0), where each Fi is a linear

expression over the variables V and ▷◁i∈ {<,≤,=, >,≥, ̸=}.
For example, the law of trichotomy ψ0 := x > 0 ∨ x =
0 ∨ x < 0 is a theory lemma. Validating such a lemma is
equivalent to proving that its negation—a conjunction of linear
inequalities—is not satisfiable.

Example IV.1. The negation of ψ0 is ¬ψ := x ≤ 0 ∧ x ̸=
0 ∧ x ≥ 0, which can be rewritten as ¬ψ := (−x ≥ 0 ∧ x >
0 ∧ x ≥ 0) ∨ (−x ≥ 0 ∧ −x > 0 ∧ x ≥ 0), where the
inequalities in each disjunct only have either ≥ or > as the
relational operator.

As shown in Example IV.1, our goal is to create a proof
of unsatisfiability for a disjunction of conjunctions of linear

inequalities that only involve ≥ or > as the relational operators.
For a single conjunctive QF_LRA formula, we use Farkas’
Lemma to produce the unsatisfiability certificate.

Lemma 1. [16, Farkas’ Lemma] A set S of linear inequalities
of the form Fi {≥, >} 0 is unsatisfiable if and only if there
exists a non-negative linear combination of the inequalities in
S ∪ {1 > 0} deriving either −1 ≥ 0 or 0 > 0.

Example IV.2. The formula ¬ψ from Example IV.1 is unsat-
isfiable if both the disjuncts are unsatisfiable. The expression
1 · (−x ≥ 0) + 1 · (x > 0) + 0 · (x ≥ 0) ≡ 0 > 0 is a
witness to the unsatisfiability of −x ≥ 0∧ x > 0∧ x ≥ 0, and
0 · (−x ≥ 0)+ 1 · (x > 0)+ 1 · (x ≥ 0) ≡ 0 > 0 witnesses the
unsatisfiability of −x ≥ 0 ∧ −x > 0 ∧ x ≥ 0.

The set of non-negative multipliers for the linear inequalities
that derive a trivially false inequality such as −1 ≥ 0 or 0 > 0
is called the Farkas certificate of unsatisfiability. We reduce
the problem of finding the Farkas certificate to solving a linear
program. For this purpose, we rely on the following variant of
Farkas’ Lemma:

Theorem 2. A conjunction of linear inequalities of the form
ψ :=

⋀︁n
i=1 Fi ≥ 0 ∧ ⋀︁m

j=1 Gj > 0 is unsatisfiable if and
only if there exist non-negative constants λ1, . . . , λn and
µ0, µ1, µ2, . . . , µm such that µ0+

∑︁n
i=1 λiFi+

∑︁m
j=0 µjGj ≡

0 with
∑︁m

j=0 µj = 1 (where ≡ means that the expressions on
both sides are identical).

Proof. Farkas’ Lemma guarantees that ψ is unsatisfiable if and
only if one can derive either −1 ≥ 0 or 0 > 0 as non-negative
linear combination of inequalities in ψ ∪ {1 > 0}.
Let the non-negative linear combination be D :≡ µ0(1 >

0) +
∑︁n

i=1 λi(Fi ≥ 0) +
∑︁m

j=0 µj(Gj > 0). WLOG, we
assume that D ≡ 0 > 0 because if D ≡ −1 ≥ 0, then we set
µ0 ← µ0+1 to derive 0 > 0. Finally, we scale all λis and µjs
by a factor of 1/(

∑︁m
j=0 µj) to ensure that

∑︁m
j=0 µj = 1.

The VALIDO elaborator for QF_LRA produces the Farkas
certificate for each core theory lemma by searching for
coefficients λi and µj that satisfy the conditions of Theorem 2.
This amounts to solving a system of linear inequalities, which
we do using the Simplex algorithm. The generated certificates
are stored in a single file for all the core theory lemmas.

Example IV.3. Consider the following eDRAT proof fragment.

1 (declare-fun x () Real)
2 (define-let aux!0 (* x 1/2))
3 (define-let aux!1 (>= aux!0 0))
4 (define-let aux!2 (< x 0))
5 (define-let aux!3 (> x 0))
6 (define-literal 1 aux!1)
7 (define-literal 2 aux!2)
8 (define-literal 3 aux!3)
9 t 1 2 0
10 t 2 3 0

The theory lemma at line 9 is ψ6 := x/2 ≥ 0 ∨ −x > 0
(which is valid), and that at line 10 is ψ7 = x > 0 ∨ x < 0

21

(which is not valid). On this example input, the elaborator will
produce the following output:

1 LINE 9, (0, 1>0), (2, 1), (1, 2)
2 LINE 10, INVALID LEMMA

The first line is the Farkas certificate for ψ6 (which is at
line 9 in the original eDRAT proof). The certificate is a list
of pairs (farkas_coefficient,literal id) with an
optional term of the form (farkas_coefficient,1>0)
for the Farkas coefficient of 1 > 0. Thus, the certificate for ψ6

is 0 · (1 > 0) + 2 · (x/2 ≥ 0) + 1 · (−x > 0) ≡ 0 > 0.
The second line states that the lemma at line 10 of the

eDRAT proof is invalid.

We have implemented a QF_LRA validator in Lean 4, in
around 1300 lines of code. A few important data structures
and functions are as follows:
1) A LinearExpression is a map lexpr :

Variable→ Rat that maps a variable to its rational
coefficient in the expression. A LinearConstraint
is a pair that consists of a LinearExpression and
a relational operator, which is either ≥ or >.

2) A Model is a mapping from variables to rationals.
3) Function evaluate (lexpr : Linear

Expression) (m : Model) computes the
value of a LinearExpression in a Model

4) We define a proposition isUnsat as

1 def isUnsat (lemma : List LinearConstraint) (
m: Model): Prop :=

2 match lemma with
3 | [] => False
4 | (cnstr, lemma′) => (evaluate cnstr m) → (

isUnsat lemma′ m)

Given a negated lemma S = {C1, . . . , Cn} as a set of
linear constraints, isUnsat S is equivalent to
∀(m: Model), evaluate C1 m → . . .→

evaluate Cn m → False

This proposition says that for every (m:Model) at least
one of evaluate Ci m must evaluate to false.

5) Given a negated lemma and its Farkas certificate of
unsatisfiability, the following function checks whether
the certificate is valid.

1 def check_farkas_certificate
2 (farkas_coefficients: List Rat)
3 (negated_lemma: List LinearConstraint) :

Bool := . . .

6) Finally, we proved the following theorem, which
shows that function check_farkas_certificate
is sound:

1 theorem check_farkas_cert_implies_isUnsat (
check_farkas_certificate
farkas_coefficients negated_lemma) = true
→ isUnsat negated_lemma := . . .

The validator first parses the original eDRAT proof to
collect the definition of each literal and theory lemma. It

then parses the certificate file produced by the elaborator
and checks every theory Farkas certificate with the function
check_farkas_certificate. The check is successful if
all theory lemmas in the certificate are valid.

V. ELABORATOR AND VALIDATOR FOR QF_UF

QF_UF is one of the simplest theories defined in SMT-LIB.
Formulas in QF_UF can include uninterpreted functions, predi-
cates, and equality. A theory lemma in QF_UF is a disjunction
of equalities and inequalities between uninterpreted terms. For
example, ψ := x ̸= f(y) ∨ y ̸= g(z) ∨ f(x) = f(f(g(z)) is a
valid theory lemma in QF_UF.
A set of literals F in QF_UF must contain at least one

inequality to be inconsistent. The traditional approach to show
the inconsistency of F is based on congruence closure, as
shown in Algorithm 2. This algorithm builds the smallest
congruence relation Eq over the terms of F that includes all
input equalities, and then checks whether a negated equality
of F is inconsistent with Eq.

Algorithm 2 Congruence Closure Algorithm
1: Input: E: a finite set of equalities, D: a finite set of inequalities
2: Output: Unsat if E ∧D is not satisfiable, Sat otherwise
3: T ← All terms occuring in E ∪D (including all the sub-terms)
▷ Initialization

4: Eq ← Each t ∈ T in a singleton class
5: for Each t = u in E with Eq(t, u) = False do ▷ Process

input equalities
6: Eq ← Merge classes of t and u in Eq
7: end for
8: while ∃ C1, C2 ∈ Eq, f(t1, . . . , tn) ∈ C1, f(u1, . . . , un) ∈ C2

such that C1 ̸= C2 and Eq(t1, u1) ∧ . . . ∧ Eq(tn, un) do
9: Eq ← Merge classes C1 and C2 in Eq
10: end while
11: for each inequality t ̸= u in D do ▷ Check for inconsistency
12: if Eq(t, u) holds then
13: return Unsat
14: end if
15: end for
16: return Sat

To check the results of Algorithm 2, it is sufficient to prove
that we start with the right initial Eq and that every Merge
Class operation is sound: that is, when we merge C1 and C2 at
line 9 of Algorithm 2, the terms in those classes are congruent
with respect to the current equivalence relation Eq.
The QF_UF elaborator in VALIDO generates unsatisfiability

certificate based on this idea. Each certificate contains a
description of the set of terms T , the initial equalities E,
a series of equalities derived from E through congruence, and
the inequality from D that led to unsatisfiability. The certificate
format is kept simple to simplify parsing. An example is shown
in Figure 1.
The certificate consists of the following three parts.
1) Definitions: The certificate starts with the definition of

seven terms: four atomic terms including the two Boolean
constants true and false and two uninterpreted con-
stants c4 and c0, and three terms built by the application
of function f . Each term is identified by its index in this

22

1 LINE: 16648, CERT
2 true
3 false
4 c_4
5 c_0
6 f 3
7 f 2
8 f 5
9 E(3, 5)
10 E(2, 6)
11 C(6, 4)
12 D(2, 4)

Fig. 1: Example QF_UF certificate

list. For example, the line f 3 defines a term of index
4 obtained by applying the uninterpreted function f to
the term of index 3. In other words, the term of index 4
is f(c0).

2) Equalities: After the term definitions, we list equalities
from E. Each input equality is written as a line E(i, j)
where i and j are two term indices. For example, the
line E(3, 5) is the equality c0 = f(c4). An equality
derived by congruence is written similarly but with the
letter C. In the example C(6,4) represents the equality
f(f(c4)) = f(c0).

3) Inequality: Finally, the last line of the certificate is an
inequality, indicated with the letter D, between the terms
at indices 2 and 4, that is, c4 ̸= f(c0)

The Boolean constants are predefined and included in all
certificates (as the first two terms). This enables us to treat
uninterpreted predicates as functions from some domain type to
the Boolean. For example, a literal of the form P (x) occurring
in a theory lemma is treated as P (x) = true in our certificates,
and if ¬P (x) occurs, it is converted to P (x) = false. This
simple trick allows an unmodified congruence closure algorithm
to handle uninterpreted predicates (provided we add the built-in
inequality true ̸= false).
The QF_UF validator parses the certificates produced by

Valido and checks that they are valid. The central part in the
validation process is a union-find data structure implemented
in Lean 4 that is used to check that all equalities of the form
C(i, j) listed in a certificate are correct, that is, that the two
indices i and j denote existing terms and that these two terms
are congruent. The validator also checks a similar property for
the inequality D(i, j): the two indices i and j must represent
existing terms, and the certificate is valid if i and j are in the
same equivalence class in the union-find data structure. These
checks are implemented in a function check_certificate,
and the main correctness result follows:

1 def true_certificate (m: Model α β)
2 (c: Certificate α β): Prop :=
3 m.list_eq_holds c.wft c.base →
4 m.diseq_holds c.wft c.conflict
5

6 theorem check_certificate_is_sound {α β: Type} [
BEq β]

7 [LawfulBEq β}] (c: Certificate α β})
8 (h: Checker.check_certificate c = .ok ()):
9 ∀ m, true_certificate m c := by
10 ...

This states that the function check_certificate is sound.
If this function succeeds (i.e., it returns .ok ()) then the
certificate is true in any model m. In this theorem, a certificate is
parameterized by two types α and β that represent the constants
and function symbols in QF_UF terms. The certificate data
structure includes a term table, a list of base equalities, a list
of derived equalities, and a conflict of the form D(i, j). A
model is defined by three components: a domain τ (which is
an arbitrary Lean type), a mapping from α to τ that defines the
interpretation of constants, and a mapping from β to functions
on τ that defines the interpretation of function symbols.

VI. EXPERIMENTS

We have instrumented CVC5-1.1.1 to produce eDRAT proofs.
The modifications consist of a new module that prints the
eDRAT proof and changes to several existing CVC5 modules
involved in the creation of input and theory clauses. Most
changes were in the CDCL solver employed by CVC5, which
is a heavily modified variant of MiniSat.
We have compared the eDRAT and Valido toolchain with

two other proof formats currently supported by CVC5-1.1.1
on the QF_UF and QF_LRA benchmarks of the SMT-LIB
repository [31]. All the experiments were run on a server with
384 GB RAM and 96 cores (48 Intel Xeon Platinum 8259CL
CPUs), with a 2.50 GHz CPU frequency. The server runs
Amazon Linux 2.
We ran CVC5 with a timeout of 300 seconds with four

different proof-generation options: no proofs, proofs in the
Alethe-LF (ALF) format, proofs in the LFSC format, and
proofs in the eDRAT format. Some older versions of CVC5
also support the Alethe format, but this does not appear to be
supported anymore in CVC5-1.1.1 and did not work on our
benchmarks.
A summary of our experimental results is shown in Table I.

The table includes the number of solved problems, the number
of proofs successfully produced, and the average runtime on
the satisfiable and unsatisfiable problems. A more detailed view
of the experimental results is given in Tables II and III.

A. Proof Production Cost

As the table shows, generating proofs in the eDRAT format
has low overhead. The difference in runtime between baseline
CVC5 and CVC5-eDRAT on the QF_LRA problems is about
1%. On the QF_UF benchmarks, the average overhead of
eDRAT proofs is about 16% on satisfiable instances and 27%
on unsatisfiable instances. However, the QF_UF benchmark
contains many easy problems that are solved in milliseconds
(63% of the problems are solved by CVC5 in less than 0.1 s).
If we remove these easy problems, the runtime difference
between CVC5 and CVC5-eDRAT is less than 10%. In total,
CVC5 and CVC5-eDRAT solve the same number of problems
in all categories, apart from the class of satisfiable QF_LRA

23

TABLE I: Summary of Experiments

QF_LRA QF_UF

Solved Problems Avg. Runtime (s) Solved Problems Avg. Runtime (s)
Proof Mode Unsat Proofs Sat Unsolved Sat Unsat Unsat Proofs Sat Unsolved Sat Unsat

None 639 902 212 22.046 31.890 4353 3142 8 0.245 0.723
eDRAT 639 639 899 215 22.267 31.481 4353 4353 3142 8 0.286 0.924
ALF 621 591 876 256 32.185 56.267 4345 4335 3142 16 0.361 5.543
LFSC 623 503 876 254 32.412 85.825 4344 4283 3142 17 0.353 12.786

TABLE II: Experiment results on QF_LRA benchmark. All sizes are in MBs and times are in seconds. The averages are taken
over the benchmark where the corresponding proof was successfully checked. The column ✓ represents the number of proofs
that were successfully checked.

CVC5 + Proof Generation Time LFSC Proof ALF Proof eDRAT Proof

Family # No Proof LFSC ALF EDRAT ✓ Size Time ✓ Size Time ✓ Size Time
Heizmann 29 87.725 196.195 159.793 85.504 15 61.251 55.099 19 40.978 105.052 29 14.491 10.066
LassoRanker 91 77.518 178.089 126.096 77.762 61 72.289 29.124 87 20.665 68.470 91 10.216 4.437
sc 35 44.889 194.576 81.503 42.856 20 225.166 104.933 32 23.178 129.505 35 5.735 1.339
uart 34 32.989 224.543 126.002 31.094 11 206.111 87.419 26 44.383 558.786 34 6.753 3.508
clock 36 20.454 81.828 28.276 19.925 29 70.890 20.705 36 6.158 25.426 36 0.938 1.027
latendresse 1 18.494 36.977 29.516 17.963 0 NA NA 1 3.236 1.702 1 0.460 28.339
miplib 11 14.988 111.516 59.597 14.979 7 72.550 31.241 10 25.839 175.199 11 10.351 78.223
tta_startup 45 8.353 60.505 33.536 8.206 34 29.170 15.290 43 12.041 158.288 45 3.314 0.990
blending 9 3.886 300.212 114.993 4.301 0 NA NA 9 129.184 119.071 9 15.932 49.526
TM 1 0.525 2.305 1.827 0.923 0 NA NA 1 1.147 1.665 1 0.680 0.274
sal 96 0.094 1.731 0.655 0.120 96 2.222 1.354 96 0.680 0.941 96 0.162 0.178
spider 42 0.061 1.351 0.357 0.085 42 2.876 0.818 42 0.295 0.110 42 0.082 0.148
robotics 12 0.011 0.037 0.041 0.010 12 0.065 0.047 12 0.048 0.013 12 0.000 0.127
check 1 0.009 0.108 0.055 0.011 1 0.144 0.038 1 0.109 0.045 1 0.009 0.132
meti-tarski 150 0.007 0.013 0.011 0.007 150 0.008 0.011 150 0.007 0.011 150 0.001 0.128
keymaera 21 0.006 0.010 0.009 0.006 21 0.003 0.010 21 0.003 0.010 21 0.000 0.128

TABLE III: Experiment results on QF_UF benchmark. All sizes are in MBs and times are in seconds. The averages are taken
over the benchmark where the corresponding proof was successfully checked. The column ✓ represents the number proofs that
were successfully checked.

CVC5 + Proof Generation Time LFSC Proof ALF Proof eDRAT Proof

Family # No Proof LFSC ALF EDRAT ✓ Size Time ✓ Size Time ✓ Size Time
Rodin 20 0.006 0.008 0.007 0.006 20 0.002 0.010 20 0.002 0.010 20 ≤ 0.001 0.079
Goel 229 0.209 9.406 8.549 0.232 217 0.413 1.660 226 0.311 0.220 229 0.092 0.091
CLEARSY 11 0.013 0.135 0.084 0.015 11 0.101 0.064 11 0.086 0.028 11 0.008 0.078
eq_diamond 100 0.022 0.342 0.340 0.043 100 0.051 0.067 100 0.044 0.031 100 0.055 0.086
NEQ 45 3.589 141.322 27.222 3.934 24 83.305 26.559 45 39.562 139.976 45 4.217 1.022
PEQ 38 7.394 171.559 61.164 8.418 20 136.427 46.852 34 51.902 129.771 38 20.327 3.919
SEQ 39 1.150 85.259 12.251 1.392 34 135.283 72.992 39 20.125 65.002 39 3.398 0.729
QG-class 3859 0.315 8.956 3.993 0.390 3854 10.486 23.253 3857 6.349 31.858 3859 0.495 0.224
TypeSafe 3 0.006 0.009 0.008 0.006 3 0.001 0.011 3 0.002 0.010 3 ≤ 0.001 0.078

problems. In this class, four problems are solved by CVC5
but not by CVC5-eDRAT and one problem is solved by CVC5-
eDRAT but not by CVC5. This difference is most likely due
to random variation caused by the operating system as all four
take a runtime close to the timeout, rather than caused by the
eDRAT proof generation.

The LFSC and ALF formats are more expensive, and the
overhead depends on the theory. On QF_LRA, CVC5 fails to
solve about 40 problems when using either format. On QF_UF
producing either LFSC or ALF proofs doubles the number

of timeouts. The runtime overhead is around 45% for both
LFSC and ALF on satisfiable problems (on both QF_LRA
and QF_UF). For the unsatisfiable problems, the overhead
varies depending on proof-format and theory: on QF_LRA,
LFSC incurs an overhead of 2.7x, and ALF is close to 2x
slower than baseline CVC5. On QF_UF, the overhead is 7x
for ALF and 17x for LFSC. The larger overhead on QF_UF is
due to the fact that LFSC and ALF are not compatible with a
symmetry-breaking procedure that baseline CVC5 employs [15].
Symmetry breaking is effective on the QF_UF benchmarks, but

24

(a) QF_LRA

50 100 150 200 250 300

CPU time (s)

0

25

50

75

100

125

150

175

200

S
o
lv

e
d
 i
n
s
ta

n
c
e
s

eDRAT

no-proof

ALF

LFSC

(b) QF_UF

0 50 100 150 200 250 300

CPU time (s)

0

25

50

75

100

125

150

175

200

S
o
lv

e
d
 i
n
s
ta

n
c
e
s

no-proof

eDRAT

ALF

LFSC

Fig. 2: Runtime on hardest problems

it must be disabled when CVC5 produces LFSC or ALF proofs.
The eDRAT format is compatible with symmetry breaking and
does not suffer from this disadvantage. We also see that both
CVC5-LFSC and CVC5-ALF can solve a problem (i.e., print
“unsat”) but fail to generate a proof within the timeout. This
happens because LFSC and ALF proofs are generated after
CVC5 finds a problem to be unsat. After the problem is solved,
CVC5 performs backward dependency analysis to construct
a proof and export it to the LFSC or ALF format [4]. Both
backward analysis and conversion to the external format can
be expensive and cause a timeout.
Both the QF_UF and QF_LRA benchmarks contain a large

number of easy problems that are solved in milliseconds.
Figure 2 compares the runtime of our four CVC5 variants
on the 200 problems that take the longest for baseline CVC5
to solve. The plots show that CVC5 and CVC5-DRAT have
similar performance. CVC5-ALF and CVC5-LFSC are slower
and timeout on several problems, but CVC5-ALF is more
efficient than CVC5-LFSC.

B. Proof Size and Proof Checking Time

Figure 3 compares the proof sizes for different problem fam-
ilies in the QF_LRA and QF_UF benchmarks. The differences
between the three formats vary with the theory and the problem

family. Overall, eDRAT is more compact, except for a few
problems. In QF_UF, ALF proofs are 2x larger than eDRAT
proofs, and LFSC proofs are 11x larger than ALF proofs on
average. In QF_LRA, ALF proofs are 4x larger than eDRAT
proofs, and LFSC proofs are 11x larger than ALF proofs. Some
of the size difference is due to the fact that ALF and LFSC
include preprocessing steps, but this is significant mostly on
easy problems. On hard problems, preprocessing represents
a small part of the solver work, and proof steps related to
resolution and theory lemmas dominate.
We validated the proofs with the appropriate checker. For

LFSC, we used LFSCC2; for ALF, we use alfc3; and for
eDRAT, we used Valido. All proofs were valid. Figure 4 shows
the average proof checking time per benchmark family. For
eDRAT, the graphs include the runtime of Valido (in Rust)
and the certificate checkers (in Lean). On a few QF_LRA
proofs, Valido is slower than the ALF checker (e.g., in the
Latendresse family). This happens when theory lemmas are
large (several hundreds of atoms per lemma) and our Simplex
implementation is slow at computing Farkas certificates. Most
proofs do not have such large lemmas. The ALF and LFSC
checkers are also faster than Valido in some families of QF_UF
problems, but the proofs in these families are small, and all
checkers validate them in less than 0.1 s. On such small proofs,
the cost of a call to DRAT-trim is a limiting factor for
Valido. But overall, eDRAT proof checking is 3x and 15x
faster than LFSC and ALF proof checking, respectively, in
QF_LRA benchmarks, and 80x and 120x faster than LFSC
and ALF, respectively, in QF_UF benchmarks. As one would
expect, checking unsatisfiability certificates is cheaper than
constructing unsat cores and certificates in the first place. The
runtime of the certificate checker in Lean is smaller than the
cost of the elaborator and DRAT-trim in all problem families.
We also note that only a small fraction of all the theory lemmas
included in the proof are part of the unsat core. Figure 5 shows
the number of theory lemmas in the core compared with the
total number of theory lemmas in the eDRAT file. Only lemmas
in the core must be checked by Valido. On average, 1/8 of the
QF_LRA theory lemmas and 1/2 of the QF_UF theory lemmas
are in the core.

VII. RELATED AND FUTURE WORK

Our results show that the DRAT proof format can be extended
from SAT to SMT while preserving its efficiency. Compared
with other proof formats currently supported by CVC5, eDRAT
is the cheapest to generate. Although the eDRAT proofs are
not detailed, it is still possible to efficiently check them by
combining unsat core construction and specialized checkers
for theory lemmas.
Otoni, et al. [27] present a proof system for OpenSMT

that also combines DRAT with theory-specific checkers. A
difference with our approach is that OpenSMT is modified to
produce unsatisfiability certificates for each theory lemma,

2https://github.com/cvc5/LFSC
3https://github.com/cvc5/alfc

25

https://github.com/cvc5/LFSC
https://github.com/cvc5/alfc

H
e
iz

m
a
n
n

L
a
ss

o
R
a
n
k
e
r

sc

u
a
rt

c
lo

c
k

la
te

n
d
re

ss
e

m
ip

li
b

tt
a
_s

ta
rt

u
p

e
zm

t

10 1

100

101

102
P
ro

o
f

S
iz

e
 (

M
B

)

L
F
S
C

 F
a
il
e
d

QF_LRA: Proof Size

LFSC

ALF

eDRAT Proof.

eDRAT Cert..

P
E
Q

N
E
Q

S
E
Q

Q
G

-c
la

ss

G
o
e
l

e
q
_d

ia
m

o
n
d

C
L
E
A

R
S
Y

Ty
p
e
S
a
fe

R
o
d
in

10 3

10 2

10 1

100

101

102

P
ro

o
f

S
iz

e
 (

M
B

)

QF_UF: Proof Size

LFSC

ALF

eDRAT Proof.

eDRAT Cert..

Fig. 3: Proof Sizes

H
e
iz

m
a
n
n

L
a
ss

o
R
a
n
k
e
r

sc

u
a
rt

c
lo

c
k

la
te

n
d
re

ss
e

m
ip

li
b

tt
a
_s

ta
rt

u
p

e
zm

t

10 1

100

101

102

P
ro

o
f

C
h
e
c
k
in

g
 T

im
e
 (

s
)

L
F
S
C

 F
a
il
e
d

QF_LRA: Proof Checking Time

LFSC

ALF

eDRAT Elab.

eDRAT Val.

P
E
Q

N
E
Q

S
E
Q

Q
G

-c
la

ss

G
o
e
l

e
q
_d

ia
m

o
n
d

C
L
E
A

R
S
Y

Ty
p
e
S
a
fe

R
o
d
in

10 2

10 1

100

101

102

P
ro

o
f

C
h
e
c
k
in

g
 T

im
e
 (

s
)

QF_UF: Proof Checking Time

LFSC

ALF

eDRAT Elab.

eDRAT Val.

Fig. 4: Proof Checking Time

H
e
iz

m
a
n
n

L
a
ss

o
R
a
n
k
e
r

sc

u
a
rt

c
lo

c
k

la
te

n
d
re

ss
e

m
ip

li
b

tt
a
_s

ta
rt

u
p

e
zm

t

101

102

103

104

N
u
m

b
e
r

o
f

L
e
m

m
a

7
0
0
6

1
4
4
7

1
1
6
5

4
7
9
4

4
4
0

1
1

2
7
4
0

1
2
5
0

5
2
7
3

3
8
7
9
8

2
9
7
7
2

9
2
9
5

1
6
9
9
9

2
1
2
0

9
6
1

7
1
2
0

1
0
2
7
1

7
4
3
0

QF_LRA: Number of Core Theory Lemma vs Total Theory Lemma

Core Lemmas

Total Lemmas

P
E
Q

N
E
Q

S
E
Q

Q
G

-c
la

ss

G
o
e
l

e
q
_d

ia
m

o
n
d

C
L
E
A

R
S
Y

Ty
p
e
S
a
fe

R
o
d
in

100

101

102

103

104

N
u
m

b
e
r

o
f

L
e
m

m
a

8
4

7
2

2
4

8
9

1
6

9
3

8
3

9

1
8

1

1

1 1

1
6

4
9

2

6
4

9
7

3
4

8
9

1
4

8
1

4
6

3

2 2 2

QF_UF: Number of Core Theory Lemma vs Total Theory Lemma

Core Lemmas

Total Lemmas

Fig. 5: Core Theory Lemmas

26

whereas we use an external elaborator to construct these
certificates. Because we do not modify the CVC5 theory
reasoning engines, we can efficiently produce eDRAT proofs
for any theory supported by CVC5 (even though we cannot
yet validate all of them). Another difference is that Otoni,
et al. can the check conversion from SMT to CNF using a
two-phase algorithm. The first phase checks a conversion from
SMT to a DAG format (not defined in the paper), and the
second phase checks Tseitin-style CNF conversion. This is
more than what we can do with eDRAT, but it does not seem
to be sufficient for the rewriting steps employed by CVC5.
It is not clear from [27] how the simplifications that cvc5
heavily uses (such as the elimination of if-then-else, variable
elimination, normalization of terms, and many other rewriting
steps) could be handled. Finally, [27, Table II] shows that the
overhead of their proof-production method is significant (e.g.,
25% fewer solved instances in QF_LRA), while the main goal
of eDRAT is to make proof generation as cheap as possible.
Another DRAT extension to SMT is presented by Feng, et

al. [17]. This approach is specialized for satisfiability modulo
monotonic theories. In this setting, predicates are monotonic
relations over Boolean variables, and Feng, et al. use this
property to build propositional DRAT proofs of theory lemmas.
Like VALIDO, these extensions of DRAT for SMT offer proofs
at low cost. The numbers reported in Otoni, et al. and Feng, et
al. show that their proof generation techniques are efficient.
Currently, the main limitation of our approach is that it starts

from a CNF formula. eDRAT is not adequate for representing
proofs of preprocessing and conversion of formulas to clauses.
We are considering three options to bridge this gap:

• Modify CVC5 to produce proofs of only its preprocessing
steps in, say, the ALF format. This is probably the easiest
approach but it has limitations. For example, as discussed
in Sec. VI, some useful preprocessing steps must be
disabled, and scalability remains to be evaluated.

• Use translation validation [28]. One can see preprocessing
and conversion to CNF as a compilation process. Correct-
ness amounts to showing that this compilation preserves
satisfiability, and translation validation can be adapted to
this problem. An issue is that this may require the solver
to produce hints to enable this approach.

• Implement a provably correct preprocessor, say, in Lean.
This may require the most effort, but it could provide the
most benefit. One issue with this option is the cost of
maintaining and updating the preprocessor as new theories
and possibly new simplification techniques are discovered.

VIII. CONCLUSION

eDRAT extends the well-known DRAT format of SAT
to SMT. Our experiments show that eDRAT proofs can be
produced efficiently and can be efficiently validated, which
makes routine use of proof-producing SMT solvers more
practical. In future work, we will extend the VALIDO tool
chain to cover more theories, and we will extend the approach
to include proofs of preprocessing.

ACKNOWLEDGMENT

S Hitarth was partially supported by the Madrid Regional
Government (César Nombela grant 2023-T1/COM-29001),
MCIN/AEI/10.13039/501100011033/FEDER, and EU (grant
PID2022-138072OB-I00).

REFERENCES

[1] B. Andreotti, H. Lachnitt, and H. Barbosa. Carcara: An Efficient Proof
Checker and Elaborator for SMT Proofs in the Alethe Format. In
S. Sankaranarayanan and N. Sharygina, editors, Tools and Algorithms for
the Construction and Analysis of Systems, volume 13993, pages 367–386.
Springer Nature Switzerland, 2023.

[2] J. Backes, P. Bolignano, B. Cook, C. Dodge, A. Gacek, K. Luckow,
N. Rungta, O. Tkachuk, and C. Varming. Semantic-based automated
reasoning for AWS access policies using SMT. In 2018 Formal Methods
in Computer Aided Design (FMCAD), pages 1–9, 2018.

[3] H. Barbosa, C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann,
A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli, A. Ozdemir,
M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, and Y. Zohar. CVC5: A
versatile and industrial-strength SMT solver. In D. Fisman and G. Rosu,
editors, Tools and Algorithms for the Construction and Analysis of
Systems - 28th International Conference, TACAS 2022, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part I,
volume 13243 of Lecture Notes in Computer Science, pages 415–442.
Springer, 2022.

[4] H. Barbosa, A. Reynolds, G. Kremer, H. Lachnitt, A. Niemetz, A. Nötzli,
A. Ozdemir, M. Preiner, A. Viswanathan, S. Viteri, Y. Zohar, C. Tinelli,
and C. Barrett. Flexible proof production in an industrial-strength SMT
solver. In J. Blanchette, L. Kovács, and D. Pattinson, editors, Automated
Reasoning, pages 15–35, Cham, 2022. Springer International Publishing.

[5] C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard: Version
2.6. Technical report, Department of Computer Science, The University
of Iowa, 2017. Available at https://smt-lib.org.

[6] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Chapter 33.
Satifiability Modulo Theories. In A. Biere, M. Heule, H. Van Maaren,
and T. Walsh, editors, Handbook of Satisfiability. IOS Press, 2021.

[7] T. Bouton, D. Caminha B. de Oliveira, D. Déharbe, and P. Fontaine. veriT:
An open, trustable and efficient SMT solver. In R. A. Schmidt, editor,
Automated Deduction – CADE-22, pages 151–156, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

[8] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, and S. Tonetta. The nuXmv symbolic model
checker. In A. Biere and R. Bloem, editors, Computer Aided Verification,
pages 334–342, Cham, 2014. Springer International Publishing.

[9] A. Champion, A. Mebsout, C. Sticksel, and C. Tinelli. The Kind 2
model checker. In Computer Aided Verification, pages 510–517, Cham,
2016. Springer International Publishing.

[10] J. Christ, J. Hoenicke, and A. Nutz. SMTInterpol: An interpolating SMT
solver. In A. Donaldson and D. Parker, editors, Model Checking Software,
pages 248–254, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[11] L. de Moura and N. Bjørner. Proofs and refutations, and z3. In The
LPAR 2008 Workshops: KEAPPA and IWIL 2008, volume 418 of CEUR
Workshop Proceedings. CEUR-WS.org, November 2008.

[12] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Proceedings
of the Theory and Practice of Software, 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, page 337–340, Berlin, Heidelberg, 2008. Springer-
Verlag.

[13] L. De Moura and N. Bjørner. Satisfiability Modulo Theories: An
Appetizer. In M. V. M. Oliveira and J. Woodcock, editors, Formal
Methods: Foundations and Applications, volume 5902, pages 23–36.
Springer Berlin Heidelberg, 2009.

[14] L. de Moura and S. Ullrich. The Lean 4 theorem prover and programming
language. In A. Platzer and G. Sutcliffe, editors, Automated Deduction –
CADE 28, pages 625–635, Cham, 2021. Springer International Publishing.

[15] D. Déharbe, P. Fontaine, S. Merz, and B. Woltzenlogel Paleo. Exploiting
symmetry in SMT problems. In N. Bjørner and V. Sofronie-Stokkermans,
editors, Automated Deduction – CADE-23, pages 222–236, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[16] J. Farkas. Theory of simple inequalities. Journal for pure and applied
mathematics (Crelles Journal), 1902(124):1–27, 1902.

27

https://smt-lib.org

[17] N. Feng, A. J. Hu, S. Bayless, S. M. Iqbal, P. Trentin, M. Whalen,
L. Pike, and J. Backes. Drat proofs of unsatisfiability for sat modulo
monotonic theories. In B. Finkbeiner and L. Kovács, editors, Tools and
Algorithms for the Construction and Analysis of Systems, pages 3–23,
Cham, 2024. Springer Nature Switzerland.

[18] J.-C. Filliâtre and A. Paskevich. Why3 — where programs meet provers.
In M. Felleisen and P. Gardner, editors, Proceedings of the 22nd European
Symposium on Programming, volume 7792 of Lecture Notes in Computer
Science, pages 125–128. Springer, Mar. 2013.

[19] P. Godefroid, M. Y. Levin, and D. Molnar. Sage: whitebox fuzzing for
security testing. Communications of the ACM, 55(3):40–44, 2012.

[20] A. Goel and K. Sakallah. AVR: Abstractly verifying reachability.
In A. Biere and D. Parker, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 413–422, Cham, 2020.
Springer International Publishing.

[21] M. J. H. Heule. The DRAT format and DRAT-trim checker.
[22] J. Hoenicke and T. Schindler. A simple proof format for SMT. In

D. Déharbe and A. E. J. Hyvärinen, editors, Satisfiability Modulo Theories,
2022, volume 3185 of CEUR Workshop Proceedings, pages 54–70. CEUR-
WS.org, August 2022.

[23] A. E. J. Hyvärinen, M. Marescotti, L. Alt, and N. Sharygina. OpenSMT2:
An SMT solver for multi-core and cloud computing. In N. Creignou and
D. Le Berre, editors, Theory and Applications of Satisfiability Testing –
SAT 2016, pages 547–553, Cham, 2016. Springer International Publishing.

[24] K. R. M. Leino. Dafny: An automatic program verifier for functional
correctness. In E. M. Clarke and A. Voronkov, editors, Logic for
Programming, Artificial Intelligence, and Reasoning, pages 348–370,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[25] J. Marsuqes-Sliva. Chapter 4. Conflict-Driven Clause Learning. In
A. Biere, M. Heule, H. Van Maaren, and T. Walsh, editors, Handbook
of Satisfiability. IOS Press, 2021.

[26] K. L. McMillan and O. Padon. Ivy: A multi-modal verification tool for
distributed algorithms. In S. K. Lahiri and C. Wang, editors, Computer

Aided Verification, pages 190–202, Cham, 2020. Springer International
Publishing.

[27] R. Otoni, M. Blicha, P. Eugster, A. E. J. Hyvärinen, and N. Sharygina.
Theory-specific proof steps witnessing correctness of SMT executions.
In 2021 58th ACM/IEEE Design Automation Conference (DAC), pages
541–546, 2021.

[28] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In
B. Steffen, editor, Tools and Algorithms for the Construction and Analysis
of Systems, pages 151–166, Berlin, Heidelberg, 1998. Springer Berlin
Heidelberg.

[29] N. Rungta. A billion SMT queries a day (invited paper). In S. Shoham
and Y. Vizel, editors, Computer Aided Verification, pages 3–18, Cham,
2022. Springer International Publishing.

[30] H. Schurr, M. Fleury, H. Barbosa, and P. Fontaine. Alethe: Towards a
generic SMT proof format (extended abstract). In C. Keller and M. Fleury,
editors, Proceedings Seventh Workshop on Proof eXchange for Theorem
Proving, PxTP 2021, Pittsburg, PA, USA, July 11, 2021, volume 336 of
EPTCS, pages 49–54, 2021.

[31] SMT-LIB. The Satisfiability Modulo Theories Library. https://smtlib.cs.
uiowa.edu/. Accessed on March 15, 2024.

[32] A. Stump, D. Oe, A. Reynolds, L. Hadarean, and C. Tinelli. SMT proof
checking using a logical framework. Formal Methods in System Design,
42(1):91–118, 2013.

[33] A. Stump, A. Reynolds, C. Tinelli, A. Laugesen, H. E. III, C. Oliver, and
R. Zhang. LFSC for SMT proofs: Work in progress. In D. Pichardie and
T. Weber, editors, Proceedings of the Second International Workshop on
Proof Exchange for Theorem Proving, PxTP 2012, Manchester, UK, June
30, 2012, volume 878 of CEUR Workshop Proceedings, pages 21–27.
CEUR-WS.org, 2012.

[34] N. Wetzler, M. J. H. Heule, and W. A. Hunt. DRAT-trim: Efficient
checking and trimming using expressive clausal proofs. In C. Sinz and
U. Egly, editors, Theory and Applications of Satisfiability Testing - SAT
2014, volume 8561, pages 422–429. Springer International Publishing,
2014.

28

https://smtlib.cs.uiowa.edu/
https://smtlib.cs.uiowa.edu/

Formal Methods in Computer-Aided Design 2024

Solving String Constraints with Concatenation
Using SAT

Kevin Lotz ∗, Amit Goel†, Bruno Dutertre ‡, Benjamin Kiesl-Reiter §, Soonho Kong ‡, and Dirk Nowotka ∗
∗Department of Computer Science, Kiel University, Kiel, Germany, {kel, dn}@informatik.uni-kiel.de

†Amazon Web Services, Portland, OR, USA, amgoel@amazon.com
‡Amazon Web Services, Santa Clara, CA, USA, {dutebrun, soonho}@amazon.com

§Amazon Web Services, Munich, Germany, benkiesl@amazon.com

Abstract—We present a decision procedure for solving
quantifier-free first-order formulas over the theory of strings,
involving equality, regular constraints, and concatenation of
string terms. Our approach uses an eager reduction to the
Boolean satisfiability problem and extends the NFA2SAT string
solver. We describe a novel SAT encoding for word equations that
iteratively expands the search space and leverages incremental
SAT solving. For unsatisfiable formulas, we estimate the bounds
on the smallest solution from arithmetic constraints derived
from word equations. An experimental evaluation shows that
our approach is competitive with state-of-the-art string solvers
and complements existing methods in string solving.

I. INTRODUCTION

Reasoning on string manipulation is a crucial aspect of en-
suring software correctness. In recent years, a variety of tools,
known as string solvers, have been developed to automate
decision procedures for various logical theories over strings.
Advancements in string solving have been driven by web-
application security [16], [27], [29] and model checking [11].
These fields rely on automated reasoning on strings to identify
critical security vulnerabilities. More recently, string solving
has been used to verify security properties of cloud access
policies [1], [26].
The theory of strings draws upon combinatorics on

words [25], [12], [4], [22]. Central to this theory are word
equations, which are expressions that equate two strings
constructed by concatenating variables and constant words.
Solving word equations amounts to finding substitutions for
the variables that make the two sides of the equation identical.
For example, we find a solution for a ·x .

= y ·a by substituting
both variables x and y with a. Solving word equations is
decidable [22], [8], [28], but the decision procedures resulting
from the theoretical results are too expensive to be practical.
To overcome this limitation, string solvers employ heuristic
approaches and impose restrictions on the constraint languages
to achieve scalability in practical use cases.
Most modern string solvers [23], [2], [14], [5], [6], [21] are

built upon the CDCL(T) paradigm, also called lazy solving.
This framework operates in two steps: first, a SAT solver
searches for a model of the propositional structure of a
formula, and second, a theory solver decides whether this
model is consistent in a background theory T . An alternative
approach is eager solving, which encodes the input problem
into a single propositional formula. In the context of string

solving, eager approaches were first explored by the WOOR-
PJE [7] solver for word equations and its extension to regular
constraints [18].
In previous work [20], we presented the eager string solver

NFA2SAT that decides the satisfiability of formulas within a
restricted logical fragment, which includes regular constraints
and equality between strings but excludes concatenation of
string terms. The solver is complete on this fragment, but
it supports a less expressive logic compared to other string
solvers. Here, we bridge this gap by extending NFA2SAT’s
decision procedure to support word equations.
The NFA2SAT procedure sets bounds on the lengths of all

string variables occurring in a formula, encodes the bounded
problem into a propositional formula, and tests its satisfiability.
If the formula is unsatisfiable, the procedure iterates by
incrementally increasing these bounds until either a solution
is found, or the bounds exceed the theoretical length of the
minimal solution to the formula, at which point the formula
is declared unsatisfiable.
To enable support for word equations, we introduce a

new method to encode the satisfiability problem of bounded
word equations into propositional logic. We also prove an
alphabet-reduction result, which we use to obtain a small
alphabet that is sufficiently large to preserve satisfiability.
This reduction is critical to ensure the practicality of the
encoding because it reduces the size of the propositional
formula, thereby allowing for more efficient SAT solving. We
then propose an incomplete but practical approach to detecting
unsatisfiability, by analyzing linear integer equations over the
lengths of the string variables that occur in word equations. An
experimental evaluation on a large set of benchmarks shows
that our approach is competitive with state-of-the-art string
solvers and works well as a complement to lazy solvers.

II. PRELIMINARIES

A word is a finite sequence w = w1 · · ·wn where each wi

is a symbol in a finite alphabet A. We denote by |w| = n the
length of word w. The set of all words over A is denoted by
A∗. We denote by w · w′ the concatenation of two words w
and w′, and we denote the empty word by ε. A word u is
called a factor of w if w can be written v · u · v′. It is called
a prefix (suffix) if v = ε (v′ = ε). We use |w|a to denote
the number of occurrences of symbol a in word w. We fix

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_9 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0000-0001-6759-3304
https://orcid.org/0000-0002-6284-380X
https://orcid.org/0000-0003-3522-3653
https://orcid.org/0000-0003-0984-8078
https://orcid.org/0000-0002-5422-2229
https://doi.org/isbn.978-3-85448-065-5_9
https://doi.org/isbn.978-3-85448-065-5_9
https://creativecommons.org/licenses/by/4.0/

an alphabet Σ = { a, b, c, . . . } of constants and an alphabet
Γ = { x, y, z, . . . } of variables. A word w ∈ Σ∗ is called a
constant word and a word α ∈ (Σ ∪ Γ)∗ is called a pattern.
A word equation α

.
= β is a pair of patterns α, β. A regular

constraint α
.∈ R consists of a pattern α

.∈ (Σ ∪ Γ)∗ and a
regular expression R over the alphabet Σ. Let h : (Σ∪Γ)∗ →
Σ∗ be a morphism that is constant for all c ∈ Σ, i.e., h(c) = c.
Then h is a solution of α

.
= β (written h |= α

.
= β) if

h(α) = h(β), and a solution of α ̸ .= β (written h |= α ̸ .= β)
if h(α) ̸= h(β). Similarly, h is a solution of α

.∈ R (written
h |= α

.∈ R) if h(α) ∈ L(R), and a solution of α ̸ .∈ R (written
h |= α ̸ .∈ R) if h(α) ̸∈ L(R), where L(R) denotes the regular
language defined by R. Any substitution of the variables h :
Γ→ Σ∗ can be canonically extended to a morphism, and vice
versa. We therefore use the terms substitution and morphism
interchangeably.
A function l : Γ → N that assigns a length l(x) to

each variable x ∈ Γ is called a length assignment. Given
a length assignment l, we use #»x l to refer to the sequence
x[1] · · · x[l(x)] over the alphabet

#»

Γ = { x[k] | x ∈ Γ, k ∈ N }.
In this sequence, the x[i] can be interpreted as variables
ranging over Σ, that is, each x[i] denotes a single character
of Σ. We lift this definition to patterns with # »wαl = w · #»α l

and # »x · αl = #»x l · #»α l for all w ∈ Σ∗. For a word equation
α

.
= β, a length assignment l with | #»α l| = n = | #»β l| induces

an equivalence relation of the positions 1, . . . , n. Two positions
i, j are equivalent under l, written as i ∼l j, if #»α [i] = #»α [j],
#»

β [i] =
#»

β [j], or #»α [i] =
#»

β [j]. If i ∼l j, then characters at
position i and j must be equal in any solution that is consistent
with the length assignment. We call h an l-substitution if
|h(x)| = l(x) for all x ∈ Γ. If h is an l-substitution, then h is a
solution if and only if h(α)[i] = h(α)[j] for all i, j with i ∼l j.
In that case, we call h an l-solution. Solving word equations
by assigning a constant from Σ to every x[1] · · · x[l(x)] for all
x ∈ Γ to find a morphism that satisfies the above condition is
also known as filling the positions [15], [25].
We consider quantifier-free first-order formulas in which all

atoms are word equations or regular constraints, or can be
reduced to them. For such a formula ψ, we use atoms(ψ) to
denote the set of atoms that occur in ψ, vars(ψ) to denote the
set of variables in ψ, and Σ(ψ) to denote the set of constants
occurring in ψ. A substitution h : Γ → Σ∗ is called a model
of ψ, written h |= ψ, if ψ evaluates to true under h using
the standard semantics of Boolean connectives. We assume
throughout the paper that ψ is in negative normal form (NNF),
that is, negations occur only in front of atoms. The literals of ψ
can be of the form α

.
= β, ¬(α .

= β), α
.∈ R, or ¬(α .∈ R). We

use α ̸ .= β and α ̸ .∈ R as short-hand notation for ¬(α .
= β)

and ¬(α .∈ R), respectively. We call ψ conjunctive if it is
a conjunction of literals. We say ψ is in normal form if all
literals have the form α

.
= β, x ∈ R, x ̸∈ R, or x ̸ .= y. For

every formula ψ there exists an equisatisfiable formula ψ′ in
normal form. We construct it by rewriting literals of the form
α ̸ .= β to α = tα ∧ β = tβ ∧ tα ̸ .= tβ , and literals of the form
α

.∈ R (α ̸ .∈ R) to α = tα∧ tα
.∈ R (α = tα∧ tα ̸

.∈ R), where
tα and tβ are fresh variables. We have Σ(ψ) = Σ(ψ′) and

ψ

Bound
Lengths

Infer
Alphabet

Encoding

SAT
Solving SAT

Bound
Refinement UNSAT

Bounds

Σ

ψ

UNSAT

Increase
bounds

SAT

Fig. 1: Overview of the decision procedure.

F := F ∨ F | F ∧ F | ¬F | Atom
Atom := tstr

.∈ RE | tstr .
= tstr

RE := RE ∪RE | RE ·RE | RE∗ | RE ∩RE | ? | w
tstr := x | w | tstr · tstr

Fig. 2: Syntax: x denotes a variables, w denotes a word of Σ∗,
and RE denotes a regular expression, where ? is the wildcard
character.

vars(ψ) ⊆ vars(ψ′). If h |= ψ′, then h |= ψ, and if h |= ψ,
then h′ |= ψ′, where h′ extends h by setting h′(tα) = h(α).

III. THE DECISION PROCEDURE

Our decision procedure accepts formulas in the syntax given
in Figure 2. The procedure is based on an eager reduction
to the Boolean satisfiability problem. This reduction assumes
fixed upper bounds on the lengths of variables and translates
the input problem into a propositional formula that is equi-
satisfiable for these bounds. It builds upon the string solver
NFA2SAT, which we will review first.
The NFA2SAT procedure is depicted in Figure 1. It begins

by assigning an initially small upper bound b(x) on the length
of all string variables x. Subsequently, the solver constrains
the search space for substitutions to a small alphabet Σ
that preserves satisfiability. If the problem is satisfiable in
any superset of Σ, it remains satisfiable in Σ. Therefore,
the procedure only needs to consider substitutions that map
variables to words in the reduced alphabet Σ∗.
For the given bounds and alphabet, NFA2SAT encodes the

first-order formula ψ into a propositional formula ψ . If
ψ is satisfiable, NFA2SAT declares ψ satisfiable. If ψ is
unsatisfiable, then there are no solutions that satisfy ψ within
the given upper bounds. In this case, NFA2SAT increases the
bounds on the variable lengths and incrementally encodes the
problem for these new bounds. This incremental encoding pro-
duces new clauses without discarding those from the previous
SAT solver invocation, leveraging the benefits of incremental
SAT solving under assumptions [10].
This process repeats until either the bounds are sufficiently

large for ψ to be satisfiable, or unsatisfiability can be con-
cluded based on the small model property stating that if ψ is
satisfiable, then there exists a smallest model. We can compute
bounds on the variable lengths in the smallest model and
compare them to the bounds that resulted in the unsatisfiable

30

encoding. If the bounds of the unsatisfiable encoding exceed
those of the smallest model, then no solution exists.
To improve efficiency, NFA2SAT utilizes the unsat core from

the last SAT solver call to refine variable bounds and handle
unsatisfiability. It first computes the powerset of the (typically
small) set of literals encoded in the unsat core. For each
subset in the powerset, the solver calculates the small model
bounds of the conjunction of the literals in that subset. Finally,
take the maximum among all these computed bounds. The
iteration over the powerset is necessary because the core is
not necessarily minimal. If the bounds used for the last call
to the SAT solver exceed the maximum, then increasing the
bounds will not eliminate the unsat core and we can then
conclude that ψ is not satisfiable. Otherwise, only the bounds
of the variables occurring in a literal encoded in the unsat core
are increased.
We extend the existing NFA2SAT procedure to support arbi-

trary concatenation, which amounts to solving word equations
after conversion to normal form. Our new procedure includes
three new components:
1) Alphabet Reduction: NFA2SAT narrows the search space

by determining a small alphabet in which the formula is
satisfiable if it is in any larger alphabet. In Section IV
we show that adding one character to Σ(ψ) for each ̸ .=
atom is sufficient to preserve satisfiability.

2) Encoding of Word Equations: In Section V, we in-
troduce a new encoding that translates word equations
into propositional logic in a way that is compatible with
NFA2SAT’s incremental framework.

3) Handling Unsatisfiability: For cases where no solution
exists, we propose a simple but incomplete technique
to compute the bounds of the small model if the unsat
core contains (encoded) word equations. This approach
is detailed in Section VI.

IV. ALPHABET REDUCTION

A model for a string formula is a mapping from variables
to constant words in an alphabet Σ, which can depend on
the context. For example, in the SMT-LIB standard [3], Σ
is a subset of the Unicode alphabet that contains 196, 607
symbols. In most cases, a model for satisfiable formulas can
be constructed using only a small subset of Σ. Restricting the
search space to such a subset is essential for our propositional
encoding to be practical. Let Σ(ψ) be the set of all constants
occurring in ψ. If ψ does not contain string concatenation, it
is satisfiable if and only if it is satisfiable in the alphabet Σ(ψ)
augmented with one additional character per variable [20].
When string concatenation is allowed, we instead need one
additional character per negated equation. We show this result
by fixing a solution h : Γ → Σ∗ over any alphabet Σ and
constructing a new solution h′ : Γ → (Σ(ψ) ∪ A)∗, where
A is disjoint from Σ(ψ) and has a cardinality equal to the
number of inequalities in ψ. The construction is based on the
method of filling the positions.
Given a word equation α

.
= β and a length assignment

l, we lift the equivalence relation ∼l to the elements of

#»

Γ ∪ Σ. Two elements r, s ∈ Σ ∪ #»

Γ are equivalent (under
l), written as r ∼l s, if there are i, j with i ∼l j and
#»α l[i] = r ∧ #»α l[j] = s or

#»

β l[i] = r ∧ #»

β l[j] = s, or
#»α l[i] = r∧ #»

β l[j] = s. This defines an equivalence relation on
Σ∪ #»

Γ . We use [r]∼l
to refer to the transitive reflexive closure

of r ∈ Σ∪ #»

Γ under l. If l is clear from the context, we simply
write r ∼ s and [r]∼ . An l-solution h maps every class [r]∼
to exactly one constant c in the sense that h(x)[j] = c for
all x[j] ∈ [r]∼ . If [r]∼ contains a constant character then c
is that character. For example, let x · a .

= a · y be a word
equation. The length assignment l(x) = 3 and l(y) = 3 yields
x[1]·x[2]·x[3]·a .

= a·y[1]·y[2]·y[3]. It induces the three equiv-
alence classes { x[1], y[3], a }, { x[2], y[1] }, and { x[3], y[2] }.
Every l-substitution h that satisfies h(x)[1] = h(y)[3] = a,
h(x)[2] = h(y)[1], and h(x)[3] = h(y)[2] is a solution.
It’s a well-known result that any satisfiable word equation

has a solution in the alphabet Σ(α
.
= β) [15]. A similar

result holds for regular constraints [20] and both results can
be combined to show that a word equation with regular
constraints on the variables is satisfiable if and only if it
has a solution that uses only the constants occurring in the
problem (if there is at least one). This no longer holds when
negations are allowed. For example, consider the formula
x·a .

= a·y∧x ̸ .= y. Any solution h must satisfy |h(x)| = |h(y)|
but constructing an h with h(x) ̸= h(y) is not possible if we
use only a, the sole constant.
We first generalize the result to formulas of the form

ψ := α
.
= β ∧ ψ ̸= ∧ ψ∈, where ψ ̸= and ψ∈ are conjunctions

of inequalities between variables x ̸ .= y, and regular con-
straints x

.∈ R, respectively. This restriction implicitly includes
negated regular constraints, as x ̸ .∈ R can be equivalently
formulated as x

.∈ R̄, where R̄ is the regular complement of
R. For an l-solution h, we define the graph Gψ(h) = (V,E)
where V is the set of equivalence classes induced by l on
α

.
= β. The set E includes an edge { [x[k]]∼ , [y[k]]∼ } iff

ψ ̸= contains x ̸ .= y, |h(x)| = |h(y)|, h(x)[k] ̸= h(y)[k], and
h(x)[k′] = h(y)[k′] for all k′ < k, meaning k is the smallest
index where h(x) and h(y) disagree.
If Gψ(h) can be colored with n colors, then a new model h′

can be constructed using no more than n constants in addition
to Σ(ψ). Here, a color acts as a new constant, with h′ mapping
each equivalence class to the vertex color if the original model
h mapped its members to a symbol that is not in Σ(ψ).

Lemma 1. Let ψ := α
.
= β ∧ ψ ̸= ∧ ψ∈ and h be a solution.

If Gψ(h) is n-colorable, then ψ has a solution over Σ(ψ)∪A
where A is an alphabet disjoint from Σ(ψ) with |A| = n.

Thus, the minimal number of characters required in addition
to Σ(ψ) is the chromatic number of Gψ(h). The next lemma
gives an upper bound on this number. This follows from the
fact that the graph has at most |atoms(ψ ̸=)| edges.
Lemma 2. Let ψ := α

.
= β ∧ ψ ̸= ∧ ψ∈ be a formula and h

be a solution. Then Gψ(h) is |atoms(ψ ̸=)|+ 1 colorable.

Combining the above results gives our main theorem.

31

Theorem 3. Let ψ be a formula over word equations and
regular constraints with n inequalities. Then ψ has a solution
if and only if it has a solution in Σ(ψ)∪A where A∩Σ(ψ) = ∅
and |A| = n+ 1.

The theorem can be shown by assuming ψ is in disjunctive
normal form and equivalently rewriting each disjunct to match
the form α

.
= β ∧ ψ ̸= ∧ ψ∈. Then, each disjunct can have at

most n inequalities, and we can apply Lemma 1 and Lemma 2
to obtain the bound.
The bound on |A| is not always tight because Lemma 2

gives only a coarse bound on the chromatic number. For
instance, by applying results from [9], it can be lowered to
O(
√
n) for a formula with n inequalities. However, it is small

enough to be practical. Additionally, since formulas often
contain fewer inequalities than variables, this result improves
our previously known bound of |vars(ψ)| for formulas ψ that
do not include concatenation.

V. ENCODING WORD EQUATIONS

For a first-order formula ψ, our decision procedure fixes
some bounds b and translates ψ into a propositional formula
ψ

b, which is satisfiable if and only if ψ has a solution
within bounds b. The formula is constructed by encoding
all literals of ψ individually. We present the encoding for
literals that are word equations α

.
= β, denoted α

.
= β

b.
Intuitively, α

.
= β

b asks the SAT solver to “guess” a word
w for which there exists a substitution h such that h(α) = w
and h(β) = w, making w a solution word. It is the conjunction
of four formulas w

b∧ lh
b∧ m(α)

b∧ m(β)
b, modeling

the set of all potential solution words, the set of all possible
l-substitutions, and the constraint that the encoded substitution
must map both patterns to the same word, respectively. The
encoding is sound in the following sense.

Theorem 4. Let α .
= β be a word equation and b be a function

assigning an upper bound to every variable in the equation.
Then α

.
= β is satisfiable under b if and only if α

.
= β

b is
satisfiable.

If ψ, containing α
.
= β as a literal, is not satisfiable with

bounds b, then NFA2SAT proceeds to check the satisfiability
for larger bounds b′. This results in n calls to the SAT solver,
with bounds b1, . . . , bn. To make this procedure efficient,
the encoding is incremental. That is, the encoding ψ

bk

is constructed by only adding more clauses to the formula
ψ

bk−1 . In the following, we present the encoding α
.
= β

bk

assuming that α
.
= β

bk−1 was already encoded. To avoid
treating edge cases, we assume b0(x) = 0 for all x ∈ Γ.
Additionally, we assume α ̸= ε and β ̸= ε.

A. Encoding Words

We encode the set of all words that are possible solutions
to the equation in w

bk . This includes all words over Σ with
length no longer than Uk = min(| #»αbk |, | #»β bk |), i.e., the length
of the smaller of the longest words that either side of the
equation can be mapped to under bounds bk. No substitution

h with |h(α)| > Uk or |h(β)| > Uk can be a solution w.r.t. to
bk because at least one side of the equation cannot be mapped
to a word of length greater than Uk under bk.
We first pick a new symbol λ that is not in Σ and set

Σλ = Σ∪{λ}. The symbol λ denotes an unused position, i.e.,
a position that is to be mapped to the empty word. Setting
an appropriate set of positions to λ allows us to encode all
possible words over Σ with length at most Uk. We encode
the set {w ∈ Σ∗ | |w| ≤ Uk } by introducing the Boolean
variables wc

i for each position 1 ≤ i ≤ Uk and character
c ∈ Σλ. Boolean variable wc

i is true if c occurs at position i
in w. We enforce that exactly one of the wc

i is true using the
following formula

w
bk =

Uk⋀︂
i=Uk−1

EO{wc
i | c ∈ Σλ} ∧

Uk−1⋀︂
i=Uk−1

wλ
i → wλ

i+1.

This takes into account that words of length up to Uk−1

have been encoded in a previous call. In this formula, EO
is an encoding of the exactly-one constraint on the variables
(see [17]). Because concatenation with λ is neutral, we use
the second conjunct of the encoding to break symmetry. This
ensures that every Boolean assignment σ with σ |= w

bk

encodes exactly one word and for every word no longer than
Uk there is exactly one σ with σ |= w

bk .

B. Encoding l-Substitutions

For all length assignments l bounded by bk, i.e., for all l
with l(x) ≤ bk(x) for all x ∈ Γ, we encode the set of all
possible l-substitutions. This is achieved by initially encoding
all substitutions h

bk and all length assignments in l
bk (both

limited by bk), and then ensuring that the length of a variable
substitution coincides with the length assignment.
The encoding of substitutions is constructed using a set

of Boolean variables {hax[i] | a ∈ Σλ }. We ensure that every
satisfying assignment to h

bk encodes exactly one constant
word for every variable x, i.e., the substitution of x, by
employing an exactly-one constraint exactly as done for the
encoding of words.
To encode all possible length assignments, we introduce a

set of Boolean variables {Lix | 0 ≤ i ≤ bk(x) } for all x ∈ Γ.
We encode that Lix is true iff l(x) = i, taking into account that
the length assignments for bounds bk−1 are already encoded.
This makes standard exactly-one encodings unsuitable and we
instead use the following formula

l(x) bk := (ax,k →
bk(x)⋁︂

i=bk−1(x)+1

Lix ∨ ax,k−1) (1)

∧
bk−1(x)⋀︂
i=0

bk(x)⋀︂
j=bk−1(x)+1

Lix → ¬Ljx (2)

∧
bk(x)⋀︂

i=bk−1(x)+1

bk(x)⋀︂
j=i+1

Lix → ¬Ljx (3)

32

λw:

a x[1] b a b y[1]α:

y[1] a x[1] x[1] bβ:

(a) We first assume an upper bound of 1 for
both variables, i.e. b1(x) = b1(y) = 1. In that
case, w b1 encodes all words up to length
6. When assigning length 1 to all variables,
lh b1 and m(β) b1 are conflicting: lh
requires that y[1] is not λ, but since the last
segment of β ends at position 5, m(β) re-
quires that the 6th position, which aligns with
y[1], is λ. Any other length assignment under
b1 will result in a similar situation. Both, the
equation and the encoding are unsatisfiable
under b1.

a b λw:

a x[1] x[2] b a b y[1]α:

y[1] a x[1] x[2] x[1] x[2] bβ:

(b) When assuming an upper bound of 2 for
both variables, b2(x) = b2(y) = 2, w b2

encodes all words up to length 8. Assigning
length 2 to x and y maps both patterns to the
same length. However, this length assignment
still results in a conflict: The first segment
of α (a) and the first segment of β (y)
both start at position 1, so m(α) b2 and
m(β) b2 entail w[1] = y[1] = a. At the
same time, m(α) b2 and m(β) b2 entail
w[1] = y[1] = b because the respective last
segments, b and y, start at position 7.

a b a b a b a bw:

a x[1] x[2] b a b y[1] y[2]α:

y[1] y[2] a x[1] x[2] x[1] x[2] bβ:

(c) When instead assigning length 2 to x
y, the encoding, and therefore the equation,
becomes satisfiable and we find a solution h
with h(x) = ba and h(y) = ab, resulting in
the solution word abababab.

Fig. 3: Demonstrates of the encoding for the example equation a · x · bab · y .
= y ·axx · b. The figures illustrate how the encoding

operates by fixing length assignments for the variables. This is analogous to the SAT solver assigning truth values to the Lix
variables during the search procedure.

The Boolean variable ax,k is an assumption in the kth call to
the SAT solver. Part (1) states that if ax,k is true, then at least
one of {Lix | bk−1(x) < i ≤ bk(x) } needs to be true, unless
ax,k−1 is true (defining ax,0 = ⊥). If ax,k−1 is true, then one
Lix with 0 ≤ i ≤ bk−1(x) must be true, establishing that there
is at least one i ≤ bk(x) such that Lix is true. The conjunction
(2) and (3) guarantees that at most one Lix with i ≤ bk(x)
is true. Thus, the encoding ensures that exactly one of the
variables Lix with 0 ≤ i ≤ bk(x) is true.
Finally, lh

bk combines h
bk and l

bk to ensure that the
length of each substitution matches the assigned length. This
is expressed by ensuring h(x)[i] · · ·h(x)[bk(x)] = ε if and only
if Lix is true, using

lh
bk = h

bk ∧ l
bk ∧

⋀︂
x∈Γ

bk(x)−1⋀︂
i=bk(x)

(hλx[i+1] ↔ Lix).

Assigning true to hλx[i+1] encodes that the suffix of the substi-
tution of x starting at i+ 1 is empty. Because exactly one Lix
is true, this asserts that the length of the substitution of x is
exactly i if Lix is true.

C. Matching Patterns To Words

We constrain that any assignment satisfying lh
bk ∧ w

bk

encodes an l-substitution h and a word w such that h(α) =
w = h(β), asserting that h is a solution. This is achieved
through the formulas m(α)

bk and m(β)
bk , which encode

that h maps the ith position of #»α l and
#»

β l to the ith position of
w, for any encode length assignment l. Since the encoding is
the same for both sides of the equation, we describe it using
a generic pattern γ.
The idea of m(γ)

bk is to split γ into consecutive factors of
variables and constant words and assert that if a factor starts at
position p in #»γ l and has length k, then its substitution must be
equal to the factor of the solution word w from p to p+k−1.

An example of how this idea is reflected in the encoding is
shown in Figure 3.
Formally, we define the segmentation of γ, denoted seg(γ),

as the unique factorization (γ(1), . . . , γ(n)) of γ with γ(i) ∈ Γ
or γ(i) ∈ Σ+ for all i ≤ n, and if γ(i) ∈ Σ+ then either
γ(i+1) ∈ Γ or i = n. For example, the pattern x·abc·y·x·def
is factorized into five segments (x, abc, y, x, def). Given a
length assignment l, the start position of γ(i) is given by∑︁i−1

j=1 |γ(j)| + 1, the sum of the lengths of all preceding
segments plus one, where |γ(i)| is l(x) if γ(i) = x and |v|
if γ(i) = v ∈ Σ+. The start position of the first segment is
thus always 1.
To ensure the matching between the patterns and the solu-

tion word, we first encode set set of all possible start positions
for each segment of seg(γ) w.r.t. bk and condition them on
the lengths assigned to the variables using the Lix variables.
The encoding then ensures if a segment starts at position p
and has length k, the factor of the solution word from p to
p+ k− 1 must be equal to h(γ(i)), the constant word that the
encoded morphism h maps γ(i) to. The idea is illustrated in
Figure 4.

w: · · · h(x) a b a h(y) h(x) · · ·
γ: · · · x[1] · · · x[k] a b a y[1] y[2] x[1] · · · x[k] · · ·

i i + 1 i + 2 i + 3segments

p

+k +3 +2 +n

Fig. 4: Matching a pattern γ to a word w. If the ith segment
of γ, x, starts at position p, then the factor of w from p to
p+k− 1 must be equal to h(x), and the i+1th segment must
start at position p+ k.

To encode the start positions, we introduce a set of Boolean
variables {S(γ)pi | 0 ≤ p ≤ Uk } for all 1 ≤ i ≤ |seg(γ)|+1,
modeling that S(γ)pi is true if γ(i) starts at position p, where

33

S(γ)p|seg(γ)|+1 marks the end of the pattern. The matching is
then encoded using the formula

m(γ)
bk := S(γ)11 (1)

∧
Uk⋀︂

p=Uk−1

S (γ)p|seg(γ)|+1 → wλ
p (2)

∧
|seg(γ)|−1⋀︂

i=1

match(γ, i). (3)

Here, (1) encodes that the first segment starts at the first
position. The second part, (2), ensures that the length of the
solution word w equals the length of γ under l, by encoding
that the first position of w following the last segment is
mapped to λ. The last part, (3), establishes the matching
between each segment γ(i) and the corresponding factor of the
solution word, and determines the start position of γ(i+1). The
encoding depends on whether γ(i) is a constant or a variable.
If γ(i) = v for some v ∈ Σ+, then match(γ, i) is given by

Uk−|v|⋀︂
p=max(Uk−1−|v|,0)+1

S (γ)pi →
|v|⋀︂
j=1

w
v[j]
p+j−1 ∧ S

p+|v|
i+1 .

The formula states that if γ(i) starts at position p, then the
factor of w from p to p + |v| − 1 must be equal to v and
γ(i+1) starts at p + |v|. The latest position at which the γ(i)

can start is Uk − |v|, as otherwise, it would exceed Uk.
If γ(i) = x for some variable x ∈ Γ, then match(γ, i) is

instead given by⋀︂
(p,l)∈Mk\Mk−1

S (γ)pi ∧ Llx →
l−1⋀︂
j=0

⋀︂
c∈Σ

(hcx[j] ↔ wc
p+j) ∧ Sp+li+1 .

Here, Mk = { (p, l) | p < Uk ∧ l ≤ bk(x) ∧ p+ l ≤ Uk } is
the set of all pairs of positions and length assignments w.r.t
bk, such that p+ l(x) ≤ Uk. The formula ensures that if γ(i)

starts at position p and has length l, then the factor of w from
p to p+ l− 1 must be equal to h(x), and that γ(i+1) starts at
position p+ l.
To guide the SAT solver, we impose an at-most-one con-

straint on {S(γ)pi | 0 ≤ p ≤ Uk } for all 1 ≤ i ≤ |seg(γ)|+1.
Additionally, we disable all infeasible start positions relative
to Uk with assumptions. For segments γ(i) = v ∈ Σ+, we
add ¬S(γ)pi as an assumption for all p with p > Uk−|v|. For
segments γ(i) = x ∈ Γ, we add the clauses a→ ¬(Llx∧S(γ)pi),
with fresh variable a, for all l, p with l < b(x), p < Uk, and
l + p > Uk, and add a as an assumption.

VI. FINDING AND REFINING BOUNDS

Whenever the SAT solver determines that the formula is
unsatisfiable under bounds b, our procedure continues with
larger bounds b′. This terminates once the bounds are either
large enough to construct a solution or exceed the bounds of
the smallest model, as explained in Section III.
Theoretical bounds on the minimal solution to a word

equation can be computed, but these bounds can be doubly

Algorithm 1 Iterative Bound Refinement
Input: Conjunctive formula ψ
Output: Bounds for ψ or UNSAT if ψ is unsatisfiable

lb, ub ← init(ψ)
repeat

for α
.
= β ∈ atoms(ψ) do

lb′, ub′ ← refinement_step([α .
= β]L, lb, ub)

if conflict(lb′, ub′) then
return UNSAT

end if
end for

until lb′ = lb∧ ub′ = ub
return lb, ub

exponential [24]. Given this complexity, using exact minimal
bounds is impractical. Instead, we employ a heuristic to iden-
tify tighter bounds by extracting linear constraints on variable
lengths from the word equations. We use a known method for
bounding the solutions of the resulting linear integer problem.
This approach is sound but not complete as it may fail to find
finite bounds on the variables.
For a word equation α

.
= β we define the linear integer

equation [α
.
= β]L :=

∑︁
x∈Γ(|α|x − |β|x) · |x| =

∑︁
a∈Σ |β|a −

|α|a. The equation is satisfied by every substitution h with
|h(α)| = |h(β)|. Especially, if h is a solution for α

.
= β,

then it also satisfies [α
.
= β]L. Conversely, if a h does not

satisfy [α
.
= β]L, it is not a solution for α

.
= β. For instance,

consider the word equation z·b·z·x .
= ba·y·a·y·bb which has

the corresponding integer equation 2·|z|+ |x|+ 1 = 2·|y|+ 5.
The substitution h = { x← a, y← a, z← baaaa } is not a
solution because 2|h(z)|+ |h(x)|+1 = 12 ̸= 9 = 2|h(y)|+5.
We treat [α .

= β]L as an equation over variables ΓL =
{ |x| | x ∈ Γ }. For a conjunction of word equations ψ, we
lift [ψ]L to the conjunction of the corresponding integer
equations. Our procedure computes lower and upper bounds
lb, ub : ΓL → N ∪∞ such that lb(|x|) ≤ g(|x|) ≤ ub(|x|) for
all g : ΓL → N satisfying [ψ]L. The algorithm is sketched in
Algorithm 1 and an example is shown in Figure 5.

Iterative Bound Refinement: For a conjunctive formula
ψ in normal form, we derive bounds on the variables of ψ
using an incremental refinement procedure. If variable x is
constrained to belong to a regular expression R and R is
recognized by a cycle-free n-state automaton then we set the
initial bounds on x to lb0(x) = 0 and ub0(x) = n. Otherwise,
we initialize the bounds to lb0(x) = 0 and ub0(x) =∞. Thus,
lb0(|x|) ≤ g(|x|) ≤ ub0(|x|) holds initially. The algorithm then
iteratively refines the bounds until a conflict is detected or a
fixed point is reached. A conflict occurs if lb(|x|) > ub(|x|),
ub(|x|) < 0 or lb(|x|) = ∞ for some variable x, in which
case [ψ]L, and therefore ψ, are unsatisfiable. If no conflict is
found, then the functions lb and ub provide bounds on the
lengths of the variables for the solutions to ψ. Specifically, if
ub(|x|) ̸= ∞ for all x, then ub are bounds on the smallest
model for ψ. Algorithm 1 may not terminate in general (see
[13]). In our implementation, we enforce an upper limit on the
number of iterations and we return the best bounds available
when this limit is reached.

34

Bounds:
ub(x) = ∞
lb(x) = 0

ub(y) = ∞
lb(y) = 0

ub(z) = ∞
lb(z) = 0

1. Refine Equation |x| + 2·|y| = |y| + 2

|x| = −|y| + 2

|y| = −|x| + 2

|x| ≤ ub(−|y| + 2)

|y| ≤ ub(−|x| + 2)

|x| ≤ − lb(|y|) + 2

|y| ≤ − lb(|x|) + 2

|x| ≤ 2

|y| ≤ 2

Refined Bounds: ub′(x) = 2
lb′(x) = 0

ub′(y) = 2
lb′(y) = 0

ub′(z) = ∞
lb′(z) = 0

2. Refine Equation 2·|z| + |x| + 1 = 2·|y| + 5

|z| = (−|x| + 2|y| + 4) · 1
2 |z| ≤ − lb(|x|) + (2 · ub(|y|) + 4) · 1

2
|z| ≤ 4

Refined Bounds: ub′(x) = 2
lb′(x) = 0

ub′(y) = 2
lb′(y) = 0,

ub′(z) = 4
lb′(z) = 0

Fig. 5: Bound refinement for the system of word equations
x·y·y .

= a·y·a ∧ z·b·z·x .
= ba·y·a·y·bb. Only upper bounds are

shown. The initial bounds on |x|, |y|, and |z| are [0,∞). After
processing the two equations, the bounds are refined to 0 ≤
|x| ≤ 2, 0 ≤ |y| ≤ 2, and 0 ≤ |z| ≤ 4.

Refinement Steps: The key part in the procedure is the
implied bound refinement of [13]. This procedure extends the
functions lb, ub to arithmetic terms. For constants c, set
lb(c) = ub(c) = c. For terms of the form c|x|, the value
depends on whether the constant c is positive. If c ≥ 0, then
lb(c|x|) = c · lb(|x|) and ub(c|x|) = c · ub(|x|). If c < 0, then
lb(c|x|) = c·ub(|x|) and ub(c|x|) = c·lb(|x|) instead. For sums
of the form T1+T2, we just use lb(T1+T2) = lb(T1)+lb(T2)
and ub(T1 + T2) = ub(T1) + ub(T2). Then, for any term T ,
lb(T) and ub(T) are the smallest and largest value T can
assume when respecting the bounds that lb and ub impose on
the variables:

Lemma 5. Let |x| = T be [α
.
= β]L solved for x, and lb and

ub be bounds for [α .
= β]L. If g is a solution for [α .

= β]L,
then lb(T) ≤ g(|x|) ≤ ub(T) holds.

If lb and ub are lower and upper bounds on the solutions
for [α .

= β]L, and the linear constraints imply an equation of
the form |x| = T where T does not contain |x|, then lb(T) and
ub(T) are lower and upper bounds for |x| in [α .

= β]L. If these
bounds improve on lb(|x|) and ub(|x|) then the procedure
updates both and iterates.

VII. EXPERIMENTAL EVALUATION

The NFA2SAT solver is written in Rust and uses the SAT
solver CADICAL-1.5.2. The source code consists of about 18k
lines of Rust. Compared with the earlier version described
in a previous paper [20], we have made several extensions
to support word equations. First, the input formula ϕ is
rewritten into an equivalent formula in normal form in which
all literals are either word equations, inequalities between
variables, or (negated) regular constraints (see Section II). The
propositional encoding of regular constraints and inequalities
between variables is explained in [20] and has not changed.
Word equations are encoded as explained in Section V and the
alphabet reduction is implemented as explained in Section IV.

The bound refinement technique explained in Section VI is
used between SAT solver invocations to obtain small model
bounds and handle unsatisfiable instances, if the UNSAT core
contains (encoded) word equations.
Some types of negated constraints cannot be encoded di-

rectly because they implicitly introduce universal quantifiers.
For example, the literal ¬ contains(a·x·b, y) with variables x
and y, and constants a and b, is equivalent to ∀z1z2. z1·y·z2 ̸=
a·x·b. We handle such constraints lazily using a CEGAR-style
approach: NFA2SAT tries to find a solution that ignores these
types of constraints. If a solution is found, the solver checks
whether it satisfies the negated constraints that were ignored. If
so, the original formula is satisfiable. If some of the unhandled
negated constraints are not true, then we restart NFA2SAT with
a constraint that forces it to search for another solution.

We compare NFA2SAT with CVC5 (version 1.1.1), Z3 (ver-
sion 4.13.0), NOODLER (commit #e1e46068) and OS-
TRICH (commit #f7f0aa8c). We also include results from
NFA2SAT when the bound refinement is disabled. We run the
experiments on an Amazon EC2 M5.24xlarge instance running
Amazon Linux 2, equipped with 384 GB RAM and 96 Intel
Xeon CPUs running at 2.50 GHz. We ran 48 solvers in parallel,
with a 300 second timeout and a 16 GB memory limit per
problem.
We have evaluated our approach on the ZaligVinder [19]
benchmark set1. The set contains 82,632 problems from differ-
ent sources and includes all string problems from SMT-LIB.
Out of these problems, 33,091 are in the logical fragment sup-
ported by NFA2SAT. The others include constraints currently
unsupported by NFA2SAT, e.g., constraints on string lengths.
Table I summarizes the results. The table shows the number

of satisfiable and unsatisfiable problems solved by each solver.
It also includes the total runtime of each solver on the prob-
lems it successfully solves. On these benchmarks, NFA2SAT
is competitive with CVC5, Z3, and OSTRICH. NOODLER is
faster overall than the other solvers by a significant margin.
The baseline version of NFA2SAT solves more problems in
total than CVC5, but fewer than Z3, OSTRICH, and NOODLER.
NOODLER solves the most problems overall. The table also
shows that the bound refinement heuristic helps performance
on both satisfiable and unsatisfiable instances. It increases the
number of solved problems by 39 and reduces the total runtime
by 6,138 seconds. The table shows that the solvers have dif-
ferent characteristics. CVC5 is faster than the other solvers on
satisfiable problems but it is slower on unsatisfiable instances.
Conversely, Z3, OSTRICH, and both versions of NFA2SAT are
slower overall on satisfiable instances. NOODLER is the fastest
solver on unsatisfiable problems. NFA2SAT comes second
on unsatisfiable problems, but solves fewer problems than
NOODLER. OSTRICH is close to NOODLER in terms of the
number of solved unsatisfiable problems but it is slower. The
table also shows that NFA2SAT is faster on average than Z3,
OSTRICH, and CVC5 on the problems that it can solve, only
NOODLER is faster.

1Available at https://github.com/zaligvinder/zaligvinder

35

https://github.com/zaligvinder/zaligvinder

TABLE I: Results on the ZaligVinder Benchmarks. NFA2SAT is our baseline solver. NFA2SAT (no ref) is the same solver with
bound refinement disabled.

Solved Problems Runtimes Total (s) Runtimes Average (s)

Solver Sat Unsat Total Sat Unsat Total Sat Unsat Total

CVC5-1.1.1 25,443 7,058 32,501 1,250.40 34,285.09 35,535.49 0.05 4.86 1.09
Z3-4.13.0 25,480 7,164 32,644 43,177.51 3,083.34 46,260.85 1.69 0.43 1.42
ostrich 25,439 7,388 32,827 107,786.97 62,183.89 169,970.86 4.24 8.42 5.18
noodler 25,536 7,539 33,075 1,276.80 407.51 1,684.31 0.05 0.05 0.05
NFA2SAT 25,406 7,118 32,524 15,276.99 1,389.70 17,666.69 0.6 0.2 0.54
NFA2SAT (no ref) 25,384 7,101 32,485 21,624.50 2,180.07 23,804.57 0.85 0.31 0.73

CVC5 Z3 NOODLER OSTRICH

sa
t

un
sa
t

al
l

Fig. 6: Scatter plots comparing NFA2SAT (x-axis) with CVC5, Z3, NOODLER, and OSTRICH (y-axis). The first row contains
only satisfiable, the second row only unsatisfiable, and the last row all problems. The axes are on a logarithmic scale. The
diagonal line represents equal runtime. Points above the diagonal are problems where NFA2SAT is faster. The first dashed line
represents timeouts. The second dashed line represents failures (crashes, out-of-memory).

The scatter plots in Figure 6 show that the techniques em-
ployed by NFA2SAT and the other solvers are complementary.
Every column compares NFA2SAT with a different solver.
The leftmost plots show that CVC5 is generally faster on
satisfiable examples (points below the diagonal), but not on
all problems. The converse happens on unsatisfiable problems
(second row). One can also see that CVC5 and NFA2SAT
are good on different sets of unsatisfiable benchmarks: the
plot for unsatisfiable problems does not have many points
close to the diagonal. This behavior is even more pronounced
when we compare NFA2SAT and Z3 (second column). The
plots show a pattern where some benchmarks are easier for

NFA2SAT and others are easier for Z3, with not many points
along the diagonal. Many problems solved by NFA2SAT in
less than 1 second are harder for Z3, and conversely, many
problems solved by Z3 in less than 0.1 seconds are hard
for NFA2SAT. We can also see that Z3 has a higher startup
cost than NFA2SAT and CVC5 on these problems. The plots
comparing NFA2SAT with NOODLER show a pattern similar to
the comparison with CVC5, but NOODLER is faster overall. For
satisfiable problems, there are many cases along the diagonal,
indicating that the solvers perform equally well on these
benchmarks. However, there is also a large set of problems
where NOODLER is faster, as shown by the concentration

36

Fig. 7: NFA2SAT with and without bound refinement on SAT
and UNSAT instances, respectively.

of points below the diagonal. Despite this, NFA2SAT still
outperforms NOODLER on a subset of problems, both satis-
fiable and unsatisfiable. NOODLER is based on Z3, and thus
shares the same startup cost. The plots comparing NFA2SAT
with OSTRICH indicate that NFA2SAT is overall faster on
most problems, both satisfiable and unsatisfiable, as shown
by the majority of points above the diagonal. For many of
these problems, NFA2SAT’s advantage can be attributed to
OSTRICH’s high startup time, which is about 2 seconds. There
is a significant number of both satisfiable and unsatisfiable
problems where OSTRICH is faster, or which OSTRICHsolved
but NFA2SAT could not solve. On unsatisfiable problems,
OSTRICH solves more problems than NFA2SAT. Only a few
instances are close to the diagonal, emphasizing that NFA2SAT
and OSTRICH complement each other.
The scatter plots in Figure 7 show the impact of the bound-

refinement heuristics. The plot shows many points close to
the diagonal, which are problems where bound refinement
does not help or hurt. But most of the other points are above
the diagonal. These are problems where bound refinement
improves runtime.

VIII. CONCLUSION

We have added support for word equations to the NFA2SAT
string solver. Our approach relies on a novel SAT encoding of
word equations that is based on enumerating constant words
and matching both sides of a word equation to the same
constant word. The encoding makes use of incremental SAT
solving. To detect unsatisfiable instances, we propose an in-
complete but practical technique that derives linear constraints
on the length of variables occurring in word equations and
uses a bound-refinement algorithm. An empirical evaluation
on a large set of benchmarks demonstrates that our approach
is competitive with the state-of-the-art solvers CVC5 and
Z3. More important, the techniques employed by NFA2SAT
are complementary which brings benefits to portfolio-solving
strategies. In future work, we plan to support atoms that
constrain the lengths of strings. Additionally, we want to
explore a more diverse array of approaches to determine
unsatisfiability and optimize the SAT encoding in order to
improve the solver’s efficiency.

REFERENCES

[1] Backes, J., Bolignano, P., Cook, B., Dodge, C., Gacek, A., Luckow,
K., Rungta, N., Tkachuk, O., Varming, C.: Semantic-based automated
reasoning for AWS access policies using SMT. In: 2018 Formal
Methods in Computer Aided Design (FMCAD). pp. 1–9 (2018).
https://doi.org/10.23919/FMCAD.2018.8602994

[2] Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann,
M., Mohamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir,
A., Preiner, M., Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvc5:
A versatile and industrial-strength SMT solver. In: Fisman, D., Rosu,
G. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems - 28th International Conference, TACAS 2022, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part I.
Lecture Notes in Computer Science, vol. 13243, pp. 415–442. Springer
(2022). https://doi.org/10.1007/978-3-030-99524-9_24

[3] Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version
2.6. Tech. rep., Department of Computer Science, The University of
Iowa (2017), available at www.SMT-LIB.org

[4] Berzish, M., Day, J.D., Ganesh, V., Kulczynski, M., Manea, F., Mora, F.,
Nowotka, D.: String theories involving regular membership predicates:
From practice to theory and back. In: Lecroq, T., Puzynina, S. (eds.)
Combinatorics on Words. pp. 50–64. Springer International Publishing,
Cham (2021)

[5] Chen, T., Flores-Lamas, A., Hague, M., Han, Z., Hu, D., Kan,
S., Lin, A.W., Rümmer, P., Wu, Z.: Solving string constraints
with regex-dependent functions through transducers with priorities
and variables. Proc. ACM Program. Lang. 6(POPL) (jan 2022).
https://doi.org/10.1145/3498707, https://doi.org/10.1145/3498707

[6] Chen, Y.F., Chocholatý, D., Havlena, V., Holík, L., Lengál, O., Síč, J.:
Z3-noodler: An automata-based string solver. In: Finkbeiner, B., Kovács,
L. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems. pp. 24–33. Springer Nature Switzerland, Cham (2024)

[7] Day, J.D., Ehlers, T., Kulczynski, M., Manea, F., Nowotka, D., Poulsen,
D.B.: On Solving Word Equations Using SAT, p. 93–106. Springer In-
ternational Publishing (2019). https://doi.org/10.1007/978-3-030-30806-
3_8

[8] Diekert, V.: Makanin’s algorithm for solving word equations with
regular constraints. Tech. Rep. 1998/02, University of Stuttgart (March
1998). https://doi.org/10.18419/opus-2419, https://elib.uni-stuttgart.de/
bitstream/11682/2436/1/420_1.pdf

[9] Diestel, R.: Graph Theory, Graduate Texts in Mathematics, vol. 173.
Springer (1997)

[10] Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving.
Electronic Notes in Theoretical Computer Science 89(4), 543–560
(2003). https://doi.org/10.1016/S1571-0661(05)82542-3, bMC’2003,
First International Workshop on Bounded Model Checking

[11] Hojjat, H., Rümmer, P., Shamakhi, A.: On strings in software model
checking. In: Lin, A.W. (ed.) Programming Languages and Systems.
pp. 19–30. Springer International Publishing, Cham (2019)

[12] Jez, A.: Word Equations in Nondeterministic Linear Space. In:
Chatzigiannakis, I., Indyk, P., Kuhn, F., Muscholl, A. (eds.)
44th International Colloquium on Automata, Languages, and
Programming (ICALP 2017). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 80, pp. 95:1–95:13. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2017).
https://doi.org/10.4230/LIPIcs.ICALP.2017.95

[13] Jovanović, D., de Moura, L.: Cutting to the Chase Solving Linear
Integer Arithmetic, pp. 338–353. Springer Berlin Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22438-6_26

[14] Kan, S., Lin, A.W., Rümmer, P., Schrader, M.: CertiStr: a certified
string solver. In: Popescu, A., Zdancewic, S. (eds.) CPP ’22: 11th ACM
SIGPLAN International Conference on Certified Programs and Proofs,
Philadelphia, PA, USA, January 17 - 18, 2022. pp. 210–224. ACM
(2022). https://doi.org/10.1145/3497775.3503691

[15] Karhumäki, J., Mignosi, F., Plandowski, W.: The expressibility of
languages and relations by word equations. J. ACM 47(3), 483–505
(may 2000). https://doi.org/10.1145/337244.337255

[16] Kiezun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: Hampi:
A solver for string constraints. In: Proceedings of the Eighteenth
International Symposium on Software Testing and Analysis. p. 105–116.
ISSTA ’09, Association for Computing Machinery, New York, NY, USA
(2009). https://doi.org/10.1145/1572272.1572286

37

https://doi.org/10.1145/3498707
https://elib.uni-stuttgart.de/bitstream/11682/2436/1/420_1.pdf
https://elib.uni-stuttgart.de/bitstream/11682/2436/1/420_1.pdf

[17] Klieber, W., Kwon, G.: Efficient CNF encoding for selecting 1 from
N objects. In: Fourth Workshop on Constraints in Formal Verification
(CFV) (2007)

[18] Kulczynski, M., Lotz, K., Nowotka, D., Poulsen, D.B.: Solving string
theories involving regular membership predicates using SAT. In: Le-
gunsen, O., Rosu, G. (eds.) Model Checking Software. pp. 134–151.
Springer International Publishing, Cham (2022)

[19] Kulczynski, M., Manea, F., Nowotka, D., Poulsen, D.B.: Za-
ligVinder: A generic test framework for string solvers. Jour-
nal of Software: Evolution and Process 35(4), e2400 (2023).
https://doi.org/https://doi.org/10.1002/smr.2400

[20] Lotz, K., Goel, A., Dutertre, B., Kiesl-Reiter, B., Kong, S., Majumdar,
R., Nowotka, D.: Solving string constraints using SAT. In: Computer
Aided Verification: 35th International Conference, CAV 2023, Paris,
France, July 17–22, 2023, Proceedings, Part II. pp. 187–208. Springer-
Verlag, Berlin, Heidelberg (2023). https://doi.org/10.1007/978-3-031-
37703-7_9

[21] Lu, Z., Siemer, S., Jha, P., Manea, F., Day, J., Ganesh, V.: Z3-
alpha: a reinforcement learning guided smt solver. System Descrip-
tion: SMT-COMP 2023 (July 2023), https://smt-comp.github.io/2023/
system-descriptions/z3-alpha.pdf

[22] Makanin, G.S.: The problem of solvability of equations in a free
semigroup. Mathematics of The Ussr-sbornik 32, 129–198 (1977),
https://api.semanticscholar.org/CorpusID:7073856

[23] de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proceedings
of the Theory and Practice of Software, 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems.
p. 337–340. TACAS’08/ETAPS’08, Springer-Verlag, Berlin, Heidelberg
(2008)

[24] Plandowski, W.: Satisfiability of word equations with constants is
in nexptime. In: Proceedings of the thirty-first annual ACM sym-
posium on Theory of Computing. STOC99, ACM (May 1999).
https://doi.org/10.1145/301250.301443

[25] Plandowski, W., Rytter, W.: Application of Lempel-Ziv encodings to
the solution of word equations, p. 731–742. Springer Berlin Heidelberg
(1998). https://doi.org/10.1007/bfb0055097

[26] Rungta, N.: A billion SMT queries a day (invited paper). In: Shoham,
S., Vizel, Y. (eds.) Computer Aided Verification. pp. 3–18. Springer
International Publishing, Cham (2022). https://doi.org/10.1007/978-3-
031-13185-1_1

[27] Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song,
D.: A symbolic execution framework for JavaScript. In: 2010
IEEE Symposium on Security and Privacy. pp. 513–528 (2010).
https://doi.org/10.1109/SP.2010.38

[28] Schulz, K.U.: Makanin’s algorithm for word equations-two improve-
ments and a generalization, pp. 85–150. Springer Berlin Heidelberg
(1992). https://doi.org/10.1007/3-540-55124-7_4

[29] Yu, F., Alkhalaf, M., Bultan, T., Ibarra, O.H.: Automata-based symbolic
string analysis for vulnerability detection. Formal Methods in System
Design 44(1), 44–70 (2014). https://doi.org/10.1007/s10703-013-0189-1

38

https://smt-comp.github.io/2023/system-descriptions/z3-alpha.pdf
https://smt-comp.github.io/2023/system-descriptions/z3-alpha.pdf
https://api.semanticscholar.org/CorpusID:7073856

Formal Methods in Computer-Aided Design 2024

SMT-D: New Strategies for Portfolio-Based SMT
Solving

Clark Barrett1, 5, Pei-Wei Chen3,∗, Byron Cook1, Bruno Dutertre1, Robert B. Jones1,
Nham Le1,2,∗, Andrew Reynolds1,6, Kunal Sheth4,∗, Christopher Stephens1, and Michael W. Whalen1

1Amazon Web Services, Seattle, USA, {byron, dutebrun, rbtjones, chrisss, mww}@amazon.com
2University of Waterloo, Warterloo, Canada, nham.van.le@uwaterloo.ca

3University of California, Berkeley, USA, pwchen@berkeley.edu
4University of Illinois, Urbana-Champaign, USA, kunal@kunalsheth.info

5Stanford University, Stanford, USA, barrett@cs.stanford.edu
6University of Iowa, Iowa City, USA, andrew-reynolds@uiowa.edu

Abstract—We introduce SMT-D, a tool for portfolio-based
distributed SMT solving. We propose a general architecture
consisting of two main components: (i) solvers extended with the
capability of sharing and importing information on the fly while
solving; and (ii) a central manager that orchestrates and monitors
solvers while also deciding which information to share with which
solvers. We introduce new information-sharing strategies based
on the idea of maximizing the amount of useful diversity in the
system. We show that on hard benchmarks from recent related
work, SMT-D instantiated with the cvc5 SMT solver achieves
significant speed-up over sequential performance, is competitive
with existing portfolio approaches, and contributes a number of
unique solutions.

I. INTRODUCTION

Solvers for satisfiability modulo theories (SMT) are used
as general-purpose constraint solvers in a wide variety of
applications, including those arising in computer science [6],
[10], mathematics [12], [21], operations research [20], and
more. Unsurprisingly, as users push SMT solvers to solve
more diverse and challenging problems, solver performance
becomes the limiting factor in many applications.
Today, state-of-the-art SMT solvers like cvc5 [2], Yices [8],

and Z3 [7] do not benefit from additional cores, and if the
solving job times out or crashes, any work done during the
solving attempt is lost. An effective strategy for distributed
SMT solving could address both issues: it can help scale SMT
solving across multiple threads and machines, and by sharing
information among solver instances, any progress made can
be retained and used by others, even if one of the instances
crashes or fails.
Two main approaches to distributed SMT solving have been

explored: portfolio solving and divide-and-conquer. Portfolio
solving is essentially a race between multiple independent
SMT solver instances. Each solver is different in some way:
either it is a completely different solver, or it is configured
differently, or it is provided with a different (but logically

*These authors did much of the work on this project and did so during
internships at Amazon Web Services.

equivalent) input. Portfolio solving aims to leverage the well-
known high variance that often exists when solving equivalent
SMT problems: the hope is that one of the solvers in the
portfolio finishes quickly. Portfolio solving can be enhanced by
sharing information among the solver instances. Typically, this
information consists of formulas that the SMT solvers have
learned that can be used to prune the search space. In divide-
and-conquer solving, a single problem is partitioned in such
a way that if each partition is solved, this provides a solution
to the original problem. The main challenge is finding a way
to divide the problem that actually improves performance.
In this paper, we introduce SMT-D, a new tool for portfolio-

based distributed SMT solving. SMT-D’s architecture consists
of two main components: (i) solvers extended with the capa-
bility to share and import information on the fly while solving;
and (ii) a central manager that orchestrates and monitors
solvers while also deciding which information to share with
which solvers. We also introduce a new information-sharing
strategy based on the idea of maximizing the amount of
“good” diversity in the system. On hard benchmarks from
recent work [22], SMT-D instantiated with the cvc5 SMT solver
achieves significant speed-ups over sequential performance, is
competitive with existing portfolio approaches, and contributes
a number of unique solutions.
In summary, our contributions include:

• a flexible and general architecture for portfolio-based
SMT solving with information sharing;

• new portfolio strategies including delayed sharing and
guided randomization;

• an implementation in SMT-D; and
• an evaluation of SMT-D and existing systems on several
sets of challenging benchmarks.

The rest of the paper is organized as follows. Section II
covers background and related work. Section III describes the
architecture of SMT-D. Section IV explains our novel portfolio
strategies, and Section V provides additional implementation
details. Experimental results are reported in Section VI, and

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_10 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_10
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_10
https://creativecommons.org/licenses/by/4.0/

Algorithm 1: The CDCL(T) loop
Input : an SMT formula F
Output: SAT or UNSAT

1 clauseDB ← toCNF (F);
2 while True do
3 do
4 conflict ← BooleanPropagate(clauseDB);
5 changed ← False;
6 if conflict = ∅ then
7 conflict , changed ← theoryCheck() ;
8 while changed ∧ conflict = ∅;
9 if conflict ̸= ∅ then
10 level , lemma ← resolveConflict(conflict);
11 clauseDB ← clauseDB ∪ lemma;
12 if level < 0 then
13 return UNSAT;
14 backtrack(level) ;
15 else
16 if nextLiteral() = NULL then
17 return SAT ;

Section VII concludes.

II. PRELIMINARIES

We assume the standard logical setting for SMT with the
usual notions of terms, interpretations, and theories (see, e.g.,
[5]). We assume a fixed background theory T (which could
be a composition of one or more individual theories). A T -
interpretation is an interpretation that interprets symbols in T
as expected. An atom is a term of sort BOOL that does not
contain any proper sub-terms of sort BOOL. A literal is either
an atom or the negation of an atom. A clause is a disjunction
of literals, and a cube is a conjunction of literals. A formula is
a term of sort BOOL and is satisfiable (resp., unsatisfiable) if
it is satisfied by some (resp., no) T -interpretation. A formula
whose negation is unsatisfiable is valid.

A. CDCL(T)-Based SMT Solvers

Most modern SMT solvers are based on the CDCL(T)
framework [17], in which a SAT solver and one or more theory
solvers cooperate. The SAT solver incrementally builds a truth
assignment for the Boolean skeleton of the formula, obtained
by replacing each unique atom by a Boolean variable. It does
this using a standard CDCL loop that is modified to also
take into account theory reasoning. The modified CDCL(T)
approach is shown in Algorithm 1. Initially, an input formula
F is converted to conjunctive normal form (CNF), and each
clause is stored in a clause database. The main loop first calls
Boolean propagation, which may assign some atoms to true
or false. If Boolean propagation produces no conflicts, then
the theory solvers are called to check for theory conflicts.
These two steps repeat until a fixed point is reached. If there
is a conflict, it is resolved by learning a conflict lemma and
backtracking to an earlier level in which there is no conflict.

Otherwise, the nextLiteral function is used to make a case
split on a new literal. More details can be found in [5].

B. Portfolio Solving with Lemma Sharing

SMT solvers are highly sensitive. Small changes to the input
formula or solver heuristics can result in orders of magnitude
difference in solving time [11]. While a cause of frustration for
users, this phenomenon can be leveraged to create an effective
portfolio solving strategy: multiple solvers (each configured
differently or with permuted, but logically equivalent, inputs)
are run in a “racing” mode and the result of the fastest one
is returned. This approach has been explored extensively for
both SAT and SMT solving [1], [15], [16], [24] and produces
reliable speed-ups [23]. Still, portfolio solving is limited by the
performance of the best and luckiest individual solver, leading
to diminishing returns with increasing parallelism. Additional
performance can be obtained with information sharing. Each
solver in the portfolio shares its learned conflict lemmas with
the others, with the hope that this exchange of information
will help find the solution faster.
Implementing a lemma-sharing portfolio in practice is

highly non-trivial. System-wise, one must provide scalability,
fault tolerance, and low overhead; algorithmic-wise, one must
find a good balance between sharing useful information and
overloading the system with too many lemmas. Moreover,
a well-designed distributed solver should be modular and
general, leaving room for future extensions. Ideally, it should
also accommodate a wide range of different solvers, support
new sharing strategies, and be compatible with other parallel
strategies such as partitioning. After a review of related work,
we discuss our design and implementation, including design
decisions that aim to meet the criteria mentioned above.

C. Related Work

Parallel strategies for SAT solving have been explored
extensively [1], [13], [14], [24]. SMT solvers must take into
account the more sophisticated CDCL(T) architecture and the
different performance profiles of SMT applications. However,
the two main approaches for parallel SAT solving are also
found in the existing research literature on parallel SMT
solving, namely portfolio solving and partitioning.

Portfolio solving for SMT. Z3 was the first SMT solver
to implement portfolio solving with information sharing [23].
The Z3 implementation focuses on a shared-memory imple-
mentation and achieves a speed-up of 3.5x on average for
moderately difficult integer difference logic benchmarks using
a portfolio of four copies of Z3. The sharing strategy used is
simple: lemmas with eight literals or fewer are shared, and
others are not. Shared lemmas are put into a queue, and each
solver in the portfolio checks its queue whenever it backtracks
to decision level 0. Unfortunately, portfolio solving is no
longer supported in recent versions of Z3.
SMTS [15] is another system implementing portfolio solv-

ing with information sharing. As with the Z3 approach,
lemmas to be shared are loaded into queues that are accessed
when the solvers backtrack to decision level 0. SMTS uses a

40

central database to store shared lemmas. A filtering heuristic
is used to decide which lemmas to add to the database, and a
selection heuristic is used to decide which lemmas to share
from the database. SMTS obtains its best results using a
filter that discards lemmas with more than four literals and
a selection heuristic that randomly samples from the database.
The SMTS authors specifically flag the need for better filtering
and selection techniques in their discussion of future work.
Our work builds on and extends these previous approaches in
several ways, as we discuss in the next section.

Partitioning in SMT. SMTS [15] implements several par-
titioning strategies that outperform sequential solving. Relat-
edly, Wilson et al. [22] implement a partitioning-based parallel
solver using cvc5 (which we will refer to as CVC5-P going
forward) and show that it outperforms traditional portfolio
solving on a set of challenging benchmarks. CVC5-P does
not use any information sharing, leaving the integration of
sharing to future work. SMTS does explore a limited form of
sharing mixed with partitioning: each partition can be solved
using a portfolio with lemma sharing, which yields even better
performance. The focus of this paper is on portfolio solving
with sharing but without partitioning. We aim to build a
robust and high-performance solution that could be expanded
to include partitioning strategies in future work.

III. AN ARCHITECTURE FOR PORTFOLIO-BASED SMT
SOLVING

In this section, we describe a general architecture for
portfolio-based SMT solving and contrast it with prior ap-
proaches. Figure 1 depicts our architecture. It is designed to
run on either a cluster of computing nodes or a multicore
machine. Multiple solver instances (called workers) work on
the same problem and share information through a central
broker. The workers are SMT solvers instrumented to be able
to export and import learned lemmas on the fly. Workers
also track local statistics about lemma imports, exports, and
filtering.
The central broker plays two roles. First, in the control

plane (Fig. 1a), it manages the system by starting, config-
uring, monitoring, and terminating workers, and by monitor-
ing the overall system and network health (through period-
ically transmitted ping/pong messages). Second, in the data
plane (Fig. 1b), it controls system data flow by managing
lemma exchange between workers and by tracking and mon-
itoring solver and system-level lemma statistics. In particular,
the data-plane broker (i) tracks which lemmas arrive from
which individual workers and (ii) decides which lemmas
to forward to which workers. This already enables a finer
level of control than in previous approaches, where lemma
sources are not tracked and static selection criteria are used to
decide which lemmas to share. The broker tracks both control
and data, including statistics such as the number of lemmas
exported or imported so far, time spent in various phases of
processing those lemmas, whether a worker has solved its copy
of the problem, and so forth.

We advocate a simple hub-and-spoke architecture, similar
to that used in SMTS [16]. Using a central broker simplifies
coordination and does not require workers to synchronize with
each other. We have also observed empirically that in our
implementation, the broker is not a communication bottleneck
(see Sec. VI). Our hub-and-spoke architecture tolerates worker
failure and communication lag or failure. The design makes
progress as long as the central broker and some workers are
active. The broker is a single point of failure, but can be
engineered to be robust.

A. Workers

As mentioned above, the workers are SMT solvers modified
to support importing and exporting of learned lemmas during
search. This allows for more fine-grained information sharing
than prior approaches, where lemmas are only imported at
decision level 0, and requires modifying the CDCL loop
as shown in Algorithm 2. The loop now calls an export
procedure whenever a new lemma is learned as a result of
conflict analysis (Line 14). Additionally, during the propaga-
tion phase, the worker adds lemmas received from the broker
to its database by invoking an import procedure (Line 7).
While these changes to CDCL are non-trivial, we can often
leverage extensions already present in CDCL SAT solvers to
support SMT functionality such as theory propagation. These
mechanisms can typically be repurposed for lemma sharing.
The worker sends telemetry to the broker whenever lemmas

are exported or imported (Line 9 and Line 15). Each solver
has a mechanism for locally filtering lemmas. The goal is to
import and export only useful lemmas. We discuss various
considerations for local filtering in Section V.

B. Central Broker

The central broker configures both the workers and network
communication channels and manages both the control and
data planes. During solving, it coordinates the exchange of
information between workers and detects termination.
A major role of the central broker is to distribute lemmas

learned by one worker to the other workers, while discarding
duplicates and managing additional filters. Because multiple
workers can learn and export identical lemmas, the broker
ensures that each unique lemma is only forwarded (at most)
once to each worker. Again, this offers a more fine-grained
control mechanism than prior work, in which all lemmas up
to a certain size are always shared (Z3) or lemmas are sampled
randomly (SMTS) from the database of all shared lemmas.
The core broker algorithm is shown in Algorithm 3. The

broker maintains two global variables: archivedLemmas is
the set of all lemmas it has received; and lemmaSolverMap
is a map from lemmas to worker ids that keeps track of the
origin(s) of each lemma. When the broker receives a lemma,
the lemma is canonicalized by sorting the set of its literals
(Line 5). This ensures that one source of lemma redundancy is
eliminated. The broker then uses this canonical form to detect
whether the lemma is new (i.e., not in archivedLemmas) and
to update lemmaSolverMap. Function shouldSend controls

41

Broker

System Monitor/Dashboard

Solver

Solver
telemetry

Ping/
Pong

Solver

Solver
telemetry

Ping/
Pong

Solver

Solver
telemetry

Ping/
Pong

...

...

C++

gRPC

Python

(a) Control Plane

Broker

LemmaSolverMap

Solver

Lemma
import
queue

...

...Solver

Lemma
import
queue

Solver

Lemma
import
queue

C++

gRPC

Python

(b) Data Plane

Figure 1: Architecture of SMT-D

Algorithm 2: Modified CDCL(T) loop with sharing
Input : an SMT formula F
Output: SAT or UNSAT

1 clauseDB ← toCNF (F);
2 while True do
3 do
4 conflict ← BooleanPropagate(clauseDB);
5 changed ← False;
6 if conflict = ∅ then
7 newLemmas ← importLemmas();
8 clauseDB ← clauseDB ∪ newLemmas;
9 sendtelemetry();
10 conflict , changed ← theoryCheck();
11 while (newLemmas ̸=∅ ∨changed) ∧ conflict=∅;
12 if conflict ̸= ∅ then
13 level , lemma ← resolveConflict(conflict);
14 exportLemma(lemma);
15 sendtelemetry();
16 clauseDB ← clauseDB ∪ lemma;
17 if level < 0 then
18 return UNSAT;
19 backtrack(level);
20 else
21 if nextLiteral() = NULL then
22 return SAT;

the timing of when lemmas are transmitted to the workers.
When shouldSend is true, the broker sends each lemma l
stored in lemmaSolverMap to the workers that did not export
it. We discuss implementation choices for shouldSend in
Section V.

Algorithm 3: The broker’s core lemma exchange
routine
1 archivedLemmas ← ∅;
2 lemmaSolverMap ← ∅;
3 while True do
4 ℓ, w ← readMessage();
5 ℓ← canonicalize(ℓ);
6 if ℓ ∈ archivedLemmas then
7 continue;
8 lemmaSolverMap[ℓ].add(w);

9 if shouldSend() then
10 for ℓ ∈ lemmaSolverMap do
11 send(ℓ, allWorkers \ lemmaSolverMap[ℓ]);
12 lemmaSolverMap.pop(ℓ);
13 archivedLemmas.add(ℓ);

IV. PORTFOLIO STRATEGIES
Constructing effective strategies for portfolio solving with

information sharing requires balancing trade-offs from a num-
ber of different goals:

• Maximize diversity: workers should work on different
parts of the search space to avoid redundant work.

• Share useful lemmas: ideally, workers should export lem-
mas that are useful to all instances. A common heuristic
for evaluating the value of a lemma is its size (i.e.,
number of literals in the clause). Smaller clauses are more
likely to be useful, as they prune a larger portion of the
search space.

• Avoid overwhelming solvers: each solver maintains a
database containing both locally-learned lemmas and
lemmas imported from the broker. Core solver perfor-

42

mance degrades as the size of the database grows. Sharing
too many lemmas can thus be detrimental to overall
system performance.

• Manage communication overhead: we do not want to
overload the communication network with too much data,
as this also slows down the system.

Our proposed architecture supports a wide variety of strat-
egy options. We mention two general strategies here, and then
discuss specific parameter settings used in our implementation
in Section V. The first strategy is delayed sharing, which
avoids sharing a large set of lemmas that all solvers discover
locally. The second strategy is a novel approach to diversity
that we call guided randomization.

A. Delayed Sharing

In initial experiments with an early prototype, we observed
that for some large problems, workers initially export a large
number of lemmas and delay calling the importLemmas
procedure. Later, when they do try to import the lemmas,
the system stalls due to the large amount of communication
traffic. Telemetry revealed that this was caused by the initial
preprocessing and theory reasoning performed by the solvers.
Before entering the CDCL loop proper, SMT solvers per-

form formula simplification, conversion to clausal form, and
some eager theory reasoning. It is possible for solvers to
produce many lemmas during this phase; if each worker is an
instance of the same SMT solver, such lemmas are likely to be
learned by all solvers working on the problem.To address this
issue, we added a delayed sharing mechanism, which ensures
that only lemmas learned after the preprocessing phase are
exported. Enabling this mechanism boosts performance on all
of our benchmarks.

B. Guided Randomization

Baseline mechanisms for diversifying solver behavior in-
clude selecting different random seeds and modifying solver
configurations to ensure that different instances use different
search parameters. However, these basic mechanisms have
diminishing benefit as we increase portfolio size, as we show
in Section VI-B. Using the telemetry collected by the broker,
we can observe the number of uniquely learned lemmas (i.e.,
those learned by a single worker). This metric is a reasonable
proxy for system diversity, and indeed, in early experiments,
we observed that this number plateaus as we scale the number
of workers.
We address this problem by dividing the pool of workers

into two clusters, a standard cluster and a noisy cluster. Each
cluster uses different levels of randomness and different scor-
ing and filtering heuristics. Scoring and filtering can also treat
lemmas local to the cluster differently than clauses from other
clusters. The noisy cluster uses a high degree of randomness.
Intuitively, we expect that solvers in this cluster will learn
mostly useless clauses, because they are using heuristics that
are far away from the default configurations which have been
tuned to be effective. They are also likely to end up exploring
parts of the search space that low-randomness solvers ignore.

But once in a while, noisy solvers may get lucky and learn
clauses that can be useful to solvers in the other cluster.
To maintain diversity in the noisy cluster, we keep the

clause databases for solvers in the cluster somewhat isolated.
We do this by configuring solvers in noisy clusters to ignore
each other and only import lemmas that the central manager
determines are highly likely to be useful, (e.g., unit clauses).
We discuss a concrete instantiation of this strategy in the next
section.

V. IMPLEMENTATION

SMT-D is a distributed SMT solver that implements our
proposed architecture and strategies.For the worker instances,
we use a version of cvc5 with the main loop modified
to support importing and exporting clauses, as discussed in
Section III-A. Workers run in separate processes, and each
worker process has a separate wrapper thread that manages
the control plane interface and networking details.
The central broker is written in Python. Communication

between broker and workers is implemented with gRPC [9].
We chose gRPC instead of lower-level mechanisms like sock-
ets, because gRPC’s high-level API provides better monitoring
capabilities and has sufficient performance for (at least) 64
solvers. gRPC also allows us to abstract the parallel and
distributed aspects of the system. Thus, SMT-D can be de-
ployed either on a single multicore machine or on a cluster of
machines in the cloud.
To export lemmas, we serialize them as strings in the SMT-

LIB format [4]. Correspondingly, lemma import requires pars-
ing SMT-LIB strings. This adds some overhead1 but provides
a significant interoperability advantage, as all SMT solvers
can parse and print terms in SMT-LIB format. More compact
formats could be used at the cost of increased implementation
effort and reduced interoperability. For example, SMTS uses
a dedicated binary format, but this limits the choice of solvers
to those that support this format. Choosing SMT-LIB reduces
the cost of adding additional solvers beyond cvc5 to SMT-D.
As explained previously, SMT-D implements comprehensive

telemetry for both the control and data planes. We found this
real-time information about the solving process at both the lo-
cal and global levels to be crucial when debugging the system,
evaluating different portfolio configurations, and evaluating
lemma scoring and filtering strategies. The implementation is
heavily parameterized, so that whenever possible, users can
choose configuration options at runtime, rather than having to
change hard-coded configuration settings.

A. Local Filtering

Several considerations must be taken into account at the
worker level. SMT solvers can dynamically create new atoms
and new symbols during search. This poses a soundness
problem in a distributed setting as one must ensure that
new symbols created by a solver instance are interpreted

1So far, this has not been a performance limiter, as analysis shows that
individual cvc5 workers can import at least 1,000 lemmas/second with <5%
parsing overhead. None of the benchmarks reach that level.

43

consistently by other instances. We currently avoid this issue at
the export stage by filtering out lemmas that contain symbols
not present in the original formula.2 New theory atoms are
fine as long as they do not introduce new symbols. More
sophisticated approaches are possible, but require a mechanism
for exporting the definitions of new symbols in a canonical
way. Implementing such a mechanism requires extending the
baseline SMT solver in a non-trivial way, and we leave it for
future work.
As mentioned, our primary goal when filtering is to only

export useful lemmas. As in prior work, we use the number
of literals in the lemma as our main export filter.
Importing lemmas has a cost. The central broker aims to

limit redundancy by only sending a given lemma once to each
worker. It is still possible for a worker to produce a lemma
internally before learning that another worker has produced the
same lemma. Thus, we check in the import procedure whether
an imported lemma has already been discovered locally. If
so, we drop it. This can be implemented efficiently using
mechanisms such as hashing and Bloom filters.

B. Sending Lemmas from the Broker

Our broker uses two indicators to determine when to send
lemmas. The first is the wall clock time elapsed since the
last lemma transmission. The other is the number of unsent
lemmas for a particular worker in the lemmaSolverMap map.
Function shouldSend returns true if the elapsed time is greater
than a parameter delay or if the number of unsent lemmas is
larger than a threshold maxQueueSize. By setting these two
parameters, the broker can implement different communication
policies. It can send lemmas in size-driven batches (like
SMTS [15]), in time-driven epochs (like Mallob [19]), or
both. We found empirically that so far, the best results come
from sharing lemmas individually as soon as they are received.
The current sharing limiter is cvc5 parser performance, which
supports importing at least 1,000 lemmas per worker per
second. With clause sharing filtered by size ≤ 8, only one of
the benchmarks approaches that limit, even with 64 workers. If
we encounter network bandwidth limitations at some point, we
expect that time-driven epochs will provide the best efficiency.

C. Monitoring

SMT-D monitors the number of lemmas imported and ex-
ported by each worker. Information from solver wrappers is
used to monitor message latency and broker/solver roundtrip
times. The lemmaSolverMap map also tracks how many
solvers independently learned each lemma, that is, the number
of lemmas learned by exactly one solver, two solvers, and so
forth. This helps dynamically measure diversity in the system,
including the amount of redundant work being performed by
different solvers. The broker also maintains its own counts of
the number of exported and imported lemmas for each worker.
Mismatches between the numbers stored in the broker and
the numbers reported by the workers mean that the system is

2This problem does not occur in the problems in our evaluation, as problems
in these logics do not introduce new symbols.

Figure 2: Scalability of SMT-D.

Figure 3: Guided Randomization (CS-GR) vs naive Clause
Sharing (CS). Dots on the upper and right-most edges are
problems that time out with CS and CS-GR, respectively.

overloaded (thus messages are late or dropped) or that there is
a bug. During the development of SMT-D, the monitor helped
detect multiple bugs and helped inform the design of our
lemma-sharing heuristics.

VI. EVALUATION
We measure SMT-D performance on the set of benchmarks

used in [22], which consists of 214 challenging benchmarks
taken from the Cloud track of SMTCOMP22 [18] and other
problems from the SMT-LIB benchmark library [3]. The
benchmarks come from five SMT-LIB logics: QF_LRA (139),
QF_IDL(48), QF_LIA (16), QF_UF (7), and QF_RDL (4).

44

Benchmarks SMT-D baseline SMT-D 64x CS SMT-D 64x CS-GR SMTS baseline SMTS 64x CS CVC5-P 64x
Category Count Solved PAR-2 Solved PAR-2 Solved PAR-2 Solved PAR-2 Solved PAR-2 Solved PAR-2

QF_LRA 139 90 154 121 61 (↓60%) 120 60 (↓61%) 117 69 127 41 (↓41%) 99 130 (↓16%)
QF_IDL 48 1 114 20 72 (↓37%) 21 70 (↓39%) 8 99 15 82 (↓17%) 5 107 (↓6%)
QF_LIA 16 0 38 8 22 (↓42%) 9 20 (↓47%) 11 13 14 11 (↓15%) 1 36 (↓5%)
QF_UF 7 2 14 3 11 (↓21%) 7 2 (↓86%) 6 5 6 3 (↓40%) 4 9 (↓36%)

QF_RDL 4 0 10 2 6 (↓40%) 2 6 (↓40%) 0 10 0 10 (0%) 0 10 (0%)

SAT 115 52 172 86 83 (↓52%) 86 82 (↓52%) 83 87 99 44 (↓49%) 59 151 (↓12%)
UNSAT 85 41 124 68 55 (↓56%) 73 43 (↓65%) 59 75 63 63 (↓16%) 50 106 (↓15%)

UNKNOWN 14 0 34 0 34 (0%) 0 34 (0%) 0 34 0 34 (0%) 0 34 (0%)

ALL 214 93 330 154 171 (↓48%) 159 159 (↓52%) 142 196 162 141 (↓28%) 109 291 (↓12%)

Table I: Results comparing SMT-D with other distributed solving tools. PAR-2 scores in thousands.

The goal of our evaluation is to understand the value
and potential of our clause-sharing mechanism. Our first set
of experiments evaluates different options and configurations
of SMT-D (see Section VI-B). This experiment shows the
effectiveness of clause sharing over no sharing and the value
of guided randomization. Our second set of experiments
compares SMT-D with other tools.

A. Configuration

We use a competition build of cvc5 with the elective
CLN and GLPK build options enabled. For each logic, we
configure cvc5 workers with different sets of options to
enhance diversity. These option sets are listed in Table II
and are based on the authors’ knowledge of the tool and
the configurations typically used in the SMT competition. We
populate the portfolio by first instantiating a cvc5 instance
for each set of options. If we have more workers available
in the portfolio, we cycle through the different option sets
again, but this time using a different decision engine from the
default one for that logic (--decision=justification if the default
is --decision=internal and --decision=internal otherwise). After
this, we continue to cycle through the different sets of options,
this time using only --decision=internal and using a different
random seed for each instance. When using noisy solvers,
only solvers with --decision=internal are used for the noisy
partition.
Table II lists the different sets of options used for each logic.

The first set of options listed for each logic is the one used
when running a single instance of cvc5 for that logic.
In all experiments, we set the timeout for solving each query

to be 1200 seconds, the same timeout used in the parallel
and cloud tracks of the SMT competition (in both 2022 and
2023) [18]. Experiments were performed on Amazon EC2
c6a.48xlarge instances, with 96 physical cores and 384 GB
of RAM.
Our main metric used for comparison is the PAR-2 score

used in [22] and the annual SAT competition. PAR-2 is the sum
of run times for all instances, but where unsolved instances
receive a score of twice the timeout value (1200× 2 = 2400).
This provides a single metric that takes into account both
runtime and number of benchmarks solved. The lower the
PAR-2 score, the better. We also use cactus plots to show
the number of solved instances (y-axis) within a limit of
s seconds per instance (x-axis). We are primarily interested

Logic Options
QF_LRA, QF_RDL --miplib-trick true
(option set 1) --miplib-trick-subs 4

--use-approx true
--lemmas-on-replay-failure true
--replay-early-close-depth 4
--replay-lemma-reject-cut 128
--replay-reject-cut 512
--unconstrained-simp true
--use-soi true

(option set 2) --restrict-pivots false
--use-soi true
--new-prop true
--unconstrained-simp true

(option set 3) (defaults only)
QF_LIA, QF_IDL --miplib-trick true
(option set 1) --miplib-trick-subs 4

--use-approx true
--lemmas-on-replay-failure true
--replay-early-close-depth 4
--replay-lemma-reject-cut 128
--replay-reject-cut 512
--unconstrained-simp true
--pb-rewrites true
--ite-simp true
--simp-ite-compress true
--use-soi false

(option set 2) --miplib-trick true
--miplib-trick-subs 16
--use-approx true
--lemmas-on-replay-failure true
--replay-early-close-depth 4
--replay-lemma-reject-cut 16
--replay-reject-cut 64
--unconstrained-simp true
--pb-rewrites true
--ite-simp true
--simp-ite-compress true
--use-soi true

(option set 3) (defaults only)
QF_UF (defaults only)

Table II: Options used in cvc5 portfolios

in the effectiveness of different parallelization strategies and
implementations.

B. Scalability and Effectiveness of Guided Randomization

We first report on scalability experiments of SMT-D, both
with and without sharing. We also show the effect of adding
guided randomization. When using guided randomization, we
divide the portfolio into two clusters: a standard cluster, which
uses default cvc5 randomness settings, and a noisy cluster,
which assigns the cvc5 rnd_freq option to 75%. This option

45

controls how often the SAT decision tries to pick a random
variable instead of a heuristically-driven choice. We assign
25% of the workers to the noisy cluster and 75% to the
standard cluster.3 Solvers in the standard cluster import and
export clauses of length ≤ 8. In the noisy cluster, clauses of
length ≤ 4 are exported, but only unit clauses are imported.
To distinguish the different configurations of SMT-D, we

use CS for configurations with clause sharing and CS-GR for
configurations with clause sharing and guided randomization.
Fig. 2 shows how different configurations of SMT-D scale with
the number of workers. The figure includes results for baseline
cvc5, portfolios of 4, 16, and 64 workers, with and without
sharing, and a run of 64 workers with guided randomization.
Specific numbers for three of the configurations (baseline, 64x
CS, and 64x CS-GR) can be found in Table I.
We observe that SMT-D scales nicely when going from 1

to 64 solvers. In addition, clause sharing improves perfor-
mance for all portfolio sizes greater than four, and guided
randomization provides an additional boost. Our experiments
showed that guided randomization does not help much until we
reach portfolio sizes of more than 32. We suspect additional
portfolio members add diversity until a point of diminishing
returns where the guided randomization helps. This is why
we only include results for CS-GR for a portfolio of 64. A
comparison of the 64x CS configuration with and without
guided randomization is shown in Fig. 3. While there is
orthogonality, overall CS-GR improves performance, including
by more than 2x for a significant number of problems (dots to
the left of the top “2x” line). As a whole, among all instances
solved by both CS and CS-GR, there are 24 instances where
CS-GR is more than 2x faster than CS, and only 5 instances
where CS-GR is 2x slower. CS-GR solves 5 more problems,
and improves the PAR-2 score by 12k (7%) over CS.
Though we did not measure it precisely, total memory con-

sumption per solver is relatively stable, which is good news for
the distributed case where cores do not share memory. Broker
memory was not a significant issue in these experiments.
Detailed studies of memory usage will be an important part
of ongoing development of the tool.

C. Comparison with State-Of-The-Art Tools

We next compare SMT-D with SMTS [16],4 the strongest
solver in quantifier-free divisions of SMTCOMP22’s cloud
track,5 and CVC5-P, the partitioning solver from [22].
We use SMTS with sharing on and partitioning off. The

reason for not enabling the partitioning capability is simple
and deliberate: our goal is to understand and compare only
the clause-sharing capabilities of the two frameworks. Results
of SMTS with both sharing and partitioning enabled would
be inconclusive, as it would be difficult to figure out which

3These percentages were chosen based on an empirical analysis of a small
sample of possible values. We plan to do a more extensive evaluation of these
parameters in the future.

4We used commit 29d51340 from the cube-and-conquer branch, as recom-
mended to us by the SMTS authors.

5SMT-COMP 2023’s cloud track omitted all quantifer-free divisions.

(a) SMT-D

(b) SMTS

Figure 4: Comparing SMT-D’s and SMTS’ improvement over
a single base solver.

technique contributed what. And it would not be an apples-
to-apples comparison, as our approach does not yet integrate
partitioning. We anticipate integrating clause-sharing with par-
titioning in future work. In contrast, in our comparison with
CVC5-P, we do use the partitioning capabilities of CVC5-P.
But this is again deliberate as our goal with that comparison
is different, namely to explore how clause sharing compares
to partitioning when using the same underlying solver (SMTS
uses a different underlying solver, namely OPENSMT2).

a) Comparison to SMTS: It is important to note that
on this benchmark set, OPENSMT2, the baseline solver for

46

Figure 5: SMT-D 64x CS-GR vs SMTS 64x. Dots on the upper
and right-most edges are problems that time out for SMTS and
SMT-D, respectively.

SMTS, is stronger than cvc5.6 However, the best configuration
of SMT-D (64 CS-GR) improves this situation significantly,
as can be seen by the relatively larger gap between the best
configuration and the “single worker” configuration in Fig. 4.
Table I shows that overall, in terms of benchmarks solved, the
best configuration of SMT-D (64 CS-GR) solves almost the
same number of problems as the best configuration of SMTS,
despite the large difference in their base solvers. Compared
to the baseline, the best configuration of SMT-D improves the
overall PAR-2 score by 52% (for SMTS, this number is 28%)
and solves 66 more problems (compared to 20 more problems
solved by SMTS). Moreover, for the 48 QF_IDL benchmarks
and for the UNSAT benchmarks as a whole, cvc5 goes from
performing worse than SMTS when comparing baselines to
performing better when comparing the best version of each.
Although one might hope for even better scaling as the level

of parallelism increases, it is important to keep in mind that
SMT is a hard problem and is not easily parallelizable. Thus,
we don’t expect to be able to achieve linear speed-up. Rather,
we hope to solve problems beyond the scope of standalone
solvers, and indeed, we see that this is the case. In many
applications, the number of problems solved in a fixed time
matters. We can also see (Figure 5) that SMTS and SMT-D
solve a different subset of the benchmarks, so we know further
improvement is still possible.

b) Comparison to partitioning cvc5: CVC5-P, the state-
of-the-art parallel/distributed implementation of cvc5, uses
a combination of portfolios and partitioning strategies. We
implemented and ran the hybrid multijob approach of [22]
and compared it with SMT-D. Fig. 6 and Table I show that
SMT-D is significantly more effective at utilizing 64 copies of

6One reason for this is that the benchmarks we are using, from [22], were
selected specifically because they are challenging for cvc5.

Figure 6: SMT-D and CVC5-P, 64 workers vs 1 worker.

single worker 8x portfolio + CS
Z3 190 205

SMT-D 219 174

Table III: Comparison between SMT-D and Z3 on 129 bench-
marks. Entries show PAR-2 scores in thousands.

cvc5, resulting in a 52% improvement in PAR-2 score (vs 12%
improvement by CVC5-P), and in 50 more problems being
solved (159 vs 109).

D. Comparison to a Legacy Version of Z3

Z3 was the first SMT solver to implement a portfolio
approach with clause sharing. However, this functionality is
no longer supported in modern versions of Z3, and the latest
release that we could find with this functionality is version 2.15
(Windows-only, from 2009). We attempted a comparison, for
completeness, but are only able to draw limited conclusions,
for various reasons, including: (i) Z3 2.15 runs on a different
operating system than our other solvers; (ii) it crashes on any
configuration with more than eight solvers; and (iii) it fails
(parsing or execution) on 85 problems in our modern set of
214 benchmarks. When run on the remaining 129 SMT bench-
marks, we obtain the results shown in Table III. However, even
these results must be taken with a grain of salt, as they show
that Z3 performs worse when enabling clause sharing, perhaps
because of instability of the 2.15 implementation on modern
benchmarks. Thus, while this early work in Z3 was important
pioneering work, we believe that a fair comparison can only
be achieved if the sharing functionality is restored in a modern
version of Z3.

VII. CONCLUSION

SMT-D is a promising advancement in the realm of parallel,
portfolio-based SMT solving. Leveraging a hub-and-spoke

47

architecture with a tight CDCL(T) integration, lemma sharing,
and guided randomization, SMT-D demonstrates significant
improvements in scalability, outperforming not just sequential
cvc5, but also pure portfolio (with sharing), and CVC5-P
(portfolio with partitioning). In addition, SMT-D demonstrates
more improvement from clause sharing than SMTS and an
early version of Z3 and has performance that is overall
comparable with and complementary to the state of the art.
While SMT-D demonstrates solid progress in distributed

SMT solving, many opportunities for future work remain.
These include further parameter tuning, deeper integration
with the underlying SAT solver, handling internally-introduced
symbols, exploring additional sources of diversity (including
using different solvers in the portfolio, such as OPENSMT2
or Z3), exploring additional filtering and redundancy-detection
heuristics, and combining our approach with partitioning-
based parallelism. In addition, we plan to extend the imple-
mentation and evaluation of SMT-D to the full set of logics
and benchmarks in SMT-LIB.

REFERENCES

[1] Tomás Balyo, Peter Sanders, and Carsten Sinz. HordeSat: A massively
parallel portfolio SAT solver. CoRR, abs/1505.03340, 2015.

[2] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna
Lachnitt, Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed,
Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew
Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A versatile
and industrial-strength SMT solver. In Dana Fisman and Grigore
Rosu, editors, TACAS ’22, volume 13243 of Lecture Notes in Computer
Science, pages 415–442. Springer, 2022.

[3] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability
Modulo Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

[4] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Stan-
dard: Version 2.6. Technical report, Department of Computer Science,
The University of Iowa, 2017. Available at www.SMT-LIB.org.

[5] Clark Barrett, Roberto Sebastiani, Sanjit Seshia, and Cesare Tinelli.
Satisfiability modulo theories. In Armin Biere, Marijn J. H. Heule,
Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,
Second Edition, volume 336 of Frontiers in Artificial Intelligence and
Applications, chapter 33, pages 825–885. IOS Press, February 2021.

[6] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu.
Symbolic model checking without BDDs. In W. Rance Cleaveland,
editor, Tools and Algorithms for the Construction and Analysis of
Systems, pages 193–207, 1999. Springer Berlin Heidelberg.

[7] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.
In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms
for the Construction and Analysis of Systems, pages 337–340, 2008.
Springer Berlin Heidelberg.

[8] Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors,
Computer-Aided Verification (CAV’2014), volume 8559 of Lecture Notes
in Computer Science, pages 737–744. Springer, July 2014.

[9] Google. grpc.io. https://grpc.io/. [Accessed 15-Mar-2023].
[10] A. Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A.

Navas. The SeaHorn verification framework. In International Confer-
ence on Computer Aided Verification, 2015.

[11] Youssef Hamadi and Lakhdar Sais, editors. Handbook of Parallel
Constraint Reasoning. Springer, 2018.

[12] Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving
and verifying the Boolean Pythagorean triples problem via cube-and-
conquer. In International Conference on Theory and Applications of
Satisfiability Testing, 2016.

[13] Marijn J. H. Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere.
Cube and conquer: Guiding CDCL SAT solvers by lookaheads. In
Proceedings of the 7th International Haifa Verification Conference on
Hardware and Software: Verification and Testing, HVC’11, page 50–65,
Berlin, Heidelberg, 2011. Springer-Verlag.

[14] Antti E. J. Hyvärinen, Tommi Junttila, and Ilkka Niemelä. A distribution
method for solving SAT in grids. In Armin Biere and Carla P. Gomes,
editors, Theory and Applications of Satisfiability Testing - SAT 2006,
pages 430–435, 2006. Springer Berlin Heidelberg.

[15] Matteo Marescotti, Antti E. J. Hyvärinen, and Natasha Sharygina. Clause
sharing and partitioning for cloud-based SMT solving. In Cyrille
Artho, Axel Legay, and Doron Peled, editors, Automated Technology
for Verification and Analysis, pages 428–443, Cham, 2016. Springer
International Publishing.

[16] Matteo Marescotti, Antti E. J. Hyvärinen, and Natasha Sharygina.
SMTS: distributed, visualized constraint solving. In Gilles Barthe, Geoff
Sutcliffe, and Margus Veanes, editors, LPAR-22. 22nd International Con-
ference on Logic for Programming, Artificial Intelligence and Reasoning,
Awassa, Ethiopia, 16-21 November 2018, volume 57 of EPiC Series in
Computing, pages 534–542. EasyChair, 2018.

[17] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT
and SAT modulo theories: From an abstract Davis–Putnam–Logemann–
Loveland procedure to DPLL(T). J. ACM, 53(6):937–977, nov 2006.

[18] SMT-COMP Organizers. SMT-COMP. https://smt-comp.github.io/,
2023.

[19] Dominik Schreiber and Peter Sanders. Scalable SAT solving in the
cloud. In Chu-Min Li and Felip Manyà, editors, Theory and Applications
of Satisfiability Testing – SAT 2021, pages 518–534, Cham, 2021.
Springer International Publishing.

[20] Roberto Sebastiani and Silvia Tomasi. Optimization modulo theories
with linear rational costs. ACM Transactions on Computational Logic,
16, 10 2014.

[21] Bernardo Subercaseaux and Marijn J. H. Heule. The packing chromatic
number of the infinite square grid is at least 14. In International
Conference on Theory and Applications of Satisfiability Testing, 2022.

[22] Amalee Wilson, Andres Nötzli, Andrew Reynolds, Byron Cook, Cesare
Tinelli, and Clark W. Barrett. Partitioning strategies for distributed SMT
solving. In Alexander Nadel and Kristin Yvonne Rozier, editors, Formal
Methods in Computer-Aided Design, FMCAD 2023, Ames, IA, USA,
October 24-27, 2023, pages 199–208. IEEE, 2023.

[23] Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo de Moura.
A concurrent portfolio approach to SMT solving. In Ahmed Bouajjani
and Oded Maler, editors, Computer Aided Verification, pages 715–720,
2009. Springer Berlin Heidelberg.

[24] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
SATzilla: Portfolio-based algorithm selection for SAT. J. Artif. Intell.
Res., 32:565–606, 2008.

48

https://grpc.io/
https://smt-comp.github.io/

Formal Methods in Computer-Aided Design 2024

Modernizing SMT-Based Type Error Localization
Max Kopinsky
McGill University
Montréal, Quebec

max.kopinsky@mail.mcgill.ca

Brigitte Pientka
McGill University
Montréal, Quebec

bpientka@cs.mcgill.ca

Xujie Si
University of Toronto
Toronto, Ontario

CIFAR AI Research Chair
six@cs.toronto.edu

Abstract—Traditional implementations of strongly-typed func-
tional programming languages often miss the root cause of
type errors. As a consequence, type error messages are often
misleading and confusing - particularly for students learning
such a language. We describe Tyro, a type error localization tool
which determines the optimal source of an error for ill-typed
programs following fundamental ideas by Pavlinovic et al. : we
first translate typing constraints into SMT (Satisfiability Modulo
Theories) using an intermediate representation which is more
readable than the actual SMT encoding; during this phase we
apply a new encoding for polymorphic types. Second, we translate
our intermediate representation into an actual SMT encoding
and take advantage of recent advancements in off-the-shelf SMT
solvers to effectively find optimal error sources for ill-typed
programs. Our design maintains the separation of heuristic and
search also present in prior and similar work. In addition, our
architecture design increases modularity, re-usability, and trust
in the overall architecture using an intermediate representation
to facilitate the safe generation of the SMT encoding. We believe
this design principle will apply to many other tools that leverage
SMT solvers.
Our experimental evaluation reinforces that the SMT ap-

proach finds accurate error sources using both expert-labeled
programs and an automated method for larger-scale analysis.
Compared to prior work, Tyro lays the basis for large-scale eval-
uation of error localization techniques, which can be integrated
into programming environments and enable us to understand the
impact of precise error messages for students in practice.

I. INTRODUCTION
Many strongly typed programming languages, such as

OCaml [1], allow programmers to omit type annotations from
their code; despite these omissions, type inference automati-
cally reconstructs the types of all expressions in the program
based on the contexts in which they appear. For well-typed
programs, type inference saves the programmer much time
and effort. However, for ill-typed programs, the situation can
be exactly the opposite [2]. Type errors are discovered when
the compiler finds inconsistencies during type inference, but
figuring out root causes is much harder. The location where
compiler fails is usually not the place to fix the reported type
errors. As a result, type errors are often misleading or confus-
ing. Such errors increase debugging time for programmers. In
the case of novices, such errors discourage them from learning
the language at all [3]. Even tools designed to assist novices,
such as Helium [4], frequently produce such misleading errors.
The importance, and difficulty, of finding accurate causes

of type errors (“localization”) has a long-studied history. A
system for recording “reasons” that may explain type mis-
matches was implemented in Wand’s SPS [5] in 1986 [6].

Improvements to Wand’s method include the recent HMℓ,
which turns the problem of explaining the “reasons” into a
data flow problem [7]. Other recent approaches use machine
learning techniques to localize errors [8], [9] but without any
formal guarantees.
There is also a class of techniques based on heuristic

search. Type inference is naturally expressed as a constraint-
solving problem [10], [11], [12], even for more complex
type systems, e.g. [13]. By heuristically attributing weights to
each constraint, techniques for constrained optimization can
be applied. Such techniques can involve custom frameworks
and solvers, as in Mycroft [14]; or more generalized tools such
as SMT solvers.
Our work builds on prior work using SMT solvers. Cutting-

edge SMT solvers, such as Z3 [15], are being actively devel-
oped and steadily improved. These improvements cut down on
memory usage and runtime, enabling SMT solvers to handle
increasingly large problem instances. Localization approaches
that leverage such tools therefore benefit from continuous
improvements to SMT solvers.
Pavlinovic et al. developed MinErrLoc [16], the state-of-

the-art type error localization tool based on a variant of SMT
called MaxSMT. In the case of an ill-typed program, there
is no satisfying assignment for the typechecking constraint
problem. from type inference. Instead, MinErrLoc seeks a
minimum-weight set of constraints explaining why no solution
exists. Although effective at the time of its publication, Min-
ErrLoc depends on a customized version of CVC4 [17], rather
than off-the-shelf MaxSMT solvers, and was not maintained
after its original publication in 2014. Thus, MinErrLoc suffers
from package rot and requires significant effort to run. Our
objectives were to bring the MinErrLoc approach up to modern
standards, and make it possible to leverage modern off-the-
shelf MaxSMT solvers as originally intended.
Our main contribution is a new type error localization tool,

Tyro,1 inspired by the fundamental work of Pavlinovic et al.
Tyro incorporates a new encoding for constraints resulting
from polymorphic types, and is implemented with a two-stage
design. The first stage generates a human readable intermediate
representation of the typechecking constraint problem. Sepa-
rate aspects of the problem are kept apart, increasing readabil-
ity. The second stage processes the intermediate representation
into an SMT-LIB encoding [18], bringing together separate

1https://github.com/JKTKops/tyro

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_11 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0009-0005-6835-511X
https://orcid.org/0000-0002-2549-4276
https://orcid.org/0000-0002-3739-2269
https://github.com/JKTKops/tyro
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_11
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_11
https://creativecommons.org/licenses/by/4.0/

aspects of the problem to form the encoded constraint system.
We also found that this architecture made the individual stages
easier to debug, and therefore increases trust in the overall
system. Though the intermediate representation is specific to
our system, we anticipate that the same ideas could be applied
to a wide range of systems that leverage SMT.
Our experimental evaluation expands the evaluation of the

MinErrLoc approach to a much larger dataset, Validating the
accuracy of Pavlinovic et al.’s approach, but also highlights the
need for better heuristics on some classes of programs. We
performed accuracy evaluations with a small expert-labeled
dataset, and both accuracy and performance evaluations with
a large dataset automatically extracted from student code in a
large, introductory OCaml course.

II. OVERVIEW OF THE MINERRLOC APPROACH

Since our work builds on MinErrLoc [16], a brief overview
of its key ideas is warranted.2 Primarily, we review the local-
ization problem, the meaning of Pavlinovic et al.’s “minimum
error source” heuristic, and its reduction to MaxSMT.
Type errors result from (often minor) mistakes on the part

of a programmer. Correcting these mistakes will resolve the
type error. The program region containing the mistakes(s) is
called the “root cause” of the type error.
The localization problem that we aim to solve is, given

a program P that exhibits a type error, to identify the root
cause. This is an inherently ambiguous problem, because we
cannot be certain exactly what the programmer intended. The
MinErrLoc approach follows Occam’s Razor – the simplest
explanation is probably the correct one.

A. Minimum Error Sources

An “error source” is a set of program locations which
resolve the type error if removed from the program.3 The root
cause of the type error must be at a subset of an error source.
Not all error sources are equally likely to contain the true

root cause, however. The MinErrLoc framework provides an
opportunity to specify a weight for every program location.
A “minimum error source” is an error source whose total
weight is minimum. The framework allows these weights to
be assigned independently of constraint generation. Locations
can also be set as “hard constraints” to tell the solver that they
should not be considered in potential error sources.
Consider this recursive OCaml program for finding the

length of a list, which contains a bug:

1 let rec len = function
2 | [] -> 0.
3 | _ :: xs -> 1 + len xs

This program is ill-typed, because the first arm produces
a float, but the second arm’s use of + means it produces
an int. There is more than one way to explain this error.
One possible error source is 0., the float-valued first arm.

2Overviews of OCaml’s polymorphic types and of classical type inference
for the system can be found in the Appendix.

3“Remove” here means to replace by failwith "removed". Liter-
ally deleting the location would almost always result in syntax errors.

Replacing this with an int-valued expression would resolve the
error. Another possible error source is the use of +. Replacing
+ with a float-valued function could also resolve the error.
If we use a trivial weighting heuristic, which simply assigns

a weight of 1 to every location, then both error sources will
be minimal. However, domain knowledge might suggest that
0. is far more likely to be the true error source. A weighting
heuristic which considers the complexity of a program loca-
tion, or which penalizes function calls, might result in 0. as
the unique minimum error source.
The MinErrLoc framework ensures that the constraint gen-

eration algorithm is independent of weight assignments. This
allows the framework to be re-used with different weighting
heuristics.

B. Reduction to MaxSMT

MaxSMT is a variation of the SMT problem. Recall that
SMT may be defined as the decision problem asking whether
a set C of propositional clauses is satisfiable. MaxSMT instead
seeks a maximum subset C′ ⊆ C such that C′ is satisfiable.
Note that maximizing the size of C′ corresponds to minimizing
the size of C\C′, which will correspond to an error source. We
may take this generalization of SMT two steps further. First,
we may include a weighting heuristic, a function w : C → N.
Rather than seeking a subset C′ of maximum size, we seek a
subset which maximizes

'
c∈C′ w(c). This corresponds to the

weighting heuristic for program locations mentioned above.
Finally, we may allow some clauses to be “hard constraints,”
which must be satisfied by the assignment. The resulting
problem is known as Partial Weighted MaxSMT, but we will
call it MaxSMT for brevity.
It would be easy to translate the typing constraints directly

into MaxSMT constraints. Constraints in OCaml programs
are equality constraints between types. Equalities between
(mono)types, and the types themselves, can be encoded using
the Theory of Inductive Datatypes [19], which has been added
to the SMT standard and is supported by SMT solvers such
as Z3 [15], [18]. A datatype (“sort”) is created in SMT which
represents OCaml types. The OCaml types are then encoded
as values of this SMT datatype.
However, this encoding would not produce error sources - it

would produce sets of typing constraints. If several constraints
arise from the same program point, the solver would be
allowed to independently decide whether or not to satisfy
them. Instead, we must force the solver to decide on a location-
by-location basis. This is further complicated by the fact that
the locations are not disjoint – The location corresponding
to an expression contains all of the locations corresponding to
its subexpressions. This tree structure is known as the abstract
syntax tree, or AST, of the program.
To accomplish this, weights are associated with program lo-

cations, rather than constraints. The encoding of the constraints
into MaxSMT incorporates information about the shape of
the AST. The encoding of the shape is such that removing a
location also implicitly removes all of its children. Otherwise
we could be left with constraints to satisfy which are no longer

50

in the program. Our variation of the encoding is discussed in
detail below.

III. TYRO ARCHITECTURE

Tyro uses a modular, two-stage software architecture. The
stages are implemented as separate “frontend” and “encoder”
tools. The input to the frontend is an OCaml program, and the
output is an Intermediate Representation of the constraints.
The encoder accepts this IR, and outputs an SMT-LIB script,
which is then be passed to an off-the-shelf MaxSMT solver.

A. Frontend

The frontend’s job is to extract a set of typing constraints
from an OCaml program. We implemented it by modifying
EasyOCaml [20]. EasyOCaml is a tool with improved error
message quality for OCaml, and has also been modified for
constraint generation in other work [16].
First, a set of constraints are generated, including our repre-

sentation of polymorphic types. Then, the collected constraints
are encoded into the intermediate representation.
The constraint generation is a modification of existing

constraint-generation approaches [10], [13], [16]. As a re-
minder, we focus on an idealized fragment of OCaml, shown
in Figure 2.
The fragment supports variables, lambda abstraction, func-

tion application, conditionals, and local variable bindings. The
types g are the “ground types”, such as int, float, or
string. Types α represent globally unique type variables.
These variables are monomorphic - they represent a single
as-yet unknown type. Polytypes, on the other hand, may
universally quantify some or all of the variables in a monotype,
resulting in a template that can be re-used with multiple
different types.

B. Polymorphic Types

Polymorphic types are a fundamental challenge for
constraint-based type inference [10], [12]. When inferring a
type for a polymorphic binding, a set of constraints will
be generated. Some of these constraints will refer to the
polymorphic variables in the type of the binding. Whenever
the binding is used, copies of these variables are created in
a process called instantiation. Every copy of these variables
must be independent from the others. But every copy is also
subject to the same constraints as the original. The solution
taken by MinErrLoc is to also copy all of the constraints.
Our approach instead encodes these constraints as abstractions,
allowing the MaxSMT solver decide when, or indeed if, the
copies should be created.
Since constraints associated with polytypes need to be

recorded, a constraint set is attached to every polytype. “Type
schemes” are a common approach to this in constraint-based
systems [11], [13], [16]. After inferring the type for a binding
let x = e1 in e2, the variable x will be added to the typing
environment. Its type will have the form:

∀α⃗.(Cx ⇒ αx)

where C is the associated set of constraints, and αx is the type
variable created for e1. We write simply x : αx if α⃗ and Cx
are both empty.
When x is later used, rather than create copies of the

constraints in Cx, we emit an “instantiation constraint.” These
constraints are of the form x(β̄), and have appeared previously
in other Hindley-Milner-style systems [11]. The constraint
x(β̄) represents the entire constraint set Cx[β⃗/α⃗]. That is,
the capture-avoiding substitution of the variables β⃗ for the
variables α⃗ in a copy of Cx. Since instantiation constraints
represent a set of regular typing constraints, they can appear
wherever a set of typing constraints can appear.

C. Constraint Generation

A typing constraint in Tyro takes the form τ1 =ℓ τ2. This
is a simple equality between two types, annotated with the
program location ℓ where it was created. Since we need these
locations to create the constraints, we ensure that the AST
nodes are annotated with locations as well.
Unlike MinErrLoc, our frontend does not encode the struc-

ture of the AST into the typing constraints. To improve
modularity and reusability, and to facilitate debugging, we
keep this information separate for as long as possible. This,
along with instantiation constraints, simplifies the typing rules
significantly. The rules are formulated with a similar constraint
typing relation, of the form:

C; Γ ⊢ e : α

C is the set of constraints which have been emitted by
inference for e. Γ is the typing environment in which inference
for e should occur; Γ maps variable names to type schemes.
e is a program expression, and α is its inferred type.
Note that the relation always relates an expression to a type

variable. This means that we cannot infer the type int for
the expression 0 - we must instead assign a new type variable
α0 and emit a constraint α0 = int. This prevents a loss of
information. If we could infer the type int directly, and the
expression 0 were the root cause of the type error, there would
be no link back to this source location in the constraint set [16].
The typing rules are shown in Figure 1.
Look in particular at the rules VAR and LET, which are

the main distinction from other constraint-based systems. In
the case of variables, we look up the type scheme from the
environment. Then we create new type variables to instantiate
all variables in α⃗. However, we do not then copy Cx. Instead,
we emit an instantiation constraint (with a location annotation).
For let bindings, the difference is similar. Systems such as
MinErrLoc emit the entire constraint set C1[β⃗/α⃗] where we
emit the instantiation constraint x(β⃗). This instantiation con-
straint is necessary to ensure the consistency of C1 - otherwise,
if all uses of x were removed from the program, all constraints
in C1 would be lost [10], [16].
The constraint generator is implemented as a modification

of EasyOCaml [20]. EasyOCaml is implemented as a fork of
ocamlc, the OCaml compiler. This unfortunately pins it to a
particular version of OCaml, which is not recent. In order to

51

α new INT{α =ℓ int}; Γ ⊢ nℓ : α

α new BOOL{α =ℓ bool}; Γ ⊢ bℓ : α
x : ∀α⃗.(Cx ⇒ αx) ∈ Γ γ, β⃗ new

VAR{γ =ℓ αx, x
ℓ(β⃗)}; Γ ⊢ xℓ : γ

C1; Γ ⊢ e1 : α C2; Γ ⊢ e2 : β γ new
APP

({α =ℓ fun(β, γ)} ∪ C1 ∪ C2); Γ ⊢ (e1 e2)
ℓ : γ

C; Γ, x : αx ⊢ e : β γ new
ABS

({γ =ℓ fun(αx, β)} ∪ C); Γ ⊢ (λx.e)ℓ : γ

C1; Γ ⊢ e1 : α C2; Γ ⊢ e2 : β C3; Γ ⊢ e3 : δ γ new
COND

({α =ℓ1 bool, β =ℓ2 γ, δ =ℓ3 γ} ∪ C1 ∪ C2 ∪ C3); Γ ⊢ if eℓ11 then eℓ22 else eℓ33 : γ

C1; Γ ⊢ e1 : α1 C2; Γ, x : ∀α⃗.(C1 ⇒ α1) ⊢ e2 : α2 α⃗ = fv(α1) \ fv(Γ) β⃗, γ new
LET

({γ =ℓ α2, x
ℓ(β⃗)} ∪ C2); Γ ⊢ (let x = e1 in e2)

ℓ : γ

Fig. 1: Typing rules for the OCaml fragment

Expressions e :: = x variable
| v value
| e e application
| if e then e else e conditional
| let x = e in e let binding

Values v :: = n integer
| b boolean
| λx.e abstraction

Monotypes τ :: = g | α | fun(τ, τ)
Polytypes σ :: = τ | ∀α.σ

Fig. 2: Idealized OCaml Fragment

support future work on newer versions of OCaml, we ported
just the EasyOCaml constraint generation framework to be a
stand-alone OCaml project depending on the ocaml-base-

compiler package [21]. Since this package does not include
other features of EasyOCaml, it is significantly easier to port
it to new versions of OCaml.

D. Intermediate Representation (IR)

The IR consists of three sets: a set of program source
ranges, a set of type schemes, and a set of constraints.
Program locations may optionally be annotated by weights.
Weights of zero correspond to hard constraints. Whitespace
is completely ignored. The complete expression grammar is
shown in Figure 3. In constraints, τ refers to a monotype from
Figure 2.
The “Loc Indices” i must be distinct and essentially name

the source ranges. Throughout the constraint (resp. schemes)
portion of the IR, the indices are used to encode the source
range where the constraint (resp. schemes) was created. Later,
the encoder will use the locations to embed the shape of the
AST into the encoding.

Loc Index i ::= n

Weight ω ::= n

Source Range ℓ ::= line; col − line; col
Location L ::= i ℓ no weight given

| i ℓ ω weight given

Constraint C ::= i τ1 = τ2 equality

| i x(β⃗) instantiation

Scheme S ::= i x(α⃗) C⃗

IR R ::= L⃗ S⃗ C⃗

Fig. 3: IR Grammar

Each constraint scheme S corresponds to a variable x and
its associated type scheme ∀ᾱ.(Cx ⇒ τx). In particular, the
scheme relates the name x, the quantified variables ᾱ, and
the constraint set Cx. There is no special mention of αx. The
relationship between the scheme and αx is encoded in how αx
(and its instantiations) appear in the constraints. Regardless,
for human readability, Tyro always places αx at the end of ᾱ.
Every constraint is either an equality of OCaml monotypes

(which can be type variables), or an instantiation constraint.
Instantiation constraints can appear inside schemes, which
occurs whenever a polymorphic function is used within a
polymorphic definition.
Tyro generates the constraint portion of the IR from the

constraint set C of the top-level invocation of the constraint
generation routine. Schemes are accumulated on the side, and
always emitted. Location annotations are treated similarly.
The use of an intermediate representation is not necessary

to the functionality of the system. However, it offers several
advantages. Primarily, unlike the SMT encoding, the IR is
human-writable and indeed human-readable given a bit of
time. The final encoding, in contrast, is deeply nested and
littered with information about the AST structure, making it

52

quite difficult to read or write. Inspecting these intermediate
files was invaluable for debugging constraint generation, and
writing them by hand was further valuable for debugging the
SMT encoder. This separation makes it easier to trust the
correctness of the constraint generation and encoding steps.
Additionally, the use of an IR promoted modularity and

reusability between the components. While working on Tyro,
we were able to mix-and-match different methods of encoding
the IR, without making any changes at all to the constraint
generator. Similarly, we were able to redesign a significant
portion of the constraint generator without any fear of breaking
the encoder.

E. SMT Encoder

The SMT encoding step translates the intermediate repre-
sentation to SMT-LIB [18] code. The only extension required
to SMT-LIB 2.6 is vZ, for MaxSMT [22]. A Tyro run on the
example from Section 2.2 of [16] can be seen in Figure 4. In
particular, our SMT encoding is in Figure 4d.
Type schemes become SMT interpreted functions for the

solver to instantiate on-demand. Equality constraints on types
are encoded directly as equality constraints in the theory of
inductive datatypes, using a Type sort to represent OCaml
types. The Type sort is as described for MinErrLoc [16].
Type variables are encoded with a “-” in front of their name,

to avoid conflicts with scheme names. This serves the same
purpose as the single quote (“tick”) in OCaml source code, but
ticks are not allowed at the start of an SMT variable name.
The SMT encoding of constraints incorporates information

about the AST structure. The enumeration of source locations
is examined to recover an “AST forest.” Each interval in
the enumeration becomes a (possibly indirect) child of every
interval that contains it. The result is a forest of program
locations. In practice, this forest contains one tree for every
top-level expression or let binding or in the program.
Consider the program fragment:

let x = "hi" in not x (Ex.)

There are 5 source ranges in this fragment, shown in
Figure 4b. If the MaxSMT solver decides to remove the entire
fragment (location ℓ0, the root of the tree), then all four of
the other subfragments are necessarily removed as well. The
weight of this decision must be determined only by the weight
of location ℓ0, even though all of its children are also being
removed.
Therefore, for the fragment above, we encode a constraint

C at location ℓ3 as

ℓ0 ⇒ (ℓ4 ⇒ (ℓ3 ⇒ C))

The location variables ℓi are (softly) asserted directly with
their weight. For example, with this fragment, we have

(assert-soft ℓ0 :weight 5)
(assert-soft ℓ3 :weight 1)
(assert-soft ℓ4 :weight 3)

The decision to remove location ℓ0 (by setting the SMT
variable ℓ0 to false) now carries a cost of 5. The constraint

C would no longer be active, even if ℓ3 and ℓ4 were still set
to true.
All constraints are encoded in this way, starting at the root of

an AST. Paths are combined, such that all of the constraints
associated with a particular top-level statement are encoded
into a single assert form. For example, two constraints
C1, C2 at location ℓ4 would be represented by only one
copy of the above constraint encoding, with C = C1 ∧ C2.
We apply this in a nested fashion, so each assertion consists
of many nested implications and constraints. The constraints
contained in a type scheme are also encoded this way, but
are placed into an SMT “defined function” rather than using
an assert form. The assertion tree for a scheme is rooted
at the AST node which defined the scheme. In the case of
a distant reference to a let-bound variable, this ensures that
the instantiation constraint’s implied constraints are disabled
if (any parent of) the let binding is removed.4

The encoder provides MinErrLoc’s weighting heuristic as
a default if weights are not provided. Each node in the AST
forest is assigned a weight equal to the size of the sub-AST
rooted at that node. In example (Ex.) above, location 4 is
assigned weight 3, ensuring that removing location 4 is more
costly than removing both location 2 and 3 (which have a
cumulative weight of 2). In its current configuration, Tyro uses
the default weight for almost all locations.
Inspecting Figure 4c, the IR illustrates the change from

MinErrLoc’s encoding to Tyro’s: the constraint 'x = string

came from a let binding, and is now part of a scheme. When
the script in Figure 4d is run through Z3 [15], location ℓ1 is
identified as the error source.5

Taking advantage of the modularity offered by our design,
we also implemented another SMT encoding which avoids
deeply-nested implications. The shallower encoding appears
to help the SMT solver in some cases. When the minimal cost
is high, the shallower encoding can result in error sources
that are not actually minimal. Empirically, however, almost
all error sources for programs in our dataset had low costs.
The MinErrLoc artifact employs the same alternate encoding,
so we used it while evaluating Tyro.

F. Backend

The output of the encoder is an SMT-LIB script. The scripts
are compatible with any SMT solver that supports at least
SMT-LIB 2.6 [18] and the vZ extension for MaxSMT [22].
Tyro uses Z3 by default. The output of the SMT solver is
processed to extract the minimum error source.

IV. EVALUATION

The MinErrLoc approach was evaluated for performance
on a dataset of 356 programs collected from a programming
course [16]. We collected several thousand programs from a
programming course [23] and took a random sample of 500

4Instantiation constraints for a scheme can arise in only two cases: the
binding is local, and the reference is a child of the binding in the AST; or the
binding is top-level, and therefore the scheme’s root is also the AST root.

5There are 3 minimal error sources for this program: {ℓ1}, {ℓ2}, and {ℓ3}.

53

letℓ0 x = "hi"ℓ1 in (notℓ2 xℓ3)ℓ4

(a)

(let x = "hi" in not x)ℓ0

"hi"ℓ1 (not x)ℓ4

notℓ2 xℓ3

(b)

<locations omitted>

0 x(’x) {

1 ’x = string
}

0 x(’x0)
2 ’l2 = bool -> bool
3 x(’x1)
4 ’l2 = ’x1 -> ’l4

(c)

(declare-datatype Type
((string) (bool) (-> (->.1 Type) (->.2 Type))))

(declare-const ℓ0 Bool)(assert-soft ℓ0 :weight 5)
(declare-const ℓ1 Bool)(assert-soft ℓ1 :weight 1)
...
(declare-const -x0 Type)(declare-const -l2 Type) ...
(define-fun x ((-x Type)) Bool

(=> ℓ0 (=> ℓ1 (= -x string))))
(assert

(=> ℓ0 (and (x -x0)
(=> ℓ4 (and (= -l2 (-> -x1 -l4))
(=> ℓ2 (= -l2 (-> bool bool)))
(=> ℓ3 (x -x1)))))))

(check-sat)(get-objectives)(get-value (ℓ0 ℓ1 ℓ2 ℓ3 ℓ4))

(d)

Fig. 4: A sample run of Tyro.
(a) an ill-typed program from [16] with locations annotated; (b) labeled program AST;

(c) simplified intermediate representation; (d) SMT encoding.

programs each from three different assignments for a total of
1500 programs. Programs were only selected if they could be
parsed, but did not compile. Of the 1500 programs selected,
approximately 70 contained localized errors other than type
mismatches and were discarded. As Tyro is an experiment in
delayed instantiation, we focused our evaluation on delayed
instantiation. Though constraint slicing and preemptive cutting
are shown to be both effective and simple to implement by
MinErrLoc, our evaluation of Tyro did not use them.

A. Timing

Our statistics for timing Tyro are shown in Figure 5.
Experiments were conducted on an Intel(R) Core(TM) i7-
8550U CPU with four 1.80 GHz cores. Our experiments only
used a single core for each instance of Tyro, but ran Tyro
on several programs simultaneously. Tyro was run with a 100
second timeout, which excluded a further 40 programs, all
from the same homework assignment. The statistics shown are
for the remaining 1388 programs, in a format easily compared
with MinErrLoc’s evaluation in Figure 11 of Pavlinovic et
al. [16].
We split our dataset into groups based on program length

in lines of code. The number in parentheses is the number of
programs in that group. The number of equality constraints, the
minimum error source weight, and the time to run Tyro were
recorded for each program. Note that the number of equal-
ity constraints cannot indicate how many times instantiation
constraints will cause those equality constraints to be copied;
therefore it is only a lower bound on the complexity of the
MaxSMT problem.

In all groups, the constraint counts generated for our pro-
grams are significantly higher than those for MinErrLoc’s
evaluation. This suggests a difference in the typical structure
of the programs which makes the evaluations hard to compare.
Despite the slower processor used in our experiments and
the generally higher constraint counts, we exhibit remarkably
similar minimum and median execution times. Approximately
2.9% of programs evaluated timed out, and our maximum
execution times are similar, though again slower, to those
of MinErrLoc’s evaluation for groups with similar constraint
counts.
Our results are therefore promising. Our evaluation largely

affirms that of MinErrLoc, on a significantly larger dataset.
One potential explanation for the lack of significant im-

provement is to consider how the SMT solver proceeds with
instantiation constraints. As noted by MinErrLoc, the time
spent copying constraint sets for instantiation during constraint
generation is significant [16]. By delaying this work to the
SMT solver, we create opportunities for the solver to recognize
that an instantiation is not necessary at all. But we also risk
that the SMT solver may perform a single instantiation many
times. Given the cost of instantiations, the risks may outweigh
the benefits for the version of Z3 used. This may improve
in the future as solvers improve. We posit that SMT scripts
generated by Tyro may make good benchmarks for MaxSMT
solvers.

B. Localization Accuracy

We first took a random sample of 50 programs from our
data set and labeled the true error source by hand. 8 of the
programs were discarded because we could not decide which

54

Group Constraints Weight Time (s)
min med max min med max min med max

0-50 (5) 44 63 72 1 1 3 0.02 0.11 0.16
50-100 (57) 96 276 990 1 2 35 0.08 0.68 2.93
100-150 (659) 111 532 1741 1 2 33 0.09 2.62 85.18
150-200 (449) 399 976 2341 1 3 23 0.84 17.80 87.86
200-250 (55) 696 1463 2702 1 2 18 1.53 10.50 89.43
250-300 (13) 633 1514 3039 1 1 6 2.94 7.58 86.31
300-350 (5) 1073 1516 2690 1 2 3 8.52 14.10 50.44

Fig. 5: Statistics for Tyro execution on whole programs

Tyro OCaml # of outcomes
hit hit 5
hit close 6
hit miss 3
close hit 3
close close 20
close miss 1
miss hit 3
miss close 0
miss miss 1

Fig. 6: Accuracy on expert-labeled programs

Tyro OCaml # of outcomes
hit hit 430
hit close 9
hit miss 15
close hit 39
close close 11
close miss 2
miss hit 113
miss close 3
miss miss 25

Fig. 7: Accuracy on automatically labeled programs

of several error sources were most likely. The comparison of
Tyro’s accuracy versus ocamlc’s on these programs is shown
in Figure 6. They are formatted for easy comparison to Figure
8 of the MinErrLoc analysis [16]. Regions were marked as
“hit” if they exactly matched the true error source. If the
region was close enough for a (novice) programmer to easily
understand the true problem, the region was marked as “close.”
Otherwise, it is marked “miss.”
Our expert-labeled evaluation uses a larger dataset than

MinErrLoc’s expert-labeled evaluation (40 programs versus
20) and displays almost identical proportions of outcomes.
This reaffirms the small-scale evaluation results of MinErrLoc.
We reviewed the one program where both Tyro and OCaml

missed. It is an especially tricky case where the true error
source contains two program locations, and their relationship
is partially obscured by the programmer’s mistake. Tyro and

OCaml report adjacent program locations (both of weight 1),
neither of which are members of the true error source.6 In
the other 41 programs, either Tyro or OCaml identify the true
error source.
We experimented with automatic methods for evaluating

localization accuracy, using a similar approach to [24]. We
compare the region(s) reported by localization to the region(s)
that students actually modified to fix a type error. For each of
the 1388 programs in our random sample, we determined if
the successive code sample from the same student compiled
successfully. We recover the regions that the student modified
using Difftastic [25], a structural differencing tool, and then
removed programs where Difftastic reported a high portion
of the file had been rewritten. In this manner, we collected
647 data points. We then classified the identified regions in
an automated manner similar to the expert-labeled evaluation.
Exact matches were marked as “hit”, other forms of (possibly
partial) overlap or shared endpoints were marked as “close”,
and anything else was marked as a “miss.” Notably, consider
an application such as f x. If the student modified x, but the
identified region was f, these intervals are considered to share
an endpoint and are marked “close.” This situation appears to
be quite common, as does the reverse.
Unfortunately, this approach suffers from a major source of

bias: because the students fixing the program only had access
to error messages from OCaml, they were far more likely
to modify the region of code indicated by OCaml (which is
always a member of some error source). This bias is clearly
seen in the results in Figure 7.
As part of typical homework assignments in our course,

students write their own test cases. These test cases are
formatted as lists of input-output pairs. One test case was part
of the given code. For some problems, the given test case was
correct. For other problems, students were supposed to fix an
incorrect test case. We inspected a random sample of the 113
programs where Tyro missed but OCaml hit. In approximately
70% of the sampled programs, the type error was due to
malformed test cases. The students wrote several test cases
containing ints where floats were expected, or vice versa.
Because the students wrote several cases after the one given
case, the minimum error source is always the given test case.

6However, if both OCaml and Tyro’s reported locations are made hard
constraints, the true error source becomes a minimum error source.

55

But the given test case comes first, so OCaml reports the
mismatch on the cases written by the student. Tyro “misses”
for these programs because the students followed OCaml’s
advice – even when that advice was incorrect.
This demonstrates the subjectivity of the type error local-

ization problem, and provides evidence that type annotations
should be used judiciously to guide students. If a top-level
type annotation had been included for the test cases and set
as a hard location, Tyro and OCaml would both identify the
incorrect test cases.7

Considering this bias, Tyro appears remarkably accurate
despite the fact that we are using the “relatively simplistic”
weighting heuristic of AST size. This again reaffirms the
potential of the MaxSMT localization approach.
Out of the 647 programs evaluated, either Tyro or OCaml

identify the true error source in over 96% of cases. This is
similar to our observation from the expert-labeled evaluation.
Therefore, we conclude that reporting localizations from Tyro
alongside OCaml’s error report would be an effective, accurate
diagnostic for programmers.

V. RELATED WORK

MinErrLoc [16] first demonstrated that type error localiza-
tion problems can be efficiently expressed as Partial Weighted
MaxSMT problems. They recognize the issues associated with
polymorphic types, but do not simplify them. They propose
two algorithms to improve the situation: Lazy Quantifier-
Based Instantiation, and Lazy Unification-Based Instantiation.
Tyro implements Lazy Quantifier-Based Instantiation.
Other tools have also begun using (Max)SMT solvers for

type inference problems. Typpete [26] uses a MaxSMT solver
to infer type annotations to be added to Python programs.
Typpete additionally had to solve the challenge of encoding
subtyping constraints. Similar ideas were discussed in the
presentation of MinErrLoc. We believe our architecture could
be leveraged to tie these ideas together and create localization
tools for languages like Java or Haskell.
Mycroft [14] takes a different approach to localization by

heuristic minimization. Rather than reducing localization to
MaxSMT, Mycroft is a solver dedicated to minimizing error
sources in type inference problems. It is generalized over the
type system being used and requires an inference engine for
that system. The Mycroft algorithm is very similar to MaxSMT
algorithms based on “Unsatisfiable Cores” [27]. Mycroft’s
ability to use a dedicated typechecking engine means it can
avoid issues like the polymorphic constraint blowup seen in
MinErrLoc and Tyro. Unfortunately, Mycroft does not benefit
from frequent improvements to the MaxSMT state-of-the art.
Zhang and Myers have previously reduced localization

problems to finding certain types of paths in a graph [28].
They apply Bayesian methods to guess which source loca-
tion to blame for the faulty paths. This work was further
developed to support advanced type system features like type

7Such annotations are recommended by Pavlinovic et al. [16], but unfortu-
nately we did not have control over the content of the assignments.

classes in Haskell [29] and an implementation, SHErrLoc,
is available [30]. Their graphs did not encode the “flow”
of typing information during the inference process. A recent
approach, HMℓ, takes inspiration from subtyping systems to
express the way that typing information flows through the
inference process [7]. Rather than heuristically producing a
localization guess, HMℓ error messages contain a detailed flow
diagram containing all of the source locations participating
in the error. They report that this can lead to “information
overload,” however, it is a promising new view on the problem.

VI. FUTURE WORK

We have observed several potential avenues for future work
on Tyro or other tools. The most obvious is perhaps to improve
the weighting heuristic.
While Tyro implements the Lazy Quantifier-Based Instan-

tiation proposal from [16], a unification-based algorithm was
also proposed. The proposed algorithm makes several calls
to the SMT solver, and requires changing the constraints
related to polymorphic variables on every call to the solver.
This would be a considerable challenge for the architecture
of MinErrLoc. However, because Tyro separates constraints
related to polymorphic variables from other constraints, it
seems the algorithm could be implemented on top of Tyro in a
relatively straightforward fashion, which we intend to explore
in future work.
For future work on MaxSMT solvers, we believe that

MaxSMT scripts generated by Tyro have potential as bench-
marks.

VII. CONCLUSION

Tyro is a modernization of the MinErrLoc MaxSMT ap-
proach to type error localization. Our evaluation reaffirms the
accuracy and performance potential of the approach using a
larger dataset. Our evaluation for accuracy indicates that a less
simplistic metric than AST size may perform better, at least
on student programs. Regardless, our evaluation shows that the
combination of Tyro and OCaml already exhibits an accuracy
above 96%.
Tyro’s modular design makes it easy to experiment with

modifications to various aspects of the system. Indeed, we
experimented with some variations on the AST size heuristic,8

completely rewriting the constraint generation frontend, and
several SMT encodings. While incorporating lazy quantifier-
based instantiation did not immediately improve the perfor-
mance of the approach, we believe Tyro’s architecture will
allow it to serve as a testbed for future work on MaxSMT-
based localization.

VIII. ACKNOWLEDGEMENTS

This work was supported by the Social Sciences and Hu-
manities Research Council (SSHRC), the OCaml Software
Foundation, and the Canada CIFAR AI Chair Program.

8MinErrLoc also incorporates at least one such variation.

56

REFERENCES

[1] OCaml Foundation, “OCaml.” [Online]. Available: https://ocaml.org/
[2] B. Wu and S. Chen, “How type errors were fixed and what students

did?” in Proceedings of the ACM on Programming Languages, vol. 1,
OOPSLA, Oct. 2017, pp. 105:1–27.

[3] B. S. Lerner, M. Flower, D. Grossman, and C. Chambers, “Searching
for type-error messages,” in Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation, Jun.
2007, p. 425–434.

[4] B. Heeren, D. Leijen, and A. van IJzendoorn, “Helium, for learning
Haskell,” in Proceedings of the 2003 ACM SIGPLAN workshop on
Haskell, Aug. 2003, pp. 62–71.

[5] M. Wand, “A semantic prototyping system,” in Proceedings of the 1984
SIGPLAN Symposium on Compiler Construction, Jun. 1984, p. 213–221.

[6] M. Wand, “Finding the source of type errors,” in Proceedings of the
13th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, Jan. 1986, pp. 38–43.

[7] I. Bhanuka, L. Parreaux, D. Binder, and J. I. Brachthäuser, “Getting
into the Flow: Towards Better Type Error Messages for Constraint-
Based Type Inference,” in Proceedings of the ACM on Programming
Languages, vol. 7, OOPSLA2, Oct. 2023, pp. 431–459.

[8] E. L. Seidel, H. Sibghat, K. Chaudhuri, W. Weimer, and R. Jhala,
“Learning to Blame: Localizing Novice Type Errors with Data-Driven
Diagnosis,” in Proceedings of the ACM on Programming Languages,
vol. 1, OOPSLA, Oct. 2017.

[9] C. Geng, H. Ye, Y. Li, T. Han, B. Pientka, and X. Si, “Novice Type Error
Diagnosis with Natural Language Models,” in Programming Languages
and Systems, Dec. 2022, pp. 196–214.

[10] M. Sulzmann, M. Muller, and C. Zenger, “Hindley/Milner style type
systems in constraint form,” Tech. Rep., Oct. 1999.

[11] F. Pottier and D. Rémy, “The Essence of ML Type Inference,” in
Advanced Topics in Types and Programming Languages, Jan. 2005, pp.
389–489.

[12] O. Kiselyov, “Efficient and Insightful Generalization.” [Online].
Available: https://okmij.org/ftp/ML/generalization.html

[13] M. Odersky, M. Sulzmann, and M. Wehr, “Type inference with con-
strained types,” Theory and Practice of Object Systems, vol. 5, no. 1,
pp. 35–55, Jan. 1999.

[14] C. Loncaric, S. Chandra, C. Schlesinger, and M. Sridharan, “A Practical
Framework for Type Inference Error Explanation,” in Proceedings of
the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, vol. 51, no. 10,
Oct. 2016, p. 781–799.

[15] L. De Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, Mar. 2008, p. 337–340.

[16] Z. Pavlinovic, T. King, and T. Wies, “Finding minimum type error
sources,” in Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages & Applications,
Oct. 2014, pp. 525–542.

[17] C. W. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic,
T. King, A. Reynolds, and C. Tinelli, “CVC4,” in Proceedings of
Computer Aided Verification - 23rd International Conference, vol. 6806,
Jul. 2011, pp. 171–177.

[18] C. Barrett, P. Fontaine, and C. Tinelli, “The SMT-LIB Standard:
Version 2.6,” Department of Computer Science, The University of
Iowa, Tech. Rep., 2017. [Online]. Available: www.SMT-LIB.org/papers/
smt-lib-reference-v2.6-r2021-05-12.pdf

[19] C. Barrett, I. Shikanian, and C. Tinelli, “An Abstract Decision Procedure
for a Theory of Inductive Data Types,” Journal on Satisfiability, Boolean
Modeling, and Computation (JSAT), vol. 3, pp. 21–46, Jul. 2007.

[20] B. Becker, C. Haack, and J. B. Wells, “EasyOCaml.” [Online].
Available: http://easyocaml.forge.ocamlcore.org/

[21] X. Leroy, “ocaml-base-compiler.” [Online]. Available: https://ocaml.
org/p/ocaml-base-compiler/

[22] N. Bjørner and P. Dung, “vZ - Maximal Satisfaction with Z3,” in Pro-
ceedings of the 6th International Symposium on Symbolic Computation
in Software Science, Dec. 2014.

[23] A. Ceci, H. C. A. Tavante, B. Pientka, and X. Si, “Data Collection
for the Learn-OCaml Programming Platform: Modelling How Students
Develop Typed Functional Programs,” in SIGCSE ’21: The 52nd ACM

Technical Symposium on Computer Science Education, Mar. 2021, p.
1341.

[24] E. L. Seidel, “Data-driven techniques for type error diagnosis,” Ph.D.
dissertation, University of California, San Diego, USA, 2017. [Online].
Available: http://www.escholarship.org/uc/item/59s4h4pv

[25] W. Hughes, “Difftastic,” 2021. [Online]. Available: https://github.com/
wilfred/difftastic

[26] M. Hassan, C. Urban, M. Eilers, and P. Müller, “MaxSMT-Based Type
Inference for Python 3,” Computer Aided Verification: 30th International
Conference, pp. 12–19, Jul. 2018.

[27] J. Marques-Silva and J. Planes, “Algorithms for Maximum Satisfiability
using Unsatisfiable Cores,” in 2008 Design, Automation and Test in
Europe, Mar. 2008, pp. 408–413.

[28] D. Zhang and A. C. Myers, “Toward General Diagnosis of Static Errors,”
in Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Jan. 2014, pp. 569–581.

[29] D. Zhang, A. C. Myers, D. Vytiniotis, and S. Peyton Jones, “Diagnosing
type errors with class,” in Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
vol. 50, Jun. 2015, pp. 12–21.

[30] D. Zhang, A. C. Myers, D. Vytiniotis, and S. Peyton-Jones, “SHErrLoc:
A Static Holistic Error Locator,” ACM Transactions on Programming
Languages and Systems, vol. 39, no. 4, Aug. 2017.

[31] R. Milner, “A Theory of Type Polymorphism in Programming,” Journal
of Computer and System Sciences, vol. 17, no. 3, pp. 348–375, Dec.
1978.

APPENDIX

A. Polymorphic Types

OCaml’s type system assigns types to all expressions, for
example an integer literal like 5 has type int. Function types
are written with an arrow, for example a fibonacci function
might have type int → int.
Consider an identity function, defined with

let id x = x;;

What ought to be the type of this function? If we infer a type
like int → int (which is certainly sound), we won’t be able
to use the function with booleans, or vice versa. If we assign
it the type α→ α, where α is a (monomorphic) type variable,
we still have a problem: we can use the function at int or at
bool, but not both. In fact, this function is frequently passed
as an argument to higher-order functions, and therefore it is
common to have it used at many different types throughout a
program.
The solution taken by “Hindley-Milner type systems” [31]

allows polymorphic types. We might express the true type of
of id as ∀α.α → α. Quantifying over the type variables in
a type is called generalization. Whenever the variable id is
referred by the program, a new monomorphic type variable
will be created to represent α for that specific instance, a
process called instantiation. Only values bound with a let
binding are generalized – notably, lambda abstractions are not
generalized (unless they are later bound by a let).
Polymorphic types are a major challenge for type error

localization [6], [16], in large part because the generalization
and instantiation processes make it difficult to tie a type
mismatch from outside of the definition of a let binding back
to a source in the body of the binding.

57

https://ocaml.org/
https://okmij.org/ftp/ML/generalization.html
www.SMT-LIB.org/papers/smt-lib-reference-v2.6-r2021-05-12.pdf
www.SMT-LIB.org/papers/smt-lib-reference-v2.6-r2021-05-12.pdf
http://easyocaml.forge.ocamlcore.org/
https://ocaml.org/p/ocaml-base-compiler/
https://ocaml.org/p/ocaml-base-compiler/
http://www.escholarship.org/uc/item/59s4h4pv
https://github.com/wilfred/difftastic
https://github.com/wilfred/difftastic

B. Classical Type Inference

The goal of type inference is to assign a type to every
(sub)expression in the program, thereby ensuring that the
program is type-safe, but without requiring any annotations
from the programmer.
The classical type inference algorithm described in [31]

proceeds via structural recursion on the program AST. Each
node of the AST corresponds to a (sub)expression of the
program. We use the kind of each subexpression to infer
the “shape” of its type – lambda abstractions must have
a function type, boolean literals must have the bool type,
etc. Any unknown information in the inferred shape, such
as the input and output types of a function type, are filled
with (monomorphic) type variables. When these type variables
correspond to the type of a named program variable, this
relationship is stored in a context.
As we recurse through the AST, we may discover relation-

ships between some of the inferred shapes. For example, when
a lambda abstraction is applied to an expression e, we learn
that the abstraction’s input type must match the type of e. We
use this information to refine the type variables in both types
through a process called unification. Unification “solves for”
some or all of the type variables in both types.
A second approach to refining types is to store all of

the discovered relationships as typing constraints [10]. These
constraints can be generated for the whole program, and then
later fed into a constraint solver all at once. We must use such
a constraint-based algorithm; see Section II-A for why.

58

Formal Methods in Computer-Aided Design 2024

Context Pruning for More Robust SMT-based
Program Verification

Yi Zhou , Jay Bosamiya , Jessica Li, Marijn J. H. Heule , Bryan Parno
Carnegie Mellon University, Pittsburgh, PA, USA

{yeet,jaybosamiya,jgli,marijn,parno}@cmu.edu

Abstract—SMT solvers provide powerful proof automation for
program verification. However, relying on SMT solvers also leads
to proof instability, where a previously successful proof may fail
after the developer makes trivial modifications to the source
program. Such instability is a major headache for developers,
but the causes and potential mitigations for it have received
limited attention. In this study, we find that irrelevant query
context accounts for 78% of the instability in existing program-
verification query sets. As a result, we design SHAKE, a novel
technique that leverages the structure in program-verification
SMT queries in order to filter out irrelevant context from such
queries. SHAKE is the first SMT-level technique that targets
instability, and we implement it as a pre-processing step for SMT
solvers. We evaluate SHAKE on real-world, large-scale query sets,
and we find that it leads to large reduction in context and a 29%
and 41% improvement in query stability on Z3 and cvc5, with
minor performance overhead.

I. INTRODUCTION
Satisfiability Modulo Theories (SMT) solvers play a crucial

role in automated program verification, since verification-
oriented languages (e.g., Dafny [1] or F⋆ [2]) often translate
program source code and specifications into verification condi-
tions [3], [4] that they encode as SMT queries [5]. Essentially,
each SMT query states that the code adheres to its specifications,
and the SMT solver (e.g., Z3 [6] or cvc5 [7]) checks if this
statement holds. The solvers obviate many manual proof steps,
simplifying the verification of large code bases [8]–[14].
Unfortunately, SMT-based program verification is not nec-

essarily robust. Notably, the approach is susceptible to proof
instability [15], where trivial changes to the program cause
spurious verification failures. For instance, the SMT solver may
reject a previously-verified program after the developer renames
a variable, even though the program’s semantics clearly did
not change. Faced with such a proof failure, the developer
may need to tediously provide manual proof steps to guide the
solver back on track [16], which arguably defeats the purpose
of automation. To the frustration of practitioners, instability has
been a long-standing problem [15], [17]–[23]. While instability
is pervasive in practice [15], its causes remain understudied, let
alone its mitigation. Existing literature has pointed at several
potential culprits [18]–[20], but these claims are anecdotal and
lack quantitative evidence.
In this work, we explore the problem quantitatively and find

that irrelevant query context is a major contributor to instability.
Our experiments on unsatisfiable cores from a large-scale
program-verification query set discover that typically 96%–99%
of the assertions in a query do not remain in the unsatisfiable

core—they are irrelevant to verification. More importantly,
irrelevant assertions account for 78% of the observed unstable
instances (§III).
Motivated by the findings, we propose a novel SMT context-

pruning technique, named SHAKE, to improve stability. We
base SHAKE on the insight that program-verification tasks
are typically automated theorem proving (ATP) [24] tasks,
meaning that the verification queries are each composed of a
goal assertion along with axiom assertions. SHAKE triages the
axioms with respect to the goal and prunes the less relevant
axioms.
While SMT solvers are built for constraint-solving, adopting

a theorem-proving perspective helps improve stability. We
implement SHAKE as a preprocessor, and evaluate it on
large-scale program-verification query sets from the Mariposa
study [15]. We find that SHAKE typically reduces the context
by 3–10×. Moreover, we show that SHAKE can mitigate
instability on Z3 by 29% and on cvc5 by 41%. SHAKE imposes
little runtime overhead, even improving the number of solved
instances on cvc5 by 73% in one benchmark and 8% overall.
In summary, we make the following contributions.
• We empirically show that irrelevant context is a major
source of instability in program-verification queries.

• We propose a novel pruning technique, SHAKE, based on
a theorem-proving view of program verification.

• We show that SHAKE reduces instability by 29%–41%
on existing query sets, with only minor overhead.

To facilitate research on context pruning and instability
mitigation, our source code and query sets are all available at
https://github.com/secure-foundations/mariposa.

II. BACKGROUND
Formal verification provides strong guarantees about program

properties such as security and functional correctness. In recent
years, academia has made notable progress in verifying large-
scale systems [8]–[14], [25]–[28]. Industry has also adopted
verification in certain mission-critical scenarios [29]–[31].
In particular, automated verification languages have gained
popularity, exemplified by Dafny and F⋆, which are maintained
by Amazon Web Services and Microsoft Research respectively.
These automated verification languages are powered by SMT

solvers. Typically, a language’s verification condition generator
(VCG) encodes the source program into a logical formula,
which states that the program’s specification holds; i.e., the
program is correct. If the SMT solver reports the negation of

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 12 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0000-0001-7597-1176
https://orcid.org/0000-0002-5596-6828
https://orcid.org/0000-0002-5587-8801
https://orcid.org/0000-0002-9113-1684
 https://github.com/secure-foundations/mariposa
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_12
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_12
https://creativecommons.org/licenses/by/4.0/

the formula to be unsatisfiable, the program’s specification is
never violated, and thus the program verifies. However, since
program properties are generally undecidable, the solver cannot
guarantee that it will verify every correct program.
This incompleteness then leads to the phenomenon of proof

instability, where a previously successful verification spuriously
fails after trivial modifications to the source program. This
happens because source-level changes obligate the VCG to
create a new query for the SMT solver. Due to incompleteness,
the solver may succeed on an old version of the query but
may fail on the new one, even if the queries are semantically
equivalent.
Instability is a major headache for developers. For indi-

viduals, it disrupts their incremental development process by
diverting them from their main development tasks. For teams,
instability is even more problematic, as instability may only
appear when concurrent changes to the source code are merged.
In light of this problem, the Mariposa project [15] aims to

quantify instability in SMT-based program verification. For a
given SMT query-solver pair (q, s), the Mariposa tool outputs
a stability category: stable, unstable, or unsolvable.
In some cases the status may be inconclusive, which
indicates that Mariposa does not have sufficient statistical power
to confidently assign a category.
The Mariposa tool derives the stability status from the

performance of s on q’s mutants, which are semantically
equivalent to q. Specifically, Mariposa creates the mutants
by shuffling the assertions or renaming the symbols in q, as
well as by reseeding the random number generator in s.
The Mariposa project experimented with large-scale program

verification query sets. For this study, we use the Mariposa
methodology to measure instability, and we also conduct our
experiments on the Mariposa query sets. We exclude one query
set, KomodoS , from our study, which we discuss in §VII.

III. QUERY CONTEXT

In this section, we study the connection between query
context and stability. We abstract an SMT query’s context as a
set of assertions, each introducing a constraint to the query. We
then analyze each query’s unsatisfiable core. Upon reaching an
unsat result, the solver produces a core, which is a subset of
the original assertions that the solver used to derive the unsat
result. Thus, the solver-produced core serves as an oracle of
relevant assertions, and what is excluded from the core can be
considered irrelevant.
In §III-A, we describe our method to obtain unsat cores.

In §III-B, we show that often only a tiny fraction of the
assertions are relevant to verification success. In §III-C, we
show that irrelevant context can be a major source of proof
instability. In §III-D, we present a simple theorem-proving
view of the query context and discuss how that view can help
cut down on irrelevant assertions to improve stability.

A. Export the Unsatisfiable Core

In theory, we can export an unsat core by enabling an
SMT solver’s produce-unsat-cores option. In reality,

obtaining an unsat core can sometimes be non-trivial, especially
on unstable queries. Though uncommon, two types of problems
may occur, so we document our workarounds here.
Unsuccessful Export. The solver might not be able to

produce a core. There can be several reasons. First, the solver
behaves differently depending on whether the core is requested
or not. We have observed cases in which the solver returns
unsat on a query, but returns unknown when core production
is enabled. Second, the query itself might be unstable, meaning
that the original query may fail, but some mutants of it
may succeed. Third, a query might be completely unsolvable
(regardless of mutations) with a particular solver version, but
solvable with another.
In these cases, we perform Mariposa-style mutations to the

query, attempting to obtain a core from any of the mutants.
We then map the core from a successful mutant back to a core
of the original query. If necessary, we also try the core export
using different versions of the solver.
Incomplete Core. The solver might also produce a core

query that is incomplete. Specifically, the solver might return
unsat on the original query and successfully produce a core
query; however, when given the core query, the solver fails
to produce unsat, even with mutations applied to the core.
This could be due to certain assertions that are necessary to
the proof but missing in the core. Note that incompleteness
here is not a strictly formal notion, since we do not have a
ground truth for necessity.
When this happens, we apply a best-effort search to repair

the core by adding assertions back to the core query, performing
a bisection search to find a small addition of assertions that
make the solver return unsat on the core. In practice, we
find the incompleteness problem to occur more often with F⋆

queries (∼ 8%), and the core is typically only “missing” a
small number (≤ 5) of assertions.
In summary, if the two issues above occur, we make a best-

effort attempt to find a core query such that: its assertions form
a subset of the original’s, and it is sufficient for the solver
to show unsat. We are successful in these attempts for all
but a small fraction of the original queries. In that remaining
fraction, we use the original query as the core query.

B. Most of the Context is Irrelevant

After acquiring an unsat core, we compare its context to
the original. As shown in Figure 1, the original query context
typically contains thousands of assertions. Using the assertion
count as a proxy for the “size” of the context, we examine the
relevance ratio:

core assertions
original assertions

× 100%

Since an unsat core is a subset of the original query, the lower
this ratio is, the less context is retained, and the more irrelevant
context the original query has.
Figure 2 shows the CDFs of the relevance ratios for different

projects. For example, on the left side lies the line for DICE⋆F .
The median relevance ratio (MRR) is 0.06%, meaning that

60

102 103 104

Original Query Assertion Count Log Scale

0

10

20

30

40

50

60

70

80

90

100
C
D
F
(%

)

4,2413,181 23,291231

vWasmF

VeriBetrKVD

VeriBetrKVL

KomodoD
DICE⋆F

Fig. 1. Original Query Assertion Count. More to the right means larger
query contexts, which may each contain thousands of assertions.

10−3 10−2 10−1 100 101 102

Original Query Relevance Ratio Log Scale (%)

0

10

20

30

40

50

60

70

80

90

100

C
D
F
(%

)

0.57%0.32%0.06% 3.76%

DICE⋆F
VeriBetrKVD

VeriBetrKVL

KomodoD
vWasmF

Fig. 2. Original Query Context Relevance. More to the left means more
irrelevant contexts. Typically, the vast majority of an original query context is
irrelevant.

for a typical query in the project, only 0.06% of the context
is relevant. In vWasmF , the MRR is 3.76%, which is almost
an of order of magnitude higher than the other projects. We
attribute this to the manual context tuning by the authors of
vWasmF , who explicitly documented the tedious effort [14],
[15]. Nevertheless, if we consider the complement of the
relevance ratio, typically 96.23–99.94% of the context is
irrelevant, even considering vWasmF .

C. Irrelevant Context Harms Stability

Given the significant amount of irrelevant context, we
further analyze how that impacts stability. Here we compare
and contrast the stability of the original queries and their
cores. Recall the Mariposa stability status for a query-solver
pair can be one of unsolvable, unstable, stable, or
inconclusive. Given an original query q and its core qc,
we introduce the following two metrics:

• Preservation: given that q is stable, the probability
that qc remains stable.

• Mitigation: given that q is unstable, the probability
that qc becomes stable.

We use the Mariposa tool [32] with Z3 version 4.12.5 in this
experiment. In Figure 3, we list the number of original queries
and the scores for solver-produced core. As an example, in
the original KomodoD queries, 1,914 are stable and 93 are
unstable. In its core counterpart, 99.4% of the stable queries
remain stable, while 90.3% of the unstable ones become stable.
vWasmF is the only case where the core has no mitigation
effect. However, its original queries are rarely unstable. As
we noted previously, vWasmF also starts with more relevant
original context. Therefore, the stability of vWasmF can be
explained by the manual tuning done by the original developers.

Project Original Solver-Produced Core
Stable Unstable Preservation Mitigation

KomodoD 1,914 93 99.4% 90.3%
VeriBetrKVD 4,983 172 99.5% 64.5%
VeriBetrKVL 4,999 256 99.6% 83.6%
DICE⋆F 1,483 20 99.6% 90.0%
vWasmF 1,731 4 99.7% 0.0%

Overall 15,110 545 99.5% 78.3%

Fig. 3. Stability of Core Queries. Typically an unsat core preserves the
stability of the original query, and it mitigates instability in 78.3% of the
unstable queries.

Generally, the solver-produced unsat core is highly likely to
preserve query stability. Moreover, across all projects, 78.3%
of the unstable instances can be mitigated by using the core.
In other words, irrelevant context is a major contributor to
instability. This result suggests a promising mitigation strategy
of pruning irrelevant assertions. In the next section, we discuss
the composition of query context and how it can inform context
pruning.

D. Context Pruning is Axiom Selection

In §II, we offered an overview of the verification condition
generator (VCG) in automated verification languages. Here we
give a more formal treatment on how a VCG constructs the
query context, along with an intuitive view of the query as a
theorem-proving task and context pruning as axiom selection.
The VCG typically creates an SMT query per procedure1

under verification. Given a procedure P , the VCG encodes
a verification goal ψ, which is a formula stating that P is
correct. ¬ψ is then placed into the query as an assertion. In
practice, the goal ψ is rarely self-contained, since P usually
refers to other procedures or relies on language-level axioms.
The VCG also includes these dependencies in the query. As a
result, the query context is a constraint set Γ = {¬ψ} ∪ ΓA,
where ΓA = {ϕ1, ..., ϕn} is a set of axioms.
The standard semantics of an SMT query is the satisfiability

of the constraint set Γ. We can interpret the query as checking
the validity of Γ ⊢ false, which is equivalent to ΓA ⊢ ψ.

1We generically refer to a function-like construct with pre/post-conditions
as a procedure. It can be a function, method, lemma, etc.

61

Intuitively, this is a theorem-proving task, where the axioms
in ΓA are given to prove the verification goal ψ.
Through this view, the context pruning problem becomes

an axiom selection problem, in which we choose a subset
of axioms ΓR ⊆ ΓA s.t. ΓR ⊢ ψ. The SMT solver usually
takes the constraint-solving view of the query, where the
relevance of an assertion is determined by its contribution to
the unsatisfiability. As it turns out, the solver can also benefit
from this theorem-proving perspective, where we define the
relevance of the axiom assertions with respect to the goal.

IV. SHAKE

In this section, we introduce SHAKE, a pruning technique
for SMT queries produced during program verification. At a
high level, SHAKE takes a query as input and computes the
distance from each axiom to the goal, indicating the relevance.
More formally, the input to SHAKE is a set of constraints
Γ = {ϕ0, ..., ϕn}. For convenience, let ϕ0 = ¬ψ, where ψ
is the verification goal, while ϕ1, ..., ϕn are the axioms. The
output of SHAKE is thus a map of distances:

dists = {(ϕ0 : 0), ..., (ϕn : dn)}
where the goal is at 0. SHAKE then prunes the axioms based
on their distances. We first introduce a naive version of SHAKE,
then progressively improve upon the design.

A. The Naive SHAKE Algorithm

In this version of SHAKE, we abstract a formula φ via the set
of query-defined symbols it contains, denoted as SYMBOLS(φ).
More precisely, the symbols are the functions, constants, and
datatypes introduced by the query, excluding sorts, local vari-
ables, and built-in SMT-LIB functions: intuitively, ubiquitous
functions like < or not do not convey much information.
Alg. 1 shows the naive SHAKE algorithm. We first initialize

a context symbol set Sctx from the goal. We then select all
axioms ϕi such that SYMBOLS(ϕi) intersects with Sctx , on
the theory that intersection conveys relevance. After scanning
through all axioms in this round, we augment Sctx with the
symbols from the selected axioms. The update is delayed until
the end of the round, so Sctx remains the same during this
scan. Otherwise, the scan order would affect the content of
Sctx , introducing a form of instability.
Applying this process repeatedly scores the distance of an

axiom ϕi based on the round in which SYMBOLS(ϕi) first
intersects with Sctx . The outer iteration continues until we
reach a fixed point. When there are unreachable axioms at the
end, they are assigned a distance of round count plus one.
In practice, we find that naive SHAKE typically terminates

after very few iterations, giving little differentiation between
axioms. The problem arises because naive SHAKE is too eager
in its expansion. Since we use symbol sets to abstract away
formulas, a single complex axiom with a large symbol set
can easily saturate Sctx , ending the process quickly. In light
of this problem, we refine the formula abstraction to handle
quantifiers, which SHAKE expands lazily.

Algorithm 1 Naive SHAKE
procedure NAIVESHAKE(Γ = {ϕ0, ..., ϕn})

assuming ϕ0 is the goal
Sctx ← SYMBOLS(ϕ0)
dists, round ← {(ϕ0 : 0)}, 1
repeat

acc ← ∅
for ϕi ∈ Γ do

if Sctx ∩ SYMBOLS(ϕi) ̸= ∅ then
check if ϕi has been assigned a distance
if ϕi ∈ UNREACHED(dists,Γ) then

dists ← dists ∪ {(ϕi : round)}
acc ← acc ∪ SYMBOLS(ϕi)

update the symbol set after considering all ϕi
Sctx ← acc ∪ Sctx

round ← round + 1
until ISFIXEDPOINT(dists)
max dist ← round + 1
for ϕi ∈ UNREACHED(dists,Γ) do

assign maximum distance to unreachable axioms
dists ← dists ∪ {(ϕi : max dist)}

return dists

(declare-fun foo (Int) Int)
(declare-fun bar (Int) Int)
(declare-fun qux (Int) Int)
(assert (forall ((x Int))

(! (< (foo x) (bar (qux x)))
:pattern ((foo x))
:pattern ((bar x)))))

Fig. 4. Example SMT Assertion with Pattern. The patterns are hints to
the solver on when to instantiate the quantifier. In this example, either the
pattern (foox) or the pattern (barx) should be matched.

B. SHAKE with Quantifiers
In the queries we study, quantifiers often come with pat-

terns [33], [34]. Patterns are syntactic hints to the solver as to
when a quantifier should be instantiated; if the patterns are not
matched, the quantified body remains hidden. In this version
of SHAKE, we use the available patterns to refine the notion
of relevance for formulas.
In this version, we construct a formula state for a given

formula φ. We denote this via INITFSTATE(φ), which augments
φ with two fields:

• φ.Svisible : the set of symbols in φ not under any quantifier.
• φ.qstates: a list of quantifier states, constructed only
from the outermost quantifiers in φ. The construction via
INITQSTATE is lazy, meaning that any nested quantifiers
are hidden under the outermost quantifier states.

Given a quantified formula ω, INITQSTATE(ω) creates a quan-
tifier state containing ω and two additional fields:

• ω.patterns: a list of symbol sets from the patterns.
• ω.φhidden : the quantified body, which remains uninitial-
ized until expanded, including any nested quantifiers it
may contain.

For example, in Figure 4, the list of pattern symbol sets is
[{bar}, {foo}], and the hidden body is the formula (< (foo
x) (bar (qux x))).

62

SHAKE is lazy when determining the relevance of a quantifier
state, reflected in the TRYEXPAND procedure. Given a symbol
set S, if none of the ω.patterns is a subset of S, the quantifier
is irrelevant, and φhidden remains unexpanded (i.e., SHAKE
ignores the symbols it contains). The subset condition is
necessary because for an actual instantiation, all the symbols
in a specific pattern must be present in S. Upon a match,
TRYEXPAND creates a new formula state from its hidden body
φhidden . We note that the quantifier is only expanded by one
level of nesting via INITFSTATE.

procedure TRYEXPAND(ω, Sctx)
relevant ← false
subset check needed to check for pattern match
for S ∈ ω.patterns do

if S ⊆ Sctx then
relevant ← true

if relevant then
create a new formula state from the hidden body
INITFSTATE(ω.φhidden)
return SOME(ω.φhidden)

return NONE

SHAKE checks the relevance of a formula state ϕ as
follows. Given a symbol set S, ϕ is relevant if ϕ.Svisible

intersects with S, or if any of the ϕ.qstates is considered
relevant. When SHAKE expands a quantifier state, the resultant
formula state is merged into ϕ. This process is reflected in the
FORMULARELEVANT procedure below.

procedure FORMULARELEVANT(ϕ, Sctx)
qstates ′ ← []
relevant ← Sctx ∩ ϕ.Svisible ̸= ∅
for ω ∈ ϕ.qstates do
r ← TRYEXPAND(ω, Sctx)
expansion may create a new formula state φhidden

if SOME(φhidden) = r then
a trigger matches; merge φhidden with ϕ
qstates ′ ← qstates ′ + φhidden .qstates
ϕ.Svisible ← ϕ.Svisible ∪ φhidden .Svisible

relevant ← true
else

no match; no new formula state created
qstates ′ ← qstates ′ + [ω] # keep the quantifier state

ϕ.qstates ← qstates ′

return relevant

The main procedure for this version of SHAKE is shown in
Alg. 2. Its structure is almost identical to the naive version,
but it uses FORMULARELEVANT to determine the relevance of
each axiom in the context. A more subtle detail is that SHAKE
must revisit all of the axioms in each round, as an axiom’s
nested quantifiers may be expanded in later rounds. Moreover,
the formula state from the goal ϕ0 is also part of the main loop.
This way the quantifiers in the goal are also lazily expanded.

C. SHAKE with Frequent Symbols

Thus far we have used the symbol set abstraction introduced
in §IV-A, where we exclude certain basic symbols, such as

Algorithm 2 Refined SHAKE with Quantifiers
procedure QUANTIFIERSHAKE(Γ = {ϕ0, ..., ϕn})

for ϕi ∈ Γ do
create the formula state
INITFSTATE(ϕi)

assuming ϕ0 is the goal
Sctx ← ϕ0.Svisible

dists, round ← {(ϕ0 : 0)}, 1
repeat

acc ← ∅
for ϕi ∈ Γ do
Sprev ← ϕi.Svisible

possibly expand quantifiers
if FORMULARELEVANT(ϕi, Sctx) then

if ϕi ∈ UNREACHED(dists,Γ) then
dists ← dists ∪ {(ϕi : round)}

update with previous symbols in ϕi
acc ← acc ∪ Sprev

Sctx ← acc ∪ Sctx

round ← round + 1
until ISFIXEDPOINT(dists)
max dist ← round + 1
for ϕi ∈ UNREACHED(dists,Γ) do

dists ← dists ∪ {(ϕi : max dist)}
return dists

the built-in SMT-LIB functions, based on the intuition that
such prevalent symbols provide little indication of relevance.
We now further refine the symbol-set abstraction to reflect this
intuition.
In some verification languages, the SMT encoding uses

certain symbols pervasively. For example, the function symbol
ApplyTT is ubiquitous in F⋆ queries. This is expected, as
F⋆ is based on dependent types, where terms are proofs, and
ApplyTT represents term application. However, symbols like
ApplyTT cause SHAKE to quickly saturate, absorbing many
axioms when added to the reached symbol set.
To address this issue, we propose a simple heuristic. We

define the frequency of a symbol x to be the ratio of formulas
in Γ = {ϕ0, ..., ϕn} containing x in their symbol set:

freq(x) =
|{ϕi | ϕi ∈ Γ ∧ x ∈ SYMBOLS(ϕi)}|

|Γ|
Given a threshold θ, SHAKE excludes all symbols x such that

freq(x) > θ, treating them as if they were built-in functions. As
a side note, this idea is related to inverse document frequency
in information retrieval [35]. This simple approach improves
pruning on certain F⋆ queries, as we show in the evaluation.

D. SHAKE with Distance Limit

SHAKE is similar to iterative deepening [36] in spirit.
However, SHAKE does not explicitly or implicitly construct a
graph. Instead, SHAKE creates “layers” of axioms at different
distances. By default, SHAKE runs until a fixed point, dropping
axioms that are unreachable at the last layer.
SHAKE’s complexity is therefore O(DN), where D is the

maximum distance and N is the number of axioms. In practice,
our evaluation shows that D is almost always a constant ≤

63

20, while N can be in the thousands, as shown in Figure 1.
SHAKE’s approach improves efficiency, since a graph-based
approach would take O(N2) time just to construct the graph.
Stopping SHAKE early can also be useful: by setting a

distance limit, SHAKE potentially prunes even more irrelevant
axioms. However, the other side of the coin is that a shallow
distance limit may miss out on relevant axioms that are
necessary to the goal.
The choice of distance limit thus appears to present a

dilemma. However, we argue that SHAKE can leverage an unsat
core as an oracle for nearly-optimal distance: since our main
goal is to improve stability, we assume that an initial version
of procedure P verifies, and a subsequent version P ′ may fail
due to minor changes. Therefore, we can use the distance limit
from the unsat core of P to inform the subsequent runs of P ′.
In practice, we envision saving SHAKE’s distance limit

with source-level annotations. For example, in Dafny, a
commonly used attribute is {:timeLimit N}, which allows
the user to provide a procedure-specific time limit, overriding
the default. Related attributes include {:rlimit N} and
{:timeLimitMultiplier X}, which are also solver con-
figurations. Similar annotations also exist in languages like F⋆

and Verus [37].
SHAKE can be configured in a similar way, where the

distance value is a procedure attribute. With a fresh procedure
(query), the attribute is not present yet, and the solver runs as
normal. If verification succeeds, we store the maximum core
distance as an attribute. The next time the same procedure
is verified, SHAKE uses the stored distance limit and prunes
the context accordingly. Small changes in the procedure (e.g.,
renaming a variable) will have no impact on SHAKE’s layering,
and the stored limit should still work.

V. EVALUATION

In this section, we evaluate the effectiveness of SHAKE.
We describe the experimental setup in §V-A. We show the
distribution of distance values produced by SHAKE in §V-B.
We then evaluate SHAKE’s improvement of context relevance
in §V-C and stability in §V-D. We further assess the impact
of ignoring frequent symbols in §V-E. Lastly, in §V-F, we
evaluate SHAKE’s impact on solving performance in terms of
run time and number of queries solved.

A. Experimental Setup

In the evaluation, we run SHAKE in two different modes.
• Default Mode: SHAKE computes the distances and then
prunes the unreachable axioms, i.e., axioms in the last
layer discussed in §IV-A.

• Oracle Mode: We obtain an “ideal” distance by employ-
ing the unsat core as an oracle. We then use SHAKE to
prune axioms beyond the oracle distance.

To evaluate stability, we use SHAKE’s oracle mode. As
discussed in §IV-D, to counter instability, we assume a prior
working version of the query that produces a core, from which
we obtain the oracle distance.

To evaluate standard solving performance overhead, i.e.,
without any query mutation, we use the oracle mode along
with the default mode. This provides a best-case and worst-case
comparison for SHAKE’s performance impact as a preprocessor.
By default, SHAKE does not ignore any query-defined sym-

bols based on their frequencies (§IV-C). We only experiment
with frequency configuration in §V-E.
We use the default settings for Mariposa [32], including a

time limit of 60 seconds for each query. We experiment with
recent versions of two SMT solvers, Z3 version 4.12.5 and
cvc5 version 1.1.1. We conduct our experiments on machines
with an Intel Core i9-9900K (max 5.00 GHz) CPU, 128 GB
of RAM, and the Ubuntu 20.04.3 LTS operating system.

B. Distribution of SHAKE Distances

First, we evaluate how well SHAKE distances reflect the
relevance of axioms. Recall that for an original query Γ =
{ϕ0, ..., ϕn}, SHAKE computes the distances:

dists = {(ϕ0 : d0), ..., (ϕn : dn)}
Let Γc ⊆ Γ be the core provided by the solver. We can then
determine the maximum distances for the original query and
the core:

dorig = max(di | (ϕi : di) ∈ Γ)

dcore = max(di | (ϕi : di) ∈ Γc)

Intuitively, if dorig > dcore, then SHAKE is able to
differentiate between core and non-core axioms: the more
significant the difference is, the more we can safely prune
layers in between with no loss of core axioms.
As shown in Figure 5-Figure 9, the maximum distances are

upper-bounded by 20 for all queries from the five projects
in this study. Moreover, there is usually a clear difference
between dorig and dcore. As an example, Figure 5 shows
the distributions from KomodoD. Note the strong separation
between the two: the median dcore is 2, while the median
dorig is 8. Moreover, the distribution of the dcore is light-
tailed, where a distance of 3 covers almost the entirety of the
query set.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Maximum Shake Distance

0
10
20
30
40
50
60
70
80
90
100

C
D
F
(%

)

Core

Original

Fig. 5. Maximum SHAKE Distances for KomodoD . There is a clear
separation between the distance values of core axioms versus original axioms.

However, in Figure 9, we observe that vWasmF is a bit of
an outlier (again). As we discussed in §III-C, the vWasmF

64

query set starts off with much higher context relevance; thus
we do not expect much room for differentiation using SHAKE’s
distance.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Maximum Shake Distance

0
10
20
30
40
50
60
70
80
90
100

C
D
F
(%

)

Core

Original

Fig. 6. Maximum SHAKE Distances for VeriBetrKVL.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Maximum Shake Distance

0
10
20
30
40
50
60
70
80
90
100

C
D
F
(%

)

Core

Original

Fig. 7. Maximum SHAKE Distances for VeriBetrKVD .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Maximum Shake Distance

0
10
20
30
40
50
60
70
80
90
100

C
D
F
(%

)

Core

Original

Fig. 8. Maximum SHAKE Distances for DICE⋆F .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Maximum Shake Distance

0
10
20
30
40
50
60
70
80
90
100

C
D
F
(%

)

Core

Original

Fig. 9. Maximum SHAKE Distances for vWasmF .

C. Context Relevance Ratio

Now that we have demonstrated that SHAKE differentiates
core and non-core axioms, we evaluate how much context
pruning SHAKE enables. Since our main goal is to mitigate

instability, we run SHAKE in oracle mode. As in §III-B, we
compute the relevance ratio of the pruned query:

core axioms+ 1

axioms after pruning+ 1
× 100%

In Figure 10, we present the relevance ratios that SHAKE
achieves. We see significant improvements over the original
queries as shown in Figure 2. For example, in VeriBetrKVL,
the median relevance ratio (MRR) is 0.32% in the original
queries, while the MRR increases to 3.46% with oracle SHAKE.
Overall, SHAKE improves the MRR by 3–10×. We note the
intersection on the right side of the plot, where the relevance
ratio is 100%. In those cases, SHAKE matches the unsat core
when only given the oracle distance.

10−3 10−2 10−1 100 101 102

Shake Query Relevance Ratio Log Scale (%)

0

10

20

30

40

50

60

70

80

90

100

C
D
F
(%

)

1.74% 3.46%0.21% 15.74%

DICE⋆F
KomodoD
VeriBetrKVD
VeriBetrKVL
vWasmF

Fig. 10. Oracle SHAKE Query Context Relevance. Oracle SHAKE shows
improvement of context relevance over Figure 2 by 3–10×.

D. Stability Improvement

Next, we evaluate if the improved context relevance translates
into improved stability. We assess stability in the same way as in
the unsat core experiments in §III-C, both from a preservation
and mitigation perspective.
In Figure 11, we report the stability scores for oracle SHAKE

on Z3 version 4.12.5. We include all of the unstable queries
found in the original Mariposa query set (just as we did
in Figure 3), and then we sample roughly the same number of
stable queries (110 from each project). We observe that SHAKE
generally preserves stability, and achieves reasonable success
mitigating instability, with an overall mitigation score of 29.7%.
We also see that the naive SHAKE from §IV-A performs much
worse, achieving an overall mitigation score of only 11%.
We observe that DICE⋆F sees much less mitigation. We

attribute this to F⋆’s pervasive use of certain function symbols
(such as ApplyTT) in its query encoding. In §V-E, we evaluate
the effectiveness of suppressing such symbols based on their
frequency. We also observe that SHAKE does not help with
the unstable queries in vWasmF . Since the unsat core is not
effective on vWasmF , this is unsurprising.
To further validate the stability improvement, we also

evaluate SHAKE with cvc5 version 1.1.1. However, cvc5

65

Project Original Count Oracle Naive SHAKE Oracle SHAKE
Stable Unstable Preservation Mitigation Preservation Mitigation

KomodoD 110 93 99.1% 7.5% 100.0% 25.8%
VeriBetrKVD 110 172 100.0% 12.2% 98.2% 23.3%
VeriBetrKVL 110 256 100.0% 11.7% 100.0% 37.9%
DICE⋆F 110 20 100.0% 10.0% 100.0% 5.0%
vWasmF 110 4 100.0% 0.0% 96.4% 0.0%

Overall 550 545 99.8% 11.0% 98.9% 29.7%

Fig. 11. Oracle SHAKE Query Stability on Z3 4.12.5. We include oracle naive SHAKE (middle column) from §IV-A for comparison. Oracle SHAKE, which
employs the quantifier handling strategy from §IV-B, shows similar preservation, but stronger mitigation results.

is known to not work well with queries from Dafny and
F⋆, as acknowledged by cvc5’s developers [15]. In fact, to
make this evaluation possible, we had to first syntactically
transform the queries into a format cvc5 could parse. Even
then, cvc5 times out on many of the original queries (whereas
Z3 succeeds for nearly all of them). Hence, we only evaluate
the stability of original queries that do not timeout with cvc5.
This necessarily introduces bias in the resulting query sample,
so the stabilization results from Z3 and cvc5 should not be
directly compared.
With that caveat in mind, we present the stability scores for

oracle SHAKE on cvc5 in Figure 12. Generally, the preservation
scores are quite strong. The overall mitigation score of 41.3%
is promising as well.

Project Original Count Oracle SHAKE
Stable Unstable Preservation Mitigation

KomodoD 110 36 100.0% 41.7%
VeriBetrKVD 110 143 94.5% 48.3%
VeriBetrKVL 110 210 100.0% 37.1%
DICE⋆F 110 17 100.0% 100.0%
vWasmF 110 27 99.1% 0.0%

Overall 550 433 98.7% 41.3%

Fig. 12. Oracle SHAKE Query Stability on cvc5 1.1.1.

E. Frequency Configuration

As discussed in §IV-C, SHAKE can optionally take in a
threshold θ and ignore any symbol x such that freq(x) > θ.
We now evaluate if this configuration can help with stability.
Intuitively, if θ is set properly, SHAKE can ignore trivial
matches due to pervasively used symbols. However, if θ is too
low, SHAKE may not reach axioms that are actually relevant,
e.g., the ones in the core.
We continue to use the oracle mode for this experiment.

Recall that SHAKE assigns the unreachable axioms to the max-
imum distance. When core axioms end up being unreachable,
oracle SHAKE cannot safely prune any axioms, since this could
introduce incompleteness. Therefore, in addition to the mean
relevance ratio (MRR), we also report the fallback rate (FR),
which is the percentage of queries where oracle SHAKE cannot
prune any axioms.
First, we discuss the choice of θ with an experiment on

query relevance. θ = 1.00 means no symbols are pruned based

on frequency. In Figure 13, we observe that there is a trade-off
between the relevance ratio and the fallback rate. For example,
in KomodoD, θ = 0.15 achieves the highest MRR, but also has
the highest FR. In vWasmF , since the context starts with high
MRR, lower θ values only increase FR. In general, θ = 1.00
(no frequency pruning) tends to balance the two metrics.

Orig. θ = 1.00 θ = 0.30 θ = 0.15

KomodoD
MRR 0.57 1.74 1.74 2.40
FR – 0.39 6.08 13.14

VeriBetrKVD
MRR 0.33 3.28 3.35 2.51
FR – 1.45 5.74 28.49

VeriBetrKVL
MRR 0.32 3.46 3.59 3.03
FR – 1.42 5.45 15.91

DICE⋆F
MRR 0.06 0.21 0.32 0.88
FR – 4.44 5.90 7.10

vWasmF
MRR 3.76 15.74 16.0 16.22
FR – 5.99 6.11 12.51

Fig. 13. Oracle SHAKE Context Relevance with Frequency Configuration.
Higher MRR means more relevant context. Higher FR means more queries
for which oracle SHAKE does not prune any axioms.

However, for DICE⋆F , the results indicate that θ = 0.15 is
a promising setting, since the MRR is increased by 4× with
respect to θ = 1.00, while sacrificing three percentage points
of FR. We test the stability of using θ = 0.15 on DICE⋆F with
Z3 and find that it improves stability by 6× compared to oracle
SHAKE with θ = 1.00.

F. Solving Performance Impact

Proof instability is a pernicious problem in program ver-
ification, so it might be reasonable to expect developers to
be willing to trade worse solving performance for greater
stability. Fortunately, our results show that such a trade is
largely unnecessary: SHAKE adds relatively little overhead and
even improves performance in some cases.
To evaluate solving performance, for each solver (Z3 and

cvc5), we compare the following three scenarios.
• Baseline. The original queries are directly given to the
solver.

• Default SHAKE. The queries are preprocessed by SHAKE
in default mode and then given to the solver.

• Oracle SHAKE. The queries are preprocessed by SHAKE
in oracle mode and then given to the solver.

66

Since SHAKE is a preprocessor, its runtime includes the
time spent on computing the distances and the time spent in
IO. When reporting the runtime, we exclude the latter, since
we expect SHAKE to eventually be incorporated directly into
solvers, where parsing is already being done. Therefore, the
runtime for the SHAKE modes is the time spent on computing
the distances plus the time spent by the solver on the pruned
queries. Each query is given a 60 second timeout, so if SHAKE
distance computation and solver together takes more than that,
the query is not considered solved.
First we present the number of queries solved in each

scenario in Figure 14. Generally SHAKE adds a minor overhead
to Z3, but sometimes solves a few more in oracle mode.
However, if we consider cvc5, SHAKE usually improves the
number of queries solved, even in default mode. Notably,
in DICE⋆F , cvc5 solves 259 queries in the baseline; even
with default SHAKE, it solves 190 more (+79%); with oracle
SHAKE, it solves 424 more (+163%).

Solver Baseline Default Oracle

KomodoD
Z3 1,983 -0.10% +0.30%
cvc5 342 +1.75% +21.64%

VeriBetrKVD
Z3 5,103 -0.78% -0.61%
cvc5 2,571 +9.14% +20.77%

VeriBetrKVL
Z3 5,167 -0.41% -0.04%
cvc5 3158 +8.90% +13.01%

DICE⋆F
Z3 1,493 -0.07% +0.33%
cvc5 259 +73.36% +163.71%

vWasmF
Z3 1,733 -0.29% -0.35%
cvc5 1,630 -0.12% -0.12%

Overall Z3 15,479 -0.45% -0.18%
cvc5 7,960 +8.92% +18.10%

Fig. 14. Queries Solved with SHAKE as a Preprocessor.

To present the runtime performance, we use survival plots;
Brain et al. [38] provide a detailed explanation, but in short, a
survival plot shows the cumulative number of queries solved
within a total time budget. Therefore, a curve that is higher
and to the left indicates better performance.
In each plot, we show six curves, based on the three scenarios

for each of the two solvers. Generally, SHAKE adds a minor
overhead to Z3, but often improves the solving speed on cvc5.
For example, in Figure 16, we show the survival plot for
VeriBetrKVD. SHAKE’s impact on Z3 is almost negligible,
whether in default or oracle mode. However, for cvc5, SHAKE
does improve on the solving speed, as well as the number of
queries solved, not only in oracle mode, but also in default
mode. In Figure 17, VeriBetrKVL shows a similar trend as in
VeriBetrKVD.
In Figure 18, we show the results for DICE⋆F . We observe

that default SHAKE adds a minor overhead to Z3, but oracle
SHAKE has little impact. On cvc5, as we discussed earlier,
SHAKE significantly improves the number of queries solved
and improves the runtime as well.

10−1 100 101 102 103

Cumulative Time Log Scale (s)

0

500

1000

1500

2000

In
st
an

ce
s
S
ov
el
d

Baseline Z3

Default Shake Z3

Oracle Shake Z3

Baseline CVC5

Default Shake CVC5

Oracle Shake CVC5

Fig. 15. SHAKE Performance Survival Plot for KomodoD .

10−1 100 101 102 103 104

Cumulative Time Log Scale (s)

0

1000

2000

3000

4000

5000

In
st
an

ce
s
S
ov
el
d

Baseline Z3

Default Shake Z3

Oracle Shake Z3

Baseline CVC5

Default Shake CVC5

Oracle Shake CVC5

Fig. 16. SHAKE Performance Survival Plot for VeriBetrKVD .

10−1 100 101 102 103 104

Cumulative Time Log Scale (s)

0

1000

2000

3000

4000

5000

In
st
an

ce
s
S
ov
el
d

Baseline Z3

Default Shake Z3

Oracle Shake Z3

Baseline CVC5

Default Shake CVC5

Oracle Shake CVC5

Fig. 17. SHAKE Performance Survival Plot for VeriBetrKVL.

67

10−1 100 101 102 103 104

Cumulative Time Log Scale (s)

0

200

400

600

800

1000

1200

1400

In
st
an

ce
s
S
ov
el
d

Baseline Z3

Default Shake Z3

Oracle Shake Z3

Baseline CVC5

Default Shake CVC5

Oracle Shake CVC5

Fig. 18. SHAKE Performance Survival Plot for DICE⋆F .

10−1 100 101 102

Cumulative Time Log Scale (s)

0

250

500

750

1000

1250

1500

1750

In
st
an

ce
s
S
ov
el
d

Baseline Z3

Default Shake Z3

Oracle Shake Z3

Baseline CVC5

Default Shake CVC5

Oracle Shake CVC5

Fig. 19. SHAKE Performance Survival Plot for vWasmF .

VI. RELATED WORK

The problem of proof instability in the context of program
verification has been a long standing issue. For example,
Hawblitzel et al. bemoan the instability of certain SMT
queries [19], and the Komodo authors describe proof instability
as “the most frustrating recurring problem” [18].
The Mariposa project [15] is the first effort to quantify in a

statistically rigorous way the instability of SMT queries with
respect to a solver. The authors measure instability in six large-
scale verification projects across eight SMT solver versions.
However, their focus is on quantifying instability, rather than
understanding or mitigating it.
Our SHAKE technique resembles an algorithm first imple-

mented in the Sumo INference Engine [39]. The Sine algorithm
selects relevant axioms in automated theorem proving (ATP)
problems [24]. As in SHAKE, Sine uses overlapping symbols
to iteratively determine relevance. A similar strategy was later
employed by the lightweight relevance filtering algorithm [40].
However, these algorithms target ATP problems, e.g., those
from TPTP [41], which usually covers domains outside those in
the SMT queries produced by program verification. Moreover,

a major difference between SHAKE and these algorithms is
the strategy SHAKE employs to handle quantified expressions.
In SHAKE, we make use of quantifier patterns and perform
lazy quantifier expansion, which is not present in the earlier
algorithms.

VII. LIMITATIONS

This work has several limitations. First, we have only studied
verification projects written in Dafny and F⋆, which do not
necessarily represent the entire spectrum of automated pro-
gram verification. For example, we have excluded Mariposa’s
KomodoS , since it is restricted to the decidable fragments
of SMT and does not fit our description of VCG in §III-D.
Second, unsatisfiable cores have guided much of our analysis
and experiments, but the solver-produced core is not a perfect
oracle of relevant assertions. For example, the solver makes
no guarantee about the minimality (necessity) of the core
assertions. Third, our proposed technique, SHAKE, needs to
assume an oracle distance limit and/or a frequency threshold to
be effective. While the assumption of oracle configurations can
be met when dealing with unstable queries, ideally we would
like to remove this dependency, possibly by integrating SHAKE
into the SMT solver in future work. Lastly, SHAKE works at
the SMT level, and thus may have less precision compared
to VCG-level pruning. Nevertheless, SHAKE demonstrates the
general applicability of context pruning to improve stability,
and we leave language-specific adaptations to future work.

VIII. CONCLUSION

In this work, we empirically study the problem of proof
instability in SMT-based program verification. We find that
irrelevant context is a major source of instability. We then pro-
pose SHAKE, a novel SMT-level context pruning algorithm as a
mitigation technique. We demonstrate that SHAKE can improve
the stability of automated program verification using queries
from real-world projects. Furthermore, we show that SHAKE
can potentially improve standard SMT-solving performance on
these queries as well. We hope our work offers useful insights
into the phenomenon of instability and the connection between
automated program verification and theorem proving.

IX. ACKNOWLEDGEMENT

Chris Hawblitzel and Doug Woos worked on a prototype
algorithm for SMT-level tree-shaking in 2016. This work is
a redesign and extension of that effort. We thank Haniel
Barbosa and Livia Sun for their advice on cvc5 configuration;
Jialin Li for her suggestion of storing distance limit as a
procedure attribute; and the anonymous reviewers for their
helpful feedback on the paper.
This work was supported in part by the National Science

Foundation (NSF) under grant 2224279, funding from AFRL
and DARPA under Agreement FA8750-24-9-1000, and the
Future Enterprise Security initiative at Carnegie Mellon CyLab
(FutureEnterprise@CyLab).

68

REFERENCES

[1] K. R. M. Leino, “Dafny: An automatic program verifier for functional
correctness,” in Logic for Programming, Artificial Intelligence, and
Reasoning, E. M. Clarke and A. Voronkov, Eds., 2010.

[2] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud,
S. Forest, K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-K.
Zinzindohoue, and S. Zanella-Béguelin, “Dependent Types and Multi-
Monadic Effects in F*,” in Proceedings of the ACM Symposium on
Principles of Programming Languages (POPL), 2016.

[3] C. A. R. Hoare, “An Axiomatic Basis for Computer Programming,”
Communications of the ACM, vol. 12, no. 10, 1969.

[4] E. W. Dijkstra, “Guarded Commands, Nondeterminacy and Formal
Derivation of Programs,” Commun. ACM, aug 1975.

[5] C. Barrett, A. Stump, C. Tinelli et al., “The SMT-lib Standard: Version
2.0,” in Proceedings of the Workshop on Satisfiability Modulo Theories,
2010.

[6] L. De Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
2008.

[7] H. Barbosa, C. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann,
A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli et al., “cvc5: A
Versatile and Industrial-Strength SMT Solver,” in Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), 2022.

[8] J. Li, A. Lattuada, Y. Zhou, J. Cameron, J. Howell, B. Parno, and
C. Hawblitzel, “Linear Types for Large-Scale Systems Verification,” in
Proceedings of the ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), December 2022.

[9] M. Polubelova, K. Bhargavan, J. Protzenko, B. Beurdouche, A. Fromherz,
N. Kulatova, and S. Zanella-Béguelin, “HACLxN: Verified generic SIMD
crypto (for all your favorite platforms),” in Proceedings of the ACM
Conference on Computer and Communications Security (CCS), October
2020.

[10] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche,
“HACL*: A verified modern cryptographic library,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017, pp. 1789–1806.

[11] J. Protzenko, B. Parno, A. Fromherz, C. Hawblitzel, M. Polubelova,
K. Bhargavan, B. Beurdouche, J. Choi, A. Delignat-Lavaud, C. Fournet,
N. Kulatova, T. Ramananandro, A. Rastogi, N. Swamy, C. Wintersteiger,
and S. Zanella-Beguelin, “EverCrypt: A Fast, Verified, Cross-Platform
Cryptographic Provider,” in Proceedings of the IEEE Symposium on
Security and Privacy, May 2020.

[12] Y. Zhou, S. Gibson, S. Cai, M. Winchell, and B. Parno, “Galápagos:
Developing verified low-level cryptography on heterogeneous hardware,”
in Proceedings of the ACM Conference on Computer and Communications
Security (CCS), November 2023.

[13] T. Ramananandro, A. Delignat-Lavaud, C. Fournet, N. Swamy, T. Chajed,
N. Kobeissi, and J. Protzenko, “EverParse: Verified secure Zero-Copy
parsers for authenticated message formats,” in 28th USENIX Security
Symposium (USENIX Security 19). Santa Clara, CA: USENIX
Association, Aug. 2019.

[14] J. Bosamiya, W. S. Lim, and B. Parno, “Provably-Safe Multilingual
Software Sandboxing using WebAssembly,” in Proceedings of the
USENIX Security Symposium, August 2022.

[15] Y. Zhou, J. Bosamiya, Y. Takashima, J. Li, M. Heule, and B. Parno,
“Mariposa: Measuring SMT instability in automated program verification,”
in Proceedings of the Formal Methods in Computer-Aided Design
(FMCAD), October 2023.

[16] A. Tomb and J.-B. Tristan, “Avoiding verification brittleness in Dafny,”
https://dafny.org/blog/2023/12/01/avoiding-verification-brittleness/, 2023.

[17] M. Dodds, “Formally Verifying Industry Cryptography,” IEEE Security
and Privacy Magazine, vol. 20, no. 3, 2022.

[18] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno, “Komodo: Us-
ing Verification to Disentangle Secure-Enclave Hardware from Software,”
in Proceedings of the ACM Symposium on Operating Systems Principles
(SOSP), 2017.

[19] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang,
and B. Zill, “Ironclad Apps: End-to-End Security via Automated Full-
System Verification,” in Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), October 2014.

[20] K. R. M. Leino and C. Pit-Claudel, “Trigger Selection Strategies
to Stabilize Program Verifiers,” in Proceedings of the International

Conference on Computer Aided Verification (CAV), S. Chaudhuri and
A. Farzan, Eds., 2016.

[21] J. W. Cutler, E. Torlak, and M. Hicks, “Improving the stability of type
soundness proofs in Dafny,” in Proceedings of the First Workshop on
Dafny, 2024.

[22] S. Ho and C. Pit-Claudel, “Incremental proof development in Dafny
with module-based induction,” in Proceedings of the First Workshop on
Dafny, 2024.

[23] S. McLaughlin, G.-A. Jaloyan, T. Xiang, and F. Rabe, “Enhancing proof
stability,” in Proceedings of the First Workshop on Dafny, 2024.

[24] M. Fitting, First-order Logic and Automated Theorem Proving. Springer
Science & Business Media, 2012.

[25] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L.
Roberts, S. Setty, and B. Zill, “IronFleet: Proving Practical Distributed
Systems Correct,” in Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), 2015.

[26] A. Arasu, T. Ramananandro, A. Rastogi, N. Swamy, A. Fromherz,
K. Hietala, B. Parno, and R. Ramamurthy, “FastVer2: A provably correct
monitor for concurrent, key-value stores,” in Proceedings of the ACM
Conference on Certified Programs and Proofs (CPP), January 2023.

[27] T. Hance, A. Lattuada, C. Hawblitzel, J. Howell, R. Johnson, and B. Parno,
“Storage Systems are Distributed Systems (So Verify Them That Way!),”
in Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2020.

[28] T. Hance, Y. Zhou, A. Lattuada, R. Achermann, A. Conway, R. Stutsman,
G. Zellweger, C. Hawblitzel, J. Howell, and B. Parno, “Sharding the
State Machine: Automated Modular Reasoning for Complex Concurrent
Systems,” in Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), July 2023.

[29] J. Bornholt, R. Joshi, V. Astrauskas, B. Cully, B. Kragl, S. Markle,
K. Sauri, D. Schleit, G. Slatton, S. Tasiran et al., “Using Lightweight
Formal Methods to Validate a Key-Value Storage Node in Amazon S3,”
in Proceedings of the ACM Symposium on Operating Systems Principles
(SOSP), 2021.

[30] B. Cook, “Formal reasoning about the security of amazon web services,”
in Computer Aided Verification, H. Chockler and G. Weissenbacher, Eds.
Cham: Springer International Publishing, 2018, pp. 38–47.

[31] N. Swamy, T. Ramananandro, A. Rastogi, I. Spiridonova, H. Ni,
D. Malloy, J. Vazquez, M. Tang, O. Cardona, and A. Gupta, “Hardening
Attack Surfaces with Formally Proven Binary Format Parsers,” in
Proceedings of the ACM Conference on Programming Language
Design and Implementation (PLDI), June 2022. [Online]. Available:
https://www.fstar-lang.org/papers/EverParse3D.pdf

[32] “Mariposa Public Repository,” https://github.com/secure-foundations/
mariposa, accessed: May 2023.

[33] C. G. Nelson, “Techniques for program verification,” Ph.D. dissertation,
Stanford University, Stanford, CA, USA, 1980, aAI8011683.

[34] M. Moskal, “Programming with triggers,” in Proceedings of the Workshop
on Satisfiability Modulo Theories, 2009.

[35] J. Ramos et al., “Using tf-idf to determine word relevance in document
queries,” in Proceedings of the first instructional conference on machine
learning, vol. 242, no. 1. Citeseer, 2003, pp. 29–48.

[36] R. E. Korf, “Depth-first iterative-deepening: An optimal admissible tree
search,” Artificial intelligence, vol. 27, no. 1, pp. 97–109, 1985.

[37] A. Lattuada, T. Hance, C. Cho, M. Brun, I. Subasinghe, Y. Zhou,
J. Howell, B. Parno, and C. Hawblitzel, “Verus: Verifying rust programs
using linear ghost types,” in Proceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), December 2023.

[38] M. Brain, J. H. Davenport, and A. Griggio, “Benchmarking solvers,
SAT-style.” in SC2@ ISSAC, 2017.

[39] K. Hoder and A. Voronkov, “Sine qua non for large theory reasoning,”
in International Conference on Automated Deduction. Springer, 2011,
pp. 299–314.

[40] J. Meng and L. C. Paulson, “Lightweight Relevance Filtering for Machine-
Generated Resolution Problems,” Journal of Applied Logic, vol. 7, no. 1,
pp. 41–57, 2009.

[41] G. Sutcliffe and C. Suttner, “The TPTP Problem Library,” Journal of
Automated Reasoning, vol. 21, pp. 177–203, 1998.

69

https://www.fstar-lang.org/papers/EverParse3D.pdf
https://github.com/secure-foundations/mariposa
https://github.com/secure-foundations/mariposa

Formal Methods in Computer-Aided Design 2024

Easter Egg: Equality Reasoning Based on E-Graphs
with Multiple Assumptions

Eytan Singher and Shachar Itzhaky
Technion - Israel Institute of Technology, Haifa, Israel

{eytan.s,shachari}@cs.technion.ac.il

Abstract—E-graphs are a prominent data structure that has
been increasing in popularity in recent years due to their ex-
panding range of applications in various formal reasoning tasks.
E-graphs allow systematic and efficient treatment of equality,
which is pervasive in automated reasoning based on proofs.
E-graphs handle equality well, but are severely limited in their

handling of case splitting and other aspects of propositional
reasoning, such as resolution, which introduce branching in
provers and solvers. As a consequence, most tools resort to
using e-graphs locally, recreating them ad-hoc when they are
needed, and then discarding them. In exploratory scenarios,
where it is necessary to retain multiple branches simultaneously,
this limitation proves to be prohibitive. In particular, in theory
exploration—a process where lemmas are discovered and then
proven—this poses a significant challenge. Theory exploration
must enumerate a space of possible assumptions, and must retain
all of them to make progress. This poses a severe limitation on
the ability to harness e-graphs for the task.
Our key observation is that in exploratory reasoning tasks,

branching represents versions of the same e-graph each with an
added assumption, such as “x > y” or “is sorted l”. Essentially,
each e-graph represents an equality relation, and each branch
corresponds to a matching coarsened equality relation. Based
on this observation, we present an extension to e-graphs, called
Colored E-Graphs, as a way to efficiently represent all of the
coarsened equality relations in a single structure. A colored e-
graph is a memory-efficient equivalent of multiple copies of an e-
graph, with a much lower overhead. This is attained by sharing as
much as possible between different cases, while carefully tracking
which conclusion is true under which assumption. It can be
viewed as adding multiple “color-coded” layers on top of the
original e-graph structure, representing different assumptions.
We run experiments and demonstrate that our colored e-

graphs can support large numbers of assumptions and terms
with space requirements that are about 10× lower, and with
slightly improved performance.

I. INTRODUCTION

E-graphs are a versatile data structure that is used for various
tasks of automated reasoning, including theorem proving and
synthesis. E-graphs have been popularized in compiler opti-
mizations thanks to their ability to support efficient rewrites
over a large set of terms, while keeping a compact represen-
tation of all possible rewrite outcomes. This mechanism is
known as equality saturation. It provides a powerful engine
that allows a reasoner to generate all equality consequences
of a set of known, universally quantified, equalities. Possible
uses include selecting the best equivalent of an expression
according to some desired metric, such as run-time effi-
ciency [29], size [10], [22], or precision [23] (when used as
a compilation phase) and a generalized form of unification,

called e-unification, for application of inference steps (when
used for proof search).
In this work we focus on a stepping stone for what we

address as exploratory reasoning: a range of tasks including
all the above optimization procedures, as well as theory explo-
ration [26], rewrite rule inference [20], and proof search [16],
[5], [14]. Exploratory reasoning, in general, can be thought
of as any reasoning task navigating a large space of potential
goals or sub-goals that need to be selected based on some
criteria. Our motivating example comes from TheSy and Ruler,
both of which are theory exploration systems based on e-
graphs. A theory exploration system attempts to both discover
and prove mathematical properties from a set of definitions and
known lemmas. Most of the difficulty in theory exploration
comes from the generation and filtering of candidates, rather
then from the proof procedure itself. TheSy does so by
efficiently filtering a large set of potential conjectures using e-
graphs for equality reasoning, and evaluating which should be
potentially proved. While e-graphs are effective for equality
reasoning [30], handling branching, such as case splitting
during proof search, do not have a common solution, and
are treated ad-hoc. For example, a special type of node is
introduced in [29] to deal with loop conditions, while in [7] a
special operator is introduced to reason on expressions under
certain contexts, and [26] creates full copies of the e-graph for
each branch being explored.
To illustrate this difficulty, we zoom in on an example from

theory exploration. As an example scenario, consider trying to
discover and prove lemmas on sorted lists: a library containing
functions find, is sorted, and bin search. We expect to discover
lemmas involving these functions; one such lemma might be
the property: is sorted l → bin search l v = find l v. State-of-
the-art theory exploration systems [12], [20], [26] have some
enumeration strategy over expressions in order to discover
candidates. A challenge presents itself when some lemmas
in the space require an assumption, in this case is sorted l.
When dealing with e-graphs, adding an assumption would
globally affect all terms involved in the enumeration, making it
impossible to separate conclusions stemming from different as-
sumptions. Because the system cannot know in advance which
assumptions will become relevant for discovering equalities,
it is required that it also generate and test multiple candidate
assumptions. An immediate solution is to create one copy
of the graph per assumption, but doing so can significantly
increase the memory usage. Moreover, lemmas may depend on

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 13 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0009-0008-4020-9040
https://orcid.org/0000-0002-7276-7644
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_13
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_13
https://creativecommons.org/licenses/by/4.0/

one another; for example, is sorted l→ bin search l v = find l v
depends on transitivity of ≤ (x ≤ y ∧ y ≤ z → x ≤ z).
Therefore, just trying the candidates one at a time would
mean that the system would prematurely discard candidates
depending on the order in which they are tested; alternatively,
for each candidate that is validated and becomes a lemma, it
would be forced to re-try all the previously failed attempts,
which is highly costly.
To overcome this difficulty, we propose an extension of

the e-graph data structure. An e-graph naturally represents
a congruence relation ∼=, which is an equality relation over
terms (with function applications), which maintains x ∼= y ⊢
f(x) ∼= f(y). The congruence relation is maintained in the
e-graph as a set of equivalence classes (e-classes), which can
be merged as part of updating the underlying relation. We
extend the e-graph data structure into a Colored E-Graph to
maintain multiple congruence relations at once, where each
relation is associated with a color. Our key observation is that
each added assumption, can be treated as a new congruence
relation, but is only a coarsening of the original relation. The
coarsening, then, can be represented as a set of additional
merges of e-classes on top of the original e-graph. The main
benefit is reducing memory consumption by re-using and
sharing most of the e-classes between colors. Going back
to the sorted list example, in the colored e-graph there will
be a red relation for assuming x ≤ y ∧ y ≤ z, and a blue
relation for assuming is sorted l. Thanks to the size reduction,
multiple relations can exist at once, and thus the lemma
is sorted l → bin search l v = find l v can be discovered after
transitivity of ≤ is proven, but without dependency on the
order of exploration. Colored e-graphs also support having a
hierarchy between different colors, which can benefit from
additional sharing of e-classes. For example, the red color
representing x ≤ y ∧ y ≤ z is itself a coarsening of some
green color representing just the assumption x ≤ y.
While the memory footprint for each color is smaller,

maintaining the congruence relation and the data structure
invariants becomes more challenging. To address this we
present specialized data-structure modifications and evaluate
them. First, we set up a multi-level union-find where the
lowest level corresponds to the root congruence. Second, we
change how congruence closure is applied to the individual
congruence relations while taking advantage of the sharing
between each such relation and the root. Lastly, we present
a technique for efficient e-matching over all the relations at
once.

Our contributions are:
1) The observation that assumptions induce coarsened e-

graphs that share much of the original structure.
2) Algorithms for colored e-graphs operations.
3) Optimizations on top of the basic algorithms to significantly

improve resource usage.
4) A colored e-graph implementation, Easter Egg1 and an

evaluation that shows an improvement factor in memory

1https://github.com/eytans/egg/tree/features/color splits

∼=b

(a)

∼=r

(b) (c)

Fig. 1. Example e-graph with two colored layers; (a) is blue, (b) is red, (c)
shows them combined.

usage over the existing baseline, while maintaining similar
run-time performance.

II. OVERVIEW

From this point we assume familiarity with the basic e-
graph structure which includes a union-find, hashcons, and an
e-class map, as well as the basic operations of add, merge,
rebuild, and e-matching (and consequently rewriting). For
readers unfamiliar with e-graphs, or with deferred rebuilding,
which was introduced in [30], additional background is given
in Appendix A.
Colored E-graphs are an extension of e-graphs devised to

add a generic approach for supporting conditional reasoning
to e-graphs. Existing exploratory reasoning systems such as
TheSy [26] and Ruler [20] utilize equality saturation with e-
graphs for discovering new rewrite rules, but are limited in
the presence of conditionals. For example, let t := max(x, y),
then reasoning about the cases x < y and x ≥ y separately
is desirable: in the first case t ∼= x, and in the second t ∼= y.
Without any assumptions, we can say neither and rewriting
of t is blocked. The approach in [26] involves a prover that
creates an e-graph clone for each case in case splitting, such
as for x < y and x ≥ y. This process, however, incurs high
runtime and memory costs. Non-relevant terms in the e-graph
are unnecessarily duplicated, and rewrites are redundantly
applied to these copies. Further case splits compound this
issue, leading to an exponential increase in the number of
clones with additional nested splits.
Colored e-graphs are designed to avoid duplication via

sharing of the common terms, thus storing them only once
when possible. The e-graph structure becomes layered: the
lowermost layer represents a congruence relation over terms
that is true in all cases (represented, normally, as e-classes
containing e-nodes). On top of it are layered additional con-
gruence relations that arise from various assumptions.
Going back to our example, the corresponding e-graph is

shown in Figure 1, containing the terms max(x, y), x < y,
true and false. Layers corresponding to assumptions x < y
and x ≥ y are shown in 1(a) and 1(b). To evoke intuition,
we associate with each layer a unique color, and paint their
e-classes (dotted outlines, in depicted e-graphs) accordingly.
Conventionally, the lowermost layer is associated with the
color black. In the subsequent example we will use blue for
x < y and red for x ≥ y when referring to the example.
In the blue layer, (x < y) ∼=b true and max(x, y) ∼=b y; in
the red layer, (x < y) ∼=r false and max(x, y) ∼=r x. This

71

https://github.com/eytans/egg/tree/features/color_splits

is shown via the corresponding blue and red dotted borders.
Figure 1(c) shows a depiction where both colors are overlain
on the same graph, which is a more faithful representation of
the concept of colored e-graphs, although this visualization is
clearly not scalable to larger graphs. In Figure 2, a larger graph
can be seen that includes the terms max(x, y)−min(x, y) and
|x − y|. An overlain graph will be quite incomprehensible in
this case, so the layers are shown separately; it can be easily
discerned that max(x, y) − min(x, y) ∼=b |x − y| as well as
max(x, y)− min(x, y) ∼=r |x− y|.
Both additional layers, blue and red, use existing (black)

e-nodes, with each color represented by further unions of e-
classes in the black congruence relation. Each color’s con-
gruence ∼=c is a coarsening of the black congruence, ∼=,
as ∼= ⊆ ∼=c. In complex cases like the generalization of
max(x, y)−min(x, y) ∼= |x−y| to max(x, y, z)−min(x, y, z) ∼=
max(|x − y|, |x − z|, |y − z|), the colored e-graphs have an
important layered structure. This scenario requires reasoning
about additional assumptions, building additional layers, such
as x < y ∧ y < z on top of x < y (and respectively
x ≥ y ∧ y < z on top of x ≥ y). These additional layers
will reuse the blue and red ones, as they are a coarsening of
the respective ∼=b and ∼=r .
Before diving into the design of colored e-graphs, it is better

to start with their expected semantics. One way to understand
the semantics of colored e-graphs is by analogy to a set of
clones, i.e. separate e-graphs E . One e-graph represents the
base congruence ∼=, and one e-graph per color c represents
∼=c. All e-graphs in E conceptually represent the same terms
partitioned differently into e-classes. Thus, they have the same
e-nodes, except that the choice of e-class id (the representative)
may be different according to the composition of the e-
classes. We will call the e-classes of the color congruences
colored e-classes. A union in any layer, black or colored, is
in effect a union applied to the respective e-graph and all its
descendants. Thus, a union in the black layer (i.e. the original
e-graph) is analogous to a union in all of the e-graphs of the
corresponding e-classes; this maintains the invariant that every
colored e-class is a union of (one or more) black e-classes. The
colored e-graph semantics of the other operations—insertion,
congruence closure, and e-matching—are the same as if they
were performed across all clones.
A guiding observation in the design is that in equality

saturation based exploratory reasoning tasks, where the e-
graphs are extensive, each assumption leads to modest increase
in congruences. Colored e-graphs are adapted to this scenario.
The basic presupposition is that most colored layers, like the
blue layer in Figure 2, do not involve an excessive amount
of additional unions. In these cases, the space savings from
not duplicating black e-nodes more than compensate for the
added complexity in managing colored e-classes. With careful
tweaks and a few optimizations, we show that we improve
upon a clone-based approach. Importantly, if the assumption
leads to an inordinate increase in additional unions, the clone-
based approach could be more appropriate, and it is possible
to use a clone for that specific assumption.

For presentation purposes, we start with a basic implementa-
tion that is not very efficient but is effective for understanding
the concepts and data structures; then, we indicate some pain
points, and move on to describe optimization steps that can
alleviate them.
In the basic implementation, all e-nodes reside in the

“black” layer, represented by a “vanilla” e-graph implemented
in egg, with normal operations. The colored congruences do
not have designated e-graphs of their own, and instead, the
operations of merge, rebuild, and e-matching have colored
variants, parameterized by an additional color c, that are
semantically analogous to the same operations having been
applied, in clone semantics, to the e-graph associated with
color c in E . (Insertion is deferred to later.)

Colored merge. In colored e-graphs, the union-find structure
used for merging, which traditionally holds all e-class ids, is
optimized. A master copy retains black unions, while each
color layer has a smaller union-find for merged representative
e-classes of the parent layer. This approach avoids replication
of data across layers.

Colored e-matching. The e-class map is only saved for the
black layer. This is sufficient, because an e-class in color c
is always going to be a union of black e-classes, and all that
is required for e-matching is finding e-nodes with a particular
root (operator) in the course of the top-down traversal. So the
union can be searched on demand by collecting all the “c-color
siblings” of the e-class and searching them as well.

Colored congruence closure. In egg, the e-graph maintains
congruence by cycling through a work list of altered classes,
re-canonizing their parents, and identifying unions to complete
congruence through duplicate detection. In colored e-graphs
the root will behave the same, but for colored layers there
is no single e-class, as the colored e-classes are a equality
class of concrete e-classes. For each color, we maintain an
additional work list and collect concrete parents from e-classes
on demand. This results in a rebuild algorithm similar to egg’s,
but without updating the hashcons in colored layers, as they
are not present.
For a more concrete example, we give a detailed walk-

through of equality saturation in a colored e-graph of the red
case from Figure 2(b), and show the steps taken to construct
this colored layer in Appendix C.
When using the above operations in the context of equality

saturation, e-matching is applied for all colors to discover
matches for the left-hand sides of rules. For each match, the
right-hand side of the rule needs to be inserted into the e-
graph and merged or color-merged with the left-hand side.
Inserting the e-nodes to the e-graphs makes them available to
all layers. This aspect is sound, since we assume that the mere
existence of a term in an e-graph does not in itself have the
semantics of a judgement—it is only the placing e-nodes in the
same e-class that asserts an equality. However, in the presence
of many colors, and thus many colored matches, the result
would be a large volume of e-nodes that are in black e-classes
of size 1, as they were created to serve a single color. As

72

∼= ∼=b
∼=r

(a) (b) (c)

Fig. 2. Proof of max(x, y)−min(x, y) = |x− y|. The e-nodes corresponding to the two terms are in the same e-class both in the blue layer (b) and in the
red (c). It is important to note that the layers are overlain, and that the black nodes are shared; they are separated here for ease of perception.

opposed to a, standard, single e-graph where merging e-classes
shrinks the space of e-nodes (because non-equal e-nodes may
become equal as a result of canonization), in colored unions
it is required that the e-graph maintain both original e-classes,
thus losing this advantage. This can put a growing pressure
on subsequent e-matching and rebuild operations in all colors.
Optimizations to improve colored e-graphs, and to address this
issue, are presented in section IV.

III. FUNCTIONAL DESCRIPTION

We now introduce some notations and definitions that
formalize the description of the e-graph presented in section II.
We assume a term language L where terms are constructed
using function symbols, each with its designated arity. We use
f (r) ∈ Σ[L] to say that f is in the signature of L and has
arity r. A term is then a tree whose nodes are labeled by
function symbols and a node labeled by f has r children. (In
particular, the leaves of a term have nullary function symbols.)
Additionally we use the following definitions:

e-class ids E

e-nodes N = {f(e1, .., er) | fr ∈ Σ, ei ∈ E}
union-find ≡id ⊆ E × E, ≡id is an equivalence relation
e-class map M : E → P(N)

parent map P = {e ↦→ {(n, e′) | e′ ∈ E ∧
n ∈M(e′) ∧ n = f(. . . , e, . . .)} | e ∈ E}

hashcons H = {n ↦→ e | n ∈M(e)}

Semantically, every e-class represents a set of terms over
Σ. We will use the notation [t] to refer to e-class id of the
equality class that represents (among other terms), the term t.
The union-find structure offers an operation, find(e), that

returns a unique representative id of the equivalence class (of
≡id) that contains e. That is, find(e) ≡id e and for all e1 ≡id

e2, find(e1) = find(e2).
On top of these basic structures, we introduce a set of colors.

As explained in section II, colors are organized in a tree whose

root is the initial color (“black”). We mark the root color ∅
and assign to every non-root color c a parent color p(c).

colors C = {∅, . . .}
parent colors p : C \ {∅} → C

The colored e-graph will now hold multiple union-find
structures, one per color. They define a family of equivalence
relations ≡c by induction on the path from ∅ to c.

▷ ≡∅ = ≡id ; find∅(e) = find(e)
▷ ≡c ⊆ Ep(c)×Ep(c), where Ep(c) = {findp(c)(e) | e ∈ E}
is the set of all representatives from ≡p(c). findc(e) for
e ∈ Ep(c) returns a unique identifier in the normal manner
of union-find, i.e., findc(e) ≡c e and for all e1 ≡c e2,
findc(e1) = findc(e2).

The definitions over Ep(c) are naturally extended to
E by (recursive) application of find ; i.e., findc(e) =
findc(findp(c)(e)) and e1 ≡c e2 ⇔ findp(c)(e1) ≡c
findp(c)(e2). Thus it holds, by construction, that ≡c ⊇ ≡p(c).
The colored e-graph also supports a mergec(e1, e2) opera-

tion for each color c where e1, e2 ∈ Ec. The merge operation
may break the congruence relation invariants for c and all its
descendants, and thus needs to be fixed. The merged classes
are added to worklist(c′) for all c′ where c′ is c or one of its
descendant. In egg [30], the invariants are restored periodically
by performing a REBUILD pass. To accommodate the colors,
we adjust the REBUILD logic to a multi-congruence-relation
setting, so that it restores a congruence closure for each color
during REBUILD. The main difference is that for a colored
congruence relation, the procedure will collect the parents of
a colored e-class by combining the sets of parents of all the
(root) e-classes contained therein.
Another important colored e-graph operation is e-matching.

Colored e-matching is a modification of the e-matching ab-
stract machine presented in [19]. E-matching is performed
by an abstract machine M which consists of a program
counter, array of registers reg, and backtracking stack bs, in
combination with a sequence of instructions that represents a
pattern p. The machine will run instructions by order, where
each may either fail if its assertion is not met, or produce a set

73

of continuation states. If a continuation state is produced, the
machine selects the first one and adds the current instruction
to the stack. If no continuation state is produced, the machine
backtracks, retrieving the most recent state from the stack and
attempting the next available continuation.

To better present our modifications in colored egg, we first
shortly introduce some of the original instruction types:

▷ bind(in, f, out) — Matches any e-node of the form
f(x1, . . . , xn) that resides in the e-class saved in reg[in],
storing its children x1..n in reg[out..out+ n− 1].

▷ compare(i, j) — Asserts reg [i] == reg [j].
▷ check(i, term) — Asserts that the e-class reg [i] represents

term .
▷ continue(f, out) — Match any e-node f(x1, . . . , xn) (in
any e-class), storing its children x1..n in reg [out ..out +
n− 1].

▷ join(in, reverse path, out) — Match any e-node
f(x1, . . . , xn) that is reachable through reverse path
from the e-class reg [in], storing its children x1..n in
reg [out ..out + n− 1].

To facilitate matching across various congruence relations,
we adjust the machine M to include the, currently being e-
matched, colored assumption color in its state. Adapting to
color involves changes in compilation and instructions. The
two primary scenarios impacted are: during compare(i, j),
ensuring reg [i] ≡color reg [j], and in function application
matching represented by a bind instruction. Before each
‘bind’ instruction, the modified compilation will insert a new
‘colored jump’ instruction to try matching the full colored
equality class, one “root” e-class at a time. This is achieved
by having ‘colored jump(i)’ yield all the “colored siblings”
of reg [i] in the current color , replacing reg [i] with the result.
The instruction ‘check’ can be likewise adjusted, but we point
out that, in fact, it can be implemented as a sequence of ‘bind’s
(with respective interleaved ‘colored jump’s).

Multipatterns, supported by the abstract machine, enable
e-matching against patterns with shared variables, useful for
matching the precondition in conditional rewrite rules. This
is achieved using the ‘continue’ instruction, which selects a
new root for subsequent sub-patterns. In the colored setting,
while ‘continue’ remains as is, for performance, it’s sometimes
substituted with ‘join’. This alternative instruction also picks
a new root, but restricts selection to e-nodes that can reach a
specified e-class, linked to a previously matched hole, through
child edges in the e-graph. A reverse path is provided to
further restrict the upward search needed to find such e-
nodes. We do not go too deep into the details, but its colored
variant will invoke a colored jump at every level. We point
out that egg does not currently implement ‘join’, and our
colored egg supports a special (though frequent) case in which
reverse path is empty.

The algorithms described here are presented in more depth
in Appendix B.

IV. OPTIMIZATIONS

Both rebuilding and e-matching in colored e-graph, as
discussed in section II, can be significantly slower compared
to a separate, minimized e-graph.
In the rebuilding aspect, two main burdens are that the

colored e-graph contains additional e-nodes compared to each
of the separate ones, and that building a colored hash-cons
(which will be presented shortly) requires going over all the
e-classes.
In the e-matching aspect, colored e-matching may produce

duplicate results due to the e-graph not being minimized
according to the color’s congruence relation; that is, colored-
congruent terms are not always merged under a single e-class
id. To illustrate this, consider a simple e-graph representing
the terms 1 · 1, 1 · x, 1 · y, and x · y. Introduce a color, blue,
where x ∼=b y. A simple pattern such as 1·?v would have three
matches, with assignments ?v ↦→ 1, ?v ↦→ x, ?v ↦→ y. If the
blue layer were a separate e-graph, x and y would have been
in the same e-class, so one of the matches here is redundant
(as far as the blue layer is concerned). Of course, in the black
layer they are different matches; the point is, that many terms
are added to the graph only as a result of a colored match,
so matching them in the black e-graph is mostly useless to
the reasoner. On the other hand, their presence in the black
layer means they cannot ever be merged, leading to duplicate
matches, as seen above, even in the respective colored layer(s).
Moreover, when inserting e-nodes to the e-graph, the hash-

cons is used to prevent duplication, relying on it being canon-
ized. Adding an e-node from a colored conclusion (following
a match modulo ∼=b) does not benefit from canonization.
In fact, each e-node f(x1, . . . , xn) has a multitude of black
representatives that are ∼=b-equivalent. Each child xi in the e-
node can be presented by any black id such that e ∈ [xi]b, so
there are

∏︁
i |[xi]b| representations. These variants are distinct

in the root color, so they cannot be de-duplicated as usual.
To address these issues, we present a series of optimizations

to the colored e-graph data-structure and the procedures.
These optimizations aim to reuse the “root” and ancestor
layers as much as possible, both in terms of memory usage
and compute. Thus, we can achieve a memory efficient, but
effective colored e-graph.

A. Data-structure optimizations

Colored e-nodes. In the basic implementation outlined in
section II, adding e-nodes from colored e-matches to the root
e-graph may make it very large and increase the cost of all
subsequent actions. The optimized version addresses this by
introducing colored e-nodes, where e-nodes resulting from
colored matches are tagged with their inducing colors. Each
colored layer has its own colored hash-cons and e-class map,
designed to store only the differences from the parent layer,
thereby maximizing reuse. The new mappings added are:

e-class color EC : E → C

colored parent Pc = {(n, e) | (n, e) ∈ P ∧ EC(e) = c}
colored hashcons Hc = {n ↦→ e | n ∈M(e) ∧ EC(e) = c}

74

Note that base parents and hashcons from the non-optimized
version are incorporated as P∅ and H∅ in colored mappings.
This optimization applies the hierarchy in all operations. For

example, while inserting an e-node to a color c, it is looked
up in the colored hashcons for c and all its ancestors, p∗(c),
and finally, if no match is found, it is inserted into a new
e-class e, setting EC(e) = c. The colored hashcons Hc is
canonized to color c, ensuring that new e-nodes are unique to
this layer and avoiding colored duplicates. (Some duplication
related to c may still occur in ancestor layers, as their e-nodes
are not canonized to c.) The optimization significantly impacts
e-matching: previously when matching a function application
f , all f -e-nodes in N were considered; now, only those e-
nodes n in the colors hierarchy, that is, those satisfying ∃e. n ∈
M(e) ∧ EC(e) ∈ p∗(c), are examined.
Pruning. Recall that having a coarsening relation between
the colors in the hierarchy means that any result found in
an ancestor color is also true for the descendant(s). And so,
following merges, some of the colored e-nodes could become
subsumed by e-nodes that already exist in an ancestor layer.
We present an efficient deferred pruning method to remove
the redundant e-nodes.
Normal e-graph minimization relies on having all e-nodes

canonized. A colored e-graph usually does not canonize all e-
nodes to a specific color c (except for ∅). Rather, Hc contains
only the difference from previous layers. To find redundant e-
nodes, the colored e-graph builds a transient hashcons during
rebuild from all relevant e-nodes that are not c-colored. The
new hashcons, H ′

c, is created as follows:

H ′
c = {canonizec(n) ↦→ findc(e) |

n ∈M(e), EC(e) ∈ p+(c)}
A c-colored class e can be reduced by removing all e-nodes
that already exist in H ′

c. While pruning is promising, one must
take care that pruned e-nodes are not immediately re-added.

Colored minimization. Another improvement is having
multiple colored e-nodes (of the same color) in a single (black)
e-class. As mentioned previously, any e-node that resulted
from a colored insert had to be in their own e-classes, as
no black unions would be performed on them. But, given that
e ≡c e′ ∧EC(e) = EC(e′) = c, then the two black e-classes
e, e′ can be merged as both contain colored e-nodes of the
same color and are in the same colored e-class (of the same
color). Thus an invariant is kept that each colored equality
class has at most one black e-class containing colored e-nodes.

B. Procedure optimizations

Rebuild. When rebuilding, we first reconstruct the congruence
relation of the “root” layer. Even though a color, for example
blue, will need to rebuild its own congruence, it still holds
that ∼= ⊆ ∼=b . So, any union induced by ∼= can be applied
to the blue relation. To understand the implications, consider
the e-graph representing the terms x, y, f(x), f(y), f(f(x)),
and f(g(y)) where the blue color contains the additional
assumption that g(y) ∼=b f(y). If we union x and y, the

black congruence will include f(x) ∼= f(y) which also
holds in the blue relation. But, the rebuilding of the blue
congruence invariant will include an additional, deeper (in
terms of rebuilding rounds), conclusion f(f(x)) ∼=b f(g(y)).
This demonstrates how reusing parent relations is useful; the
rebuild depth can be reduced by first rebuilding finer relations.

E-match. In e-matching, we implement an optimization
where findings on the root layer are also valid for higher
layers. To avoid redundant pattern matching, e-matching be-
gins only from ∅, adding colored assumptions as needed.
There are two scenarios for introducing a colored assumption:
The first during compare(i, j), if reg [i] ̸≡color reg [j], we
explore descendant colors c where reg [i] ≡c reg [j], adding
states with color ← c to the backtracking stack bs. The
second is on-demand coloring in colored jump, where jumps
to any color c are enabled if M.color ∈ p+(c) and the
target e-class is otherwise unreachable. We minimize the set
of new assumptions to prevent redundant colors. During the
updated compare, compare’, if a color c is sufficient, its
descendants are not added to bs. For to updated colored jump,
colored jump’, e-classes are matched only with their topmost
(closest to root) congruent descendants. By taking the topmost
descendants, we ensure that all additional matching paths are
unique, as at least one (different) e-class is chosen at each fork.
Despite eliminating duplicate paths, some duplicate colored
matches persist due to incomplete minimization of the e-
graph. The modified instructions are described in more detail
in Appendix B.

V. EVALUATION

Support for colored e-graphs is implemented in a modified
version of egg, called Easter Egg. In this section, we evaluate
the performance and effectiveness of Easter Egg and the
different optimizations we presented. For this purpose we
implemented two versions of colored e-graphs containing
different improvements described in section IV. The simple
version only uses procedural improvements, while the opti-
mized version uses all optimizations.

A. Objectives and Evaluation Method

Our evaluation aims to test colored e-graphs’ efficacy in
equality saturation for exploratory reasoning tasks with mul-
tiple simultaneous assumptions. We evaluate the effectiveness
using e-graph size and equality saturation time. To the best
of our knowledge, a purely e-graph-based automated theorem
prover does not exist, and theory exploration tools have limited
support for conditions. Thus, for the evaluation, we created an
equality saturation-based prover (based on code from [26])
that incorporates an automatic case-splitting mechanism.
The case-splitting mechanism is only used when it will

potentially contribute to progress of the equality saturation
process—that is, when it enables additional rewrite rules that
were previously blocked. When this is detected, the prover
yields appropriate assumptions, one for each case. We compare
two settings: a baseline setting with separate e-graphs created
by cloning, and Easter Egg’s colored e-graph implementation.

75

We measure the total running times and the total size of all
the e-graphs.
We evaluated our implementation on inductive proof suites

from [24], also used in [26]. Since the instances are relatively
small, we introduced a slight variation: for each goal, we com-
bined benchmarks (i.e. proof goals) within the suite sharing
similar goals and vocabulary. This approach generates larger
benchmarks, and thus larger e-graphs, for more significant
exploration, with the prover continuing until saturation or
resource limit, regardless of early goal achievement. All the
experiments were conducted on 64 core AMD EPYC 7742
processor with 512 GB RAM.

B. Experimental Setup

Using the enhanced prover, we evaluated each test case
by measuring e-graph sizes and run times. E-graph size was
determined by counting e-nodes; in colored layers, we tracked
additional colored e-nodes, whereas for separate e-graphs,
we measured the e-nodes in both the original and coarsened
graphs. The experiments utilize the Cap library to cap memory
usage at 32 GB and limit run-time to 1 hour per case.
Our experiments involved a basic colored e-graph imple-

mentation (as per section II which we dub monochrome
colored e-graph, as it does not contain colored e-nodes) and a
fully optimized version, comparing both against the baseline
of separate e-graphs. The pruning optimization has almost
identical results to the fully optimized version, and hence, for
brevity, it is not shown. It is expected, due to pruning being
ineffective in cases where the same rewrite rules are applied
repeatedly, adding the removed e-nodes right back.

C. Results

In our setup, all assumptions emerge from case splits done
by the prover. We filter out cases where no case splits were
applied, since these have no assumptions introduced and thus
colored e-graphs have no impact.
For each benchmark instance, we measure the relative e-

node overhead as the number of additional e-nodes that are
required, normalized by the number of different assump-
tions. That is, (|total e-nodes|−|base e-nodes|)/|assumptions|.
“Base e-nodes” represent the contents of the graph before
case splits. (For the monochrome colored e-graph we use the
base e-nodes present in the separate e-graphs case.) Figure 3
summarizes the results, pitting colored e-graphs (with and
without colored e-nodes) against the baseline of separate
clones. In some cases one configuration times out or runs
out of memory, while the other does not; we only compare
cases where both configurations finished the run successfully.
In both comparisons, we see roughly around 10× lower
overhead, where in the monochromatic case samples are more
dispersed around the y axis, and the optimized case shows
clear advantage to the colored e-graph implementation.
Run-time is measured as the the total run-time for completed

test cases, and 1 hour for cases that timed out. We do
not include runs that did not finish due to out-of-memory
exceptions (we report the latter separately). As can be seen

TABLE I
RUN-TIME AND EXCEPTIONS. M = OUT OF MEMORY, T = TIMEOUT (3600)

Separate Monochrome Optimized

Test Suite Time M/T Time M/T Time M/T

clam 70.1 0/0 277.8 0/5 23.6 0/0
hipspec-rev-equiv 34.1 0/0 139.0 0/17 57.0 0/0
hipspec-rotate 3880.3 1/1 1871.4 0/6 17.4 0/3
isaplanner 8454.4 0/60 6068.4 0/70 20486.3 3/28
leon-amortize-queue 187356.4 52/0 14.8 0/57 10854.3 3/49
leon-heap 1735.9 0/0 1201.8 0/25 4949.2 0/13

in Figure 4, the monochrome colored e-graph lead to many
timeouts, whereas the optimized case exhibits running times
similar to separate clones. This is in line with our expectation:
colors provide lower memory sizes at the expense of run-time.
Finally, in Table I we present the number of out-of-memory

exceptions, the number of timeout exceptions, and total run-
time for each configurations and test suite. The monochrome
colored e-graph, as expected, exhibits many timeouts. Even
though it has more errors than the other e-graph versions, it
still has much longer run-times.
The optimized e-graphs demonstrate enhancements over

separate e-graphs in both run-time and success rate, as detailed
in Table I. Notably, the optimized configuration completed
more tests (99 failures compared to 114). A key shift observed
is the replacement of out-of-memory errors with timeouts,
particularly in the leon-amortize-queue suite. However, leon-
heap posed challenges for colored e-graphs, incurring 13
extra timeouts even in the optimized version. Conversely, the
isaplanner suite showed a notable improvement, halving the
failure rate in the optimized version compared to the baseline.

VI. RELATED WORK

Theory exploration and its applications. Interest in ex-
ploratory reasoning in the context of functional calculi started
with IsaCoSy [13], a system for lemma discovery based in part
on CEGIS [28]. In a seminal paper, QuickSpec [27] propelled
applicability of such reasoning for inferring specifications
from implementations based on random testing, with deductive
reasoning to verify generated conjectures [6], [12]. TheSy [26]
and Ruler [20] have both incorporated e-graphs to some
extent in the exploration process: they are used to speed
up equivalence reduction of the space of generated terms,
and, in [26], also the filtering and qualification phases using
symbolic examples. The evaluation of the latter shows quite
clearly that case splitting is a major obstacle to symbolic
exploratory reasoning, due to the large number of different
cases and derived assumptions.
In the area of conditional rewrite discovery, Speculate [4]

naturally builds on the techniques from QuickSpec and de-
pends on property-based testing techniques to generate inputs
that satisfy some conditions. SWAPPER [25] is a relatively
early example of exploring using SyGuS with a data-driven
inductive-synthesis approach with emphasis on finding rules

76

separate e-graphs

m
on
oc
hr
om

e
co
lo
re
d
e-
gr
ap
hs

separate e-graphs

op
tim

iz
ed

co
lo
re
d
e-
gr
ap
hs

×1

×10

Fig. 3. Size comparison: relative e-node overhead in clones vs. color e-graph variants.

separate e-graphs

m
on
oc
hr
om

e
co
lo
re
d
e-
gr
ap
hs

separate e-graphs

op
tim

iz
ed

co
lo
re
d
e-
gr
ap
hs

Fig. 4. Run-time comparison: run-time of clones vs. color e-graphs

that are most efficient for different problem domains. It
requires a large corpus of similar SMT problems to operate.
Other e-graph extensions. E-graphs were originally brought
into use for automated theorem proving [9], and were later
popularized as a mechanism for implementing low-level com-
piler optimizations [29], by extending them with “ϕ-nodes”
to express loops. Relational e-matching [32] makes use of
Datalog seminaı̈ve evaluation to harness the power of query
planning in database systems. Subsequently, Datalog-powered
e-matching has been recently fused with core Datalog seman-
tics to allow richer logic programming by exposing equal-
ity saturation as a building block in a framework called
egglog [31]. Since Datalog is based on Horn clauses, this
meshes very well with conditional rewriting. It should be
noted, though, that it is still a monotone framework, and
does not allow backtracking or simultaneous exploration of
alternative assumptions.
ECTAs [15], [11] are another, related compact data structure

that extends e-graphs, Version-Space Algebras [17], [18], and
Finite Tree Automata [1], with the concept of “entanglement”;
that is, some choices of terms from e-classes may depend on

choices done in other e-classes. Since the backbone of ECTAs
is quite similar to an e-graph, the colors extension is applicable
to this domain as well.
Uses of e-graphs in SMT. E-graphs are a core component
for equality reasoning in SMT solvers [8], [2], in most theory
solvers such as QF UF, linear algebra, and bit-vectors. E-
matching is also used for quantifier instantiation [21], which is,
in its essence, an exploratory task and requires efficient meth-
ods [19]. In these contexts, implications and other Boolean
structures are treated by the SAT core (in CDCL(T)), and the
theory solver only handles conjunctions of literals.

VII. CONCLUSION

We presented colored e-graphs as an approach to efficiently
handle multiple congruence relations in a single e-graph. They
provide a memory-efficient method for equality saturation
with additional assumptions, crucial for efficient exploratory
reasoning of multiple assumptions simultaneously. Our opti-
mizations, developed using the egg library, have shown notable
improvements in memory usage and moderate enhancements
in run-time performance over the baseline.

77

REFERENCES

[1] Adams, M.D., Might, M.: Restricting grammars with tree au-
tomata. Proc. ACM Program. Lang. 1(OOPSLA), 82:1–82:25 (2017).
https://doi.org/10.1145/3133906, https://doi.org/10.1145/3133906

[2] Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann,
M., Mohamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir,
A., Preiner, M., Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvc5:
A versatile and industrial-strength SMT solver. In: Fisman, D., Rosu,
G. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems - 28th International Conference, TACAS 2022, Held as Part
of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings,
Part I. Lecture Notes in Computer Science, vol. 13243, pp. 415–442.
Springer (2022). https://doi.org/10.1007/978-3-030-99524-9 24, https:
//doi.org/10.1007/978-3-030-99524-9 24

[3] Bergstra, J., Klop, J.: Conditional rewrite rules: Confluence and ter-
mination. Journal of Computer and System Sciences 32(3), 323–
362 (1986). https://doi.org/https://doi.org/10.1016/0022-0000(86)90033-
4, https://www.sciencedirect.com/science/article/pii/0022000086900334

[4] Braquehais, R., Runciman, C.: Speculate: discovering conditional
equations and inequalities about black-box functions by reasoning
from test results. In: Diatchki, I.S. (ed.) Proceedings of the
10th ACM SIGPLAN International Symposium on Haskell,
Oxford, United Kingdom, September 7-8, 2017. pp. 40–
51. ACM (2017). https://doi.org/10.1145/3122955.3122961,
https://doi.org/10.1145/3122955.3122961

[5] Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic the-
orem prover. In: Jhala, R., Igarashi, A. (eds.) Programming Languages
and Systems - 10th Asian Symposium, APLAS 2012, Kyoto, Japan, De-
cember 11-13, 2012. Proceedings. Lecture Notes in Computer Science,
vol. 7705, pp. 350–367. Springer (2012). https://doi.org/10.1007/978-3-
642-35182-2 25, https://doi.org/10.1007/978-3-642-35182-2 25

[6] Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Automating
inductive proofs using theory exploration. In: International Conference
on Automated Deduction. pp. 392–406. Springer (2013)

[7] Coward, S., Constantinides, G.A., Drane, T.: Automating constraint-
aware datapath optimization using e-graphs. In: 2023 60th ACM/IEEE
Design Automation Conference (DAC). pp. 1–6. IEEE (2023)

[8] De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: International
conference on Tools and Algorithms for the Construction and Analysis
of Systems. pp. 337–340. Springer (2008)

[9] Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover
for program checking. J. ACM 52(3), 365–473 (May 2005).
https://doi.org/10.1145/1066100.1066102, https://doi.org/10.1145/
1066100.1066102

[10] Flatt, O., Coward, S., Willsey, M., Tatlock, Z., Panchekha, P.:
Small proofs from congruence closure. In: Griggio, A., Rungta,
N. (eds.) 22nd Formal Methods in Computer-Aided Design,
FMCAD 2022, Trento, Italy, October 17-21, 2022. pp. 75–
83. IEEE (2022). https://doi.org/10.34727/2022/isbn.978-3-85448-053-
2 13, https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 13

[11] Gissurarson, M.P., Roque, D., Koppel, J.: Spectacular: Finding laws
from 25 trillion programs. In: ICST. vol. 6. Association for Computing
Machinery, New York, NY, USA (2023)

[12] Johansson, M.: Automated theory exploration for interactive theo-
rem proving: - an introduction to the hipster system. In: Inter-
active Theorem Proving - 8th International Conference, ITP 2017,
Brası́lia, Brazil, September 26-29, 2017, Proceedings. pp. 1–11
(2017). https://doi.org/10.1007/978-3-319-66107-0 1, https://doi.org/10.
1007/978-3-319-66107-0 1

[13] Johansson, M., Dixon, L., Bundy, A.: Conjecture synthesis for inductive
theories. Journal of Automated Reasoning 47, 251–289 (2010)

[14] Jones, E., Ong, C.H.L., Ramsay, S.: Cycleq: an efficient basis for
cyclic equational reasoning. In: Proceedings of the 43rd ACM SIG-
PLAN International Conference on Programming Language Design and
Implementation. pp. 395–409 (2022)

[15] Koppel, J., Guo, Z., de Vries, E., Solar-Lezama, A., Polikarpova,
N.: Searching entangled program spaces. Proc. ACM Program. Lang.
6(ICFP) (aug 2022). https://doi.org/10.1145/3547622, https://doi.org/10.
1145/3547622

[16] Kovács, L., Voronkov, A.: First-order theorem proving and vampire.
In: International Conference on Computer Aided Verification. pp. 1–35.
Springer (2013)

[17] Lau, T.A., Domingos, P.M., Weld, D.S.: Version space algebra and
its application to programming by demonstration. In: Langley, P. (ed.)
Proceedings of the Seventeenth International Conference on Machine
Learning (ICML 2000), Stanford University, Stanford, CA, USA, June
29 - July 2, 2000. pp. 527–534. Morgan Kaufmann (2000)

[18] Lau, T.A., Wolfman, S.A., Domingos, P.M., Weld, D.S.: Programming
by demonstration using version space algebra. Mach. Learn. 53(1-2),
111–156 (2003). https://doi.org/10.1023/A:1025671410623, https://doi.
org/10.1023/A:1025671410623

[19] de Moura, L.M., Bjørner, N.S.: Efficient e-matching for SMT solvers. In:
Pfenning, F. (ed.) Automated Deduction - CADE-21, 21st International
Conference on Automated Deduction, Bremen, Germany, July 17-20,
2007, Proceedings. Lecture Notes in Computer Science, vol. 4603,
pp. 183–198. Springer (2007). https://doi.org/10.1007/978-3-540-73595-
3 13, https://doi.org/10.1007/978-3-540-73595-3 13

[20] Nandi, C., Willsey, M., Zhu, A., Wang, Y.R., Saiki, B., Anderson,
A., Schulz, A., Grossman, D., Tatlock, Z.: Rewrite rule inference
using equality saturation. Proc. ACM Program. Lang. 5(OOPSLA),
1–28 (2021). https://doi.org/10.1145/3485496, https://doi.org/10.1145/
3485496

[21] Niemetz, A., Preiner, M., Reynolds, A., Barrett, C.W., Tinelli, C.:
Syntax-guided quantifier instantiation. In: Groote, J.F., Larsen, K.G.
(eds.) Tools and Algorithms for the Construction and Analysis of
Systems - 27th International Conference, TACAS 2021, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 12652,
pp. 145–163. Springer (2021). https://doi.org/10.1007/978-3-030-72013-
1 8, https://doi.org/10.1007/978-3-030-72013-1 8

[22] Nötzli, A., Barbosa, H., Niemetz, A., Preiner, M., Reynolds,
A., Barrett, C.W., Tinelli, C.: Reconstructing fine-grained proofs
of rewrites using a domain-specific language. In: Griggio, A.,
Rungta, N. (eds.) 22nd Formal Methods in Computer-Aided De-
sign, FMCAD 2022, Trento, Italy, October 17-21, 2022. pp. 65–
74. IEEE (2022). https://doi.org/10.34727/2022/isbn.978-3-85448-053-
2 12, https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 12

[23] Panchekha, P., Sanchez-Stern, A., Wilcox, J.R., Tatlock, Z.: Automati-
cally improving accuracy for floating point expressions. ACM SIGPLAN
Notices 50(6), 1–11 (2015)

[24] Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: D’Souza, D.,
Lal, A., Larsen, K.G. (eds.) Verification, Model Checking, and Abstract
Interpretation. pp. 80–98. Springer Berlin Heidelberg, Berlin, Heidelberg
(2015)

[25] Singh, R., Solar-Lezama, A.: SWAPPER: A framework for au-
tomatic generation of formula simplifiers based on conditional
rewrite rules. In: Piskac, R., Talupur, M. (eds.) 2016 Formal
Methods in Computer-Aided Design, FMCAD 2016, Mountain
View, CA, USA, October 3-6, 2016. pp. 185–192. IEEE (2016).
https://doi.org/10.1109/FMCAD.2016.7886678, https://doi.org/10.1109/
FMCAD.2016.7886678

[26] Singher, E., Itzhaky, S.: Theory exploration powered by deductive syn-
thesis. In: Computer Aided Verification: 33rd International Conference,
CAV 2021, Virtual Event, July 20–23, 2021, Proceedings, Part II 33.
pp. 125–148. Springer (2021)

[27] Smallbone, N., Johansson, M., Claessen, K., Algehed, M.: Quick
specifications for the busy programmer. J. Funct. Program. 27, e18
(2017). https://doi.org/10.1017/S0956796817000090, https://doi.org/10.
1017/S0956796817000090

[28] Solar-Lezama, A., Tancau, L., Bodı́k, R., Seshia, S.A., Saraswat,
V.A.: Combinatorial sketching for finite programs. In: Proceedings
of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2006,
San Jose, CA, USA, October 21-25, 2006. pp. 404–415 (2006).
https://doi.org/10.1145/1168857.1168907

[29] Tate, R., Stepp, M., Tatlock, Z., Lerner, S.: Equality saturation: A new
approach to optimization. In: Proceedings of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. p. 264–276. POPL ’09, Association for Computing Machinery,
New York, NY, USA (2009). https://doi.org/10.1145/1480881.1480915,
https://doi.org/10.1145/1480881.1480915

[30] Willsey, M., Nandi, C., Wang, Y.R., Flatt, O., Tatlock, Z., Panchekha,
P.: Egg: Fast and extensible equality saturation. Proc. ACM Program.
Lang. 5(POPL) (jan 2021). https://doi.org/10.1145/3434304, https://doi.
org/10.1145/3434304

78

https://doi.org/10.1145/3133906
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://www.sciencedirect.com/science/article/pii/0022000086900334
https://doi.org/10.1145/3122955.3122961
https://doi.org/10.1007/978-3-642-35182-2_25
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_13
https://doi.org/10.1007/978-3-319-66107-0_1
https://doi.org/10.1007/978-3-319-66107-0_1
https://doi.org/10.1145/3547622
https://doi.org/10.1145/3547622
https://doi.org/10.1023/A:1025671410623
https://doi.org/10.1023/A:1025671410623
https://doi.org/10.1007/978-3-540-73595-3_13
https://doi.org/10.1145/3485496
https://doi.org/10.1145/3485496
https://doi.org/10.1007/978-3-030-72013-1_8
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_12
https://doi.org/10.1109/FMCAD.2016.7886678
https://doi.org/10.1109/FMCAD.2016.7886678
https://doi.org/10.1017/S0956796817000090
https://doi.org/10.1017/S0956796817000090
https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3434304

[31] Zhang, Y., Wang, Y.R., Flatt, O., Cao, D., Zucker, P., Rosenthal,
E., Tatlock, Z., Willsey, M.: Better together: Unifying datalog and
equality saturation. In: PLDI ’23: 44rd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implemen-
tation (2023). https://doi.org/10.48550/arXiv.2304.04332, https://doi.org/
10.48550/arXiv.2304.04332

[32] Zhang, Y., Wang, Y.R., Willsey, M., Tatlock, Z.: Relational e-
matching. Proc. ACM Program. Lang. 6(POPL), 1–22 (2022).
https://doi.org/10.1145/3498696, https://doi.org/10.1145/3498696

79

https://doi.org/10.48550/arXiv.2304.04332
https://doi.org/10.48550/arXiv.2304.04332
https://doi.org/10.1145/3498696

APPENDIX A
BACKGROUND ON E-GRAPHS

We will now present some general background on e-graphs.
Same as in section II, we assume a term language L where
terms are constructed using function symbols, each with its
designated arity. We use f (r) ∈ Σ[L] to say that f is in the
signature of L and has arity r.
An e-graph G serves as a compact data structure repre-

senting a set S ⊆ L of terms and a congruence relation
∼= ⊆ L × L. This congruence relation, in addition to being
reflexive, symmetric, and transitive, is also closed under the
function symbols of Σ[L]. That is, for every fr ∈ Σ[L], and
given two lists of terms t1..r ∈ L and s1..r, each of length
r, if ti ∼= si (i = 1..r), then it follows that f(t1, . . . , tr) ∼=
f(s1, . . . , sr). This property, known as congruence closure, is
a key attribute of the data structure. The maintenance of this
attribute as an invariant significantly influences the design and
implementation of e-graph actions.
The egg library [30] revolutionizes the application of e-

graphs by explicitly supporting the equality saturation work-
flow. It enables the periodic maintenance of congruence clo-
sure, via deferred rebuild, allowing for the amortization of
associated rebuilding costs.
In egg, the authors present the e-graph as a union-find-like

data structure, augmented to support operations on expres-
sions. This implementation is primarily achieved through the
utilization of three key structures: a hash-cons table, a union-
find structure, and an e-class map. These structures collectively
underpin the functionalities integral to the operation of the e-
graph.

(a) The union-find component is responsible for keeping
track of merged e-classes and maps each e-class id to
a single representative for all (transitively) merged e-
classes. This information is later used to canonicalize the
keys and values of the hash-cons.

(b) The e-class map stores the structure of the e-graph. For
each e-class id, the map keeps all the e-nodes that are
contained therein. E-nodes are similar to AST nodes
except that their children point to e-class ids instead of
containing a single sub-term each.

(c) The hash-cons table maps e-nodes to their containing e-
class id. An important aspect of the hash-cons is that
after rebuilding, its keys and values are expected to be
canonical. That is, whenever e-classes are merged one of
their ids becomes “the” representative.

An e-class with id e represents a set of terms defined
recursively as:

L(e) = {f(t1, .., tk) |
f(e1, .., ek) ∈M(e), ti ∈ L(ei) for i = 1..k}

We will use the notation [t] to refer to e-class id where t ∈
L([t]).

Example A.1. The terms max(x, y) and x − y are both
represented in the e-graph in Figure 1(a) using e-classes ⟨5⟩
and ⟨6⟩, respectively, with the following e-nodes:

M = ⟨1⟩ ↦→ {true} ⟨2⟩ ↦→ {false}
⟨3⟩ ↦→ {x} ⟨4⟩ ↦→ {y}
⟨5⟩ ↦→ {max(⟨3⟩, ⟨4⟩)} ⟨6⟩ ↦→ {⟨3⟩ − ⟨4⟩}

An e-graph where every e-class is a singleton, like this one,
is just a forest of expression trees with sharing. The situation
becomes more interesting once we start mutating the graph
via its dedicated operations.
1) Insert - Adds a term t to the e-graph, one e-class per AST

node, reusing e-classes where possible by searching the
hash-cons.

2) Merge - Merging two e-classes by applying a union
operation of the union-find and merging the classes in
the e-class map. This, however, temporarily invalidates
the invariant of the hash-cons and e-class map that all
e-class ids and e-nodes must be canonical.

3) Rebuilding (Congruence closure) - As explained before,
a union of [x] into [y] necessitates replacing any e-
node f([x], [z]) by f([y], [z]). Moreover, if f([x], [z]) ∈
[w1], f([y], [z]) ∈ [w2], then, following this replacement,
both [w1] and [w2] now contain f([y], [z]), meaning
that [w1] = [w2] and evoking a cascading union of
[w1], [w2]. A significant contribution by egg is the concept
of deferred (and thus periodic) rebuilding. This periodic
rebuilding is highly efficient and well-suited for equality
saturation.

4) E-matching - Looking up a pattern in the set of terms
represented by the e-graph in a top-down manner, travers-
ing the e-nodes downward via the e-class map. A pat-
tern is a term with (zero or more) holes represented
by metavariables ?v1..k. For example, (?v1 + 1)·?v2 is
a pattern. Pattern lookup is important for rewriting in
equality saturation.

Rewriting. We assume a background set of symbolic rewrite
rules (r.r.), each of the form t

.→ s, where t and s are patterns
as explained in item (4) above. A match θ of pattern t on the e-
graph, is an assignment mapping metavariables to e-class ids.
tθ represents an e-node, and we will denote its equality class
as [tθ]. Applying the r.r. is done by merging the e-classes [sθ]
and [tθ]. Because the e-node sθ might be new, it needs to also
be inserted, resulting in union([tθ], insert(sθ)). Repetitively
applying such rewrite rules to a set of terms can be used to
generate growing sets of terms that are equivalent, according
to rewrite semantics, to ones in the starting set. Ideally, the set
eventually saturates, in which case the e-graph now describes
all the terms that are rewrite-equivalent. We point out that
in many situations, the e-graph keeps growing as a result of
rewrites and never gets saturated—so the number of successive
rewrite iterations, or “rewrite depth”, has to be bounded.
A conditional rewrite rule (c.r.r.) [3] is a natural extension

of a r.r. that has the following form: ϕ ⇒ t
.→ s where

ϕ is a precondition for rewriting t to s. For example, the

80

rules for max are: ?x > ?y ⇒ max(?x, ?y)
.→ ?x and

?x ≤ ?y ⇒ max(?x, ?y)
.→ ?y. The semantics of a precondi-

tion ϕ is defined such that a term matching the pattern of ϕ
must be unified with Boolean true in order for the rewrite to
be applied.

APPENDIX B
ALGORITHMS PSEUDO CODE

Colored e-graphs introduce a few algorithmic changes to
the operations of a normal e-graph. Here we present pseudo
code for the important changes presented in the paper. Algo-
rithm 1 presents the changes being made to the e-matching
abstract machine to support unoptimized colored e-matching
as presented in section III.

Algorithm 1 Instructions: compare and colored jump
1: function COMPARE(i, j)
2: if find(color , reg [i]) ̸= find(color , reg [j]) then
3: backtrack
4: end if
5: end function
6:
7: function COLORED JUMP(i)
8: siblings← {e|e ∈ E ∧ e ≡color eclass}
9: for sibling in siblings do
10: reg [i] = sibling
11: bs.push(current state)
12: end for
13: backtrack
14: end function

The rebuilding algorithm is also updated to accommo-
date for colored e-graphs in section III, and the pseudo
code in addition to some explanations is presented here.
We update the auxiliary function REPAIR to work on col-
ored e-classes, and introduce two new helper functions:
COLLECT PARENTS and UPDATE HASHCONS, as presented
in Algorithm 2. COLLECT PARENTS extract the parents of a
colored e-class by combining the sets of parents of all the
(root) e-classes contained therein. UPDATE HASHCONS is used
to make sure that the hashcons entries are in canonical forms.
It was already a part of REPAIR in egg; it is only repeated
here to point out that it only updates the hashcons for the root
color, since no canonization is required for colored layers.
The pseudo code for the optimized e-matching instructions

that were presented in section IV are presented in Algorithm 4.

APPENDIX C
WALKTHROUGH FOR EXAMPLE 2

This is the full walkthrough of the example in Figure 1 from
the overview.
We walk through the steps needed to carry out the case split-

ting shown in Figure 2. The system contains the conditional
rewrite rules shown on the right of Figure 5, which constitute
the definitions of max and min, plus some prior knowledge
about | · | and −.

Algorithm 2 Colored Rebuilding
1: function REBUILD
2: for color in self .colors do
3: while self .worklist(color).len() > 0 do

▷ empty the worklist into a local variable
4: todo← TAKE(self.worklist(color))

▷ canonicalize and deduplicate the eclass refs
to save calls to repair

5: todo ← {self.find(color, eclass) | eclass ∈
todo}

6: for each eclass in todo do
7: SELF.REPAIR(color, eclass)
8: end for
9: end while
10: end for
11: end function
12:
13: function REPAIR(color, eclass)
14: parents← COLLECT PARENTS(color, eclass)
15: UPDATE HASHCONS(color, parents)

▷ deduplicate the parents; note that equal parents get
merged and put on the worklist

16: new parents← {}
17: for each (p node, p eclass) in parents do
18: p node← self.canonicalize(color, p node)
19: if p node is in new parents then
20: self.merge(color, p eclass, new parents[p node])
21: new parents[p node] ←

self.find(color, p eclass)
22: end if
23: end for
24: if color = ∅ then
25: eclass.parents← new parents
26: end if
27: end function

The semantics of a conditional rewrite rule in the domain of
an e-graph is that the condition pattern should be matched and
its root must be in the same e-class as true, and, additionally,
the left-hand side should be matched as normal. For simplicity
of presentation, we pretend that ¬ is a special case were the
negated condition is e-matched and the e-class should contain
false.

Starting with the base graph, Figure 2(a), we describe the
operation of Easter Egg on the red color, corresponding to the
case ¬x < y. The complement blue case (x < y) is analogous.

1) The value of x < y is declared as false via a colored merge.
This yields a new red e-class.

2) Colored e-matching is performed against the premise of
the c.r.r. ¬?x < ?y ⇒ max(?x, ?y)

.→ ?x. The condition
of the rule, ?x < ?y, matches against the class [x < y],
which is indeed in the same red e-class as false.
Similar e-matches are carried out for the rules ¬?x <
?y ⇒ min(?x, ?y)

.→ ?y and ¬?x < ?y ⇒ |?x − ?y| .→

81

(1)
merge r ([x < y], [false])

08

1 2

43

5

6

7

falsex < y

x y

minmax

-

-

abs

(2)
merge r ([max(x, y)], [x])
merge r ([min(x, y)], [y])
merge r ([|x− y|],
[x− y])

08

1

3

2

4 6

75

falsex < y

x

max

y

min -

abs-

(3)
rebuild r ()
↓

merge r ([x− y],

max(x)− min(y))

08

1

3

2

4

5

6

7

falsex < y

x

max

y

min

-

-

abs

rewrite rules
?x < ?y ⇒ min(?x, ?y)

.→ ?x
¬?x < ?y ⇒ min(?x, ?y)

.→ ?y
?x < ?y ⇒ max(?x, ?y)

.→ ?y
¬?x < ?y ⇒ max(?x, ?y)

.→ ?x
?x < ?y ⇒ |?x− ?y| .→ ?y − ?x
¬?x < ?y ⇒ |?x− ?y| .→ ?x− ?y

Fig. 5. Rewriting with case-split in a colored e-graph.

Algorithm 3 Colored Rebuilding (auxiliary methods)
1: function UPDATE HASHCONS(color, parents)
2: if color = ∅ then
3: for each (p node, p eclass) in parents do
4: self.hashcons.remove(p node)
5: p node← self.canonicalize(color, p node)
6: self.hashcons[p node] ←

self.find(color, p eclass)
7: end for
8: end if
9: end function
10:
11: function COLLECT PARENTS(color, eclass)
12: all parents← ∅ ▷ Initialize an empty set for parents
13: relevant eclasses← {e | e ∈ E ∧ e ≡color eclass}
14: for e in relevant eclasses do
15: all parents← all parents ∪ e.parents ▷ Add

parents of e to the set
16: end for
17: return all parents
18: end function

?x− ?y.
3) The children of ⟨3⟩ − ⟨4⟩ (∈ M(⟨5⟩)) are red-equivalent

to those of ⟨1⟩ − ⟨2⟩ (∈M(⟨6⟩)), and, as a consequence,
red congruence closure kicks in and performs a red union
there.

The process for blue is analogous. The case-split semantics
is defined such that it records the fact that blue and red

are complements, and as such extends ≡ with the common
equivalences, ∼=b ∩ ∼=r =

{︁⟨︁⟨5⟩, ⟨7⟩⟩︁, . . .}︁.

82

Algorithm 4 Instructions: optimized compare and col-
ored jump
1: function COMPARE’(i, j)
2: if find(color, reg[i]) ̸= find(color, reg[j]) then
3: descendants ← {c | color ∈ p+(c) ∧ reg[i] ≡c

reg[j]}
4: minimal ← {c | c ∈ descendants ∧ ¬∃c′ ∈

descendants. c′ ∈ p+(c)}
5: for c in minimal do
6: color = c
7: bs.push(current state)
8: end for
9: backtrack
10: end if
11: end function
12:
13: function COLORED JUMP’(i)
14: siblings← {e | e ∈ E ∧ e ≡color eclass}
15: for sibling in siblings do
16: reg [i] = sibling
17: bs.push(current state)
18: end for
19: descendants ← {(c, e) | color ∈ p+(c) ∧ reg[i] ≡c

e ∧ e /∈ siblings}
20: minimal ← {(c, e) | (c, e) ∈ descendants ∧
¬∃(c′, e′) ∈ descendants.(c′ ∈ p+(c) ∧ e′ ≡′

c e)}
21: for (c, e) in minimal do
22: color = c
23: reg [i] = e
24: bs.push(current state)
25: end for
26: backtrack
27: end function

83

Formal Methods in Computer-Aided Design 2024

Word Equations as Abstract Domain
for String Manipulating Programs

Antonina Nepeivoda
Program Systems Institute of RAS

Russia
a nevod@mail.ru

Abstract—The paper presents a conceptual approach to ab-
stract interpretation of string-manipulating programs, based on
the existential theory of strings.
We propose the word equation language as a base for lattices

forming abstract domains of the string data. We construct a
quantifier-free layer of the lattices, capturing the uniqueness
properties of join and meet operations. The resulting finite-height
lattice WL0 utilizes useful properties of primitive roots of words
and can be used as a base for future developments of word-
equation-based abstract domains.
We describe a tokenization procedure as a monotone lattice

mapping, in order to enhance expressiveness of word equation
language by means of string morphisms and special cases of other
finite-state-machine transformations.

Index Terms—program analysis, abstract interpretation, word
equations, lattice mappings

I. INTRODUCTION
The problem of static analysis of string manipulating pro-

grams, especially in dynamically typed languages, is known
to be hard. For instance, even the theory with the replace-
all and concatenation functions is undecidable [1], as well
as the theory with the concatenation and letter counting
operations [2].
Moreover, most of linear orders on the set of strings depend

on the alphabet numeration. This fact makes construction of
partition of the set of strings to polyhedra or intervals non-
trivial and problem-specific ones.
In order to make the problem tractable, appropriate over-

approximations and restrictions are used in static analysis [3]–
[5]. In abstract interpretation, if a decidable set of predicates
is taken as an abstract domain, the main two problems arise:

• how to over-approximate the wide variety of string op-
erations in the string domain by the operations in the
abstract domain;

• how to over-approximate the infinite chains of the predi-
cates in the abstract domain by finite chains, in order to
make the static analysis terminating.

The more precise are mappings into the abstract domain, the
longer chains can occur; on the other hand, too small lattice
height guarantees very fast convergence of the analysis, but
may have drastically low preciseness of the analysis, compared
with the methods admitting finite chains of non-uniformly
bounded length.

The research was partially supported by Huawei Technologies Co. Ltd.,
and by Russian Academy of Sciences, research project №122012700089-0.

Thus, the main two approaches to construct the abstract
domains exist. The first one considers some decidable frag-
ment of string theory, and defines the appropriate general-
izations (widening operations [6]) in order to collapse the
infinite chains [6]–[9]. This approach is language-independent,
allowing high flexibility of the tracked program properties,
by varying the widening operation. The second one takes
concrete practical properties of interest as the abstract domain,
and solves concrete verification tasks in terms of the chosen
programming language [10], [11]. The lattices used in this
analysis are of small fixed height making the analysis fast.
For example, in ECMASCRIPT language [12], the set of

numbers is defined over a wider alphabet than {[0− 9], .,−}.
The constants infinity and NaN are also considered as
numerical data. Thus, if the property “can represent numerical
data” is tracked, then the approach making use of a string
theory is forced to make the widening operator more precise,
risking to make the whole analysis potentially slower.
In order to combine these two approaches, one can use

an abstract domain in a decidable string theory, together
with taking a quotient [13] wrt a partition of the string data
set, taking into account language-specific properties of its
elements. The partition can be defined as a preprocessing
tokenization procedure, thus changing the underlying alphabet
in the same string theory. Hence, the string manipulating
operations are to be interpreted both by tokenization algorithm
and the computations over the abstract domain. Under certain
conditions, the tokenized strings and predicates on the tokens
can happen to be fixed points of the lattice on the input string
data, thus forming a proper finite sub-lattice [14]. Thus, a
decidable string theory may be chosen in such a way that the
tokenization procedure becomes in some sense “orthogonal” to
predicates of the theory. It is known that the existential theory
of words (the theory of word equations) is decidable [15],
and the set of word equation languages neither contains nor is
contained in the set of regular languages [16]. The set of word
equation languages is not closed under morphic images and
inverse morphic images [16]. Hence, the tokenization is able
to significantly improve expressiveness of the given theory.
In order to address the widening problem, we advocate to

use a natural string property known as the primitive root fac-
torization, which is expressible in the word equation language.
A root of a word ω is a ξ s.t. ξn = ω. A word ξ is primitive iff
∀τ, n(︁ξ = τn ⇒ n = 1

)︁
. Word equations may encapsulate a

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 14 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0000-0003-3949-2164
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_14
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_14
https://creativecommons.org/licenses/by/4.0/

wide variety of properties including some of statements about
primitive roots. E.g. the equation XY = Y X represents the
predicate “if the strings X and Y are non-empty, then they
have the same primitive root”.
Let us show an example of how the notion of the primitive

root helps to solve the widening problem. The set of the
regular expressions, which is known to be closed under both
intersection and union, forms a distributive lattice [6], [8].
However, the regular expressions admit infinite ascending
chains, e.g. L(a) ⊆ L(a|a2) ⊆ L(a|a2|a3) ⊆ . . . , where L(r)
denotes the language recognised by expression r. The most
obvious widening is to define the widened value as the Kleene
iteration a∗. Under this definition, the values a∗ and (a2)∗ are
still distinct, and the latter implies the former. Thus, we can
define an infinite descending chain of the predicates, i.e. a∗,
(a2)∗, . . . , (a2n

)∗, . . . , which violates the lattice finiteness
condition. Now let us define the widened value Itera as a
predicate satisfied by all words X satisfying the word equation
aX = Xa. The definition for Itera using the word equations
makes it possible to collapse the predicates to a single layer
of the lattice. Since ∀τ, n(n > 0⇒ τan = anτ ⇔ τa = aτ),
any predicate Iteran is equivalent to the predicate Itera, thus
the chains collapse to single elements.
The contributions of the paper are as follows.
First, we suggest a word equation language as a base

for a lattice forming an abstract domain of string data. We
construct a first (quantifier-free) layer of the lattice, capturing
the uniqueness properties of joins and meets (Section III). The
resulting finite-height lattice WL0 utilizes useful properties
of primitive roots and can be used as a base for future
developments of word-equation-based abstract domains.
Second, we suggest a tokenization procedure as a monotone

lattice mapping, in order to enhance expressiveness of the word
equation language by means of string morphisms and special
cases of other finite-state-machine transformations, based on
inverse mappings of the string morphisms (Section V). More-
over, given a string morphism onto the string set of the initial
abstract domain, the set of its fixpoints forms a complete
sublattice of the lattice WL0, and no additional construction
is required to track additional program properties captured by
the morphism.
The paper is organized as follows. In Section II, the

main notions of lattice theory and word equation theory are
given. In Section III, the experimental lattice based on the
word equations is presented, and Section IV presents abstract
domain semantics of the standard string operations used in
ECMAScript programs. Section V considers the tokenization
transformations, Section VI discusses related works, and Sec-
tion VII concludes the paper.

II. PRELIMINARIES

Small Greek letters (maybe with indices) stand for finite
constant words (strings); domains and sets are denoted with
Greek capitals. Small Latin letters a, b, c, d are considered
to be elements of Σ. Capital Latin letters X , Y , Z stand for
elements of the variable alphabet. The notation τn stands for

n-concatenation of τ with itself, i.e. ττ . . . τ⏞ ⏟⏟ ⏞
n

. The empty word

is denoted by ε. Given a word τ , |τ | stands for its length.
A word τ is said to be primitive (denoted with prm(τ)),

if ∀ξ, n(︁τ = ξn ⇒ n = 1
)︁
. Thus ε is not a primitive word,

since ∀n(εn = ε). Every non-empty word τ has a unique
primitive root ξ, i.e. ∀n,m, ξ, ξ′

(︁
ξn = τ = (ξ′)m & |τ | >

0 & prm(ξ) & prm(ξ′) ⇒ ξ = ξ′
)︁
. We denote the primitive

root of τ with ρ(τ).

Definition II.1. Given a letter alphabet Σ and a variable
alphabet Ξ, a word equation is an equation U = V , where
U ,V ∈ (Σ ∪ Ξ)∗.
A solution to an equation U = V is a morphism σ which

is identity on Σ and maps elements of Ξ into Σ∗, s.t. σ(U) =
σ(V) [15], [16].
We also call the set of possible tuples of variable images

determined by solutions of U = V the solution set of U = V .
Given a variable set Q, the solution set of U = V wrt Q is
the projection of the solution set of U = V on the coordinates
corresponding to the elements of Q.
The following examples are classical [17], [18].

Example II.1. Given an equation aX = Xa, where X ∈ Ξ
and a ∈ Σ, its solution set is

{︁
an | n ∈ N

}︁
.

Given an equation ZX = XY , where X,Y, Z ∈ Ξ, its
solution set for (X,Y, Z) is

{︁
((ξ1ξ2)

nξ1, ξ2ξ1, ξ1ξ2) | n ∈
N & ξ1, ξ2 ∈ Σ∗}︁. The solution set of ZX = XY wrt the
variable X is

{︁
(ξ1ξ2)

nξ1 | ξ1, ξ2 ∈ Σ∗}︁. It implies that, given
an equation τ1X = Xτ2, its solution set is non-empty iff
∃η1, η2

(︁
τ1 = η1η2 & τ2 = η2η1

)︁
.

Given an equation ξ1ξ2X = Xξ2ξ1, where ξ1, ξ2 ∈ Σ∗,
prm(ξ1ξ2) and |ξ2| > 0, and X ∈ Ξ, its solution set is{︁
(ξ1ξ2)

nξ1 | n ∈ N
}︁
. If |ξ1| = 0, then the equation is reduced

to ξ2X = Xξ2, and its solution set is
{︁
ξn2 | n ∈ N

}︁
.

Let us denote the predicate “τ satisfies the equation ξ1ξ2τ =
τξ2ξ1” with Cnjξ1,ξ2(τ). We assume that the representation of
Cnjξ1,ξ2 is reduced by default to the shortest possible value
of ξ1ξ2, i.e. the word ξ1ξ2 is primitive in Cnjξ1,ξ2 . Moreover,
since Cnjτ,ε = Cnjε,τ , we always choose Cnjε,τ as a default.
We recall the following classical Fine–Wilf theorem [18].

Theorem II.1. Let ξ1, ξ2 ∈ Σ+. Suppose ξm1 and ξn2 , for
some m,n ∈ N, have a common prefix of length |ξ1| +
|ξ2| − gcd(|ξ1|, |ξ2|). Then there exists τ ∈ Σ∗ of length
gcd(|ξ1|, |ξ2|) such that τ = ρ(ξ1) = ρ(ξ2), i.e. τ is the
primitive root both of ξ1 and ξ2.

Definition II.2. A triple ⟨L,∨,∧⟩, where L is a set, ∨ and
∧ are binary operations over L (also called join and meet
respectively), is said to be a lattice if it satisfies the following
axioms [19] for all x, y, z ∈ L:

•
(︁
x ∨ (x∧ y) = x

)︁
&
(︁
x∧(x ∨ y) = x

)︁
;

•
(︁
x ∨ y = y ∨ x

)︁
&
(︁
x∧ y = y ∧x

)︁
;

•
(︁
x ∨ (y ∨ z) = (x ∨ y) ∨ z

)︁
&
(︁
x∧(y ∧ z) =

(x∧ y)∧ z
)︁
.

85

An order induced on a lattice E with the lattice operations
is defined as follows: x ≤ y ≡ (x ∨ y = y).

Given lattices E, F , a mapping φ : E → F is said to be
consistent with the order (isotonic) iff ∀x, y(︁x ≤ y ⇒ φ(x) ≤
φ(y)

)︁
[14]. A mapping φ is said to be a lattice morphism iff

it respects both joins and meets [14].
The following lemma demonstrates a useful property of

the equations ξ1ξ2X = Xξ2ξ1 (assuming by definition that
prm(ξ1ξ2)). Henceforth we call such equations elementary.

Lemma II.1. If the words ξ1, ξ2, ξ3, ξ4 satisfy prm(ξ1ξ2) and
prm(ξ3ξ4), and ξ1 ̸= ξ3 or ξ2 ̸= ξ4, then there exists at most
one word τ ∈ Σ∗ satisfying both Cnjξ1,ξ2(τ) and Cnjξ3,ξ4(τ).

Proof. Let τ = (ξ1ξ2)
nξ1 = (ξ3ξ4)

mξ3. Without loss of
generality, we assume that |ξ1ξ2| ≥ |ξ3ξ4|; the opposite case
is symmetric.
If n > 1 (and hence m > 1), then the word τξ2 =

(ξ1ξ2)
n+1 and the word τξ4 = (ξ3ξ4)

m+1 share a common
prefix of the length |τ |, which is at least |ξ1|+|ξ2|+|ξ3|+|ξ4|.
Hence, by the Fine–Wilf theorem [20], ξ1ξ2 and ξ3ξ4 share
a common primitive root, i.e. are equal, because they are
primitive. Hence, n = m and ξ1 = ξ3, which contradicts the
choice of ξi.
Thus, if there are such distinct τ0, τ1 ∈ Σ∗, both belonging

to the solution sets of ξ1ξ2X = Xξ2ξ1 and ξ3ξ4X =
Xξ4ξ3, then τi = (ξ1ξ2)

iξ1. I.e. ∃k1 ≥ 0, k2 > 0 s.t.
τ0 = ξ1 = (ξ3ξ4)

k1ξ3, τ1 = ξ1ξ2ξ1 = (ξ3ξ4)
k1+k2ξ3 =

(ξ3ξ4)
k2(ξ3ξ4)

k1ξ3 = (ξ3ξ4)
k2ξ1. That implies ξ1ξ2 =

(ξ3ξ4)
k2 , hence, k2 = 1 and ξ1 = ξ3, since ξ1ξ2 is primitive,

which contradicts the choice of ξi.

The proof above immediately implies the following Corol-
lary. If Lemma’s II.1 premise is true, then the only one of the
following three cases can hold.

• No word satisfies the predicate Cnjξ1,ξ2 & Cnjξ3,ξ4 .
• ∃k(︁ξ1 = (ξ3ξ4)

kξ3
)︁
.

• ∃k(︁ξ1ξ2ξ1 = (ξ3ξ4)
kξ3
)︁
.

We denote the word satisfying both Cnjξ1,ξ2 and Cnjξ3,ξ4
by conjr(ξ1, ξ2, ξ3, ξ4). Lemma II.1 shows that the predi-
cates Cnjξ1,ξ2 and Cnjξ3,ξ4 are “orthogonal” wrt the sets
of words satisfying them. For example, if ξ2 ̸= ξ4 then
conjr(ε, ξ2, ε, ξ4) = ε.

III. THE LATTICE CONSTRUCTION

Let us introduce a relation ∝ between elements of the
concrete string domain S# and an abstract domain Δ. A word
τ satisfies a predicate P , where τ ∈ S# and P ∈ Δ, iff τ ∝ P .
The antimonotonous Galois connection defined by the rela-

tion ∝ determines the abstraction and concretisation operations
wrt the abstract domain Δ.
As usual, the values ⊤ and ⊥ represent the greatest and the

least element of the lattice. The first level higher than ⊥ (i.e.
layer 1) captures the trivial word equations X = ξ, denoted
by Eqξ, which is standard for the string abstract domains [9],

[10]. As for the next lattice levels (layers whose numbers start
with 2), we require them to satisfy the following properties.

• For any element P of a layer higher than the layer 1 (i.e.,
the layer of the trivial word equations), there is an infinite
string set for which P holds (expressiveness).

• Given any two distinct elements P1 and P2 of the layer
N , there is at most one predicate P of the layer N + 1
s.t. P1 ⇒ P and P2 ⇒ P hold (unique join).

• Given any two distinct predicates P1 and P2 of the layer
N + 1, there is at most one predicate P of the layer N
s.t. P ⇒ P1 and P ⇒ P2 hold (unique meet).

The first property guarantees that all the elements of the
layer are expressible enough; the second property is required
to define unique join elements, and the third is used to define
unique meet elements. Obviously, the top element ⊤ satisfies
all the three conditions.
A natural question arises: how can one introduce a partial

word equation order that is able to distinguish the equations
belonging to various levels? Given equations U1 = V1 and
U2 = V2 in alphabet Σ s.t. |Σ| ≥ 1, an equation whose solution
set wrt the variables occurring in U1, U2, V1, V2 is a union
of the solution sets of the given equations can be constructed
with introducing 2 additional (fresh) variables (see [16], in the
earlier work [21] a construction with 4 additional variables is
given). On the other hand, an equation with the solution set
representing the intersection of the two solution sets above
can be constructed without any additional variable, provided
that |Σ| > 1. Hence, the number of distinct variables in a
given equation can be treated as a measure for its “generality”,
provided that the solution set of the equation is considered wrt
a single variable X . With respect to this measure, the simplest
equations depend only on X itself, i.e. are of the form P :
ξ1Xξ2X . . . ξnX = Xξ′1X...Xξ′m, where |ξ1| > 0. If m ̸= n,
then P has finitely many solutions; thus, the expressiveness
requirement is satisfied1 only if m = n. The lemma below
shows that any equation P with infinitely many solutions is
equivalent to an equation of the form Cnjξ1,ξ2 .

Lemma III.1. The set of predicates of the form Cnjξ1,ξ2 ,
where the word ξ1ξ2 is primitive, satisfies all the three
conditions given above. Any other quantifier-free predicate
satisfying the conditions is equivalent to a predicate Cnjξ1,ξ2
in the given set.

Proof. Given an equation P of the form ξ1Xξ2X . . . ξnX =
Xξ′1X...Xξ′n, let us assume that there exists its solution ω s.t.
|ω| ≥ |ξ1|. Then ω = ξ1ω

′, and ω′ is a solution of the equation
which arises from P in virtue of the substitution X ↦→ ξ1X

′.
I.e., removing the ξ1-prefixes on both sides of P [X ↦→ ξ1X

′],
we obtain the equation P ′ : ξ1X

′ξ2ξ1X ′ . . . ξnξ1X ′ =
X ′ξ′1ξ1X

′ . . . X ′ξ′n that is to be satisfied by ω′. As well as
the initial equation P , equation P ′ has prefixes ξ1X

′ and X ′

in its left- and right-hand sides, hence, the reasoning above
can be repeated until |ω′| < |ξ1|.

1As shown in the paper [22], such equations have either at most 3 solutions
or infinitely many solutions.

86

⊥

a ε baa ab aba

aX = XaabX = Xab bX = Xb abX = Xba

⊤

Fig. 1: Lattice built over constants ε, a, a2, ab, aba. The values Eqξ are represented as ξ; the values Cnjξ1,ξ2 are represented
as the equations ξ1ξ2X = Xξ2ξ1.

Therefore, any solution to the equation P , where |ξ1| > 0,
is of the form (ξ1,pξ1,s)

kξ1,p, where ξ1,pξ1,s = ξ1.
Let us take such a number k0 that

max(max1≤i≤n |ξi|,max1≤i≤n |ξ′i|) · n < |ξ1| · k0, and
separate the solution set of P into the following two sets.

• The words of the length less than |ξ1| · k0.
• All the other words from the solution set of P . These
words start with the prefix ξk01 ; they can be seen as the
solutions to equation σ(P), where σ : X ↦→ ξk01 X .

Due to the choice of k0, the equation
ξ1Xξ2ξ

k0
1 X . . . ξnξ

k0
1 X = Xξ′1ξ

k0
1 X...ξk01 Xξ′n resulting

from the mapping X ↦→ ξk01 X can be split into n equations
of the form τi,1X = Xτi,2 (possibly, after reducing common
prefixes and suffixes of the equation parts). Some of these
equations are equivalent (if for some i, j and k ∈ {1, 2} the
primitive roots of τi,k and τj,k coincide), so we take only the
subset of non-equivalent equations.
If this subset is a singleton, then the resulting equation is

equal to the first equation ξ1X = Xτ , where |τ | = |ξ1|, and τ
may be either a prefix of ξ′1 (if |ξ1| < |ξ′1|) or of the form ξ′1τ

′.
In both cases, the solution set of this equation also includes
any solution to P of the length less than |ξ1| · k0.
If the set of the non-equivalent equations is not a singleton,

then by Lemma II.1 the equation P has finitely many solutions
and does not satisfy the expressiveness condition. Lemma II.1
guarantees that the unique meet condition holds.
Let us show that the unique join condition also holds. Given

two distinct τ1, τ2 ∈ Σ∗ satisfying some elementary equation
ξ1ξ2X = Xξ2ξ1 with ξ1 and ξ2 unknown, let |τ1| > |τ2|. Then
∃τ3(τ3 ̸= ε & τ1 = τ3τ2), and the primitive root of τ3 is equal
to ξ1ξ2, while the suffix of τ2 after the maximal prefix of the
form ρ(τ3)

k coincides with ξ1. Hence, the values ξ1 and ξ2 in
equation ξ1ξ2X = Xξ2ξ1 are determined by any two distinct
words τ1 and τ2 satisfying this equation.

Lemma III.1 determines elements of the third level of
lattice WL0, namely the set of predicates Cnjξ1,ξ2 defining
infinite solution sets of one-variable equations. A simple word-
equation-based lattice can consist of the three given layers,
and the top layer above them. Other possible extensions of
the lattice are discussed in Section VII.

Based on the reasoning above, now we formally introduce
the lattice elements and operations. The abstract domain Δ
of the simplest lattice WL0 proposed in this paper consists
of the following elements. As usual, we always assume that
given a predicate Cnjξ1,ξ2 , the word ξ1ξ2 is primitive.

• Predicates Eqξ. Eqξ(τ) iff τ = ξ.
• Predicates “conjugates ξ1ξ2 and ξ2ξ1”, denoted with

Cnjξ1,ξ2 , where |ξ1ξ2| > 0. Cnjξ1,ξ2(τ) iff ξ1ξ2τ =
τξ2ξ1.

• The top element ⊤ representing all possible strings, and
the bottom element ⊥.

A simple example of such a lattice constructed over con-
stants ε, a, a2, ab, aba is presented in Fig. 1.

A. Operations of Lattice WL0

Let us define the join operation over the given domain. The
right-hand sides of the definitions below are ordered to be
applied from top to bottom.

• Cnjτ1,τ2 ∨ Cnjξ1,ξ2 =

{︄
Cnjτ1,τ2 , if ∀i(ξi = τi);

⊤, otherwise;

• Cnjτ1,τ2 ∨ Eqξ =

{︄
Cnjτ1,τ2 , if ξτ2τ1 = τ1τ2ξ;

⊤, otherwise;
• Eqξ ∨ Cnjτ1,τ2 = Cnjτ1,τ2 ∨ Eqξ;

• Eqτ1 ∨ Eqτ2 =

������
Eqτ1 , if τ1 = τ2;

Cnjξ1,ξ2 , if ∃ξ1, ξ2, k1, k2(k1, k2 ∈ N
& τ1 = (ξ1ξ2)

k1ξ1 & τ2 = (ξ1ξ2)
k2ξ1);

⊤, otherwise.

.

The case returning Cnjξ1,ξ2 as a value of Eqτ1 ∨ Eqτ2
reproduces the construction given in the proof of Lemma III.1,
when the unique join property is checked.
E.g., Eqε ∨ Eqa = Cnjε,a, as well as Eqε ∨ Eqaa =

Cnjε,a. Eqaba ∨ Cnja,b = Cnja,b, since (aba)ba = ab(aba).
The commutativity axiom for the join operation holds by

definition.
If some of elements x, y, z of WL0 are equal, or any two

of them are distinct equations, then the associativity x ∨ (y ∨
z) = (x ∨ y) ∨ z also holds by definition. Let us consider
the subtle case of the associativity: x = Eqτ1 , y = Eqτ2 ,
z = Eqτ3 , x ∨ y = Cnjξ1,ξ2 , y ∨ z = Cnjξ3,ξ4 , ξ1 ̸= ξ3 or

87

ξ2 ̸= ξ4. Then by Lemma II.1 τ2 is the only word satisfying
the predicates Cnjξ1,ξ2 and Cnjξ3,ξ4 (i.e. y =⇒ Cnjξ1,ξ2 &
y =⇒ Cnjξ3,ξ4), thus, x ∨ Cnjξ3,ξ4 = ⊤ and Cnjξ1,ξ2 ∨ z =
⊤ hold.
Now we define the meet operation.

• Cnjτ1,τ2 ∧Cnjξ1,ξ2 =

������
Cnjτ1,τ2 , if ∀i(ξi = τi);

Eqconjr(τ1,τ2,ξ1,ξ2),

if conjr(τ1, τ2, ξ1, ξ2) exists;
⊥, otherwise.

• Cnjτ1,τ2 ∧Eqξ =

{︄
Eqξ, if τ1τ2ξ = ξτ2τ1;

⊥, otherwise;
• Eqτ ∧Cnjξ1,ξ2 = Cnjξ1,ξ2 ∧Eqτ ;

• Eqτ1 ∧Eqτ2 =

{︄
Eqτ1 , if τ1 = τ2;

⊥, otherwise.
There in the first case we refer to the property of elementary

equations guaranteed by Lemma II.1. E.g., Cnja,b ∧Cnjε,a =
Eqa, since a satisfies both equations abX = Xba and aX =
Xa, hence, a = conjr(a, b, ε, a) (see Fig. 1).
By a similar reasoning, the ∧ operation is associative.

Now we consider the last lattice condition to be checked.
• Since ∀x, y(︁x∧ y ⇒ x

)︁
, and ∀q(︁(q ⇒ x) ⇒ (x ∨ q =

x)
)︁
, the law x ∨ (x∧ y) = x also holds.

• x∧(x ∨ y) is x iff x ∨ y ⇒ x. The condition x ∨ y ⇒ x
is guaranteed by the construction of the operations.

Hence the lattice definition is consistent. This lattice is not
distributive. E.g. Cnjε,a ∧(Cnjε,b ∨ Cnjε,c) = Cnjε,a, but
(Cnjε,a ∧Cnjε,b) ∨ (Cnjε,a ∧Cnjε,c) = Eqε.

IV. OPERATIONS ON LATTICE ELEMENTS

A. A Model Program

In order to demonstrate the computations in the abstract
domain given above, let us consider the following example,
given in a pseudocode (Fig. 2).
The x + y concatenates x and y; x − y deletes a prefix y

from x; prefix(x, y) checks whether a string x is a prefix of
a string y.

1 z = ξ
2 x,y = ε
3 while (cond1(i,j)) { (depends only on i, j)
4 i = i + 1
5 x = x + z }
6 while (cond2(i,j)) { (depends only on i, j)
7 j = j + 1
8 y = y + z }
9 while (true) {
10 if (prefix(x,y))
11 y = y − x
12 elif (prefix(y,x))
13 x = x − y
14 else break }

Fig. 2: A fragment of a string-manipulating program incor-
rectly checking that a quotient of strings x and y is ε.

The program lines 9–14 aim at computing a “quotient”
of the two strings, i.e. the word witnessing that the strings
have different primitive roots. For example, if x = abba,
y = abbaab, then the loop 9–14 breaks at the state x = ba,
y = ab after the two iterations. If the roots coincide, then the
loop 9–14 is assumed to return ε, however if x is assigned
to ε, the loop does not terminate. The reason of the non-
termination is that ε is a prefix of any string, hence τ − ε = τ
for any τ ∈ Σ∗. Moreover, the program given in Fig. 2 never
terminates, because after executing lines 1–8 the values of x
and y always have equal primitive roots.
Let us see how the corresponding operations are computed

over the lattice WL0, and how the problem with the infinite
loop can be revealed.

B. Computations in WL0

The following operations are chosen in order to demonstrate
computations in WL0. The operations are analogous to oper-
ations included in standard string operating libraries, e.g. for
ECMASCRIPT [12]. Such a library includes at least concate-
nation operation, denoted with x+ y; string replacement and
truncation operations. In JavaScript, there exist the function
replacing the first occurrence of a given string ξ in a string τ ,
and the function replacing all occurrences of ξ in τ . We denote
the operation replacing the first occurrence of z1 in y with z2
with replace(y, z1, z2). The string truncation usually depends
on a given input — start and end positions of a substring
that is to be deleted or extracted as an infix. We consider the
following instance of the truncation: the string minus operation
of the form x− y, where the prefix y is deleted from x.
We consider the versions of the operations with the nu-

merical parameters unknown to the interpreter; if these pa-
rameters are known, the more precise over-approximations
can be constructed. We assume that the right-hand sides
of the interpretation rules in the interpretations given below
are ordered from top to bottom to be applied. Some of the
interpretations are straightforward; we comment only on the
non-obvious ones. The order≤ is induced by the join operation
(see Section II). As usual, ξ1ξ2 in Cnjξ1,ξ2 is assumed to be
primitive.
Below the abstract version of the string concatenation is

given.

x+ y =

����������

Eqξ1ξ2 , if x = Eqξ1 , y = Eqξ2 ;

Cnjξ5,ξ6 , if x ≤ Cnjξ1,ξ2 & y ≤ Cnjξ3,ξ4
and ξ2ξ1 = ξ3ξ4 and ξ5ξ6 = ξ1ξ2

and ∃n(︁ξ1ξ3 = (ξ1ξ2)
nξ5

)︁
;

⊤, otherwise.
Given words τ1 and τ2 in the concrete string domain, if

τ1+τ2 = (ξ5ξ6)
kξ5, where k is large enough, then either τ1 =

(ξ5ξ6)
k1τ5 and τ2 = τ6(ξ5ξ6)

k2ξ5, where τ5τ6 = ξ5ξ6, or τ1 =
(ξ5ξ6)

kτ5 and τ2 = τ6, where τ5τ6 = ξ5. The case returning
Cnjξ5,ξ6 above includes both these instances. The parameter
n above equals 0 if |ξ3| < |ξ2|, and equals 1 otherwise.

88

Below the abstract version of the string subtraction is given.

x− y =

������������������������������������������������������������

Eqτ , if x = Eqξτ & y = Eqξ;

error, if x = Eqτ & y = Eqξ & ∀τ ′(τ ̸= ξτ ′);
error, if x = Cnjτ1,τ2 & y = Eqξ

& ¬(y ≤ Cnjξ1,ξ2), where τ1τ2 = ξ1ξ2;

x, if y = Cnjε,ξ and
either x = Eqτ and ∀τ ′(︁τ ̸= ξτ ′)︁,

or x = Cnjτ1,τ2 and ∀τ ′, k(︁(τ1τ2)kτ1 ̸= ξτ ′)︁;
⊤, if y = Cnjξ1,ξ2 and x− y can satisfy at least

two different predicates of the formCnjω1,ω2
;

Cnjτ1,2,τ2τ1,1 , if x ≤ Cnjτ1,τ2 and y ≤ Cnjξ1,ξ2
and ∃k, k′, τ1,1, τ1,2(︁

(τ1τ2)
kτ1,1 = (ξ1ξ2)

k′ξ1 & τ1 = τ1,1τ1,2
)︁
;

Cnjτ2,2τ1,τ2,1 , if x ≤ Cnjτ1,τ2 and y ≤ Cnjξ1,ξ2
and ∃k, k′, τ2,1, τ2,2(︁

(τ1τ2)
kτ1τ2,1 = (ξ1ξ2)

k′ξ1 & τ2 = τ2,1τ2,2
)︁
;

⊤, otherwise.
The x case above corresponds to the case when the prefix

subtraction from x should succeed on the only possible con-
crete string value satisfying the predicate y. The intermediate
case returning ⊤ corresponds to the case when a predicate
of the form Cnjτ1,τ2 capturing concrete values of x − y is
undetermined, given arbitrary values satisfying the predicates
– abstract values x and y. The remaining cases (besides the
trivial one) consider the computations when such a predicate
is unique. The detailed comments on the case with the unde-
termined value of x − y and the cases returning conjugation
predicates are given in Appendix (see Subsect. VII).
Now we consider the abstract version of the string replace-

ment operation.

replace(y, z1, z2) =

��������������������������������������

error, if z1 = Eqε;

Eqreplace(τ,ξ1,ξ2),

if y = Eqτ , z1 = Eqξ1 , z2 = Eqξ2 ;

Cnjτ1,τ2 , if y ≤ Cnjτ1,τ2
and z1, z2 ≤ Cnjε,ξ1ξ2 s.t. ξ2ξ1 = τ1τ2;

Cnjτ1,τ2 , if y = Cnjτ1,τ2
and z1 ≤ Cnjξ1,ξ2 and ∀n, k, τ3, τ4(︃(︁

ξ1 ̸= ε⇒ (τ1τ2)
n ̸= τ3ξ1τ4

)︁
&

(︁
k > 0 ⇒ (τ1τ2)

n ̸= τ3(ξ1ξ2)kξ1τ4
)︁)︃

;

⊤, otherwise.
There the satisfiability of y to the predicate Cnjτ1,τ2 is

preserved in the following two cases. First, the result of the
replacement satisfies Cnjτ1,τ2 if a power of a primitive word
ξ1ξ2 conjugating with τ1τ2 (i.e. s.t. ξ2ξ1 = τ1τ2) is replaced
with (ξ1ξ2)

k. Second, the value of y is unchanged if no
occurrence of a string satisfying z1 can appear in a string
satisfying the predicate given by y.

C. Predicates

The predicates defined on the string domain, under certain
conditions, may be equivalent to the predicates defined on
some other domain, e.g. integers. For example, if ∃z(︁y = xz

)︁
,

then we may deduce that |x| ≤ |y|. If additionally x and y

are known to belong to the language a∗, then the predicate
|x| ≤ |y| becomes equivalent to ∃z(︁y = xz

)︁
. Thus, if the

latter is replaced by the former, sometimes a dead code can
be eliminated by a simple static analyser. On the other hand,
if ∃z(︁y = xz

)︁
and y is known to be ε, then the predicate

∃z(︁y = xz
)︁
can be replaced by the equivalent condition

(︁
y =

ε
)︁
&
(︁
x = ε

)︁
, which can also simplify tracking some of

unreachable computation branches.
In fact, the predicate processing searches for invariants of

the conditionals or loops, that can be derived from the values
of the variables involved in the predicates over the abstract
domain. This technique is close to one used in the paper [23],
in order to prune unreachable computation branches in string
manipulating programs.
The following simple interpretation of the predicate

prefix(x, y) ⇔ ∃z(y = xz) helps a static analysis tool
to detect the non-terminating loop shown in the program
in Fig. 2. We denote a value of the concretisation function on
the abstract value x with a(x). There the line prefix(x, y) =
f
(︁
a(x), a(y)

)︁
is interpreted as “if intersection of the x-

concretisation set and Pref(y) is non-empty, where Pref(y)
is the set of prefixes of all elements of the y-concretisation
set, then the predicate prefix(x, y) can be replaced with
f
(︁
a(x), a(y)

)︁
”. The capitalized OR notation stands for the

logical operation in the target program language.

prefix(x, y) =

����������������������������������������

(︁
a(x) = ξ1 OR . . . OR a(x) = (ξ1ξ2)

nξ1
)︁
,

if x = Cnjξ1,ξ2
and ∃ξ3, n

(︁
n ∈ N & y = Eq(ξ1ξ2)nξ1ξ3

)︁
;

|a(x)| ≤ |a(y)|, if x = Cnjξ1,ξ2
and y = Cnjξ3,ξ4 and ξ1ξ2 = ξ3ξ4;

a(x) = ε, if y = Eqε;

true, if ∃ξ(︁y = Eqξ1ξ & x = Eqξ1
)︁
;

false, if x = Eqξ1 , y = Eqξ2 , otherwise;(︁
a(x) = ξ1 OR . . . OR a(x) = (ξ1ξ2)

nξ1
)︁
,

if x = Cnjξ1,ξ2 , y = Cnjξ3,ξ4 , ∃τ,m, n(︁
m,n ∈ N & (ξ3ξ4)

mξ3 = (ξ1ξ2)
nξ1τ

)︁
;

prefix
(︁
a(x), a(y)

)︁
, otherwise.

The 1-st and the 6-th cases of the definition above contain
a disjunction of n possible equalities for a(x), which can be
derived from the corresponding abstract values of x and y.
The value of n is also determined by these abstract values. In
the 6-th case n is bounded because ξ1ξ2 ̸= ξ3ξ4 holds, since
the case ξ1ξ2 = ξ3ξ4 is completely handled by the previous
cases. In the 1-st case n is trivially bounded. Hence, the n-
disjunction can be constructed without a loop.
A trace of the abstract interpretation using the interpreta-

tions given above is presented in Fig. 3. The notation x ↦→ w
states that the abstract value of x is w; x ↦→∗ w states that
the abstract value of x converges to w. In lines 5, 8, 11,
13, the fixed points of the computations are constructed. The
join of Eqε and Eqξ, which is a value both of x and y, is
Cnjε,ρ(ξ), and then Cnjε,ρ(ξ) is concatenated with Eqξ using
the 2-nd rule for concatenation (Subsect. IV-B). The results of
string subtraction stabilize in the same way. When the abstract
interpretation converges, the predicates can be replaced in
the concrete domain. After the replacement, a simple static

89

1 z = ξ z ↦→ Eqξ
2 x,y = ε x ↦→ Eqε, y ↦→ Eqε
3 while (cond1(i,j)) { (cond1(i,j) is outside the string domain)
4 i = i + 1 (ignored)
5 x = x + z } Eqε ∨ Eqξ = Cnjε,ρ(ξ); Cnjε,ρ(ξ) ∨ Cnjε,ρ(ξ) = Cnjε,ρ(ξ), x ↦→∗ Cnjε,ρ(ξ)
6 while (cond2(i,j)) { (cond2(i,j) is outside the string domain)
7 j = j + 1 (ignored)
8 y = y + z } Eqε ∨ Eqξ = Cnjε,ρ(ξ); Cnjε,ρ(ξ) ∨ Cnjε,ρ(ξ) = Cnjε,ρ(ξ), y ↦→∗ Cnjε,ρ(ξ)
9 while (true) {
10 if (prefix(x,y)) (equivalent to |x| ≤ |y| after the interpretation)
11 y = y − x Cnjε,ρ(ξ) ∨ Cnjε,ρ(ξ) = Cnjε,ρ(ξ); y ↦→∗ Cnjε,ρ(ξ)
12 elif (prefix(y,x)) (equivalent to |y| ≤ |x| after the interpretation)
13 x = x − y Cnjε,ρ(ξ) ∨ Cnjε,ρ(ξ) = Cnjε,ρ(ξ); x ↦→∗ Cnjε,ρ(ξ)
14 else break } (unreachable after the interpretation)

(a) Tracking the abstract values of the program variables.

⊥

Eqε Eqξ

Cnjε,ρ(ξ)

⊤

(b) The lattice on the abstract
values used in the interpreta-
tion. Eqξ corresponds to the
equation X = ξ; Cnjξ1,ξ2
corresponds to the equation
ξ1ξ2X = Xξ2ξ1.

Fig. 3: Static analysis of the program that incorrectly checks that a quotient of strings x and y is ε.

analysis tool can determine that the line 14 is unreachable
because the disjunction |x| ≤ |y| OR |y| ≤ |x| always holds,
and the loop given in the lines 9–14 never terminates.

V. TOKENIZATION

In order to construct a sound mapping from the string set
into a set of token sequences, in general we have to describe
WL0-induced extensions of any finite state machine function.
We postpone this problem to a future work, and now suggest
a simple subclass of the finite-state-machine functions whose
extensions are monotone lattice mappings.

Definition V.1. Given alphabets Σ and Σ′, let h be a string
morphism being defined by the mapping h′ : Σ → Σ′∗. We
use the same name h for the following extension of h over the
lattice elements.
• h

(︁
Eqξ

)︁
= Eqh(ξ)

• h
(︁
Cnjτ1, τ2

)︁
= Cnj

ρ
(︁
h(τ1)

)︁
, ρ
(︁
h(τ1τ2)−ρ(h(τ1))

)︁
We recall the following classical lemma [20], which ensures

that h is monotonic wrt the lattice order.

Lemma V.1. If σ is a solution to equation U = V , and h is
a morphism, then h ◦ σ is a solution to h

(︁U)︁ = h
(︁V)︁.

Given any values x, y ∈WL0 and a string morphism h, we
can now show that (h(x) ∨ h(y)) ≤ h(x ∨ y). Moreover, in
case x ∨ y ̸= ⊤, h(x ∨ y) = h(x) ∨ h(y), due to Lemma V.1.
Let ⪯ be a linear order on Σ, and ⪯∗ be the length-

lexicographical2 order on Σ∗ induced by ⪯. Given a string
morphism h : Σ → Σ′∗ s.t. ∀a ∈ Σ

(︁
h(a) ̸= ε

)︁
, we define its

minimal inverse mapping h−1
min : Σ′∗ → Σ∗ as follows.

h−1
min(ξ) = τ s.t. h(τ) = ξ & ∀τ ′(︁h(τ ′) = ξ ⇒ τ ⪯∗ τ ′)︁

In general, the inverse image h−1
min does not respect the

lattice order. For example, given distinct a ≻ b ≻ c, if

2If |ω1| < |ω2|, then ω1 ⪯∗ ω2; if |ω1| = |ω2|, then the order ⪯ is used
lexicographically.

h(c) = aba, h(a) = a, h(b) = b, then h−1
min(abab) = cb,

and h−1
min

(︁
Eqabab

)︁ ∨ h−1
min

(︁
Eqab

)︁
= ⊤, while h−1

min

(︁
Eqabab ∨

Eqab
)︁
= h−1

min

(︁
Cnjε,ab

)︁
.

In order to address the monotonicity issue, we choose a
special subset of string morphisms whose inverse mappings
extensions can be used as lattice morphisms. After the pa-
per [16], we say that an infix ξ of a word a1 . . . an contains
a border between subwords a1 . . . ak and ak+1 . . . an, if the
word ξ includes an infix ak−j1 . . . ak+j2 , where j1 ≥ 0 and
j2 > 0. Given any predicate Cnjξ1,ξ2 in lattice L, the inverse
mappings we consider preserve the borders between ξ1 and
ξ2, as well as between ξ2 and ξ1.
Formally, given a lattice L, the inverse mapping of a

morphism h is border-preserving wrt L, if for any lattice
element of the form Cnja1...ak,ak+1...an

and for any b ∈ Σ′,
the morphism h(b) is equal neither to ξ2(a1 . . . an)

mξ1 nor to
ξ3, for any m ∈ N, ξ1, ξ2, ξ3 ∈ Σ∗ satisfying the following
conditions:

• ξ1 is a prefix of a1 . . . an; ξ2 is a suffix of a1 . . . an;
|ξ1ξ2| > 0, |ξi| < n, and either (|ξ1| > 0) & (|ξ2| > 0),
or m > 0,

• ξ3 is ak−j1 . . . ak+j2 , where k > j1 ≥ 0 and n − k ≥
j2 > 0, and |ξ3| < n.

Hence, there are the two possibilities to violate the border-
preserving condition: h(b) equals to an infix of a1 . . . an
containing the border between a1 . . . ak and ak+1 . . . an, or
to a subword of (a1 . . . an)

m containing at least one border
between the occurrences of a1 . . . an. The border-preserving
condition does not depend on the order induced on Σ in the
definition of h−1

min, because the condition holds for images of
all elements of Σ′.

Example V.1. Given a lattice including the element Cnjε,ab
and c ̸= a, c ̸= b, the inverse of any morphism h s.t. ∃c ∈
Σ′(︁h(c) = aba

)︁
is not border-preserving: h(c) includes the

border between two occurrences of ab.

90

⊥

a ε baa ab
aba
aaa

aX = XaabX = Xab bX = Xb abX = Xba

⊤

Fig. 4: Isotonic lattice mapping using the string morphism hΣ→a of the lattice given in Fig. 1. The sublattice of the fixed
points of hΣ→a is given in framed nodes and thick edges. Dashed arcs point to the morphic images of the elements.

Given a lattice including the element Cnjaba,ba, neither of
the inverses of morphisms h1, h2 s.t. ∃c1, c2 ∈ Σ′(h1(c1) =
bab & h2(c2) = aa) is border-preserving. The bab value of
h1(c1) includes the border between aba and ba, given ξ3 =
bab, k = 3, j1 = 1, j2 = 1; the aa value of h2(c2) contains
the border between ba and aba.

Lemma V.2. Given lattice WL0 and a string morphism h
satisfying the conditions above, for any order induced on Σ,
h−1
min is a lattice morphism.
Proof. Given x, y ∈ L, let us show that h−1

min(x ∨ y) and
h−1
min(x) ∨ h−1

min(y) are equal.
If x and y are both of the form Cnjτi,τj , then their join is

non-trivial iff x = y; and the equality is trivially preserved.
Given x = Eqξ1 and y = Eqξ2 , if they are equal or their join

is ⊤, the morphism property holds trivially. Let us consider
the case when x ∨ y is Cnjτ1,τ2 , then for any b ∈ Σ′, ξ′ s.t.
h(b) = ξ′ and ξi = ξi,pξ

′ξi,s = (τ1τ2)
kiτ1, the occurrence

of ξ′ can appear strictly inside the subwords τ1 and τ2 of ξ1
and ξ2. Thus h−1

min

(︁
Eqξ1 ∨ Eqξ2

)︁
= Cnjh−1

min(τ1),h
−1
min(τ2)

=

h−1
min

(︁
Eqξ1

)︁ ∨ h−1
min

(︁
Eqξ2

)︁
.

Given x = Eqξ and y = Cnjτ1,τ2 , let us compute h−1
min

(︁
x ∨

y
)︁
when the join is non-trivial. In this case ξ = (τ1τ2)

kτ1,
and again all the subwords ξ′ s.t. ∃b ∈ Σ′(h(b) = ξ′)
can occur only inside τ1 or τ2, thus the resulting join is
Cnjh−1

min(τ1),h
−1
min(τ2)

.
The meet case is symmetric to the join case. Note that both

by the definition of h−1
min and choice of h, h−1

min(ε) = ε.

Therefore, compositions of the border-preserving mappings
with the string morphisms result in monotonic lattice map-
pings. Hence, the image lattices can be analysed with the same
algorithms as the lattice described in Section III.
Moreover, if a string morphism maps elements of Σ into

elements of Σ∗ (i.e. acts in the same alphabet), then by the
Knaster–Tarski theorem [14] the set of its fixpoints forms a
complete sublattice of the lattice WL0, and no additional
construction is required to track the properties captured by
the morphism. Such a sublattice is shown in Fig. 4 in framed
nodes and thick edges.

Tracing both the properties given in the lattice WL0 and
in its sublattices wrt the string morphisms can be useful, for
example, in the following analyses.
First, we can obtain a simple length analysis of strings,

tracking constant values of string lengths. Indeed, the mor-
phism hΣ→a defined as ∀c ∈ Σ

(︁
hΣ→a(c) = a

)︁
maps any

given string to the unary Peano number representing its length.
Second, we can obtain a symbol occurrence analysis. Oc-

currences of forbidden symbols (i.e. all symbols from a set
Σ′ ⊂ Σ) can be traced in the sublattice produced by the mor-
phism hΣ\Σ′→ε defined as follows: ∀c ∈ Σ′(︁hΣ\Σ′→ε(c) =
a
)︁
& ∀c ∈ Σ \ Σ′(︁hΣ\Σ′→ε(c) = ε

)︁
.

Third, simple string classification wrt the letter sets that are
contained in the strings may be done. Namely, given Σ =
Σ1 ∪ Σ2 ∪ . . .Σk, where ∀i, j(i ̸= j ⇒ Σi ∩ Σj = ∅), the
morphism hΣ1,...,Σk

mapping any symbol from Σi to a single
letter ai produces a sublattice capturing abstract properties “to
contain only the letters belonging to the set Σi”.

VI. RELATED WORKS AND DISCUSSION

Practical string analysis tools [4], [8], [10], [23] tend to
apply combinations of string domains. A natural abstraction of
string sets may be expressed in terms of the regular language
RL [6], [7], [9]. The RL-based abstract domains are easily
defined given the union and intersection operations, however,
the set of all regular languages cannot be directly used as an
abstract domain. The main two problems to be solved when
using the RL-based domains are listed below.
First, the lattice based on RL abstract domain admits

infinite ascending chains. Thus, the straightforward usage of
the regular expressions as elements of the lattice results in
non-termination of the abstract interpretation.
Second, when the first problem is addressed via widening,

infinite descending chains can still remain. The termination
issue of the abstract interpretation relies only on the upper
semi-lattice completeness. But the existence of such descend-
ing chains may indicate that the convergence speed is not
uniformly bounded wrt the program to be analysed. For
example, if the two strings start with the same common prefix

91

ξ, and ξ is long enough, then their widening to ξ.∗, where .∗
defines an arbitrary string, (as defined in the paper [6]) may
result in |ξ| iterations computing the upper bound, if the loop
dropping the first letter of a word is analysed. The widening
defined in the book [7] shares this feature as well.
The paper [9] discussed the following four abstract string

domains often used in practical string analysis.
The first is an abstract domain with values Eqξ. This domain

is included in WL0 presented in this paper.
The second is an abstract domain with values tracking

the string lengths. Its simplest version can be modelled in a
sublattice ofWL0 by means of the morphism hΣ→a. Versions
of the string length domain involving more complex length
properties are independent from WL0 and can be used in the
direct product with WL0 in order to improve preciseness of
the analysis [24].
The third is an abstract domain with values representing

predicates “string X contains a letter a”. If the known set of
the values Σ′ ⊂ Σ is tracked, then this domain is embedded
in WL0 as a set of sublattices, by means of providing the set
of string morphisms hΣ\{c}→ε mapping a chosen c ∈ Σ′ into
itself, and all the other letters from Σ to ε.
The fourth is an abstract domain with values representing

prefix predicates “string X starts with ξ”, and the correspond-
ing domain of suffix predicates. This domain contains infinite
descending chains, since if ξ1ξ2 is a prefix of X , then ξ1
(including ξ1 = ε) is also a prefix of X .
The authors of the paper [10] use an abstract string domain

separating unknown strings into numeric, non-numeric and
special strings reflecting key words of JS syntax. Although
the string domain is hard-coded, the JSAI tool makes use of
configurable sensitivity in the trace analysis, thus allowing
a user to redefine the tracked breakpoints. Thus, the idea
presented in this paper to make the string analysis configurable
by constructing the tokenizer mapping can be considered as
an attempt to make the string-specified domain more config-
urable.
The works combining expressiveness of the word equa-

tion languages and regular languages emerged in program
verification for finding loop invariants and pruning unreach-
able computation branches, see e.g. the paper [23]. There
the straight-line fragment of the word equation language is
considered, i.e. the variables in an equation cannot occur more
than once. Nevertheless, such a fragment can still express some
of language properties that are non-expressible by means of
the multi-track finite automata [7].
The fresh work [25] reasons on so-called chain-free word

equations, in which the variable dependences are bounded. The
decision procedures for the existential theory of the chain-free
equations together with regular constraints are given.

A. Complexity of operations in WL0

Several operations presented in this paper depend on finding
either a primitive root of a string or its maximal suffix and
prefix being a power of the same primitive word, given
concatenation, string subtraction, and replacement operators.

This task can be efficiently solved, e.g. by means of suffix
arrays and LSP arrays, hence, the resulting complexity of
the operations over abstract values x and y can be estimated
as O

(︁
(|x| + |y|) log(|x| + |y|))︁, where |Eqω | = |ω|, and

|Cnjξ1,ξ2 | = |ξ1|+ |ξ2|.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a first attempt to use
the word equations as a basic language for constructing a
string abstract domain. We have introduced the first, quantifier-
free, layer of the resulting lattice WL0, together with the
interpretation of the usual string processing operations in the
domain based on the lattice WL0.
Extending the lattice with existential predicates (i.e. equa-

tions involving at least two variables) is an interesting and non-
trivial task. A simplest choice of the existential two-variable
predicates is to take one-variable patterns, i.e. equations of the
formX = ξ1Y ξ2 . . . Y ξn+1. However, if we consider arbitrary
one-variable patterns, the domain will include unbounded
descending chains, e.g. X = a1 . . . anY ,. . . , X = a1Y ,
which can make abstract interpretation too slow. Moreover,
some predicates of this form can violate the upper semilattice
condition. E.g. given an abstract value of the form Cnjξ1,ξ2 if
the predicate ∃Y (X = Y Y) is also introduced as an abstract
value, then Eqaa ∨ Eqε becomes undefined, because we can-
not choose the least element from Cnjε,a and ∃Y (X = Y Y)
unless we introduce additional lattice layers beyond the layer
consisting of elementary equations.
Nevertheless, the patterns are the interesting and expressible

language to be considered as a closest development of WL0.
Definitely there are other possibilities of the lattice enhanc-

ing, e.g. with the balanced two-variable equations. An equation
is called balanced if multisets of the terms in its left- and
right-sides coincide. For example, the predicates of the form
∃Y (Xω1ω3ω2Y = Y ω2ω3ω1X), as well as the patterns, are
basic in languages of two-variable equations, as shown in
the paper [26]. I.e. an infinite language of any two-variable
equation wrt variable X either contains a pattern or words
satisfying the predicate ∃Y (Xω1ω3ω2Y = Y ω2ω3ω1X),
maybe intersected with a language of Cnjξ1,ξ2 . This approach
has several benefits. First, the balanced two-variable equations
as the abstract values can capture non-trivial properties of one-
variable solution set projections, e.g. the X-solution set of the
equation XaY Y b = Y aXbY is

{︁
(bna)mbn | m,n ∈ N

}︁
,

describing a non-regular property of the X value. Second,
the two-variable equations are able to express relations be-
tween concrete values over that the given variables can range.
E.g., the solution set of the equation XaY = Y aX is{︁
((ωa)∗ω, (ωa)∗ω) | ω ∈ Σ∗}︁, where ω is a word parameter.

While both X- and Y -projections of the solution set are
trivial, the whole set indicates that X and Y values consist of
repetitions of the same substring, separated with the letter a.
In the case a solution-set description includes word parameters
a static analysis may track not only known but also unknown
repeated substrings in the data to be analysed.

92

If we do not restrict the equations with k variables, then
construction of joins and meets becomes even harder, since,
e.g. the pattern language inclusion is undecidable [27].

ACKNOWLEDGEMENTS

The author of the paper thanks Andrei Nemytykh for the
support and many fruitful discussions on the draft of this paper,
Denis Fokin for posing the problem of investigating string
domain lattices; and anonymous referees for their valuable
comments on the paper.
The research has been partially supported by Huawei Tech-

nologies Co. Ltd., and by Russian Academy of Sciences,
research project №122012700089-0.

REFERENCES

[1] J. D. Day, V. Ganesh, N. Grewal, and F. Manea, “Formal languages
via theories over strings,” CoRR, vol. abs/2205.00475, 2022. [Online].
Available: https://doi.org/10.48550/arXiv.2205.00475

[2] V. G. Durnev, “Undecidability of a simple fragment of a positive theory
with a single constant for a free semigroup of rank 2, (in Russian),”
Matem. Zametki, vol. 67, pp. 191–200, 2000. [Online]. Available:
https://doi.org/10.4213/mzm827

[3] N. Bjørner, N. Tillmann, and A. Voronkov, “Path feasibility analysis
for string-manipulating programs,” in Tools and Algorithms for the
Construction and Analysis of Systems, S. Kowalewski and A. Philippou,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 307–
321. [Online]. Available: https://doi.org/10.1007/978-3-642-00768-2 27

[4] A. Reynolds, A. Nötzli, C. W. Barrett, and C. Tinelli, “Reductions
for strings and regular expressions revisited,” in 2020 Formal
Methods in Computer Aided Design, FMCAD 2020, Haifa, Israel,
September 21-24, 2020. IEEE, 2020, pp. 225–235. [Online]. Available:
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6 30

[5] B. Eriksson, A. Stjerna, R. D. Masellis, P. Rümmer, and A. Sabelfeld,
“Black Ostrich: Web application scanning with string solvers,” in
Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2023, Copenhagen, Denmark,
November 26-30, 2023, W. Meng, C. D. Jensen, C. Cremers, and
E. Kirda, Eds. ACM, 2023, pp. 549–563. [Online]. Available:
https://doi.org/10.1145/3576915.3616582

[6] T. Choi, O. Lee, H. Kim, and K. Doh, “A practical string analyzer
by the widening approach,” in Programming Languages and Systems,
4th Asian Symposium, APLAS 2006, Sydney, Australia, November
8-10, 2006, Proceedings, ser. Lecture Notes in Computer Science,
N. Kobayashi, Ed., vol. 4279. Springer, 2006, pp. 374–388. [Online].
Available: https://doi.org/10.1007/11924661 23

[7] T. Bultan, F. Yu, M. Alkhalaf, and A. Aydin, String Analysis for
Software Verification and Security. Springer, 2017. [Online]. Available:
https://doi.org/10.1007/978-3-319-68670-7

[8] B. Loring, D. Mitchell, and J. Kinder, “Sound regular expression
semantics for dynamic symbolic execution of JavaScript,” in
Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA,
June 22-26, 2019, K. S. McKinley and K. Fisher, Eds. ACM, 2019, pp.
425–438. [Online]. Available: https://doi.org/10.1145/3314221.3314645

[9] V. Arceri, M. Olliaro, A. Cortesi, and I. Mastroeni, “Completeness
of abstract domains for string analysis of JavaScript programs,” in
Theoretical Aspects of Computing - ICTAC 2019 - 16th International
Colloquium, Hammamet, Tunisia, October 31 - November 4, 2019,
Proceedings, ser. Lecture Notes in Computer Science, R. M. Hierons
and M. Mosbah, Eds., vol. 11884. Springer, 2019, pp. 255–272.
[Online]. Available: https://doi.org/10.1007/978-3-030-32505-3 15

[10] V. Kashyap, K. Dewey, E. A. Kuefner, J. Wagner, K. Gibbons,
J. Sarracino, B. Wiedermann, and B. Hardekopf, “JSAI: a static
analysis platform for JavaScript,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, (FSE-22), Hong Kong, China, November 16 - 22, 2014,
S. Cheung, A. Orso, and M. D. Storey, Eds. ACM, 2014, pp. 121–132.
[Online]. Available: https://doi.org/10.1145/2635868.2635904

[11] F. Logozzo and H. Venter, “RATA: rapid atomic type analysis by abstract
interpretation - application to JavaScript optimization,” in Proceedings
of the 19th Joint European Conference on Theory and Practice
of Software, International Conference on Compiler Construction, ser.
CC’10/ETAPS’10. Berlin, Heidelberg: Springer-Verlag, 2010, p. 66–83.
[Online]. Available: https://doi.org/10.1007/978-3-642-11970-5 5

[12] ECMA. (2023) ECMAScript specification. [Online]. Available: https://
ecma-international.org/publications-and-standards/standards/ecma-262/

[13] G. Birkhoff and C. Bartee, Modern Applied Algebra, 1970.
[14] A. Tarski, “A lattice-theoretical fixpoint theorem and its applications,”

Pacific J. Math., vol. 5, no. 2, pp. 285–309, 1955. [Online]. Available:
https://doi.org/10.2140/pjm.1955.5.285

[15] G. S. Makanin, “The problem of solvability of equations in a free
semigroup,” Mat. Sb. (N.S.), vol. 103(145), pp. 147–236, 1977. [Online].
Available: https://doi.org/10.1070/SM1977v032n02ABEH002376

[16] J. Karhumäki, F. Mignosi, and W. Plandowski, “The expressibility of
languages and relations by word equations,” J. ACM, vol. 47, no. 3, pp.
483–505, May 2000. [Online]. Available: http://doi.acm.org/10.1145/
337244.337255

[17] J. I. Hmelevskij, “Equations in a free semigroup, (in Russian),”
Trudy Mat. Inst. Steklov, vol. 107, p. 286, 1971. [Online]. Available:
https://www.mathnet.ru/rus/tm2975

[18] C. Choffrut and J. Karhumäki, “Combinatorics of words,” in Handbook
of Formal Languages, Volume 1: Word, Language, Grammar,
G. Rozenberg and A. Salomaa, Eds. Springer, 1997, pp. 329–438.
[Online]. Available: https://doi.org/10.1007/978-3-642-59136-5 6

[19] P. Cousot and R. Cousot, “Abstract interpretation: A unified
lattice model for static analysis of programs by construction or
approximation of fixpoints,” in Conference Record of the Fourth ACM
Symposium on Principles of Programming Languages, Los Angeles,
California, USA, January 1977, R. M. Graham, M. A. Harrison,
and R. Sethi, Eds. ACM, 1977, pp. 238–252. [Online]. Available:
https://doi.org/10.1145/512950.512973

[20] A. Saarela, “Systems of word equations, polynomials and linear
algebra: A new approach,” Eur. J. Comb., vol. 47, pp. 1–14, 2015.
[Online]. Available: https://doi.org/10.1016/j.ejc.2015.01.005

[21] N. K. Kosovskij, “Some properties of solutions to equations in a free
semigroup (in Russian),” Zap. Nauch. Sem. LOMI, vol. 32, pp. 21–28,
1972. [Online]. Available: https://www.mathnet.ru/rus/znsl2560

[22] D. Nowotka and A. Saarela, “An optimal bound on the solution
sets of one-variable word equations and its consequences,” SIAM
J. Comput., vol. 51, no. 1, pp. 1–18, 2022. [Online]. Available:
https://doi.org/10.1137/20m1310448

[23] T. Chen, A. Flores-Lamas, M. Hague, Z. Han, D. Hu, S. Kan,
A. W. Lin, P. Rümmer, and Z. Wu, “Solving string constraints
with regex-dependent functions through transducers with priorities and
variables,” Proc. ACM Program. Lang., vol. 6, no. POPL, pp. 1–31,
2022. [Online]. Available: https://doi.org/10.1145/3498707

[24] T. Chen, M. Hague, J. He, D. Hu, A. W. Lin, P. Rümmer, and
Z. Wu, “A decision procedure for path feasibility of string manipulating
programs with integer data type,” in Automated Technology for
Verification and Analysis - 18th International Symposium, ATVA 2020,
Hanoi, Vietnam, October 19-23, 2020, Proceedings, ser. Lecture
Notes in Computer Science, D. V. Hung and O. Sokolsky, Eds.,
vol. 12302. Springer, 2020, pp. 325–342. [Online]. Available:
https://doi.org/10.1007/978-3-030-59152-6 18

[25] D. Chocholatý, T. Fiedor, V. Havlena, L. Holı́k, M. Hruška,
O. Lengál, and J. Sı́č, “Mata: A fast and simple finite automata
library,” in Tools and Algorithms for the Construction and Analysis
of Systems, B. Finkbeiner and L. Kovács, Eds. Cham: Springer
Nature Switzerland, 2024, pp. 130–151. [Online]. Available: https:
//doi.org/10.1007/978-3-031-57249-4 7

[26] L. Ilie and W. Plandowski, “Two-variable word equations,” RAIRO
Theor. Informatics Appl., vol. 34, no. 6, pp. 467–501, 2000. [Online].
Available: https://doi.org/10.1051/ita:2000126

[27] T. Jiang, A. Salomaa, K. Salomaa, and S. Yu, “Inclusion is undecidable
for pattern languages,” in Automata, Languages and Programming,
A. Lingas, R. Karlsson, and S. Carlsson, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1993, pp. 301–312. [Online]. Available:
https://dl.acm.org/doi/10.5555/646247.684876

93

https://doi.org/10.48550/arXiv.2205.00475
https://doi.org/10.4213/mzm827
https://doi.org/10.1007/978-3-642-00768-2_27
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_30
https://doi.org/10.1145/3576915.3616582
https://doi.org/10.1007/11924661_23
https://doi.org/10.1007/978-3-319-68670-7
https://doi.org/10.1145/3314221.3314645
https://doi.org/10.1007/978-3-030-32505-3_15
https://doi.org/10.1145/2635868.2635904
https://doi.org/10.1007/978-3-642-11970-5_5
https://ecma-international.org/publications-and-standards/standards/ecma-262/
https://ecma-international.org/publications-and-standards/standards/ecma-262/
https://doi.org/10.2140/pjm.1955.5.285
https://doi.org/10.1070/SM1977v032n02ABEH002376
http://doi.acm.org/10.1145/337244.337255
http://doi.acm.org/10.1145/337244.337255
https://www.mathnet.ru/rus/tm2975
https://doi.org/10.1007/978-3-642-59136-5_6
https://doi.org/10.1145/512950.512973
https://doi.org/10.1016/j.ejc.2015.01.005
https://www.mathnet.ru/rus/znsl2560
https://doi.org/10.1137/20m1310448
https://doi.org/10.1145/3498707
https://doi.org/10.1007/978-3-030-59152-6_18
https://doi.org/10.1007/978-3-031-57249-4_7
https://doi.org/10.1007/978-3-031-57249-4_7
https://doi.org/10.1051/ita:2000126
https://dl.acm.org/doi/10.5555/646247.684876

APPENDIX

Computation of x− y

A word ξ is said to be a fractional power of τ , if
∃ω1, ω2, k

(︁
k ∈ N & τ = ω1ω2 & ξ = τkω1

)︁
. The

fractional power of τ in ξ is computed as k + |ω1|
|τ | [18]. E.g.

abaabaa = (aba)2
1
3 . Hence, words satisfying any predicate

Cnjω1,ω2
are fractional powers of ω1ω2 with the non-integer

fractional part consisting of ω1 (the fractional part is non-
empty if |ω1| ̸= 0). We recall that the operation a(x) takes a
concrete value of a predicate x.
Below the definition of the prefix subtraction operation in

WL0 is repeated.

x− y =

������������������������������������������������������������

Eqτ , if x = Eqξτ & y = Eqξ;

error, if x = Eqτ & y = Eqξ & ∀τ ′(τ ̸= ξτ ′);
error, if x = Cnjτ1,τ2 & y = Eqξ

& ¬(y ≤ Cnjξ1,ξ2), where τ1τ2 = ξ1ξ2;

x, if y = Cnjε,ξ and
either x = Eqτ and ∀τ ′(︁τ ̸= ξτ ′)︁,

or x = Cnjτ1,τ2 and ∀τ ′, k(︁(τ1τ2)kτ1 ̸= ξτ ′)︁;
⊤, if y = Cnjξ1,ξ2 and x− y can satisfy at least

two different predicates of the formCnjω1,ω2
;

Cnjτ1,2,τ2τ1,1 , if x ≤ Cnjτ1,τ2 and y ≤ Cnjξ1,ξ2
and ∃k, k′, τ1,1, τ1,2(︁

(τ1τ2)
kτ1,1 = (ξ1ξ2)

k′ξ1 & τ1 = τ1,1τ1,2
)︁
;

Cnjτ2,2τ1,τ2,1 , if x ≤ Cnjτ1,τ2 and y ≤ Cnjξ1,ξ2
and ∃k, k′, τ2,1, τ2,2(︁

(τ1τ2)
kτ1τ2,1 = (ξ1ξ2)

k′ξ1 & τ2 = τ2,1τ2,2
)︁
;

⊤, otherwise.
The first three cases of the definition are self-explanatory;

now we consider the case returning x. Given y = Cnjε,ξ, if
any concrete value of a(x) does not start with ξ, the only value
of a(y) that can be subtracted from a(x) is ε, i.e. ξ0.
In the following cases, we treat the predicate x = Eqτ

uniformly with Cnjτ1,τ2 , making use of the fact that any τ
can be represented as (τ1τ2)mτ1, where τ1 = ε, τ2 = ρ(τ).
Let x = Cnjτ1,τ2 or x = Eq(τ1τ2)mτ1 , y = Cnjξ1,ξ2 ,

and let a(x) start with a(y). Then ∃k1

(︁
a(x) = (τ1τ2)

k1τ1
)︁
;

∃k2

(︁
a(y) = (ξ1ξ2)

k2ξ1
)︁
; ∃τ ′(︁a(x) = a(y)τ ′)︁.

If both ξ1 and ξ1ξ2ξ1 are fractional powers of τ1τ2 and the
fractional parts of τ1τ2 in ξ1 and ξ1ξ2ξ1 do not coincide, then
the abstract value of a(x) − a(y) cannot be determined, and
the value ⊤ is returned by the computation of x − y (shown
in the fifth case of the definition).
In the remaining cases below the fifth (the one returning

⊤), we assume that either ξ1 and ξ1ξ2ξ1 are powers of τ1τ2
and the fractional parts of τ1τ2 in ξ1 and ξ1ξ2ξ1 coincide, or
that ξ1 is a power of τ1τ2, while ξ1ξ2ξ1 is not.
If the string a(y) ends inside the string τ1, then τ1 =

τ1,1τ1,2, and ∃k3

(︁
τ ′ = (τ1,2τ2τ1,1)

k3τ1,2
)︁
. Hence, τ ′ satisfies

the predicate Cnjτ1,2,τ2τ1,1 (the sixth case of the definition).
If the string a(y) ends inside the string τ2, then τ2 =

τ2,1τ2,2, and ∃k3

(︁
τ ′ = (τ2,2τ1τ2,1)

k3τ2,2τ1
)︁
. Hence, τ ′ sat-

isfies the predicate Cnjτ2,2τ1,τ2,1 (the seventh case of the
definition).

Note that the order of the right-hand sides of the interpreta-
tion rule for x−y guarantees that if a(y) satisfies the predicate
Cnjτ1,τ2 then the resulting abstract value is Cnjε,τ2τ1 , but not
Cnjτ2τ1,ε. These two predicates are equivalent, but only the
former is consistent with the definition of the abstract values
in WL0.

94

Formal Methods in Computer-Aided Design 2024

Formally Verifying Deep Reinforcement Learning
Controllers with Lyapunov Barrier Certificates

Udayan Mandal1, Guy Amir2, Haoze Wu1, Ieva Daukantas3, Fletcher Lee Newell1, Umberto J. Ravaioli4,
Baoluo Meng5, Michael Durling5, Milan Ganai1, Tobey Shim1, Guy Katz2, and Clark Barrett1

1Stanford University, Stanford, United States, {udayanm, haozewu, flnewell, mganai, tshim24,
barrett}@stanford.edu

2The Hebrew University of Jerusalem, Jerusalem, Israel, {guyam, guykatz}@cs.huji.ac.il
3IT University of Copenhagen, Copenhagen, Denmark, daukantas@itu.dk

4Google, Mountain View, United States, uravaioli@google.com
5GE Aerospace Research, Niskayuna, United States, {baoluo.meng, durling}@ge.com

Abstract—Deep reinforcement learning (DRL) is a powerful
machine learning paradigm for generating agents that control
autonomous systems. However, the “black box” nature of DRL
agents limits their deployment in real-world safety-critical appli-
cations. A promising approach for providing strong guarantees
on an agent’s behavior is to use Neural Lyapunov Barrier (NLB)
certificates, which are learned functions over the system whose
properties indirectly imply that an agent behaves as desired.
However, NLB-based certificates are typically difficult to learn
and even more difficult to verify, especially for complex systems.
In this work, we present a novel method for training and verifying
NLB-based certificates for discrete-time systems. Specifically, we
introduce a technique for certificate composition, which simpli-
fies the verification of highly-complex systems by strategically
designing a sequence of certificates. When jointly verified with
neural network verification engines, these certificates provide a
formal guarantee that a DRL agent both achieves its goals and
avoids unsafe behavior. Furthermore, we introduce a technique
for certificate filtering, which significantly simplifies the process
of producing formally verified certificates. We demonstrate the
merits of our approach with a case study on providing safety
and liveness guarantees for a DRL-controlled spacecraft.

I. INTRODUCTION

In recent years, deep reinforcement learning (DRL) has
achieved unprecedented results in multiple domains, including
game playing, robotic control, protein folding, and many
more [22], [49], [65], [72]. However, such models have an
opaque decision-making process, making it highly challenging
to determine whether a DRL-based system will always be-
have correctly. This is especially concerning for safety-critical
domains (e.g., autonomous vehicles), in which even a single
mistake can have dire consequences and risk human lives. This
drawback limits the incorporation of DRL in real-world safety-
critical systems.
The formal methods community has responded to this

challenge by developing automated reasoning approaches for
proving that a DRL-based controller behaves correctly [62].
These efforts rely in part on specialized DNN verification
engines (a.k.a. DNN verifiers), which adapt techniques from
other domains such as satisfiability modulo theories, abstract
interpretation, mixed integer linear programming, and convex
optimization [55], [56], [67], [87]. DNN verifiers take as

input a DNN and a specification of the desired property and
produce either a proof that the property always holds, or a
counterexample demonstrating a case where the property does
not hold. While the scalability of DNN verifiers has improved
dramatically in the past decade [20], they struggle when
applied to reactive (e.g., DRL-based) systems with temporal
properties which require reasoning about interactions with the
environment over time. This is because a naive approach for
reasoning about time requires the involved DNN to be unrolled
(i.e., a copy made for each time step), greatly increasing the
complexity of the verification task.
On the other hand, for dynamical systems, a traditional

approach for guaranteeing temporal properties has been to use
control certificates such as Lyapunov Barrier functions [63].
Unfortunately, standard approaches for constructing these
functions are not easily applicable to DRL-based dynamical
systems. Recently, however, techniques have been developed
for learning control certificates. We call these Neural Lya-
punov Barrier (NLB) certificates [33]. Although NLB-based
approaches have been shown to work for simple, toy examples,
these certificates have been, thus far, difficult to learn and
verify for real-world systems, which often involve large state
spaces with complex dynamics.
In this work, we present a novel framework for training

and formally verifying NLB-based certificates. Our framework
can verify both liveness and safety properties of interest,
providing reach-while-avoid (RWA) guarantees. We use off-
the-shelf DNN verifiers and introduce a set of novel techniques
to improve scalability, including certificate filtering and com-
position.
We demonstrate our approach with a case study targeting

a specific challenge problem, in which the goal is to ver-
ify a DRL-based spacecraft controller [78]. We show that
our framework is able to generate verified NLB-based RWA
certificates for a range of complex properties. These include
liveness properties (e.g., will the spacecraft eventually reach
its destination?) and complex non-linear safety properties
(e.g., the spacecraft will never violate a non-linear velocity
constraint), both of which are challenging to verify using
existing techniques.

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 15 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://doi.org/0.34727/2024/isbn.978-3-85448-065-5_15
https://doi.org/0.34727/2024/isbn.978-3-85448-065-5_15
https://creativecommons.org/licenses/by/4.0/

The rest of this paper is organized as follows: Sec. II
gives an overview of relevant background material on property
types, DNN verifiers, and NLB certificates. Related work is
covered in Sec. III. In Sec. IV and V, we present our approach,
and Sec. VI reports the results of our spacecraft case study.1

Finally, Sec. VII concludes.

Note. Proofs and additional details can be found in an extended
technical report [69].

II. PRELIMINARIES

A. Property Types

This work focuses on DRL controllers that are invoked
over discrete time steps. We consider both safety and liveness
properties [5].
Safety. A safety property indicates that a bad state is never
reached. More formally, let X be the set of system states,
and let τ ⊆ X ∗ be the set of possible system trajectories. The
system satisfies a safety property P if and only if every state
in every trajectory satisfies P :∀α ∶ α ∈ τ ∶ (∀x ∈ α ∶ x ⊧ P) (1)

A violation of a safety property is a finite trajectory ending in
a “bad” state (i.e., a state in which P does not hold).
Liveness. A liveness property concerns the eventual behavior
of a system (e.g., a good state is eventually reached). More
formally, we say a liveness property P holds if and only if
there exists a state x in every infinite trajectory where P holds.
Letting τ∞ be the set of infinite trajectories, we can formalize
this as follows.∀α ∶ α ∈ τ∞ ∶ (∃x ∈ α ∶ x ⊧ P), (2)

A violation of a liveness property is an infinite trajectory in
which each state violates the property P .

B. DNNs, DNN Verification, and Dynamical Systems.

Deep Learning. Deep neural networks (DNNs) [43] consist
of layers of neurons, each layer performing a (typically non-
linear) transformation of its input. This work focuses on deep
reinforcement learning (DRL), a popular paradigm in which a
DNN is trained to realize a policy, i.e., a mapping from states
(the DNN’s inputs) to actions (the DNN’s outputs), which is
used to control a reactive system. For more details on DRL,
we refer to [64].
DNN Verification. Given (i) a trained DNN (e.g., a DRL
agent) N ; (ii) a precondition P on the DNN’s inputs, limiting
the input assignments; and (iii) a postcondition Q on the
DNN’s output, the goal of DNN verification is to determine
whether the property P (x) → Q(N(x)) holds for any neural
network input x. In many DNN verifiers (a.k.a., verification
engines), this task is equivalently reduced to determining the
satisfiability of the formula P (x)∧¬Q(N(x)). If the formula
is satisfiable (SAT), then there is an input that satisfies the

1Code for reproducing the experiments is available at:
github.com/NeuralNetworkVerification/artifact-fmcad24-docking.

pre-condition and violates the post-condition, which means
the property is violated. On the other hand, if the formula
is unsatisfiable (UNSAT), then the property holds. It has been
shown [55] that verification of piecewise-linear DNNs is NP-
complete.

Discrete Time-Step Dynamical Systems. We focus on
dynamical systems that operate in a discrete time-step setting.
More formally, these are systems whose trajectories satisfy the
equation:

xt+1 = f(xt, ut), (3)

where f is a transition function that takes as inputs the current
state xt ∈ X and a control input ut ∈ U and produces the
next state xt+1. These systems are controlled using a feedback
control policy π ∶ X → U which, given a state x ∈ X produces
control input u = π(x). In our setting, the controller π is
realized by a DNN trained using DRL. DRL-based controllers
are potentially useful in many real-world settings, due to
their expressivity and their ability to generalize to complex
environments [85].

C. Control Lyapunov Barrier Functions

The problem of verifying a liveness or safety property
over a dynamical system with a given control policy can
be reduced to the task of identifying a certificate function
V ∶ X ↦ R, whose input-output relation satisfies a particular
set of constraints that imply the property. There are two
fundamental types of certificate functions.

Lyapunov Functions. A Lyapunov function (a.k.a. Control
Lyapunov function) represents the energy level at the current
state: as time progresses, energy is dissipated until the system
reaches the zero-energy equilibrium point [48]. Hence, such
functions are typically used to provide asymptotic stability,
i.e., adherence to a desired liveness property, or the eventual
convergence of the system to some goal state. Such guarantees
can be afforded by learning a function that (i) reaches a 0
value at equilibrium, (ii) is strictly positive everywhere else;
and (iii) either monotonically decreases [25], [26] or decreases
by a particular constant [40] with each time step.

Barrier Functions. Barrier functions [8], a.k.a. Control
Barrier Functions, are also energy-based certificates. However,
these functions are typically used for verifying safety proper-
ties. Barrier functions enforce that a system will never enter
an unsafe region in the state space. This is done by assigning
unsafe states a function value above some threshold and then
verifying that barrier function never crosses this threshold [7],
[16], [90].

Control Lyapunov Barrier Functions. In many real-world
settings, it can be useful to verify both liveness properties and
safety properties. In such cases, a Control Lyapunov Barrier
Function (CLBF) can be used, which combines the properties
of both Control Barrier functions and Lyapunov functions.
CLBFs can provide rigorous guarantees w.r.t. a wide variety
of temporal properties, including the general setting of reach-
while-avoid tasks [37], which we describe next.

96

https://github.com/NeuralNetworkVerification/artifact-fmcad24-docking

Reach-while-Avoid Tasks. In a reach-while-avoid (RWA)
task, we must find a controller π for a dynamical system such
that all trajectories {x1, x2...} produced by this controller (i)
do not include unsafe (“bad”) states; and (ii) eventually reach
a goal state. More formally the problem can be defined as
follows:

Definition 1 (Reach-while-Avoid Task).
Input: A dynamical system with a set of initial statesXI ⊆ X , a set of goal states XG ⊆ X , and a set of unsafe
states XU ⊆ X , where XI ∩ XU = ∅ and XG ∩ XU = ∅
Output: A controller π such that for every trajectory
τ = {x1, x2...} satisfying x1 ∈ XI :
1) Reach: ∃ t ∈ N. xt ∈ XG

2) Avoid: ∀ t ∈ N. xt /∈ XU

III. RELATED WORK

A. Control Certificates

Control certificate-based approaches form a popular and
effective class of methods for providing guarantees about com-
plex dynamical systems in diverse application areas includ-
ing robotics [33], energy management [52], and biomedical
systems [35]. Control Lyapunov functions are certificates for
system stability, and the closely-related control Barrier func-
tions are certificates for safety. While such Lyapunov-based
certificates have been proposed over a century ago [66], their
main drawback lies in their computational intractability [42].
As a result, practitioners have mainly relied on unscalable
methods for constructing certificates, such as manual design
for domain-dependent certificate functions [24], [27], sum-of-
squares approaches restricted to polynomial systems [53], [68],
and quadratic programming [63].
1) Formal Verification of Neural Certificates: Recent meth-

ods have leveraged neural networks as verifiable models of
these control certificates, forming a class of neural certificate
approaches [33]. For a fixed controller, [80] distills the prob-
lem into solving binary classification with neural networks, but
the method is limited to polynomial systems and only obtains
a region of attraction, making it incompatible with most RWA
problems, which have a predefined goal region.
In [2], [4], SMT solvers are employed to check whether

a certificate for a specific controller satisfies the Lyapunov
conditions and, if not, to return counterexamples which can be
used to retrain the neural certificate. A similar approach can be
used for Barrier conditions [73]. In [1], [36], the Fossil tool
is introduced, which combines these methods. In [3], Fossil
is used to generate training examples for barrier certificates
which are used to construct overapproximations of safe reach
sets. However, these methods require verifying all constraints
in the certificate for the entirety of the relevant state space —
a task which can be computationally prohibitive (as we show
in Section VI).
In [26], a Neural Lyapunov Control (NLC) framework is

proposed, which jointly learns the Lyapunov certificate and
the controller. The algorithm iteratively calls the dReal SMT

solver [41] to generate counterexamples and retrain both the
neural certificate and the control policy. Various extensions and
applications followed: [45] addresses algorithmic problems in
NLC; [46] automates the design of passive fault-tolerant con-
trol laws using NLC; [97] extends NLC to unknown nonlinear
systems; [88] extends NLC to discrete-time systems; [82]
verifies single hidden-layer ReLU neural certificates with
enumeration [77] and linear programming; and [96] develops
a framework for Barrier functions when there is an existing
nominal controller. However, these methods do not consider
the more general reach-avoid problem.
2) Data-driven Neural Certificates: To improve scalability,

a recent line of research proposes learning certificates and
controllers from online and/or offline data without additional
formal verification [33], following the intuition that, with
increasing data, the number of violations in the trained certifi-
cate will tend toward zero [19]. [25], [40] learn Lyapunov
certificates for stabilization control, and [75], [76], [86],
[95] synthesize neural Barrier functions in various settings
like multi-agent control, neural radiance field [71] imagery,
and pedestrian avoidance. These methods (by design) cannot
provide rigorous guarantees on the validity of their learned
certificates.

B. Reach-Avoid methods

Solutions for tasks requiring the simultaneous verification
of both liveness and safety properties, of which the RWA
task is a common example, have also relied on control
theoretic principles. [34] learns a combined Lyapunov and
Barrier certificate to construct controllers with stabilization
and safety guarantees. The Hamilton-Jacobi (HJ) reachability-
based method (a verification method for ensuring optimal
control performance and safety in dynamical systems [15])
has also been used to solve reach-avoid problems [38], [51],
[84]. Safe reinforcement learning is closely related to reach-
avoid: the goal is to maximize cumulative rewards while
minimizing costs along a trajectory [21], and it has been
solved with both Lyapunov/Barrier methods [28], [91] and HJ
reachability methods [39], [94]. As mentioned, scalability is
a crucial challenge in this context. The next section describes
our approach for addressing this challenge.

IV. REACH-WHILE-AVOID CERTIFICATES

In this section, we present our approach for scalably creating
verified NLB certificates. We first describe reach-while-avoid
(RWA) certificates, a popular class of existing NLB-based
certificates. We next present an extension called Filtered RWA
certificates, which significantly simplifies the learning task and
enables efficient training of certificates for complex properties.
We then present a compositional certification approach, which
independently trains a series of certificates that can be jointly
verified to handle even larger state spaces.

97

A. RWA certificates

A function V ∶ X ↦ R is an RWA certificate for the Reach-
Avoid task in Definition 1 if, for some α > β and ϵ > 0, it
satisfies the following constraints.2∀x ∈ XI . V (x) ≤ β (4)∀x ∈ X ∖ XG. V (x) ≤ β → V (x) − V (f(x,π(x))) ≥ ϵ (5)∀x ∈ XU . V (x) ≥ α (6)

Any tuple of values (α,β, ϵ) for which these conditions hold
is called a witness for the certificate. RWA certificates provide
the following guarantees.3

Lemma 1. If V is an RWA certificate for a dynamical system
with witness (α,β, ϵ), and V has a lower bound,4 then for
every infinite trajectory τ starting from a state x ∈ X ∖ XG

such that V (x) ≤ β, τ will eventually contain a state in XG

without ever passing through a state in XU .

Intuitively, V partitions the state space into three regions:
● a safe region where the value of the certificate is at most

β. This region includes the initial states XI and any states
reachable from XI . Furthermore, starting from any non-
goal state in the safe region, the certificate function value
should decrease by at least ϵ at each time step.● an unsafe region where the value of the certificate is at
least α. This region must include the unsafe states XU .● an intermediate region, where the value of the certificate
is strictly between β and α. States in this region are not
unsafe but are also not reachable from XI . This can also
be thought of as a “buffer” region that separates the safe
region from the unsafe region. These states play a role in
the compositional approach described below.

B. FRWA certificates

A neural RWA certificate is an RWA certificate realized
by a DNN. Such a DNN can be trained by following the
NLC approach [26], using the constraints (4)–(6) as training
objectives. Because we are also interested in formally verifying
these certificates, we would like to keep the DNNs (both the
controller and the certificate) small so that verification remains
tractable. We have observed that this can be challenging when
the system and properties are non-trivial. To help address this,
we introduce an improvement called Filtered Reach-while-
Avoid (FRWA) certificates.
The idea behind FRWA is straightforward. Often, we can

describe the goal and unsafe regions using simple predicates
(or filters) on the state space. We pick constants c1, c2 such
that c1 ≤ β < α ≤ c2 and then hard-code the implementation of
V so that x ∈ XG → V (x) = c1 and x ∈ XU → V (x) = c2. Note
that the latter ensures that condition (6) holds by construction.

2These constraints are similar to the ones defined in prior work [37] but
are specific to discrete time-step systems and instead place constraints on the
set of unsafe states instead of a compact safe set.

3See [69] for a proof.
4This is always the case if the output of V is implemented using a finite

representation such as floating-point arithmetic.

Importantly, this not only makes the training task easier, but
also reduces the number of queries required to formally verify
the certificate. On the other hand, hard-coding the certificate
value for inputs in XG makes it easier to learn constraint (5).
The reason for this is more nuanced. If we randomly initialize
the certificate neural network, the certificate value for some
states in XG could start out larger than β, making it more
difficult to satisfy constraint (5) for a point x where V (x) ≤ β
and f(x,π(x)) ∈ XG. Fixing the certificate values for states
in XG to at most β (ideally, significantly below β) ensures
that, at least for such points, condition (5) is easier to satisfy.
In practice, FRWA certificates can be implemented by using a
wrapper around a DNN which checks the two filters and only
calls the DNN if they both fail. The practical effectiveness of
FRWA certificates is demonstrated in Sec. VI.

FRWA Training. FRWA simplifies the certificate learning
process, as now, only constraints 4 and 5 are relevant for
training. We custom design the reinforcement learning training
objective function as follows. Let x1, . . . , xN be the set of
training points, and let x′i = f(xi, π(xi)). We define:

Os = cs ∑
i ∣xi∈XI

ReLU(δ1 + V (xi) − β)∑i ∣xi∈XI
1

(7)

Od = cd ∑
i ∣xi∈X∖(XU∪XG),V (xi)≤β

ReLU(δ2 + ϵ + V (x′i) − V (xi))∑i ∣xi∈X∖(XU∪XG),V (xi)≤β 1
(8)

O = Os + Od (9)

Eq. (7) penalizes deviations from constraint (4), and Eq. (8)
penalizes deviations from constraint (5). We incorporate pa-
rameters δ1 > 0 and δ2 > 0, which can be used to tune how
strongly the certificate over-approximates adherence to each
constraint. Similarly, constants cs and cd can be used to tune
the relative weight of the two objectives. The final training
objective O in (9) is what the optimizer seeks to minimize, by
using stochastic gradient descent (SGD) or other optimization
techniques. We note that the FRWA certificates are trained in
a self-supervised, non-RL setting.

FRWA Data Sampling. From the formulation above, we
see that only data points in (X ∖ (XU ∪ XG)) ∪ XI affect the
objectives, and thus, only these data points need to be sampled.

FRWA Verification. We use DNN verification tools to
formally verify that conditions (4)-(6) hold for our certificates.
Filtering introduces a slight complication. Recall that a FRWA
certificate is implemented as a wrapper around a DNN, mean-
ing that the DNN itself can behave arbitrarily when either
x ∈ XG or x ∈ XU . Fortunately, we can adjust the verification
conditions for the DNN part of the certificate as follows.
Constraint (4) can be checked as is. The filtering does not

affect this property. And it is easy to see that checking the
property for the DNN does indeed ensure the property holds
for the full certificate.
Constraint (6) need not be checked at all, as the filtered

certificate ensures this condition by construction.

98

Initialize Train𝜋 & 𝜋 Verify & 𝜋 𝑉 𝑉

Fig. 1: The CEGIS Loop used to iteratively train and verify
controller π and certificate V . Verification counterexamples
are used to augment the training dataset.

Verification of constraint 5 is done by instead checking that:∀x ∈ X ∖ (XU ∪ XG), x′ ∈ X .(x′ = f(x,π(x)) ∧ V (x) ≤ β) →(V (x) − V (x′) ≥ ϵ ∨ (x′ ∈ XG)) ∧ (x′ /∈ XU) (10)

There are three main differences between (5) and (10). Since
the filter ensures that V (x) > β when x ∈ XU , we can safely
exclude states in XU from the check. Similarly, if the system
ever transitions from a state x with V (x) ≤ β to an unsafe
state, the filter ensures that condition (5) is violated, so it
suffices to check that x′ /∈ XU to cover this case.
The last difference is a bit more subtle. Observe that (10)

is trivially true if x′ ∈ XG, meaning that if we transition to a
goal state, we do not enforce (5). However, it is easy to see
that Lemma 1 still holds with this relaxed condition: if every
transition either reduces V by at least ϵ or reaches a goal state,
then clearly, we must eventually reach a goal state.

C. CEGIS loop

We use a counterexample-guided inductive synthesis
(CEGIS) loop, shown in Fig. 1, to obtain a fully verified
controller and certificate. We first train an initial controller π.
Then, at each CEGIS iteration, we jointly train V and π until a
loss of 0 is obtained and then use a sound and complete DNN
verifier (we use Marabou [58] in our experiments) to identify
counterexamples. If the verifier identifies a counterexample
violating constraints (4) or (5) (recall that constraint (6) is
satisfied by construction), we sample points in the proximity of
the counterexample and use these to augment the training data.
By sampling multiple nearby points, we hope to influence the
training to learn smooth behavior for a localized neighborhood
instead of overfitting to a specific point. This process is
repeated iteratively until no counterexamples are found, at
which point we are guaranteed to have produced a fully
verified controller and certificate.

V. COMPOSITIONAL CERTIFICATES

While filtering does improve the efficiency of both training
and verification, the approach outlined above still suffers from
scalability challenges, especially as the system complexity or
state space covered by the controller increases. In this section,
we introduce compositional certificates, which aim to aid
scalability by training multiple controller-certificate pairs, each
covering different parts of the state space. The certificates are
compositional in the sense that a simple meta-controller can
be designed to determine which controller-certificate pair to

use when in a given state, and we can formally guarantee that
the meta-controller satisfies the requirements of definition 1.
CRWA. Formally, a compositional RWA certificate (CRWA)
for an RWA task is composed of n RWA certificates,5 which
we denote V0, . . . , Vn−1, with corresponding controllers, which
we denote π0, . . . , πn−1, with n ≥ 2. Furthermore, each
pair (Vi, πi) must be an RWA certificate with some witness(αi, βi, ϵi) for an RWA task whose dynamics are that of the
main RWA task, but whose parameters are (X i

I ,X i
G,X i

U).
These parameters must satisfy the following conditions:
(i) X 0

I ⊆ XI , X 0
G = XG, and XU ⊆ X 0

U ⊆ (X 0
I ∪ X 0

G), where
S denotes the complement of the set S;

(ii) for 0 < i < n, X i−1
I ⊆ X i

I ⊆ XI , X i
G = {x ∈ X i−1

U ∣
Vi−1(x) ≤ βi−1} ∪ X 0

G, and XU ⊆ X i
U ⊆ X i−1

U ;
(iii) either X i

I ≠ X i−1
I or X i

U ≠ X i−1
U ; and

(iv) Xn−1
I = XI and Xn−1

U = XU .
Intuitively, the idea is as follows. We start with an initial
controller capable of guiding the system from some subset
of the initial states XI to the original goal states XG while
avoiding some superset of the unsafe states XU . Then, for each
subsequent controller, we ensure that it can guide the system
either from a larger subset of the initial states XI or while
avoiding a smaller superset of the unsafe states XU , or both,
to a new goal region consisting of the states considered safe by
the previous controller, i.e., the states x for which V (x) ≤ β.
For the final controller (controller n − 1), the set of initial
and unsafe states should coincide with those of the original
RWA problem. Note that the algorithm does not say how to
choose of X i

I and X i
U for i < n − 1 other than to specify that

these sets should be monotonically increasing and decreasing,
respectively. Finding good heuristics for choosing these sets
in the general case is a promising direction for future work.
The meta-controller behaves as follows. Given any starting

state x ∈ XI , we first check if x ∈ XG. If so, we are done.
Otherwise, we determine the smallest i for which x ∈ X i

I

and guide the system using πi until a state in X i
G is reached,

which will occur in some finite number of steps because of
the guarantees provided by Vi. At this point, we transition to
πi−1, and the process repeats until a state in XG is reached.
The training and verification of a CRWA certificate is

described in Alg. 1 and visualized in Fig. 2.
The following lemma captures the correctness of our ap-

proach.6

Lemma 2. Given a CRWA certificate for an RWA task with
parameters XI , XG, and XU , all trajectories guided by the
meta-controller starting at any point in XI will reach XG in
a finite number of steps while avoiding XU . In other words,
a CRWA certificate provides a correct solution for the RWA
task.

CRWA Data Sampling. When training certificate Vi, it is
important that the training dataset contains sufficient states

5Each controller in a CRWA can make use of the FRWA technique described
above.

6See [69] for a proof.

99

Algorithm 1: CRWA Training and Verification
Input : XI , XG, XU

Output: π0, . . . , πn−1, V0, . . . , Vn−1 for some n
1 X 0

G ← XG

2 Choose X 0
I ⊆ XI and X 0

U ⊇ XU , with X 0
U ⊆ (X 0

I ∪ X 0
G)

3 Choose α0 > β0 and ϵ0 > 0
4 Train and verify controller π0 and certificate V0 with

witness (α0, β0, ϵ0) for the RWA task corresponding
to X 0

I ,X 0
G, and X 0

U using, e.g., the approach shown
in Fig. 1

5 i ← 0
6 while X i

I ⊂ XI OR X i
U ⊃ XU do

7 i ← i + 1
8 Choose X i

I , X i
U such that X i

I ⊃ X i−1
I or X i

U ⊂ X i−1
U

9 X i
G ← {x ∈ X i−1

U ∣ Vi−1(x) ≤ βi−1} ∪ X 0
G

10 Choose αi > βi and ϵi > 0
11 Train and verify controller πi and certificate Vi

with witness (αi, βi, ϵi) for the RWA task
corresponding to X i

I ,X i
G, and X i

U using, e.g., the
approach shown in Fig. 1

Fig. 2: Visualization of how consecutive certificates relate
when building a CRWA certificate. Note that XG need not
be a subset of XI . The dotted lines indicate that the unsafe
state region extends infinitely outside the solid line box. Wavy
lines indicate outer boundaries for initial or goal regions.

sampled from X i
I ∖ X i

G. Otherwise, Vi might learn to assign
values greater than βi as much as possible in order to meet
constraint (5), as opposed to appropriately assigning all states
in X i

I ∖ X i
G to have values less than βi, due to an insufficient

loss penalty for constraint (6). To ensure that states in the
region X i

I ∖ X i
G are included in the training data, we can

identify states over constrained subspaces in X i
I ∖ X i

G, and
then include in the data set those points as well as a random
subset of their neighbors which likely lie in the same region.
Tradeoffs in choosing Intermediate Goals for CRWA
certificates. It is possible to further reduce the state space
for individual certificates in a CRWA certificate by using a
more precise description of the goal states. In particular, we
could set the goal states as follows:

X i
G = {x ∈ X i−1

U ∣ Vi−1(x) ≤ βi−1} ∪ X i−1
G . (11)

However, using 11 leads to a linear increase in the number
of DNNs that must be included during training and verification
at each iteration of Alg. 1. This quickly becomes prohibitively
expensive, especially for the verification step. We thus use the
simpler formulation described above.

VI. EVALUATION

A. Case Study

We evaluate our approach on the 2D docking task
from [78],7 in which a spacecraft is trained using DRL to
navigate to a goal. More specifically, a DRL agent maneuvers a
deputy spacecraft, controlled with thrusters that provide forces
in the x and y directions. The deputy spacecraft attempts to
safely navigate until it reaches a state that is in close proximity
to a designated chief spacecraft, while obeying a distance-
dependent safety constraint. We focus on this benchmark
for several reasons: (i) it has been proposed and studied as
a challenge problem in the literature [78], (ii) there exist
natural safety and liveness properties for it; and (iii) existing
approaches have been been unable to formally verify these
properties.

System Dynamics. The system is modeled using the
Clohessy-Wiltshire relative orbital motion linear approxima-
tion in the non-inertial Hill’s reference frame, with the chief
spacecraft lying at the origin [29], [50]. The state of the
system, x = [x, y, ẋ, ẏ]T , includes the position in (x, y) and
the velocities in each direction, (ẋ, ẏ). The control input is
u = [Fx, Fy], where Fx and Fy are the thrust forces applied
along the x and y directions, respetively. Each thrust force
component is allowed to range between −1 and +1 Newtons
(enforced with standard piecewise linear clipping). As in the
original scenario [78], the spacecraft’s mass, m, is 12kg. The
continuous time state dynamics of the system are determined
by the following ordinary differential equations (ODE), with
n = 0.001027 rad/s:

ẋ = [ẋ, ẏ, ẍ, ÿ]T (12)

ẍ = 2nẏ + 3n2x + Fx
m

(13)

ÿ = −2nẋ + Fy

m
(14)

This, in turn, is converted to a discrete system (with a time-
step of T) by numerically integrating the continuous time
dynamics ODE:

x(ti + T) = x(ti) + ∫ ti+T
ti

ẋ(τ)dτ (15)

The discrete-time version has a closed-form solution that we
use to generate successive states for the spacecraft.

Constraints and Terminal Conditions. To maintain safety,
a distance-dependent constraint is imposed on the deputy

7Additional details on this case study are described in our recent related
paper [70] and in the extended version of the current paper [69].

100

Fig. 3: A spiral trajectory: The DRL-controlled spacecraft
(starting from the red point) eventually reaches the destination
(orange) point within the docking region.

spacecraft’s maximal velocity magnitude (while approaching
the chief): √

ẋ2 + ẏ2 ≤ 0.2 + 2n
√

x2 + y2 (16)

We construct a linear over-approximation of this safety con-
straints (with OVERT [83]). It can then be incorporated into
the description of the unsafe region.
The goal is for the deputy to successfully dock with the chief

without ever violating the velocity safety constraint. In the
original benchmark [78], the docking (goal) region is defined
as a circle of diameter d = 1m centered at the origin (0,0).
In our evaluation, we use this same goal region for the initial
training of the DRL controller. However, during the CEGIS
iteration (i.e., the “Train” and “Verify” steps in Fig. 1), we
use a conservative subset of this goal region, namely a square
centered at the origin whose sides have length l = 0.7m. The
reason for this is so that the goal region can easily be described
using linear inequalities.

B. DNN architecture

We explored various architectures for the DNN used to
control the (deputy) spacecraft. During this exploration phase,
we trained each DNN architecture using the original Proximal
Policy Optimization RL algorithm implemented by Ray RLlib
as described in [78] (without any CEGIS iteration).
After training, we simulated each architecture on 4,000

random trajectories. Some selected results are shown in Ta-
ble I. There are two main observations to take away from
these results: (i) while a robust docking capability can be
achieved fairly easily, even for small architectures, safety is
more difficult and appears to not be robust, even for large
architectures; (ii) in all cases, it takes an average of at least 50
steps to dock. The first observation suggests that verification
of the liveness (docking) property should be feasible and that
training a controller that verifiably achieves both safety and
liveness is challenging. The second observation suggests that
even state-of-the-art DNN verifiers are unlikely to be unable
to fully verify the liveness property using the naive unrolling
approach [9].
We also note that the spacecraft often exhibits highly non-

linear spiral trajectories (as depicted in Fig. 3), making DNN
verification based on induction difficult, as it is difficult to find

an inductive property over such irregular trajectories. These
results help motivate the use of NLB certificates for formal
verification of the desired properties. For the experiments
below, we settled on a DNN architecture of two hidden layers
with 20 neurons each, and a certificate architecture of two
hidden layers with 30 neurons each. Both DNNs use ReLU
activations for all hidden layers. The DNN sizes were chosen
based on experimentation and the rough criterion that we
wanted the smallest DNNs for which the CEGIS loop would
converge in a reasonable amount of time.

TABLE I: Performance of various DNN architectures. Statis-
tics are collected (per architecture) over 4,000 trials, with
a maximum trajectory length of 2,000, initialized arbitrarily
to set x, y ∈ [−10,10], but outside the docking region, and
ẋ = ẏ = 0. The first column indicates the number of neurons
per hidden layer.

DNN Architecture Safety Success Docking Success Average Docking Steps
[4,4] 100 10 1,821
[8,8] 11 100 389
[16,16] 30 100 50
[32,32] 5 100 59
[64,64] 100 100 55

[64,64,64,64] 100 99 58
[200,200] 92 100 51

C. Implementation and Setup

The training and verification of the DRL controllers and
certificates were carried out on a cluster of Intel Xeon E5-2637
machines, with eight cores of v4 CPUs, running the Ubuntu
20.04 operating system. Verification queries were dispatched
using the Marabou DNN verifier [58], [87] (used in previous
DNN safety research [10]–[14], [17], [23], [30], [61], [79]) as
well as its Gurobi back end.
For training and verification of RWA, FRWA, and CRWA

certificates, we use the following parameters: α = 1 + 10−5,
β = 1, ϵ = 10−7 (the same for all certificates); c1 = −10,
c2 = 1.2, δ1 = 10−4 −10−5, and δ2 = 10−4 −10−7. These values
were determined to work well experimentally.
For weighting of the training objectives, we use cs = 1 and

cd = 10. The rationale for this is that constraint (4) is much
easier to satisfy than (5), so we use the weights to force the
training to focus on (5).
In the CEGIS loop, a learning rate of 5 × 10−3 is used to

train the first network iteration in the CEGIS loop, and for
retraining, a learning rate of 10−4 is used, since we treat the
incorporation of counterexamples as a “fine-tuning” step and
do not want to overfit to the counterexamples. In the CEGIS
loop, we train until a loss of 0 is achieved and then use the
verification step to find counterexamples. We repeat this until
there are no more counterexamples or a timeout (12 hours) is
reached.
All of our experiments aim to solve RWA tasks, as defined

in Definition 1. The system dynamics are those of the 2D
spacecraft, as described in Section VI-A. RWA tasks are

101

FRWA

RWA

CFRWA-1

CFRWA-2

CFRWA-3

0 2 4 6 8 10 12
mean time (hr)

0
20
40
60
80

100

s
u
c
c
e
s
s
 r

a
te

 (
%

) Average Results:[-1,1]

0 2 4 6 8 10 12
mean time (hr)

0
20
40
60
80

100

s
u
c
c
e
s
s
 r

a
te

 (
%

) Average Results:[-2,2]

0 2 4 6 8 10 12
mean time (hr)

0
20
40
60
80

100

s
u
c
c
e
s
s
 r

a
te

 (
%

) Average Results:[-3,3]

0 2 4 6 8 10 12
mean time (hr)

0
20
40
60
80

100

s
u
c
c
e
s
s
 r

a
te

 (
%

) Average Results:[-4,4]

0 2 4 6 8 10 12
mean time (hr)

0
20
40
60
80

100

s
u
c
c
e
s
s
 r

a
te

 (
%

) Average Results:[-5,5]

F-FRWA

F-RWA

V-FRWA

V-RWA

V-CFRWA-1

V-CFRWA-2

V-CFRWA-3

0 2 4 6 8 10 12
trial time (hr)

1

2

3

4

5

tr
ia

l

All Trials: [-1,1]

0 2 4 6 8 10 12
trial time (hr)

1

2

3

4

5

tr
ia

l

All Trials: [-1,1]

0 2 4 6 8 10 12
trial time (hr)

1

2

3

4

5

tr
ia

l

All Trials: [-3,3]

0 2 4 6 8 10 12
trial time (hr)

1

2

3

4

5

tr
ia

l

All Trials: [-4,4]

0 2 4 6 8 10 12
trial time (hr)

1

2

3

4

5

tr
ia

l

All Trials: [-5,5]

Fig. 4: The first 2 rows show average times and success rates
for creating verified certificates over 5 trials. The bottom 2
rows show specific times for each trial, separated into failed
(“F-”) and verified (“V-”) certificates. CFRWA-1, CFRWA-2,
and CFRWA-3 refer to the first (up to) three CRWA tasks for
the given starting region, corresponding, respectively to the
first (up to) three rows for that starting region in Table II.

parameterized by XG, XI , and XU . For these sets of states,
we typically use square regions centered at the origin. For
convenience, we refer to the set {(x, y) ∣ x, y ∈ [−a, a]}
with the abbreviation [−a, a]. For example, as outlined in
Section VI-A, we set XG = [−0.35,0.35]. We use different
values for XI , depending on the experiment (indeed, this is the
primary variable we vary in our experiments), but wheneverXI = [−a, a], we then set XU = [−(a + 1), a + 1].
D. Experimental Results

RWA vs. FRWA. In our first set of experiments, we select a
set of RWA tasks and train both RWA and FRWA certificates
using our CEGIS loop.8 We select five RWA tasks, where XI

is set to [−i, i] for the ith task. For the RWA certificates, we
follow the approach of [37], whereas our FRWA certificates
are constructed as described in Sec. IV. In each case, we run
five independent trials for each task.
The results are summarized in Fig. 4. The first two rows

show, for each starting region, the number of successful runs
(a run is successful if the CEGIS loop produces a fully verified
controller/certificate pair within the 12 hour time limit) and the

8The Fossil 2.0 tool provides an implementation for computing the RWA
certificates used in [37]. However, our definition of RWA is slightly different,
and we use a different DNN verification tool, so we compare with our own
implementation of RWA certificates to have a more meaningful comparison
and to better isolate the contribution of the filtering technique.

average time required for the successful runs. Results for RWA
are shown as red circles and FRWA as blue squares (we explain
the diamonds later). For example, for starting region [−2,2],
all five trials are successful for FWRA, with an average time
of 2 hours, whereas all five trials are unsuccessful for RWA.
The bottom two rows show data from the same experiments,
but here we show the time taken for each of the five trials. An
unfilled circle or box represents a timeout.

The results suggest that FWRA has a clear advantage
over standard RWA. In fact, RWA only succeeded once in
producing any verified certificate, and only for the simplest
starting region. On the other hand, our FRWA approach is
able to produce certificates faster and for starting regions up
to [−3,3]. After that, both techniques time out.

Compositional Certificates. As demonstrated above, RWA
and FRWA certificates quickly run into scalability challenges
on our case study problem. For example, even with 5 tries and
a 12 hour timeout, neither approach could produce a verified
controller for the [−4,4] or [−5,5] starting regions.

Our second set of experiments demonstrates that this scal-
ability challenge can be addressed with compositional cer-
tificates. We train a set of compositional certificates (each
composed of multiple FRWA certificates) and report the results
in Table II.

Each row of the table corresponds to a compositional
certificate. The first column shows the value of XI for this
certificate. The next columns indicate the number n of com-
posed certificates, the values of X i

I for 0 ≤ i < n − 1, and the
cumulative time required for all but the last certificate. The
next three columns give the minimum, mean, and maximum
time required to produce the controller and certificate for the
last stage of the compositional certificate (recall that we run
five independent trials for all CEGIS loops). The next three
columns show the minimum, mean, and maximum number
of CEGIS iterations used, and the last column indicates how
many of the trials succeeded. Note that when n = 1, the row
corresponds to a single FRWA certificate.

The results clearly indicate that compositional certificates
greatly improve scalability. Whereas the stand-alone certifi-
cates could not scale beyond [−3,3] in 12 hours, we were able
to successfully produce a formally verified 5-stage certificate
for [−11,11] in a little over 5.7 hours. It is also worth noting
that we do get a significant benefit by running 5 independent
CEGIS loops, as both the time and the number of loops can
vary significantly from the minimum to the maximum. Nearly
all of the CEGIS loops eventually completed—only the initial[3,3] region failed to complete all of its trials—suggesting that
the compositional approach is also more stable and robust.
This can also be seen in Fig. 4: for each starting region[−a, a], the diamond point labeled CFRWA-i corresponds to
the ith row containing [−a, a] in column 1. We can see that,
compared to the stand-alone RWA and FRWA certificates, the
compositional certificates can be trained faster and with fewer
failures.

102

TABLE II: Compositional certificate results. The columns indicate: the initial set for the final certificate, the size of the
compositional certificate, the initial sets for all but the final certificate, the cumulative time for all but the final certificate,
the total time (min, mean, and max) for training all certificates, and statistics for training the final certificate. We note that
the cumulative time column is always equal to the corresponding value in the min column corresponding to the penultimate
certificate. The wall time is the total time including the final controller/certificate. The CEGIS iterations and success stats are
for the final controller/certificate only.

Compositional Certificate Wall Time (s) CEGIS IterationsXI n X0
I . . .Xn−2

I Cumulative Time (s) min(t) mean(t) max(t) min(i) mean(i) max(i) success (%)
[-2,2] 1 N/A 0 4199 6890 8322 3 4.8 10 100
[-3,3] 1 N/A 0 3650 6644.5 9639 2 2.5 3 40
[-3,3] 2 [-2,2] 4199 8514 9421 10271 4 4.4 5 100
[-4,4] 2 [-3,3] 3650 5802 6374 6790 2 2.4 3 100
[-4,4] 2 [-2,2] 4199 8940 11026 13620 3 4.2 6 100
[-4,4] 3 [-2,2], [-3,3] 8514 10901 12829 17248 2 4.2 8 100
[-5,5] 2 [-3,3] 3650 6526 10716 19331 2 4.4 9 100
[-5,5] 3 [-3,3], [-4,4] 5802 7171 9884 11945 1 3.4 5 100
[-5,5] 4 [-2,2],[-3,3],[-4,4] 10901 12130 13710 15353 1 2.4 4 100
[-6,6] 3 [-2,2],[-4,4] 8940 13183 16384 20059 4 4.4 5 100
[-6,6] 4 [-3,3],[-4,4],[-5,5] 7171 9680 14027 32103 2 4.6 9 100
[-6,6] 5 [-2,2],[-3,3],[-4,4],[-5,5] 12130 18607 21768 24356 3 4.4 5 100
[-7,7] 3 [-3,3],[-5,5] 6526 9158 10171 10848 2 2.8 3 100
[-7,7] 5 [-3,3],[-4,4],[-5,5],[-6,6] 9680 11878 15967 23419 2 3.6 7 100
[-8,8] 4 [-2,2],[-4,4],[-6,6] 13183 16677 22623 33849 2 3.2 4 100
[-9,9] 4 [-3,3],[-5,5],[-7,7] 9158 12919 16013 18507 2 3.4 5 100
[-10,10] 5 [-2,2],[-4,4],[-6,6],[-8,8] 16677 18137 23421 30872 1 3.4 6 100
[-11,11] 5 [-3,3],[-5,5],[-7,7],[-9,9] 12919 20641 27860 32834 1 2.6 5 100

VII. CONCLUSION

In this work, we present a novel framework for formally
verifying DRL-based controllers. Our approach leverages Neu-
ral Lyapunov Barrier certificates and demonstrates how they
can be used to verify DNN-based controllers for complex
systems. We use a CEGIS loop for training and formally
verifying certificates, and we introduce filters for reach-while-
avoid certificates, which simplify the training and verification
process. We also introduce compositional certificates which
use a sequence of simpler certificates to scale to large state
spaces.

We demonstrate the merits of our approach on a 2D case
study involving a DRL-controlled spacecraft which is required
to dock in a predefined region, from any initialization point.
We demonstrate that for small subdomains, our FRWA ap-
proach is strictly better than competing RWA-based certificate
methods. Furthermore, we demonstrate that our compositional
approach unlocks significant additional scalability.

In the future, we plan to extend our approach to be
compatible with additional formal techniques (e.g., shielding
against safety violations [6], [18], [31], [60], [74], [81], [89],
and Scenario-Based Programming [32], [44], [47], [54], [57],
[59], [92], [93]). We also plan to apply our approach to more
challenging case studies with larger DRL controllers. We see
this work as an important step towards the safe and reliable
use of DRL in real-world systems.

VIII. ACKNOWLEDGEMENTS

This work was supported by AFOSR (FA9550-22-1-0227),
the Stanford CURIS program, the NSF-BSF program (NSF:
1814369, BSF: 2017662), and the Stanford Center for AI
Safety. The work of Amir was further supported by a schol-
arship from the Clore Israel Foundation. We thank Keri-
anne Hobbs (AFRL), Thomas Henzinger (ISTA), Chuchu Fan
(MIT), and Songyuan Zhang (MIT) for useful conversations
and advice which contributed to the success of this project.

103

REFERENCES

[1] A. Abate, D. Ahmed, A. Edwards, M. Giacobbe, and A. Peruffo. Fossil:
a software tool for the formal synthesis of lyapunov functions and
barrier certificates using neural networks. In Proceedings of the 24th
International Conference on Hybrid Systems: Computation and Control,
pages 1–11, 2021.

[2] A. Abate, D. Ahmed, M. Giacobbe, and A. Peruffo. Formal synthesis of
lyapunov neural networks. IEEE Control Systems Letters, 5(3):773–778,
2020.

[3] A. Abate, S. Bogomolov, A. Edwards, K. Potomkin, S. Soudjani, and
P. Zuliani. Safe reach set computation via neural barrier certificates.
arXiv preprint arXiv:2404.18813, 2024.

[4] D. Ahmed, A. Peruffo, and A. Abate. Automated and sound synthesis
of lyapunov functions with smt solvers. In Tools and Algorithms for the
Construction and Analysis of Systems: 26th International Conference,
TACAS 2020, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25–30,
2020, Proceedings, Part I 26, pages 97–114. Springer, 2020.

[5] B. Alpern and F. Schneider. Recognizing safety and liveness. Distributed
Computing, 2:117–126, 09 1987.

[6] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu. Safe Reinforcement Learning via Shielding. In Proc. of
the 32nd AAAI Conference on Artificial Intelligence, pages 2669–2678,
2018.

[7] A. Ames, X. Xu, J. W. Grizzle, and P. Tabuada. Control barrier
function based quadratic programs for safety critical systems. Trans.
on Automatic Control, 2017.

[8] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and
P. Tabuada. Control barrier functions: Theory and applications. In
European Control Conf., 2019.

[9] G. Amir, D. Corsi, R. Yerushalmi, L. Marzari, D. Harel, A. Farinelli,
and G. Katz. Verifying Learning-Based Robotic Navigation Systems. In
Proc. 29th Int. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pages 607–627, 2023.

[10] G. Amir, Z. Freund, G. Katz, E. Mandelbaum, and I. Refaeli. veriFIRE:
Verifying an Industrial, Learning-Based Wildfire Detection System. In
Proc. 25th Int. Symposium on Formal Methods (FM), pages 648–656,
2023.

[11] G. Amir, O. Maayan, T. Zelazny, G. Katz, and M. Schapira. Verifying
Generalization in Deep Learning. In Proc. 35th Int. Conf. on Computer
Aided Verification (CAV), pages 438–455, 2023.

[12] G. Amir, M. Schapira, and G. Katz. Towards Scalable Verification
of Deep Reinforcement Learning. In Proc. 21st Int. Conf. on Formal
Methods in Computer-Aided Design (FMCAD), pages 193–203, 2021.

[13] G. Amir, H. Wu, C. Barrett, and G. Katz. An SMT-Based Approach for
Verifying Binarized Neural Networks. In Proc. 27th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 203–222, 2021.

[14] G. Amir, T. Zelazny, G. Katz, and M. Schapira. Verification-Aided
Deep Ensemble Selection. In Proc. 22nd Int. Conf. on Formal Methods
in Computer-Aided Design (FMCAD), pages 27–37, 2022.

[15] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin. Hamilton-Jacobi
reachability: A brief overview and recent advances. In Conf. on Decision
and Control, 2017.

[16] G. Basile and G. Marro. Controlled and conditioned invariant subspaces
in linear system theory. Journal of Optimization Theory and Applica-
tions, 3:306–315, 1969.

[17] S. Bassan, G. Amir, D. Corsi, I. Refaeli, and G. Katz. Formally
Explaining Neural Networks within Reactive Systems. In Proc. 23rd
Int. Conf. on Formal Methods in Computer-Aided Design (FMCAD),
pages 10–22, 2023.

[18] R. Bloem, B. Könighofer, R. Könighofer, and C. Wang. Shield
Synthesis: - Runtime Enforcement for Reactive Systems. In Proc. of
the 21st Int. Conf. in Tools and Algorithms for the Construction and
Analysis of Systems, (TACAS), volume 9035, pages 533–548, 2015.

[19] N. Boffi, S. Tu, N. Matni, J.-J. Slotine, and V. Sindhwani. Learning
stability certificates from data. In Conference on Robot Learning, pages
1341–1350. PMLR, 2021.

[20] C. Brix, S. Bak, C. Liu, and T. T. Johnson. The fourth international
verification of neural networks competition (vnn-comp 2023): Summary
and results. arXiv preprint arXiv:2312.16760, 2023.

[21] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and
A. P. Schoellig. Safe learning in robotics: From learning-based control
to safe reinforcement learning. Annual Review of Control, Robotics, and
Autonomous Systems, 5:411–444, 2022.

[22] Y. Cao, H. Zhao, Y. Cheng, T. Shu, G. Liu, G. Liang, J. Zhao, and
Y. Li. Survey on large language model-enhanced reinforcement learning:
Concept, taxonomy, and methods, 2024.

[23] M. Casadio, E. Komendantskaya, M. Daggitt, W. Kokke, G. Katz,
G. Amir, and I. Refaeli. Neural Network Robustness as a Verification
Property: A Principled Case Study. In Proc. 34th Int. Conf. on Computer
Aided Verification (CAV), pages 219–231, 2022.

[24] F. Castañeda, J. J. Choi, B. Zhang, C. J. Tomlin, and K. Sreenath.
Gaussian Process-based Min-norm Stabilizing Controller for Control-
Affine Systems with Uncertain Input Effects. arXiv, Nov 2020.

[25] Y.-C. Chang and S. Gao. Stabilizing neural control using self-learned
almost lyapunov critics. 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 1803–1809, 2021.

[26] Y.-C. Chang, N. Roohi, and S. Gao. Neural lyapunov control. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

[27] J. Choi, F. Castañeda, C. J. Tomlin, and K. Sreenath. Reinforcement
Learning for Safety-Critical Control under Model Uncertainty, using
Control Lyapunov Functions and Control Barrier Functions. In Robotics:
Science and Systems. Robotics: Science and Systems, Apr 2020.

[28] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh. A
lyapunov-based approach to safe reinforcement learning. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems 31,
pages 8092–8101. Curran Associates, Inc., 2018.

[29] W. Clohessy and R. Wiltshire. Terminal guidance system for satellite
rendezvous. Journal of the aerospace sciences, 27(9):653–658, 1960.

[30] D. Corsi, G. Amir, G. Katz, and A. Farinelli. Analyzing Adversarial
Inputs in Deep Reinforcement Learning, 2024. Technical Report. https:
//arxiv.org/abs/2402.05284.

[31] D. Corsi, G. Amir, A. Rodriguez, C. Sanchez, G. Katz, and R. Fox.
Verification-Guided Shielding for Deep Reinforcement Learning, 2024.
Technical Report. http://arxiv.org/abs/2406.06507.

[32] D. Corsi, R. Yerushalmi, G. Amir, A. Farinelli, D. Harel, and G. Katz.
Constrained Reinforcement Learning for Robotics via Scenario-Based
Programming, 2022. Technical Report. https://arxiv.org/abs/2206.09603.

[33] C. Dawson, S. Gao, and C. Fan. Safe control with learned certificates: A
survey of neural lyapunov, barrier, and contraction methods for robotics
and control. IEEE Transactions on Robotics, 2023.

[34] C. Dawson, Z. Qin, S. Gao, and C. Fan. Safe nonlinear control
using robust neural lyapunov-barrier functions. In Conference on Robot
Learning, pages 1724–1735. PMLR, 2022.

[35] J. L. C. B. de Farias and W. M. Bessa. Intelligent control with artificial
neural networks for automated insulin delivery systems. Bioengineering,
9(11):664, 2022.

[36] A. Edwards, A. Peruffo, and A. Abate. Fossil 2.0: Formal certificate
synthesis for the verification and control of dynamical models. arXiv
preprint arXiv:2311.09793, 2023.

[37] A. Edwards, A. Peruffo, and A. Abate. A general verification framework
for dynamical and control models via certificate synthesis, 2023.

[38] J. F. Fisac, M. Chen, C. J. Tomlin, and S. S. Sastry. Reach-avoid
problems with time-varying dynamics, targets and constraints. In
Proceedings of the 18th international conference on hybrid systems:
computation and control, pages 11–20, 2015.

[39] M. Ganai, Z. Gong, C. Yu, S. L. Herbert, and S. Gao. Iterative
reachability estimation for safe reinforcement learning. In Advances
in Neural Information Processing Systems, 2023.

[40] M. Ganai, C. Hirayama, Y.-C. Chang, and S. Gao. Learning stabilization
control from observations by learning lyapunov-like proxy models. 2023
IEEE International Conference on Robotics and Automation (ICRA),
pages 2913–2920, 2023.

[41] S. Gao, S. Kong, and E. M. Clarke. dreal: An smt solver for nonlinear
theories over the reals. In International conference on automated
deduction, pages 208–214. Springer, 2013.

[42] P. Giesl and S. Hafstein. Review on computational methods for lyapunov
functions. Discrete and Continuous Dynamical Systems-B, 20(8):2291–
2331, 2015.

[43] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016.

104

https://arxiv.org/abs/2402.05284
https://arxiv.org/abs/2402.05284
http://arxiv.org/abs/2406.06507
https://arxiv.org/abs/2206.09603

[44] M. Gordon, A. Marron, and O. Meerbaum-Salant. Spaghetti for
the Main Course? Observations on the Naturalness of Scenario-Based
Programming. In Proc. 17th ACM Annual Conf. on Innovation and
Technology in Computer Science Education (ITCSE), pages 198–203,
2012.

[45] D. Grande, E. Anderlini, A. Peruffo, and G. Salavasidis. Augmented
neural lyapunov control. IEEE Access, 2023.

[46] D. Grande, D. Fenucci, A. Peruffo, E. Anderlini, A. B. Phillips,
G. Thomas, and G. Salavasidis. Systematic synthesis of passive fault-
tolerant augmented neural lyapunov control laws for nonlinear systems.
In 2023 62nd IEEE Conference on Decision and Control (CDC), pages
5851–5856. IEEE, 2023.

[47] J. Greenyer, D. Gritzner, G. Katz, and A. Marron. Scenario-Based
Modeling and Synthesis for Reactive Systems with Dynamic System
Structure in ScenarioTools. In Proc. 19th ACM/IEEE Int. Conf. on Model
Driven Engineering Languages and Systems (MODELS), pages 16–23,
2016.

[48] W. Haddad and V. Chellaboina. Nonlinear dynamical systems and
control: A lyapunov-based approach. Nonlinear Dynamical Systems and
Control: A Lyapunov-Based Approach, 01 2008.

[49] T. Hester, M. Quinlan, and P. Stone. A real-time model-based reinforce-
ment learning architecture for robot control, 2011.

[50] G. W. Hill. Researches in the lunar theory. American journal of
Mathematics, 1(1):5–26, 1878.

[51] K.-C. Hsu, V. Rubies-Royo, C. J. Tomlin, and J. F. Fisac. Safety
and liveness guarantees through reach-avoid reinforcement learning. In
Proceedings of Robotics: Science and Systems, Virtual, 7 2021.

[52] T. Huang, S. Gao, and L. Xie. A neural lyapunov approach to
transient stability assessment of power electronics-interfaced networked
microgrids. IEEE transactions on smart grid, 13(1):106–118, 2021.

[53] Z. Jarvis-Wloszek, R. Feeley, Weehong Tan, Kunpeng Sun, and
A. Packard. Some controls applications of sum of squares programming.
In 42nd IEEE International Conference on Decision and Control (IEEE
Cat. No.03CH37475), volume 5, pages 4676–4681 Vol.5, Dec 2003.

[54] G. Katz. Guarded Deep Learning using Scenario-Based Modeling.
In Proc. 8th Int. Conf. on Model-Driven Engineering and Software
Development (MODELSWARD), pages 126–136, 2020.

[55] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex:
An Efficient SMT Solver for Verifying Deep Neural Networks. In Proc.
29th Int. Conf. on Computer Aided Verification (CAV), pages 97–117,
2017.

[56] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: a
Calculus for Reasoning about Deep Neural Networks. Formal Methods
in System Design (FMSD), 2021.

[57] G. Katz and A. Elyasaf. Towards Combining Deep Learning, Verifi-
cation, and Scenario-Based Programming. In Proc. 1st Workshop on
Verification of Autonomous and Robotic Systems (VARS), pages 1–3,
2021.

[58] G. Katz, D. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljić, D. Dill, M. Kochenderfer, and C. Barrett.
The Marabou Framework for Verification and Analysis of Deep Neural
Networks. In Proc. 31st Int. Conf. on Computer Aided Verification
(CAV), pages 443–452, 2019.

[59] G. Katz, A. Marron, A. Sadon, and G. Weiss. On-the-Fly Construction
of Composite Events in Scenario-Based Modeling Using Constraint
Solvers. In Proc. 7th Int. Conf. on Model-Driven Engineering and
Software Development (MODELSWARD), pages 143–156, 2019.

[60] B. Könighofer, F. Lorber, N. Jansen, and R. Bloem. Shield Synthesis
for Reinforcement Learning. In Proc. Int. Symposium on Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA),
pages 290–306, 2020.

[61] O. Lahav and G. Katz. Pruning and Slicing Neural Networks using
Formal Verification. In Proc. 21st Int. Conf. on Formal Methods in
Computer-Aided Design (FMCAD), pages 183–192, 2021.

[62] M. Landers and A. Doryab. Deep reinforcement learning verification:
A survey. ACM Comput. Surv., 55(14s), jul 2023.

[63] B. Li, S. Wen, Z. Yan, G. Wen, and T. Huang. A survey on the control
lyapunov function and control barrier function for nonlinear-affine
control systems. IEEE/CAA Journal of Automatica Sinica, 10(3):584–
602, 2023.

[64] Y. Li. Deep Reinforcement Learning: An Overview, 2017. Technical
Report. http://arxiv.org/abs/1701.07274.

[65] J. Lu. Protein folding structure prediction using reinforcement learning
with application to both 2d and 3d environments. In Proceedings of

the 5th International Conference on Computer Science and Software
Engineering, CSSE ’22, page 534–542, New York, NY, USA, 2022.
Association for Computing Machinery.

[66] A. M. Lyapunov. The general problem of motion stability. Annals of
Mathematics Studies, 17(1892), 1892.

[67] Z. Lyu, C. Y. Ko, Z. Kong, N. Wong, D. Lin, and L. Daniel. Fastened
Crown: Tightened Neural Network Robustness Certificates. In Proc.
34th AAAI Conf. on Artificial Intelligence (AAAI), pages 5037–5044,
2020.

[68] A. Majumdar and R. Tedrake. Funnel libraries for real-time robust
feedback motion planning. The International Journal of Robotics
Research, 36(8):947–982, 2017.

[69] U. Mandal, G. Amir, H. Wu, I. Daukantas, F. Newell, U. Ravaioli,
B. Meng, M. Durling, M. Ganai, T. Shim, G. Katz, and C. Barrett.
Formally Verifying Deep Reinforcement Learning Controllers with
Lyapunov Barrier Certificates, 2024. Technical Report. https://arxiv.org/
abs/2405.14058.

[70] U. Mandal, G. Amir, H. Wu, I. Daukantas, F. Newell, U. Ravaioli,
B. Meng, M. Durling, K. Hobbs, M. Ganai, T. Shim, G. Katz, and
C. Barrett. Safe and Reliable Training of Learning-Based Aerospace
Controllers, 2024. Technical Report. http://arxiv.org/abs/2407.07088.

[71] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng. Nerf: Representing scenes as neural radiance fields for view
synthesis. Communications of the ACM, 65(1):99–106, 2021.

[72] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller. Playing atari with deep reinforcement learning,
2013.

[73] A. Peruffo, D. Ahmed, and A. Abate. Automated and formal synthesis
of neural barrier certificates for dynamical models. In International
conference on tools and algorithms for the construction and analysis of
systems, pages 370–388. Springer, 2021.

[74] S. Pranger, B. Könighofer, M. Tappler, M. Deixelberger, N. Jansen, and
R. Bloem. Adaptive Shielding under Uncertainty. In American Control
Conference, (ACC), pages 3467–3474, 2021.

[75] Z. Qin, T.-W. Weng, and S. Gao. Quantifying safety of learning-based
self-driving control using almost-barrier functions. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 12903–12910. IEEE, 2022.

[76] Z. Qin, K. Zhang, Y. Chen, J. Chen, and C. Fan. Learning safe multi-
agent control with decentralized neural barrier certificates. In ICLR,
2021.

[77] M. Rada and M. Cerny. A new algorithm for enumeration of cells
of hyperplane arrangements and a comparison with avis and fukuda’s
reverse search. SIAM Journal on Discrete Mathematics, 32(1):455–473,
2018.

[78] U. J. Ravaioli, J. Cunningham, J. McCarroll, V. Gangal, K. Dunlap,
and K. L. Hobbs. Safe reinforcement learning benchmark environments
for aerospace control systems. In 2022 IEEE Aerospace Conference
(AERO), pages 1–20. IEEE, 2022.

[79] I. Refaeli and G. Katz. Minimal Multi-Layer Modifications of Deep
Neural Networks, 2021. Technical Report. https://arxiv.org/abs/2110.
09929.

[80] S. M. Richards, F. Berkenkamp, and A. Krause. The lyapunov neural
network: Adaptive stability certification for safe learning of dynamical
systems. In Proceedings of The 2nd Conference on Robot Learning,
volume 87 of Proceedings of Machine Learning Research, pages 466–
476, 29–31 Oct 2018.

[81] A. Rodriguez, G. Amir, D. Corsi, C. Sanchez, and G. Katz. Shield
Synthesis for LTL Modulo Theories, 2024. Technical Report. http://
arxiv.org/abs/2406.04184.

[82] P. Samanipour and H. A. Poonawala. Stability analysis and controller
synthesis using single-hidden-layer relu neural networks. IEEE Trans-
actions on Automatic Control, 2023.

[83] C. Sidrane, A. Maleki, A. Irfan, and M. J. Kochenderfer. Overt: An
algorithm for safety verification of neural network control policies for
nonlinear systems. Journal of Machine Learning Research, 23(117):1–
45, 2022.

[84] O. So and C. Fan. Solving stabilize-avoid optimal control via epigraph
form and deep reinforcement learning. In Proceedings of Robotics:
Science and Systems, 2023.

[85] V. Talpaert, I. Sobh, B. R. Kiran, P. Mannion, S. Yogamani, A. El-Sallab,
and P. Perez. Exploring applications of deep reinforcement learning for
real-world autonomous driving systems, 2019.

105

http://arxiv.org/abs/1701.07274
https://arxiv.org/abs/2405.14058
https://arxiv.org/abs/2405.14058
http://arxiv.org/abs/2407.07088
https://arxiv.org/abs/2110.09929
https://arxiv.org/abs/2110.09929
http://arxiv.org/abs/2406.04184
http://arxiv.org/abs/2406.04184

[86] M. Tong, C. Dawson, and C. Fan. Enforcing safety for vision-based
controllers via control barrier functions and neural radiance fields.
In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pages 10511–10517. IEEE, 2023.

[87] H. Wu, O. Isac, A. Zeljić, T. Tagomori, M. Daggitt, W. Kokke, I. Refaeli,
G. Amir, K. Julian, S. Bassan, et al. Marabou 2.0: A versatile formal
analyzer of neural networks. arXiv preprint arXiv:2401.14461, 2024.

[88] J. Wu, A. Clark, Y. Kantaros, and Y. Vorobeychik. Neural lyapunov
control for discrete-time systems. Advances in Neural Information
Processing Systems, 36:2939–2955, 2023.

[89] M. Wu, J. Wang, J. Deshmukh, and C. Wang. Shield Synthesis for Real:
Enforcing Safety in Cyber-Physical Systems. In Proc. 19th Int. Conf. on
Formal Methods in Computer-Aided Design (FMCAD), pages 129–137,
2019.

[90] X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames. Robustness of control
barrier functions for safety critical control. Int. Federation of Automatic
Control, 2015.

[91] Y. Yang, Y. Jiang, Y. Liu, J. Chen, and S. E. Li. Model-free safe
reinforcement learning through neural barrier certificate. IEEE Robotics
and Automation Letters, 2023.

[92] R. Yerushalmi, G. Amir, A. Elyasaf, D. Harel, G. Katz, and A. Marron.
Scenario-Assisted Deep Reinforcement Learning. In Proc. 10th Int.
Conf. on Model-Driven Engineering and Software Development (MOD-
ELSWARD), pages 310–319, 2022.

[93] R. Yerushalmi, G. Amir, A. Elyasaf, D. Harel, G. Katz, and A. Marron.
Enhancing Deep Reinforcement Learning with Scenario-Based Model-
ing. SN Computer Science, 4(2):156, 2023.

[94] D. Yu, H. Ma, S. Li, and J. Chen. Reachability constrained reinforcement
learning. In International Conference on Machine Learning, pages
25636–25655. PMLR, 2022.

[95] H. Yu, C. Hirayama, C. Yu, S. Herbert, and S. Gao. Sequential neural
barriers for scalable dynamic obstacle avoidance. In 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 11241–11248. IEEE, 2023.

[96] H. Zhang, J. Wu, Y. Vorobeychik, and A. Clark. Exact verification of
relu neural control barrier functions. Advances in Neural Information
Processing Systems, 36, 2024.

[97] R. Zhou, T. Quartz, H. De Sterck, and J. Liu. Neural lyapunov control
of unknown nonlinear systems with stability guarantees. Advances in
Neural Information Processing Systems, 35:29113–29125, 2022.

106

Formal Methods in Computer-Aided Design 2024

Leveraging LLMs for Program Verification

Adharsh Kamath∗ , Nausheen Mohammed∗ , Aditya Senthilnathan† , Saikat Chakraborty‡ ,
Pantazis Deligiannis∗ , Shuvendu K. Lahiri‡ , Akash Lal∗ , Aseem Rastogi∗ , Subhajit Roy§ , Rahul Sharma∗

∗ Microsoft Research, Bangalore, India
† Cornell University, Ithaca, USA

‡ Microsoft Research, Redmond, USA
§ Indian Institute of Technology, Kanpur, India

Abstract—We investigate code reasoning skills of Large Lan-
guage Models (LLMs) in the context of formal program veri-
fication. Specifically, we look at the problem of inferring loop
invariants as well as ranking functions for proving safety
properties and loop termination, respectively. We demonstrate
how emergent capabilities of LLMs can be exploited through a
combination of prompting techniques as well as by using them in
conjunction with symbolic algorithms. We curate and contribute
a dataset of verification problems inspired by past work. We
perform a rigorous evaluation on this dataset to establish that
LLMs have the potential of improving state-of-the-art in program
verification.

I. INTRODUCTION

Formal verification seeks to establish a proof of correctness
of a program with respect to a given property. Broadly
speaking, this involves proof construction (e.g., finding loop
invariants), and proof checking (e.g., establishing their induc-
tiveness). While proof checking has benefited from mechanical
automation enabled by SMT solvers, proof construction still
requires ingenuity and has been harder to automate.
The guess-and-check methodology seeks to reduce burden

on the proof construction by allowing it to guess a proof
that potentially may have mistakes. The soundness comes
solely from proof checking. This methodology has allowed
for Machine-learning (ML) based techniques to enter program
verification. While it is hard for ML techniques to guarantee
soundness, it can still be a source of good “guesses” on why
a given program is correct, and better guesses lead to faster
verification. Work in this space includes generating data from
program executions and guess invariants through classical
learning techniques [1], [2], active learning over decision trees
[3], continuous logic networks [4], [5], as well as training
neural networks to directly predict invariants from program
text [6], [7]. The trend of training models for individual
tasks, thus requiring independent datasets, is changing with
the advent of Large Language Models (LLMs) and this forms
the inspiration for our paper.
Latest foundational models such as GPT-4 [8], PaLM-2 [9],

Llama-2 [10] have been trained on vasts amount of data, and
have shown remarkable ability in solving a diverse set of tasks.
One can supply a set of instructions in natural language to
guide the model towards a certain task of interest [11]. LLMs
are already aiding many software developers in writing code
[12], [13]. We study the use of these foundational models for

constructing proofs that can be discharged by a formal proof
checker, following the guess-and-check methodology.
We study two different verification tasks, one on safety ver-

ification and another on proving program termination. Safety
verification requires finding inductive invariants for loops as
well as pre-post conditions for procedures, so that the given
assertions in a program can be proved safe. In termination,
the goal is to find a ranking function, as well as supporting
invariants, to prove termination of loops. We curate a dataset of
programs in the C language for these tasks and build an LLM-
based toolchain, called LOOPY, for proof generation. The
proofs are discharged by an off-the-shelf formal checker; in
our implementation, we use Frama-C [14] because it directly
supports C programs with invariant annotations.
LOOPY is based on two key aspects that help make effective

use of LLM capabilities. The first is prompt engineering that
encodes a set of instructions to describe the different tasks
to an LLM. For instance, the prompt for program termi-
nation includes a definition of ranking functions in natural
language. Ranking functions come in various forms, such
as lexicographic ranking functions and multi-phase ranking
functions; we demonstrate that LLMs are capable of producing
such ranking functions when prompted with their definitions.
We also introduce the concept of nudging where additional
generic instructions are added in natural language to help
the LLM generate the required proof artifact. For instance,
the LLM is “encouraged” to use implications for dealing
with conditional code, inferring bounds of loop variables, or
producing invariants on unmodified parts of an array.
The second key aspect is the interplay between an LLM

and a symbolic (formal) tool. We find that LLMs are better at
generating ingredients of an inductive invariant than they are
at generating the whole invariant. Consequently, LOOPY uses
the HOUDINI algorithm [15] to weed out incorrect guesses and
converge to a correct inductive subset from the set of LLM-
generated guesses. HOUDINI only uses a linear number of calls
to the checker (linear in the number of candidate invariants).

Contributions: We have curated a dataset of C programs
for multiple different program verification tasks.1 We also
build and evaluate a tool called LOOPY for effectively leverag-
ing LLM capabilities on these tasks. We present an evaluation

1https://github.com/microsoft/loop-invariant-gen-experiments

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_16 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0000-0002-2705-6405
https://orcid.org/0009-0000-0413-141X
https://orcid.org/0009-0007-7562-4490
https://orcid.org/0000-0002-6889-7171
https://orcid.org/0000-0001-7582-4520
https://orcid.org/0000-0002-4446-4777
https://orcid.org/0009-0002-4359-9378
https://orcid.org/0000-0003-3283-8011
https://orcid.org/0000-0002-3394-023X
https://orcid.org/0000-0002-7249-4797
https://github.com/microsoft/loop-invariant-gen-experiments
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_16
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_16
https://creativecommons.org/licenses/by/4.0/

with multiple LLMS: GPT-4 [8], GPT-3.5 [16], and Code
Llama [10], and compare the performance of LOOPY against
a state-of-the-art symbolic baseline. Our results establish that
LLMs have the potential of improving state-of-the-art in
program verification. LOOPY is able to out-perform existing
symbolic tools on several benchmarks.

II. VERIFICATION TASKS AND DATASETS

We define a verification task as a C program along with a
property of interest that must be established for the program.
Our choice of the C programming language is based on the
availability of the benchmarks as well as a formal checker
(Frama-C [14]). Frama-C defines a language called ACSL
[17] for writing annotations (assertions, invariants, ranking
functions, etc.) as comments in C programs. We consider two
kinds of verification tasks: Safety verification and Termination
checking.

a) Safety verification: In this category of benchmarks,
each of the C programs have embedded assertions. The goal
is to come up with ACSL annotations that help Frama-C prove
those assertions. We obtained these benchmarks from multiple
sources, including Code2Inv [7], Accelerating Invariant Gener-
ation [18], Data-Driven CHC solver [19], Fluid Updates [20],
Diffy [21], as well as the SV-COMP repository [22].
We perform basic filtering on these benchmarks. We discard

programs that are known to be incorrect (i.e., the assertion does
not hold). We also remove programs that are greater than 500
lines of code. This allows us to fit the entire program inside a
single LLM query, helping us to focus on the code reasoning
capabilities of LLMs. We then create three exclusive datasets,
based on certain program features, as described below.
The first dataset consists of 469 programs that use only

scalar types (either signed or unsigned) with a single main pro-
cedure with one loop. This category of benchmarks exercises
basic mathematical reasoning, without bringing in concerns
of modeling pointers, heap semantics, or quantified invariants.
The second dataset consists of 31 programs with recursion,
only scalar types, and no loops. These benchmarks have
minimum 1, maximum 4, and average 1.4 non-main methods.
The third dataset consists of 169 programs with a single
method and at least one array or pointer. We are restricted by
limitations of Frama-C to deal with such programs because it
currently lacks support for dynamic memory allocation. We
manually remove memory allocation from programs where it
is not important. These programs have minimum 1, maximum
13, and an average of 4.4 loops per program.

b) Termination checking: The goal here is to infer a
ranking function (also called a loop variant) for a loop that
proves its termination. A ranking function is an integer-valued
expression defined over program variables that is bounded
below by 0 and strictly decreases in each iteration. We collect
benchmarks from The Termination Competition [23] and from
Shi et. al. [24]. We filter these programs, retaining programs
that each consist of only scalar variables, single method, no
assertions, and a single loop (that we believe is terminating).
This set consists of 281 benchmarks.

We remove any comments in all the programs in our datasets
because they could potentially provide hints to the LLMs.

c) Summary of the results: We show examples of pro-
grams in each of our datasets in Figure 1. All the comments
in these examples are LOOPY-generated output (massaged
slightly for conciseness), which in each case suffices to com-
plete the corresponding verification task. Figure 2 summarizes
LOOPY’s performance across these datasets. The column Total
is the total number of benchmarks in the dataset. The column
“Vanilla LLMs” refers to the number of benchmarks that
GPT-4 is able to solve with a basic prompt (and multiple
completions, we detail these concepts in later sections). These
numbers show the raw LLM performance on the corresponding
tasks. Column LOOPY is the number of benchmarks solved by
our LLM-based toolchain; a significant increase over raw LLM
performance. The next two columns provide a comparison
against a symbolic baseline. We show the performance of
Ultimate Automizer [25], one of the tools that routinely wins
medals in SV-COMP. The last column is the number of
benchmarks that could be solved by either LOOPY or Ultimate,
showcasing the potential of LLMs in improving the state-of-
the-art.

III. INDUCTIVE LOOP INVARIANT INFERENCE

This section considers the problem of inferring inductive
loop invariants. Guided by empirical observations, we propose
three techniques that can be used to augment LLMs for such
tasks: (a) providing domain-specific instructions to the LLMs,
(b) filtering incorrect LLM outputs with an adaptation of the
Houdini algorithm, and (c) using LLMs to repair the incorrect
invariants. We find that these three techniques significantly
improve the ability of LLMs to infer loop invariants. While we
use GPT-4 for most of our experiments, we also present a com-
parison with GPT-3.5-Turbo and CodeLlama-34b-Instruct [10]
(an open source LLM) in III-G.

A. The problem

Consider a C-like imperative language. Let S denote state-
ments written in this language. Hoare triples {P} S {Q},
where P and Q are logical propositions over program variables
in some underlying logic, are assertions interpreted as: if P
holds before executing the statement S, then Q holds after its
completion [26] (S may not terminate though). Inductive loop
invariants, I , are logical summaries for loop statements in the
language, used to prove the corresponding Hoare triples. For
example, for while, following is an inference rule to derive a
Hoare triple (B denotes boolean expressions):

P ⇒ I {I ∧B} S {I} I ∧ ¬B ⇒ Q

{P} while B do S {Q}
Inductive loop invariant I is a logical proposition that (a) holds
at the beginning of the loop (P ⇒ I), (b) is preserved by the
loop body ({I∧B} S {I}), and (c) implies the postcondition
of the loop (I ∧ ¬B ⇒ Q). We assume that the qualifier
“inductive” is implicit when we talk about invariants in this
paper, and hence drop it for convenience.

108

void main() {
int k = 100, b = 0;
int i = 0, j = 0, n;
// @invariant 0 <= n <= 2k
// @invariant n % 2 == b
// @invariant b == 0 ==> i == j
// @invariant b == 1 ==> i == j - 1
for (n = 0; n < 2*k; n++) {
if (b) i++; else j++;
b = !b;

}
assert (i == j);

}

(a) Loop invariant

void main() {
int x = unknown(), y = unknown(), z = unknown();
// multi-phase ranking function
// [z; y; x]
while (x >= 0) {
if (unknown()) x = x + y;
else x = x + z;
y = y + z; z = z - 1;

}
}

(c) ranking function for loop termination

void main()
{
int N = unknown ();
if (N <= 0) return;
int i, a[N];
// @invariant 0 <= i <= N;
// @invariant \forall k. 0 <= k < i ==> a[k] == 3;
// @assigns i, a[0..N-1];
for (i = 0; i < N; i++) { a[i] = 3; }

// @invariant 0 <= i <= N;
// @invariant \forall j. i <= j < N ==>
// a[j] == \at(a[j], Entry);
// @invariant \forall j. 0 <= j < i ==>
// a[j] == 1 || a[j] == 2;
// @assigns i, a[0..N-1];
for (i = 0; i < N; i++) {
if (N % (i + 1) == 0) a[i] = a[i] - 1;
else a[i] = a[i] - 2;

}
for (i = 0; i < N; i++) { assert (a[i] <= 2); }

}

(b) Loop invariant over arrays

Fig. 1: Example programs along with LOOPY-generated annotations. Each program verifies with Frama-C.

Benchmark Features Total Vanilla LLMs LOOPY Ultimate LOOPY + Ultimate
Scalar loops (1, 1) 469 237 (51%) 398 (85%) 430 (92%) 461 (98%)
Array loops (1, ≥1) 169 60 (36%) 127 (75%) 12 (7%) 128 (75%)
Recursion (≥1, 0) 31 14 (45%) 16 (52%) 20 (65%) 23 (74%)
Termination (1, 1) 281 49 (17%) 181 (64%) 236 (84%) 255 (91%)

Fig. 2: Summary of LOOPY results. Features are (#methods, #loops).

Automatically synthesizing loop invariants is one of the
classical problems in program verification. Our goal is to
use and evaluate LLMs for this task. Interactions with LLMs
happen via prompts. Prompts are textual instructions for
LLMs to perform a task. LLMs respond to prompts with
textual answers. LLMs may also be instructed to generate
multiple responses (commonly called as completions) for one
prompt. For our tasks, we design prompt templates that contain
common instructions for LLMs to infer loop invariants, and
template holes for the exact program. For each benchmark, we
instantiate the template hole with the benchmark program.

B. Basic algorithm

Figure 3 shows our basic algorithm for loop invariant
inference using LLMs; in the subsequent sections, we will
refine it with additional techniques. The algorithm takes as
input a program P , a prompt template M, and the number
of completions Nc. It either returns Success I, where I is a
set of propositions such that

⋀︁
i∈I i is a loop invariant strong

enough to prove the assertions in P , or it returns Failure when
it cannot infer a sufficiently strong loop invariant.

1: procedure INFERENCE(P,M,Nc)
2: while 0 < Nc do
3: I ← L(M[P])
4: b, _, _← O(P, I)
5: if b then return Success I
6: else Nc ← Nc − 1

7: return Failure

Fig. 3: Algorithm for invariant inference using LLMs

To check the output of LLMs, the algorithm relies on an
Oracle O. The oracle takes as input the program P and the
set I. It returns as output a triple (b, IS , INI), where:

1) b is a boolean value, true if P verifies with the loop
invariant

⋀︁
i∈I i, false otherwise.

2) IS ⊆ I is the set of invariants that exhibit parsing errors;
when b is true, IS is empty.

3) INI ⊆ I is the set of invariants for which the oracle
cannot establish the inductiveness property. This can
happen for two reasons: (a) when the invariant does not

109

hold at the beginning of the loop, or (b) when the loop
body does not maintain the invariant. When b is true or
when IS is non-empty, INI is empty.

We assume that the oracle is sound, i.e., if it returns true,
the assertions in P can be proven in the underlying logic using
the loop invariant

⋀︁
i∈I i. The basic algorithm does not use

IS and INI .
Given these notations, the algorithm is a straightforward

loop that prompts the LLM with the prompt template instan-
tiated with the program (M[P]) until it either finds a loop
invariant or runs out of the number of completions to try.
Soundness of the algorithm follows from the soundness of the
oracle O.
For our experiments, we instantiate O with Frama-C,

configured to use only the WP plugin for verifying ACSL
annotations. Under these settings, Frama-C does not attempt
to infer the invariants by itself; it is focused on verifying
the correctness of supplied loop invariants as well as the
assertions in the input program. Additionally, we configure
the WP plugin to use Z3 [27], Alt-Ergo [28], and CVC4 [29]
as the external provers, with a timeout of 3 seconds.

C. Basic prompt

We evaluate the algorithm with a basic prompt template,
M0, shown below. Here, the {{ code }} section is the template
hole for the program. Notably, the template does not explain
to LLM what loop invariants are or provide any detailed
instructions for inferring them. It does, however, provide
instructions to format the output in the ACSL syntax; this
helps in automating the checking process.

Consider the following C program:
{{ code }}
Output the loop invariants for the loop in the program above. Output
all the loop invariants in one code block. E.g.,
/*@

loop invariant i1;
loop invariant i2;

*/

Fig. 4: Performance of LOOPY with and without Houdini
(solid and dashed lines, resp.) for the two prompt templates

Figure 4 (dashed line for prompt M0) shows experimental
results with GPT-4. It plots the success rate (number of verified
benchmarks) as the number of completions is varied from 1
to 15. We account for the stochastic nature of LLMs in the
standard way using the pass@k metric [30]: we first generate
the maximum number of completions (15) and compute its

success rate. Then, the success rate for k < 15 completions
is obtained as the expectation over a random sample of size
k out of the 15 completions. As the figure shows, with 15
completions, GPT-4 is able to solve ∼50% (237/469) of the
benchmarks. Multiple completions help, though there are di-
minishing returns after ∼8 completions. The experiment shows
that even without any specialized instructions or techniques,
GPT-4 is able to solve a non-trivial fraction of the benchmarks.

D. Prompt with domain-specific instructions

On manual inspection of the failure cases with M0, we
observe that the model makes several low-level mistakes, such
as using variables or functions that are not defined, using
conditional statements in the invariants, etc. We also notice
that the model misses certain common invariant expressions,
such as bounding a variable with its minimum and maximum
values or relations between variables themselves. Consider the
loop invariant example in Figure 1(a). With M0, the LLM
only outputs 0 ≤ n≤ 2*k and n % 2 == b. While both these are
valid invariants, they are not sufficient to prove the assertion,
as they don’t capture the relationship between i and j, which
is conditional on the value of b.
To account for such failures, we design a prompt template

M1 that provides more detailed instructions to the LLM.
Specifically, it explains to the LLM, in natural language, what
a loop invariant is, and provides some heuristics about how to
come up with a loop invariant. The full prompt M1 is given
below.

You are a helpful AI software assistant that reasons about how
code behaves. Given a program, you can find loop invariants,
which can then be used to verify some property in the program.
Frama-C is a software verification tool for C programs. The input to
Frama-C is a C program file with ACSL (ANSI/ISO C Specification
Language) annotations. For the given program, find the necessary
loop invariants of the while loop to help Frama-C verify the post-
condition.
Instructions:

• Make a note of the pre-conditions or variable assignments in
the program.

• Analyze the loop body and make a note of the loop condition.
• Output loop invariants that are true
(i) before the loop execution,
(ii) in every iteration of the loop and
(iii) after the loop termination,
such that the loop invariants imply the post condition.

• If a loop invariant is a conjunction, split it into its parts.
• Output all the loop invariants in one code block.

For example:
```
/*@
loop invariant i1;
loop invariant i2;
*/
```

Rules: **Do not use variables or functions that are not declared
in the program.** **Do not make any assumptions about
functions whose definitions are not given.** **All undefined
variables contain garbage values. Do not use variables that
have garbage values.** **Do not use keywords that are not
supported in ACSL annotations for loops.** **Variables that are
not explicitly initialized, could have garbage values. Do not make
any assumptions about such values.** **Do not use the \at(x,

110

Pre) notation for any variable x.** **Do not use non-deterministic
function calls.**

Consider the following C program:
```
{{ code }}
```
You are allowed to use implication to take care of the conditional
nature of the code. Use implication (==>) instead of using if-
then. For all variables, add conjunctions that bound the maximum
and minimum values that they can take, if such bounds exist. If
a variable is always equal to or smaller or larger than another
variable, add a conjunction for their relation. If the assertion is
guarded by a condition, use the guard condition in an implication.
If certain variables are non-deterministic at the beginning or end
of the loop, use an implication to make the invariant trivially true at
that location. Output the loop invariants for the loop in the program
above. Let’s think step by step.

To evaluate M1, we repeat the same experiment as before
with M1 and GPT-4; see dashed line for M1 in Figure 4.
GPT-4 is able to solve 293 benchmarks, 23% more thanM0,
demonstrating the effectiveness of detailed prompt instruc-
tions. For the example in Figure 1(a), withM1, LLM outputs
the final two invariants b == 0 ⇒ i == j and b == 1 ⇒ i == j −
1, which are sufficient to verify the example.

E. Pruning incorrect invariants with Houdini

In many cases, we observe that the LLM output contains
the required invariants but they are mixed with other output
expressions that are either syntactically invalid or are not valid
loop invariants. Further, the required invariants may be spread
across multiple completions. In both these cases, the basic
algorithm fails.
The program below is one such example. A candidate

loop invariant for this is 0 ≤ x < n. We observe that in most
completions, LLM outputs 0 ≤ x and x ≤ n as invariants, while
there are some completions in which it outputs input == 0 ⇒
x < n and in some other it outputs input ̸= 0 ⇒ x < n. All the
completions together have the correct components, 0 ≤ x, input
== 0 ⇒ x < n, and input ̸= 0 ⇒ x < n, but no single completion
is correct in itself.

int n = unknown(); if (n <= 0) return;
int x = 0, input = unknown();
while (1) {
if (input) { x = x + 1; if (x >= n) break; }
input = unknown();

}
assert (x == n);

To handle such cases, we augment our basic algorithm
with Houdini [15] to efficiently prune the incorrect outputs;
Figure 5 shows the new algorithm. The algorithm maintains a
set Iu of all the invariants output by the LLM across all the
completions. If none of the completions succeed, the algorithm
invokes the Houdini procedure with Iu, and returns the result
of the Houdini procedure.
The Houdini procedure tries to find a subset of Iu that is

inductive and is sufficient to verify P . While the number of
possible subsets of Iu is exponential in the size of Iu, it turns
out that one can do this check with only a linear number of
calls to the oracle (linear in the size of Iu) [15]. Figure 6 shows

1: procedure INFERENCE(P,M,Nc)
2: Iu ← ∅
3: while Nc > 0 do
4: I ← L(M[P])
5: b, _, _ ← O(P, I)
6: if b then return Success I
7: else
8: Iu ← Iu ∪ I
9: Nc ← Nc − 1

10: return HOUDINI(P, Iu)

Fig. 5: Inference algorithm with Houdini

1: procedure HOUDINI(P , I)
2: while I ̸= ∅ do
3: b, IS , INI ← O(P, I)
4: if b then return Success I
5: if IS ̸= ∅ then I ← I − IS
6: else
7: if INI = ∅ then return Failure
8: else I ← I − IL
9: return Failure
10:

Fig. 6: Houdini algorithm

an adaptation of the Houdini algorithm to our setting. The
algorithm takes as input a program P and a set of candidate
invariants I. It either returns Success II , where II ⊆ I and⋀︁
i∈II

i is an inductive loop invariant strong enough to verify
P , or it returns a Failure if it cannot find such a subset. The
algorithm repeatedly queries the oracle with its current set
of candidate invariants I. Recall that the output of oracle is
a triple (b, IS , INI), where b is a boolean, IS is the set of
syntactically invalid candidates, and INI is the set of non-
inductive candidates.
If the oracle returns true, the algorithm returns with Success

I. Otherwise, it removes one or more candidates from the
set I and repeats the process. This pruning happens in one
of two ways. If there are some candidate invariants that are
syntactically invalid, they are pruned away. If there are no
syntax errors, and the set INI is empty, the procedure returns
Failure: this indicates the case when the current set I is a
valid inductive invariant, but still not sufficient (i.e., strong
enough) to verify the program. Otherwise the candidates in
INI are pruned away and the loop repeats. The soundness of
the Houdini algorithm follows directly from the soundness of
the oracle. Houdini returns Success I only when the oracle
verifies P with I. Furthermore, the algorithm makes a linear
number of calls to the oracle (linear in the size of candidate
invariant set I). In addition to soundness, Houdini guarantees
to find the largest inductive subset of invariants [15].

Evaluation: Figure 4 (solid lines) show the impact of
Houdini with both the prompt templates M0 and M1. With
Houdini, the success rate for k < 15 is computed as an average
over randomly sampling k out of the 15 completions, taking
their union, and running Houdini.
Houdini has a significant positive impact. With 15 comple-

tions and the M1 prompt, the use of Houdini increases the
success rate by 30.7% (from 293 to 383 solved benchmarks).
As before, the prompt M1 does better than M0 (383 to

111

1: procedure INFERENCE(P,M,Nc,Nr)
2: . . .
3: r ← HOUDINI(P, Iu)
4: if r = Success _ then return r
5: else return REPAIR(P, Iu,Nr)

Fig. 7: Inference algorithm with Repair

1: procedure REPAIR(P, I,Nr)
2: _, IS , INI ← O(P, I)
3: while Nr > 0 do
4: I ← L(Mr[P, I, IS , INI])
5: b, IS , INI ← O(P, I)
6: if b then return Success I
7: else
8: r ← HOUDINI(P, I)
9: if r = Success _ then return r
10: else Nr ← Nr − 1
11: return Failure

Fig. 8: Repair algorithm

327 solved benchmarks). The results suggest that augmenting
LLMs with symbolic techniques such as Houdini can increase
the effectiveness of LLMs in solving such problems.
With the candidate invariants generated using prompt M1,

we invoke Frama-C with timeout values higher than 3 seconds.
We observed that the number of benchmarks verified by
Frama-C remained the same with a timeout of 5 seconds and
even 10 seconds.

F. Using LLMs to repair incorrect invariants

We explore using LLMs to repair the incorrect invariants,
guided by the error messages produced by the oracle. This is
motivated by an observation that in some cases minor changes
to the LLM output can give us the correct invariants.
We parameterize our inference algorithm with another pa-

rameter Nr that denotes the maximum number of repair retries
that the algorithm can make (Figure 7). Instead of returning the
result of Houdini, as in Figure 5, the revised algorithm checks
whether Houdini succeeds. If it does, the algorithm returns the
result. If Houdini fails, it invokes a repair procedure.
The Repair algorithm, shown in Figure 8, takes as input

the program P , the set of all the LLM output invariants Iu
across all completions, and the number of repair retries Nr.
It uses a specialized prompt template Mr, templated over P ,
a set of invariants I, and IS and INI , incorrect subsets of
I as returned by the oracle. The prompt template provides
instructions to the LLM to repair the incorrect invariants. We
show a snippet of Mr below:

Frama−C returns the following message:
{{ error }}

If the error message indicates a syntax error in the loop annotation,
fix the line with the syntax error. To fix the non−inductive
invariants, try the following:

If an invariant is preserved but not established, add a clause to the
invariant to make it established (a clause that makes the invariant
hold before the loop begins).

If an invariant is established but not preserved, add a clause to the
invariant to make it preserved (a clause that makes the invariant

hold after the loop ends, assuming that it holds before the loop
begins).

If an invariant is neither established nor preserved, remove it or
replace it with a different inductive invariant. If none of the
above is possible, add a new loop invariant to strengthen the
existing invariants.

The repair algorithm first invokes the oracle to get the errors
IS and INI . It then prompts the LLM usingMr, instantiated
with P, I, IS , and INI , to repair I; the output of LLM is a
new set of candidate invariants. The algorithm then uses the
oracle and the Houdini procedure to find a sufficiently strong
inductive set of invariants within the new set. The process
repeats until either the algorithm succeeds in finding such a set
or it runs out of the retries budgetNr. The soundness of Repair
follows from the soundness of the oracle and Houdini—it
returns Success only when either the oracle or Houdini returns
Success.

Evaluation: To evaluate our inference algorithm with
Repair, we need to provide the Nr parameter. To keep the
LLM budget the same as before, we make Nc + Nr = 15
so that the use of Repair does not increase the number of
LLM queries. Observing that without Repair, the number of
verified benchmarks starts to plateau at around 8 completions
(Figure 4), we set Nc = 8 and Nr = 7.
With the repair procedure, LOOPY is able to verify 15 more

benchmarks than before, bringing the number of benchmarks
verified to 398/469. An example where repair helps is as
shown. Before repair, the candidate invariants are y == 10 −
(x − 1) and y < 10, both of which capture the behavior of x
and y after the first iteration of the loop. The invariants,
however, do not hold at the beginning of the first iteration
when y is unconstrained. With Repair algorithm, the invariants
are repaired to x == 1 ∨ y == 10 − (x − 1) and x == 1 ∨ y < 10,
allowing y to take any value before the first iteration. With
these invariants, the program verifies.

void main()
{
int x = 1;
int y;
while (x <= 10) {
y = 10 - x;
x = x + 1;

}
assert (y < 10);

}

G. Comparing different LLMs
To compare different LLMs, we evalute our inference

algorithm, with and without Houdini, on two other models:
GPT-3.5-Turbo and CodeLlama-34b-Instruct [10]. For this
experiment, we fix the number of completions to 15 and use
the prompt templateM1. Figure 9 shows the results, we also
plot the previously shown results for GPT-4 for comparison.
GPT-4 shows superior performance compared to the other

models, although GPT-3.5-Turbo is a close second with 370

112

Fig. 9: LLMs comparison (withM1 and Nc = 15)

Fig. 10: Verified benchmarks

solved benchmarks when using Houdini. Interestingly, using
Houdini helps other models “catch up” with GPT-4 by signif-
icantly increasing their success rates.
Figure 10 shows the intersection among the benchmarks

verified using the different LLMs. GPT-4 has the most number
of exclusively-solved benchmarks (38). GPT-3.5-Turbo is able
to solve 31 benchmarks that GPT-4 could not. This experiment
suggests that using multiple LLMs can help solve more
benchmarks.

H. Qualitative analysis

We manually analyzed the failure cases for LOOPY and
observed that for 10 failures, LOOPY is able to produce a
correct and sufficient loop invariant, but Frama-C fails to
verify the program. This implies a success rate of 408/469
for LLMs, augmented with our techniques. Among the suc-
cessfully verified benchmarks, LOOPY generated, on average,
4.2 invariants per benchmark. Each of these invariants had, on
average, 1.8 variables, and 2.1 operators (boolean, relational,
and arithmetic), indicating that a fair number of invariants were
non-trivial.

Analysis of failed benchmarks: We analyzed the bench-
marks that LOOPY was not able to solve. For the 10 bench-
marks for which LOOPY produces the right invariant but
Frama-C fails to verify the program, we believe that it should
be possible to strengthen Frama-C (e.g., one failure was due
to missing axiomatization of integer mod operation). For the
remaining 61 benchmarks, we manually came up with an

void main() {
int x = 0, y = 0, flag = 0;
while (flag < 1) {
if (y < 0) flag = 1;
if (flag < 1) x = x + 1;
if (x < 50) y = y + 1;
else y = y - 1;

}
assert(y == -2 && x == 99)

}

int main() {
int x = 0, y = 0, N;
if (N < 0)
return 1;

while (1) {
if (x <= N) y++;
else if (x >= N + 1)
y--;

else return 1;

if (y < 0) break;
x++;

}

if (N >= 0)
if (y == -1)
if (x >= 2 * N + 3)
assert(\false);

return 1;
}

Fig. 11: Example (a) where LOOPY fails (left), and (b) where
Ultimate fails but LOOPY succeeds (right).

invariant that makes the program verify with Frama-C. Based
on these ground truth invariants, we do a subjective classifica-
tion of the failures into 4 categories. The classification is not
indicative of features that are beyond LLMs today; there are
also benchmarks in each of these categories that LLMs are
able to solve.
The first category of failures are benchmarks that require

disjunctions in the invariant. These benchmarks can be de-
scribed as either having loops with multiple phases (i.e., as
the loop iterates, the code path taken inside the loop changes
several times, based on some flags or other branches), or
assertions that depend on whether the loop is executed at all
(needing a disjunct to account for the case when the loop
is not entered at all). The program shown in Figure 11(a)
has a multi-phase loop. It starts with x and y both at 0; then
both increase by 1 in each iteration until x reaches 50, after
which x continues to increase by 1 while y starts to decrease.
Describing these “phases” requires one clause for each phase,
connected by disjunction. We classified 44/61 failures in this
category.
The second category of failures are benchmarks whose

ground truth invariants requires a clause with at least three
variables. An example of an invariant in this category is
the following: (0 < p)∧ (2*q + r ≤ w) ∧ (p == r + 2*i). 5/61 fail-
ures fall in this category.
The third category of failures are benchmarks where more

precise constraints were required, compared to what was
generated by our algorithm. For instance, for one of the
benchmarks, the algorithm inferred the invariant (k == x + y
+ z)∧ (x ≤ y) ∧ (y == z), which turned out to be an inductive
invariant, but insufficient to prove the assertion. Changing the
second clause to x == y would make it work. There are 9/61
such failures. The fourth category, containing 3/61 failures,

113

requires reasoning about floating-point arithmetic. It was hard
to us, even manually, to come up with their ground-truth
invariants.

Symbolic baseline: We compare the performance of our
LLM-based inference algorithm the Ultimate tool [25] on the
469 benchmarks. Ultimate has higher success rate than LOOPY
with 430/469 benchmarks solved. However, we find that there
are 31 benchmarks that Ultimate does not solve, but LOOPY
can solve. There are 63 benchmarks that Ultimate solves but
LOOPY does not. Ultimate and LOOPY combined can solve
461/469 benchmarks, hinting that combining symbolic tools
with LLM-based techniques can improve the existing state-
of-the-art. Figure 11(b) shows an example from these 31
benchmarks. The assertion in the program can be verified with
the loop invariant (x ≤ N+1 ⇒ y == x) ∧ (x > N+1 ⇒ y == 2*(N+1)
− x), which LOOPY infers but Ultimate does not.
To compare the run times of LOOPY and Ultimate, we ran-

domly selected 50 benchmarks from our dataset and measured
the average time taken by each tool to verify a benchmark. In
the case of LOOPY, we generate 15 completions and check all
of them with Frama-C. If all completions fail, then we run the
Houdini loop. The average run time of Ultimate was 23.11s,
and that of LOOPY was 186.05s (including the LLM inference
time which was 119.86s, using an unoptimized LLM-inference
stack). Although optimizations to the LOOPY implementation
and the LLM inference stack could improve the run time, it
is not in the scope of this work and we leave it as interesting
avenues for future work.

I. Loop invariant inference for programs with arrays

We next evaluate our loop invariant inference algorithm on
169 benchmarks that use arrays. We use the algorithm shown
in Figure 5, i.e. with Houdini but no repair, with 8 completions
(Nc = 8). With the prompt template M0, our algorithm is
able to solve 60/169 benchmarks, while using the template
M1 increases this number to 102/169 benchmarks.
On manual inspection of the failures, we find that LLM

sometimes misses clauses that are common in the invariants
for loops that manipulate arrays. To help LLMs in such cases,
we add some array-specific instructions to the prompt. Some
sample instructions are shown below:

For all the values and array ranges that do not change in the loop,
add an invariant equating them to their value before the loop. Add
a loop assigns clause listing all array ranges and variables
assigned for every loop. When a loop assigns an array,
−Invariants must specify state of all array elements after every
iteration of the loop, even if they have not changed yet.
−For the range of elements yet to be assigned by the loop, just
equate them to their value before the loop. For nested loops, use
the invariants of the inner loop as hints for the outer loop.

The instructions are mostly about capturing the precise state
of the arrays in the invariants. With these instructions the num-
ber of solved benchmarks increases to 127/169. Interestingly,
these 127 are not a superset of the 102 solved with just M1

alone; Figure 12 shows a Venn diagram of the three sets:
benchmarks solved with M0, with M1, and with M1 and
instructions. Consider the array loop invariant example from

Fig. 12: Performance of Loopy instantiated with different
prompts for arrays, M0,M1,M1 + Instructions

Figure 1. The first for loop initializes the array a (of length
N) s.t. a[i] = 3. The second loop, depending on whether N % (i
+ 1) is 0, either assigns a[i] = a[i] − 1 or a[i] = a[i] − 2. The third
loop asserts that a[i] ≤ 2. WithM1, the LLM fails to come up
with the invariant \forall j. i <= j < N ==> a[j] == \at(a[j], Entry) for
the second loop, stating that the values of array elements a[i]
onwards are what they were at the beginning of the loop. This
invariant is crucial for verifying the assert, and so, the program
fails to verify. However, once we instruct the LLM to capture
all array elements in the invariant, LLM outputs this clause,
and the program verifies.
For the 42 failure cases, there are 9 benchmarks where

LOOPY infers the correct and sufficient loop invariants, but
Frama-C fails to verify the program. Further, there are some
programs where the loop invariants inferred by LOOPY are
close to the required invariants. In one of the benchmarks,
for example, the loops iterate from 1 to N, but LOOPY infers
invariants where the index variable ranges from 0 to N. We
believe such cases may be handled by using Repair (Figure 8);
we leave this for future work.

IV. PROGRAM TERMINATION

The problem: A ranking function is used to prove termi-
nation of a loop. In its simplest form, a ranking function V
is an expression involving the variables used in the loop with
the following two properties: (a) at the beginning of every
loop iteration, the value of V is ≥ 0, and (b) the value of V
strictly decreases with each loop iteration. Thus, the value of
V at the beginning of an iteration provides an upper bound on
the number of remaining loop iterations. A ranking function
is sometimes also called a variant. There is a rich literature
on algorithms for synthesizing ranking functions using abstract
intepretation [31] constraint solving, model checking [32], [33]
and more recently using custom trained neural networks [34].
We evaluate LLM capabilities to add to this body of work.
Beyond a simple expression, there are other common forms

of ranking functions, lexicographic ranking functions and
multi-phase ranking functions [35], [32]. A lexicographic
ranking function is a ordered list [Vi], where (a) at the
beginning of a loop iteration, for all i, the value of Vi is ≥ 0,
and (b) in every loop iteration, there exists j s.t. the value of Vj
strictly decreases and ∀k. k < j, the value of Vk remains the

114

Prompts used No. of benchmarks verified
M2 133
M2, M3 170
M2, M3, M4 181

Fig. 13: Results for ranking function inference

1: procedure VARIANTINFERENCE(P,M,NV ,NI)
2: while 0 < NV do
3: V ← L(M[P])
4: I ← ∅
5: n ← NI

6: while 0 < n do
7: I ← I ∪ L(MI [V,P])
8: n ← n− 1
9: r ← Houdini(P, I)
10: if r = Failure then NV ← NV − 1
11: else
12: Success I ← r
13: r ← OT (P,V, I)
14: if r then return Success (V, I)
15: else NV ← NV − 1

16: return Failure

Fig. 14: Ranking function inference

same. A multi-phase ranking function [36] is a special case
of lexicographic ranking function. It is an ordered list [Vi],
where when the loop execution starts, first V1 decreases until it
becomes non-positive, then V2 decreases until it becomes non-
positive, and so on. There are other forms of ranking functions
and well-founded relations [37], [38], [39], [40], [36], [35], but
we restrict focus to only the ones described above.
To prove that a ranking function is valid for a loop,

one might need additional loop invariants to establish key
properties about the loop. The problem, therefore, is to infer
both a ranking function as well as the supporting invariants
that are needed to prove its correctness.
We assume access to an oracle OT that takes as input a

program P (with a single loop), a (candidate) ranking function
V , and an inductive loop invariant I. It returns a boolean value
where true implies that V can be proven to be a valid ranking
function using I. Frama-C provides such an interface, and we
use it as our oracle.

Ranking function inference algorithm: Figure 14 shows
our ranking function inference algorithm. It takes as input a
program P with a single loop, a prompt template M, and
two number of completions parameters NV and NI . It returns
either Success (V, I), where V and I are ranking function
and inductive loop invariant for the loop in P respectively, or
Failure otherwise.
The algorithm instantiates the prompt template M with P ,

and queries the LLM to infer a candidate ranking function V .
To be able to invoke the oracle to check the LLM output, we
need an inductive loop invariant as well. The algorithm infers it
using the techniques developed in the last section. Specifically,
it instantiates a prompt template MI with the candidate
ranking function V and the program P , and prompts the LLM.
Template MI instructs the LLM to infer an inductive loop

invariant required for proving a given ranking function. The
algorithm collects the LLM output loop invariants for NI

completions, and invokes the Houdini algorithm (Figure 6).
If Houdini succeeds, the algorithm invokes the oracle OT
with V and I (the output of Houdini). If the oracle returns
true, the algorithm returns Success (V, I). Whereas if either
Houdini or the oracle fails, the algorithm repeats until it
succeeds or it exhausts the maximum number of retries NV .
The soundness of the algorithm follows from the soundness
of Houdini (Figure 6) and the oracle.

Evaluation: We evaluate our ranking function inference
algorithm on 281 benchmarks, with one method and one loop
each. We set the parameters NV and NI to 5 each, and as
mentioned before, use Frama-C as the oracle. We show that by
adding increasingly domain-specific instructions to the prompt
template M, we can solve more benchmarks.
The prompt template MI contains instructions for the

LLM to infer inductive loop invariants for a given ranking
function. The prompt mentions that the LLM should infer an
invariant that implies the ranking function decreases with every
iteration. It also contains the loop invariant instructions similar
to those in the M1 prompt from the previous section. The full
prompt is available in the public repository1.
We first evaluate a basic prompt template for inferring the

loop ranking function. The prompt template explains to the
LLM what a ranking function is, but it does not instruct the
LLM to infer a specific kind of ranking function (lexicographic
or multi-phase, for instance). The complete prompt text is
available in the public repository1. The result of using this
prompt template is shown in Table 13 as the prompt M2. As
can be seen, with this prompt, our algorithm is able to solve
133/281 benchmarks.
On a closer inspection of the failures, we find that while

the algorithm could solve simple cases of ranking functions
(e.g., when it is a single expression), it did not do so
well on benchmarks that require lexicographic or multi-phase
ranking functions. We, next, add instructions for inferring
lexicographic ranking functions.

A lexicographic ranking function is a sequence of expressions with
the property that each expression must be positive for the loop to
execute. For example, if (e1, e2, e3) is a lexicographic ranking
function, then with each loop iteration, either e1 is positive and
decreases, or e1 remains the same and e2 is positive and decreases
or e1 and e2 remain the same and e3 is positive and decreases.
Find a lexicographic ranking function for the loop in the
following program.

With this prompt, the algorithm is able to solve 37 more
benchmarks (prompt M3 in Table 13). Finally, we try similar
instructions for the multi-phase ranking functions, and solve
11 more benchmarks (prompt M4 in Table 13), taking the
total verified benchmarks to 181/281. The example shown in
Figure 1(c) is one of the benchmarks that fails with the basic
prompt, but with the multi-phase prompt, our algorithm infers
[z; y; x] as a multi-phase loop ranking function.

Symbolic baseline: Ultimate solves 236/281 benchmarks.
There are 162/281 that both our algorithm and Ultimate solve,

115

// @requires n >= 0;
// @ensures \result == n % 2;
int isOdd(int n) {

if (n == 0) return 0;
else if (n == 1) return 1;
else return isEven(n - 1);

}
// @requires n >= 0;
// @ensures \result == 1 - n % 2;
int isEven(int n) {

if (n == 0) return 1;
else if (n == 1) return 0;
else return isOdd(n - 1);

}
int main() {

int n = unknown_int();
if (n < 0) return 0;
int result = isOdd(n);
assert(result >=0 && result != n % 2);

}

Fig. 15: Example recursive program along with LOOPY-
generated annotations. The annotated program verifies with
Frama-C.

19/281 that only our algorithm solves, and 74/281 that only
Ultimate solves. Thus our algorithm and Ultimate combined
solve 255/281.

V. RECURSIVE PROGRAMS

While the primary focus of this work has been on dealing
with the complexity of loops, we also explore the ability of
LLMs to deal with recursive programs. Specifically, programs
where the methods are (mutually-) recursive; Figure 15 shows
an example. The task here is to infer the pre- and postcon-
ditions for the methods in the program, such that Frama-C is
able to verify the assertions in the program. The prompt we
used for this task is available in the public repository1. With
a total 31 benchmarks, LOOPY is able to successfully verify
16/31programs with 8 completions. Ultimate is able to verify
20/31 of these benchmarks. Figure 15 also shows the pre- and
postconditions inferred by LOOPY.

VI. RELATED WORK

LLMs for invariant generation: Pei et al. [41] study this
problem by building dataset of programs and corresponding
invariants and then fine-tune a pre-trained LLM on this dataset.
Our approach does not rely on fine-tuning and directly evalu-
ates the capabilities of foundational models. Furthermore, Pei
et al. do not focus on generating inductive invariants that are
necessary for establishing a formal proof of correctness.
Lemur [42] presents a proof calculus and an algorithm to

use an LLM to generate and repair invariants. Lemur uses
a symbolic verifier to check for inductiveness and generate
counterexamples. They use a chaining approach to iteratively
strengthen, repair or backtrack on proposed invariants. This
necessitates a proof of soundness for single method with loops,
and may require further extensions for an interprocedural
setting. It is unclear if Lemur would find an inductive invariant
even if the LLM proposes all of its ingredients, since Lemur

is sensitive to the order in which invariants are proposed.
Integrating Houdini with Lemur could be a promising direction
for future work. Further, their approach does not apply to
proving termination, and even for invariants, it has been evalu-
ated on a much smaller set of benchmarks. Lemur is publicly
available but we were unable to run it. On the benchmarks
of the Lemur paper, LOOPY and Lemur perform comparably
when given the same budget of LLM queries. Among the 133
Code2Inv benchmarks, LOOPY solves 103 benchmarks while
Lemur solves 107 benchmarks. Among Lemur’s 50 SV-COMP
benchmarks, both tools solve 26 benchmarks each.
Yao et al. [43] leverage LLMs to semi-automate proofs for

Rust programs in the context of the Verus program verifier.
However, they do not consider loop termination or working
across multiple methods. Furthermore, their evaluation is not
fully automated for the benchmark and only compared against
a purely manual baseline. Chakraborty et al. [44] build iRank,
a custom model for ranking candidate invariants. iRank is
orthogonal and complementary to our work; we can use it
as a heuristic for decreasing the number of calls to the oracle
by only checking highly-ranked invariant candidates.

LLMs for proof assistants: LLMs have been used to auto-
mate proof synthesis in interactive proof assistants [45], [46].
Leandojo [46], for instance, fine-tunes a retrieval model for
lemma selection and a generative model for proof generation
for the Lean theorem prover. Given the general purpose nature
of these proof assistants, these approaches are not tailored for
automatic program verification that we target in this paper.
Our approach also does not require fine-tuning a model.

A. Threats to validity

A potential concern while working with LLMs is the
problem of data contamination, which happens when the
benchmarks used for evaluation were already a part of the
training data used for the models. In this case, the models
can overfit, which affects their ability to generalize to newer
benchmarks.
There is no ideal way to completely remove contamination

while working with industrial models, or even for open-source
ones, given the scope of training data that they consume. We
compensate, to the best of our ability, by considering as many
benchmarks as we could try, and increasing the diversity of
tasks as well as program and invariant features (arrays, ranking
functions, etc.). The Stack [47], which is a public code corpus
used to train open source models like StarCoder [48] and
DeepSeek-Coder-V2 [49], does not contain the SVCOMP and
Code2Inv benchmarks. We are also not aware of any other data
source where these programs appear alongside their invariants.
Another concern is about the reproducibility of our results.

Closed models, such as GPT-4, can get updated any time,
which can affect the numbers reported in this paper. Our
toolchain is parametric on the choice of LLMs and we do
use an open-source model (CodeLlama) to compensate for
this concern. LLMs are also stochastic, implying that they can
return different responses for the same query. Using multiple
completions helps compensate for this stochasticity.

116

REFERENCES

[1] S. Padhi, R. Sharma, and T. D. Millstein, “Data-driven precondition
inference with learned features,” in Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17,
2016, 2016, pp. 42–56. [Online]. Available: http://doi.acm.org/10.1145/
2908080.2908099

[2] M. Brockschmidt, Y. Chen, P. Kohli, S. Krishna, and D. Tarlow,
“Learning shape analysis,” in Static Analysis - 24th International
Symposium, SAS 2017, New York, NY, USA, August 30 - September 1,
2017, Proceedings, ser. Lecture Notes in Computer Science, F. Ranzato,
Ed., vol. 10422. Springer, 2017, pp. 66–87. [Online]. Available:
https://doi.org/10.1007/978-3-319-66706-5_4

[3] P. Garg, D. Neider, P. Madhusudan, and D. Roth, “Learning invariants
using decision trees and implication counterexamples,” in Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016, St. Petersburg, FL, USA, January
20 - 22, 2016, R. Bodík and R. Majumdar, Eds. ACM, 2016, pp.
499–512. [Online]. Available: https://doi.org/10.1145/2837614.2837664

[4] J. Yao, G. Ryan, J. Wong, S. Jana, and R. Gu, “Learning nonlinear loop
invariants with gated continuous logic networks,” in Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2020, pp. 106–120.

[5] G. Ryan, J. Wong, J. Yao, R. Gu, and S. Jana, “Cln2inv: Learning loop
invariants with continuous logic networks,” in International Conference
on Learning Representations, 2020.

[6] X. Si, H. Dai, M. Raghothaman, M. Naik, and L. Song, “Learning loop
invariants for program verification,” Advances in Neural Information
Processing Systems, vol. 31, 2018.

[7] X. Si, A. Naik, H. Dai, M. Naik, and L. Song, “Code2inv: A
deep learning framework for program verification,” Computer Aided
Verification, vol. 12225, pp. 151 – 164, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:211027794

[8] OpenAI, “GPT-4 technical report,” https://doi.org/10.48550/arXiv.2303.
08774, 2023.

[9] R. Anil, A. M. Dai, O. Firat, M. Johnson, D. Lepikhin, A. Passos,
and et al., “Palm 2 technical report,” CoRR, vol. abs/2305.10403, 2023.
[Online]. Available: https://doi.org/10.48550/arXiv.2305.10403

[10] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi,
Y. Babaei, and et al., “Llama 2: Open foundation and fine-tuned
chat models,” CoRR, vol. abs/2307.09288, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2307.09288

[11] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright,
P. Mishkin, and et al., “Training language models to
follow instructions with human feedback,” in NeurIPS, 2022.
[Online]. Available: http://papers.nips.cc/paper_files/paper/2022/hash/
b1efde53be364a73914f58805a001731-Abstract-Conference.html

[12] GitHub, “Github copilot,” https://github.com/features/copilot, 2022.
[13] Amazon, “Amazon codewhisperer,” https://aws.amazon.com/

codewhisperer/, 2023.
[14] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski,

“Frama-c: A software analysis perspective,” Formal Aspects Comput.,
vol. 27, no. 3, pp. 573–609, 2015. [Online]. Available: https:
//doi.org/10.1007/s00165-014-0326-7

[15] C. Flanagan and K. R. M. Leino, “Houdini, an annotation assistant
for esc/java,” in Proceedings of the International Symposium of Formal
Methods Europe on Formal Methods for Increasing Software Produc-
tivity, ser. FME ’01. Berlin, Heidelberg: Springer-Verlag, 2001, p.
500–517.

[16] OpenAI, “GPT-3.5,” https://platform.openai.com/docs/models/gpt-3-5,
2023.

[17] J. Signoles, B. Desloges, and K. Vorobyov, E-ACSL User Manual.
[Online]. Available: http://frama-c.com/download/e-acsl/e-acsl-manual.
pdf

[18] K. Madhukar, B. Wachter, D. Kroening, M. Lewis, and M. Srivas,
“Accelerating invariant generation,” in Proceedings of the 15th Con-
ference on Formal Methods in Computer-Aided Design, ser. FMCAD
’15. Austin, Texas: FMCAD Inc, 2015, p. 105–111.

[19] H. Zhu, S. Magill, and S. Jagannathan, “A data-driven chc solver,” in
Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI 2018. New York,
NY, USA: Association for Computing Machinery, 2018, p. 707–721.
[Online]. Available: https://doi.org/10.1145/3192366.3192416

[20] I. Dillig, T. Dillig, and A. Aiken, “Fluid updates: Beyond strong vs. weak
updates,” in Programming Languages and Systems, A. D. Gordon, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 246–266.

[21] S. Chakraborty, A. Gupta, and D. Unadkat, “Diffy: Inductive reasoning
of array programs using difference invariants,” in Computer Aided
Verification, A. Silva and K. R. M. Leino, Eds. Cham: Springer
International Publishing, 2021, pp. 911–935.

[22] D. Beyer, “Competition on software verification and witness validation:
Sv-comp 2023,” in Tools and Algorithms for the Construction and
Analysis of Systems. Springer Nature Switzerland, 2023, pp. 495–522.

[23] The Termination Competition, “The Termination Problem Database,”
https://github.com/TermCOMP/TPDB, 2023.

[24] X. Shi, X. Xie, Y. Li, Y. Zhang, S. Chen, and X. Li, “Large-scale analysis
of non-termination bugs in real-world oss projects,” in Proceedings
of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2022. New York, NY, USA: Association for
Computing Machinery, 2022, p. 256–268. [Online]. Available: https:
//doi.org/10.1145/3540250.3549129

[25] M. Heizmann, J. Hoenicke, and A. Podelski, “Refinement of trace
abstraction,” in Static Analysis, 16th International Symposium, SAS
2009, Los Angeles, CA, USA, August 9-11, 2009. Proceedings, ser.
Lecture Notes in Computer Science, J. Palsberg and Z. Su, Eds., vol.
5673. Springer, 2009, pp. 69–85.

[26] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Communications of the ACM, vol. 12, no. 10, pp. 576–580, 1969.

[27] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in Tools
and Algorithms for the Construction and Analysis of Systems, C. R.
Ramakrishnan and J. Rehof, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 337–340.

[28] S. Conchon, A. Coquereau, M. Iguernlala, and A. Mebsout, “Alt-Ergo
2.2,” in SMT Workshop: International Workshop on Satisfiability
Modulo Theories, Oxford, United Kingdom, Jul. 2018. [Online].
Available: https://inria.hal.science/hal-01960203

[29] C. W. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic,
T. King, A. Reynolds, and C. Tinelli, “CVC4,” in Computer
Aided Verification - 23rd International Conference, CAV 2011,
Snowbird, UT, USA, July 14-20, 2011. Proceedings, ser. Lecture
Notes in Computer Science, G. Gopalakrishnan and S. Qadeer,
Eds., vol. 6806. Springer, 2011, pp. 171–177. [Online]. Available:
https://doi.org/10.1007/978-3-642-22110-1_14

[30] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian,
C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis,
E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak,
J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse,
A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford,
M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew,
D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba, “Evaluating
large language models trained on code,” 2021.

[31] P. Cousot and R. Cousot, “An abstract interpretation framework for
termination,” in Proceedings of the 39th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2012,
Philadelphia, Pennsylvania, USA, January 22-28, 2012, J. Field and
M. Hicks, Eds. ACM, 2012, pp. 245–258. [Online]. Available:
https://doi.org/10.1145/2103656.2103687

[32] C. Urban, A. Gurfinkel, and T. Kahsai, “Synthesizing ranking functions
from bits and pieces,” in Tools and Algorithms for the Construction
and Analysis of Systems, M. Chechik and J.-F. Raskin, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2016, pp. 54–70.

[33] M. Brockschmidt, B. Cook, and C. Fuhs, “Better termination
proving through cooperation,” in Computer Aided Verification - 25th
International Conference, CAV 2013, Saint Petersburg, Russia, July
13-19, 2013. Proceedings, ser. Lecture Notes in Computer Science,
N. Sharygina and H. Veith, Eds., vol. 8044. Springer, 2013, pp. 413–
429. [Online]. Available: https://doi.org/10.1007/978-3-642-39799-8_28

[34] M. Giacobbe, D. Kroening, and J. Parsert, “Neural termination
analysis,” in Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2022, Singapore, Singapore, November 14-18,
2022, A. Roychoudhury, C. Cadar, and M. Kim, Eds. ACM, 2022, pp.
633–645. [Online]. Available: https://doi.org/10.1145/3540250.3549120

117

http://doi.acm.org/10.1145/2908080.2908099
http://doi.acm.org/10.1145/2908080.2908099
https://doi.org/10.1007/978-3-319-66706-5_4
https://doi.org/10.1145/2837614.2837664
https://api.semanticscholar.org/CorpusID:211027794
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2305.10403
https://doi.org/10.48550/arXiv.2307.09288
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://github.com/features/copilot
https://aws.amazon.com/codewhisperer/
https://aws.amazon.com/codewhisperer/
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://platform.openai.com/docs/models/gpt-3-5
http://frama-c.com/download/e-acsl/e-acsl-manual.pdf
http://frama-c.com/download/e-acsl/e-acsl-manual.pdf
https://doi.org/10.1145/3192366.3192416
https://github.com/TermCOMP/TPDB
https://doi.org/10.1145/3540250.3549129
https://doi.org/10.1145/3540250.3549129
https://inria.hal.science/hal-01960203
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1145/2103656.2103687
https://doi.org/10.1007/978-3-642-39799-8_28
https://doi.org/10.1145/3540250.3549120

[35] J. Leike and M. Heizmann, “Ranking Templates for Linear Loops,”
Logical Methods in Computer Science, vol. Volume 11, Issue 1, Mar.
2015. [Online]. Available: http://lmcs.episciences.org/797

[36] A. M. Ben-Amram and S. Genaim, “On multiphase-linear ranking
functions,” CoRR, vol. abs/1703.07547, 2017. [Online]. Available:
http://arxiv.org/abs/1703.07547

[37] M. Colón and H. Sipma, “Synthesis of linear ranking functions,”
in Tools and Algorithms for the Construction and Analysis of
Systems, 7th International Conference, TACAS 2001 Held as Part
of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2001 Genova, Italy, April 2-6, 2001, Proceedings,
ser. Lecture Notes in Computer Science, T. Margaria and W. Yi,
Eds., vol. 2031. Springer, 2001, pp. 67–81. [Online]. Available:
https://doi.org/10.1007/3-540-45319-9_6

[38] A. R. Bradley, Z. Manna, and H. B. Sipma, “Linear ranking
with reachability,” in Computer Aided Verification, 17th International
Conference, CAV 2005, Edinburgh, Scotland, UK, July 6-10, 2005,
Proceedings, ser. Lecture Notes in Computer Science, K. Etessami
and S. K. Rajamani, Eds., vol. 3576. Springer, 2005, pp. 491–504.
[Online]. Available: https://doi.org/10.1007/11513988_48

[39] ——, “The polyranking principle,” in Automata, Languages and
Programming, 32nd International Colloquium, ICALP 2005, Lisbon,
Portugal, July 11-15, 2005, Proceedings, ser. Lecture Notes in Computer
Science, L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and
M. Yung, Eds., vol. 3580. Springer, 2005, pp. 1349–1361. [Online].
Available: https://doi.org/10.1007/11523468_109

[40] A. Podelski and A. Rybalchenko, “A complete method for the
synthesis of linear ranking functions,” in Verification, Model Checking,
and Abstract Interpretation, 5th International Conference, VMCAI
2004, Venice, Italy, January 11-13, 2004, Proceedings, ser. Lecture
Notes in Computer Science, B. Steffen and G. Levi, Eds.,
vol. 2937. Springer, 2004, pp. 239–251. [Online]. Available:
https://doi.org/10.1007/978-3-540-24622-0_20

[41] K. Pei, D. Bieber, K. Shi, C. Sutton, and P. Yin, “Can large language
models reason about program invariants?” in Proceedings of the 40th
International Conference on Machine Learning, ser. ICML’23, 2023.

[42] H. Wu, C. Barrett, and N. Narodytska, “Lemur: Integrating large
language models in automated program verification,” 2023.

[43] J. Yao, Z. Zhou, W. Chen, and W. Cui, “Leveraging large language
models for automated proof synthesis in rust,” 2023.

[44] S. Chakraborty, S. K. Lahiri, S. Fakhoury, M. Musuvathi, A. Lal,
A. Rastogi, A. Senthilnathan, R. Sharma, and N. Swamy, “Ranking llm-
generated loop invariants for program verification,” in Findings of The
2023 Conference on Empirical Methods in Natural Language Processing
(EMNLP-findings 2023), 2023.

[45] E. First, M. N. Rabe, T. Ringer, and Y. Brun, “Baldur: Whole-proof
generation and repair with large language models,” 2023.

[46] K. Yang, A. M. Swope, A. Gu, R. Chalamala, P. Song, S. Yu, S. Godil,
R. Prenger, and A. Anandkumar, “Leandojo: Theorem proving with
retrieval-augmented language models,” 2023.

[47] A. Lozhkov, R. Li, L. B. Allal, F. Cassano, J. Lamy-Poirier, N. Tazi,
A. Tang, D. Pykhtar, J. Liu, Y. Wei, T. Liu, M. Tian, D. Kocetkov,
A. Zucker, Y. Belkada, Z. Wang, Q. Liu, D. Abulkhanov, I. Paul, Z. Li,
W.-D. Li, M. Risdal, J. Li, J. Zhu, T. Y. Zhuo, E. Zheltonozhskii,
N. O. O. Dade, W. Yu, L. Krauß, N. Jain, Y. Su, X. He, M. Dey, E. Abati,
Y. Chai, N. Muennighoff, X. Tang, M. Oblokulov, C. Akiki, M. Marone,
C. Mou, M. Mishra, A. Gu, B. Hui, T. Dao, A. Zebaze, O. Dehaene,
N. Patry, C. Xu, J. McAuley, H. Hu, T. Scholak, S. Paquet, J. Robinson,
C. J. Anderson, N. Chapados, M. Patwary, N. Tajbakhsh, Y. Jernite,
C. M. Ferrandis, L. Zhang, S. Hughes, T. Wolf, A. Guha, L. von Werra,
and H. de Vries, “Starcoder 2 and the stack v2: The next generation,”
2024.

[48] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone, C. Akiki, J. Li, J. Chim, Q. Liu, E. Zheltonozhskii,
T. Y. Zhuo, T. Wang, O. Dehaene, M. Davaadorj, J. Lamy-Poirier,
J. Monteiro, O. Shliazhko, N. Gontier, N. Meade, A. Zebaze, M.-H.
Yee, L. K. Umapathi, J. Zhu, B. Lipkin, M. Oblokulov, Z. Wang,
R. Murthy, J. Stillerman, S. S. Patel, D. Abulkhanov, M. Zocca,
M. Dey, Z. Zhang, N. Fahmy, U. Bhattacharyya, W. Yu, S. Singh,
S. Luccioni, P. Villegas, M. Kunakov, F. Zhdanov, M. Romero, T. Lee,
N. Timor, J. Ding, C. Schlesinger, H. Schoelkopf, J. Ebert, T. Dao,
M. Mishra, A. Gu, J. Robinson, C. J. Anderson, B. Dolan-Gavitt,
D. Contractor, S. Reddy, D. Fried, D. Bahdanau, Y. Jernite, C. M.
Ferrandis, S. Hughes, T. Wolf, A. Guha, L. von Werra, and H. de Vries,

“Starcoder: may the source be with you!” 2023. [Online]. Available:
https://arxiv.org/abs/2305.06161

[49] Q. Zhu, D. Guo, Z. Shao, D. Yang, P. Wang, R. Xu, Y. Wu, Y. Li, H. Gao,
S. Ma et al., “Deepseek-coder-v2: Breaking the barrier of closed-source
models in code intelligence,” arXiv preprint arXiv:2406.11931, 2024.

118

http://lmcs.episciences.org/797
http://arxiv.org/abs/1703.07547
https://doi.org/10.1007/3-540-45319-9_6
https://doi.org/10.1007/11513988_48
https://doi.org/10.1007/11523468_109
https://doi.org/10.1007/978-3-540-24622-0_20
https://arxiv.org/abs/2305.06161

Formal Methods in Computer-Aided Design 2024

Translating Natural Language to Temporal Logics
with Large Language Models and Model Checkers

Daniel Mendoza
Stanford University
Stanford, CA, USA
dmendo@stanford.edu

Christopher Hahn†
X, the moonshot factory
Mountain View, CA, USA
chrishahn@google.com

Caroline Trippel
Stanford University
Stanford, CA, USA
trippel@stanford.edu

Abstract—Automating translation from natural language (NL)
to temporal logic (TL) specifications offers to democratize verifi-
cation of hardware systems. However, this vision is challenged by
(i) inherent ambiguity in NL, which can create multiple plausible
translation possibilities, and (ii) the need to validate translation
output, when the translator can make mistakes. To address these
challenges, we propose SYNTHTL, an interactive approach and
tool, which uses large language models (LLMs), model checkers,
and oracle (human) guidance, to translate an NL specification
of a hardware design’s intended behavior into a TL specification
that reflects the NL and holds (formally) on the design.
SYNTHTL performs structured translation, whereby it first de-

composes a complex unstructured NL specification into a logical
combination of simple NL sub-specifications. Then, it produces
TL translations of the simple NL sub-specifications, called sub-
translations, and mechanically combines these sub-translations
to yield a TL translation of the complex NL specification.
This approach significantly reduces the oracle effort required
to validate the translation output, since only sub-translations
and the logical relationships between them need to be inspected.
Plus, it enables the design of automated model checker utilities,
which efficiently guide the search for a translation that holds
on the design, despite inherent NL ambiguity. With SYNTHTL,
we conduct the largest LLM-assisted NL to TL specification
translation case study to date, producing a correct formalization
of the Arm AMBA AHB bus protocol.

I. INTRODUCTION

Hardware verification involves checking that a Design Un-
der Test (DUT) upholds desired properties through simula-
tion, formal model checking, and/or runtime verification [1].
These properties, or specifications, are typically expressed as
Temporal Logic (TL) formulas (e.g., using Linear Temporal
Logic (LTL) [2], SystemVerilog Assertions (SVAs) [3], or
Property Specification Language (PSL) [4] syntax), which
formally define sets of allowed execution traces on the DUT.
Today, verification experts manually derive TL specifications
for a DUT from (hardware designer-friendly) natural language
(NL) specifications. Consequently, the time and resources
required to produce thorough design-specific TL specifications
limits the application of verification in practice [5].
The NL to TL specification translation bottleneck is a nat-

ural target for natural language processing (NLP) approaches
(e.g., Large Language Models, or LLMs), which have recently
been deployed to resolve it [6], [7], [8], [9], [10], [11],

†Work done while at Stanford University.

Fig. 1: Sub-translation tree that mechanically composes to pro-
duce LTL specification:G((HREADY∧!HWRITE ∧ (HTRANS SEQ

∨HTRANS NONSEQ))→X(OUT DATA↔ HRDATA)). Nodes
(sub-translations) consist of an NL sub-specification and a
corresponding TL sub-specification. Directed edges from a
parent node to its children denote a decomposition.

[12], [13]. Yet, NLP is not a panacea. First, producing TL
specifications that capture the intent of NL is challenged by
its inherent ambiguity; a single NL phrase may represent
many plausible TL formulae. Second, NLP approaches are
susceptible to producing blatantly incorrect outputs.
For these reasons, NLP-based NL to TL specification

translation can produce an abundance of candidate outputs,
especially when specifications are complex. For instance,
GPT4 [14] generates over 100K unique TL specification
possibilities when translating an NL specification of the arbiter
component of the Arm AMBA AHB bus protocol [15], [16] to
TL in our case study (§V). Existing NLP-based TL formaliza-
tion approaches thus rely on a human user to manually validate
final generated outputs, i.e., full TL specifications [6], [7], [8],
[9], [10], [11], [12], [13]. Unfortunately though, validating full
output specifications can be just as difficult as writing them
from scratch.

A. This Paper

We propose SYNTHTL, an approach and tool that uses
LLMs, model checkers, and oracle (human) guidance, to
translate an NL specification of some DUT’s desired behavior
into a TL specification that reflects the NL and holds (for-
mally) on the DUT. SYNTHTL leverages LLMs to perform
structured translation of unstructured NL, whereby it first
decomposes a complex unstructured input NL specification
(i.e., an NL specification that does not conform to a predefined

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 17 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_17
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_17
https://creativecommons.org/licenses/by/4.0/

grammar) into a logical combination of simple NL sub-
specifications. Then, it translates each NL sub-specification
to a TL sub-specification and mechanically combines all TL
sub-specifications according to their logical structure to yield
a complete output TL specification.
SYNTHTL’s structured translation procedure can be visu-

alized as a sub-translation tree (Figure 1). Nodes represent
sub-translations, consisting of an NL sub-specification and
a TL sub-specification, and labeled directed edges denote
a decomposition of a parent sub-translation into a logical
combination of simpler child sub-translations. The NL sub-
specification of a sub-translation tree’s root node is the (full)
NL specification input to SYNTHTL, from which the tree
is recursively generated using LLMs (with optional oracle
input) as follows. First, SYNTHTL introduces zero or more
fresh symbols to represent (serve as “placeholders” for) unique
strict substrings in a parent node’s NL sub-specification. Then,
it generates the parent node’s TL sub-specification as a TL
formula over these symbols. Finally, for each symbol, it
instantiates a child node, whose incoming edge is labeled with
the symbol and whose NL sub-specification is the substring
that the symbol represents.
SYNTHTL expects the oracle to inspect each node of a

complete sub-translation tree to validate that its TL sub-
specification is a reasonable translation of its NL sub-
specification and that its child nodes exhibit a reasonable de-
composition. Inaccuracies are corrected by the oracle, possibly
with the help of LLMs or other external tooling. Upon oracle
sign-off, SYNTHTL uses model checkers to evaluate whether
the full tree’s corresponding (mechanically generated) TL
specification holds on the DUT. If it does, the NL specification,
TL specification, and DUT are all deemed correct, since oracle
sign-off (earlier) confirms the TL specification is consistent
with the NL specification. If it does not, there is a bug in the
(consistent) NL/TL specifications and/or the DUT, warranting
further oracle investigation.
Our primary insight is that SYNTHTL’s structured trans-

lation approach drastically reduces overall oracle effort. First,
when validating a sub-translation tree, an oracle need only
inspect simple sub-translations (nodes) and their immediate
decompositions (children) and never the end-to-end translation
(i.e., full TL specification). Second, model checkers can lever-
age this tree structure to guide the oracle towards an NL/TL
specification or DUT fix when oracle tree validation or model
checker TL specification evaluation fails.
SYNTHTL offers two such model checker-guided utili-

ties: culprit identification and translation search. When an
output TL specification does not hold on the DUT, culprit
identification uses model checkers to find sub-translations
(from its sub-translation tree) that logically contribute to the
failing output specification. The oracle can prioritize fixing
these sub-translations (i.e., NL/TL sub-specifications), their
decompositions, or the DUT, as appropriate. To account for
inherent ambiguity in NL and/or inaccurate sub-translations,
translation search enables the oracle to provide (manually or
using an LLM) multiple decomposition options and/or TL sub-

specification options per tree node, yielding set of possible
sub-translation trees (syntactically unique TL specifications)
to be systematically checked against the DUT.

Unsurprisingly, SYNTHTL’s translation search utility often
produces a set of unique sub-translation trees that is too large
to model check exhaustively. However, our secondary insight
is that SYNTHTL’s structured translation can be exploited
to make this analysis practical. First, SYNTHTL’s translation
search utility is designed to detect inconsistent sub-trees,
which cannot be extended to a full TL specification that holds
on the DUT; its sub-tree pruning optimization discards all sub-
translations trees that contain these sub-trees to avoid redun-
dantly checking them on the DUT. Second, translation search
uses a batch model checking optimization, which identifies all
unique conjunctive clauses among the remaining (not pruned)
full translations that must be checked on the DUT and queries
a model checker at most once for each.

Overall, this paper significantly eases the burden of NL to
TL specification translation via the following contributions:

• SYNTHTL Approach & Tool: We propose SYNTHTL
to translate NL to TL specifications that both represent
the intent of the NL and hold on some target DUT, using
LLMs, model checkers, and oracle guidance.

• Structured Translation: SYNTHTL decomposes a (com-
plex) NL to TL translation problem into a set of simpler,
mechanically-composable sub-problems, organized as a
sub-translation tree, that are easier to solve and validate.

• Model Checker-Guided Translation: SYNTHTL uses
model checkers to guide an oracle towards a correct
NL to TL translation by flagging potential culprit sub-
translations when an output TL specification does not
hold on the DUT and efficiently uncovering a correct
translation out of a large space of possible options.

• Case Study: We use SYNTHTL to translate three real-
world NL specifications—comprising the Arm AMBA
AHB bus protocol [15], [16]—to LTL. Our evalu-
ation features much larger NL specifications (maxi-
mum/average of 643/449 words) and TL specifications
(maximum/average of 490/434 symbols, i.e., LTL oper-
ators and variables) than prior work, which focuses on
individual NL properties within a larger specification.
For comparison, each NL specification in the recent
nl2spec dataset [6] contains a maximum/average 21/10
words; TL specifications contain a maximum/average of
37/10 symbols. Among 7.26e16 LLM-generated candi-
date TL specifications for an NL specification of the
controller component of the AMBA AHB protocol, SYN-
THTL converges to a correct one, consisting of 56 sub-
translations. In doing so, SYNTHTL queries an oracle
to validate 96 sub-translations and to fix 18/11 TL sub-
specification/decompositions, where the average TL for-
mula fixed by the oracle is 3% the size of the full correct
TL specification.

120

Fig. 2: Existing NL to TL specification translation approaches
(left) rely on manual validation of full TL specifications.
SYNTHTL (right) reduces manual effort using sub-translation
trees and model checker guidance.

II. RELATED WORK AND MOTIVATION

In this section, we give an overview of prior work on
translating structured (§II-A) and unstructured (§II-B) NL to
TL specifications in order to motivate SYNTHTL (§II-C),
which translates unstructured NL to TL.

A. Structured Translation of Structured NL

Early work on NL to TL specification translation requires
structured NL as input, i.e., NL that conforms to a pre-defined
grammar [17], [18], [19], [20]. By mechanically deriving an
output TL specification from a structured NL input, these
approaches conduct structured translation, similar to SYN-
THTL once it has produced a sub-translation tree. The output
TL specification is guaranteed to be correct if the input NL
specification is. However, supplying structured NL inputs can
be burdensome.

B. Unstructured Translation of Unstructured NL

Recent NLP advances have inspired numerous efforts to
translate unstructured NL (i.e., no grammar restrictions) to
TL specifications, e.g., using LLMs [6], [8], [9], [11], [12],
[10] and other NLP methods [7], [13]. Unlike SYNTHTL,
these approaches conduct unstructured translation, meaning
that an LLM or NLP algorithm ultimately constructs the final
TL specification output in one shot (Figure 2, left).
Translating unstructured NL is challenged by its inherent

ambiguity, e.g., the phrase “signal READY holds” can be
formulated in various plausible ways, like the following in
LTL: READY, XREADY, GREADY, READY ↔ XREADY. Plus,
NLP is prone to making translation mistakes. To resolve both
issues, prior work [6], [7], [8], [9], [10], [11], [12], [13]
expects a user to manually validate the final formalization
output, confirming that it captures the intent of the NL input.
Unfortunately, this validation step can be just as difficult

as manually performing the entire NL to TL specification
translation task. Moreover, when a translated TL specification
is deemed inconsistent with the DUT (e.g., by a model
checker), localizing bugs in the input NL specification, output
TL specification, and/or DUT is difficult, as is fixing them.

We categorize prior work on unstructured translation of NL
to TL specifications based on whether translation is conducted
end-to-end (§II-B1) or interactively (§II-B2).
1) End-to-end Translation: End-to-end approaches [10],

[11], [8], [12], [13], [9] deploy specialized prompting or
training schemes to elicit accurate NL to TL specification
translations from an NLP model without soliciting user input
beyond the NL specification itself.
2) Interactive Translation: Interactive approaches, like

LTLtalk [7] and nl2spec [6], query the user to validate/fix
candidate translations before the final output is produced.C
LTLtalk [7] queries a user to accept or reject sample traces

from full candidate TL specifications. But, manually analyzing
traces of a complex TL specification is challenging.
Similar to SYNTHTL, nl2spec [6] decomposes the trans-

lation task into easier sub-translations and queries a human
oracle to fix sub-translations. However, since no structure is
enforced among sub-translations, nl2spec requires an LLM
to compose them into a full TL specification in one shot. Plus,
this lack of structure means that formal model checking cannot
be applied to automatically localize errors or fix particular sub-
translations.

C. Our Approach: Structured Translation of Unstructured NL

We propose structured translation of unstructured NL to TL
specifications with SYNTHTL (Figure 2, right).
Without loss of generality, we focus our discussion on

translating NL to LTL [2], which extends propositional logic
with temporal operators including U (until), X (next), F
(eventually), and G (globally). Figure 1 illustrates a property
from the AMBA AHB bus protocol specification [15], [16]
formalized in LTL. Operators can be nested (e.g., GFφ means
φ occurs infinitely often).
SYNTHTL uses LLMs, model checkers, and oracle guidance

to iteratively transform an input unstructured NL specification
into a logical combination of sub-translations, which are
mechanically combined to yield an output TL specification.
Thus, the oracle (user) need only manually validate (sim-
pler) sub-translations and their logical organization, but never
full TL specifications. Plus, this logical organization enables
SYNTHTL to localize inconsistencies between an output TL
specification and the DUT to sub-translations and efficiently
guide the translation procedure towards bug fixes.

III. SYNTHTL APPROACH AND TOOL: STRUCTURED
TRANSLATION OF UNSTRUCTURED NATURAL LANGUAGE

TO TEMPORAL LOGICS

We present the SYNTHTL approach and tool in this section
and detail its model checker utilities in §IV. Figure 3 illustrates
how SYNTHTL translates NL phrases from the AMBA AHB
bus protocol specification [15], [16] into an LTL specification.

A. Interactive TL Specification Generation

Given an input NL specification, SYNTHTL performs auto-
mated sub-translation tree generation using LLMs and queries
an oracle to validate the resulting tree(s). A sub-translation

121

Fig. 3: For each NL sub-specification, SYNTHTL generates
multiple possible decompositions and TL sub-specifications.
An oracle may accept/reject (thumbs up/down) any of them.
To determine if a sub-translation tree’s TL specification holds
on the DUT, SYNTHTL checks if each of its TL specification
holds or not (checks or “x”s). If no tree holds, SYNTHTL flags
sub-translations as potential root causes (red nodes).

tree (e.g., Figure 1) represents a single complete translation
from an input NL specification to an output TL specification.
Each node is a sub-translation, which consists of an NL sub-
specification and a corresponding TL sub-specification. La-
beled edges denote a decomposition of a parent sub-translation
into a logical combination of simpler child sub-translations.
1) Sub-Translation Tree Generation and Validation: In

sub-translation tree generation, SYNTHTL first instantiates a
sub-translation tree root node whose NL sub-specification is
populated with the input NL specification. It then uses LLMs
(with optional user guidance) to generate a complete tree by
recursively decomposing and translating nodes, starting with
the root.
Decomposing a parent node involves first introducing zero

or more fresh symbols, each of which serves as a represen-
tative for a unique strict substring in the parent’s NL sub-
specification. For each symbol, a child node is instantiated,
with the symbol labeling the directed edge from parent to
child. For example, in Figure 1, A labels the edge from the
root node to its left child and represents the substring “read
transaction is in progress and HREADY is high.” The parent
node’s TL sub-specification is then produced by translating
its NL sub-specification under the mapping of its substrings
to their representative symbols.
In practice, when supplied with an input NL specification,

SYNTHTL generates from it a set of sub-translation trees. In
particular, for each parent node, it generates up to D unique
decomposition options and K unique TL sub-specification
options per decomposition; K and D are hyperparameters,
which specify the number of LLM queries. While SYNTHTL
deploys LLMs to conduct this step, it discards decompo-
sitions either where the symbols do not represent unique
strict substrings within the parent’s NL sub-specification or
where one symbol represents a substring of another symbol
(i.e., redundant symbols). SYNTHTL also discards TL sub-
specifications that: are not well-formed, are trivial (i.e., ⊤
or ⊥), do not use all symbols that label edges to its node’s
children, or use symbols beyond those that represent its node’s
children and variables defined in the DUT.

Following each node decomposition and TL sub-
specification generation step during sub-translation tree
generation, SYNTHTL queries the oracle to accept/reject
each decomposition and TL sub-specification option
(thumbs up/down in Figure 3). If ever the oracle rejects
all decompositions or TL sub-specifications for a node,
SYNTHTL asks the oracle to provide acceptable ones.
For each accepted decomposition, fresh decomposition,
translation, and validation steps are initiated for its newly-
instantiated children.
Recursion terminates when encountering a node with no

decomposition (i.e., zero symbols/child nodes). A node can-
not be decomposed if the only strict substring that can be
derived from its NL sub-specification is the empty string. In
practice, LLM-based decomposition may terminate before this
condition is reached. For example, in the sub-translation tree
in Figure 1, the NL sub-specification “HREADY is high” has
no decomposition.
2) Structured Translation of Sub-Translation Trees to TL

Specifications: Sub-translation tree generation and valida-
tion produces a set of candidate sub-translation trees, which
can be obtained by performing a cross product among all
validated decomposition and TL sub-specification options
per node. The TL specifications implied by these candidate
sub-translation trees can be derived recursively as follows.
Starting at their root nodes, replace placeholder symbols in
each parent node’s TL sub-specification with the TL sub-
specifications of the symbols’ corresponding children. For ex-
ample, in Figure 1, C ∧ D will be transformed into HREADY ∧
(!HWRITE ∧ (HTRANS SEQ ∨ HTRANS NONSEQ)).
Note that given a sub-translation tree with N nodes, D

decomposition options per node, K TL sub-specification op-
tions per node, the number of candidate sub-translation trees
is O((KD)N). However, validating all generated trees only
requires the oracle to validate decompositions and TL sub-
specifications for each node, and thus the number of times
the oracle validates a decomposition or TL sub-specification
is O(KDN) (significantly lower than all possible trees).
3) LLM Prompts for Sub-Translation Tree Generation:

SYNTHTL queries an LLM during sub-translation tree gen-
eration to decompose NL sub-specifications and to perform
NL to TL sub-specification translation. Our prototype imple-
mentation of SYNTHTL relies on in-context learning [21] with
distinct prompting strategies for each task.
For NL sub-specification decomposition, an LLM is

prompted to output a JSON dictionary, which maps variables
to substrings of the input NL sub-specification. The prompt
includes a description of the decomposition task and examples
of correct decompositions.
For NL to TL sub-specification translation (i.e., to produce

a sub-translation), SYNTHTL prompts an LLM to generate
a TL sub-specification that uses the variables introduced in
the decomposition of its corresponding NL sub-specification.
The prompt presents examples of correct sub-translations
to the LLM. To encourage the LLM to generate TL sub-
specifications that use variables in the DUT, SYNTHTL in-

122

cludes a list of all DUT variable names in the prompt. We
also observe that NL context required to correctly translate an
individual NL sub-specification is often scattered across the
large input NL specification that contains it (as a substring).
To handle such situations, SYNTHTL uses retrieval augmented
generation (RAG) [22] to extract relevant context for an NL
sub-specification within an input NL specification using a
retrieval model. This context is prepended to the TL sub-
specification generation prompt.
4) Sub-Translation Tree Expressiveness: Note that SYN-

THTL extracts structure from unstructured NL to make transla-
tion easier, but it retains full expressiveness of the unstructured
input NL and structured output TL. A sub-translation tree
can be understood as overlaying the inductive structure of a
well-formed TL formula on top of an NL specification. If no
structure can be extracted from the input NL specification, the
result is a tree with just the root node (i.e., no decomposition),
where the node’s corresponding TL sub-specification is the
full TL specification. However, we did not encounter such a
non-decomposable NL specification in our evaluation (§V).
Since TL sub-specifications are TL sub-formulae, and sub-
translation trees recursively define a top-level TL formula
as logical combination of TL sub-specifications using TL
operators, SYNTHTL retains the full expressiveness of the TL.

B. Searching for Translations that Hold on DUT

After sub-translation tree generation and validation
(§III-A1), SYNTHTL deploys a translation search procedure
to find a translation, or more concretely an output TL specifi-
cation, that holds on the DUT out of an exponential number
of candidates (§III-A2). If some TL specification holds on the
DUT, the DUT upholds the NL specification’s requirements,
since the oracle previously confirmed that the TL specification
was a reasonable interpretation of the NL specification (by
validating all sub-translations and decompositions, §III-A1).
If some TL specification does not hold on the DUT, one of
two things could be true: the NL and TL specifications are
consistent (due to oracle sign-off), and there is a bug in the
DUT; or the NL and TL specifications are inconsistent (due to
ambiguity that lead to an errant oracle sign-off). In the latter
case, there may or may not be a bug DUT as well.
Given a set of candidate sub-translation trees and their TL

specifications, one could query a model checker to determine
which hold on the DUT. However, exhaustively checking
O((KD)N) TL specifications (§III-A2) is computationally
expensive (and likely infeasible). SYNTHTL’s model checker-
assisted translation search utility (§IV-A) addresses this issue
in two ways. First, it leverages sub-tree pruning (§IV-A1) to
discard many candidate sub-translation trees, which cannot
hold on the DUT due to inconsistent sub-trees. Second, when
checking DUT adherence to the TL specifications that are
not pruned, translation search leverages batch model checking
(§IV-A2) to ensure that common conjunctive clauses among
these specifications are checked at most once. Note that
if multiple TL specifications hold on the DUT, SYNTHTL
returns only the most constrained (i.e., most restrictive) ones

Fig. 4: Example of how SYNTHTL’s users may fix a culprit
node’s decompositions (left), NL sub-specification (middle), or
TL sub-specifications (right). After editing a decomposition or
NL sub-specification, SYNTHTL returns to its sub-translation
generation and validation (§III-A1) step to generate new
decompositions and TL sub-specifications for the modified
node. This is followed by translation search (and culprit
identification if needed) (§III-B). After editing a TL sub-
specification or the DUT, SYNTHTL returns to its translation
search step.

by default; however, it can be configured to return all TL
specifications that hold.
If no candidate sub-translation tree produces a TL speci-

fication that holds on the DUT, SYNTHTL’s model checker-
assisted culprit identification utility (§IV-B) outputs a set of the
least constrained trees/specifications among them. Rather than
require the user to manually analyze each failing specification,
culprit identification flags a subset of the nodes in their
corresponding sub-translation trees, which may be relevant for
the inconsistency (red nodes in Figure 3).

C. Fixing Culprit Sub-Translations or the DUT

Once culprit nodes have been identified (§III-B), the oracle
can elect to fix the DUT, the NL/TL sub-specifications within
culprit nodes, and/or decompositions of culprit nodes. After
applying a fix, the SYNTHTL procedure returns back to and
repeats an earlier analysis phase as follows. If the oracle
modifies an NL sub-specification or decomposition of a culprit
node, SYNTHTL goes back to its sub-translation and validation
step (§III-A1) to interactively (with the oracle) propagate
the these changes by re-generating TL sub-specifications and
decompositions for edited nodes. Figure 4 demonstrates ex-
amples for which a decomposition is modified (left) and NL
sub-specification is modified (middle). If the oracle modifies
the DUT or a TL sub-specification, SYNTHTL returns back
to its translation search step (§III-B) to check if the edits
give rise to a full TL specification that holds on the DUT.
Figure 4 illustrates an example in which a TL sub-specification
is modified (right).

123

Algorithm 1 Translation Search Algorithm
1: function TSEARCH(n, SIN ,mode)
2: res = {}
3: for decomposition in getNodeDcmps(n, SIN) do
4: n.setChildren(decomposition)
5: if mode = LC then ▷ get TL sub-specifications for n
6: subTLSet = getLCNodeSubTL(n, SIN) ▷ get LC TL for n
7: else
8: subTLSet = getAllNodeSubTL(n, SIN) ▷ get all TL for n
9: for subTLSpec in subTLSet do
10: n.setSubTL(subTLSpec)
11: if mode ̸= LC then ▷ Check least constrained trees first
12: Cn = {T | T ∈ SIN ∧ tn ∈ T} ▷ trees that contain tn
13: C = TSEARCH(Root(tn), Cn, LC) ▷ get LC trees
14: CDUT = {T | T ∈ C ∧ T |= DUT} ▷ check LC trees
15: if mode = LC ∨ CDUT ̸= ∅ then ▷ Recurse to children of n
16: cList = [TSEARCH(child, SIN ,mode) for child in n]
17: for c1, c2, . . . in crossProduct(cList) do
18: n′ = copy(n).setChildren(c1, c2, . . .)
19: res.add(n′)
20: return res

IV. SYNTHTL UTILITIES: MODEL CHECKER-GUIDED
TRANSLATION SEARCH AND CULPRIT IDENTIFICATION

We now provide more details on SYNTHTL’s model
checker-guided utilities: translation search (§IV-A), which
features sub-tree pruning (§IV-A1) and batch model checking
(§IV-A2), and culprit identification (§IV-B).

A. Translation Search Utility

SYNTHTL’s translation search procedure takes as input a
set of sub-translation trees. Let SIN = {T1, T2, ...} denote the
input set of trees, each of which represents a TL specification
(i.e., a TL formula). Given SIN , translation search outputs
the set SOUT ⊆ SIN . If one or more input TL specifications
hold on the DUT, SOUT contains the most constrained TL
specifications that hold on the DUT. If none hold (i.e., SOUT
is empty), SYNTHTL employs culprit identification (§IV-B).
Note that there can be multiple most/least constrained TL
specifications, because in general, TL specifications may not
be strict supersets or subsets of one another.
Concretely, translation search returns:
SOUT = {T | T ∈ SIN ∧ T |= DUT ∧ ∀i, Ti ∈ SIN ∧ (T ̸=

Ti → T ̸|= Ti)}
1) Sub-Tree Pruning in Translation Search: SYNTHTL’s

translation search coordinates the instantiation of candidate
sub-translation trees that result from sub-translation tree gen-
eration and validation (§III-A1). To obtain the set of all
candidate sub-translation trees, one could naively take the
cross product of all possible decompositions and TL sub-
specifications (§III-A2). However, translation search avoids
exhaustively constructing and checking all TL specifications
by incrementally constructing these candidate trees (i.e., incre-
mentally constructing the cross product) node by node starting
at the root and preemptively pruning candidate trees before
they are fully generated. The pseudocode for this procedure,
called TSEARCH, is shown in Algorithm 1 and detailed below.
Translation search uses TSEARCH to obtain a pruned set of

Algorithm 2 Batch Model Checking Algorithm
1: function BATCHMC(tSet,DUT)
2: Hclause = hashTable() ▷ Initialize hash table, mapping clause to trees
3: for T in tSet do
4: for clause in getCNF(T) do
5: Hclause[clause].add(T) ▷ Add all CNF clauses to hash table
6: while |Hclause| > 0 do ▷ Loop while clauses left to check
7: Dclause = {} ▷ Clauses checked in current iteration
8: DT = {} ▷ Trees that do not hold on DUT in current iteration
9: for clause in Hclause do
10: Dclause.add(clause)
11: if clause ̸|= DUT then ▷ Check if clause holds on DUT
12: DT = Hclause[clause] ▷ found inconsistent clause
13: break
14: for clause in Hclause do ▷ Update trees in hash table
15: Hclause[clause] = Hclause[clause]−DT

16: if |Hclause[clause]| == 0 then
17: Dclause.add(clause) ▷ Remove clause if all trees not hold
18: tSet = tSet−DT ▷ Remove trees inconsistent with DUT
19: Hclause = Hclause −Dclause ▷ Remove clauses already checked
20: return tSet

possible TL specifications, and then checks them against the
DUT to obtain SOUT.

TSEARCH starts from a root node n, input tree set SIN , and
mode ̸= LC; the mode variable indicates whether TSEARCH
should output all sub-translation trees that may hold on the
DUT (mode ̸= LC), or the least constrained (LC) set of trees
among all possible (mode = LC). TSEARCH constructs all
decompositions (line 3) and all TL sub-specifications (line 9)
of node n and conditionally recurses to each of its child nodes
(line 15). Given the recursion condition is true, the set of all
possible trees that contain node n is obtained through a cross
product of each possible child sub-tree of node n (§III-A2,
line 16 - 19).
Suppose node n has just been instantiated, and let tn

denote a partially constructed sub-tree up to and including n.
TSEARCH only recurses to n’s child nodes along a particular
decomposition if it is possible to extend sub-tree tn to a TL
specification that holds on the DUT (lines 11 - 14). TSEARCH
determines the recursion condition by constructing all of the
least constrained (mode = LC) TL specifications that extend
sub-tree tn (lines 12 - 13), and model checking them against
the DUT (line 14). If none of these least constrained TL
specifications hold on the DUT, then no other trees that extend
sub-tree tn can hold, so TSEARCH can prune them from
consideration (and avoid explicitly checking them against the
DUT) by terminating recursion.
Note that constructing the set of least constrained TL

specifications with sub-tree tn (lines 12 - 13) does not require
exhaustively constructing all trees with sub-tree tn since
TSEARCH with mode = LC (line 13) incrementally constructs
least constrained trees through only considering the least
constrained TL sub-specifications for each node (line 6). Also,
our implementation of Algorithm 1 makes use of memoizing
results to avoid redundant recursive calls (not shown).
2) Batch Model Checking: After obtaining the pruned set of

sub-translation trees, SYNTHTL deploys a novel batch model
checking utility to improve performance of identifying TL

124

Algorithm 3 Conjunctive Clause Extraction Algorithm
1: function EXTRACTCLAUSES(T, n)
2: n.setChildren({})
3: n.setSubTL(id)
4: ΦT = GetTLSpec(T)
5: conjSet = getCNF(ΦT)
6: return {c | c ∈ conjSet if id ∈ c}

specifications that hold on the DUT. Batch model checking,
as shown in Algorithm 2, takes as input a DUT, and a set of
sub-translation trees tSet, and efficiently obtains the subset of
these sub-translation trees that hold on the DUT. Batch model
checking exploits common conjunctive clauses among the set
of TL specifications, so that each conjunctive clause is checked
at most once across all trees.
First, conjunctive clauses for each sub-translation tree are

discovered by transforming its corresponding TL specification
into a conjunctive form (line 4). Second, to identify common
conjunctive clauses among the trees in tSet, a hash table is
used to map clauses to the sub-translation trees that contain
them (lines 2 to 5). Third, as long as the hash table is non-
empty, the algorithm iteratively selects clauses to check against
the DUT with a model checker (lines 6 to 19). Whenever a
clause is found to not hold on the DUT (line 11), all of its
associated sub-translation trees and clauses are pruned from
the hash table (line 14 to 19).

B. Culprit Identification Utility

Suppose that translation search (§III-B) determines that
no TL specifications—from all those produced during sub-
translation tree generation and validation (§III-A1)—hold on
the DUT. At this point, SYNTHTL deploys culprit identi-
fication to identify nodes within the least constrained TL
specifications (among all generated TL specifications) that
are possible culprits for (i.e., possibly contributing to) their
inconsistencies with the DUT. Culprit identification obtains
the set of least constrained TL specification using TSEARCH
(Algorithm 1, §IV-A) with mode = LC starting from the
root node, given the input set of all possible trees from sub-
translation tree generation and validation. A node is a possible
culprit if it contributes to at least one conjunctive clause in a
full TL specification that does not hold on the DUT.
To identify all possible culprit nodes, within a sub-

translation tree T that does not hold on the DUT, SYNTHTL
first extracts for each node n of T the set of conjunctive
clauses in the full TL specification that it contributes to using
Algorithm 3. First, the decomposition of node n is set to
empty (line 2) and its TL sub-specification is set to a special
identifier id (line 3). Then, from this new variant of T , a full
TL specification is constructed (line 4) and transformed into
a conjunctive form (line 5). Finally, the clauses which contain
id are returned (line 6). SYNTHTL then checks if each of the
clauses returned by Algorithm 3 hold on the DUT.
This approach ensures that all nodes that are responsible

for a TL specification’s inconsistency with the DUT are
flagged as possible culprits. However, not all nodes flagged

as possible culprits are true positives, since non-culprits can
contribute to failing clauses. To reduce false positives in culprit
identification, SYNTHTL applies a heuristic filter to prioritize
nodes which are more likely to be true culprits. Instead of
flagging a node as a culprit if it contributes to at least one
failing clause, the heuristic filter only marks a node as a culprit
if all clauses it contributes to fail. Our evaluation demonstrates
this heuristic significantly improves the precision of culprit
identification (fewer false positives) and identifies true culprits
while retaining high accuracy (few false negatives, §V-D).

V. CASE STUDY: TRANSLATING AN INDUSTRIAL NL
SPECIFICATION TO TL WITH SYNTHTL

As a case study, we use SYNTHTL to translate three real-
world NL specifications comprising the Arm AMBA AHB
bus protocol [15], [16] to TL. In doing so, we evaluate
SYNTHTL’s sub-translation tree generation and validation
(§III-A1), translation search (§IV-A), and culprit identification
(§IV-B) components. Moreover, we answer the following ques-
tions: How successful are LLMs in generating sub-translation
trees and to what degree do sub-translation trees reduce
manual effort in validating TL specifications compared to
existing methods (§V-A)? How efficient is translation search
compared to exhaustive search (§V-B)? To what degree does
culprit identification localize inconsistencies with the DUT to
particular sub-translations (§V-D)?
Prototype Implementation Our SYNTHTL prototype con-

sists of ∼3K lines of Python code and queries the open-
source LTL model checker, Spot [23]. Although our prototype
implementation of SYNTHTL deals with LTL, the SYNTHTL
approach can be used to generate formulas in other TLs (e.g.,
SVA [3], PSL [4], STL [24], and so on). We have published our
code (including LLM prompts), the AMBA AHB benchmarks
(taken from prior work [16]), and example generated outputs
in a public repository.1

Benchmarks We evaluate SYNTHTL on three real-world
NL hardware specifications, taken from the AMBA AHB bus
protocol [15], [16], corresponding to its arbiter, controller,
and worker modules. We select these NL specifications for
our experiments for two reasons. First, AMBA AHB is an
industrial protocol that is widely deployed in modern SoCs,
including Arm Cortex-M based designs [25], [26]. Second, it
has already been manually formalized in prior work [16], giv-
ing us “ground truth” TL specifications to use in qualitatively
assessing SYNTHTL’s outputs. The original TL specification
is written in PSL [16], and we manually rewrite it in LTL
since our prototype implementation of SYNTHTL uses LTL
model checking.
For each of the three AMBA AHB hardware modules we

consider, Table I gives the sizes of their published NL specifi-
cations and corresponding ground truth TL specifications [16].
These TL specifications serve the role of “golden” DUTs in
our evaluation.
Large Language Models We conduct our evaluation with

two state-of-the-art LLMs: GPT3.5 and GPT4 [14].
1https://github.com/dmmendo/SynthTL

125

Module Controller Worker Arbiter
NL Size (words) 436 268 643
TL Size (symbols) 460 351 490

TABLE I: Specification sizes used in SYNTHTL’s evaluation.

A. Evaluation of TL Generation and Validation

We compare SYNTHTL’s sub-translation tree generation
and validation (§III-A1) to nl2spec [6], the existing state-of-
the-art approach, in terms of manual effort required to produce
the correct TL specification.
Setup In this experiment, We query the LLM D = K = 3

times to generate decompositions and TL sub-specifications
for each node with SYNTHTL. The oracle selects one correct
TL sub-specification and one correct decomposition for each
sub-translation with SYNTHTL and provides a correct TL
sub-specification/decomposition if none of the LLM-generated
options are correct.
Baseline Given an input NL specification, nl2spec [6]

decomposes it into sub-translations and produces an output
TL specification from the sub-translations, all using an LLM.
The user can iteratively edit sub-translations and request that
nl2spec re-generate (with an LLM) the output TL specifi-
cation from them until the user decides the TL specification
is correct.
Unlike SYNTHTL, nl2spec’s sub-translations are un-

structured (i.e., they are not organized as a sub-translation
tree), and so they cannot be mechanically composed into a
full TL specification. Instead, nl2spec uses an LLM to
perform this composition in one shot. However, this approach
renders nl2spec susceptible to generating inaccurate TL
specifications, even if the user has decided that all sub-
translations are correct.
In terms of oracle effort, both nl2spec and SYNTHTL

require sub-translation validation. However, nl2spec addi-
tionally requires oracle validation of full output TL specifica-
tions, while SYNTHTL additionally asks the oracle to validate
(comparatively much simpler) sub-translation decompositions.
We consider an ideal nl2spec as our baseline, which

is initially (in its first iteration) given a correct set of sub-
translations taken from the leaf nodes of a correct “reference”
SYNTHTL sub-translation tree. Thus, nl2spec need only
compose these sub-translations to produce a correct full TL
specification using an LLM. If the full TL specification
generated by nl2spec in an iteration is incorrect, the or-
acle provides new sub-translations in the next iteration that
compose the current sub-translations by instantiating them
within the context of their parents’ TL sub-specifications in
the reference sub-translation tree. For example, consider a
reference sub-translation tree representing TL specification
(A ∧ B) → (C ∧ D) with two leaf nodes whose TL sub-
specifications are A∧B and C ∧D. The TL sub-specification
of the root node defines the implication (→) between the leaf
nodes. In the first iteration, nl2spec is given the leaf nodes.
If nl2spec does not output the correct TL specification in
the first iteration, the oracle provides (A ∧ B) → (C ∧ D)

in the second iteration. Thus, the sub-translations provided by
the oracle become fewer and more-complex/coarse-grained in
each iteration of nl2spec, approaching the full reference
TL specification. nl2spec continues iterating either until it
generates the correct full TL specification by composing sub-
translations with an LLM or until the oracle supplies the full
TL specification as input (by composing sub-translations from
the previous failed iteration). The LLM is given three tries
(i.e., is queried three times) in each iteration. Incorrect sub-
translations are discarded between iterations.
Metrics For both SYNTHTL and our ideal nl2spec base-

line, we record the following:
• Number of unique generated full TL specifications
(Space Size).

• Number of TL sub-specifications and decompositions
inspected by the oracle (Inspections)

• Number of TL sub-specifications and decompositions
edited by the oracle (Trns Edit and Dcmp Edit). For
each node, the oracle only edits a decomposition or TL
sub-specification if the LLM does not generate one that
is deemed valid by the oracle.

• Number of nodes in final sub-translation tree (Tree Size).
• Size of formulas inspected (Inspect Size) and edited
(Edit Size) by the oracle in number of symbols. A symbol
is an LTL operator or variable. We normalize this quantity
by the size of the ground truth TL specification (from the
handwritten TL specification in prior work [16]).

Results The results are shown in Table II. Across all six
SYNTHTL experiments (three AMBA AHB modules and two
LLM options), SYNTHTL generates up to 9.33e17 and as few
as 8.29e4 unique TL specifications. This result demonstrates
that the input NL specifications for modules of the Arm
AMBA AHB bus protocol are highly ambiguous, despite being
carefully crafted so as to be amenable to formalization [16].
SYNTHTL produces a correct TL specification, with the

oracle inspecting and editing TL sub-specifications that are
on average 2.43% (up to 20.9%) and 2.95% (up to 8.9%)
the size of the ground truth TL specification, respectively.
Further, the oracle edits on average 12.9% (up to 20.6%)
and 37.5% (up to 44.8%) the number of decompositions
and TL sub-specifications, respectively, that exist in the final
sub-translation tree. That is, most decompositions and sub-
translations in the final correct sub-translation tree are auto-
matically generates by the LLM. These results demonstrate
that SYNTHTL requires significantly less manual effort than
both manual end-to-end NL to TL translation and full TL
specification validation.
In all six nl2spec experiments, our ideal nl2spec base-

line fails to produce the correct TL specification. It incorrectly
composes TL specifications despite being given correct the
sub-translations in every iteration. In all cases, the size of
the inspected and edited sub-specifications is significantly
smaller with SYNTHTL compared to nl2spec. This result
demonstrates that SYNTHTL enables LLM-based NL to TL
translation to handle large and complex NL specifications
for the first time. The maximum, average, and total size of

126

Arm AMBA AHB Module Controller Worker Arbiter
Large Language Model GPT3.5 GPT4 GPT3.5 GPT4 GPT3.5 GPT4
Translation Approach SYNTHTL nl2spec SYNTHTL nl2spec SYNTHTL nl2spec SYNTHTL nl2spec SYNTHTL nl2spec SYNTHTL nl2spec

Space Size 7.26e16 5 8.29e4 5 3.05e10 6 2.99e6 6 9.33e17 6 5.97e8 6
Inspections 96 125 92 77 94 90 81 66 107 90 117 94
Trns Edit 18 18 17 18 21 20 16 21 26 22 25 23
Dcmp Edit 11 18 12 18 2 20 0 21 8 22 12 23
Tree Size 56 58 48 47 58 61
Sum Inspect Size 1.515 9.124 1.254 6.898 1.558 11.538 1.197 8.077 2.506 5.543 2.157 8.682
Avg Inspect Size 0.021 0.073 0.020 0.090 0.027 0.128 0.023 0.122 0.028 0.062 0.027 0.092
Max Inspect Size 0.209 1.020 0.150 1 0.142 1.302 0.202 1 0.127 1 0.120 1
Sum Edited Size 0.541 2.585 0.546 2.585 0.627 2.823 0.595 3 0.606 2.773 0.629 2.804
Avg Edited Size 0.030 0.144 0.032 0.144 0.030 0.141 0.037 0.143 0.023 0.126 0.025 0.122
Max Edited Size 0.089 1 0.089 1 0.177 1 0.177 1 0.084 1 0.084 1
Gen Correct? ✓ X ✓ X ✓ X ✓ X ✓ X ✓ X

TABLE II: Generating and validating the AMBA AHB TL specification with SYNTHTL versus nl2spec. Formula size is
normalized by the size of the full ground truth specification.

Module Worker Controller Arbiter
K=2 K=3 K=2 K=3 K=2 K=3

Exhaustive 4096 5832 4096 3888 4096 2916
SYNTHTL 505 376 2052 804 548 184
% Pruned 87.7 93.6 49.9 79.3 86.6 93.7

TABLE III: Exhaustive vs. SYNTHTL’s translation search

Module Arbiter Controller Worker
Formulas 128 128 10000
Clauses 640 62 1512
Variables 19 29 24
Exhaustive (s) 28075.69 10025.26 462.38
SYNTHTL (s) 7622.44 2975.77 13.09
Speedup 3.68 3.37 35.32

TABLE IV: Batch vs. Exhaustive Model Checking

inspected TL sub-specifications is on average 5.32×, 3.94×,
6.97× smaller with SYNTHTL compared to nl2spec, re-
spectively. The maximum, average, and total size of edited
TL sub-specifications is on average 4.68×, 4.68×, 9.61×
smaller with SYNTHTL compared to nl2spec, respectively.
These results show that SYNTHTL’s sub-translation trees
significantly reduce the manual effort required to inspect and
fix sub-translations compared to nl2spec.
Takeaway SYNTHTL significantly reduces manual effort

required to fix and validate LLM-generated TL specifications
compared to prior approaches and enables automatic genera-
tion of large and complex TL specifications.

B. Evaluation of Translation Search

Next, we evaluate the efficiency of translation search
(§IV-A) in discovering a correct TL specification among a
set of sub-translation trees, given a correctly implemented
DUT (i.e., the ground truth TL specification produced in
prior work [16]). To generate a set of sub-translation trees,
we direct SYNTHTL to conduct sub-translation tree gener-
ation and validation (§III-A) and limit the oracle to spec-
ifying one correct decomposition and K = 2, 3 TL sub-
specifications per node, where at least one TL sub-specification
is correct. Note that querying the LLM multiple times for
TL sub-specifications/decompositions may produce equivalent
TL sub-specifications/decompositions and, in such situations,

duplicates are discarded. To evaluate under multiple settings,
we also limit the oracle to only provide multiple TL sub-
specifications for a node if the tree space size would be less
than 213.
Results Table III shows the number of TL specifications

generated and checked on the DUT with SYNTHTL’s trans-
lation search utility (SYNTHTL row) versus exhaustively
searching all trees in the input set (Exhaustive row), i.e., the
maximum number of TL specifications to check on the DUT.
In all cases, translation search explores significantly fewer
sub-translation trees than the exhaustive approach to find the
correct TL specification. SYNTHTL prunes as many as 93.6%,
79.3%, 94.7% of the search space for the arbiter, controller,
and worker, respectively.
Takeaway SYNTHTL’s translation search greatly improves

the scalability of model checking many translation possibilities
for a given NL specification through effective sub-tree pruning.

C. Evaluation of Batch Model Checking

We now evaluate the efficacy of SYNTHTL’s batch model
checking optimization (§IV-A2) in accelerating model check-
ing many TL specifications against a DUT.
Results Table IV shows runtimes of exhaustive and batch

model checking for a set of sub-translation trees generated by
an LLM with SYNTHTL’s sub-translation generation. Batch
model checking is 3.68×, 3.37×, 35.32× faster compared
to exhaustive model checking for the arbiter, controller, and
worker, respectively.
Takeaway Batch model checking significantly accelerates

model checking large sets of TL specifications.

D. Evaluation of Culprit Identification

We now evaluate the effectiveness of SYNTHTL’s culprit
identification in localizing inconsistencies with the DUT to
particular sub-translations (§IV-B) when a sub-translation tree
contains an incorrect sub-translation (§V-D1), and when the
DUT is incorrectly implemented (§V-D2). Note that AC refers
to culprit identification with no heuristic filters, and FC refers
to the approach with the heuristic filter (§IV-B).

127

Module Controller Worker Arbiter
Bug G X ¬ G X ¬ G X ¬
Ex. 13 35 28 16 41 53 11 23 30
App. AC FC AC FC AC FC AC FC AC FC AC FC AC FC AC FC AC FC
% Clpt 57.0 34.5 67.0 45.2 58.0 32.0 68.9 47.4 70.7 50.1 65.7 40.4 52.23 22.1 54.7 24.2 58.3 31.1
Recall 1 0.92 1 0.97 1 1 1 1 1 1 1 0.96 1 0.91 1 0.91 1 1

TABLE V: Culprit Identification given an incorrect AMBA AHB TL specification

Module Controller Worker Arbiter
Bug G X ¬ G X ¬ G X ¬
Ex. 3 8 10 16 42 50 2 9 10
App. AC FC AC FC AC FC AC FC AC FC AC FC AC FC AC FC AC FC
% Clpt 42.5 6.3 41.4 5.2 53.1 24.1 59.7 30.7 61.2 33.8 67.4 44.4 42.9 6.4 48.7 16.1 53.8 24.4
Recall 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TABLE VI: Culprit Identification given an incorrect AMBA AHB DUT

1) Culprit Identification Given an Incorrect TL Specifica-
tion and a Correct DUT: To emulate a sub-translation tree that
contains an incorrect sub-translation that causes the full TL
specification to not hold on a correctly implemented DUT, we
insert bugs into a correct sub-translation tree. Given a correct
sub-translation tree, we randomly select a node, and change
the sub-specification by adding an operator (i.e., either G, X ,
or ¬). If the perturbation causes the TL specification to not
hold on the DUT, then we run culprit identification and record
the percentage of nodes flagged as possible culprits and if the
set of possible culprits contains the true culprit.
Results Table V shows the number examples evaluated

per perturbation, the average percentage of nodes that are
marked as possible culprits per perturbation, and the fraction
of examples where the possible culprit set contained the true
culprit (recall). AC flags on average 56.8% of the nodes, and
the identified possible culprit set always contains the true
culprit (i.e., recall is always 1). FC flags 38.5% of the nodes
(fewer than AC), however, due to its heuristic nature, catches
the true culprit in 97.1% of all cases (fewer than AC).
In Figure 5, we show the percentage of nodes in the sub-

translation tree that are marked as possible culprits versus the
percentage of true culprits in the sub-translation tree when
perturbing randomly selected sub-translations with incorrect
LLM-generated sub-specifications. Note that the percentage of
true culprits does not go to 100%, because the LLM-generated
sub-specifications for the remaining set of nodes do not cause
inconsistencies with the DUT. In all cases both AC and FC
find all the true culprits. The percentage of nodes flagged as
possible culprits increases with the percentage of true culprits
in the sub-translation tree. AC flagged as few as 49.1%, 37.9%,
38.1% and as high as 90.6%, 96.6%, 92.1% for the controller,
worker, and arbiter, respectively. FC flagged as few as 15.1%,
5.2%, 4.8% and as high as 90.6%, 96.6%, 92.1% for the
arbiter, controller and worker, respectively.
2) Culprit Identification Given a Correct TL Specification

and an Incorrect DUT: We evaluate the efficacy of culprit
identification in localizing inconsistencies with the DUT to
particular sub-translations, given a correct TL specification
that does not hold on a buggy DUT. To emulate bugs in
the DUT, we first construct a correct sub-translation tree for

Fig. 5: Percent flagged possible culprits vs. true culprits of an
AMBA AHB controller (left), worker (middle), arbiter (right).

each module by manually transforming the ground truth LTL
specification [16] into one. Then, we add an operator (i.e.,
either G, X , or ¬) in a randomly selected a sub-translation
and use the perturbed TL specification as the DUT.
Results Table VI shows what percent of nodes in the sub-

translation tree are marked as possible culprits. Both AC and
FC find all true culprits in all examples. AC/FC flag on average
59.7%/32.2% of nodes as possible culprits, respectively.
Takeaway Culprit identification significantly reduces man-

ual effort in localizing inconsistencies with the DUT to par-
ticular parts of an NL specification and TL specification.

VI. CONCLUSION

Typical translation of unstructured NL to TL is unstruc-
tured, requiring users to manually inspect/correct complex TL
outputs. Instead, SYNTHTL conducts structured translation of
unstructured NL to TL, which enables users to exclusively
validate simple TL sub-specifications and decompositions that
mechanically compose to produce a TL output. Plus, structured
translation enables LLMs, model checkers, and human users
to meaningfully collaborate on an NL to TL translation task.

ACKNOWLEDGMENT

We thank Mohammad Rahmani Fadiheh, Haoze Wu, and
the anonymous reviewers for their constructive comments and
feedback. This work was supported in part by the National Sci-
ence Foundation (NSF), under awards 2153936 and 2236855
(CAREER); the Defense Advanced Research Projects Agency
(DARPA) under contract W912CG-23-C-0025 and subcontract
from Galois, Inc.; and by the German Federal Ministry of
Education and Research (BMBF), through funding for the
CISPA-Stanford Center for Cybersecurity (FKZ: 16KIS1138).

128

REFERENCES

[1] E. M. Clarke, O. Grumberg, and D. A. Peled, Model checking. Cam-
bridge, MA, USA: MIT Press, 2000.

[2] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977), pp. 46–57, 1977.

[3] S. Vijayaraghavan and M. Ramanathan, “A practical guide for system
verilog assertions,” 2005.

[4] “Ieee standard for property specification language (psl),” IEEE Std 1850-
2010 (Revision of IEEE Std 1850-2005), pp. 1–182, 2010.

[5] H. Foster, “Part 1: The 2022 wilson research group functional verifica-
tion study,” Jan 2023.

[6] M. Cosler, C. Hahn, D. Mendoza, F. Schmitt, and C. Trippel, “nl2spec:
Interactively translating unstructured natural language to temporal logics
with large language models,” in Computer Aided Verification (C. Enea
and A. Lal, eds.), (Cham), pp. 383–396, Springer Nature Switzerland,
2023.

[7] I. Gavran, E. Darulova, and R. Majumdar, “Interactive synthesis of
temporal specifications from examples and natural language,” Proc.
ACM Program. Lang., vol. 4, nov 2020.

[8] F. Fuggitti and T. Chakraborti, “Nl2ltl - a python package for converting
natural language (nl) instructions to linear temporal logic (ltl) formulas,”
in Proceedings of the Thirty-Seventh AAAI Conference on Artificial
Intelligence and Thirty-Fifth Conference on Innovative Applications
of Artificial Intelligence and Thirteenth Symposium on Educational
Advances in Artificial Intelligence, AAAI’23/IAAI’23/EAAI’23, AAAI
Press, 2023.

[9] Y. Chen, R. Gandhi, Y. Zhang, and C. Fan, “NL2TL: Transforming
natural languages to temporal logics using large language models,” in
Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, Dec. 2023.

[10] J. He, E. Bartocci, D. Ničković, H. Isakovic, and R. Grosu, “Deepstl:
from english requirements to signal temporal logic,” in Proceedings
of the 44th International Conference on Software Engineering, ICSE
’22, (New York, NY, USA), p. 610–622, Association for Computing
Machinery, 2022.

[11] C. Hahn, F. Schmitt, J. J. Tillman, N. Metzger, J. Siber, and
B. Finkbeiner, “Formal specifications from natural language,” 2022.

[12] J. X. Liu, Z. Yang, B. Schornstein, S. Liang, I. Idrees, S. Tellex,
and A. Shah, “Lang2LTL: Translating natural language commands to
temporal specification with large language models,” in Workshop on
Language and Robotics at CoRL 2022, 2022.

[13] C. Wang, C. Ross, Y.-L. Kuo, B. Katz, and A. Barbu, “Learning a
natural-language to ltl executable semantic parser for grounded robotics,”
in Proceedings of the 2020 Conference on Robot Learning (J. Kober,
F. Ramos, and C. Tomlin, eds.), vol. 155 of Proceedings of Machine
Learning Research, pp. 1706–1718, PMLR, 16–18 Nov 2021.

[14] OpenAI, J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L.
Aleman, D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, R. Avila,
I. Babuschkin, S. Balaji, V. Balcom, P. Baltescu, H. Bao, M. Bavarian,
J. Belgum, I. Bello, J. Berdine, G. Bernadett-Shapiro, C. Berner,
L. Bogdonoff, O. Boiko, M. Boyd, A.-L. Brakman, G. Brockman,
T. Brooks, M. Brundage, K. Button, T. Cai, R. Campbell, A. Cann,
B. Carey, C. Carlson, R. Carmichael, B. Chan, C. Chang, F. Chantzis,
D. Chen, S. Chen, R. Chen, J. Chen, M. Chen, B. Chess, C. Cho,
C. Chu, H. W. Chung, D. Cummings, J. Currier, Y. Dai, C. Decareaux,
T. Degry, N. Deutsch, D. Deville, A. Dhar, D. Dohan, S. Dowling,
S. Dunning, A. Ecoffet, A. Eleti, T. Eloundou, D. Farhi, L. Fedus,
N. Felix, S. P. Fishman, J. Forte, I. Fulford, L. Gao, E. Georges,
C. Gibson, V. Goel, T. Gogineni, G. Goh, R. Gontijo-Lopes, J. Gor-
don, M. Grafstein, S. Gray, R. Greene, J. Gross, S. S. Gu, Y. Guo,
C. Hallacy, J. Han, J. Harris, Y. He, M. Heaton, J. Heidecke, C. Hesse,
A. Hickey, W. Hickey, P. Hoeschele, B. Houghton, K. Hsu, S. Hu,
X. Hu, J. Huizinga, S. Jain, S. Jain, J. Jang, A. Jiang, R. Jiang,
H. Jin, D. Jin, S. Jomoto, B. Jonn, H. Jun, T. Kaftan, Łukasz Kaiser,
A. Kamali, I. Kanitscheider, N. S. Keskar, T. Khan, L. Kilpatrick,
J. W. Kim, C. Kim, Y. Kim, J. H. Kirchner, J. Kiros, M. Knight,
D. Kokotajlo, Łukasz Kondraciuk, A. Kondrich, A. Konstantinidis,
K. Kosic, G. Krueger, V. Kuo, M. Lampe, I. Lan, T. Lee, J. Leike,
J. Leung, D. Levy, C. M. Li, R. Lim, M. Lin, S. Lin, M. Litwin,
T. Lopez, R. Lowe, P. Lue, A. Makanju, K. Malfacini, S. Manning,
T. Markov, Y. Markovski, B. Martin, K. Mayer, A. Mayne, B. McGrew,
S. M. McKinney, C. McLeavey, P. McMillan, J. McNeil, D. Medina,
A. Mehta, J. Menick, L. Metz, A. Mishchenko, P. Mishkin, V. Monaco,

E. Morikawa, D. Mossing, T. Mu, M. Murati, O. Murk, D. Mély,
A. Nair, R. Nakano, R. Nayak, A. Neelakantan, R. Ngo, H. Noh,
L. Ouyang, C. O’Keefe, J. Pachocki, A. Paino, J. Palermo, A. Pantu-
liano, G. Parascandolo, J. Parish, E. Parparita, A. Passos, M. Pavlov,
A. Peng, A. Perelman, F. de Avila Belbute Peres, M. Petrov, H. P.
de Oliveira Pinto, Michael, Pokorny, M. Pokrass, V. H. Pong, T. Powell,
A. Power, B. Power, E. Proehl, R. Puri, A. Radford, J. Rae, A. Ramesh,
C. Raymond, F. Real, K. Rimbach, C. Ross, B. Rotsted, H. Roussez,
N. Ryder, M. Saltarelli, T. Sanders, S. Santurkar, G. Sastry, H. Schmidt,
D. Schnurr, J. Schulman, D. Selsam, K. Sheppard, T. Sherbakov,
J. Shieh, S. Shoker, P. Shyam, S. Sidor, E. Sigler, M. Simens, J. Sitkin,
K. Slama, I. Sohl, B. Sokolowsky, Y. Song, N. Staudacher, F. P. Such,
N. Summers, I. Sutskever, J. Tang, N. Tezak, M. B. Thompson, P. Tillet,
A. Tootoonchian, E. Tseng, P. Tuggle, N. Turley, J. Tworek, J. F. C.
Uribe, A. Vallone, A. Vijayvergiya, C. Voss, C. Wainwright, J. J. Wang,
A. Wang, B. Wang, J. Ward, J. Wei, C. Weinmann, A. Welihinda,
P. Welinder, J. Weng, L. Weng, M. Wiethoff, D. Willner, C. Winter,
S. Wolrich, H. Wong, L. Workman, S. Wu, J. Wu, M. Wu, K. Xiao,
T. Xu, S. Yoo, K. Yu, Q. Yuan, W. Zaremba, R. Zellers, C. Zhang,
M. Zhang, S. Zhao, T. Zheng, J. Zhuang, W. Zhuk, and B. Zoph, “Gpt-
4 technical report,” 2024.

[15] Arm Ltd., AMBA AHB Protocol Specification, 2021.
[16] Y. Godhal, K. Chatterjee, and T. A. Henzinger, “Synthesis of amba

ahb from formal specification: a case study,” International Journal on
Software Tools for Technology Transfer, vol. 15, pp. 585 – 601, 2011.

[17] E. Conrad, L. Titolo, D. Giannakopoulou, T. Pressburger, and A. Dutle,
“A compositional proof framework for fretish requirements,” in Proceed-
ings of the 11th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2022, (New York, NY, USA), p. 68–81,
Association for Computing Machinery, 2022.

[18] S. Konrad and B. H. C. Cheng, “Real-time specification patterns,”
Proceedings. 27th International Conference on Software Engineering,
2005. ICSE 2005., pp. 372–381, 2005.

[19] L. Grunske, “Specification patterns for probabilistic quality properties,”
in Proceedings of the 30th International Conference on Software Engi-
neering, ICSE ’08, (New York, NY, USA), p. 31–40, Association for
Computing Machinery, 2008.

[20] A. Brunello, A. Montanari, and M. Reynolds, “Synthesis of LTL
formulas from natural language texts: State of the art and research
directions,” in 26th International Symposium on Temporal Representa-
tion and Reasoning, TIME 2019, October 16-19, 2019, Málaga, Spain
(J. Gamper, S. Pinchinat, and G. Sciavicco, eds.), vol. 147 of LIPIcs,
pp. 17:1–17:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019.

[21] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” in Proceed-
ings of the 34th International Conference on Neural Information Pro-
cessing Systems, NIPS ’20, (Red Hook, NY, USA), Curran Associates
Inc., 2020.

[22] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel, S. Riedel, and D. Kiela,
“Retrieval-augmented generation for knowledge-intensive nlp tasks,” in
Proceedings of the 34th International Conference on Neural Information
Processing Systems, NIPS ’20, (Red Hook, NY, USA), Curran Asso-
ciates Inc., 2020.

[23] A. Duret-Lutz, E. Renault, M. Colange, F. Renkin, A. G. Aisse,
P. Schlehuber-Caissier, T. Medioni, A. Martin, J. Dubois, C. Gillard, and
H. Lauko, “From Spot 2.0 to Spot 2.10: What’s new?,” in Proceedings
of the 34th International Conference on Computer Aided Verification
(CAV’22), vol. 13372 of Lecture Notes in Computer Science, pp. 174–
187, Springer, Aug. 2022.

[24] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems (Y. Lakhnech and S. Yovine, eds.), (Berlin,
Heidelberg), pp. 152–166, Springer Berlin Heidelberg, 2004.

[25] B. Walshe, “What is amba?,” 2014.
[26] Arm Ltd., “Learn the architecture - an introduction to amba axi,” 2022.

129

Formal Methods in Computer-Aided Design 2024

Recomposition: A New Technique for Efficient
Compositional Verification

Ian Dardik
Carnegie Mellon University

Pittsburgh, PA, USA
idardik@andrew.cmu.edu

April Porter
University of Maryland, College Park

College Park, MD, USA
aporter3@terpmail.umd.edu

Eunsuk Kang
Carnegie Mellon University

Pittsburgh, PA, USA
eunsukk@andrew.cmu.edu

Abstract—Compositional verification algorithms are well-
studied in the context of model checking. Properly selecting
components for verification is important for efficiency, yet has
received comparatively less attention. In this paper, we address
this gap with a novel compositional verification framework that
focuses on component selection as an explicit, first-class concept.
The framework decomposes a system into components, which we
then recompose into new components for efficient verification.
At the heart of our technique is the recomposition map that
determines how recomposition is performed; the component
selection problem thus reduces to finding a good recomposition
map. However, the space of possible recomposition maps can be
large. We therefore propose heuristics to find a small portfolio
of recomposition maps, which we then run in parallel. We have
implemented our techniques in a model checker for the TLA+

language. In our experiments, we show that our tool achieves
competitive performance with TLC–a well-known model checker
for TLA+–on a benchmark suite of distributed protocols.

I. INTRODUCTION

Model checking is an important tool for software, protocol,
and algorithm development. Compositional verification is a
paradigm in which a system is decomposed into components,
which are then verified using a divide-and-conquer algorithm.
To help model checking scale to large programs and specifi-
cations, compositional verification remains an important type
of technique for combating the state explosion problem [1].
Most research papers on compositional verification assume

that the components are pre-determined and focus solely on
verification algorithms [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16]. However, component selec-
tion–that is, determining the set of decomposed components
and the order in which they are verified–can greatly impact
performance, in terms of both run time and state space size.
Yet there are comparatively fewer model checking frame-
works that investigate component selection, e.g. by automating
decomposition [17], [18], [19]. Unfortunately, research into
automated decomposition has seen limited success thus far; as
Cobleigh et al. lament, decomposing a system is tough [17].
In this paper, we propose a new safety verification approach

for symbolic specifications that is centered around component
selection. In our approach, we begin by decomposing a system
S into components C1, . . . ,Cn . Traditionally, a compositional
verification algorithm is applied to these components to verify
a system level property P , as shown in Fig. 1a. However,
verifying these components may be less efficient than verifying

the entire (monolithic) system directly without compositional
techniques. Our key insight that addresses this shortcom-
ing is to recompose the components into new components
D1, . . . ,Dm that we verify instead. For example, Fig. 1b
shows D1 composed of C1 and C3 while D2 is composed
of C2.
The choice of how to recompose is determined by a

recomposition map that maps Ci ’s to Dj ’s. Recomposition
maps make component selection an explicit, first-class concept
and lie at the heart of our technique. We will show that, in
practice, there often exists a recomposition map that results
in a compositional verification problem that is more efficient
than verifying the monolithic specification directly.
Additionally, we will show that our method is conducive

to specification reduction. Specification reduction techniques,
e.g. program slicing [20], [21], are generally considered sepa-
rately from compositional verification. However, model check-
ing with recomposition unites these two techniques under a
single framework. For example, Fig. 1c shows a situation
in which a partial recomposition map is used to reduce a
specification with four-components to just the first three.
Ultimately, selecting components for efficient verification

reduces to finding a suitable recomposition map. Therefore, we
propose a technique for automatically selecting recomposition
maps. We use heuristics to prune the large space of possible
recomposition maps, which results in a small portfolio of maps
that we run in parallel.
We have implemented our techniques in a model checker

called “Recomp-Verify” for the TLA+ language [22]. In order
to bring compositional verification to TLA+, we additionally
propose a novel parallel composition operator for the language.
We evaluate our techniques by comparing Recomp-Verify to
TLC [23], a well-known model checker for TLA+. We show
that recomposition can lead to large savings in terms of
verification time and the size of the explored state space.
In summary, we make the following contributions: (1) our

main contribution, recomposition, which is a technique for
efficient compositional verification, (2) an automated method
for finding efficient recomposition maps using paralleliza-
tion and heuristics, (3) a definition for parallel composition
for TLA+ specifications, and (4) a prototype model checker
Recomp-Verify that implements our algorithm, along with an
evaluation of Recomp-Verify against TLC on a benchmark of

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 18 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_18
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_18
https://creativecommons.org/licenses/by/4.0/

(a) Traditional compositional verification.

(b) Compositional verification with recomposition.

(c) Specification reduction in the recomposition method.

Fig. 1: Comparing traditional compositional verification
against our recomposition method.

distributed protocols.

II. MOTIVATING EXAMPLE

In this section, we describe the Two Phase Commit Protocol
[24] to motivate our work and serve as a running example
throughout the paper.
1) Protocol Description: In the Two Phase Commit Pro-

tocol, a transaction manager (TM) attempts to commit a
transaction onto a pool of resource managers (RMs) in two
phases. In the first phase, each RM starts in the working state
as it attempts to commit the transaction. Any RM that can
commit a transaction sends a prepared message to the TM.
In the second phase, if every RM is prepared, the TM will
issue a commit message to each RM; otherwise the TM will
issue an abort message. The protocol assumes that the network
can reorder, but not lose, messages. The key safety property
is for each RM to remain consistent; i.e. no two RMs should
disagree as to whether a transaction was committed or aborted.
2) TLA+ Encoding: In Fig. 2, we show only the first

(prepare) phase of the TwoPhase specification, which we will
refer to as TP for brevity. TP is a parameterized protocol,
meaning that the set of RMs in the protocol is given as input.
In the TP specification, the parameter is indicated on line 1
using the keyword CONSTANT.

TP defines a symbolic transition system (STS) over four
state variables, which are declared on line 2 in Fig. 2. The vari-
able rmState is the state of each RM, the variables tmState
and tmPrepared hold the state of the TM, and msgs is the
set of messages each machine sends over the network. Line

MODULE TwoPhase
CONSTANT RMs1

VARIABLES msgs, rmState, tmState, tmPrepared2

vars
Δ
= ⟨msgs, rmState, tmState, tmPrepared⟩3

Init
Δ
=4

∧ msgs = {}5

∧ rmState = [rm ∈ RMs ↦→ “working”]6

∧ tmState = “init”7

∧ tmPrepared = {}8

RcvPrepare(rm)
Δ
=9

∧ [type ↦→ “Prepared”, theRM ↦→ rm] ∈ msgs10

∧ tmState = “init”11

∧ tmPrepared ′ = tmPrepared ∪ {rm}12

∧ UNCHANGED ⟨msgs, tmState, rmState⟩13

SndPrepare(rm)
Δ
=14

∧ rmState[rm] = “working”15

∧ msgs ′ = msgs ∪ {[type ↦→ “Prepared”, theRM ↦→ rm]}16

∧ rmState ′ = [rmState EXCEPT ! [rm] = “prepared”]17

∧ UNCHANGED ⟨tmState, tmPrepared⟩18

Next
Δ
=19

∃ rm ∈ RMs :20

∨ SndPrepare(rm)21

∨ RcvPrepare(rm)22
...23

Spec
Δ
= Init ∧ ✷[Next]vars24

Fig. 2: A monolithic encoding of the Two Phase Commit
Protocol.

24 formally declares the STS with initial predicate Init and
transition relation Next . We show two actions, SndPrepare
and RcvPrepare, on lines 14 and 9 respectively. In TLA+,
actions are typically conjunctions of guards that specify when
an action is enabled (lines 10-11 and 15) as well as primed
variable expressions that specify transitions (lines 12 and 16-
17). The UNCHANGED keyword on lines 13 and 18 indicate
the frame conditions.
The key safety property for the Two Phase Commit Protocol

is the invariant Consistent . We can encode this invariant as
the following TLA+ formula:

∀ rm1, rm2 ∈ RMs :

¬(rmState[rm1] = “aborted” ∧ rmState[rm2] = “committed”)

3) Model Checking TwoPhase: The TLC model checker
can prove that a given finite instance of TP satisfies the
property Consistent . A finite instance of a protocol substitutes
a finite value for each parameter, e.g. a finite set of resource
managers for RMs in TP . TLC performs explicit state model
checking, meaning that it enumerates every possible state in
the transition system. For nine resource managers, TLC is able
to prove TP is safe after generating over 10 million states
in nearly ten minutes. However, for ten resource managers,
TLC fails to terminate in an hour after checking over 48
million states. In the following section, we will show how
our approach can scale model checking TP to ten resource

131

MODULE RM
VARIABLES rmState

Init
Δ
=

∧ rmState =
[rm ∈ RMs ↦→ “working”]

SndPrepare(rm)
Δ
=

∧ rmState[rm] = “working”
∧ rmState ′ =
[rmState EXCEPT ! [rm] =
“prepared”]

MODULE TM1

VARIABLES tmState

Init
Δ
= tmState = “init”

RcvPrepare(rm)
Δ
=

∧ tmState = “init”
∧ UNCHANGED ⟨tmState⟩

MODULE Env
VARIABLES msgs

Init
Δ
= msgs = {}

SndPrepare(rm)
Δ
=

∧ msgs ′ = msgs ∪ {[type ↦→
“Prepared”, theRM ↦→ rm]}

RcvPrepare(rm)
Δ
=

∧ [type ↦→ “Prepared”,
theRM ↦→ rm] ∈ msgs

∧ UNCHANGED ⟨msgs⟩

MODULE TM2

VARIABLES tmPrepared

Init
Δ
= tmPrepared = {}

RcvPrepare(rm)
Δ
=

∧ tmPrepared ′ =
tmPrepared ∪ {rm}

Fig. 3: A decomposition of TP . Standard operators such as
Spec, Next , vars , etc. are omitted for brevity.

managers.
4) Compositional Verification and Recomposition: Con-

sider the specifications RM , Env , TM1, and TM2 shown in
Fig. 3. These specifications represent a decomposition of TP ;
that is, TP is semantically equal to the parallel composition
of the four specifications. We can generate a labeled transition
system (LTS) for each of the four specifications in Fig. 3 and
then use compositional verification techniques to answer the
original model checking problem. For ten resource managers,
this strategy enumerates a maximum of 261,002 states and
terminates in 1 minute and 32 seconds.
Compositionally verifying the components above is more

efficient than TLC, but we can use recomposition to do even
better. Later, in example Ex. 2, we use recomposition to
identify new components that are optimal in terms of minimum
run time for verification. In general, recomposition can provide
large savings in terms of run time and state space. In Sec. VII,
we show experimentally that recomposition can reduce a
model checking problem by millions of states.

III. PRELIMINARIES

In this section we formally introduce labeled transition
systems (LTSs), the TLA+ language, and the compositional
verification technique that we consider in this paper. Through-
out this paper, we will use calligraphic font when referring
to LTS variables (e.g. D) and normal font when referring to
TLA+ specifications (e.g. S).

A. Labeled Transition Systems

A labeled transition system (LTS) D is a tuple (Q , αD, δ, I)
where Q is the set of states, αD is the alphabet of D, δ ⊆
Q ×αD×Q is the transition relation, and I is a set of initial
states. αD must be a subset of A, where A is the universe of
all possible actions across all possible LTSs. We let Reach(D)

spec ::=Spec
Δ
= Init ∧ ✷[Next]vars

init ::=Init
Δ
= conj

next ::=Next
Δ
= ∃ x ∈ D : disj

expr ::=
arbitrary TLA+

expression

conj ::= ∧ expr | ∧ expr
conj

disj ::= ∨ expr | ∨ expr
disj

op ::=id(p)
Δ
= conj

Fig. 4: Restricted TLA+ grammar for this paper.

be the set of reachable states in D. We define the parallel
composition (∥) over LTSs in the usual way by synchronizing
on actions common to both alphabets and interleaving on all
other actions [25].
We define an action-based behavior σ as an infinite sequence

of actions, i.e. σ ∈ Aω , and we let σi denote the i th action
in σ. We denote the action-based semantics of an LTS D as
a set of action-based behaviors D α ⊆ Aω . It is the case
that σ ∈ D α if and only if there exists a sequence of states
q0, q1, . . . ∈ Qω such that q0 ∈ I and, for each nonnegative
index i , either (1) σi ∈ αD and (qi , σi , qi+1) ∈ δ, or (2)
σi /∈ αD and qi = qi+1. Condition (2) allows for stuttering,
a concept which we will introduce in Sec. III-B.
There are two methods for encoding a safety property as an

LTS. The first method is creating an error LTS that includes
an error state–which we refer to as the π state–that acts as a
sink for any action that causes a safety violation. The second
method is creating a property LTS whose language defines
the safe behaviors; property LTSs must be deterministic and
must not include a π state. Any error LTS can be converted
to a property LTS using steps two and three for assumption
generation (Sec. 3) in [26]. We define property satisfaction
over property LTSs as follows: an LTS D satisfies a property
LTS P (D |= P) exactly when D α ⊆ P α. Note that
our LTS semantics (with stuttering) properly handles alphabet
refinement, and therefore it is unnecessary to consider alphabet
restriction [25] in our definition of property satisfaction.

B. TLA+

In this paper we will refer to a TLA+ specification S as
a syntactic entity that consists of constants, variables and
operator definitions, etc. in the format shown in Fig. 2.
The initial state predicate, transition relation, and specifica-

tion declaration are named Init , Next , and Spec respectively.
In this paper, Init , Next , and Spec are restricted to the syntax
of init , next , and spec given by the grammar in Fig. 4. In
next , the domain D does not contain state variables. We also
restrict action definitions to the syntax of op, and no actions
are referenced in the body of another action. In the grammar,
✷ is the always temporal operator. Expression [Next]vars is
equal to Next∨(vars ′ = vars) and allows for stuttering states,
i.e. consecutive states whose variables in vars do not change.
We define several operators over a TLA+ specification

S . The scoping operator ! references definitions in S , e.g.
TP !SndPrepare refers to the SndPrepare action of TP
in Fig. 2. The operators α̂ and α denote symbolic actions

132

and concrete actions respectively. Symbolic actions are the
action names in a specification, while concrete actions are
the actions that may occur in a finite instance. For exam-
ple, let TP1 be the finite instance of TP with RM =
{“rm1”}, then α̂TP1 = α̂TP = {SndPrepare,RcvPrepare}
and αTP1 = {SndPrepare(“rm1”),RcvPrepare(“rm1”)}.
Additionally, we let βS denote the set of state vari-
ables in a specification or an expression, e.g. βTP =
{msgs, rmState, tmState, tmPrepared}. For an operator
∗ ∈ {α̂, α, β} and a set of specifications Z , the notation ∗Z is
short-hand for the union of ∗z , for each specification z ∈ Z .
To define the semantics of a TLA+ formula, we first define

a state as an assignment to all state variables. Then, the
semantics of a TLA+ formula is a set of behaviors, where
a behavior is an infinite sequence of states. We indicate state-
based semantics of a TLA+ formula F as F β , the set of
behaviors that satisfy F . For a TLA+ specification S , we will
often abbreviate S !Spec β to simply S β . Given a TLA+

property P , we say S satisfies P (S |= P) exactly when
S β ⊆ P β .
We define the operator LTS(S), which converts a TLA+

specification S into an LTS D. LTS(S) can be realized by
generating the full state graph for S and then labeling its
edges with the concrete actions αS such that αD = αS .
Additionally, we define two operators for converting TLA+

properties to an LTS. The first operator, ERR(S ,P), constructs
an error LTS for S where violations of P lead to a π state.
The second operator, PROP(S ,P), builds a property LTS for
S where no violation of P is possible. PROP(S ,P) can be
constructed from ERR(S ,P), as pointed out in Sec. III-A.

C. CRA-Style Compositional Verification

In this paper, we consider a style of compositional verifica-
tion called compositional reachability analysis (CRA) [4], [8],
[27]. Our recomposition framework requires a compositional
verification algorithm that works for multiple components,
and CRA-style techniques have reported success for verifying
safety properties of multi-component systems [6].
CRA is used to check safety by composing the LTS for

each component together in a hierarchical fashion; safety
is proved if and only if the π state is unreachable in the
overall system. Such algorithms generally derive their divide-
and-conquer efficiency from two optimizations: intermediate
minimization and short-circuiting. The former involves mini-
mizing the state space of the intermediate LTSs with respect to
observational equivalence [28] during composition. The latter
optimization, short-circuiting, occurs when a strict subset of
components are needed for verification to succeed. In this case,
the remaining components (outside the strict subset) can be
skipped, and hence short-circuiting provides a dynamic form
of specification reduction.

IV. PARALLEL COMPOSITION IN TLA+

In this section, we introduce a new parallel composition
operator over TLA+ specifications. The operator is central
to our recomposition algorithm and will allow us to define

MODULE T1

VARIABLES
msgs, tmState, tmPrepared

Init
Δ
=

∧ msgs = {}
∧ tmState = “init”
∧ tmPrepared = {}

SndPrepare(rm)
Δ
=

∧ msgs ′ = msgs ∪
{[type ↦→ “Prepared”,

theRM ↦→ rm]}
∧ UNCHANGED
⟨tmState, tmPrepared⟩

RcvPrepare(rm)
Δ
=

∧ [type ↦→ “Prepared”,
theRM ↦→ rm] ∈ msgs

∧ tmState = “init”

∧ tmPrepared ′ =
tmPrepared ∪ {rm}

∧ UNCHANGED
⟨msgs, tmState⟩

MODULE T2

VARIABLES
tmState, tmPrepared

Init
Δ
=

∧ tmState = “init”
∧ tmPrepared = {}

RcvPrepare(rm)
Δ
=

∧ tmState = “init”
∧ tmPrepared ′ =

tmPrepared ∪ {rm}
∧ UNCHANGED ⟨tmState⟩

Fig. 5: Intermediate decomposed specifications T1 and T2 in
the TP example.

concepts such as decomposition and recomposition in Sec. V.
The new operator is syntactic; in other words, the definition is
entirely in terms of TLA+ syntax, and does not involve explic-
itly enumerating the state space. To avoid confusion between
the parallel composition operator ∥ over LTSs (Sec. III-A), we
will denote the TLA+ parallel composition operator using //.
We will use the notation //Z to denote the composition over
a set of specifications Z . We now define // in the usual way,
by synchronizing common actions between specifications and
interleaving all others actions [25].

Definition 1 (Parallel Composition). Let S and T be TLA+

specifications with distinct state variables. We define S//T as
follows. First, S //T contains exactly the constants and state
variables in S and T . Second, in S //T , we define vars ≜
(S !vars) ◦ (T !vars), where ◦ is the sequence concatenation
operator. Finally, in S//T , we define Spec ≜ Init ∧ [Next]vars

where Init ≜ S !Init ∧ T !Init and Next is defined as follows:

⋁︂
A ∈ α̂S∪α̂T

������������

∃d ∈ D : S !A(d) ∧ T !A(d)
if A ∈ α̂S and A ∈ α̂T

∃d ∈ D : S !A(d) ∧ T !vars ′ = T !vars
if A ∈ α̂S and A /∈ α̂T

∃d ∈ D : T !A(d) ∧ S !vars ′ = S !vars
if A /∈ α̂S and A ∈ α̂T

Notice that Def. 1 defines parallel composition in terms of
TLA+ syntax, and hence does not increase the expressivity of
the language. While the operator itself is novel, this technique
is briefly discussed by Lamport [22].

Example 1. By Def. 1, TP = RM //Env //TM1 //TM2.
Furthermore, consider specifications T1 and T2 from Fig. 5.
Notice that TP = RM //T1, T1 = Env //T2, and T2 =
TM1//TM2.

The following theorem shows that parallel composition
behaves exactly as we expect if we convert a TLA+ speci-

133

fication to an LTS. We prove this theorem using more general
semantics for TLA+ specifications, namely action-state-based
semantics. We include a proof in Appendix A of our technical
report [29].

Theorem 1. LTS(S //T) α = LTS(S) ∥ LTS(T) α.

V. MODEL CHECKING WITH RECOMPOSITION

In this section, we propose our algorithm for verifying sym-
bolic specifications. We begin by introducing the algorithm in
Sec. V-A. Subsequently, we provide details for decomposition
(Sec. V-B), static specification reduction (Sec. V-C), and
compositional verification (Sec. V-D). Finally, we conclude
this section with a correctness analysis of the algorithm in
Sec. V-E.

A. The Recomp-Verify Algorithm

1) Algorithm Overview: Our algorithm solves a model
checking problem S |= P , where S and P are both writ-
ten in TLA+. The algorithm begins by decomposing S into
n components C1, . . . ,Cn , each of which is also a TLA+

specification. The decomposition algorithm ensures two key
properties upon termination: (P1) S = C1 // · · · //Cn and
(P2) the first component, C1, contains all state variables that
occur syntactically in P . Property (P1) ensures soundness of
the decomposition, while property (P2) allows us to build the
safety property P described in the following paragraph.
After decomposition, the algorithm recomposes the Ci com-

ponents into new components DP and D1, . . . ,Dm . These new
components define the following compositional verification
problem that is equivalent to the original: LTS(D1) ∥ . . . ∥
LTS(Dm) |= P , where P = PROP(DP ,P). For PROP(DP ,P)
to be well-formed, DP must contain every state variable that
occurs in P . Therefore, we require DP to be composed of (at
least) C1, as C1 must contain every state variable that occurs
in P by property (P2) of decomposition. We formally capture
this requirement, as well as the choice of how to perform
recomposition, in the following definition.

Definition 2 (Recomposition Map). A recomposition map is
a surjective function f : {C1, . . . ,Cn} → {dP , d1, . . . , dm}
such that f (C1) = dP .

In Def. 2, the dj ’s in the co-domain are intended as a place-
holder for constructing each Dj . In particular, we will define
each recomposed component as Dj = //f −1(dj), the parallel
composition of one or more Ci components. Therefore, the
restriction f (C1) = dP implies that DP will be composed of
C1 as intended. Finally, once each Dj is constructed, we solve
the compositional verification problem.
2) Algorithm Details: We present our model checking

algorithm in Alg. 1. The algorithm accepts several inputs,
including a recomposition strategy. A recomposition strategy
ρ is a function that maps Ci components to a pair (f ,m),
where f is a total recomposition map and m is the number
of Dj components. In other words, the recomposition strategy
determines which recomposition map is used. In the remainder

of this section we assume ρ is given; we discuss recomposition
strategy selection in Sec. VI.

Algorithm 1 RECOMP-VERIFY

Input: Specification S , property P , recomposition strategy ρ
Output: If S |= P
1: C1, . . . ,Cn = DECOMPOSE(S ,P)
2: f ,m ← ρ(C1, . . . ,Cn)
3: f ,m ← STATIC-REDUCE(f ,m)
4: DP ←//f −1(dP) ▷ f −1(dP) ⊆ {C1, . . . ,Cn}
5: for j ∈ {1, . . . ,m} do
6: Dj ←//f −1(dj) ▷ f −1(dj) ⊆ {C2, . . . ,Cn}
7: return COMP-VERIFY(D1, . . . ,Dm ,DP ,P)

Alg. 1 begins by decomposing S into components on line
1. The strategy ρ selects a recomposition map on line 2, which
is possibly statically reduced on line 3. We provide more
detail for decomposition and static specification reduction in
Sec. V-B and Sec. V-C respectively. Next, on lines 4-6, we
perform recomposition using the recomposition map f . On
line 4, we define DP to be the parallel composition of each
Ci component in the pre-image f −1(dP). Similarly, on line
6, we define each Dj to be the parallel composition of each
Ci component in the pre-image f −1(dj). Finally, on line
7, we solve the compositional verification problem for the
recomposed components (Dj ’s); we provide more detail for
this step in Sec. V-D.

Example 2. In this example we analyze Alg. 1 given the input
TP , Consistent , and a hand-crafted optimal recomposition
strategy ρopt . Line 1 of Alg. 1 produces the components
RM , Env , TM1, and TM2 from Fig. 3. On line 2, ρopt

chooses m = 2 and f such that f (RM) = dP , f (Env) =
f (TM1) = d1, and f (TM2) = d2. Static specification
reduction on line 3 has no effect on f and m . Recomposition
(lines 4-6) reduces the original model checking problem to
LTS(Env //TM1) ∥ LTS(TM2) |= PROP(RM ,Consistent),
which we solve on line 7. Whereas the example in Sec. II
verifies four specifications (for RM , Env , TM1, TM2), this
example verifies three (for RM , Env //TM1, TM2). The
strategy ρopt in this example reduces the maximum state space
by 1,027 states and improves the model checking time from
1 minute 32 seconds to 51 seconds.

B. Decomposition

In this section, we present an algorithm for decomposing a
symbolic specification S into n components C1 . . .Cn . Our
algorithm guarantees the following two properties: (P1) S =
C1//· · ·//Cn and (P2) βP ⊆ βC1. We provide a correctness
argument for these two properties in Sec. V-E.
1) Decomposition Algorithm: Each step of the algorithm

splits a specification Ti into two specifications Ci+1 and Ti+1

such that Ti = Ci+1 //Ti+1. We note the following two
corner cases: T0 = S and Cn = Tn−1. The algorithm splits a
specification across two phases: state variable partitioning and
specification slicing. The former partitions the state variables

134

of Ti into two sets VC and VT , while the latter slices Ti

into Ci+1 and Ti+1 that contain the variables VC and VT

respectively. We present the algorithm in Alg. 2. We now
explain state variable partitioning and specification slicing in
detail across the following two sections.

Example 3. We explain Alg. 2 given TP and Consistent .
The algorithm begins with the partition VC = {rmState} and
VT = {msgs, rmState, rmPrepared} on line 1; we explain
partitioning in Sec. V-B2. Next, on lines 6-7, the algorithm
slices TP into RM (Fig. 3) and T1 (Fig. 5). The state variables
of T1 are subsequently partitioned into VC = {msgs} and
VT = {rmState, rmPrepared} on line 9. The algorithm
continues in this fashion until VT = ∅, i.e. no partition is
possible. The algorithm will then exit the loop and return the
components RM , Env , TM1, TM2 on line 12.

Algorithm 2 DECOMPOSE

Input: Specification S , Safety Property P
Output: C1, . . . ,Cn with properties (P1) and (P2)
1: VC ,VT ← PARTITION(S , βP)
2: if VT = ∅ then
3: return S
4: T0 ← S , i ← 0
5: while VT ̸= ∅ do
6: Ci+1 ← SLICE(Ti ,VC)
7: Ti+1 ← SLICE(Ti ,VT)
8: v ∈ βTi+1 ▷ Nondeterministically choose a variable
9: VC ,VT ← PARTITION(Ti+1, {v})
10: i ← i + 1

11: n ← i + 1, Cn ← Ti

12: return C1, . . . ,Cn

13: procedure PARTITION(T ,V)
14: VC ← FIX(OCCURST ,V)
15: VT ← βS − VC

16: return VC ,VT

17: procedure OCCURSS (V)
18: return

⋃︁
A ∈ α̂S

{βc | c ∈ Conj(A) and βc ∩ V ̸= ∅}

19: procedure FIX(op,X)
20: Y ← X ∪ op(X)
21: if X = Y then return X
22: return Y ∪ FIX(op,Y)

2) State Variable Partitioning: Given a specification Ti ,
the partitioning phase partitions the variables βTi into two
sets VC and VT . The partition procedure appears twice in
Alg. 2. The first occurrence, on line 1, determines the state
variables that will appear in C1; therefore, to uphold property
(P2), we partition on βP . In the second appearance, on line 9,
we choose just one variable in attempt to produce as many
components as possible (ideally, one component per state
variable). We are free to choose the one variable nondeter-
ministically because the order of decomposed components is
inconsequential; this is due to the fact that the ordering is

ultimately determined by a recomposition map in Alg. 1.
The partition procedure in Alg. 2 also guarantees that the

state variables in each partition will constitute a well-formed
slice according to the grammar in Fig. 4. For example, if
a specification contains the expression a = b + 1, then a
and b should be grouped together into the same partition.
To accomplish this, we let VC be V plus any variables that
occur within the same expression, repeated until fix-point.
More formally, we let VC = FIX(OCCURSS ,V) (line 14),
where FIX invokes the OCCURSS procedure, initially on V ,
until a fix-point is reached. Finally, we choose VT to be the
remainder of the state variables in Ti (line 15).

Example 4. Notice that βConsistent = {rmState} and
FIX(OCCURSTP , {rmState}) = {rmState}. Therefore, the
first partition (line 1) will be VC = {rmState} and VT =
{msgs, tmState, tmPrepared}. In the second partition (lines
8-9), we arbitrarily choose v = msgs , which results in
VC = {msgs} and VT = {tmState, tmPrepared}.
3) Specification Slicing: The specification slicing phase

restricts a specification Ti to a given subset of its variables
V . Slicing can be seen as the inverse of parallel composition.
For example, consider a system specification M with action
Action and state variables var1 and var2:

Action
Δ
= ∧ var1

′ = “val1”
∧ var2

′ = “val2”

Given the variable partition {var1}, {var2}, we can
view M as the composition of two components M1 and
M2 that respectively define: Action

Δ
= var1

′ = “val1” and
Action

Δ
= var2

′ = “val2”. In particular, we have M1 =
SLICE(M , {var1}), M2 = SLICE(M , {var2}), and M = M1//
M2. In the TP example, this corresponds to TP = RM //T1

in Ex. 3. We include more details on slicing, including the
definition for the slicing procedure, in Appendix B of our
technical report [29].

C. Static Specification Reduction

In Sec. V-A, we require recomposition strategies to produce
a total recomposition map. Total recomposition maps apply
verification to every component; however, in some cases, not
every component is necessary for verification. Therefore, in
the following paragraph, we introduce a technique for stati-
cally detecting a subset of components that are necessary for
verification. In Alg. 1, the procedure STATIC-REDUCE(f ,m)
on line 3 restricts the domain of f to this subset and reduces
the codomain and m accordingly so f remains surjective.
The subset of necessary components is those whose alpha-

bets may affect–either directly or indirectly–the actions of C1,
and therefore may prevent the entire system from reaching
an error. More formally, the subset of components is

⋃︁
i Xi ,

where X0 = {C1} and Xi+1 = {Cj | α̂Cj ∩ α̂Xi ̸= ∅}. In
Appendix C of our technical report [29], we show that it is
only necessary to consider the first n + 1 terms–where n is
the number of Ci components–when computing the union of
the Xi ’s. Intuitively, X1 is the set of components that may

135

directly prevent C1 from reaching an error, while X2, X3, etc.
may indirectly prevent an error.

Example 5. We now introduce TPCounter , an extension to
TP . TPCounter is identical to TP , except it includes one
more state variable counter and one more action Increment .
In the initial state, counter is equal to zero. Each original
action from TP leaves counter unchanged, while Increment
increments counter by one and leaves all other state variables
unchanged. The Increment action is always enabled, and
therefore TPCounter is an infinite-state protocol.
Consider model checking TPCounter |= Consistent with

Alg. 1. Decomposition (line 1) produces five components:
RM , Env , TM1, TM2, and Counter , where Counter has one
state variable counter and one action Increment . Counter
is the only specification with the action Increment and,
therefore, does not synchronize with the actions in the other
four specifications. Therefore, Counter cannot affect the
safety of C1. Formally, X0 = {RM }, X1 = {RM ,Env},
X2 = {RM ,Env ,TM1,TM2}, X3 = X2, etc. so Counter is
not a necessary component. STATIC-REDUCE will therefore
omit Counter from the domain of any given recomposition
map, causing Alg. 1 to successfully terminate.

D. Compositional Verification

We present a CRA-style compositional verification algo-
rithm in Alg. 3. The algorithm works by iteratively composing
the LTS for each component Dj together (line 5) until the π
state becomes unreachable, in which case verification succeeds
(lines 3 and 7). If the π state remains reachable by the end
of the algorithm, however, then we report a failure (line
8). The algorithm performs intermediate minimization on
lines 1 and 5. In general, there are many options for which
components–or composition of components–to minimize [12].
We choose to only minimize components because we observed
that minimizing the composition of components was generally
slow. In essence, this algorithm is an abstraction-refinement
loop where each new component lowers the abstraction by
introducing more state variables.

Example 6. Consider TP with ten resource managers and the
optimal mapping f from Ex. 2, where DP = RM , D1 = Env//
TM1, and D2 = TM2. Line 1 of Alg. 3 will generate an LTS
for DP with 477,454 states, including a π state. Minimization
reduces DP to 13,291 states. Due to a reachable π state, the
algorithm proceeds into the loop on line 4. Next, on line 5, the
algorithm generates an LTS for D1 with 3,072 states, which
reduces to 1,026 states after minimization. Composing this
LTS with D (line 5) retains the π state (line 6) so we loop
again. The algorithm continues in this fashion until a π state
is no longer reachable, and we return a positive answer (line 6
and 7). A maximum of 481,550 states are needed in memory
at once.

E. Correctness Analysis

In this section, we show that Alg. 1 is sound but not
complete. To establish this result, we first provide lemmas for

Algorithm 3 COMP-VERIFY

Input: D1, . . . ,Dm ,DP ,P
Output: If LTS(D1) ∥ . . . ∥ LTS(Dm) |= P
1: D ← Min(ERR(DP ,P)) ▷ P = ERR(DP ,P)
2: if π /∈ Reach(D) then
3: return true
4: for j ∈ {1, . . . ,m} do
5: D ← D ∥ Min(LTS(Dj))
6: if π /∈ Reach(D) then
7: return true
8: return false

the correctness of decomposition (Lem. 1), static specification
reduction (Lem. 2), and compositional verification (Lem. 3).
Next, we show that reducing the monolithic model checking
problem to compositional verification is correct (Lem. 4).
Finally, we present Thm. 2 that shows that Alg. 1 is sound.

Lemma 1. Algorithm 2 ensures (P1) S = C1//· · ·//Cn and
(P2) βC1 ⊆ βP upon termination.

Proof. Sketch. We prove property (P1) by establishing the fol-
lowing loop invariant in Alg. 2 on line 5: S = C1//· · ·//Ci//Ti .
The proof for property (P2) follows in two steps. First,
βP ⊆ VC because VC (in the first partition) is defined by
a monotonically increasing operation (FIX) on βP . Second,
βP ⊆ βC1 because C1 = SLICE(S ,VC) will contain exactly
the state variables in VC .

Lemma 2. S |= P if and only if //(
⋃︁

i Xi) |= P .

Proof. We prove this theorem in Appendix C of our technical
report [29].

Lemma 3. LTS(D1) ∥ . . . ∥ LTS(Dm) |= P if and only if there
exists a k ∈ {0 . . .m} such that π /∈ Reach(ERR(DP ,P) ∥
LTS(D1) ∥ . . . ∥ LTS(Dk)).

Proof. Sketch. The forwards case (⇒) follows by choosing
k = m . For the backwards case (⇐), we assume that k is
given such that 0 ≤ k ≤ m and π /∈ Reach(ERR(DP ,P) ∥
LTS(D1) ∥ . . . ∥ LTS(Dk)). Notice that, by construction,
none of LTS(Dk+1), . . . , LTS(Dm) contains a π state, and
therefore neither will Reach(ERR(DP ,P) ∥ LTS(D1) ∥ . . . ∥
LTS(Dm)).

Lemma 4. S |= P ⇐⇒ LTS(D1) ∥ . . . ∥ LTS(Dm) |= P .
Proof.

S |= P (1)
⇐⇒ π ∈ Reach(ERR(S ,P)) (2)
⇐⇒ π ∈ Reach(ERR(C1//· · ·//Cn ,P)) (3)
⇐⇒ π ∈ Reach(ERR(DP //D1//· · ·//Dm ,P)) (4)
⇐⇒ π ∈ Reach(ERR(DP ,P) ∥ . . . ∥ ERR(Dm ,P)) (5)
⇐⇒ π ∈ Reach(ERR(DP ,P) ∥ . . . ∥ LTS(Dm)) (6)
⇐⇒ LTS(D1) ∥ . . . ∥ LTS(Dm) |= PROP(DP ,P) (7)

136

Biconditional (2) holds because P is a safety property, (3)
by Lem. 1 property (P1), (4) by the definition for each Dj

(and Lem. 2 in the case that f is partial), (5) by Thm. 1, (6)
by Lem. 1 property (P2) and Def. 2 (f (C1) = dP), and (7)
because P is a safety property. Finally, the theorem follows
because P = PROP(DP ,P).

Theorem 2. If Alg 1 terminates, then it returns true (model
checking succeeds) if and only if S |= P .

Proof. The result follows from Lem. 3 and Lem. 4.

While Thm. 2 shows that Alg. 1 is sound, the algorithm
is not complete, even if we limit S to be a finite-state
specification. This is because a given component Dj may
be infinite-state, in which case LTS construction will fail to
terminate on line 1 or 5 in Alg. 3. We address this limitation
in Sec. VI-B by using a portfolio of strategies that includes
the monolithic strategy.

VI. CHOOSING EFFICIENT RECOMPOSITION MAPS

In this section, we address the problem of designing re-
composition strategies, i.e. choosing efficient recomposition
maps. Rather than finding a single recomposition strategy, we
propose running Alg. 1 with a portfolio of strategies in parallel.
The primary challenge is determining which strategies to use,
since the number of possible recomposition maps grows large
as the number of components increases. We therefore propose
a heuristic for pruning the search space of recomposition maps
in Sec. VI-A. We then choose a small portfolio of strategies
based on this heuristic in Sec. VI-B.

A. Recomposition Map Reduction Heuristic

Any heuristic for pruning the search space of recomposition
maps should be tailored to the compositional verification
algorithm being used. Since we use a CRA-style verification
algorithm, we design our heuristic to find component orderings
that can take advantage of short-circuiting. In particular, the
heuristic identifies recomposition maps that order Dj compo-
nents that are least likely to be necessary for verification last.
Our heuristic is to choose recomposition maps that respect

the data flow partial order ≼ over the Ci components. This is a
novel partial order that attempts to find dynamic specification
reduction–i.e. short-circuiting–by refining our static specifica-
tion reduction scheme. Intuitively, the partial order will order
the components based on how far removed their state variables
are from impacting verification.
More formally, we compute the data flow partial order based

on the indexed sets Xi introduced in Sec. V-C. These sets
cumulatively capture the components that may interact–either
directly or indirectly–with the actions of C1. First, we build
new indexed sets Ei defined as E0 = X0 and Ei+1 = Xi+1 \
Xi . While the Xi ’s are cumulative, each Ei captures only the
additional components in each Xi . Intuitively, the components
in Ei are i steps removed from affecting the variables in C1,
and hence i steps removed from impacting verification (by
property (P2) of decomposition).

Second, we build indexed sets Fi that capture the data flow
from each component in Ei to the components in Ei+1. We
define F0 = ∅ and:

Fi+1 =

{︃
(Cj ,Ck)

⃓⃓⃓⃓
Cj ∈ Ei and Ck ∈ Ei+1

and α̂Cj ∩ α̂Ck ̸= ∅
}︃

Finally, let F =
⋃︁

i Fi ; we define the data flow partial order
≼ to be the reflexive transitive closure of F . In Appendix D
of our technical report [29], we show formally that the partial
order refines the static specification reduction scheme from
Sec. V-C.

Example 7. For TP and Consistent , E0 = {RM },
E1 = {Env}, and E2 = {TM1,TM2}. Moreover, F =
{(RM ,Env), (Env ,TM1), (Env ,TM2)} and the data flow
partial order is the reflexive transitive closure of this set.
Intuitively, the partial order shows that TM1 and TM2 can
only affect the variables in RM –i.e. the variables βConsistent
needed for verification–indirectly by interacting with the Env
component.

To further reduce the search space of maps, we extend the
data flow partial order to a total order ⩽ , i.e. ≼⊆⩽ . We
build the total order by breaking ties between incomparable
components Ci and Cj by requiring Ci ⩽ Cj if and only if
Ci ’s state variables have fewer syntactic appearances than Cj ’s
in the original specification S . In the case that the variables
of Ci and Cj have the same number of appearances in S , we
break the tie arbitrarily.

B. Choosing a Portfolio of Strategies

In this section, we describe four recomposition strategies
that comprise our portfolio. For simplicity, we describe the
strategies assuming that the components C1, . . . ,Cn have
been reordered according to the total order ⩽ described in
Sec. VI-A. The four strategies are (S1) the identity strategy,
in which m = n − 1 and f (Ci) = di for all i , (S2) a “bottom
heavy” strategy in which we choose m = 1 and f such that
f (C1) = dP and f (Ci) = d1 for all i > 1, (S3) a “top
heavy” strategy in which we choose m = 1 and f such that
f (Cn) = d1 and f (Ci) = dP for all i < n , and (S4) the
monolithic strategy, where m = 0 and f (Ci) = dP for all i .

Example 8. In TP , the state variables of TM2 occur fewer
times than the variables of TM1. Therefore, the total ordering
from Sec. VI-A is: RM ,Env ,TM2,TM1. Then, for each
strategy, we have: (S1) m = 3, f (RM) = dP , f (Env) = d1,
f (TM2) = d2, and f (TM1) = d3; (S2) m = 1, f (RM) = dP ,
and f (Env) = f (TM2) = f (TM1) = d1; (S3) m = 1,
f (RM) = f (Env) = f (TM2) = dP , and f (TM1) = d1; and
(S4) m = 0 and f (RM) = f (Env) = f (TM2) = f (TM1) =
dP .

As a note regarding the correctness analysis from Sec. V-E,
including the monolithic strategy in the portfolio ensures
termination. Therefore, our parallel approach is complete for
finite state specifications S .

137

VII. EXPERIMENTAL RESULTS

A. Implementation

We have created a model checker called Recomp-Verify that
can verify safety for TLA+ specifications. The model checker
is a prototype research tool that implements Alg. 1 in the
Python, Java, and Kotlin programming languages. The model
checker also supports running multiple instances of Alg. 1
in parallel, and returns the first result to finish. Our tool is
available in a public repository [30].

B. Experiments

We evaluate Recomp-Verify against TLC on a benchmark
of distributed protocols [31], plus the tla-twophase-counter
protocol that we introduce in Ex. 5. Our evaluation is driven
by two research questions. First, (RQ1) can hand-written
recomposition maps provide more efficient verification than
TLC? If this is the case, we then ask whether our technique is
still performant when automating the search for recomposition
maps. More precisely, (RQ2) is the performance of Recomp-
Verify (using a parallel, portfolio strategy) competitive with
TLC when each tool is allotted four threads?
In our experiments, we use TLC1 and TLC4 to respectively

denote TLC run with one and four parallel threads; this is
a built-in option for the tool. Recomp-Verify1 is the version
of our tool with one thread and hand-crafted maps, while
Recomp-Verify4 denotes the version that uses four threads
to run the portfolio of recomposition strategies (S1-4) from
Sec. VI in parallel. We report the fastest strategy for Recomp-
Verify4 in the “Strat.” column in Fig. 6. Additionally, in the im-
plementation of Recomp-Verify4, we use TLC1 for running the
monolithic strategy (S4), since TLC is far more efficient than
our research prototype for monolithic model checking. For
example, in ex-quorum-leader-election-6 in Fig. 6, Recomp-
Verify1 uses an optimal single-threaded strategy, yet is slower
than TLC1–and therefore Recomp-Verify4 too.
Every experiment in this paper was run on an Apple

MacBook Pro with 32GB of memory and an M1 processor. For
each benchmark, we report the total run time using the Unix
time utility as well as the maximum number of states checked.
We use TO to indicate a timeout after ten minutes and OM
to indicate a program crash due to reaching the memory limit
given a 25GB allotment. For TLC’s maximum state count,
we use the number of unique states that the tool reports. For
Recomp-Verify, we use the maximum between (1) the number
of unique states generated for each component and, for each
iteration, (2) the number of states that results from composition
in Alg. 3 on line 5. For Recomp-Verify1, we also report the
number of components that result from decomposition (n), the
number of recomposed components (m), and the number of
recomposed components that were checked (k).

C. Results and Discussion

1) RQ1: We show our results in Fig. 6. In terms of state
space, TLC1 enumerates at least as many states as Recomp-
Verify1 in every case. For six of the benchmarks that both
tools verified, recomposition reduced the state size by millions

of states. Moreover, Recomp-Verify1 short-circuits (k < m)
for eight benchmarks, each of which has a significantly
smaller state space than TLC1. Finally, Recomp-Verify1–but
not TLC1–was able to verify the one infinite state benchmark
(tla-twophase-counter) via static specification reduction.
In terms of verification speed, Recomp-Verify1 and TLC1

both outperform each other in fourteen benchmarks, and
tie in five cases. However, Recomp-Verify1 completes more
benchmarks, verifying twenty-nine benchmarks while TLC1

verifies twenty-four. Generally speaking, Recomp-Verify1 is
more performant on larger benchmarks; on benchmarks with
over a million states, TLC1 is faster in two cases while
Recomp-Verify1 is faster in at least six cases. We therefore
answer RQ1 by concluding that hand-crafted maps can provide
more efficiency than TLC.
2) RQ2: The results for TLC4 and Recomp-Verify4 are

similar to the single threaded versions. In terms of state space,
Recomp-Verify4 always enumerates the same number of (or
fewer) states than TLC4, and also exhibits large savings in
the millions for six benchmarks. We note that Recomp-Verify4

short-circuited every time that Recomp-Verify1 short-circuited,
which showcases the effectiveness of the data flow heuristic.
In terms of verification speed, Recomp-Verify4 is faster

for eleven benchmarks, TLC4 is faster for fourteen, and the
tools tie for eight benchmarks. However, Recomp-Verify4

verifies more benchmarks, completing thirty-two, while TLC4

completes twenty-four. While threading made TLC faster for
the smaller benchmarks, it did not help the tool verify more
benchmarks. On the other hand, threading helped Recomp-
Verify to verify three more benchmarks. Generally speaking,
Recomp-Verify4 outperforms TLC4 for large benchmarks and
is competitive with TLC4 for smaller ones, and therefore we
answer RQ2 in the affirmative.
3) Discussion: In Fig. 6, the Strat. column shows that the

winning strategy for Recomp-Verify4 varies depending on the
given benchmark. This observation suggests that using a port-
folio of strategies may be necessary for efficient verification.
Notably, among the benchmark problems, we found that the
bottom heavy strategy (S2) did not perform well. Most likely,
this is because the second component in this strategy is too
large, and therefore misses opportunities for short-circuiting.
Ultimately, Recomp-Verify tends to be faster than TLC on

benchmarks that have more opportunity for recomposition. We
point out that Recomp-Verify1 is faster than TLC1 in every
case where decomposition produced at least four components
(n ≥ 4). The same is true for Recomp-Verify4 and TLC4 in all
but one case. This observation suggests that the potential ben-
efits of recomposition increase with the number of available
components (n).

VIII. RELATED WORK

Compositional verification is a well studied research area.
Two widely studied styles of compositional verification are
CRA [4], [5], [6], [8], [32], [12], [13], [14], [15], [16] and
assume-guarantee reasoning [2], [3], [7], [17], [9], [33], [18],
[19], [10], [11], [34], although other styles exist as well [35],

138

Recomp-Verify1 TLC1 Recomp-Verify4 TLC4

Name n m k States Time States Time States Time Strat. States Time
tla-consensus-3 1 0 0 4 1s 4 1s 4 1s S4 4 1s
tla-tcommit-3 1 0 0 34 1s 34 1s 34 1s S4 34 1s
i4-lock-server-2-2 1 0 0 9 1s 9 1s 9 1s S4 9 1s
ex-quorum-leader-election-6 2 1 1 117,671 39s 121,111 4s 121,111 5s S4 121,111 2s
pyv-toy-consensus-forall-6-6 3 1 1 117,671 33s 121,111 4s 121,111 5s S4 121,111 2s
tla-simple-5 1 0 0 723 1s 723 1s 723 1s S4 723 1s
ex-lockserv-automaton-20 5 1 0 61 2s - TO 61 3s S3 - TO
tla-simpleregular-5 1 0 0 2,524 2s 2,524 1s 2,524 1s S4 2,524 1s
pyv-sharded-kv-3-3-3 3 0 0 10,648 5s 10,648 2s 10,648 2s S4 10,648 1s
pyv-lockserv-20 5 1 0 61 1s - TO 61 2s S3 - TO
tla-twophase-9 4 2 2 145,176 19s 10,340,352 9m41s 145,691 31s S1 10,340,352 2m36s
tla-twophase-10 4 2 2 481,550 1m8s - TO 482,577 1m36s S1 - TO
tla-twophase-counter-9 5 2 2 145,176 19s - TO 145,691 31s S1 - TO
i4-learning-switch-4-3 1 0 - - TO 1,344,192 5m55s 1,344,192 5m55s S4 1,344,192 1m37s
ex-simple-decentralized-lock-4 2 0 0 20 2s 20 1s 20 1s S4 20 1s
i4-two-phase-commit-7 4 2 2 151,348 26s 10,016,384 3m38s 184,112 27s S3 10,016,384 53s
pyv-consensus-wo-decide-4 5 2 1 32,816 9s - TO 32,953 10s S3 - TO
pyv-consensus-forall-4-4 6 1 0 33,545 8s - TO 33,545 9s S3 - TO
pyv-learning-switch-trans-3 2 1 0 729 5s - TO 729 6s S1 - TO
pyv-learning-switch-sym-2 2 1 0 4 2s 1,344 1s 1,344 1s S4 1,344 1s
pyv-sharded-kv-no-lost-keys-3-3-3 2 0 0 9,261 4s 27 1s 9,261 2s S4 9,261 1s
ex-naive-consensus-4-4 3 1 1 824 2s 1,001 1s 1,001 2s S4 1,001 1s
pyv-client-server-ae-4-2-2 2 1 1 352,145 42s 2,039,392 1m36s 352,145 49s S1 2,039,392 28s
pyv-client-server-ae-2-4-2 2 1 1 894,437 2m18s 2,387,032 1m16s 2,387,032 1m26s S4 2,387,032 22s
ex-simple-election-6-7 3 1 0 267,590 1m20s 2,900,256 3m7s 267,590 1m22s S3 2,900,256 54s
pyv-toy-consensus-epr-8-3 3 1 1 65,543 1m1s 70,903 6s 70,903 7s S4 70,903 2s
ex-toy-consensus-8-3 2 1 1 65,543 57s 70,903 5s 70,903 6s S4 70,903 2s
pyv-client-server-db-ae-2-3-2 5 4 4 188,158 12s 1,394,368 1m1s 188,799 15s S1 1,394,368 18s
pyv-client-server-db-ae-4-2-2 5 1 1 356,706 1m23s 3,624,960 2m48s 356,706 1m40s S1 3,624,960 44s
pyv-firewall-5 2 0 0 56,072 9s 56,072 2s 56,072 3s S4 56,072 1s
ex-majorityset-leader-election-5 3 1 - - TO 166,306 15s 166,306 17s S4 166,306 5s
pyv-consensus-epr-4-4 6 2 1 7,018 3s - TO 7,221 5s S3 - TO
mldr-2 1 0 - - TO - TO - TO - - TO

Fig. 6: Run time comparison between Recomp-Verify and TLC. The superscripts for each tool indicates how many threads are
allocated to a trial. The fastest times for each experiment are bolded. The “Strat.” column denotes the fastest strategy.

[36]. Of these works, the ones most closely related to this
paper automate decomposition for verification. Metzler et a.
[18] and Cobleigh et al. [17] decompose systems into two
components, after which they apply L∗ style learning [37] to
infer assumptions for assume-guarantee style compositional
verification. Nam et al. [19] use a similar strategy, but consider
multi-way decomposition and verification. While these works
report limited success, we are able to find efficient verification
problems via recomposition.
Our work also relates to program slicing [20], [21] and cone

of influence reduction [38], both of which are techniques for
static specification reduction. These two techniques soundly
reduce the state variables needed for model checking by
analyzing a variable dependency graph. Our work includes
static specification reduction by allowing partial recomposition
maps, as described in Sec. V.
In the TLA+ ecosystem, TLC [23] is the most well-known

model checker. Apalache [39], [40] is an alternate model
checker that internally relies on SMT solvers. Apalache sup-
ports bounded model checking and verification with induc-
tive invariants–two techniques that are outside the scope of
comparison for our tool. The TLA+ Proof System (TLAPS)
[41] provides an alternative to model checking TLA+. TLAPS
proofs are manually constructed, but automatically verified by
dispatching proof obligations to SMT solvers. Endive [31] is

a tool that automatically infers inductive invariants for TLA+

specifications, which then may be checked using a TLAPS
proof.

IX. LIMITATIONS AND FUTURE WORK

In Sec. VII-C, we show that the effectiveness of our ap-
proach is tied to the number of Ci components. In future work,
we plan to investigate methods to make decomposition more
granular, as well as decomposing properties. As the number
of components increase, we also plan to improve our methods
for finding efficient recomposition maps. For example, we plan
to improve our parallel technique so that different threads can
share intermediate work to save time and memory.
In this paper, we focus on using recomposition for explicit-

state model checking. However, recomposition may also be
effective for other compositional verification tasks. For exam-
ple, we plan to investigate whether recomposition can be used
in combination with non-explicit verification techniques, e.g.
using SMT solvers. We also plan to investigate whether recom-
position can be used for efficient counter-example detection.

ACKNOWLEDGEMENTS

The authors are most grateful to Changjian Zhang, Andy
Hammer, and the anonymous reviewers for their helpful
comments on earlier versions of this paper. This project was
supported by the U.S. NSF Award #2144860.

139

REFERENCES

[1] D. Giannakopoulou, K. S. Namjoshi, and C. S. Păsăreanu,
Compositional Reasoning. Cham: Springer International Publishing,
2018, pp. 345–383. [Online]. Available: https://doi.org/10.1007/978-3-
319-10575-8 12

[2] R. Alur, P. Madhusudan, and W. Nam, “Symbolic compositional ver-
ification by learning assumptions,” in Computer Aided Verification,
K. Etessami and S. K. Rajamani, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 548–562.

[3] Y.-F. Chen, A. Farzan, E. M. Clarke, Y.-K. Tsay, and B.-Y. Wang,
“Learning minimal separating dfa’s for compositional verification,” in
Tools and Algorithms for the Construction and Analysis of Systems,
S. Kowalewski and A. Philippou, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 31–45.

[4] S. C. Cheung and J. Kramer, “Compositional reachability analysis
of finite-state distributed systems with user-specified constraints,” in
Proceedings of the 3rd ACM SIGSOFT Symposium on Foundations
of Software Engineering, ser. SIGSOFT ’95. New York, NY, USA:
Association for Computing Machinery, 1995, p. 140–150. [Online].
Available: https://doi.org/10.1145/222124.222149

[5] ——, “Context constraints for compositional reachability analysis,”
ACM Trans. Softw. Eng. Methodol., vol. 5, no. 4, p. 334–377, oct 1996.
[Online]. Available: https://doi.org/10.1145/235321.235323

[6] ——, “Checking safety properties using compositional reachability
analysis,” ACM Trans. Softw. Eng. Methodol., vol. 8, no. 1, p. 49–78,
jan 1999. [Online]. Available: https://doi.org/10.1145/295558.295570

[7] J. M. Cobleigh, D. Giannakopoulou, and C. S. PĂsĂreanu, “Learning
assumptions for compositional verification,” in Tools and Algorithms for
the Construction and Analysis of Systems, H. Garavel and J. Hatcliff,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 331–
346.

[8] S. Graf and B. Steffen, “Compositional minimization of finite state sys-
tems,” in Proceedings of the 2nd International Workshop on Computer
Aided Verification, ser. CAV ’90. Berlin, Heidelberg: Springer-Verlag,
1990, p. 186–196.

[9] A. Gupta, K. L. McMillan, and Z. Fu, “Automated assumption gen-
eration for compositional verification,” in Proceedings of the 19th
International Conference on Computer Aided Verification, ser. CAV’07.
Berlin, Heidelberg: Springer-Verlag, 2007, p. 420–432.

[10] C. Păsăreanu, D. Giannakopoulou, M. Bobaru, J. Cobleigh, and H. Bar-
ringer, “Learning to divide and conquer: Applying the l*algorithm
to automate assume-guarantee reasoning,” Formal Methods in System
Design, vol. 32, pp. 175–205, 06 2008.

[11] C. S. Păsăreanu and D. Giannakopoulou, “Towards a compositional
spin,” in Model Checking Software, A. Valmari, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 234–251.

[12] K. Sabnani, A. Lapone, and M. Uyar, “An algorithmic procedure
for checking safety properties of protocols,” IEEE Transactions on
Communications, vol. 37, no. 9, pp. 940–948, 1989.

[13] K.-C. Tai and P. Koppol, “Hierarchy-based incremental analysis of
communication protocols,” in 1993 International Conference on Network
Protocols, 1993, pp. 318–325.

[14] H. Zheng, “Compositional reachability analysis for efficient modular
verification of asynchronous designs,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 29, no. 3, pp.
329–340, 2010.

[15] ——, “Local state space construction for compositional verification of
concurrent systems,” in Proceedings of the 2014 International SPIN
Symposium on Model Checking of Software, ser. SPIN 2014. New
York, NY, USA: Association for Computing Machinery, 2014, p.
11–19. [Online]. Available: https://doi.org/10.1145/2632362.2632366

[16] H. Zheng, Z. Zhang, C. J. Myers, E. Rodriguez, and Y. Zhang, “Com-
positional model checking of concurrent systems,” IEEE Transactions
on Computers, vol. 64, no. 6, pp. 1607–1621, 2015.

[17] J. M. Cobleigh, G. S. Avrunin, and L. A. Clarke, “Breaking up is
hard to do: an investigation of decomposition for assume-guarantee
reasoning,” in Proceedings of the 2006 International Symposium on
Software Testing and Analysis, ser. ISSTA ’06. New York, NY, USA:
Association for Computing Machinery, 2006, p. 97–108. [Online].
Available: https://doi.org/10.1145/1146238.1146250

[18] B. Metzler, H. Wehrheim, and D. Wonisch, “Decomposition for com-
positional verification,” in Formal Methods and Software Engineering,

S. Liu, T. Maibaum, and K. Araki, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 105–125.

[19] W. Nam, P. Madhusudan, and R. Alur, “Automatic symbolic
compositional verification by learning assumptions,” Form. Methods
Syst. Des., vol. 32, no. 3, p. 207–234, jun 2008. [Online]. Available:
https://doi.org/10.1007/s10703-008-0055-8

[20] I. Brückner and H. Wehrheim, “Slicing an integrated formal method for
verification,” in Formal Methods and Software Engineering, K.-K. Lau
and R. Banach, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 360–374.

[21] M. Weiser, “Programmers use slices when debugging,” Commun.
ACM, vol. 25, no. 7, p. 446–452, jul 1982. [Online]. Available:
https://doi.org/10.1145/358557.358577

[22] L. Lamport, Specifying Systems: The TLA+ Language
and Tools for Hardware and Software Engineers.
Addison-Wesley, June 2002. [Online]. Available: https:
//www.microsoft.com/en-us/research/publication/specifying-systems-
the-tla-language-and-tools-for-hardware-and-software-engineers/

[23] Y. Yu, P. Manolios, and L. Lamport, “Model checking tla+ specifica-
tions,” in Correct Hardware Design and Verification Methods, L. Pierre
and T. Kropf, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
1999, pp. 54–66.

[24] J. Gray and L. Lamport, “Consensus on transaction commit,” ACM
Trans. Database Syst., vol. 31, no. 1, p. 133–160, mar 2006. [Online].
Available: https://doi.org/10.1145/1132863.1132867

[25] C. A. R. Hoare, “Communicating sequential processes,” Commun.
ACM, vol. 21, no. 8, p. 666–677, aug 1978. [Online]. Available:
https://doi.org/10.1145/359576.359585

[26] D. Giannakopoulou, C. Pasareanu, and H. Barringer, “Assumption
generation for software component verification,” in Proceedings 17th
IEEE International Conference on Automated Software Engineering,,
2002, pp. 3–12.

[27] W. J. Yeh and M. Young, “Compositional reachability analysis using
process algebra,” in Proceedings of the Symposium on Testing, Analysis,
and Verification, ser. TAV4. New York, NY, USA: Association
for Computing Machinery, 1991, p. 49–59. [Online]. Available:
https://doi.org/10.1145/120807.120812

[28] R. Milner, Communication and Concurrency, ser. Ph/AMA Series
in Marketing. Prentice Hall, 1989. [Online]. Available: https:
//books.google.com/books?id=S5UZAQAAIAAJ

[29] I. Dardik, A. Porter, and E. Kang, “Recomposition: A new technique
for efficient compositional verification,” 2024. [Online]. Available:
https://arxiv.org/abs/2408.03488

[30] “Recomp-verify research prototype model checker for tla+,” https:
//github.com/cmu-soda/recomp-verify/tree/FMCAD24, accessed: 2024-
08-16.

[31] W. Schultz, I. Dardik, and S. Tripakis, “Plain and simple inductive
invariant inference for distributed protocols in tla+,” in 2022 Formal
Methods in Computer-Aided Design (FMCAD). IEEE, 2022, pp. 273–
283.

[32] J. Malhotra, S. A. Smolka, A. Giacalone, and R. Shapiro, “Winston:
A tool for hierarchical design and simulation of concurrent systems,”
in Specification and Verification of Concurrent Systems, C. Rattray, Ed.
London: Springer London, 1990, pp. 140–152.

[33] C. Jones, “Specification and design of (parallel) programs.” vol. 83, 01
1983, pp. 321–332.

[34] A. Pnueli, “In transition from global to modular temporal reasoning
about programs,” in Logics and Models of Concurrent Systems, K. R.
Apt, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985, pp.
123–144.

[35] H. Barringer, D. Giannakopoulou, and C. Pasareanu, “Proof rules for
automated compositional verification through learning,” 02 2003.

[36] S. Bensalem, M. Bozga, J. Sifakis, and T.-H. Nguyen, “Compositional
verification for component-based systems and application,” in Automated
Technology for Verification and Analysis, S. S. Cha, J.-Y. Choi, M. Kim,
I. Lee, and M. Viswanathan, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 64–79.

[37] D. Angluin, “Learning regular sets from queries and counterexamples,”
Inf. Comput., vol. 75, no. 2, p. 87–106, nov 1987. [Online]. Available:
https://doi.org/10.1016/0890-5401(87)90052-6

[38] E. Clarke, O. Grumberg, D. Kroening, D. Peled, and H. Veith, Model
Checking, second edition, ser. Cyber Physical Systems Series. MIT
Press, 2018. [Online]. Available: https://books.google.com/books?id=
qJl8DwAAQBAJ

140

https://doi.org/10.1007/978-3-319-10575-8_12
https://doi.org/10.1007/978-3-319-10575-8_12
https://doi.org/10.1145/222124.222149
https://doi.org/10.1145/235321.235323
https://doi.org/10.1145/295558.295570
https://doi.org/10.1145/2632362.2632366
https://doi.org/10.1145/1146238.1146250
https://doi.org/10.1007/s10703-008-0055-8
https://doi.org/10.1145/358557.358577
https://www.microsoft.com/en-us/research/publication/specifying-systems-the-tla-language-and-tools-for-hardware-and-software-engineers/
https://www.microsoft.com/en-us/research/publication/specifying-systems-the-tla-language-and-tools-for-hardware-and-software-engineers/
https://www.microsoft.com/en-us/research/publication/specifying-systems-the-tla-language-and-tools-for-hardware-and-software-engineers/
https://doi.org/10.1145/1132863.1132867
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/120807.120812
https://books.google.com/books?id=S5UZAQAAIAAJ
https://books.google.com/books?id=S5UZAQAAIAAJ
https://arxiv.org/abs/2408.03488
https://github.com/cmu-soda/recomp-verify/tree/FMCAD24
https://github.com/cmu-soda/recomp-verify/tree/FMCAD24
https://doi.org/10.1016/0890-5401(87)90052-6
https://books.google.com/books?id=qJl8DwAAQBAJ
https://books.google.com/books?id=qJl8DwAAQBAJ

[39] I. Konnov, J. Kukovec, and T.-H. Tran, “Tla+ model checking made
symbolic,” Proc. ACM Program. Lang., vol. 3, no. OOPSLA, oct 2019.
[Online]. Available: https://doi.org/10.1145/3360549

[40] R. Otoni, I. Konnov, J. Kukovec, P. Eugster, and N. Sharygina, “Sym-
bolic model checking for tla+ made faster,” in Tools and Algorithms
for the Construction and Analysis of Systems, S. Sankaranarayanan and
N. Sharygina, Eds. Cham: Springer Nature Switzerland, 2023, pp.
126–144.

[41] D. Cousineau, D. Doligez, L. Lamport, S. Merz, D. Ricketts, and
H. Vanzetto, “Tla+ proofs,” Proceedings of the 18th International Sym-
posium on Formal Methods (FM 2012), Dimitra Giannakopoulou and
Dominique Mery, editors. Springer-Verlag Lecture Notes in Computer
Science, vol. 7436, pp. 147–154, January 2012. [Online]. Available:
https://www.microsoft.com/en-us/research/publication/tla-proofs/

141

https://doi.org/10.1145/3360549
https://www.microsoft.com/en-us/research/publication/tla-proofs/

Formal Methods in Computer-Aided Design 2024

Evaluating LLM-driven User-Intent Formalization
for Verification-Aware Languages

Shuvendu K. Lahiri
Microsoft Research, Redmond, USA

shuvendu@microsoft.com

Abstract—Verification-aware programming languages such as
Dafny and F* provide means to formally specify and prove
properties of a program. Although the problem of checking an
implementation against a specification can be defined mechani-
cally, there is no algorithmic way of ensuring the correctness of
the user-intent formalization for programs — that a specification
adheres to the user’s intent behind the program. This is because
intent or requirement is expressed informally in natural language
and the specification is a formal artefact. However, the advent
of large language models (LLMs) has made tremendous strides
bridging the gap between informal intent and formal program
implementations in the last couple of years, driven in large parts
due to benchmarks and automated metrics to evaluate different
techniques.
Recent work has developed a framework for evaluating and

benchmarking the user-intent formalization problem for main-
stream programming languages [12]. However, as we argue in this
paper, such an approach does not readily extend to verification-
aware languages that support rich specifications (using quan-
tifiers and ghost variables) that cannot be evaluated through
dynamic execution. Previous work also required generating
program mutants using LLMs to create the benchmark. We
advocate an alternate, perhaps simpler approach of symbolically
testing specifications to provide an intuitive metric for evaluating
the quality of specifications that can be easily instantiated with
most verification-aware languages. We demonstrate that our
automated metric agrees closely on a human-labeled dataset
of Dafny specifications for the popular MBPP code-generation
benchmark, yet demonstrates cases where the human labeling
is not perfect. We also outline formal verification challenges
that need to be addressed to apply the technique more widely.
We believe our work provides a stepping stone to enable the
establishment of a benchmark and research agenda for the
problem of user-intent formalization for programs.

Index Terms—formal verification, specifications, large lan-
guage models

I. INTRODUCTION

Formal verification is only as good as the specification
it verifies. A formal specification unambiguously defines the
(possibly partial) intent behind a program, often in an declar-
ative manner. Although there has been decades of research in
advancing the state-of-the-art in automating the problem of
verifying an implementation against a specification, relatively
less attention has been spent on how to aid the generation and
evaluation of specifications or formal requirements. It is well-
known that the lack of formal specifications is a significant
impediment to deployment of formal verification in production
code [10]. On the other hand, although a software is often

accompanied by informal intent expressed in natural language
comments and API documentation, these intents are seldom
formally enforced on the underlying implementation.
Large language models (LLMs) have recently demonstrated

potential to bridge the gap between informal intent and formal
artefact such as code [9], [5], by performing code generation
from natural language. Such progress has been spurred in
large parts through the creation of crowd-sourced benchmarks
such as HumanEval [9] and Mostly Basic Python Programs
(MBPP) [5] with automated program-semantics based metrics
(such as tests), unlike NLP metrics such as BLEU scores [25].
For code generation, the quality of an implementation gen-
erated from informal intent is measured through the set of
hidden validation tests. We term the tests as ”hidden” since
they are not available to the model at the time of code
generation. The benchmarks also provide a reference code
in Python for each problem, which are also hidden from the
code generation model. These approaches rely heavily on the
presence of a high-quality set of validation tests to exercise
most corner cases. These benchmarks allow a community
to evaluate their models and techniques on a common set
of benchmarks automatically and measure progress. One can
hope that the establishment of similar benchmarks and metrics
for specification generation (decoupled from code generation)
can enable synthesizing useful specifications from informal
intent in practice.
Motivated by such a need, Endres et al. [12] describe

the problem of generating formal declarative specifications
(namely, method postconditions) from informal intent using
LLMs and automated metrics for evaluating them — we refer
to this as user-intent formalization problem in this paper.
For user-intent formalization, Endres et al. re-purpose code-
generation benchmarks (such as HumanEval) and introduce
two metrics (a) correctness and (b) completeness, with respect
to the set of (hidden) validation tests and the (hidden) reference
code. Correctness captures that the specification satisfies the
reference code for all the validation tests; completeness cap-
tures the strength of the specification to discriminate against
buggy mutations of the reference code (under the set of
tests). Further, these code mutants are generated through LLMs
and are grouped by the subset of tests that fail them. They
demonstrate that these automatic metrics closely resemble
the quality of specifications as determined through manual
analysis. As with code generation, the approach relies on the

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 19 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0000-0002-4446-4777
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_19
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_19
https://creativecommons.org/licenses/by/4.0/

presence of a high-quality test-suite.

A. Summary

In this paper, we investigate creating benchmarks (dataset
and associated automatic metrics) for user-intent formalization
for verification-aware languages such as F* [27], Dafny [21]
and Verus [20]. A verification-aware language supports a
rich program logic for expressing specifications and offers
the ability to verify them statically using automated theorem
provers. However, for most non-trivial programs, the verifica-
tion requires manually decomposing the problem through the
use of ghost variables, intermediate lemmas, invariants and
assertions.
We focus on the problem of evaluating specifications au-

tomatically. We discuss why prior approaches do not readily
apply to evaluating specifications. Then we propose the use
of automatic program verification to symbolically ”test” the
specifications to determine their quality. We have developed a
prototype and applied it to a dataset of Dafny specifications
from prior work [23]. We demonstrate that the quality of the
specifications obtained through the automated means aligns
well with the human-labeling of the specifications in most
cases. Finally, we describe the unique challenges (such as
quantifier instantiation) that need to be addressed to apply the
technique to a larger class of problems.

B. Running example

Consider a snippet of the JSON specification of an example
from the MBPP dataset for code generation from natural
language in Python [9].

"prompt": "Write a function to find the shared elements
from the given two lists.",

"code": "def similar_elements(test_tup1, test_tup2):\n
....",

"test_list": [
"assert set(similar_elements((3, 4, 5, 6),(5, 7, 4, 10)

)) == set((4, 5))",
...

]

The dataset comes with a set of problems, each containing
a natural language prompt prompt, the reference code code
as well a set of 3 tests in test list . Misu et al. [23] port
these requirements to Dafny (call it MBPP-DFY), including
slight change to the prompt, explicitly representing the Dafny
method signature (with a slightly changed name), as well as
the test cases [1]. 1

"task_description": "Write a method in Dafny to find the
shared elements from the given two array.",

"method_signature": "method similarElements (arr1:array<int
>, arr2:array<int>) returns (res: array<int>)",

"test_cases": {
"test_1": "var a1:= new int[] [3, 4, 5, 6];\nvar a2:=

new int[] [5, 7, 4, 10];\nvar e1:= new int[] [4,
5];\nvar res1:=similarElements(a1,a2);\nassert
arrayEquals(res1,e1);",

...
}

1We take the snapshot of the repository at COMMIT a57ce24.

Misu et al. use GPT-4 [4] and other language models
(with sophisticated prompting) to generate a pair of Dafny
specification and implementation, and retain generations where
the generated specification is provable for the generated imple-
mentation. Below we show the specification component of the
GPT-4 generated Dafny artefact for this example (with slightly
altered method name and signature over JSON) [3].The two
postconditions (marked with ensures) define the specification
and use an auxiliary predicate InArray.

predicate InArray(a: array<int>, x: int)
reads a
{ exists i :: 0 <= i < a.Length && a[i] == x }

method SharedElements(a: array<int>, b: array<int>)
returns (result: seq<int>)

ensures forall x :: x in result ==>
(InArray(a, x) && InArray(b, x))

ensures forall i, j :: 0 <= i < j < |result| ==>
result[i] != result[j]

{
....Dafny implementation...

}

Although the implementation satisfies the specification,
there is no evidence that the specification indeed cap-
tures what the user intended (and specified implicitly
in the hidden test cases). The authors perform man-
ual review of the specifications and mark them as ei-
ther {WRONG SPEC,WEAK SPEC, STRONG SPEC} to denote
if the specification is respectively, inconsistent, weakly or
strongly consistent with the intent expressed in the natural
language and tests [2]. Therefore, although this work addresses
generating verified Dafny programs from informal intent, it
relies completely on a human to ensure that the specification
matches the intent. In particular, the framework allows for
the Dafny code to only satisfy a vacuous specification (such
as ensures true) or worse, an incorrect one. This aspect
renders this dataset unsuitable as an automated benchmark
for specification generation in verification-aware languages.
In other words, if a language model generates a specification
that is non-equivalent to the ground-truth specification labeled
by the user, we cannot determine if it is incorrect without
requiring a user. This also makes the evaluation subjective.
Since verification of (generated) Dafny code is only as good
as the specification, this makes the dataset unsuitable for an
automated benchmark for verified code generation as well.

C. Proposal: Symbolically testing specifications

Our objective in this work is to define metrics that can
be automatically evaluated to determine the quality of a
specification. At the same time, we would also like to es-
tablish that these metrics correspond well to what a manual
labeling would establish. Further, we decouple the problem of
specification generation from code generation, to be able to (a)
use the specifications to find bugs in underlying or generated
code [12], or (b) use the validated specifications to refine the
prompts for code generation.
We first argue that the none of the prior approaches are

readily applicable to yield an automatic metric: (i) First, run-
ning the tests on the implementation without specifications will

143

not rule out vacuous specifications. (ii) Second, one cannot
apply the approach of Endres et al. for rich specifications that
contain ghost state or constructs that cannot be evaluated at
runtime (such as a universal/existential quantifier). (iii) One
can ignore tests and attempt to statically verify the synthesized
specification directly against the hidden reference code. This
can still allow vacuous specifications such as true. Further,
it is unlikely that such verification would be automatic for
non-trivial specifications given the need to infer intermediate
lemmas and invariants. (iv) One can instead provide a hidden
reference specification and check the candidate specification
for semantic equivalence. However, such a metric would be too
strict as it would not be able to distinguish weak and vacuous
specifications (such as true) from strong (yet incomplete)
specifications.
Next, we propose a method for evaluating user-intent for-

malization for verification-aware languages that leverages the
validation tests and symbolic verification capabilities of these
languages. Given a set of tests consisting of a set of consistent
input-output pairs, we define the correctness and completeness
metrics purely over the tests, without the need for the reference
code. Of course, just as in the case of code generation,
the technique for determining specification quality assumes
a high-quality set of validation tests.
Consider a method with signature m(x):y denoting the name

m, input parameters x and output parameters y, a candidate
postcondition/summary specification φ(x, y) and a set of input-
output tests T.
1) Correctness: A postcondition φ(x, y) is correct (or

sound) with respect to T if it is consistent with all the input-
output pairs in T. In other words, for each (i, o) ∈ T the
following Hoare-triple [15] holds.

|= {true} x := i; y := o; {φ(x, y)}
2) Completeness: The completeness measure for a spec-

ification φ given T is the fraction of output mutations
of the tests in T that φ is inconsistent with. Let T1

.
=⋃︁

(i,o)∈T
⋃︁
o′ ̸=o{(i, o′)} be a finite set of mutations of T that

mutate the output values for the given inputs. In this work, we
restrict the set of mutants per input i to a fixed number (5 for
this paper). Let T2 ⊆ T1 be the largest subset such that for
each (i, o′) ∈ T2, the following Hoare-triple does not hold:

̸|= {true} x := i; y := o′; {φ(x, y)}
Then the completeness measure of φ with respect to T
is |T2|/|T1| (this is inspired by kill-set in mutation-testing
literature [16]). For interested readers, we also contrast these
with a plausible proposal in Appendix B.
Let us demonstrate an implementation of these Hoare triples

as Dafny programs for our running example. Consider the
first test (see JSON input in Section I-B) that asserts that
SharedElements should return the set {4, 5} for input arrays
[3, 4, 5, 6] and [5, 7, 4, 10]. For correctness against this test, we
create the following Dafny program by providing a definition
of SharedElements that performs the soundness check:

predicate InArray(a: array<int>, x: int)
reads a
{ exists i :: 0 <= i < a.Length && a[i] == x }

method SharedElements(a: array<int>, b: array<int>)
returns (result: seq<int>)

ensures forall x :: x in result ==>
(InArray(a, x) && InArray(b, x))

ensures forall i, j :: 0 <= i < j < |result| ==>
result[i] != result[j]

{
var a1 := new int[] [3, 4, 5, 6];
var a2 := new int[] [5, 7, 4, 10];
assume {:axiom} a[..a.Length] == a1[..a1.Length];
assert a[0] == a2[0] && && a[3] == a2[3];
assume {:axiom} b[.. b.Length] == a2[..a2.Length];
assert b[0] == a2[0] && && b[3] == a2[3];
result := [4, 5];

}

The Dafny program above is identical to the program in
Section I-B, except for the body of SharedElements specified
within the curly braces {. . .}. Instead of the original imple-
mentation of the method, we model the Hoare-triple for cor-
rectness described above. The precondition of the Hoare-triple
(true) translates to assume true which is dropped. The input
assignment x := i; is modeled as assignments of the input
i to temporary variables a1, a2, followed by constraining the
actual parameters a, b respectively. For Dafny, this amounts to
saying that two arrays a (respectively, b) and a1 (respectively,
a2) are equal on all elements up to their lengths (which implies
that the lengths are identical as well). The redundant asserts
are needed for the verifier to trigger the quantifiers used in
InArray to enable the proof. Finally, the output parameter
result is assigned one of the expected values ([5,4] is also an
acceptable value). The Dafny program symbolically checks
(using Satisfiability Modulo Theories solvers [6]) that the
specification (provided by the ensures statements) holds for
the specific input and output.
However, the above verification only proves that the spec-

ification is correct for the test; a vacuous specification
ensures true would also be verified. For completeness, we
mutate the output value in result in several ways and check
that the verification fails. In this case, mutating the value in
result to [6] would fail the first postcondition, since 6 is not
present in both the input arrays.
For this program, the above specification is marked as

STRONG SPEC by the authors of MBPP-DFY. However, our
automated test harness coupled with mutation discovers that
the specification is incomplete (score 0.6). When we check the
above program with either of the two mutations result := [4]
or result := [5] , the specification still verifies. This is because
the implication ==> in the first postcondition only checks that
values in result is present in both the arrays; it does not check
that all such common values are present in result ! Thus our
automated metric is able to assign the above specification
a lower score than the full functional specification for this
example where the ==> is replaced by <==>.

Note: One may caution against using a verification failure
(as used for the completeness checks) as a means to show
that the corresponding Hoare-triple does not hold. In other
words, given that deductive verifiers are sound, but not nec-

144

essarily complete, a verification failure is typically interpreted
as an unknown outcome. However, note that we check for
completeness for a specification φ against an input-output
example (i, o′) only if φ is proved correct for all the tests in
T (including the original test (i, o)). Since the two verification
conditions differ only in a concrete value (between o and
o′), we conjecture that the underlying reasoning (including
quantifiers instantiated) would be quite identical in most cases,
and the verification failure strongly indicates that the Hoare-
triple does not hold.

II. IMPLEMENTATION AND EVALUATION

We report ongoing work in implementing the two metrics
for the MBPP-DFY dataset mentioned earlier in Section I-B.
Our tool (a 400 line Python script) consumes the method
signature, test cases and the candidate specification from
the JSON and Dafny files, and creates Dafny programs for
verifying the correctness and completeness for each test. It
then invokes the Dafny verifier, and reports the aggregate
correctness as well completeness score for each specification,
averaged over the different test cases; it finally compares the
metrics against the labels provided by authors. Of the 153
problems with specifications (a subset written by humans),
we have managed to apply our tool to check 64 of the
specifications (at the time of writing). In other words, for
these 64 examples, our tool is able to verify the soundness
of the specifications over the set of validation tests. We
have released the scripts, dataset and outputs at the website
https://github.com/microsoft/nl-2-postcond.

A. Mutating values

Each of these examples contain 3 test cases in Dafny format,
and we consider up to 5 distinct mutants of the output values
for each test. We currently have a simple mutation scheme for
the output values. For Booleans, we flip the value between
true and false. For integers, we choose a random value
between 1 and 10, and randomly add or subtract it. For
strings, we choose a random character and either replace
one of the characters or append it to the string. For arrays
(we only restrict to integer arrays and sequences), we choose
between dropping an element or inserting a random value
at a randomly chosen index. For our running example of
SharedElements, this allows us to create a mutant test case
with the array value [4] that demonstrates that the GPT-4
generated specification (marked as STRONG SPEC) is not the
most precise specification for this problem.

B. Results

We briefly report some details of the evaluation, and outline
the challenges to handle the remaining examples.
We find that for large majority of examples, the manual

labels align with the metrics computed by our tool. That is,
for the incorrect specifications, our tool reports a verification
failure for correctness check, and report a high completeness
score (usually > 0.66) for precise specifications. In other
words, barring a few exceptions below, all the specifications

that are marked STRONG SPEC have a completeness score
above 0.66, and all the WEAK SPEC have a score below 0.66.
This provides evidence that the automated metrics serve as a

good proxy for the user label. One such incorrect specification
generated by GPT-4 (and correctly labeled) is the problem of
RemoveDuplicates (”task id” 572) (also the motivating example
by Endres et al. [12] demonstrating ambiguity of natural
language) where the task is to remove all elements with
duplicates, but GPT-4 interprets it as the problem of retaining
a single copy of each value. Similarly, for countSubstrings
(”task id” 61), that counts the number of substrings whose
sum equals their length, our completeness check gives a low
score to the specification (correctly labeled WEAK SPEC) that
only ensures count is a non-negative number.
In addition to the SharedElements (”task id” 2), we found

at least 2 more cases where the specification (labeled
STRONG SPEC) is weaker than the most precise one. These
include the cases for maxAbsDiff (”task id” 145), and
removeElements (”task id” 161). maxAbsDiff is expected to
compute the maximum difference between any two elements in
the list; the provided specification only ensures that the result
upper bounds the difference between any two elements, but is
not the precise bound. removeElements is expected to remove
the elements in one array from another; the specification only
ensures that any element in the result array is present in the
first array and not the second but fails to ensure that the result
array is the precise difference (can be ensured by changing
==> by <==>).
Interestingly, we also discovered a few cases where the cor-

rectness check failed for specifications labeled STRONG SPEC.
These include examples with ”task id”s 234, 240, and 445. For
these examples, the authors had accidentally introduced bugs
while copying from the test cases in Python. For instance, for
”task id” 234 that computes the cube of a number, the authors
mistakenly copied the value 25 instead of 125 for the cube of
5. We noticed that a couple of these errors have been fixed in
the latest commit at the time of writing (fb4f53e), but a few
still remain (e.g., 445 where the value 32 is replaced by 31).
Our preliminary results demonstrates that the automatic

metrics not only helps to add objectivity to the manual label-
ing, argues for having a quantitative metric for completeness
(instead of a Boolean WEAK SPEC vs STRONG SPEC), but
also clearly demonstrates the potential to serve as a metric for
evaluating specifications for a benchmark.

C. Limitations

Our implementation currently has a few limitations that
precludes analyzing all the 153 specifications correctly. A
large class of them stem from inaccurate parsing through a
simple regex based parsing of the Dafny files. We expect these
(e.g., handling of 2D arrays) to be addressed as we improve
the parsing through Dafny AST-based analysis. However, a
few fundamental challenges (related to failure to perform
proofs of correct specifications) remain that requires further
investigation. We note a couple of them here:

145

https://github.com/microsoft/nl-2-postcond

a) Recursive predicates.: Specifications for tasks such as
105 (counting number of true Booleans in an array) require
the use of recursive functions countTo that expresses the count
of an array in terms of countTo of the tail of the array. Dafny
uses a notion of ”fuel” to control the level of unfolding of
such predicates, which suffices for inductive proofs. However,
for concrete arrays in test cases, these recursive functions need
to be unrolled proportional to the length of the array.

b) Quantifier instantiation.: Specifications for tasks such
such as 3 (that classifies a number as a non-prime) uses
existential quantifiers. For example, checking a number n as
non-prime requires checking for the existence of a smaller
number k that divides n. Unlike their usage in inductive
proofs where a loop establishes the inductive hypothesis to
only instantiate the quantifier on a few expressions, testing a
symbolic specification against a concrete value is sometimes
non-trivial. For example, to show that the value 97 is a prime,
the quantifier needs to be instantiated on all values up to 96.
We have already automated a few failed proofs due to quan-

tifier instantiation by adding intermediate redundant assertions
equating two arrays on every index (see assert statements in
the body of SharedElements in Sec I-B). In future work, we
plan to automate the inference of fuel amount and quantifier
instantiation witnesses when ranging over the indices of an
array.

III. RELATED WORK

Although the literature on specification mining is fairly rich,
it has historically focused on techniques that infer specifica-
tions of an implementation through dynamic [13] and recently
neural techniques [26]. The objective of these techniques is
to learn invariants from a few runs that generalize to unseen
executions. Static [14], [19], [24] and more recently neural
approaches [28], [17] have also been applied to the problem
(inductive) invariant generation to aid program proofs. Finally,
recent works have explored the generation of programs, spec-
ifications and proofs from natural languages [23], [29], [22].
On the other hand, work on user-intent formalization (i.e.,
translating natural language comments to specifications) [7],
[12] synthesize the intended specification, even in the absence
of an implementation. The problem of generating test oracle
assertions have also been investigated [11], but they only apply
to single input or test prefix. TiCoder [18] introduced the term
”user-intent formalization” over test cases for interactive code
generation, and alluded to metrics for measuring quality of
weak specifications (namely, tests) in terms of correctness
(user acceptance) and completeness (prunes buggy codes).
The work on autoformalization [30] for translating natural
language comments to mathematical theorems is closest to our
work. However, these techniques do not use semantic checks
(such as tests and symbolic verification) to ensure the quality
of the generated formal mathematical statements; instead they
leverage textual similarity metrics such as BLEU.

IV. CONCLUSION

In this paper, we motivate the problem of evaluating
user-intent-formalization for verification-aware languages. We
demonstrate that the idea of symbolically testing specifications
against validation tests can provide an automated metric for
a benchmark. We plan to curate a benchmark with a large
fraction of examples from MBPP-DFY dataset using the
above metric. We hope such benchmarks will accelerate the
research on specification generation from informal intent in
verification-aware languages. This when coupled with work on
program and proof synthesis (given a specification) can greatly
lower the cost required to create formally verified modules in
the future [8].

APPENDIX A
EXTENDED VERSION OF THE JSON EXAMPLES

"prompt": "Write a function to find the shared elements
from the given two lists.",

"code": "def similar_elements(test_tup1, test_tup2):\n
....",

"test_list": [
"assert set(similar_elements((3, 4, 5, 6),(5, 7, 4, 10)

)) == set((4, 5))",
"assert set(similar_elements((1, 2, 3, 4),(5, 4, 3, 7))

) == set((3, 4))",
"assert set(similar_elements((11, 12, 14, 13),(17, 15,

14, 13))) == set((13, 14))"
]

"task_description": "Write a method in Dafny to find the
shared elements from the given two array.",

"method_signature": "method similarElements (arr1:array<int
>, arr2:array<int>) returns (res: array<int>)",

"test_cases": {
"test_1": "var a1:= new int[] [3, 4, 5, 6];\nvar a2:=

new int[] [5, 7, 4, 10];\nvar e1:= new int[] [4,
5];\nvar res1:=similarElements(a1,a2);\nassert
arrayEquals(res1,e1);",

"test_2": "var a3:= new int[] [1, 2, 3, 4];\nvar a4:=
new int[] [5, 4, 3, 7];\nvar e2:= new int[] [3,
4];\nvar res2:=similarElements(a3,a4);\nassert
arrayEquals(res2,e2);",

"test_3": "var a5:= new int[] [11, 12, 14, 13];\nvar
a6:= new int[] [17, 15, 14, 13];\nvar e3:= new
int[] [13, 14];\nvar res3:=similarElements(a5,a6)
;\nassert arrayEquals(res3,e3);"

}

APPENDIX B
ALTERNATE PROPOSAL

A reader may wonder if the following check achieves a
similar objective for checking completeness:

|= {x == i ∧ φ(x, y)} skip {y == o}
There are two issues with this formulation: (a) this only
provides a Boolean metric that only rewards a precise spec-
ification that constrains y to a unique value o. For example,
it would award the strong (yet imprecise) specifications of
SharedElements to 0. Secondly, (b) this formulation is also too
strong when the precise functional specification allows for
non-determinism in the output. Consider the running example
of SharedElements, where the specification allows for the output
to be one of either {[4, 5], [5, 4]} for the given inputs.

146

REFERENCES

[1] mbpp-san-dfy-228-all-task-test.json. https://github.com/
Mondego/dafny-synthesis/blob/a57ce24/MBPP-san-DFY-228/
mbpp-san-dfy-228-all-task-test.json.

[2] rq3-dynamic-few-shot-prompting-gpt-4-temp 0.5-verified-unverified-
tagged.json. https://github.com/Mondego/dafny-synthesis/
blob/a57ce24/RQs/RQ3-%5BDynamic-Few-Shot-Prompting%
5D/rq3-dynamic-few-shot-prompting-GPT-4-temp 0.
5-verified-unverified-tagged.json.

[3] task id 2.dfy. https://github.com/Mondego/dafny-synthesis/blob/
a57ce24/MBPP-DFY-153/test/task id 2.dfy.

[4] Gpt-4 technical report, 2024.
[5] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan,

E. Jiang, C. Cai, M. Terry, Q. Le, and C. Sutton. Program synthesis
with large language models, 2021.

[6] C. W. Barrett, L. M. de Moura, S. Ranise, A. Stump, and C. Tinelli. The
SMT-LIB initiative and the rise of SMT - (HVC 2010 award talk). In
S. Barner, I. G. Harris, D. Kroening, and O. Raz, editors, Hardware and
Software: Verification and Testing - 6th International Haifa Verification
Conference, HVC 2010, volume 6504 of Lecture Notes in Computer
Science, page 3. Springer, 2010.

[7] A. Blasi, A. Goffi, K. Kuznetsov, A. Gorla, M. D. Ernst, M. Pezzè,
and S. D. Castellanos. Translating code comments to procedure
specifications. In Proceedings of the 27th ACM SIGSOFT international
symposium on software testing and analysis, pages 242–253, 2018.

[8] S. Chakraborty, G. Ebner, S. Bhat, S. Fakhoury, S. Fatima, S. Lahiri,
and N. Swamy. Towards neural synthesis for smt-assisted proof-oriented
programming, 2024.

[9] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374,
2021.

[10] D. Craigen, S. Gerhart, and T. Ralston. Formal methods reality check:
industrial usage. IEEE Transactions on Software Engineering, 21(2):90–
98, 1995.

[11] E. Dinella, G. Ryan, T. Mytkowicz, and S. K. Lahiri. Toga: A
neural method for test oracle generation. In Proceedings of the 44th
International Conference on Software Engineering, pages 2130–2141,
2022.

[12] M. Endres, S. Fakhoury, S. Chakraborty, and S. K. Lahiri. Can
large language models transform natural language intent into formal
method postconditions? In Proceedings of the Foundations of Software
Engineering 2024 (FSE’24), 2024.

[13] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
discovering likely program invariants to support program evolution. In
Proceedings of the 21st international conference on Software engineer-
ing, pages 213–224, 1999.

[14] C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant
for esc/java. In J. N. Oliveira and P. Zave, editors, FME 2001:
Formal Methods for Increasing Software Productivity. Springer Berlin
Heidelberg, 2001.

[15] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, oct 1969.

[16] Y. Jia and M. Harman. An analysis and survey of the development of
mutation testing. IEEE transactions on software engineering, 37(5):649–
678, 2010.

[17] A. Kamath, A. Senthilnathan, S. Chakraborty, P. Deligiannis, S. K.
Lahiri, A. Lal, A. Rastogi, S. Roy, and R. Sharma. Finding inductive
loop invariants using large language models, 2023.

[18] S. K. Lahiri, A. Naik, G. Sakkas, P. Choudhury, C. von Veh, M. Musu-
vathi, J. P. Inala, C. Wang, and J. Gao. Interactive code generation via
test-driven user-intent formalization. arXiv preprint arXiv:2208.05950,
2022.

[19] S. K. Lahiri, S. Qadeer, J. P. Galeotti, J. W. Voung, and T. Wies. Intra-
module inference. In A. Bouajjani and O. Maler, editors, Computer
Aided Verification, pages 493–508, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[20] A. Lattuada, T. Hance, C. Cho, M. Brun, I. Subasinghe, Y. Zhou, J. How-
ell, B. Parno, and C. Hawblitzel. Verus: Verifying rust programs using
linear ghost types. Proc. ACM Program. Lang., 7(OOPSLA1):286–315,
2023.

[21] K. R. M. Leino. Dafny: An automatic program verifier for functional
correctness. In E. M. Clarke and A. Voronkov, editors, Logic for
Programming, Artificial Intelligence, and Reasoning - 16th International
Conference, LPAR-16, volume 6355 of Lecture Notes in Computer
Science, pages 348–370. Springer, 2010.

[22] C. Loughridge, Q. Sun, S. Ahrenbach, F. Cassano, C. Sun, Y. Sheng,
A. Mudide, M. R. H. Misu, N. Amin, and M. Tegmark. Dafnybench:
A benchmark for formal software verification, 2024.

[23] I. M. Md Rakib Hossain Misu, Cristina V. Lopes and J. Noble. Towards
ai-assisted synthesis of verified dafny methods, 2024.

[24] O. Padon, J. R. Wilcox, J. R. Koenig, K. L. McMillan, and A. Aiken. In-
duction duality: primal-dual search for invariants. Proc. ACM Program.
Lang., 6(POPL):1–29, 2022.

[25] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for
automatic evaluation of machine translation. In Proceedings of the 40th
Annual Meeting on Association for Computational Linguistics, ACL ’02,
page 311–318, USA, 2002. Association for Computational Linguistics.

[26] K. Pei, D. Bieber, K. Shi, C. Sutton, and P. Yin. Can large language
models reason about program invariants? 2023.

[27] J. Protzenko, J. K. Zinzindohoue, A. Rastogi, T. Ramananandro,
P. Wang, S. Zanella-Béguelin, A. Delignat-Lavaud, C. Hriţcu, K. Bhar-
gavan, C. Fournet, and N. Swamy. Verified low-level programming
embedded in f*. In 22nd International Conference on Functional
Programming (ICFP 2017). ACM SIGPLAN, May 2017.

[28] X. Si, A. Naik, H. Dai, M. Naik, and L. Song. Code2inv: A deep learning
framework for program verification. In S. K. Lahiri and C. Wang,
editors, Computer Aided Verification - 32nd International Conference,
CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part
II, volume 12225 of Lecture Notes in Computer Science, pages 151–164.
Springer, 2020.

[29] C. Sun, Y. Sheng, O. Padon, and C. Barrett. Clover: Closed-loop
verifiable code generation, 2024.

[30] Y. Wu, A. Q. Jiang, W. Li, M. N. Rabe, C. Staats, M. Jamnik, and
C. Szegedy. Autoformalization with large language models, 2022.

147

https://github.com/Mondego/dafny-synthesis/blob/a57ce24/MBPP-san-DFY-228/mbpp-san-dfy-228-all-task-test.json
https://github.com/Mondego/dafny-synthesis/blob/a57ce24/MBPP-san-DFY-228/mbpp-san-dfy-228-all-task-test.json
https://github.com/Mondego/dafny-synthesis/blob/a57ce24/MBPP-san-DFY-228/mbpp-san-dfy-228-all-task-test.json
https://github.com/Mondego/dafny-synthesis/blob/a57ce24/RQs/RQ3-%5BDynamic-Few-Shot-Prompting%5D/rq3-dynamic-few-shot-prompting-GPT-4-temp_0.5-verified-unverified-tagged.json
https://github.com/Mondego/dafny-synthesis/blob/a57ce24/RQs/RQ3-%5BDynamic-Few-Shot-Prompting%5D/rq3-dynamic-few-shot-prompting-GPT-4-temp_0.5-verified-unverified-tagged.json
https://github.com/Mondego/dafny-synthesis/blob/a57ce24/RQs/RQ3-%5BDynamic-Few-Shot-Prompting%5D/rq3-dynamic-few-shot-prompting-GPT-4-temp_0.5-verified-unverified-tagged.json
https://github.com/Mondego/dafny-synthesis/blob/a57ce24/RQs/RQ3-%5BDynamic-Few-Shot-Prompting%5D/rq3-dynamic-few-shot-prompting-GPT-4-temp_0.5-verified-unverified-tagged.json
https://github.com/Mondego/dafny-synthesis/blob/a57ce24/MBPP-DFY-153/test/task_id_2.dfy
https://github.com/Mondego/dafny-synthesis/blob/a57ce24/MBPP-DFY-153/test/task_id_2.dfy

Formal Methods in Computer-Aided Design 2024

Towards Verification Modulo Theories of
asynchronous systems via abstraction refinement

Gianluca Redondi
Fondazione Bruno Kessler

Trento, Italy
gredondi@fbk.eu

Alessandro Cimatti
Fondazione Bruno Kessler

Trento, Italy
cimatti@fbk.eu

Alberto Griggio
Fondazione Bruno Kessler

Trento, Italy
griggio@fbk.eu

Abstract—This paper introduces a new algorithm designed
to verify safety properties for asynchronous compositions of
symbolic transition systems. The approach combines under-
approximation and over-approximation: on one side, it zooms in
on a selected set of components, while forcing the remaining ones
to stutter; on the other, the selected components are individually
abstracted and re-composed. This strategy can be advantageous
for scenarios involving large numbers of components, where
only a small subset of key components allows to produce the
right invariants for the system. We detail the application of our
algorithm to a class of parameterized symbolic transition systems,
by using a form of slicing as an abstraction. Our experimental
results, although preliminary, show the potential of the approach.

Index Terms—Compositional Approach, CEGAR, Parameter-
ized Systems

I. INTRODUCTION

This paper focuses on the problem of asynchronous ver-
ification, where multiple systems with shared variables un-
dergo transitions independently. The problem is studied in
the literature across various formalisms. In this paper, we
adopt the formalism of Verification Modulo Theories [3], using
symbolic transition systems defined by formulae in SMT. We
describe an algorithm that we aim to use in a verification
project related to railway interlocking logic [1], [5], which is
characterized by numerous components and a large number of
variables. However, the verification of safety properties may
necessitate examining only a select few of these components.
Additionally, many variables within these components are not
integral to managing safety operations. Hence, our algorithm
seeks to abstract numerous system variables while potentially
concentrating on the pertinent components.
Initially, we outline the algorithm in a generic scenario, not

focusing on particular abstraction or class of systems. Then,
we narrow our focus to a more concrete use case. We define
a class of transition systems capable of modeling parameter-
ized systems and instantiate the aforementioned approach by
providing specific procedures for abstraction and refinement.
Such a scenario can model, for example, the interlocking logic
we are interested in.

The authors acknowledge the support of the PNRR project FAIR - Fu-
ture AI Research (PE00000013), under the NRRP MUR program funded
by the NextGenerationEU, and of the PNRR MUR project VITALITY
(ECS00000041), Spoke 2 ASTRA - Advanced Space Technologies and
Research Alliance.

We have developed a prototype of the algorithm and tested
it on some artificial benchmarks and a simplified case study
related to interlocking logic. The outcomes are encouraging,
suggesting that this algorithm could also perform effectively
on the entire logic system once we acquire the comprehensive
system descriptions.
The paper is organized as follows: Section 2 provides the

necessary background, and it studies the connections between
abstraction and composition. Section 3 details the procedure
for the verification of systems defined via asynchronous com-
position. Section 4 specializes the algorithm in the case of
parameterized systems and presents the experimental evalua-
tion. Finally, Section 5 describes our conclusions and outlines
avenues for future work.

II. BACKGROUND

A. Preliminaries

Our models of computation are symbolic transition systems,
i.e. triples of the form (X, I(X), T (X,X ′)), where X is a set
of variables, called the state variables of the system, and I(X),
T (X,X ′) are formulae over some theory T . Given a model
M for T , a state s is a valuation of the state variables X in
the universe ofM. A state is initial iff it is a model of I(X),
i.e., s |= I(X). A pair of states s, s′ denotes a transition iff
s, s′ |= T (X,X ′). A state s is reachable iff there exists a path
π such that π[i] = s for some i.
A formula φ(X) is an invariant of the transition system

C = (X, I(X), T (X,X ′)) iff it holds in all the reachable
states. Following the standard model checking notation, we
denote this as C |= φ(X). We say that φ is inductive for C if
I(X) |= φ(X) and φ(X) ∧ T (X,X ′) |= φ(X ′).
In the following, we will use the notion of case-defined

functions defined in a theory T . These functions are defined by
a sequence of couples {(casei, valuei)}ni=1 where each casei
is a predicate and each valuei is a term (they correspond
to statements of the form if case 1 then value 1, else ...);
moreover, all the case predicates are required to be mutually
exclusive, and their disjunction is a valid formula. Although
case-defined functions are not standard in the SMT setting,
they can be easily handled by using, for example appropriate
if-then-else terms.

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 20 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0000-0002-2856-5236
https://orcid.org/0000-0002-1315-6990
https://orcid.org/0000-0002-3311-0893
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_20
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_20
https://creativecommons.org/licenses/by/4.0/

B. Abstraction

Let C be (X, I(X), T (X,X ′)) and C̃ be
(X̃, Ĩ(X̃), T̃ (X̃, X̃

′
)). Let S be the set of states of C,

and S̃ be the set of states of C̃. Let α be a relation between
S and S̃; we write α(s, s̃) to denote that two states s and s̃
are in relation.

Definition 1. We say that C̃ α-simulates C (written C →α C̃)
if the following two conditions hold:
i. For each initial state s of C, there exists an initial state

s̃ of C̃ such that α(s, s̃) holds.
ii. For each pair (s, s̃) such that α(s, s̃) holds, and for each

s′ ∈ S such that s, s′ |= T (X,X ′), there exists a state s̃′

such that α(s′, s̃′) holds and s̃, s̃′ |= T̃ (X̃, X̃
′
).

If α is clear in the context, we might say that C̃ simulates
(or abstracts) C.
Let V ⊆ X ∩ X̃ be a set of variables, and F (V) be a

formula. We have the following facts about simulations:

Definition 2. We say that the simulation C →α C̃ preserves
the formula F if, for all states s such that s |= ¬F , then for
all s̃ such that α(s, s̃), s̃ |= ¬F .
Proposition 1. Given a simulation C →α C̃ that preserves
F , C̃ |= F ⇒ C |= F .

Proposition 2. Given a simulation C →α C̃ that preserves
F , if F is inductive for C̃, then F is inductive for C.

In many cases, the abstract variables X̃ of the system C̃
are different from the original variables X . In this paper, we
consider only the case X̃ ⊆ X for the sake of simplicity.
If a counterexample is found in C̃, in general, this does not

imply the existence of a counterexample in C. We say that
a counterexample π in C̃ is spurious if there exists no path
s0, . . . , sk in C such that sn |= ¬F and, for all 0 ≤ i ≤ k,
α(si, π[i]). In such cases, the abstraction yields no helpful
information and needs to be refined.

C. Asynchronous Composition

Let C1 = (X1, I1(X1), T (X1, X
′
1)) and C2 =

(X2, I(X2), T (X2, X
′
2)) be two symbolic transition systems.

If V is a set of variables, we denote with Inertia(V) the
formula

⋀︁
v∈V (v = v′).

Definition 3. The asynchrounous product between C1

and C2, is the transition system C1 ∥ C2 =
(︁
X1 ∪

X2, IC1∥C2
(X1, X2), TC1∥C2

(X1, X2, X
′
1, X

′
2)
)︁
, where:

• IC1∥C2
(X1, X2) is the formula I1(X1) ∧ I2(X2);

• TC1∥C2
is the formula (T1(X1, X

′
1)∧Inertia(X2\X1))∨

(T2(X2, X
′
2) ∧ Inertia(X1 \X2)).

Given a set of variables V ⊆ X1 ∪ X2 and a formula
F (V), asynchronous verification amounts to prove or disprove
if (C1 ∥ C2) |= F (V). More generally, if V ̸⊆ Xi, we may
write Ci |= F (V) with the meaning that we add to the Xi

the remaining V \Xi variables, and we modify Ti by adding
inertia on V \Xi. We have:

Proposition 3. If a formula F is not inductive for C1 ∥ C2,
then there exists an i ∈ {1, 2} such that F is not inductive for
Ci.

We say that two transition system C1 and C2 are compatible
if each partial assignment to the shared variables can be
extended to an initial state of C1 if and only if it can be
extended to an initial state of C2. In practice, this means that
the shared variables are initialized in the same way in the two
systems.

Proposition 4. Consider C1 →α1 C̃1 and C2 →α2 C̃2 two
simulation relations. Suppose that C̃1 and C̃2 are compatible.
Consider α1 ∥ α2 (called the product simulation) defined as

α1 ∥ α2(s, s̃) iff α1(s|X1
, s̃|X1

) and α2(s|X2
, s̃|X2

).

Then, C1 ∥ C2 →α1∥α2
C̃1 ∥ C̃2.

By definition of product simulation, we have the following
corollary:

Corollary 1. Consider C1 →α1
C̃1 and C2 →α2

C̃2 two
simulation relation such that they both preserve a formula F .
Assume that C̃1 and C̃2 are compatible. Then, α1 ∥ α2 also
preserves F .

III. A COMPOSITIONAL APPROACH WITH ABSTRACTION
REFINEMENT

In this section, we outline a procedural framework that
remains parametric, considering a generic family of transition
systems, a generic abstraction procedure, and a target invariant
property denoted as F . In the next section, we delve into a
case study where we provide a more concrete setting.
Suppose that we have a finite family of transition systems

{Ci}i∈I . Let C =∥i∈I Ci be the asynchronous composition of
the systems, and consider a formula F (V) with V ⊆ ⋃︁i∈I Xi.
The problem that we face is to prove or disprove whether C |=
F . The problem is solved if either we find a counterexample,
i.e. a path π of finite length n, such that π[n] |= ¬F , or if we
find an inductive invariant Ψ for F . If F is not inductive itself,
then by consecutive applications of Proposition 3 it follows
that there exists a subset J of I such that F is not inductive
for ∥j∈J Cj .
To describe our algorithm, we assume to have some sub-

procedures, namely: (i) a model checker, capable of automat-
ically proving if an invariant holds in a transition system.
If so, the model checker provides an inductive invariant for
it. Otherwise, the model checker find a counterexample; (ii)
a theorem prover, capable of checking whether a formula is
inductive for a transition system, or if a counterexample can
be simulated (e.g by bounded model checking). As a pre-
processing step, we suppose to identify the set of components
J for which the property is not already inductive. Moreover,
let C̃ be a transition system such that there exists a simulation
∥j∈J Cj → C̃. The only property that we require on the
abstraction is that the simulation should preserve all inductive
invariants found by the model checker. We consider the
following procedure, depicted in Figure 1:

149

• we start by asking a model checker if C̃ |= F . The model
checker can either find an inductive invariant, Ψ, or a
counterexample, π;

• If an invariant is found, we ask the prover to check if Ψ
is also inductive for the whole asynchronous composition
C. Note that, since the simulation preserves Ψ, we
already know that it is inductive for the components
{Cj}j∈J by Proposition 2.

• If the prover proves the induction, then we are done.
Otherwise, there must exist a new set of components
J ′ ⊆ I \ J for which the induction check fails. We thus
update the set J to be equal to J ∪J ′, and we restart the
loop by updating the abstraction C̃.

• Suppose instead that the model checker finds a coun-
terexample in C̃. Then, we ask the prover if the coun-
terexample can be simulated by C. If so, the algorithm
terminates with a counterexample. Otherwise, we refine
the abstraction to remove the abstract counterexample.

The key differences of our approach from conventional
CEGAR methods in compositional verification such as [13],
[7] lies in the fact that the system C̃ doesn’t abstract entire
composition C =∥i∈I Ci; instead, it abstracts only the under-
approximation ∥j∈J Cj . We could eventually abstract all
components, when J = I , and C → C̃ is simulation - but
our method is best suited for situations where this should not
happen.
Even when C̃ doesn’t represent the entire system, the

algorithm’s soundness is evident. This is because we conduct
an additional induction check to verify whether the invariant
identified during model checking is also inductive for the
broader composition C.

IV. VERIFICATION OF CONCURRENT PARAMETERIZED
SYSTEMS

In this section, we illustrate the application of the pro-
cedure outlined in Section III through a specific use case.
Our algorithm was conceived to facilitate the verification of
interlocking logic within railway stations, as part of a larger
initiative to integrate various formal methods into railway
design [1]. In this scenario, the system’s components are each
represented by parameterized transition systems. These com-
ponents interact by sharing multiple variables; our objective
is to ascertain the general safety of the composition of them.
Despite the presence of a vast number of components, only
a subset is critical for ensuring safety. Furthermore, while
the systems may involve a large number of variables, we
recognize that only a limited number are pertinent to safety
concerns. Consequently, our approach to abstraction focuses
on narrowing down to these essential variables.
The systems are modeled with a subclass of the formalism

of [14] and similar to [9], where parameterized systems are
modeled as symbolic transition systems with state variables
that are functions from an uninterpreted theory (with finite
but unbounded universes) to a generic theory. Moreover,
quantifiers occur in the system description to model the
unboundedness of possible instances.

Definition 4. An array-based transition system C =
(X, I(X), T (X,X ′)) is a symbolic transition system where:

• X are a set function symbols;
• I(X) is a formula of the form ∀j.⋀︁x∈Y x(j) = valx -
where valx is a constant of the appropriate signature,
and Y ⊆ X;

• T (X,X ′) is a disjunction of formulae of the form (called
transition rules)

∃i.(φG(i,X) ∧ φU (i,X,X ′)) (1)

where φG(i,X) is called the guard, and φU (i,X,X ′) is
the functional update, i.e., a formula of the form

∀j.
⋀︂
x∈X

x′(j) = Fx(i, j,X,X ′)

with {Fx}x∈X a family of case-defined function.

We start by defining the simulation relation that we will use.

Definition 5. Let V ⊆ X a set of variables. We define a
relation α between two assignments s, s̃ of X and V by

α(s, s̃)⇔ s|V ≡ s̃,

i.e. we ask that the two states are in relation iff they assign
the same value to the variables in V .

Given a (sub)set of variables V and a transition system C
defined as in Definition 4, we now define a new transition
system C̃

V
such that there exists a simulation between the two

systems. The new variables will be V ∪B∪E, with B and E
sets of fresh input variables. The abstract initial formula of the
system, denoted Ĩ(V), is simply obtained from I by dropping
the conjuncts that are not assigning variables in V ; that is, we
have that

Ĩ(V) =
⋀︂
v∈V

∀j.v(j) = valv.

For the abstract transition formula, denoted as
T̃ (V,B,E, V ′), we need more steps. We will work on
the single transition rules of the concrete transition, that are
of the form (1). The abstract transition will be a disjunction
of formulae of the form ∃i.(φG̃(i, V) ∧ φŨ (i, V,B,E, V ′))
where

• φG̃(i, V) is obtained by φG by replacing each atom that
contains variables in X \ V with the constant true, if it
occurred positively in the formula, or false otherwise;

• φŨ (i, V,B,E, V ′) is the formula
⋀︁
v∈V ∀j.v′(j) =

Fṽ(i, j, V,B,E, V ′) where Fṽ is a case-define function
with a sequence of case˜ i(V,B) statements and a se-
quence of corresponding terms val˜ i(V,B,E) such that:
– case˜ i(V,B) is either equal to casei(V) if the orig-
inal case predicate is defined only over the V vari-
ables, or is a fresh boolean constant b ∈ B otherwise;

– val˜ i(V,B,E) is either equal to vali(V) if the origi-
nal term is defined only over V , or is a fresh constant
e ∈ E of the appropriate type otherwise.

Let C̃
V
= ({V,B,E}, Ĩ(V), T̃ (V,B,E, V ′)). We have:

150

C̃ |= F?

Induction Check Spurious CheckRefine J Refine ∼

Proof found Cex found

Invariant Found Cex Found

Failed Spurious

Result

Reasoning Phase

Model Checking Phase

Fig. 1. The procedure

Proposition 5. C̃
V
simulates C.

Moreover, since the simulation relation is the equality on
V , we have that:

Proposition 6. The simulation preserves each formula F (V)
defined only over the set of variables V .

Therefore, in order for the abstraction ∼V to preserve the
property, we need that the set of variables V always include
all the state variables occuring in the property to prove. Thus,
from Corollary 1, we have that, given any family of compatible
array-based transition systems:

Corollary 2. ∥ Ci →∥ C̃
V

i via the product simulation.
Moreover, the product simulation preserves all the formulas
defined over V .

Thanks to the latter, we can use as an abstraction for ∥i∈J Ci

the composition of the individual abstractions, i.e. ∥i∈J C̃
V

i

A. Refinement

Suppose that, during the model checking phase, we found
an abstract counterexample π. For refinement, we check as
usual the satisfiability of the concrete unrolling. In the case of
satisfiability, we are in the presence of a real counterexample,
and we can exit from the procedure. In case of unsatisfiability,
we are in presence of a spurious counterexample, and we
follow this refinement procedure: we start by computing an
unsat core of the latter formula. Then, let V ′ be the set of
variables that occur in at least one literal of the core and not
in V . We update V to be V ∪V ′. We have the following result
that ensures that ensures that V ′ is never empty:

Proposition 7. In case a spurious counterexample in ∥i∈J C̃
V

i

is found, then there exists a literal in the unsat core of the
concrete unrolling that contains a variable not occurring in
V .

This refinement allows us to have a notion of progress, since
at each spurious counterexample we decrease the number of
variables that not abstracted.

B. Implementation and first results

We developed the algorithm presented in the preceding
section using Python3, leveraging the SMT solvers Z3 and

Mathsat, along with the parameterized model checker Lambda
[4]. Given that Mathsat lacks support for quantified formu-
lae, we exclusively utilized Z3 for the ’Induction Check’
sub-procedure. For ’Spurious Check’ and ’Refinement’ sub-
procedures, both Mathsat5 and Z3 were employed. Lambda,
capable of processing system descriptions in the VMT lan-
guage [6], is able to synthesize inductive invariants for systems
as defined in Definition 4.

We tested the algorithm on a simplified case study of
the railway logic, with 5 parameterized components (with
a total of 15 variables) and two properties. For the set of
abstracted variables V , we always initialize it with the set
of state variables occuring in the property to prove. The first
property was verified by the algorithm in 4.2 seconds, by
using only 5 variables and 2 components, and one refinement
step. Instead, the monolithic approach (i.e. using the model
checker on the entire system description of the composition)
took around 9 seconds. On the other hand, the second property
was a false assertion whose counterexample involved most
of the components and variables used. In that case, the
monolithic approach can find a counterexample faster then
the compositional algorithm. Although these outcomes are
not entirely satisfactory, it’s crucial to acknowledge that our
case study was quite limited compared to the actual system.
In reality, the system comprises over 100 components, each
with numerous variables, and a full symbolic description has
yet to be achieved. A second source of benchmarks derives
from two parameterized protocols, which we have adapted by
integrating N components capable of altering certain shared
variables. We test the algorithm on properties that are true
and are independent of the modifications enacted by these
additional components. The results are depicted in Figure
2. The x-axis represents the number of components, while
the y-axis measures the time taken by the procedures in
seconds (presented on a logarithmic scale). Compared to the
monolithic approach (in orange), our algorithm’s verification
process (in blue) is significantly less time-consuming and
remains relatively constant. A virtual machine to replicate the
results is available here, together with an extended version of
this paper.

151

https://doi.org/10.5281/zenodo.11070896

Fig. 2. Results on protocols with additional components

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a method for verifying the
safety properties of asynchronous compositions of symbolic
transition systems defined over an SMT theory T . We believe
that this method is particularly suited for scenarios requiring
the verification of properties across a large family of com-
ponents, where the inductive invariant can be identified by
examining a subset of those components. If the procedure
terminates by abstracting only a subset of the components,
then we can determine a posteriori that a split invariant
[10] between the abstracted and non-abstracted components
is found.
We applied this general algorithm to a family of symbolic

transition systems designed to describe parameterized systems
and defined a form of splicing as an abstraction strategy that
concentrates on a subset of the system’s variables. A prototype
of the algorithm was developed and tested on simple bench-
marks. The initial results are promising, and we plan to extend
its application to a comprehensive verification project focused
on interlocking logic, where the previously described situation
(numerous components with many variables) frequently arises.
Moreover, future work may integrate assumption-guarantee
methods in our approach, such as those found in [2], [12],
[11], [8] to further simplify the verification.

REFERENCES

[1] CAVADA, R., CIMATTI, A., GRIGGIO, A., AND SUSI, A. A formal
IDE for railways: Research challenges. In Software Engineering and
Formal Methods. SEFM 2022 Collocated Workshops - AI4EA, F-
IDE, CoSim-CPS, CIFMA, Berlin, Germany, September 26-30, 2022,
Revised Selected Papers (2022), P. Masci, C. Bernardeschi, P. Graziani,
M. Koddenbrock, and M. Palmieri, Eds., vol. 13765 of Lecture Notes
in Computer Science, Springer, pp. 107–115.

[2] CIMATTI, A., DORIGATTI, M., AND TONETTA, S. OCRA: A tool for
checking the refinement of temporal contracts. In 2013 28th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2013, Silicon Valley, CA, USA, November 11-15, 2013 (2013), E. Den-
ney, T. Bultan, and A. Zeller, Eds., IEEE, pp. 702–705.

[3] CIMATTI, A., GRIGGIO, A., MOVER, S., ROVERI, M., AND TONETTA,
S. Verification modulo theories. Formal Methods Syst. Des. 60, 3 (2022),
452–481.

[4] CIMATTI, A., GRIGGIO, A., AND REDONDI, G. Verification of SMT
systems with quantifiers. In Automated Technology for Verification and
Analysis - 20th International Symposium, ATVA 2022, Virtual Event,
October 25-28, 2022, Proceedings (2022), A. Bouajjani, L. Holı́k, and
Z. Wu, Eds., vol. 13505 of Lecture Notes in Computer Science, Springer,
pp. 154–170.

[5] CIMATTI, A., GRIGGIO, A., AND REDONDI, G. Towards the verifica-
tion of a generic interlocking logic: Dafny meets parameterized model
checking, 2024.

[6] CIMATTI, A., GRIGGIO, A., AND TONETTA, S. The VMT-LIB language
and tools. CoRR abs/2109.12821 (2021).

[7] CLARKE, E., GRUMBERG, O., JHA, S., LU, Y., AND VEITH, H.
Counterexample-guided abstraction refinement. In Computer Aided
Verification (Berlin, Heidelberg, 2000), E. A. Emerson and A. P. Sistla,
Eds., Springer Berlin Heidelberg, pp. 154–169.

[8] GHEORGHIU BOBARU, M., PĂSĂREANU, C. S., AND GIAN-
NAKOPOULOU, D. Automated assume-guarantee reasoning by abstrac-
tion refinement. In Computer Aided Verification (Berlin, Heidelberg,
2008), A. Gupta and S. Malik, Eds., Springer Berlin Heidelberg,
pp. 135–148.

[9] GHILARDI, S., AND RANISE, S. Backward reachability of array-based
systems by SMT solving: Termination and invariant synthesis. Log.
Methods Comput. Sci. 6, 4 (2010).

[10] GIANNAKOPOULOU, D., NAMJOSHI, K. S., AND PASAREANU, C. S.
Compositional reasoning. In Handbook of Model Checking, E. M.
Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Eds. Springer, 2018,
pp. 345–383.

[11] GUPTA, A., MCMILLAN, K. L., AND FU, Z. Automated assumption
generation for compositional verification. In Computer Aided Verifi-
cation (Berlin, Heidelberg, 2007), W. Damm and H. Hermanns, Eds.,
Springer Berlin Heidelberg, pp. 420–432.

[12] LIMBRÉE, C., CAPPART, Q., PECHEUR, C., AND TONETTA, S. Verifi-
cation of railway interlocking - compositional approach with ocra. In
Reliability, Safety, and Security of Railway Systems. Modelling, Analysis,
Verification, and Certification (Cham, 2016), T. Lecomte, R. Pinger, and
A. Romanovsky, Eds., Springer International Publishing, pp. 134–149.

[13] LOISEAUX, C., GRAF, S., SIFAKIS, J., BOUAJJANI, A., AND BEN-
SALEM, S. Property preserving abstractions for the verification of
concurrent systems. Form. Methods Syst. Des. 6, 1 (jan 1995), 11–44.

[14] REDONDI, G., CIMATTI, A., GRIGGIO, A., AND MCMILLAN, K.
Invariant checking for smt-based systems with quantifiers. ACM Trans.
Comput. Logic (aug 2024). Just Accepted.

152

Formal Methods in Computer-Aided Design 2024

Semi-open-state testing for in-silicon coherent
interconnects

Jasmin Schult , Ben Fiedler , David Cock , Timothy Roscoe
ETH Zürich, Zürich, Switzerland

firstname.lastname@inf.ethz.ch

Abstract—In this paper, we extend open-state conformance
testing from Mealy FSM specifications to implementations where
only a subset of states are observable. We show that the
classical transition tour can be used to completely test such
implementations for conformance, including unobservable states,
under the assumption that in the specification, any trace from
an unobservable state eventually reaches an observable state
– i.e. that the observable states form a feedback vertex set.
Complete transition tour testing can efficiently test for many
conformance relations when they are appropriately formulated.
Generalized-quasi-reduction (GQR) is useful for protocol testing
because it allows for partial, non-deterministic specifications,
but establishing GQR in the general setting is complex and
expensive. We show a relation that implies GQR and is practical
for transition tour testing.
Our setting of partial state observability applies to an im-

portant class of protocol implementations in modern hardware:
cache coherence. These protocols are nearly universal in multi-
processor systems, and are notoriously difficult to verify both
at the specification and implementation level. We show that
their structure lends them naturally to complete open-state
testing under this extended definition. During design, coherence
protocols are elaborated from an FSM of stable states with atomic,
observable transitions by the addition of a large number of
unobservable transient states to handle concurrency, including
out-of-order and interleaved message delivery. We demonstrate
that a real in-silicon implementation on the Cavium ThunderX-1
CN88XX CPU has exactly the required characteristics and we
establish the GQR conformance relation against a specification
of its inter-socket coherence protocol.

I. INTRODUCTION

In this paper, we introduce semi-open-state testing, a test
setting where an implementation with partially visible states
is tested from a finite state machine model of its behavior
to establish a conformance property like GQR. We show that
under a set of additional requirements that we impose on semi-
open-state testing, complete visibility of the implementation’s
states is achieved, thus allowing simpler open-state testing
techniques [1] to be employed instead of the more expensive,
general complete Finite State Machine (FSM) testing meth-
ods [2]. This work arises out of our analysis of cache coher-
ence protocols in the context of the Enzian [3] project. We
show that this practically-important class of protocols match
the requirements of semi-open-state testing by demonstrating
a complete, online validation that the native protocol of the
server-class CN88XX (ThunderX-1) CPU is GQR-conformant
to its specification. This testing is conducted live against the
actual silicon implementation.

Semi-open-state testing is motivated by the structure of
hardware cache coherence protocols, particularly in emerging
standards such as CXL [4]. These protocols consist of a set of
stable states that are generally visible via debug mechanisms,
plus a larger number of intermediate transient states added to
handle the effects of concurrency between nodes e.g. message
reordering. A typical protocol has 3–5 stable states, and 10–
100 transient states. The degree of reordering is bounded in
practice, and thus a transient state will lead back to a stable
state after a finite number of messages. Our insight is to
label these intermediate states with the last stable state and
this finite, observable IO trace, thereby reducing the task to
standard open-state testing. Open-state testing methods are
both simpler and less expensive, which greatly increases their
practicality for testing real hardware.
Formally, this work concerns the complete conformance

testing [5] of implementations against Mealy FSM specifica-
tions. Existing work leverages either general complete FSM
testing or open-state testing. The general complete testing
methods only assume an upper bound 𝑚 on the number of
states in the implementation, hence they are referred to as 𝑚-
complete methods. They are comparatively heavy-weight and
worst-case exponential in 𝑚. Open-state testing, on the other
hand, derives large gains in efficiency and implementation
complexity from its stronger assumptions on the system under
test. Chief among these is that all implementation states are
visible. The first challenge in applying open-state techniques to
coherence protocols is thus the invisibility of transient states.
We overcome this by developing semi-open-state testing, the
first key contribution of this paper.
The second challenge is in identifying a conformance rela-

tion that matches the characteristics of a coherence protocol.
We settle on GQR principally for its ability to permit partial
and non-deterministic specifications, which is essential in a
practical protocol specification to leave sufficient freedom for
implementors to optimize their designs. GQR is presented in
an 𝑚-complete setting, and we know of no existing open-
state-compatible formulation in the literature. Our second
contribution is thus the open-state-testable relation GQRopen,
which we prove is testable under the assumptions of semi-
open-state testing and sufficient to establish standard GQR for
the systems we consider.
In section II, we introduce both conformance testing from

Mealy FSMs and GQR as used in existing literature. We
develop semi-open-state testing in section III, enumerating

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_21 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0009-0000-1815-3206
https://orcid.org/0000-0002-7215-9147
https://orcid.org/0000-0003-2997-6560
https://orcid.org/0000-0002-8298-1126
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_21
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_21
https://creativecommons.org/licenses/by/4.0/

the assumptions needed to extend open-state testing to semi-
visible implementations. In section IV we explain the function
and characteristics of cache coherence protocols, why semi-
open-state testing is applicable to them and why the emergence
of coherent interconnect standards necessitates such testing.
We demonstrate how this approach performs in practice in
section V, by applying semi-open-state testing to the cache
coherence implementation of the ThunderX-1, which is de-
ployed as part of the Enzian platform. Finally, we conclude
and outline future work in section VI.

II. BACKGROUND AND RELATED WORK

A. Notation & Definitions
We consider Mealy-type IO state machines whose output

depends both on state and current input, and adapt the notation
of Hierons [6]. A machine is a tuple 𝑀 = (𝑆, 𝑠0, 𝑋,𝑌 , ℎ)
where:

• 𝑆 is the finite set of states.
• 𝑠0 ∈ 𝑆 is the initial state.
• 𝑋 is the finite input alphabet.
• 𝑌 is the finite output alphabet.
• ℎ ⊆ (𝑆 × 𝑋) × (𝑆 × 𝑌) is the transition relation.
Where necessary, a subscript identifies the associated ma-

chine, e.g. ℎSPEC for the transition relation of machine SPEC.
If ((𝑠, 𝑥), (𝑠′, 𝑦)) ∈ ℎ then on receiving input 𝑥 when in

state 𝑠, the machine may transition to state 𝑠′ while producing
output 𝑦. ℎ(𝑠, 𝑥) denotes the image of {(𝑠, 𝑥)} under ℎ, i.e.
the allowed transitions for a given state and input.
We assume that all states in 𝑆 are reachable from the

machine’s initial state, since unreachable states are not relevant
to the observable behavior of the machine.
We assume that 𝑀 is observably non-deterministic: The

target state is completely determined by the observed input and
output. Equivalently, the outputs of any two distinct reactions
in ℎ(𝑠, 𝑥) must differ:

{(𝑠′, 𝑦′), (𝑠′′, 𝑦′′)} ⊆ ℎ(𝑠, 𝑥) =⇒ 𝑠′ = 𝑠′′ ∨ 𝑦′ ≠ 𝑦′′ (1)

We denote the set of inputs 𝑥 for which some transition of
machine 𝑀 is defined from state 𝑠 by

Ω𝑀 (𝑠) = {︁
𝑥 | (︁(𝑠, 𝑥), (_, _))︁ ∈ ℎ𝑀

}︁
𝑀 is completely specified if ∀𝑠. Ω𝑀 (𝑠) = 𝑋 i.e. its behavior
is specified for all inputs in all states.
𝑌 contains the distinct special symbols ∼ and ⊥ representing

no output and failure. ∼ is allowed for both specification
and implementation, but ⊥ only for an implementation. ∼
in a specification requires that an implementation produce
no output, and ∼ in an implementation is assumed to be
observable (e.g. by timeout [7]). ⊥ does not satisfy any
specification. With these additions we may assume that any
implementation is completely specified.
Every machine step consumes exactly one input, and

produces exactly one output. A length-𝑛 trace of the ma-
chine records both state transitions and the corresponding
input/output pairs:(︁(𝑠, 𝑥1), (𝑠1, 𝑦1)

)︁
, · · · , (︁(𝑠𝑛−1, 𝑥𝑛), (𝑠𝑛, 𝑦𝑛)

)︁

The corresponding IO trace is the projection containing only
the message pairs:

𝑥1/𝑦1, · · · , 𝑥𝑛/𝑦𝑛
We write 𝑡. 𝑥/𝑦 for the IO trace 𝑡 extended with the IO
transition 𝑥/𝑦 and 𝑡1𝑡2 for trace concatenation.
The language 𝐿𝑀 (𝑠) is the set of permitted IO traces

beginning with machine 𝑀 in state 𝑠, and for any IO trace
𝑡 ∈ 𝐿𝑀 (𝑠) of an observably non-deterministic machine,

AFTER𝑀 (𝑠, 𝑡)
is the unique final state 𝑠′ that machine 𝑀 reaches after
observing trace 𝑡 beginning in state 𝑠. We omit the state
𝑠 if it corresponds to the initial state: 𝐿𝑀 := 𝐿𝑀 (𝑠0) and
AFTER𝑀 (𝑡) := AFTER𝑀 (𝑠0, 𝑡).
Note that

AFTER𝑀 (𝑠, (𝑡𝑡′)) = AFTER𝑀 ((AFTER𝑀 (𝑠, 𝑡)), 𝑡′) (2)

B. Conformance Testing against Mealy Machines

Testing an implementation against a specification is a well-
studied problem, known as conformance testing, model-based
testing, and fault detection in the literature. Different tech-
niques exist to test against a variety of formal models; This
paper considers conformance testing against Mealy FSMs.
Establishing a relation between a real-world implementation

and an abstract specification SPEC begins with the testability
hypothesis [8]. For Mealy FSM specifications, this includes
that the behavior of the implementation can be captured by an
unknown, abstract Mealy FSM denoted by IMPL.
For IMPL to be testable even if its behavior is non-

deterministic requires us to assume (at least) weak fairness: If
the implementation is presented with input 𝑥 in state 𝑠 enough
times, it will eventually take every possible transition (to some
state 𝑠′ with output 𝑦).
Existing work [5]–[7], generally considers IMPL to be

a completely specified, observably non-deterministic Mealy
FSM. Complete specification captures the practical reality that
a real-world implementation cannot refuse an input provided
by its environment and so always defines some reaction, even
if this is just failing or producing no output. These are the
∼ and ⊥ output symbols already introduced. Further, any
completely-specified Mealy FSM can be transformed into an
observably non-deterministic equivalent via the standard NFA–
DFA construction [9].

Requirement 1. (Testability Hypothesis) In practice, the testa-
bility hypothesis requires a suitable I/O adaptor to translate
between the implementation’s concrete and the specification’s
abstract I/O. Aarts et al. formalize the requirements of such
an adaptor in the context of state machine learning [10].
Furthermore, the abstract implementation needs to be input-
driven by the input alphabet of SPEC.
For the fairness assumption to hold in practice, it is suf-

ficient that the implementation’s non-determinism originate
only from true randomization. In particular, the implemen-
tation’s non-determinism must not originate from concurrent

154

processing of inputs resulting in different outcomes (which
would require testing to generate unknown relative input
timings to explore all such outputs). Equivalently, the imple-
mentation’s processing of inputs must be linearizable.
It is important to ascertain that a real-world implementation

exhibits these properties before testing it against a Mealy
specification. We revisit these assumptions in the context of
coherence protocols in section IV.

Testing seeks to establish a conformance relation between
SPEC and IMPL. In this case we work with GQR as defined
by Hierons [6]. GQR allows partial specifications, i.e. it does
not require a transition in response to every input in every
state. This is necessary for protocols, which are typically
sparse; only a small set of inputs are expected in a particular
state. GQR interprets non-determinism in the specification as
implementation choice. An implementation is a generalized
quasi reduction of its specification if all its outputs are valid
choices offered by the specification, so long as only inputs
defined by the specification are provided to it. More formally,

Definition 1 (Generalized-Quasi-Reduction (GQR)).

∀𝑡 ∈ 𝐿 IMPL ∩ 𝐿SPEC, 𝑥 ∈ ΩSPEC (AFTERSPEC (𝑡)).
{𝑦 |𝑡. 𝑥/𝑦 ∈ 𝐿 IMPL} ⊆ {𝑦 |𝑡. 𝑥/𝑦 ∈ 𝐿SPEC} (3)

This definition simplifies the original in two ways: Firstly,
as our SPEC is observably nondeterministic, AFTERSPEC (𝑡) is
unique, and thus we need only quantify over its inputs and
not over the set of possible states as well. Secondly, as IMPL
is completely specified we can drop the first condition, which
requires a corresponding implementation transition.
Conformance testing methods are either complete or incom-

plete. Complete methods can formally establish a conformance
relation, whereas incomplete methods increase the confidence
that a relation holds, but without formal guarantees. We
consider only complete conformance testing.
The difficulty of complete conformance testing depends

on the additional assumptions made on the implementation.
Without any assumptions, the IO behavior of even a finite
machine may be infinite, and thus impossible to completely
test with finite methods.
Complete testing generally assumes a known upper bound

𝑚 on the number of implementation states, giving 𝑚-complete
testing [6]. The number of transitions that must be tested
is exponential in 𝑚, as shown by Moore [11]. In particular,
it is insufficient to cover all transitions of the specification
once [2]. Note that this is true even if the implementation is
assumed to have at most as many states as the implementation,
since the implementation may enter the wrong state after a
transition. This is due to the implementation state not being
visible: it can only be inferred from the future I/O traces of
the implementation.
If the state is visible, the complexity decreases dramatically.

This is open-state testing [1] or testing with a reliable status
message [5], [12]. The finite representations of specification
and implementation can be compared directly, instead of

reasoning over all their (potentially) infinitely many I/O traces.
Complete testing against a specification reduces to an online
traversal of its transition graph, with sufficient repetitions to
account for non-determinism. Bourdonov et al. [1] describe a
traversal algorithm that can cope with detours caused by un-
favorable choices of non-determinism in the implementation.
Open-state testing is not only simpler to implement but

also more efficient than 𝑚-complete testing. Sidhu et al. [13]
show that transition traversal generates shorter test cases on
average compared to 𝑚-complete methods for deterministic,
complete specifications; this also holds even if the bound
𝑚 is equal to the number of states in the specification.
Open-state testing is much more efficient than the general
methods used to establish GQR, as testing against partial, non-
deterministic specifications is considerably more difficult [6],
[14]. Furthermore, open-state testing is able to detect if an
implementation possesses any number of additional states with
respect to the specification without an increase in testing
complexity, whereas we pay an exponential tax to do the same
for 𝑚-complete methods.
In the following sections, we show that 𝑚-complete test-

ing for GQR can be reduced to open-state testing, even
if only a subset of states are actually visible (section III),
and demonstrate that the necessary assumptions apply to an
important class of practical protocols: those for hardware
cache coherence (section IV).

III. SEMI-OPEN-STATE TESTING AND GQROPEN

Requirement 2. (Visible States) We require that a finite subset
of reachable implementation states, including the initial state,
are known a priori:

𝑠0IMPL ∈ Sknown ⊆ 𝑆IMPL

These states are fully observable—we see whether or not the
implementation is in such a state and if so, which one. All
others are only indirectly observable by their IO behavior.

We thus obtain a partial labelling function, 𝜆, from traces
to states:

AFTERIMPL (𝑡) = 𝑠 ∧ 𝑠 ∈ Sknown =⇒ 𝜆(𝑡) = 𝑠 (4)

We label the unknown states by reference to the last known
state. For any trace 𝑡 from 𝑠0, take the longest 𝑡𝐾 such that

𝑡𝐾 𝑡𝑈 = 𝑡 𝜆(𝑡𝐾) ∈ Sknown

We thus obtain a complete labelling of traces, 𝜆̂, with the
tuple of last known state and IO trace since that state:

𝜆̂(𝑡) = (𝜆(𝑡𝐾), 𝑡𝑈) (5)

As IMPL is observably nondeterministic, the trace uniquely
defines the final state, which is thus observable given the
observed label of the IO trace to the last known state (𝑡𝐾),
plus the IO trace through all subsequent unknown states (𝑡𝑈).
For any known state 𝑠𝐾 , a corresponding trace 𝑡𝐾 , and a

continuation 𝑡𝑈 such that 𝑡 := 𝑡𝐾 𝑡𝑈 ∈ 𝐿𝑀 (or equivalently

155

𝜆̂(𝑡) = (𝑠𝐾 , 𝑡𝑈)), the state 𝑠 corresponding to trace 𝑡’s label
matches the machine’s actual state after 𝑡:

𝑠 := AFTERIMPL (𝜆̂(𝑡))
= AFTERIMPL (𝜆(𝑡𝐾), 𝑡𝑈) by (5)
= AFTERIMPL (AFTERIMPL (𝑡𝐾), 𝑡𝑈) by (4)
= AFTERIMPL (𝑡𝐾 𝑡𝑈) by (2)
= AFTERIMPL (𝑡) (6)

Hence 𝜆̂ is equivalent to labelling states with the full trace from
𝑠0 which, by observable nondeterminism, uniquely identifies
the state. 𝜆̂ thus allows a tester to identify the implementation
state after any trace, providing the complete visibility of the
implementation’s states needed for open-state testing.
To complete the reduction to open-state testing, the states

of SPEC need to match the observations returned by 𝜆̂. To
preserve the finiteness of 𝑆SPEC, we need to impose the
following requirement on the specification that we wish to
test against:

Requirement 3. (Feedback Vertex Set) We require that the
known states form a feedback vertex set1 in the specification’s
transition graph, and every trace through only unknown states
is finite. We further require that there exists some global bound,
𝑐, on the length of all such traces.

The transformation of the original specification to a semi-
open testable SPEC entails converting the DAGs between the
stable states in its transition graph to trees by duplicating states
as necessary. This transformation may therefore increase the
number of transitions and states to O(|𝑆𝑘𝑛𝑜𝑤𝑛 | · (|𝑋 | · |𝑌 |)𝑐) in
the worst case, depending on the shape of the transition graph.
We therefore need to carefully examine the specification to
determine if open-state testing remains practical and preferable
to 𝑚-complete testing:

Requirement 4. (Practicability) The bound 𝑐 and the shape
of the original specification should be carefully examined to
determine if the size of the corresponding semi-open testable
SPEC remains manageable.

With the resulting transformed SPEC, our reduction of semi-
open-state testing to open-state testing is complete.
We now shift our attention to how open-state testing can be

leveraged to establish GQR. A relation is open-state testable
if, assuming that the tester can drive the machine’s input and
observe both its state and output, it is possible to determine
if a specification and implementation lie in the relation by
driving the implementation through all input transitions in the
specification a finite number of times (to account for non-
determinism). This implies that an open-state testable relation
can be established by a graph traversal of the specification, as
in the algorithm of Bourdonov [1].
GQR as formulated in Definition 1 is not directly open-

state testable. It permits a single specification state to be

1A feedback vertex set of a directed graph G is a set of vertices whose
removal transforms G into a directed acyclic graph.

implemented as multiple states that are distinguishable only
by their inconsistent choices of non-deterministic options. For
a detailed discussion of this phenomenon, we refer to the study
of the classical reduction relation by Petrenko et al. [14].
In the open-state setting, the observations of these multiple
implementation states will fail to match the single state in the
specification, causing the test to fail even if the implementation
is GQR in the general sense.
We therefore propose the following open-state-testable spe-

cialization of Definition 1, which assumes the observability of
implementation states:

Definition 2 (Open-State GQR (GQRopen)).

𝑠0IMPL = 𝑠0SPEC∧
∀𝑠 ∈ 𝑆SPEC . ∀𝑥 ∈ ΩSPEC (𝑠).(︁∃𝑡 ∈ 𝐿 IMPL ∩ 𝐿SPEC . 𝑠 = AFTERIMPL (𝑡)

)︁
=⇒ ℎIMPL (𝑠, 𝑥) ⊆ ℎSPEC (𝑠, 𝑥) (7)

Notice that GQRopen is comparing states of the implemen-
tation and states of the specification for equality (in particular,
recall that the transition functions ℎSPEC and ℎIMPL map to sets
of (next state, output)). This is possible because the states that
the implementation adopts are completely visible in the open
state setting and can hence act like an additional output of
the implementation. Recall that for the semi-open-state testing
setting that we have discussed earlier, this visibility is provided
by the 𝜆̂ function.

GQRopen implies, inductively, that the states of the imple-
mentation that are reached by traces defined by the specifica-
tion must agree with those of the specification:

Lemma 1.

GQRopen =⇒ ∀𝑡 ∈ 𝐿 IMPL ∩ 𝐿SPEC .

AFTERIMPL (𝑡) = AFTERSPEC (𝑡)
Initially,

AFTERIMPL ([]) = 𝑠0IMPL = 𝑠0SPEC = AFTERSPEC ([])
Take any

𝑡. 𝑥/𝑦 ∈ 𝐿SPEC ∩ 𝐿 IMPL (8)

such that

𝑠 := AFTERIMPL (𝑡) = AFTERSPEC (𝑡) (9)

Since 𝑡. 𝑥/𝑦 ∈ 𝐿SPEC ∩ 𝐿 IMPL, by the definition of ℎ𝑀 :

𝑥 ∈ ΩSPEC (𝑠) (10)
(AFTERIMPL (𝑡. 𝑥/𝑦), 𝑦) ∈ ℎIMPL (𝑠, 𝑥) (11)
(AFTERSPEC (𝑡. 𝑥/𝑦), 𝑦) ∈ ℎSPEC (𝑠, 𝑥) (12)

Given (8,9, and 10), GQRopen (7) yields:

ℎIMPL (𝑠, 𝑥) ⊆ ℎSPEC (𝑠, 𝑥)
or, the implementation’s transitions are a subset of the speci-
fication’s.

156

Combined with (11) we have that

(AFTERIMPL (𝑡. 𝑥/𝑦), 𝑦) ∈ ℎSPEC (𝑠, 𝑥)

or, the final implementation state is among those of the
specification with the same observable IO behaviour.
The actual specification state must also be in this set (12),

and thus by the definition of observable non-determinism (1)
must be equal to the implementation state:

AFTERIMPL (𝑡. 𝑥/𝑦) = AFTERSPEC (𝑡. 𝑥/𝑦)

□

Lemma 2. GQRopen is open-state testable.
Definition 2 applies to the set of implementation states

reachable by a trace also accepted by the specification. This
set is finite. Assuming weak fairness (Requirement 1), we will
eventually observe every possible 𝑦 for each 𝑠 and 𝑥. Thus by
repeatedly traversing every input transition we will terminate,
having exhaustively tested the subset relation. □

Lemma 3. GQRopen =⇒ GQR
Using Definition 1 (GQR) take 𝑡 ∈ 𝐿 IMPL ∩ 𝐿SPEC, 𝑥 ∈

ΩSPEC (AFTERSPEC (𝑡)) and 𝑦 such that 𝑡. 𝑥/𝑦 ∈ 𝐿 IMPL.
Since 𝑡, 𝑡. 𝑥/𝑦 ∈ 𝐿 IMPL,

∃𝑠′. (𝑠′, 𝑦) ∈ ℎIMPL (AFTERIMPL (𝑡), 𝑥) (13)

Moreover, from GQRopen we have, by Lemma 1

AFTERSPEC (𝑡) = AFTERIMPL (𝑡)

Thus, by GQRopen (7)

ℎIMPL (AFTERIMPL (𝑡), 𝑥) ⊆ ℎSPEC (AFTERSPEC (𝑡), 𝑥)

Together with (13) we have

(𝑠′, 𝑦) ∈ ℎSPEC (AFTERSPEC (𝑡), 𝑥)

Thus, since 𝑡 ∈ 𝐿SPEC:

𝑡. 𝑥/𝑦 ∈ 𝐿SPEC

□

In this section we have presented semi-open-state testing
for semi-visible machines, and GQRopen: a sufficient, semi-
open-state-testable condition for GQR to hold on the traces
of such a machine. By exploiting the observability of the
subset of known states and the observable nondeterminism
of the implementation, we construct a complete labelling,
𝜆̂, of implementation states. Given an appropriately shaped
specification, this allows us to reduce semi-open-state testing
to open-state testing, avoiding the cost of general 𝑚-complete
testing.

IV. CACHE-COHERENCE PROTOCOL INTEROPERABILITY

We now turn to a key real-world problem which is highly
amenable to semi-open-state testing. Indeed, our motivation
to develop the formalism stemmed from a practical problem
we faced: how to gain confidence that two different endpoint
implementations of an informally-defined and under-specified
cache coherence protocol will successfully interoperate. The
endpoints of mainstream inter-processor cache coherence pro-
tocols turn out to be an excellent match to the requirements
for semi-open-state testing.
Modern computers with multiple processor cores rely on

caches for performance: a hierarchy of caches holds copies of
data from memory (lines), and these caches are kept coherent
by a hardware cache coherence protocol which ensures that, at
any point in time, all copies of a line that reside in the system’s
caches are identical [15]. This is a global invariant that must
be upheld at all times; the protocol maintains this invariant
while serving memory requests (reads and writes) made by
different cores. To correctly and efficiently negotiate the si-
multaneous handling of multiple such requests, the endpoints
of modern coherence protocols tend to be large and complex
state machines. At the same time, high assurance in the correct
operation of these endpoints is required: bugs prevent correct
execution of the entire machine, and the performance-critical
implementation in silicon means that these bugs can rarely be
fixed post-silicon. For this reason, formal methods have long
been employed in coherence protocol designs [16], e.g. for
verifying the protocol definitions [17], or generating correct-
by-construction protocol state machines [18].
Work to date that tests if hardware implementations cor-

rectly implement these verified protocol designs has operated
on the entire coherent system, rather than on individual proto-
col endpoints as we are proposing: Kahlouche et al. [19] and
Kriouile et al. [20] also generate tests from formal models,
but the scale of the system-wide protocol makes complete
testing intractable and simulation environments are needed to
exert control over the concurrent execution at the protocol
endpoints. Consequently, these works have neither addressed
the visibility of endpoint states nor leveraged those states
to achieve complete testing coverage. Orthogonally, other
efforts [21], [22] have integrated additional testing logic into
the system implementation to generate test stimuli and to
directly check the high-level protocol invariants.
These existing testing methods have worked so far because

coherence protocols have generally been specific to a particular
processor model, allowing a single hardware team to conduct
the design, verification, and implementation of the entire
coherent system.
This situation is changing: open, cache-coherent intercon-

nect standards like CXL.cache [4], NVlink [23], CCIX [24],
and TileLink [25] attach a range of 3rd-party cache-coherent
devices to a computer system. The resulting new and po-
tentially different protocol endpoint implementations of these
devices must be able to interoperate with each other and
achieve global coherence in flexible system compositions.

157

M

S

E

I
(snoop(RdEx), ~)

(LdEx, BusRdEx)

(a) A snoop-based, symmetric MESI protocol

(wr, send(UpE))

(wr, ~)

(recv(AckE), ~)

M

S

E

I

(b) Asymmetric specs for 2-node directory-based MESI; the remote side (left) tracks
only M-E-S-I states, and the home side (right) tracks local and remote states.

Fig. 1: Mealy machines for snoopy and directory-based MESI.

This development motivates both the formal specification
of protocol endpoints in such standard, and the means to
efficiently and exhaustively test their resulting in-silicon im-
plementations. More concretely, formal specification allows
the desired system-level properties to be verified on the
abstract compositions of the standard’s endpoints. A complete
test method then allows those system-level properties to be
transferred from the abstract to the composition of successfully
tested endpoint implementations. To apply to a standard’s com-
plex multi-vendor ecosystem, this test method must operate on
the in-silicon implementation only, without requiring access
to additional information such as internal documentation or
design sources.
Given that the requirements for semi-open-state testing

are met, our proposed testing approach is applicable to this
setting: a successful test verdict guarantees complete con-
formance of an in-silicon coherence endpoint to its formal
Mealy FSM specification. Semi-open-state testing does not
require any additional information beyond access to the in-
silicon implementation, and can be naturally integrated into the
usual compliance testing workshops conducted for hardware
interconnect standards like PCI Express (PCIe).
We will now discuss why the requirements of semi-open-

state testing can be met by protocol endpoints of cache
coherent interconnect standards. To this end, we take a closer
look at the nature of these endpoints. We then argue why the
requirements of semi-open-state testing constitute reasonable
restrictions on these endpoints and can therefore be imposed
on vendor implementations by the standard.

A. Directory-based cache coherence protocols

Basic textbook coherence protocols tend to be snoopy: each
node can observe the operations performed by all other nodes
instantaneously. The classic example is MESI, which asso-
ciates one of four different states with each line: M(odified),
E(xclusive), S(hared) or I(nvalid). The M and E states imply
that the cache holds the only valid copy (dirty or clean resp.)
of the data and reads and writes can be performed locally on
it without coordination. State S implies the copy is valid and
clean but may exist in other caches, requiring coordination for
writes. A snoopy MESI protocol endpoint can thus be specified

with the Mealy FSM in Figure 1a. Transitions are defined on
inputs corresponding to local memory requests or snooped-
on remote bus transactions, while outputs are initiated bus
transactions.
The shared bus required for snoopy protocols does not scale

well, and so in practice most real inter-die implementations are
directory-based, including those used by coherent interconnect
standards. These protocols track the cache line status of all
participating nodes in a directory held at the line’s home node
(typically where the main memory for the line is attached),
and coordinate with explicit point-to-point messages instead
of bus snooping.
This makes the protocol endpoints asymmetric: remote

nodes have the same stable states (e.g. M, E, S, I) as the
snoopy protocol, but the home directory needs stable states
that reflect the system-wide state combinations. Moreover, the
use of point-to-point messages requires additional transient
states (sometimes hundreds) in order to cope with all possible
interleavings of messages and actions on each node, including
conflicting concurrent transactions and message reordering.
The resulting two Mealy FSMs are therefore more complex
(Figure 1b).

B. Connection to semi-open-state testing

The endpoints of directory-based coherence protocols are
amenable to semi-open-state testing: the special visible states
in the implementation correspond to the stable protocol states,
and the main assumptions we require do hold.
Requirement (1) Testability Hypothesis: A valid I/O adaptor

can abstract the data in a cache line, assembly load and store
instructions, and the format of coherence messages, retaining
only the message and software request types. The abstracted
behavior of the in-silicon implementation can be driven with
respect to the inputs of the spec, which requires that the
protocol-relevant state does not change except in response
to such inputs. Notice that our state machines only reason
about a single cache line; silicon implementations generally
do indeed treat each line independently [16], although some
dependencies may be introduced if the implementation re-
lies on particular message reorderings [26]. For the standard
fairness assumption, we further require the implementation’s

158

I(store, send(ReqE))

(invalidate, ~) (store, ~)

(recv(AckE),
{msg(ToI), msg(ReqE)})

Fig. 2: A cycle of transient states in a remote node, produced
by its software repeating concurrent invalidates and reads.

processing of inputs to be linearizable. This is usually the
intended behavior of a protocol endpoint; whether linearizable
processing is achieved needs to be validated separately.
Requirement (2) Visible stable cache line states: Although

not used by most programmers, it turns out that existing
hardware generally provides precisely this property to software
via facilities intended for performance analysis and low-level
debugging. An example is the processor we test in section V.
Furthermore, the initial state of the protocol naturally corre-
sponds to the stable Invalid state, and is therefore among the
visible states, as required.
Requirement (3) Stable cache states form a feedback vertex

set: To achieve this, our specification must exclude input
buffering and the remaining pure protocol processing must
exhibit the feedback vertex property. Without the exclusion of
input buffering, a continuous stream of stores and invalidations
on the remote node could yield a cycle of transient states, as
shown in Figure 2: as soon as coordination with the home node
completes, a request is immediately replaced by its buffered
successor, and thus no intermediate stable state is visible.
Real implementations do require the buffering behavior

we exclude from the specification. However, in practice the
buffering only depends on the aspects of the protocol state
that the implementation makes directly visible: only entering a
stable state serves as a signal to fetch the next request from the
buffer. This choice is made by hardware designers precisely
to limit complexity of both implementation and validation.
Consequently, we only need pure protocol processing to

respect the feedback vertex set property. This requirement
might preclude aggressive cache optimizations such as eager
replies to requests, or remote-allocate of the line into a remote
node’s cache (which may require the remote node to handle an
unbounded number of home-enforced caching state upgrades
and downgrades while a request of its own is pending). In
practice, such features are rare.
Requirement (4) Practicability: Recall that the specification

needs to be transformed to define its states according to the
𝜆̂ function (Equation 5). This entails unrolling traces through
transient states, which may cause the size of the specification
to grow exponentially.
Fortunately, in coherence protocols this is not the case. They

exhibit a small upper bound on the number of intermediate
transient states, because only a limited number of requests

from a peer must be handled before the node can conclude the
processing of its own requests and reach the next stable state.
In MESI, for example, the home node can only ask the remote
to downgrade its state twice (from M/E to S, then from S to I).
Furthermore, like other communication protocols, coherence
protocols are sparse – only a few messages can be received
from a valid peer implementation in any given state. Therefore,
we expect the transformation to only yield a moderate increase
in size.

V. APPLICATION TO A REAL IN-SILICON IMPLEMENTATION

While production hardware for the cache-coherent variants
of protocol standards like CXL has yet to appear, we have
applied our technique to the cache-coherent interconnect of the
Enzian research computer [3]; indeed, this was a motivation for
our original work. Enzian can be viewed as a 2-socket NUMA
machine combining a Cavium ThunderX-1 48-core ARMv8
CPU with a large Field Programmable Gate Array (FPGA),
which also implements the Cavium Coherent Processor In-
terconnect (CCPI), the CPU’s native inter-socket coherence
protocol, appearing to the CPU as a second processor node.
While the ThunderX-1 was not originally intended to in-

teroperate at the coherence level with anything other than
another ThunderX-1, Enzian was designed to explore the space
of emerging coherent heterogeneous platforms, and so must
provide an endpoint implementation of CCPI on the FPGA
that interoperates with the CPU. In the context of this work, we
use the CPU’s Last-level cache (LLC) as the system under test,
and use a combination of FPGA programming and software
running on the CPU to exhaustively test the CPU’s silicon
implementation of CCPI against our specification.
CCPI is a distributed directory-based MESI coherence pro-

tocol whose endpoints satisfy all of the requirements for semi-
open-state testing: CCPI maintains cache line independence; it
enforces sequential consistency and is able to cope with arbi-
trary reorderings of messages on the interconnect. Its endpoints
further cleanly separate their input buffering and processing,
and the design of their processing guarantees that a stable
M-E-S-I protocol state (combination) is always reached after
at most four transitions. As a result, CCPI’s behavior can be
accurately described by two Mealy FSMs, one for a remotely-
owned and one for a homed cache line, both of which return
to a stable state in a bounded number of steps. Furthermore,
software on the CPU can use hardware performance counters
to determine if a cache line is in a transient or stable state,
and for the latter, the state of each cache line can be explicitly
read from the cache using privileged registers. Thus, the stable
caching states are made visible in the protocol implementation,
as required.
Our initial specification of the protocol endpoints was

manually constructed from informal vendor documentation,
and subsequently refined as a result of the testing process. The
result is an exhaustively-tested specification of an in-silicon
cache coherence protocol implementation.

159

A. Testing setup and methodology

Our testing setup operates on a single designated Cache
Line Under Test (CLUT), and consists of three components:
an orchestrator and a C library running on the CPU, and
an FPGA testing component. The orchestrator is responsible
for generating the test stimuli from the supplied specification
and coordinating their execution. To generate test stimuli,
the orchestrator performs the online graph traversal algorithm
by Bourdonov et al. [1] while driving the implementation
in tandem. The C library can issue operations (load, store,
etc.) on the CLUT and can return the visible aspects of
the CLUT’s current protocol state (transient or stable with
a particular caching state) when invoked by the orchestrator.
The FPGA tester implements the underlying reliable link
protocol, can send and receive coherence messages to and
from the CPU’s LLC when directed by the orchestrator, and
relay received events back. Communication between the FPGA
component and orchestrator cannot use the coherence protocol
because it must not interfere with the CLUT state. We exploit
the uncached I/O load/store operations that the ThunderX-1
supports as an out-of-band communication channel between
the software orchestrator and the FPGA logic.
We must also prevent any other events in the system (such

as conflict or capacity misses in the cache) from affecting the
CLUT. We achieve this by placing the CLUT in a region of
memory otherwise unused, and exploiting a feature of the CPU
to “lock” it in the LLC, ensuring that the only operations that
affect it are those explicitly initiated by the orchestrator.
This also addresses a further practical problem: since we

are deliberately stalling the cache protocol, we run the risk
of preventing the orchestrator itself making forward progress
unless we can ensure that it does not need to initiate inter-node
cache operations. In our current implementation, this can still
occasionally happen due to global barrier operations we cannot
control, deadlocking the interconnect and causing a “machine
check” exception in the processor. In this case, we simply try
again: the phenomenon does not affect the validity of a run
that completes without a machine check.

B. Experience and results

Having developed our methodology and tools, and based
on an incomplete understanding of CCPI derived from vendor
documentation, it took approximately 2 person-days to formal-
ize the behavior of the protocol in our specification format.
It then took a further person-day to iteratively improve the
specification based on testing feedback. A snippet from our
specification is shown in Table I. It details some transition the
home node can take when the remote node has the CLUT in
shared.
The resulting remote node specification yields a successful

verdict, establishing that the ThunderX-1’s CCPI remote node
implementation is generalized-quasi-equivalent to this specifi-
cation. This final specification has 107 transitions between the
4 stable M-E-S-I states and 42 additional transient states.
In an interoperability scenario, creating the specification

would be done at most once against a “gold standard” ref-

𝑠𝐾 𝑡𝑈 𝑥 → 𝑠′𝐾 𝑡 ′𝑈 𝑦

I S [] SI → I I [] ∼
I S [] SE𝑑 → I E [] AE
I S [] LE → I S [(LE/IV)] IV
I S [] IE𝑑 → I S [(IE𝑑 /∼)] ∼

TABLE I: Excerpt from our home node specification: to the
left of the arrow we denote the (state, input) pair consisting
of last stable state 𝑠𝐾 and the trace 𝑡𝑈 since. To the right of
the arrow we denote the state (𝑠′𝐾 , 𝑡′𝑈) the machine transitions
to, and the output 𝑦 generated. The symbol ∼ denotes that no
output is generated.

erence implementation, or would ideally be provided directly
by the coherent interconnect standard.
Subsequent conformance testing against the specification is

much quicker. Testing one transition of the ThunderX-1’s in-
silicon implementation takes approximately 10 milliseconds,
most of which is spent waiting between applying the input and
observing the generated outputs to ensure that the ThunderX-1
has finished the processing of the former. Exhaustive testing of
the remote node specification concludes in under two minutes,
during which each stimulus is executed multiple times to
exercise all potential non-deterministic behavior.
Moreover, our specification is human-readable and com-

prehensible, in part because it obviates the need for abstract
state identifiers. With abstract identifiers, a reader would
have to explicitly remember the context of each and every
such identifier, something challenging for a protocol of this
complexity. In contrast, our trace-based identifiers carry all
the relevant context to determine at a glance which sequence
of events has lead to that state, and eliminate the need to think
about how to group behaviors into states, since every behavior
has a unique representation in the specification.
We are convinced that the testing accurately reflects the

implementation behavior. All the discrepancies revealed when
iterating our manually-written specification were reasonable
from a protocol perspective. We also uncovered behavior that
we could not have known based on the documentation; for
example, an undocumented error message that the remote
node generates when it receives unexpected messages in some
situations, or the elision of a particular protocol message in
a way that correctly maintains coherence, yet is at odds with
convention in the rest of the protocol implementation.
Finally, we observe completely deterministic behavior in

testing. If our modelling had missed an important aspect
of the protocol, we would expect this to manifest as non-
deterministic behavior.

VI. CONCLUSION AND FUTURE WORK

Our experience shows that semi-open-state testing is a
viable approach for testing state machine implementations.
Building on existing open-state testing techniques allows us
to design an efficient testing procedure, covering a significant
space of real-world state machines. We evaluate these claims
by testing the in-silicon state machine of a ThunderX-1 LLC

160

against a specification of a directory-based cache coherence
protocol. Exhaustively testing the ThunderX-1 coherence im-
plementation completes in a matter of minutes, demonstrating
that our approach is also efficient in practice.
Our method can extend to specification synthesis, where we

extract the behavior of a state machine implementation from
an implementation. This is useful in situations where we ob-
serve interactions between implementations known to be good
(by accident or design). Synthesis helps derive specifications
where we only have access to implementations, e.g. when
observing the interactions of two reference implementations.
The ThunderX-1 specification we test is restricted to two

protocol actors. Proposed coherent interconnect standards like
CXL allow many actors participating in a coherence protocol,
and will require more sophisticated specifications to deal with
the additional complexity. Testing whether the composition
of heterogeneous cache coherence implementations provides
cache coherence correctly is an important consideration for
system integrators and hardware designers alike.
There are other real-world protocols that could benefit from

semi-open-state testing, for example remote conformance of
TCP stacks. Successful application of our approach in the
context of other protocols and specifications would further
demonstrate its general applicability.
Semi-open-state testing extends the set of state machine

implementations that can be efficiently but exhaustively tested,
to the case where a stable subset of implementation states is
observable. We successfully apply semi-open-state testing to
the in-silicon implementation of unmodified, real hardware.

VII. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their helpful com-
ments and feedback, and we are grateful to Google for
financial support.

REFERENCES

[1] I. B. Bourdonov and A. S. Kossatchev, “Complete open-state testing
of limitedly nondeterministic systems,” Programming and Computer
Software, vol. 35, no. 6, pp. 301–313, Nov. 2009. [Online]. Available:
https://doi.org/10.1134/S0361768809060012

[2] T. Chow, “Testing Software Design Modeled by Finite-State Machines,”
IEEE Transactions on Software Engineering, vol. SE-4, no. 3, pp.
178–187, May 1978. [Online]. Available: https://doi.org/10.1109/TSE.
1978.231496

[3] D. Cock, A. Ramdas, D. Schwyn, M. Giardino, A. Turowski,
Z. He, N. Hossle, D. Korolija, M. Licciardello, K. Martsenko,
R. Achermann, G. Alonso, and T. Roscoe, “Enzian: An open, general,
CPU/FPGA platform for systems software research,” in Proceedings of
the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, Feb. 2022, pp.
434–451. [Online]. Available: https://doi.org/10.1145/3503222.3507742

[4] D. D. Sharma and I. Agarwal, “Compute Express Link 3.0 Standard,”
CXL Consortium, Tech. Rep., 2022.

[5] D. Lee and M. Yannakakis, “Principles and methods of testing finite
state machines-a survey,” Proceedings of the IEEE, vol. 84, no. 8, pp.
1090–1123, 1996. [Online]. Available: https://doi.org/10.1109/5.533956

[6] R. M. Hierons, “Testing from Partial Finite State Machines without
Harmonised Traces,” IEEE Transactions on Software Engineering,
vol. 43, no. 11, pp. 1033–1043, Nov. 2017. [Online]. Available:
https://doi.org/10.1109/TSE.2017.2652457

[7] G. V. Bochmann and A. Petrenko, “Protocol testing: review of
methods and relevance for software testing,” in Proceedings of the
1994 ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA ’94. New York, NY, USA: Association
for Computing Machinery, 1994, p. 109–124. [Online]. Available:
https://doi.org/10.1145/186258.187153

[8] M.-C. Gaudel, “Software testing based on formal specification,” in
Testing Techniques in Software Engineering: Second Pernambuco
Summer School on Software Engineering, PSSE 2007, Recife,
Brazil, December 3-7, 2007, Revised Lectures. Springer Berlin
Heidelberg, 2010, pp. 215–242. [Online]. Available: https://doi.org/10.
1007/978-3-642-14335-9_7

[9] R. M. Hierons, “FSM quasi-equivalence testing via reduction and
observing absences,” Science of Computer Programming, vol. 177, pp.
1–18, May 2019. [Online]. Available: https://doi.org/10.1016/j.scico.
2019.03.004

[10] F. Aarts, B. Jonsson, and J. Uijen, “Generating Models of Infinite-State
Communication Protocols Using Regular Inference with Abstraction,”
in Testing Software and Systems, A. Petrenko, A. Simão, and J. C.
Maldonado, Eds. Berlin, Heidelberg: Springer, 2010, pp. 188–204.
[Online]. Available: https://doi.org/10.1007/978-3-642-16573-3_14

[11] E. F. Moore et al., “Gedanken-experiments on sequential machines,”
Automata studies, vol. 34, pp. 129–153, 1956.

[12] A. Dahbura, K. Sabnani, and M. Uyar, “Formal methods for generating
protocol conformance test sequences,” Proceedings of the IEEE,
vol. 78, no. 8, pp. 1317–1326, Aug. 1990. [Online]. Available:
https://doi.org/10.1109/5.58319

[13] D. Sidhu and T.-K. Leung, “Formal methods for protocol testing:
A detailed study,” IEEE Transactions on Software Engineering,
vol. 15, no. 4, pp. 413–426, Apr. 1989. [Online]. Available:
https://doi.org/10.1109/32.16602

[14] A. Petrenko, N. Yevtushenko, A. Lebedev, and A. Das, “Nondetermin-
istic State Machines in Protocol Conformance Testing.” in Proceedings
of the IFIP TC6/WG6. 1 Sixth International Workshop on Protocol Test
systems VI, Jan. 1993, pp. 363–378.

[15] D. Culler, J. P. Singh, and A. Gupta, Parallel Computer Architecture:
A Hardware/Software Approach. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., Aug. 1998.

[16] F. Pong and M. Dubois, “Verification techniques for cache coherence
protocols,” ACM Computing Surveys, vol. 29, no. 1, pp. 82–126, Mar.
1997. [Online]. Available: https://doi.org/10.1145/248621.248624

[17] ——, “Formal verification of complex coherence protocols using
symbolic state models,” Journal of the ACM, vol. 45, no. 4, pp. 557–587,
Jul. 1998. [Online]. Available: https://doi.org/10.1145/285055.285057

[18] N. Oswald, V. Nagarajan, and D. J. Sorin, “ProtoGen: Automatically
Generating Directory Cache Coherence Protocols from Atomic
Specifications,” in 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), Jun. 2018, pp. 247–260.
[Online]. Available: https://doi.org/10.1109/ISCA.2018.00030

[19] H. Kahlouche, C. Viho, and M. Zendri, “Hardware Testing Using
a Communication Protocol Conformance Testing Tool,” in Tools
and Algorithms for the Construction and Analysis of Systems,
ser. Lecture Notes in Computer Science, W. R. Cleaveland, Ed.
Berlin, Heidelberg: Springer, 1999, pp. 315–329. [Online]. Available:
https://doi.org/10.1007/3-540-49059-0_22

[20] A. Kriouile and W. Serwe, “Using a formal model to improve verification
of a cache-coherent system-on-chip,” in Tools and Algorithms for the
Construction and Analysis of Systems: 21st International Conference,
TACAS 2015, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015,
Proceedings 21, 2015, pp. 708–722.

[21] J. You, D. Bural, J. Brown, and J. Zbiciak, “Red Baron: Near/post-
silicon SoC cache coherence stress tester,” in 2016 IEEE Dallas
Circuits and Systems Conference (DCAS), Oct. 2016, pp. 1–4. [Online].
Available: https://doi.org/10.1109/DCAS.2016.7791135

[22] A. DeOrio, A. Bauserman, and V. Bertacco, “Post-silicon verification
for cache coherence,” in 2008 IEEE International Conference on
Computer Design, Oct. 2008, pp. 348–355. [Online]. Available:
https://doi.org/10.1109/ICCD.2008.4751884

[23] D. Foley and J. Danskin, “Ultra-Performance Pascal GPU and NVLink
Interconnect,” IEEE Micro, vol. 37, no. 2, pp. 7–17, 2017.

[24] CCIX Consortium and others, “Cache Coherent Interconnect for
Accelerators (CCIX),” January 2019. [Online]. Available: http:
//www.ccixconsortium.com

161

https://doi.org/10.1134/S0361768809060012
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1145/3503222.3507742
https://doi.org/10.1109/5.533956
https://doi.org/10.1109/TSE.2017.2652457
https://doi.org/10.1145/186258.187153
https://doi.org/10.1007/978-3-642-14335-9_7
https://doi.org/10.1007/978-3-642-14335-9_7
https://doi.org/10.1016/j.scico.2019.03.004
https://doi.org/10.1016/j.scico.2019.03.004
https://doi.org/10.1007/978-3-642-16573-3_14
https://doi.org/10.1109/5.58319
https://doi.org/10.1109/32.16602
https://doi.org/10.1145/248621.248624
https://doi.org/10.1145/285055.285057
https://doi.org/10.1109/ISCA.2018.00030
https://doi.org/10.1007/3-540-49059-0_22
https://doi.org/10.1109/DCAS.2016.7791135
https://doi.org/10.1109/ICCD.2008.4751884
http://www.ccixconsortium.com
http://www.ccixconsortium.com

[25] W. W. Terpstra, “TileLink: A free and open-source, high-performance
scalable cache-coherent fabric designed for RISC-V,” in Proc. 7th RISC-
V Workshop, 2017.

[26] M. Martin, “Formal verification and its impact on the snooping
versus directory protocol debate,” in 2005 International Conference
on Computer Design, Oct. 2005, pp. 543–549. [Online]. Available:
https://doi.org/10.1109/ICCD.2005.58

162

https://doi.org/10.1109/ICCD.2005.58

Formal Methods in Computer-Aided Design 2024

Memory Consistency Model-Aware Cache
Coherence for Heterogeneous Hardware

Rachel Cleaveland
Stanford University
Stanford, CA, USA
rcleavel@stanford.edu

Caroline Trippel
Stanford University
Stanford, CA, USA
trippel@stanford.edu

Abstract—Implementing cache-coherent shared memory in
heterogeneous systems is challenged by memory consistency
model (MCM) mismatches among compute elements: what the
system-wide MCM should be and how it should be enforced are
not well-defined. In this paper, we posit that C11—the seminal
heterogeneous MCM—is the natural MCM choice for such sys-
tems. Based on this philosophy, we design and verify MEMGLUE,
an update-based consistency protocol (i.e., an MCM-respecting
coherence protocol) that enforces a slight strengthening of C11
among a set of interacting heterogeneous compute clusters.
MEMGLUE has three notable features. First, it is modular:

any cluster equipped with a MEMGLUE translation shim can
“plug into” any MEMGLUE system. Second, it is verifiable:
one system-wide proof ensures that MEMGLUE upholds the
C11 MCM with respect to MEMGLUE messages exchanged
by clusters’ shims, and per-cluster proofs ensure that shims
correctly translate relevant cluster coherence protocol messages
to MEMGLUE protocol messages. Third, it is polite: MEMGLUE is
compatible with a wide range of cluster coherence protocols and
MCMs and exploits the permissible relaxed ordering behavior of
each cluster to a high degree.

I. INTRODUCTION

Modern computer systems are increasingly heterogeneous:
outsourcing computation from general-purpose CPUs to
special-purpose hardware increases computational throughput
while saving power [36], [25], [37]. And, as evidenced by the
emergence of several industrial designs and standards (e.g.,
NVLink-C2C [5], CXL [71], CAPI [73], CHI [12], HSA [31],
CCIX [2]), there is growing interest in implementing cache-
coherent shared memory in such systems. Allowing compo-
nents to share a coherent address space eases the burden of
explicit memory management while reducing intra-system data
movement and increasing performance [71], [42], [48], [58].
Unfortunately, implementing cache-coherent shared mem-

ory in heterogeneous systems is not straightforward. A core
issue is that the heterogeneous processing elements com-
prising modern Systems-on-Chip (SoCs) [37], multi-chiplet
designs [84], [3], and data centers [26], [22], [76], [40] feature
disparate memory consistency models (MCMs) across their
instruction set architectures (ISAs). That is, these processing
elements assume/enforce differing restrictions on the ordering
and visibility of (all) shared memory accesses [59]. Traditional
coherence invariants order same-address memory accesses
only [59]. Failure to also coordinate ordering among different-

address accesses in heterogeneous shared memory systems can
lead to unexpected program outcomes [52], [63], [34], [9].
Most proposals for implementing heterogeneous cache-

coherent shared memory today require hardware designers and
software developers to collaboratively manage MCM diversity
per system [14], [66], [5], [71].
Recent academic work shows that software developer bur-

den can be alleviated by offloading the task of managing
MCM heterogeneity to hardware consistency protocols. And,
hardware designer effort can be reduced by automatically
synthesizing a hardware consistency protocol per set of het-
erogeneous clusters, given per-cluster coherence protocol and
MCM specifications as input [63]. (In this paper, a cluster
denotes a group of homogeneous compute elements sharing a
memory hierarchy.) Yet, the following key challenges remain.
First, synthesized consistency protocol implementations and

the system-wide MCMs they intend to enforce (described as
the “amalgamation” of the per-cluster MCMs [63]) are unique
for distinct inputs to the synthesis procedure. Each protocol-
MCM pair requires verification to ensure that synthesis did
not unintentionally introduce protocol bugs—a notoriously
difficult task [21], [65], [82], [15], [49], [55], [51], [54], [75],
[53]. Second, deploying these consistency protocols requires
explicitly merging, and thus modifying, cluster coherence
protocol implementations (adding new transient states) and
cache structures (combining clusters’ directory controllers and
last-level caches). This strategy is not readily compatible with
systems where some cluster’s memory system cannot be co-
designed with the rest (e.g., SoCs/multi-chiplet designs with
third-party cores/chiplets, data-centers). Third, clusters with
non-multiple-copy-atomic (non-MCA) MCMs [61], [50], [10],
[38] and update-based coherence protocols are not supported.

A. This Paper

Towards resolving the challenges above, we propose
MEMGLUE, a universal hardware consistency protocol that is
verifiable, modular, and polite. We coin the term consistency
protocol to refer to an MCM-respecting coherence protocol,
which provides coherent shared memory for arbitrary sets of
heterogeneous clusters while upholding the memory ordering
requirements of their respective ISA MCMs.

Insight 1: A universal consistency protocol enables verifi-
ability and modularity: MEMGLUE is a universal consistency

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 22 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0000-0002-6306-9502
https://orcid.org/0000-0002-5776-1121
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_22
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_22
https://creativecommons.org/licenses/by/4.0/

protocol, meaning that its implementation and the system-
wide MCM it enforces are the same for any composition of
heterogeneous clusters. In particular, MEMGLUE enforces a
slight strengthening of the C11/C++11 MCM [39], [46]—
henceforth referred to as C11—among clusters. This is a
natural design choice, since C11 was explicitly intended to be
compatible with the breadth of modern ISA MCMs, and many
new ISAs consider C11-compatibility a core requirement [78],
[50], [80]. C11 defines a variety of memory and synchroniza-
tion operations with different ordering strengths [4] attached
to them, so as to closely match the ordering semantics of a
wide range of ISA memory and synchronization instructions.
MEMGLUE protocol messages directly adopt the syntax and
semantics of these variable-strength C11 operations.
Per-cluster MEMGLUE translation shims translate relevant

cluster coherence protocol messages to MEMGLUE protocol
messages.1 For correctness, a shim must consider the ordering
requirements of the ISA instruction(s) that generate a partic-
ular coherence protocol message and output a MEMGLUE
message of equal (or greater) ordering strength. However,
shim design and its verification can be simplified thanks to
MEMGLUE’s C11-centric design and the existence of formally
verified compiler mappings from C11 to a variety of ISA
MCMs [69]. In particular, a shim can select the strongest C11
operation that could have generated a given coherence protocol
message, and output its matching MEMGLUE message.
Any cluster equipped with a MEMGLUE shim can “plug

into” any MEMGLUE system and know that its memory
ordering behaviors will adhere to its ISA MCM. Moreover, the
MEMGLUE protocol, which coordinates C11-style operations
among clusters’ shims, need only be designed and verified
once. Shims are verified once per cluster, but are simpler and
can reuse C11 compiler mappings [69]. By decoupling per-
cluster translation logic from its system-wide protocol imple-
mentation, MEMGLUE adopts a modular design philosophy,
which avoids explicitly merging clusters’ memory systems.

Insight 2: Update-based protocols enable politeness:
Ideally, a consistency protocol should be compatible with
as many local cluster coherence protocols and MCMs as
possible, while retaining performance of intra-cluster shared
memory communication (compared to a homogeneous shared
memory system), and maximizing performance of inter-cluster
communication. We say that such a protocol is polite. Our
goal of politeness, combined with the producer-consumer
access patterns typically seen among clusters in heterogeneous
systems [72], [79], motivates us to implement MEMGLUE
as an update-based protocol [35] (related work adopts an
invalidation-based approach [62], [9], [71], [63], [34]).
We show that as the fraction of clusters with weak (local)

MCMs grows in a MEMGLUE system, so does the number
of observable heterogeneous program execution behaviors
(§VI-A). This means that MEMGLUE effectively exploits the
permissible relaxed ordering behavior of its clusters’ MCMs.

1A “shim” is “a thin piece of wood, rubber, metal, etc. which is thicker at
one end than the other, that you use to fill a space between two things that
do not fit well together” [67].

Thread 1 Thread 2
1: Wx = 1 3: Ry = 1
2: Wy = 1 4: Rx = 0

Fig. 1: Message Passing (MP) litmus test. Memory locations
contain zero initially. The outcome is permitted by some
MCMs (e.g., ARMv8 [11]), but not others (e.g., x86-TSO [8]).

Plus, MEMGLUE accommodates cluster coherence protocols
and MCMs that current approaches for designing heteroge-
neous MCMs [63], [34] and their implementations as consis-
tency protocols [63] do not, e.g., update-based protocols [63],
[34], and non-multiple-copy-atomic (non-MCA) MCMs [63].
We summarize our contributions as follows.
• MEMGLUE Approach. We propose MEMGLUE, a uni-
versal consistency protocol for heterogeneous shared-
memory systems. To our knowledge, MEMGLUE repre-
sents the only attempt to go beyond an operational model
and implement C11 directly as a hardware protocol.

• MEMGLUE Design.We design MEMGLUE as an update-
based protocol to accommodate clusters with a variety of
local coherence protocols and MCMs and to optimize for
inter-cluster producer-consumer communication patterns.

• MEMGLUE MurϕModel.We implement MEMGLUE in
the Murϕ model checker and prove that it closely upholds
C11 for a suite of 6,738 litmus test programs.

• MEMGLUE Correctness Proof.We manually prove that
MEMGLUE upholds C11 for all programs.

II. BACKGROUND AND MOTIVATION

Memory consistency models (MCMs) govern the ordering
and visibility of shared memory accesses in parallel pro-
grams [59]. They define what program executions, and thus
outcomes (mappings of a program’s shared memory loads to
the values they return), are permitted/forbidden. For the same
program, one MCM may permit an outcome that another for-
bids. Such distinctions are often captured using small parallel
programs, called litmus tests (Fig. 1).
MCMs span the hardware-software stack: from high-level

languages (HLLs) [19], [56], [18] to intermediate representa-
tions (IRs) [83] and ISAs [50], [64], [78], [11], [38]. Yet, for
HLL programs, the HLL MCM ultimately dictates which of its
executions are permitted, and compilation to IRs and/or ISAs
must avoid creating more permitted execution possibilities.

A. Memory Consistency Model Overview

MCMs are often specified axiomatically [8], [18], [46], [50],
[68] by defining a “happens-before” relation (→hb) between
instructions that restricts which executions are permitted.
Permitted executions are those not containing happens-before
cycles. In Fig. 1, for example, a strong MCM may instantiate:
1 →hb 2 →hb 3 →hb 4 →hb 1 (i.e., 1 happens-before 2, etc.).
This cycle implies a contradiction—instruction 1 happened-
before itself—indicating that the MCM disallows this exe-
cution. A weaker MCM may only instantiate 2 →hb 3 and
4→hb 1, resulting in an acyclic execution that is permitted.

164

rs = [W] ; (sb&loc)? ; [W& ∼ NA] ; (rf; rmw)∗
sw = [REL | ACQREL | SC] ; ([F]; sb)? ; rs ; rf ;

[R& ∼ NA] ; (sb; [F])? ; [ACQ | ACQREL | SC]
hb = (sb | sw)+

eco = rf | mo | fr | mo; rf | fr; rf
scb = hb | mo | fr

psc base = ([SC] | [F&SC] ; hb?) ; scb ; ([SC] | hb? ; [F&SC])

psc f = [F&SC] ; (hb | hb; eco; hb) ; [F&SC]

psc = psc base | psc f

Fig. 2: A subset of the C11 derived relations [46]. The |, ;,
?, +, and ∗ relational operators represent union, sequencing,
union with the identity relation, transitive closure, and reflexive
transitive closure. W, R, and F represent write, read, and fence
instructions. ACQ and REL denote instructions with the C11
acquire and release memory orders, and so on.

B. The C11 Memory Consistency Model

MEMGLUE targets C11—the seminal heterogeneous
MCM [19]—and more specifically, the RC11 variant [46].
From this point on, we use “C11” to refer to RC11, unless
otherwise stated. C11 programs are intended to be compiled
to and executed on virtually any hardware, despite the fact
that each target ISA has its own MCM.
To leverage weak ISA MCM offerings, C11 provides several

memory orders [4] (or “strengths”) for each memory and
fence operation: relaxed (RLX), acquire (ACQ), release (REL),
acquire-release (ACQREL), and sequentially consistent (SC).2

Programmers may label writes as RLX, REL, or SC; reads as
RLX, ACQ, or SC; and fences as ACQ, REL, ACQREL, or SC.
The read and write components of atomic “read-modify-write”
(RMW) operations can take on read and write labels, respec-
tively, yielding RLX, ACQ, REL, ACQREL, or SC RMWs. The
strength of each memory order subsumes that of all weaker
orders, per the partial order RLX ≺ REL/ACQ ≺ ACQREL ≺ SC.
So, any ordering restrictions on RLX instructions will apply to
REL instructions, and so on. Note that this partial order does
not relate REL to ACQ, but both are stronger than RLX and
weaker than ACQREL. Compilers translate these “labeled” C11
operations into sequences of load, store, and fence instructions
in the target ISA, such that the C11 ordering guarantees will
be upheld when compiled programs run on hardware [69].
As illustrated in Figs. 4, 5 and 6, C11 defines a variety of

relations between operations, which it uses to specify legal
program outcomes. Base relations include:

• sb (sequenced-before): describes program order.
• rf (reads-from): relates writes to same-address reads that
read from them.

• mo (modification order): relates same-address writes in
the order that they commit to memory.

• fr (from-reads): relates a read to a “newer” same-address
write that happened mo-after the write that it read from.

2RC11 does not support C11’s consume memory order, as it is not used by
major compilers [46].

Coherence = irreflexive (hb ; eco)

SC = acyclic (psc)

Atomicity = rmw ∩ (fr; mo) = ∅
No-Thin-Air = acyclic (sb | rf)

Fig. 3: C11 axioms [46].

• rmw (read-modify-write): relates the read component of
an RMW to the write component.

Note that sb, rf, mo, and fr are execution-specific, with
sb encoding a program’s dynamic control-flow and the others
encoding its data-flow. The remaining C11 relations (Fig. 2)
are derived from these base relations.
Two notable derived relations are sw (synchronizes-with)

and hb (happens-before): hb is the union of sw and sb,
and sw relates release operations to acquire operations.3 For
example, as shown in Fig. 4a, when a release write (or any
write that is sb-after a same-address release write) is related
to an acquire read by rf, the release write is also related
to the acquire read by sw. The sw relation can also involve
fences. A release fence that is sb-before a write may feature
an outgoing sw edge, and an acquire fence that is sb-after a
read may feature an incoming sw edge. As shown in Fig. 4b,
an rf edge between such a write and such a read instantiates
an sw edge between their corresponding release and acquire
fences. Note that release fences (release writes) can also be
related to acquire reads (acquire fences) by sw.
The different C11 memory orders induce different relations

between program operations, and thus different constraints on
permitted program executions. RLX operations are subject to
few restrictions, only guaranteeing atomicity (i.e., partially-
performed writes cannot be observed) and coherence (i.e.,
all threads can agree on a total order in which same-address
memory operations take place, or SC-per-location [47]). REL
and ACQ operations further restrict legal program outcomes
by requiring that all operations visible to a release must be
visible to any acquire that is related to the release by sw.
This requirement renders the outcome in Fig. 5a forbidden.
Finally, all threads must agree on a total order in which SC

operations take place. That is, SC reads on different threads
may not disagree on the order of SC writes.
Overall, C11 defines legal program executions using four

axioms (Fig. 3): Coherence, SC, Atomicity, No-Thin-Air.
The Coherence axiom states that pairs of operations related

by hb in one direction may not be related by eco (Fig. 2) in
the opposite direction. It enforces (among other things) SC-
per-location. Fig. 5 shows how the outcome in Fig. 1 can be
forbidden (5a) or permitted (5b) by Coherence depending on
the strengths of the program’s C11 operations and how they
instantiate hb.
The SC axiom asserts that SC operations must be totally

ordered. Fig. 6 shows the Independent Readers, Independent

3“Release operations” (“acquire operations”) denote memory and fence
operations whose strengths are at least as strong as REL (ACQ) per §II-B.

165

rf
Wrel x = 1

Wrlx x = 2

Racq x = 2
sb

sw

Thread/Core 1 Thread/Core 2

(a) Without fences.

rf
 Frel

Wrlx x = 1

Rrlx x = 1

 Facq

sbsb
sw

Thread/Core 1 Thread/Core 2

(b) With fences.

Fig. 4: Example instantiations of the sw relation.

rf, sw, hb
Wrlx x = 1

Wrel y = 1

Racq y = 1

Rrlx x = 0
sb, hbsb, hb

eco,
 fr

Thread/Core 1 Thread/Core 2

(a) REL-ACQ (Forbidden)

rf
Wrlx x = 1

Wrlx y = 1

Rrlx y = 1

Rrlx x = 0
sb, hbsb, hb

eco,
 fr

Thread/Core 1 Thread/Core 2

(b) No REL-ACQ (Permitted)

Fig. 5: MP litmus test variants. The REL-ACQ synchronization
induces hb in Fig. 5a, resulting in a violation of Coherence.

Writers (IRIW) litmus test, which highlights this requirement
and distinguishes orderings enforced by REL-ACQ synchroniza-
tion (when sw involves at least one non-SC operation) versus
SC-SC synchronization (when sw involves two SC operations).
Atomicity forbids intervening writes between any

read/write pair related by rmw.
Compared to the original C11 [19], RC11 fixes is-

sues with SC semantics and adds the No-Thin-Air axiom.
No-Thin-Air requires that an execution cannot speculatively
evaluate a read operation, such that this speculation satisfies
itself through a cyclic chain of dependence [20]. That is, values
cannot appear “out-of-thin-air.”
In practice, MEMGLUE implements a slight strengthening of

RC11 that uses a strictly stronger version of the scb relation,
which appears in the SC axiom [18]. RC11 weakened the scb
relation to accommodate Power processors, which can produce
outcomes that violate the SC axiom under the stronger scb
definition when programs mix SC and non-SC operations [46].
For MEMGLUE’s purposes, implementing a strictly stronger
variant of RC11 implies that RC11 is upheld. Further, doing so
reduces MEMGLUE’s metadata requirement without deviating
too far from (the weaker) RC11 behavior (§VI-A).

C. Update-Based Cache Coherence Protocols

Coherence protocols may be invalidation- or update-based,
and our MEMGLUE implementation adopts the latter approach.
Invalidation-based protocols require caches to send invali-

dation requests to remote cores when they want to perform a
write. When a core wants to read a cache line that has been
invalidated, it must request access to it through the protocol.
Invalidation-based protocols often maintain the single-writer,
multiple-reader (SWMR) invariant by requiring that all remote
copies of a line be invalidated before a write may perform [59].
Update-based protocols [13], [74] replace invalidations with

updates that propagate writes to remote cores as soon as they
perform locally, trading off lower read latency for higher net-
work traffic. In general, each cache write results in a message
sent to all sharers, but remote cores always have the most
up-to-date data and can thus perform reads immediately [35].

Wrel x = 1 Wrel y = 1Racq x = 1

Rrlx y = 0
sb, hb

Racq y = 1

Rrlx x = 0
sb, hb

rf, sw, hb rf, sw, hb

fr, eco

fr, eco

Thread/Core 1 Thread/Core 2 Thread/Core 3 Thread/Core 4

(a) REL-ACQ (Allowed)

sb, hb, scb sb, hb, scb

rf, scb, hbrf, scb, hbWsc x = 1 Wsc y = 1Rsc x = 1

Rsc y = 0

Rsc y = 1

Rsc x = 0
fr, scb

fr, scb

Thread/Core 1 Thread/Core 2 Thread/Core 3 Thread/Core 4

(b) SC-SC (Forbidden)

Fig. 6: IRIW litmus test that is forbidden by C11 iff all the
operations are SC, due to a cycle in scb that violates SC.

III. MEMGLUE PRELIMINARIES

We now give an overview of the MEMGLUE consistency
protocol, before presenting two implementations (in §IV and
§V) that make different assumptions about interconnection
network ordering guarantees.

A. MEMGLUE Overview

MEMGLUE is an update-based consistency protocol that co-
ordinates correct shared memory interactions among a hetero-
geneous set of compute clusters, which have been augmented
with MEMGLUE translation shims (Fig. 7).
The MEMGLUE protocol operates within a fragment of

C11 that includes RLX, ACQ, REL, and SC memory operations
(including the read and write components of RMWs) and SC

fences. We omit support for the strictly weaker REL, ACQ, and
ACQREL fences for now. The semantics of RMWs is described
in our manual proof in our open-source repository [1]. How-
ever, RMWs are not implemented in our Murϕ models, nor
are they discussed in the paper for space reasons.
MEMGLUE shims intercept relevant coherence protocol

messages internal to their local clusters and, based on their
local ISA MCMs, generate C11-style messages (§III-B) to be
handled by the MEMGLUE protocol.
We justify our decision to implement MEMGLUE as a novel

(§III-A2) update-based (§III-A1) protocol below.
1) Why Update-based Consistency Protocols?: Recall our

goal of designing a heterogeneous consistency protocol that
is polite (§I). That is, MEMGLUE should not overly-restrict
clusters’ (i) coherence protocols (invalidation- or update-based
variants should be supported), (ii) MCMs (any MCM should
be supported), (iii) performance on intra-cluster shared mem-
ory communication (operations on memory locations shared
within a single cluster should perform comparably to when
the cluster is not plugged into a MEMGLUE system), and (iv)
performance on inter-cluster shared memory communication.
Requirement (iv) precludes consistency protocols that en-

force SWMR (§II-C) among clusters, which subject inter-
cluster communication to sequentially consistent ordering con-
straints [47], [59], [57]. Update-based protocols generally do
not uphold SWMR [35], nor do certain invalidation-based

166

Consistency Controller

Cluster 1

LLC
L1 L1L1 L1

Network

Shim A Shim B

LLC

Cluster 2

Fig. 7: MEMGLUE system with two heterogeneous clusters.
MEMGLUE operates below the dashed line.

protocols, such as those that permit delayed invalidations [43],
[44]. Such protocols are reasonable options for exploiting
permissible relaxed ordering behaviors between clusters. How-
ever, for the reasons below, we elect to implement MEMGLUE
as an update-based protocol.
Related to requirements (i) and (ii), we find that update-

based consistency protocols easily support both update- and
invalidation-based cluster coherence protocols (§VI-A demon-
strates the latter), and enable a C11-centric design that can
accommodate arbitrary cluster MCMs.
Related to requirement (iv), MEMGLUE orchestrates inter-

cluster communication, which we anticipate to largely feature
producer-consumer access patterns (e.g., a producer/consumer
cluster writes to/reads from a shared queue [79]). For this style
of communication, update-based protocols have been shown to
perform better than invalidation-based alternatives [23]. One
may initially worry about increased memory traffic between
clusters. However, MEMGLUE is compatible with several per-
formance optimizations for update-based protocols that reduce
network traffic (e.g., an exclusive state [13], [74], competitive
updates [35]). Plus, thread migration, which exacerbates up-
date traffic in homogeneous shared memory systems [33], [35],
is unlikely across heterogeneous MEMGLUE clusters.
2) Why a Novel Protocol?: We implement MEMGLUE as

a novel protocol for two main reasons. First, our MEMGLUE
implementation can be viewed as an abstract-machine op-
erational model of (a slight strengthening of) C11. Due to
its complexity, such a model for C11 has not yet been
developed [30], [41], [60], and no existing coherence protocol
comes close to approximating C11 behavior. Second, many
prior update-based coherence protocols make restrictive as-
sumptions about the orderedness of the network through which
messages travel [74], [13], [81], [33], which we wish to avoid.

B. MEMGLUE Hardware Primitives

MEMGLUE introduces two types of hardware structures to
mediate communication between clusters: per-cluster shims
and a single system-wide consistency controller (CC).
Shims interface between local clusters and the MEMGLUE

system. Within their local clusters, shims intercept relevant
coherence protocol messages that are exchanged on behalf
of ISA write, read, and fence instructions; translate them
into their C11 analogs (§IV-D); and send WRITE, RREQ, and
FREQ MEMGLUE messages, respectively, to the CC. From the
CC, shims can receive WRITE, WRITE ACK, RRESP, FREQ, and

Remote Propagation Local Propagation
MSI + TSO L1 cache write hit Invalidate all locally
ppo = sb \ (W, R) cached copies. Write

data to LLC.
Firefly + SC Shared bus write Place write update
ppo = sb onto the shared bus.

RCC + RC Shared L2 cache Write data to shared
ppo = sb \ ((RLX, RLX) ∪ write back L2 cache.
(REL,RLX) ∪ (RLX, ACQ))

TABLE I: Local and remote write propagation strategies
for shim integration for several protocols: MSI (invalidation-
based) [59], Firefly (update-based) [74], and RCC (self-
invalidation-based) [59]. Remote Propagation provides the
local coherence actions that trigger a shim to send a WRITE

update to the CC; Local Propagation provides the actions that
a shim performs to propagate WRITE updates within its cluster.

FRESP messages (discussed in §IV-A). MEMGLUE messages
contain different metadata to ensure they are correctly ordered
by the protocol, such as C11-style strengths (RLX, REL, ACQ, or
SC). The CC acts as the directory structure within MEMGLUE:
all messages from the shims are sent to the CC, which orders,
responds to, and reroutes them appropriately.
The shims and CC track additional metadata per valid cache

line in existing cluster caches. A shim maintains a meta-
data cache that shadows its cluster’s shared last-level cache
(LLC). Without loss of generality, we assume inclusive cluster
LLCs. The CC acts as a directory for the full heterogeneous
MEMGLUE system, maintaining data, metadata, and cluster-
granularity sharer lists per cache line present in any of its
clusters’ LLCs. A cache line tracked by a shim is invalid
(valid) if its corresponding LLC cache line is invalid (valid).
A cache line in the CC is invalid (valid) if it is invalid (valid)
in every (some) cluster’s LLC. The shims and CC also track
a timestamp per cache line (§IV-B1).

C. Write Propagation and Shim Integration

Equipping a cluster with a MEMGLUE shim requires deter-
mining (i) when intra-cluster operations should be communi-
cated to remote clusters, and (ii) how MEMGLUE operations
arriving from a remote cluster should be propagated internally.
The answer to (i), in short, depends primarily on what intra-

thread write-write orderings the local MCM globally enforces.
The cluster actions which require external communication

are cache updates (shims must update remote clusters), cache
misses (shims must retrieve data and/or metadata), and fences
(shims must synchronize with remote clusters). When the
shims observe local coherence protocol messages indicative
of these actions, they send WRITE, RREQ, and FREQ messages
to the CC, respectively. Usually, WRITE and FREQ messages
correspond to (committed) ISA instructions within the local
cluster, so if a cluster’s MCM globally orders a pair of such
instructions, its shim must send their generated MEMGLUE
messages to the CC in the same order. For most cluster co-
herence protocols, where ISA fences do not generate protocol
messages, the main task of a MEMGLUE shim is to preserve
globally-enforced orderings among its cluster’s ISA writes.

167

Such globally-enforced orderings may order writes in differ-
ent threads (inter-thread) or the same thread (intra-thread). For
clusters with MCA MCMs, intra-thread orderings are typically
captured by a preserved program order (ppo) relation [8].
For clusters with nMCA MCMs, they are often embedded in
more subtle causality relations [50]. A shim can observe inter-
thread write-write orderings (e.g., mo) at a cluster’s coherence
ordering point; however, globally-enforced intra-thread write-
write orderings may require shims to be placed higher (closer
to cluster cores) within the memory hierarchy.
To see how a cluster’s intra-thread write-write ordering

requirements inform shim placement, consider the following
total store order (TSO) [70] and release consistency (RC) [59],
[32] examples from the Remote Propagation column of Ta-
ble I. For a TSO cluster, intra-thread W→sb W ordering is
preserved globally. Hence, its shim must send out a WRITE

message upon each L1 write hit and therefore monitor all L1
cache interfaces. In contrast, an RC cluster preserves intra-
thread W→sb Wrel order globally, but not intra-thread order
among non-rel writes.4 When a Wrel is performed at a core,
all dirty data in the L1 are written back to the shared L2 (the
cluster’s LLC) before the Wrel itself is written back to the L2.
Thus, the shim need only monitor the cluster’s L2 interface.
To question (ii), MEMGLUE propagates incoming WRITE

messages (which carry updates from remote clusters) within a
cluster by leveraging its local coherence protocol. The Local
Propagation column of Table I gives examples.

IV. ORDERED MEMGLUE CONSISTENCY PROTOCOL

We first present Ordered MEMGLUE (MEMGLUEO), which
assumes an ordered interconnection network (i.e., messages
from the same sender to the same receiver arrive in the order
they were sent). A complete specification of the protocol can
be found in our open-source repository [1].

A. MEMGLUEO Protocol

In this section, we present a simplistic view of MEMGLUE’s
actions upon observing cluster-local instructions via their
induced coherence protocol messages. In §IV-B we refine the
MEMGLUE protocol to maintain the C11 axioms (§II-B).
Cluster writes. When a shim sees a cluster write (via a

write hit or write-back, §III-C), it immediately sends a WRITE
to the CC and updates its cache line’s state to valid within the
shim (if it is not already). When the CC receives this WRITE,
it writes its data into its own cache and forwards the WRITE to
each cluster that is registered as a sharer of the updated cache
line. The cluster whose shim sent the original WRITE message
is added as a sharer. When remote sharers receive the WRITE,
they propagate it within their clusters (Table I).
Cluster reads. Clusters may always service reads with data

they have cached locally. On a read miss at the LLC, the shim
sends a RREQ to the CC and does not service local cluster
instructions until it receives back a RRESP. Upon receiving

4Note that RC’s Wrel operations have a slightly different semantics com-
pared to C11’s Wrel operations, but are similar in spirit.

Wx=1
Wx=2

Wx=3
Shim 1

Wx=2
Wx=1

Shim 2

Wx=3

I1: Wx = 1
I2: Wx = 2 I3: Wx = 3

Addr Data Sharers
x 0 1 2 3 1, 2

CC

(a) Concurrent writes violate coherence.

Wscx=1Wscy=1
Shim 1

Wscx=1

Shim 2

Wscy=1

I1: Wsc x=1
I2: Rsc y=0

I3: Wsc y=1
I4: Rsc x=0

Addr Data Sharers
x 0 1 1, 2
y 0 1 1, 2

CC

(b) SC writes violate the SC axiom.

Fig. 8: Motivating refinements to the MEMGLUEO protocol.

the RRESP, the shim services the cluster read by supplying
this data to its LLC and updating its state in the shim to valid.
Cluster fences. The shim sends a FREQ to the CC and stalls

handling all cluster requests. The CC responds with a FRESP.

B. Refining the Protocol

We refine the §IV-A protocol in two ways to maintain C11.
1) Timestamps: Recall that the C11 Coherence axiom en-

forces SC-per-location (§II-B), which requires that all threads
agree on a total order for same-address memory operations.
The simple MEMGLUE protocol described in the previous
section violates this notion.
Consider the example in Fig. 8a. Note the omission of

instruction strengths; the problematic behavior of this example
is present under any mapping of instructions to strengths.
Without loss of generality, suppose the WRITEs arrive in
ascending order at the CC, and x is initially 0. To maintain
SC-per-location, as required by Coherence, both shims must
observe these same-address writes in the same order. However,
under our current simple protocol, Shim 1 observes the write
order to be 1, 2, 3, while Shim 2 observes 3, 1, 2, because
each shim indiscriminately overwrites its local data with the
forwarded WRITE updates it receives. MEMGLUEO corrects
this behavior with timestamps.
Each cache line’s metadata in the shims and CC is extended

with a timestamp (TS) (Fig. 10). Each time the shims or CC
process a cluster write hit / write-back (shims) or MEMGLUE
WRITE (shims or CC), they increment the TS they track for the
target cache line. On a write miss, a shim synchronizes its TS
for the write’s cache line with the CC, by acquiring the CC’s
TS and setting its local TS equal to it. Any WRITE sent from
the CC to a shim is tagged with the CC’s TS. When the shims
receive a WRITE, they perform a timestamp check to determine
whether to propagate the WRITE’s data within their clusters.

Definition IV.1. For WRITE w, shim S, and address a, the
timestamp check determines whether w’s timestamp exceeds
the shim’s timestamp at a, i.e. w.TS > shim[a].TS.

The WRITE is propagated within the local cluster only if
the timestamp check passes; otherwise, its data is stale and
must be discarded. In either case, the shim increments its local
timestamp. Now, in Fig. 8a, when Wx = 1 arrives to Shim 2, its
timestamp and the shim’s timestamp for x will be both be 1.
Thus, the timestamp check will fail and the shim’s timestamp

168

will be incremented to 2 without overwriting the value 3. The
same happens when Wx = 2 with timestamp 2 arrives at Shim
2. However, when Wx = 3 with timestamp 3 arrives at Shim
1, the timestamp check passes, and 3 is written. This means
both shims will have data 3 and TS 3 in their caches at the
end of the exchange. Using these timestamps, we prove that
MEMGLUEO upholds SC-per-location:

Theorem IV.1. For all addresses a, ∃ ≺a a total order on all
writes to a, such that for all shims S, and any pair of reads
R→sb R

′ on S which read values w and w′, w ⪯a w
′.

2) SC Writes: Consider the motivating example in Fig. 8b.
Suppose both shims initially cache x and y, both with value 0.
Given the current simple protocol, both WRITEs are sent to the
CC, and then both reads immediately read the cached data (0)
before the remote WRITEs arrive. The outcome would therefore
be observable, despite being forbidden by C11’s SC axiom. To
address this, MEMGLUEO requires that a shim stop servicing
local cluster requests after outputting an SC WRITE until it has
received a WRITE ACK back from the CC. This requirement
forces prior SC WRITEs (that reached the CC before the shim’s
SC WRITE) to propagate to the shim before it may service
future instructions. Doing so ensures that SC reads observe
a total order for SC writes, as C11 requires (§II-B).

C. System-wide Proof of MEMGLUEO

For MEMGLUE to uphold C11, the program executions
observable in MEMGLUE must be a subset of those allowed
by C11 (i.e., MEMGLUE ⊆ C11). In this section, we sketch
three out of the four proofs that we conduct to verify that
MEMGLUEO upholds the C11 axioms for all programs. All
four proofs—one corresponding to each C11 axiom (§II-B)—
can be found in our open-source repository [1].
Each proof proceeds as follows. First, we assume the

existence of an axiom-violating program execution. Then, we
establish an order ≺CC in which messages must have hit the
CC for this execution to have been observable in MEMGLUEO

(e.g., m0 ≺CC m1 means m0 hits the CC before m1). Then, we
derive a contradiction (⇒⇐) that ≺CC must contain a cycle,
proving that the execution is not observable in MEMGLUEO.
Coherence (§II-B): ∄I1, I2.(I1, I2) ∈ hb ∧ (I2, I1) ∈ eco

Pf (sketch). We assume for sake of contradiction that such
instructions I1 and I2 exist. We use the orderedness of the
network and Thm. IV.1 to prove that instructions related by
hb hit the CC in hb order. We then prove that eco-related
instructions must hit the CC in eco-order by casing on each
eco edge type. Then, I1 ≺CC I2 because (I1,I2) ∈ hb, but
also I2 ≺CC I1 because (I2,I1) ∈ eco. ⇒⇐
SC Axiom (§II-B): acyclic (psc)
Pf (sketch): Recall that psc orders SC operations with respect
to one another (Fig. 2). Assume a cycle of psc edges exists
in some program execution. We first prove that any psc cycle
must contain at least one write or fence. Then we prove that
all WRITEs and FREQs generated in this cycle must hit the CC
in psc-order, meaning that ≺CC contains a cycle. ⇒⇐

x86 instruction Generated by (C11) Translated to (MemGlue)
MOV (from memory) LRLX,LACQ,LSC LSC
MOV (into memory) SRLX,SREL,SSC SSC
MFENCE FSC FSC

(a) TSO.

ARM instruction Generated by (C11) Translated to (MemGlue)
LDR LRLX LRLX
LDA LACQ, LSC LSC
STR SRLX SRLX
STL SREL,SSC SSC
DMB ISH LD FACQ FSC
DMB ISH FREL, FACQREL,FSC FSC

(b) ARMV8.

Fig. 9: C11 compiler mappings, and MEMGLUE reverse
compiler mappings for loads (L), stores (S), and fences (F).
Recall that MEMGLUE does not yet support non-SC fences.

No-Thin-Air (§II-B): acyclic (sb|rf)
Pf (sketch). Assume a (sb|rf) cycle exists in some program.
Then prove: ∀I1, I2. (I1 →sb I2 ∨ I1 →rf I2) =⇒ I1 ≺CC
I2. A cycle in (sb|rf) thus implies a cycle in ≺CC . ⇒⇐
D. Per-Cluster Proofs

§IV-C presents a proof that MEMGLUEO upholds correct
C11 instruction orderings; it remains to be shown that shims
correctly translate local coherence protocol messages to C11-
style MEMGLUE messages. We design shim translation units
assuming clusters run (correctly) compiled C11 code.
1) Translation Scheme: In a nutshell, shims observe cluster

coherence protocol messages, determine the ISA instruction(s)
that generate these messages, identify the strongest C11 op-
erations that generate these instructions [69], and output the
matching MEMGLUE messages. That is, we design shims to
effectively invert (verified) compiler mappings from C11 to a
cluster’s target ISA MCM,5 as illustrated in Fig. 9 [69].
Our translation strategy clearly enforces MEMGLUE ⊆ C11

in the absence of compiler optimizations. However, compilers
may perform legal optimizations, which guarantee ISA ⊆
C11 [6], [16], [17], [29], [28], [77]. We sketch a proof
by contradiction that in the presence of such optimizations,
MEMGLUE ⊆ C11 still holds. Suppose that a program is
compiled to p (unoptimized) and popt (legally optimized).
Shims enforce MEMGLUE ⊆ C11 iff three conditions hold.
Condition 1: Instructions in popt are at least as strong as

their p analogs. That is, under the mapping orig : inst →
inst from instructions in p to their counterparts in popt,
∀i, i′.(i, i′) ∈ orig =⇒ stren(i′) ≼ stren(i) (recall from
§II-B that RLX ≺ REL/ACQ ≺ ACQREL ≺ SC). Only a compiler
optimization that relaxes the strengths of instructions in p to
produce popt can violate the correctness condition above. But,
such a relaxation would also violate ISA ⊆ C11, contradicting
our assumption on legal compiler optimizations. ⇒⇐
Condition 2: Source-to-source instruction reorderings,

which happen at the C11 level before lowering to machine

5In the case of ISAs whose MCMs are not C11-compatible, MEMGLUE
can translate all instructions to SC, but cannot exploit their relaxed MCMs.

169

Address Valid (V/I) TS syncBit LWC RFBufCnt
x
y

M
et

ad
at

a
C

ac
he

icnt ocnt fc
Counters

Msg BufferShim Design

Seen Sets
SeenSetCache {}
SeenSetBuffer {}

Fig. 10: MEMGLUE shim design. Blue components are those
of MEMGLUEO, yellow are those added by MEMGLUEU.

code, may not violate C11. Legal compilers perform only
source-to-source transformations which uphold C11 [77].
Condition 3: ∀I1, I2. (I1, I2) ∈ sbp ∧ (I2, I1) ∈

sbpopt =⇒ (I1, I2) ̸∈ sbcause (we use sbcause to capture
those thread-local orderings that must be globally enforced by
the ISA MCM). That is, instructions may only get reordered in
the optimized program if such a reordering is permitted by the
ISA MCM. Any compiler violating this condition may produce
code that violates its ISA MCM. However, if compilers violate
their MCM, they lose any provable guarantee that ISA ⊆ C11.
Thus, such reorderings would not be legal. ⇒⇐
V. UNORDERED MEMGLUE CONSISTENCY PROTOCOL

MEMGLUE is intended to be implemented over a network
with no ordering guarantees, yielding Unordered MEMGLUE
(MEMGLUEU). As a motivating example, recall the programs
from Fig. 5; consider what happens if the two writes on
Core 1 are sent to Core 2 and arrive out-of-order. In Fig. 5b,
MEMGLUEU should not reconstruct the original ordering be-
cause the writes are allowed to be read out-of-order. However,
in Fig. 5a, this reordering should not be visible due to the REL-
ACQ synchronization between the cores. MEMGLUEU must
track enough metadata to distinguish cases like these and
reconstruct the proper ordering of messages when necessary.

A. Reorderings Allowed in MEMGLUEU

In this section, we distinguish between messages arriving
versus accepting at a destination. A message arrives when it
reaches its destination after being sent through the network. A
message accepts (after arriving) once its destination is allowed,
per MEMGLUEU’s state transition rules, to process it (e.g.,
update state, send response messages). A message arrives
early if it reaches its destination before all prior messages
from the same sender have been accepted at the destination.
A message accepts early if it arrives early, and then is accepted
before all prior messages from the same sender to the same
destination have been accepted. Any MEMGLUEU message
may arrive early; only some may accept early.
MEMGLUEU permits the following optimizations:
1) RLX reads from a cluster may read from WRITEs that

have arrived early to the shims.
2) RLX WRITEs and RRESPs may accept early.
3) REL WRITEs and ACQ RRESPs may accept early.

Each reordering is subject to certain constraints (§V-B).
MEMGLUEU tracks additional metadata, shown in Fig. 10.

To reconstruct the order in which messages were originally

sent to them from each sender, the shims and CC maintain
a set of message counters: an icnt per (incoming) message
source and an ocnt per (outgoing) message destination. These
track the number of messages received at and sent by each
shim/CC, respectively. The shims only have one source and
destination for all messages, the CC, and thus only have one
icnt and ocnt. A message arrives early if its cnt (i.e., the
ocnt of its sender at the time it was sent) is more than one
greater than the destination’s icnt for its sender. When a
message arrives early, but cannot accept early, it is queued
in a message buffer. Messages are removed from the buffer
either when enough prior messages have accepted such that
the buffered messages may accept early, or when all messages
from the same sender with a lower cnt have accepted. A
counter RFBufCnt is tracked per cache line to maintain
SC-per-location under the first optimization (see our open-
source repository [1] for details). MEMGLUEU also tracks
write ids, seen ids, seen sets, and fence counters
(§V-B2), as well as local write counters (§V-B1).

B. MEMGLUEU Protocol

MEMGLUEU enables significantly more reordering of pro-
tocol messages than MEMGLUEO. We describe how it retains
SC-per-location (§IV-B) and hb orderings (§II-B) below.
1) SC-per-location: Same-address write updates may ar-

rive to the shims out-of-order, potentially causing a stale
write to pass the timestamp check (Def. IV.1). This sce-
nario would occur in the execution in Fig. 8a if the write
updates of x = 1 and x = 2 arrive out-of-order to Shim 2.
Therefore, in MEMGLUEU, the shims must accept all same-
address write updates in order. To this end, the shims track a
local write counter (LWC) per address, and the CC tracks
a LWC per address, per shim. The LWCs function similarly to
the icnts/ocnts and ensure that same-address write updates
accept in order. With this ordering guarantee, the normal
timestamp check (§IV-B) may be used in MEMGLUEU.
2) Happens-Before Orderings: To maintain the hb relation,

instructions related by sw must correctly enforce orderings
induced by release-acquire synchronization, as described in
§II-B. This is difficult in MEMGLUEU, as REL WRITEs and
ACQ RRESPs can arrive to the shims out-of-order with respect
to write updates that happened before them. As an example,
consider Fig. 11. Instruction 1 (I1) synchronizes with I2,
meaning I1→hb I3. However, I1 and I3’s write updates may
arrive out-of-order to Shim 3. This reordering would render the
forbidden outcome in Fig. 11 observable, so it should not be
allowed. However, some reordering of REL and ACQ messages
should be allowed, if the shim has already seen6 the writes
that are required in order to maintain sw-induced orderings.
To determine whether REL/ACQ reordering is allowed, we

add (1) unique write ids per write, assigned at the CC, (2) a
seen id per (REL/ACQ) message, to track the highest write id

a shim must see before accepting the message, and (3) two

6“Seen” is formally defined the proof [1]. Intuitively, a core has “seen” a
write once no reads on that core can read a from another write older than it.

170

Shim 1
1) Wrel x = 1

Addr TS Data Sharers
x 0 1 0 1 2, 3, 1
y 0 1 0 1 3, 2

Wrel x=1@1
(id=1,s=0)

Shim 2
2) Racq x = 1
3) Wrel y = 1

Wrel x=1
(s=0)

Shim 3
4) Racq y = 1
5) Rrlx x = 0?
Addr V/I TS Data
x V 0 0
y V 0 0

Wrel y=1
(s=1)

S = {1}

Current write id = 0 1 2

Addr V/I TS Data
x V 0 1 0 1
y I V 1 1

Addr V/I TS Data
x I V 1 1
y I

S = {}S = {}

 1
 2

 3

Wrel x=1@1
(id=1,s=0)

Wrel y=1@1
(id=2,s=1)

Fig. 11: Example of MEMGLUEU forbidding an execution of
a litmus test with REL-ACQ synchronization. Events unfold in
rainbow order. Shim and CC structures have been simplified.

seen sets per shim, to track what writes each shim has seen.
For simplicity, we elide details of the distinction between
each seen set; details can be found in our open-source
repository [1]. When REL WRITEs are sent to the CC, they
carry with them the highest write id that has previously
arrived at the sending shim. In Fig. 11, for example, there
are no writes in Shim 1’s seen set (S) when I1 performs,
so I1 carries seen id = 0 with its REL WRITE update.
This write gets assigned write id = 1 at the CC and is
then sent to Shim 2 as an update. When this update arrives
and is accepted at Shim 2, write id = 1 is added to
Shim 2’s seen set, signifying that any remote instruction
that synchronizes-with any later instruction at Shim 2 must
see I1. So, when I3 performs, its update to the CC carries
seen id = 1, and the forwarded update to Shim 3 carries this
seen id as well. Crucially, Shim 3 cannot accept this update
until write id = 1 is present in Shim 3’s seen set. If Shim
3 is not registered as a sharer of the cache line associated
with the update’s seen id (i.e., it will never be forwarded an
update with write id = 1), then it will not be able to accept
the update early. Hence, MEMGLUEU will not allow I5 to
read 0, which would violate Coherence. This “seen” logic
prevents write updates from arriving before hb-prior messages,
ensuring MEMGLUEU honors sw.
Fences may also be related by sw (§II-B). As such, messages

must not get reordered across them: all writes that happened
before them must be seen by any read or fence that synchro-
nizes with them. While trivial to achieve in MEMGLUEO due
to the orderedness of the network, in MEMGLUEU we must
add additional fence counters (fcs) to preserve these orderings.
When the CC receives a FREQ, it forwards it to all other

shims. The CC’s fcs count how many FREQs are sent to each
shim, and a shim’s fc counts how many FREQs it has received.
Each CC message to the shims is tagged with the CC’s fc for
that shim; when a message msg arrives to a shim, if msg.fc ̸=
shim.fc, then msg has arrived before a prior fence. The shim
buffers msg until it has seen msg.fc total FREQs.

C. System-wide Proof of MEMGLUEU

Coherence (§II-B): This proof proceeds exactly as the original
proof (§IV-C), but with MEMGLUEU’s ordering relaxations

factored in. For instance, to reason about orderings involving
ACQ reads and REL writes, we introduce the “seen” relation
in the proof, which is inspired by the intuitive definition we
presented in §V-B2. We prove that if I1 →hb I2, then I2

“saw” I1, and that if I2 →eco I1, then I1 “saw” I2. This
inverse seen relation presents our contradiction.
SC Axiom (§II-B): Since SC instructions are always accepted
in order in MEMGLUEU, this proof is nearly identical to the
ordered proof. However, we reason differently about fences;
when a fence is involved in an sw edge, it is necessary to prove
that instructions that happen before a release fence are seen
by all instructions that happen after an acquire fence (§II-B).
We prove this via fence counters.

VI. VERIFYING MEMGLUE’S CORRECTNESS

To verify MEMGLUE upholds C11, we (1) implement it in
a model checker, and (2) complete a manual correctness proof.

A. Model Checking

Murϕ is an explicit-state model checker for concurrent sys-
tems commonly used to verify cache coherence protocols [27].
We first implement MEMGLUEO and MEMGLUEU in Murϕ,
and verify these implementations with respect to a test suite
derived from the CoRR, SB, MP, WRC, and IRIW litmus
tests [7]. The first suite of 1,215 tests features all variations
of these litmus tests produced by assigning each instruction
with each relevant C11 memory order (§III-A). The second
suite of 3,645 tests is derived from the first by considering all
possible placements of SC fences. For all tests, we treat clusters
as black-boxes that emit MEMGLUE operations as defined in
their assigned litmus test thread. Our goal is to verify the
MEMGLUE protocol itself independent of shim translation.
We run each test through Murϕ to determine its observ-

ability in MEMGLUE, and through the herd tool [8] using
the RC11 model [45] (axiomatically defined in the cat

language [8]) to determine its allowability in C11. Fig. 12a
shows the results of running these tests with Murϕ. For each
implementation, no test forbidden by C11 is observable in
either MEMGLUE variant—both uphold C11 with respect to
the litmus tests. Also, MEMGLUEU allows most of the be-
havior that C11 does, meaning that MEMGLUEU’s reordering
optimizations are indeed leveraging the reordering behavior
that is allowable by C11 (and thus the weak MCMs C11
accommodates). While not a performance study per se, this
result suggests that the MEMGLUE protocol itself should not
overly restrict heterogeneous shared memory performance.
Next, we run a suite of 1,878 tests on MEMGLUEU, in

which we map all variations of the five tests across a set of
“strong” and “weak” clusters. The “strong” clusters implement
a standard MSI protocol locally [59], and we reverse-compile
all instructions to SC to model a TSO cluster with a standard
MSI coherence protocol (§IV-D1). The “weak” clusters are
again black boxes in that they do not contain a local protocol,
and reverse compilation could emit any combination of the
atomics (modeling a cluster which maximally exploits the
strengths offered by C11). The goal of these experiments is to

171

All CoRR SB MP WRC IRIW
0.0

0.2

0.4

0.6

0.8

1.0

9
8

8

0

8
0

4
5

1
3

5

7
2

8

2
2

7

8
1

1

3
6

1
0

8

1

7
2

0

7
2

0 0 0

1
1

4
3

8
1

9

8
1

2
4

3

7
2

9

9
4

3

0

7
2

4
5

1
3

5

6
9

3

2
7

0

8
1

9

3
6

1
0

8

3
6

(a) Ordered (yellow) and Unordered (red) MEMGLUE results. Green columns
show what is permitted in C11. Dark (light) colors are the portion of
observable (unobservable) tests.

All CoRR SB MP WRC IRIW
0.0

0.2

0.4

0.6

0.8

1.0

1
7

8
2

0

1
4

4

5
4

1
6

2

1
4

2
2

1
8

6
3

2
4

3

9
9

1
8

9

5
6

7

7
6

5

0

1
0

8

0 0 0

3
5

3
7

2
4

3

1
3

5

2
4

3

7
2

9

2
1

8
7

7
0

2

0

1
0

8

2
7

8
1

4
8

6

2
9

4
3

2
4

3

1
3

5

2
1

6

6
4

8

1
7

0
1

(b) Results of tests with all distributions of fences.

0/2 1/2 2/2 0/2 1/2 2/2 0/3 1/3 2/3 3/3 0/4 1/4 2/4 3/4 4/4
0

20

40

60

80

100

%
 O

b
s
e
rv

a
b
le

SB MP WRC IRIW

(c) Results of tests run on different fractions of weak (versus strong) cores.

Fig. 12: Litmus testing results.

demonstrate that MEMGLUEU permits more relaxed behavior
as the clusters it unifies become weaker.
Fig. 12c shows that as more litmus test threads are mapped

to weak clusters, more reordering is allowed by MEMGLUEU.

B. Proof

Since our Murϕ model checking results represent bounded
proofs of MEMGLUE’s correctness guarantees, we construct a
manual proof that for any program, none of its C11-forbidden
executions are observable in a MEMGLUE system (as sketched
in §IV-C and §V-C). This is a particularly important re-
sult of this work—proving that a cache coherence protocol
implements a particular MCM is notoriously difficult, even
with protocols and MCMs that are significantly simpler than
MEMGLUE and C11 [15]. This proof is also reusable across
all MEMGLUE-enabled systems; only the shim-local proofs
need to be re-done for each new cluster.

VII. RELATED WORK

Coherence Interfaces: Some works propose novel coherence
interfaces to support fine-grained heterogeneous coherence.
Crossing Guard [62] provides a MESI-style coherence inter-

face between a host CPU and accelerators. Beyond correctness,
the main goal of Crossing Guard is to ensure safe and reliable
interactions of untrusted accelerators with the host, by defend-
ing against unauthorized data access, deadlock, and denial of

service attacks. However, to achieve some of these guarantees,
Crossing Guard may require host coherence protocol changes.
Spandex [9] provides a richer coherence interface based

on the DeNovo coherence protocol [24], with the primary
goal of high-performance integration of heterogeneous devices
with a wider range of coherence protocol demands. Spandex’s
device-side logic and integration logic are comparable to
MEMGLUE’s shims and CC, respectively. The authors discuss
on how Spandex could be extended to account for inter-device
MCM mismatches, but do not implement these extensions.
Instead of a coherence interface per se (like above or indus-

trial approaches [5], [71], [73], [12], [31], [2]), MEMGLUE
provides an MCM interface and adopts an update-based con-
sistency protocol design to intercept and propagate relevant
cluster operations, according to their ISA MCM requirements.
Consistency Protocols: HeteroGen [63], which synthesizes a

consistency protocol for a particular set of heterogeneous clus-
ters, is the first work to explicitly address MCM mismatches
among clusters in heterogeneous coherence protocol design.
§I discusses the trade-offs associated with this approach.
Follow-up work [34] presents a compositional operational

model for defining compound memory models, which result
from merging together per-cluster MCMs via a HeteroGen-
style approach. The operational model can handle scoped
and non-MCA cluster MCMs (unlike HeteroGen) by lever-
aging ordering relaxation in message propagation and pre-
decessor tracking of memory operations—similar in spirit to
MEMGLUE’s unordered update propagation and seen sets,
respectively. However, the model assumes that threads have
a global knowledge of where instructions have propagated in
order to maintain correct instruction orderings, challenging its
transformation into a concrete implementation. MEMGLUE, in
contrast, is designed to be implementable in hardware.

VIII. CONCLUSIONS

MEMGLUE is an update-based consistency protocol that fa-
cilitates cache-coherent shared memory among heterogeneous
clusters with diverse MCMs. To do so, it equips each cluster
with a hardware shim that translates relevant cluster coherence
protocol messages to C11-style MEMGLUE messages, and
then coordinates the exchange of MEMGLUE messages among
shims. We prove that MEMGLUE upholds C11 with respect to
several thousand litmus tests (using model checking) and for
all programs (with a manual proof).

ACKNOWLEDGMENT

We thank Grigory Chirkov and the anonymous reviewers
for their constructive comments and feedback. This work was
supported by the National Science Foundation (NSF) under
the Graduate Research Fellowship Program and award number
CAREER CCF-2236855. Rachel would also like to acknowl-
edge and celebrate her late father, Dr. Rance Cleaveland,
for his guidance, encouragement, and support throughout this
project and all of her research work. He is dearly missed by
his family, his friends, and the academic community.

172

REFERENCES

[1] https://github.com/rachelcleaveland/memglue-litmus-testing.
[2] Cache coherent interconnect for accelerators (ccix). https://www.

ccixconsortium.com/. Accessed: 2023-08-14.
[3] Heteogeneous integration roadmap 2021 edition. https://eps.ieee.org/

technology/heterogeneous-integration-roadmap/2021-edition.html. Ac-
cessed: 2023-11-09.

[4] memory order. https://en.cppreference.com/w/c/atomic/memory order.
Accessed: 2023-07-11.

[5] Nvidia grace hopper superchip architecture. Technical report, Nvidia
Corporation, Santa Clara, CA, 2022.

[6] Shivali Agarwal, Rajkishore Barik, Vivek Sarkar, and Rudrapatna K
Shyamasundar. May-happen-in-parallel analysis of x10 programs. In
Proceedings of the 12th ACM SIGPLAN symposium on Principles and
practice of parallel programming, 2007.

[7] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Litmus:
Running tests against hardware. Proceedings of the 17th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), 2011.

[8] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats:
Modelling, simulation, testing, and data mining for weak memory. ACM
Transactions on Programming Languages and Systems (TOPLAS), 2014.

[9] Johnathan Alsop, Matthew Sinclair, and Sarita Adve. Spandex: A flexi-
ble interface for efficient heterogeneous coherence. In 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA),
2018.

[10] Arm. Architecture reference manual, Armv7-A and Armv7-R edition,
2008.

[11] Arm. Arm architecture reference manual, Armv8, for Armv8-A archi-
tecture profile, 2013.

[12] Arm. Amba chi architecture specification, 2024. Accessed 31 July 2024.
[13] Russell R Atkinson and Edward M McCreight. The dragon processor.

ACM SIGOPS Operating Systems Review, 1987.
[14] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M Balakrishnan, and

Peter Marwedel. Scratchpad memory: Design alternative for cache
on-chip memory in embedded systems. In Proceedings of the 10th
International Symposium on Hardware/Software Codesign, 2002.

[15] Christopher J. Banks, Marco Elver, Ruth Hoffmann, Susmit Sarkar, Paul
Jackson, and Vijay Nagarajan. Verification of a lazy cache coherence
protocol against a weak memory model. In 2017 Formal Methods in
Computer Aided Design (FMCAD), 2017.

[16] Rajkishore Barik and Vivek Sarkar. Interprocedural load elimination for
dynamic optimization of parallel programs. In 2009 18th International
Conference on Parallel Architectures and Compilation Techniques, 2009.

[17] Rajkishore Barik, Jisheng Zhao, and Vivek Sarkar. Interprocedural
strength reduction of critical sections in explicitly-parallel programs. In
Proceedings of the 22nd International Conference on Parallel Architec-
tures and Compilation Techniques, 2013.

[18] Mark Batty, Alastair F. Donaldson, and John Wickerson. Overhauling
SC atomics in C11 and OpenCL. 43rd Symposium on Principles of
Programming Languages (POPL), 2016.

[19] Hans-J. Boehm and Sarita V. Adve. Foundations of the C++ concurrency
memory model. 29th Conference on Programming Language Design and
Implementation (PLDI), 2008.

[20] Hans-J. Boehm and Brian Demsky. Outlawing ghosts: Avoiding out-of-
thin-air results. In Proceedings of the Workshop on Memory Systems
Performance and Correctness, 2014.

[21] Sebastian Burckhardt, Rajeev Alur, and Milo MK Martin. Verifying
safety of a token coherence implementation by parametric compositional
refinement. In International Workshop on Verification, Model Checking,
and Abstract Interpretation, 2005.

[22] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat,
Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,
Puneet Kaur, Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin
Ovtcharov, Michael Papamichael, Lisa Woods, Sitaram Lanka, Derek
Chiou, and Doug Burger. A cloud-scale acceleration architecture. In The
49th Annual IEEE/ACM International Symposium on Microarchitecture,
2016.

[23] Liqun Cheng and John B Carter. Extending cc-numa systems to
support write update optimizations. In SC’08: Proceedings of the 2008
ACM/IEEE Conference on Supercomputing, 2008.

[24] Byn Choi, Rakesh Komuravelli, Hyojin Sung, Robert Smolinski, Nima
Honarmand, Sarita V. Adve, Vikram S. Adve, Nicholas P. Carter,
and Ching-Tsun Chou. DeNovo: Rethinking the memory hierarchy
for disciplined parallelism. 20th International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2011.

[25] William J. Dally, Yatish Turakhia, and Song Han. Domain-specific
hardware accelerators. Communications of the ACM, 2020.

[26] Christina Delimitrou and Christos Kozyrakis. Quality-of-service-aware
scheduling in heterogeneous data centers with paragon. IEEE Micro,
2014.

[27] David L Dill. The mur φ verification system. In Computer Aided
Verification: 8th International Conference, CAV’96 New Brunswick, NJ,
USA, July 31–August 3, 1996 Proceedings 8, 1996.

[28] Johannes Doerfert and Hal Finkel. Compiler optimizations for openmp.
In Evolving OpenMP for Evolving Architectures: 14th International
Workshop on OpenMP, IWOMP 2018, Barcelona, Spain, September 26–
28, 2018, Proceedings 14, 2018.

[29] Johannes Doerfert and Hal Finkel. Compiler optimizations for parallel
programs. In International Workshop on Languages and Compilers for
Parallel Computing, 2018.

[30] Simon Doherty, Brijesh Dongol, Heike Wehrheim, and John Derrick.
Verifying c11 programs operationally. In Proceedings of the 24th
Symposium on Principles and Practice of Parallel Programming, 2019.

[31] HSA Foundation. Heterogeneous system architecture: A technical
review, 2012. Accessed 31 July 2024.

[32] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons,
Anoop Gupta, and John Hennessy. Memory consistency and event
ordering in scalable shared-memory multiprocessors. 17th International
Symposium on Computer Architecture (ISCA), 1990.

[33] David B Glasco, Bruce A Delagi, and Michael J Flynn. Update-based
cache coherence protocols for scalable shared-memory multiprocessors.
In 1994 Proceedings of the Twenty-Seventh Hawaii International Con-
ference on System Sciences, 1994.

[34] Andrés Goens, Soham Chakraborty, Susmit Sarkar, Sukarn Agarwal,
Nicolai Oswald, and Vijay Nagarajan. Compound memory models.
Proceedings of the ACM on Programming Languages, 2023.

[35] Håkan Grahn, Per Stenström, and Michel Dubois. Implementation
and evaluation of update-based cache protocols under relaxed memory
consistency models. Future Generation Computer Systems, 1995.

[36] John L. Hennessy and David A. Patterson. A new golden age for
computer architecture. Communications of the ACM, 2019.

[37] Mark D. Hill and Vijay Janapa Reddi. Accelerator-level parallelism.
Commun. ACM, 2021.

[38] IBM. Power ISA version 2.07, 2013.
[39] ISO/IEC. Information technology – programming languages – C.

International standard 9899:2011, 2011.
[40] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav

Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. In-datacenter performance analysis of a tensor
processing unit. In Proceedings of the 44th annual international
symposium on computer architecture, 2017.

[41] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek
Dreyer. A promising semantics for relaxed-memory concurrency. ACM
SIGPLAN Notices, 2017.

[42] Stephen W Keckler, William J Dally, Brucek Khailany, Michael Garland,
and David Glasco. Gpus and the future of parallel computing. IEEE
micro, 2011.

[43] Pete Keleher, Alan L Cox, and Willy Zwaenepoel. Lazy release
consistency for software distributed shared memory. ACM SIGARCH
Computer Architecture News, 1992.

[44] Leonidas I Kontothanassis, Michael L Scott, and Ricardo Bianchini.
Lazy release consistency for hardware-coherent multiprocessors. In
Supercomputing’95: Proceedings of the 1995 ACM/IEEE Conference
on Supercomputing, 1995.

[45] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek
Dreyer. Repairing sequential consistency in c/c++11. https://plv.
mpi-sws.org/scfix/.

[46] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek
Dreyer. Repairing sequential consistency in C/C++11. 38th Conference
on Programming Language Design and Implementation (PLDI), 2017.

[47] Leslie Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Transactions on Computing,
1979.

173

https://github.com/rachelcleaveland/memglue-litmus-testing
https://www.ccixconsortium.com/
https://www.ccixconsortium.com/
https://eps.ieee.org/technology/heterogeneous-integration-roadmap/2021-edition.html
https://eps.ieee.org/technology/heterogeneous-integration-roadmap/2021-edition.html
https://en.cppreference.com/w/c/atomic/memory_order
https://plv.mpi-sws.org/scfix/
https://plv.mpi-sws.org/scfix/

[48] Daniel Lustig and Margaret Martonosi. Reducing gpu offload latency via
fine-grained cpu-gpu synchronization. In 2013 IEEE 19th International
Symposium on High Performance Computer Architecture (HPCA), 2013.

[49] Daniel Lustig, Michael Pellauer, and Margaret Martonosi. PipeCheck:
Specifying and verifying microarchitectural enforcement of memory
consistency models. Proceedings of the 47th International Symposium
on Microarchitecture (MICRO), 2014.

[50] Daniel Lustig, Sameer Sahasrabuddhe, and Olivier Giroux. A formal
analysis of the NVIDIA PTX memory consistency model. Proceedings
of the 24th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2019.

[51] Daniel Lustig, Geet Sethi, Margaret Martonosi, and Abhishek Bhat-
tacharjee. COATCheck: Verifying memory ordering at the hardware-OS
interface. Proceedings of the 21st International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2016.

[52] Daniel Lustig, Caroline Trippel, Michael Pellauer, and Margaret
Martonosi. ArMOR: Defending against memory consistency model mis-
matches in heterogeneous architectures. 42nd International Symposium
on Computer Architecture (ISCA), 2015.

[53] Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Aarti Gupta.
PipeProof: Automated memory consistency proofs for microarchitectural
specifications. Proceedings of the 51st International Symposium on
Microarchitecture (MICRO), 2018.

[54] Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Michael
Pellauer. RTLCheck: Verifying the memory consistency of RTL designs.
Proceedings of the 50th International Symposium on Microarchitecture
(MICRO), 2017.

[55] Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Margaret
Martonosi. CCICheck: Using µhb graphs to verify the coherence-
consistency interface. Proceedings of the 48th International Symposium
on Microarchitecture (MICRO), 2015.

[56] Jeremy Manson, William Pugh, and Sarita V Adve. The java memory
model. ACM SIGPLAN Notices, 2005.

[57] A. Meixner and D.J. Sorin. Dynamic verification of memory consistency
in cache-coherent multithreaded computer architectures. In International
Conference on Dependable Systems and Networks (DSN’06), 2006.

[58] Harini Muthukrishnan, Daniel Lustig, Oreste Villa, Thomas Wenisch,
and David Nellans. Finepack: Transparently improving the efficiency of
fine-grained transfers in multi-gpu systems. In 2023 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), 2023.

[59] Vijay Nagarajan, Daniel Sorin, Mark Hill, and David Wood. A Primer on
Memory Consistency and Cache Coherence, Second Edition. Synthesis
Lectures on Computer Architecture. Morgan & Claypool Publishers,
2020.

[60] Kyndylan Nienhuis, Kayvan Memarian, and Peter Sewell. An oper-
ational semantics for c/c++ 11 concurrency. In Proceedings of the
2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2016.

[61] NVIDIA. Parallel thread execution ISA version 6.0., 2017. http://docs.
nvidia.com/cuda/parallel-thread-execution/index.html.

[62] Lena E. Olson, Mark D. Hill, and David A. Wood. Crossing guard:
Mediating host-accelerator coherence interactions. 22nd International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2017.

[63] Nicolai Oswald, Vijay Nagarajan, Daniel J Sorin, Vasilis Gavrielatos,
Theo Olausson, and Reece Carr. Heterogen: Automatic synthesis of
heterogeneous cache coherence protocols. In 2022 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), 2022.

[64] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory
model: x86-tso. In Theorem Proving in Higher Order Logics: 22nd
International Conference, TPHOLs 2009, Munich, Germany, August 17-
20, 2009. Proceedings 22, 2009.

[65] Fong Pong, Andreas Nowatzyk, Gunes Aybay, and Michel Dubois.
Verifying distributed directory-based cache coherence protocols: S3. mp,
a case study. In EURO-PAR’95 Parallel Processing: First International
EURO-PAR Conference Stockholm, Sweden, August 29–31, 1995 Pro-
ceedings 1, 1995.

[66] Jason Power, Arkaprava Basu, Junli Gu, Sooraj Puthoor, Bradford M
Beckmann, Mark D Hill, Steven K Reinhardt, and David A Wood.
Heterogeneous system coherence for integrated cpu-gpu systems. In
Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture, 2013.

[67] Oxford University Press. Oxford advanced learner’s dictionary, 2024.
https://www.oxfordlearnersdictionaries.com/.

[68] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar,
and Peter Sewell. Simplifying arm concurrency: multicopy-atomic
axiomatic and operational models for armv8. Proceedings of the ACM
on Programming Languages, 2017.

[69] Peter Sewell. C/c++11 mappings to processors. https://www.cl.cam.ac.
uk/∼pes20/cpp/cpp0xmappings.html. Accessed: 2023-07-11.

[70] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli,
and Magnus O. Myreen. x86-TSO: A rigorous and usable programmer’s
model for x86 multiprocessors. Communications of the ACM, 2010.

[71] Debendra Das Sharma and Siamak Tavallaei. Compute express link 2.0
white paper. CXL. Retrieved October, 31:2021, 2020.

[72] Per Stenstrom. A survey of cache coherence schemes for multiproces-
sors. Computer, 1990.

[73] J. Stuecheli, B. Blaner, C. R. Johns, and M. S. Siegel. Capi: A
coherent accelerator processor interface. IBM Journal of Research and
Development, 2015.

[74] Charles P Thacker and Lawrence C Stewart. Firefly: a multiprocessor
workstation. ACM SIGARCH Computer Architecture News, 1987.

[75] Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, Michael Pellauer,
and Margaret Martonosi. TriCheck: Memory model verification at the
trisection of software, hardware, and ISA. Proceedings of the 22nd

International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2017.

[76] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A Kozuch, Mor
Harchol-Balter, and Gregory R Ganger. Tetrisched: global rescheduling
with adaptive plan-ahead in dynamic heterogeneous clusters. In Pro-
ceedings of the Eleventh European Conference on Computer Systems,
2016.

[77] Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Moris-
set, and Francesco Zappa Nardelli. Common compiler optimisations are
invalid in the c11 memory model and what we can do about it. In
Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 2015.

[78] Andrew Waterman and Krste Asanović. The RISC-V instruction set
manual, volume I: Unprivileged ISA document, version 20190608-
base-ratified. Technical report, SiFive Inc. and CS Division, EECS
Department, University of California, Berkeley, June 2019.

[79] Tianrui Wei, Nazerke Turtayeva, Marcelo Orenes-Vera, Omkar Lonkar,
and Jonathan Balkind. Cohort: Software-oriented acceleration for
heterogeneous socs. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, 2023.

[80] Will Deacon. Formalising the armv8 memory consistency model.
https://www.csm.ornl.gov/workshops/openshmem2018/presentations/
mm-openshmem2018.pdf, August 2018.

[81] Andrew W. Wilson and Richard P. LaRowe. Hiding shared memory
reference latency on the galactica net distributed shared memory archi-
tecture. Journal of Parallel and Distributed Computing, 1992.

[82] Meng Zhang, Alvin R Lebeck, and Daniel J Sorin. Fractal coherence:
Scalably verifiable cache coherence. In 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, 2010.

[83] Jianzhou Zhao, Santosh Nagarakatte, Milo MK Martin, and Steve
Zdancewic. Formalizing the llvm intermediate representation for verified
program transformations. In Proceedings of the 39th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
2012.

[84] Zhen Zhuang, Bei Yu, Kai-Yuan Chao, and Tsung-Yi Ho. Multi-package
co-design for chiplet integration. In Proceedings of the 41st IEEE/ACM
International Conference on Computer-Aided Design, 2022.

174

http://docs.nvidia.com/cuda/parallel-thread-execution/index.html
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://www.oxfordlearnersdictionaries.com/
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://www.csm.ornl.gov/workshops/openshmem2018/presentations/mm-openshmem2018.pdf
https://www.csm.ornl.gov/workshops/openshmem2018/presentations/mm-openshmem2018.pdf

Formal Methods in Computer-Aided Design 2024

Translating Pseudo-Boolean Proofs
into Boolean Clausal Proofs

Karthik V. Nukala , Soumyaditya Choudhuri , Randal E. Bryant , Marijn J. H. Heule
Computer Science Department

Carnegie Mellon University, Pittsburgh, PA, United States
Email: {kvn, soumyadc}@andrew.cmu.edu, {rebryant, marijn}@cmu.edu

Abstract—Clausal proofs, particularly those based on the
deletion resolution asymmetric tautology (DRAT) proof system,
are widely used by Boolean satisfiability solvers for expressing
proofs of unsatisfiability. Their success stems from their simplicity
and scalability. When solvers go beyond pure propositional rea-
soning, however, generating clausal proofs becomes more difficult.
Solvers that employ pseudo-Boolean reasoning, including cutting-
planes operations, can express proofs in the VeriPB proof system,
but its adoption is not widespread.
We introduce PBIP (Pseudo-Boolean Implication Proof), a

framework that provides an intermediate representation be-
tween VeriPB and clausal proofs. We also introduce a toolchain
comprising 1) a VeriPB-to-PBIP translator that performs proof
trimming and optimization, and 2) a PBIP-to-LRAT translator
that makes use of proof-generating operations on ordered binary
decision diagrams (BDDs) to generate clausal proofs in LRAT
format, a variant of the DRAT that allows efficient checking.
We demonstrate the viability of our approach, the effectiveness

of our trimming, and the performance of our clausal proof
generator on a set of native PB benchmarks and compare our
approach to direct checking of VeriPB proofs.

I. INTRODUCTION

Boolean satisfiability (SAT) solvers underlie a large portion
of automated reasoning tools such as theorem provers, satis-
fiability modulo theory (SMT) solvers, and model checkers.
Given the safety-critical application domains of these tools,
correctness of the underlying solver is of utmost importance.
Creating a formally verified solver (using an interactive theo-
rem prover, for example) would severely compromise the abil-
ity to optimize and rapidly evolve the program. Most satisfia-
bility solvers take as input formulas expressed in conjunctive
normal form (CNF). These formulas consist of a conjunction
of clauses, each of which is a disjunction of literals, where
each literal is a Boolean variable or its complement.
An alternative to a formally verified solver is to have the

solver generate a proof certificate for each execution. When
this certificate is successfully checked by a verified proof
checker, the result is guaranteed to be correct. The deletion
resolution asymmetric tautology (DRAT) proof system [1] has
become the standard for modern SAT solvers and is widely
used by entries in the annual SAT competition [2]. DRAT is
notably a clausal proof system: a proof consists of a sequence
of clauses where each clause preserves the satisfiability of
the preceding clauses. A proof of unsatisfiability terminates
with the addition of the empty clause. Clausal proofs are
of particular interest because they are simple (resulting in

successful efforts to write verified proof checkers in interactive
theorem provers such as ACL2 [3], Coq [4], and CakeML [5])
as well as scalable (being able to check proofs two petabytes
in size [6]).
We consider pseudo-Boolean (PB) reasoning, chosen for

its status as a bridge between propositional satisfiability and
higher-level “beyond Boolean” reasoning. Also known as
0/1 integer linear programming, PB reasoning has been a
fertile area of research since the 1950s. It has been one
of longstanding multidisciplinary interest, with problems in
operations research [7], combinatorics [8], economics [9], and
VLSI design [10] (among others) benefiting from expressive
encodings as pseudo-Boolean constraints. By virtue of these
encodings, PB solvers can exploit richer structure and reason
in a way that would be difficult for native SAT solvers
to do. Notable PB solvers include PBS [11], Galena [12],
Pueblo [13], and RoundingSAT [14]. Having a way to express
and check PB proofs of unsatisfiability would enhance the
level of trust users could place in these solvers.
The VeriPB proof framework [15]–[17] supports both the

cutting planes (CP) proof system, viewing pseudo-Boolean
constraints as linear constraints over 0/1-valued variables,
and implication-based reasoning, viewing the constraints as
Boolean formulas. With cutting planes, new constraints can
be generated by summing two constraints or by scaling a
single constraint by either multiplication or division. With
implication-based reasoning, a new constraint can be added
when it is shown to be implied by previous constraints
via reverse unit propagation (RUP). Although a RUP-based
implication can be translated into a sequence of cutting planes
steps, RUP more directly captures the logical inferences made
by some tools.
This paper describes a series of tools that can transform a

VeriPB proof into a clausal proof in extended resolution [18],
a proof system that lies within the DRAT proof framework.
The generated proof is expressed in LRAT format, a variant
of DRAT for which a variety of proof checkers have been
developed, including ones that have been formally verified.
The key to our method is to represent pseudo-Boolean

constraints as ordered binary decision diagrams (BDDs) [19],
and to use a proof-generating BDD package to generate clausal
proof steps justifying each of its operations [20]. The BDD
representation of a pseudo-Boolean constraint over n variables
and with maximum coefficient a will have at most a ·n nodes,

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_23 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0009-0003-5192-115X
https://orcid.org/0009-0003-5448-9948
https://orcid.org/0000-0001-5024-6613
https://orcid.org/0000-0002-5587-8801
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_23
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_23
https://creativecommons.org/licenses/by/4.0/

and so we can say that the generated clausal proofs will be of
pseudo-polynomial complexity relative to the VeriPB proofs.
That is, the proofs will be polynomial in the values of the
coefficients, but this can be exponential in the number of bits
required to represent these values. In practice, many PB proofs
involve only small coefficients, and so the expansion will be
polynomial.
Some contributions of this work include:
• The ability to translate proofs in the relatively new and
unfamiliar VeriPB framework into a more established
clausal framework.

• The ability to directly compare the sizes of proofs gen-
erated using different approaches to logical reasoning.

• Methods to optimize VeriPB proof sizes and checking
times by adapting some of the trimming and hint gener-
ation methods used in clausal proofs.

• Experimental results relating the sizes of the clausal
proofs generated by several tools (including ours) to PB
proofs. These serve to quantify the advantage of proof
frameworks based on this higher level of reasoning. We
show that the clausal proofs scale polynomially, relative
to VeriPB, but their larger sizes pose challenges for more
difficult benchmark problems.

We note several limitations to our work:
• The soundness of our toolchain relies on a program
that generates CNF representations of the constraints
comprising the input pseudo-Boolean formula. Although
the current program is simple and has been thoroughly
tested, it would be preferable to have one that has been
formally verified.

• Our toolchain does not support the full suite of VeriPB
proof rules. Most significantly, it cannot handle the two
strengthening rules that enable symmetry reductions in
VeriPB proofs [21].

We discuss these in Section VII.

II. RELATED WORK

Recently, the CakePB [22] proof checker has been devel-
oped to enable formally verified checking of VeriPB proofs.
It operates by first converting the original VeriPB proof into
one in the VeriPB kernel format, where application of the
RUP proof rule is expanded into a sequence of cutting-planes
steps [23]. CakePB has the advantage that it can reason about
operations on pseudo-Boolean constraints directly, rather than
on their BDD representations. We compare the performance
of our toolchain to one based on CakePB in Section VI. Our
results show the effectiveness of proof trimming and motivate
its addition to future versions of CakePB.
At first glance, having a translation from cutting-planes

proofs into clausal proofs that only achieves pseudo-
polynomial performance (in terms of the proof size) could
seem to fall short of the theoretical optimum. In particular,
W. J. Cook, et al. [24] sketch an algorithm for converting any
cutting planes proof of unsatisfiability for CNF formula F into
an extended resolution proof, such the number of steps in the

extended resolution proof would be bounded by a polynomial
function p(n,m), with n equal to the total number of literals
in F and m equal to the number of steps in the CP proof.
That result is not directly comparable to ours, however:

• It assumes that the problem consists entirely of PB
constraints encoding clauses, i.e., having only unit co-
efficients and a unit constant.

• The scale of the polynomial is not given in the paper, but
it appears to be large. The presented translation requires
converting the CP steps into many arithmetic operations
on an encoded representation of the coefficients similar
to a binary representation. [25].

• To our knowledge, the proposed algorithm has never
actually been implemented and doing so would require
a substantial effort.

By contrast, VeriPB allows the input formula to contain
constraints with coefficients of arbitrary size. In addition, even
when given a formula with small coefficients, the constraints in
the VeriPB proof can have coefficients of arbitrary size. Cook’s
method would require encoding these with low-level arithmetic
operations. This theoretical result is unlikely to translate into
a practical method for proof generation.

III. PRELIMINARIES

A. Pseudo-Boolean Formulas

We recommend the PhD thesis by Stephen Gocht [17] as a
helpful introduction to pseudo-Boolean reasoning. A pseudo-
Boolean constraint is a linear expression, viewing Boolean
variables as ranging over integer values 0 and 1. That is, a
constraint c has the form a1ℓ1 + a2ℓ2 + · · ·+ anℓn # b where
the coefficients ai and the constant b are integers, and each
literal ℓi equals either input variable xi or its complement
xi. For an ordering constraint, the relational operator # is
<, ≤, ≥, or >. For an equational constraint, the relational
operator is =. An equational constraint can also be represented
as the conjunction of two ordering constraints having the same
coefficients but one with relation ≤ and the other with ≥. We
will mostly refer to coefficient-normalized constraints (CNCs)
of the form

a1ℓ1 + a2ℓ2 + · · · anℓn ≥ b (1)

where the coefficients and the constant are nonnegative inte-
gers and the relation is ≥.
An assignment ρ is a mapping from some subset of the

variables in X to truth values 1 (true) and 0 (false). We can
view an assignment as a set of literals ρ = {xi | ρ(xi) = 1}
∪ {xi | ρ(xi) = 0}. Assignment ρ is total when it assigns a
value to every variable.
Constraint c denotes a Boolean function, written c , map-

ping total assignments to truth values. Constraints c1 and c2
are said to be equivalent when c1 = c2 . Constraint c is
said to be infeasible when c = ⊥, i.e., it always evaluates
to 0. This occurs if and only if

∑︁
1≤i≤n ai < b. Constraint c

is said to be trivial when c = ⊤, i.e., it always evaluates to
1. This occurs if and only if b = 0.

176

As described in [17], the following are some properties of
pseudo-Boolean constraints:

• A relational constraint with comparisons <, ≤, and >
can be converted to an equivalent CNC.

• An equational constraint can be converted into two CNCs.
• The logical negation of CNC c, written c, can also be
expressed as a CNC.

• Any coefficient ai with ai > b in a CNC can be replaced
with the coefficient b without changing the underlying
Boolean function.

Some nomenclature regarding CNCs will prove useful. The
constraint literals are those literals ℓi such that ai ̸= 0. A
cardinality constraint has ai ∈ {0, 1} for 1 ≤ i ≤ n. A
cardinality constraint with b = 1 is referred to as a clausal
constraint: at least one of the constraint literals must be
assigned 1 to satisfy a constraint. It is logically equivalent
to a clause in a conjunctive normal form (CNF) formula. A
cardinality constraint with b =

∑︁
1≤i≤n ai is referred to as a

conjunction: all of the constraint literals must be assigned 1
to satisfy the constraint. A conjunction for which ai = 1 for
just a single value of i is referred to as a unit constraint: it is
satisfied if and only if literal ℓi is assigned 1.
A pseudo-Boolean formula F is a set of pseudo-Boolean

constraints. We say that F is satisfiable when there is some
assignment ρ that satisfies all of the constraints in F , and
unsatisfiable otherwise.
Although feasibility can readily be tested for individual

CNCs, determining whether a set of constraints (even for
set size 2) is satisfiable is intractable, unless P = NP . For
example, the subset sum problem [26] can readily be translated
into an equational constraint, and this can then be expressed
as the conjunction of two CNCs.
Pseudo-Boolean optimization problems can be converted to

decision problem by imposing a bound on the metric being
optimized. For example, two runs of a PB solver suffice to
prove that a graph has maximum clique size k. First, the solver
is run with a cardinality constraint requiring clique size k.
The generated solution can then be checked to make sure it is
indeed a clique. Then the solver is run with proof generation
enabled and with a cardinality constraint requiring clique
size k + 1. The certificate of unsatisfiability completes the
proof. Similar approaches can be used for other optimization
problems [15].

B. (Reverse) Unit Propagation

We let c|ρ denote the CNC resulting when c is simplified
according to partial assignment ρ. That is, assume c has the
form of (1) and partition the indices i for 1 ≤ i ≤ n into
three sets: I+, consisting of those indices i such that ℓi ∈ ρ,
I−, consisting of those indices i such that ℓi ∈ ρ, and IX

consisting of those indices i such that neither ℓi nor ℓi is in
ρ. With this, c|ρ can be written as

∑︁
1≤i≤n a′

i ≥ b′ with a′
i

equal to ai for i ∈ IX and equal to 0 otherwise, and with
b′ = b−∑︁i∈I+ ai.
Literal ℓi is unit propagated by CNC c when the assignment

ρ = {ℓi} causes the constraint c|ρ to become infeasible. As

the name implies, a unit-propagated literal ℓi then becomes
a unit constraint. Observe that a single constraint can unit
propagate multiple literals. For example, 4x1 + 3x2 + x3 ≥ 6
unit propagates both x1 and x2. For CNC c, we let Unit(c)
denote the set of literals it unit propagates
Rather than simplifying a constraint c according to partial

assignment ρ and then detecting unit propagations, we can
combine these to detect the set of unit propagations for
a constraint with respect to a partial assignment. That is,
we define Unitρ(c) to be Unit(c|ρ). These propagations
can readily be detected by computing the slack, defined as
Slackρ(c) =

∑︁
i∈IX ai +

∑︁
i∈I+ ai − b, where IX and I+

are the sets of indices defined previously. Unitρ(c) is then
defined as {ℓi | ai > Slackρ(c)}. For example, the constraint
c

.
= 4x1+3x2+x3 ≥ 6 has slack 4+3+1−6 = 2 with respect

to ρ = ∅. We can therefore compute Unitρ(c) = {x1, x2}.
Furthermore c will be infeasible for partial assignment ρ when
Slackρ(c) < 0.
Given a set of constraints F , we can build up a partial

assignment ρ by repeatedly performing unit propagation. That
is, define the operation Uprop as Uprop(ρ, c) = ρ∪Unitρ(c).
For initial assignment ρ, unit propagation on formula F is
then the process of extending ρ by repeatedly computing ρ←
Uprop(ρ, c) to all of the constraints c ∈ F until no more
propagations are possible.
Consider a formula F consisting a set of constraints

c1, c2, . . . , cm. The reverse unit propagation (RUP) proof rule
[15], [17] uses unit propagation to prove that target constraint
c can be added to a formula while preserving its set of
satisfying assignments. That is, any assignment that satisfies
F also satisfies F ∧ c. A RUP addition justifies c by assuming
c holds and showing, via a sequence of RUP steps, that this
leads to a contradiction. It accumulates a partial assignment ρ
based on unit propagations starting with the empty set. Each
RUP step accumulates more assigned literals by performing
a unit propagation of the form ρ ← Uprop(ρ, d), where d is
either cj , a prior constraint, or c, the negation of the target
constraint. The final step causes a contradiction, where d|ρ is
infeasible. Unlike with clauses, a single constraint, including
the negated target, can be used for unit propagation on multiple
RUP steps within a single RUP addition.

C. Trusted Binary Decision Diagrams

Trusted binary decision diagrams (TBDDs) [20] provide
a method for generating clausal proofs when performing
sequences of operations on Boolean functions represented
as ordered binary decision diagrams (BDDs) [19]. TBDDs
have been used to generate proofs of unsatisfiability for SAT
solvers [27], proofs of satisfaction and refutation in QBF
solvers [28], and for proofs of unsatisfiability for pseudo-
Boolean constraints [29]. Proofs are generated directly in
the LRAT format, making use of the support for extended
resolution provided by the RAT proof system.
In the following, we write a clause consisting of literals

ℓ1, ℓ2, . . . , ℓk as [ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓk]. A unit clause with literal
ℓ is written as [ℓ].

177

The key idea is to introduce an extension variable u every
time a BDD node u is created, with proof clauses defining
the semantic relation between u, the node variable x, and
child nodes u1 and u0 [27], [30], [31]. Each step in the recur-
sive algorithms to generate new BDDs generates a sequence
of proof clauses justifying an inductive invariant about the
operation being performed. For example, suppose the Apply
algorithm [19] computes the conjunction of BDDs with root
nodes u and v to derive a BDD with root node w. Each
recursive step of the operation performs the conjunction of
argument nodes u′ and v′ to derive a node w′. With TBDDs,
this step also generates a sequence of proof steps concluding
with the addition of clause [u′ ∨ v′ ∨ w′], justifying that
u′ ∧ v′ ⇒ w′. The final step of the recursion then generates
the clause justifying u ∧ v ⇒ w.
A trusted BDD u̇ is a BDD having root node u for which

the unit clause [u] has been added to the proof. That is,
the BDD will evaluate to 1 for any assignment that satisfies
the input formula. A proof of unsatisfiability concludes with
the addition of the TBDD consisting of the leaf node L0,
representing ⊥. This is encoded in the proof by the empty
clause.

D. Cutting Planes

The cutting planes proof system defines rules to derive new
constraints from existing ones, as is shown in Figure 1.

DIV∑︂
i

aixi ≥ b

∑︂
i

ai
k
xi ≥

⌈︂ b
k

⌉︂
SAT∑︂

i

aixi ≥ b∑︂
i

min(ai, b)xi ≥ b

MUL∑︂
i

aixi ≥ b∑︂
i

kaixi ≥ kb

ADD∑︂
i

aixi ≥ b
∑︂
i

cixi ≥ d∑︂
i

(ai + ci)xi ≥ b+ d

Fig. 1. Cutting-Planes Proof Rules. For the division rule, each coefficient ai
must be divisible by k.

Notably, rules DIV, SAT, and MUL do not change the
underlying Boolean function of the constraint. That is, for any
constraint c, and k ∈ N+ (where each coefficient ai in the
division rule must be divisible by k):

c = DIV(c, k) = SAT(c) = MUL(c, k)

Generating a constraint via the ADD rule, on the other hand,
creates a constraint with a new underlying Boolean function,
but it is implied by the conjunction of the Boolean functions
for the arguments:

c1 ∧ c2 ⇒ c1 + c2

IV. PBIP: PSEUDO-BOOLEAN IMPLICATION PROOF

A Pseudo-Boolean Implication Proof (PBIP) provides a
systematic way to prove that a PB formula F is unsatisfiable.
The PBIP file format is described in Section IV-B. It is not
intended to be a useful format on its own, but rather a bridge
between a PB proof and its translations into a clausal proof.

A. PBIP Proof Structure

A PBIP proof is given as a sequence of constraints, referred
to as the proof sequence:

c1, c2, . . . , cm, cm+1, . . . , ct

such that the first m constraints are those of formula F , while
each added constraint ci (referred to as a lemma) for i > m
follows by implication from the preceding constraints. That is,⋀︂

1≤j<i
cj ⇒ ci (2)

The proof completes with the addition of an infeasible
constraint for ct. By the transitivity of implication, we have
therefore proved that F is not satisfiable.
Constraints ci with i > m, can be added in two different

ways, corresponding to two different reasoning modes.
1) In implication mode, constraint ci follows by implication

from at most two prior constraints in the proof sequence.
That is, some Hi ⊆ {c1, c2, . . . , ci−1} with |Hi| ≤ 2
satisfies ⋀︂

cj∈Hi

cj ⇒ ci (3)

Set Hi is referred to as the hint for proof step i.
To simplify the generation of PBIP proofs, the checker
supports a summation rule of the form

∑︁
1≤i≤k di ⇒ c,

where each di is a constraint from a previous step.
Checking this is performed by computing intermediate
constraints as pairwise sums and proving that they
satisfy implication.

2) In RUP mode, constraint ci is justified by RUP addi-
tion. The hint specifies the RUP steps as a sequence
[d1,m1], [d2,m2], . . . , [dk−1,mk−1], [dk]. Each dj indi-
cates either a previous constraint ci′ for i′ < i, or
the negated target constraint ci. Each mj indicates a
unit-propagated literal. The final constraint, indicated
by dk should conflict with the accumulated assignment
ρ = {m1,m2, . . . ,mk−1}.

Unless P = NP , we cannot guarantee that a proof checker
can validate even a single implication step of a PBIP proof
in polynomial time. In particular, consider an equational
constraint c encoding an instance of the subset sum problem,
and let c≤ and c≥ denote its conversion into a pair of ordering
constraints such that c = c≤ ∧ c≥ . Consider a PBIP proof
to add the constraint c≤ having the c≥ as the only hint. Proving
that c≥ ⇒ c≤ , requires proving that c≤ ∧ c≥ = ⊥, i.e.,
that c is unsatisfiable.
On the other hand, checking the correctness of a PBIP

proof can be performed in pseudo-polynomial time using

178

BDDs, meaning that the complexity will be bounded by a
polynomially sized formula over the numeric values of the
integer parameters. In particular, a CNC over n variables and
having a as the maximum of its coefficients ai and the constant
b will have a BDD representation with at most a·n nodes [32].
For an implication proof step where the added constraints and
the hints all have coefficients and constants less than or equal
to a, the number of BDD operations to validate the step will
be O(a2 · n) when there is a single hint and O(a3 · n) when
there are two hints. This complexity is polynomial in a, but it
could be exponential in the size of a binary representation of
a. The number of BDD operations for each unit propagation
step in a RUP proof will be linear in the size of the BDD and
therefore O(a · n).
B. PBIP File Format

A PBIP file describes a sequence of transformations on a set
of pseudo-Boolean input constraints leading to an infeasible
constraint. The file therefore describes an unsatisfiability proof
for a PB constraint problem. The format assumes that each
input constraint is encoded as a set of clauses in conjunctive
normal form (CNF). The clauses for all of the constraints
are provided as a file in the standard DIMACS format. The
generation of this file is performed by a separate program PB-
CNF, described in Section VI.
When in implication mode, each derived constraint must

follow by implication from either one or two preceding
constraints, referred to as the “antecedents”. That is, for target
constraint c and prior constraint c1, and possibly c2, we must
have either c1 ⇒ c or c1 ∧ c2 ⇒ c . When in RUP
mode, the constraint to be derived is set as a target, and a set
of unit constraints is accumulated. Each RUP step then derives
an additional unit constraint based on the previously derived
unit constraints, as well as either the complement of the target
constraint or some preceding constraint. The final step should
then cause a contradiction, with the set of accumulated unit
constraints falsifying the final constraint.
PBIP files build on the OPB format for describing PB

constraints, as documented in [33].
There are five line types. The first four types define con-

straints that can be referenced by later lines. Constraints are
numbered from 1, starting with the input constraints. File lines
beginning with “*” are treated as comments.
1) Input lines begin with “i”. This is followed by a

constraint, expressed in OPB format, and terminated by
“;”. Then, a set of clause numbers from the CNF file
is listed, separated by spaces and terminated with end-
of-line. Forming the conjunction of these clauses and
existentially quantifying any variables that are not listed
in the PB formula should yield a Boolean function that
is implied by the PB constraint.

2) Implication-mode assertion lines begin with “a”. This is
followed by a constraint, expressed in OPB format and
terminated by “;”. Then, either one or two constraint
numbers is listed, separated by spaces and terminated
with end-of-line.

3) RUP lines begin with “u”. This is followed by a con-
straint, expressed in OPB format and terminated by “;”.
Then, a sequence of lists is given, where each list is of
the form [I ℓ1 . . . ℓk], indicating that constraint number
I will propagate additional units ℓ1, . . . , ℓk. I can either
be the number of a previous constraint, or it can be
that of the current constraint. The latter case is known
as a “self reference”, and its unit propagations should
be based on the negation of the target constraint. The
final list is of the form [I], and the indicated constraint
must be falsified by the accumulated set of literals. A
list of the form [I ℓ1 . . . ℓk] with k > 1 indicates that
multiple literals will be unit propagated. This notation
is equivalent to listing the literals individually with the
sequence [I ℓ1] [I ℓ2] · · · [I ℓk].

4) Summation implication lines begin with “s”. This is
followed by a constraint c, expressed in OPB format and
terminated by “;”. Then, a set of constraint numbers is
listed, separated by spaces and terminated with end-of-
line. These numbers identify a set of prior constraints
c1, c2, . . . , ck satisfying:

k∑︂
i=1

ci =⇒ c

This line avoids the need to expand a summation of
k constraints into k − 1 implication lines. Instead, the
checker performs the summations and tests the final
implication, using heuristics to optimize the order in
which the argument constraints are summed.

5) Deletion lines begin with “d”. This is followed by a list
of constraint numbers. These constraints cannot be used
as hints for the remainder of the proof.

For an unsatisfiability proof, the final constraint should be
infeasible, e.g. 0 ≥ 1.

V. PBIP TRIMMING AND CHECKING

Given a VeriPB proof, we must transform it into a PBIP
proof. In doing so, we trim the proof to eliminate those steps
that are not required for the final unsatisfiability result.

A. Hinting and Trimming Cutting-Planes and RUP Proofs

We present here a set of procedures that take a VeriPB proof
of unsatisfiability (generated by a proof-logging solver such as
RoundingSAT [34] or the Glasgow Subgraph/Clique Solvers
[15], [35]) and perform a translation into PBIP. In addition,
the resulting proof is trimmed, removing proof steps that do
not lead to the final unsatisfiability result.
Our procedures support the following VeriPB commands:
• f/l - OPB input constraint loading
• p/pol - Justification via reverse Polish notation (RPN)
arithmetic/cutting planes reasoning

• u/rup - Justification via reverse unit propagation (RUP)
• o/soli - Optimal value witness
In addition, we also support auxiliary VeriPB commands

such as a and j (variants of implication that show up in proofs
generated by the Glasgow solvers).

179

Our procedure performs a backwards reachability analysis
similar to DRAT-trim [1]: first, we identify a minimal set of
constraints required to justify the empty constraint ⊥ = 0 ≥ 1,
expressing unsatisfiability of the formula. We continue with
our reachability analysis from this minimal set. For each
lemma in the minimal set, we identify the lemmas needed to
prove it, mark them as necessary for the proof, and add them
to the set. All unmarked lemmas are discarded (trimmed).
The hinting/trimming algorithms can be partitioned into

two sub-procedures: (1) RUP lemma hinting and (2) arith-
metic/cutting planes reasoning.
1) Lemma Justification via RUP: The RUP procedure

serves to simultaneously

• trim the formula by computing a minimal necessary set
of constraints S′ required to justify all lemmas in S.

• construct a set of hints mapping each constraint ci ∈ S′

to a list of hints Hi, where each list element hj is of the
form [dj mj], indicating that constraint dj propagates
unit mj to falsify ci.

We make two notable optimizations here:

1) We implement a saturation procedure that aims to min-
imize the necessary set at each step—that is, we only
consider new lemmas if we cannot justify our target with
the current set.

2) Our data structures support near-instant unit discovery
by utilizing properties of a constraint’s slack: by main-
taining a sorted order over our constraint database (terms
sorted in decreasing-coefficient order, constraints sorted
in decreasing-slack order), unit discovery amounts to
queries to the first element under this ordering, which
can be done efficiently.

2) Arithmetic/Cutting Planes Reasoning: The goal of the
arithmetic procedures is to unroll sequences of reverse Polish
notation (RPN) arithmetic into hinted chains of clausal rea-
soning. Notable optimizations include:

• General trie-based arithmetic simplification: we avoid
recomputation of cutting-planes sequences that share
common prefixes by maintaining a trie.

• Heuristic arithmetic trimming: the solvers we have tested
tend to build up chains of cutting-planes reasoning where
only the last element of the chain is useful for the final
result, and hence the rest of the chain is unnecessary.
We proceed with this assumption, but in event of propa-
gation failure, we revert to a more cautious step-by-step
processing.

B. BDD-Based PBIP Checking and LRAT Generation

Our goal is to create a TBDD representation u̇i for each
constraint ci in the proof sequence. Our implementation
augments the existing TBDD operations in the TBUDDY
package [20] to support PB constraints and to provide special
operations to support RUP proof justification. The final step
of adding infeasible constraint ct will cause the empty clause
to be added to the proof. Here we provide a high-level

description of how the different PBIP steps translate into
TBDD operations.
When adding constraint ci, we invoke operation BDD(ci)

to construct the BDD representation ui of ci according to the
algorithm described by Abío, et al. [32]. Upgrading this to the
trusted BDD u̇i requires generating the unit clause [ui]. We
assume that every prior proof constraint ci′ , with i′ < i, has a
TBDD representation u̇i′ with an associated unit clause [ui′].
When ci is added by implication mode, generating its unit

clause is based on the constraints given as the hint. If the
hint consists of the single constraint ci′ , we can use the
BDD_IMPLY operation to add proof clause [ui′∨ui]. Resolving
this with the unit clause [ui′] then gives the unit clause [ui].
When the hint consists of two constraints ci′ and ci′′ , we first
use the BDD_AND operation on BDDs ui′ and ui′′ to generate
their conjunction w, along with proof clause [ui′ ∨ ui′′ ∨ w].
We then use the BDD_IMPLY operation to generate the clause
[w ∨ ui]. Resolving these clauses with the unit clauses for
TBDDs u̇i′ and u̇i′′ yields the unit clause [ui].
Adding constraint ci via a RUP addition involves two

phases. The first performs a series of clause generations
to justify the unit propagations. The second uses a sin-
gle clausal RUP addition to add the target clause. Dur-
ing the first phase, each step j < k in the sequence
[d1,m1], [d2,m2], . . . , [dk−1,mk−1], [dk], requires generating
a clause of the form [ui ∨ m1 ∨ m2 ∨ · · · ∨ mj−1 ∨ mj].
Step k requires generating the clause [ui ∨m1 ∨m2 ∨ · · · ∨
mk−1]. Implementing these justifications is complicated by
the negations in the RUP steps, since negation is not directly
supported in clausal reasoning. Instead, we make extensive
use of DeMorgan’s Laws. The final clausal RUP addition
has unit clause [ui] as its target and will have as hints the
unit-propagating clauses generated for the RUP steps. RUP
addition will start with unit literal ui and accumulate the
propagated literals m1,m2, . . . ,mk−1. The final clause will
cause a conflict. For the special cases where either the previous
constraint ci′ or the target constraint ci can be represented as
a single clause, we can use this clause directly to justify unit
propagation, reducing the number of BDD operations.

VI. IMPLEMENTATION AND RESULTS

The overall toolchain, illustrated in Figure 2, consists of the
following steps

• IPBIP-HINTS: Translates from VeriPB to PBIP while
simultaneously trimming the VeriPB proof, as described
in Section V-A.

• PB-CNF: Generates a CNF representation of the input
constraints by first constructing their BDD representa-
tions [32], and then encoding these with clauses, using at
most two clauses per BDD node.

• PBIP-CHECK: Generates an LRAT file from the PBIP
proof as described in Section V-B

• LRAT-CHECK: Checks an LRAT proof
As the thick lines in the figure indicate, steps PB-CNF
and PBIP-CHECK can cause an exponential growth in the
proof size, when input or intermediate constraints have large

180

IPBIP-HINTS
VeriPB PBIP

PBIP-CHECK LRAT LRAT-CHECK VERIFIED

PB-CNF CNF

PB PB

Fig. 2. PBIP toolchain: A VeriPB proof is first trimmed and translated into PBIP by IPBIP-HINTS. The VeriPB and the PBIP proofs contain a copy of
the original PB problem, denoted by the orange PB subnodes. PB-CNF generates a CNF file from the original PB problem. The PBIP proof and CNF file
are inputs to PBIP-CHECK, which translates the PBIP proof to LRAT using a a proof-generating BDD package [20]. The generated LRAT file can then be
checked by LRAT-CHECK. The two thick lines indicate cases where there can be an exponential size increase. The yellow blocks indicate steps that must be
correct to ensure soundness of the toolchain.

2 4 8 16 32 64
102

104

106

108

1010

Number of holes n

CNF Size
PBIP Size
LRAT Size

2 4 8 16 32 64
102

104

106

108

1010

Chessboard rows and columns n

CNF Size
PBIP Size
LRAT Size

Fig. 3. File sizes in bytes for (left) pigeonhole and (right) mutilated chessboard

coefficients. The figure also indicates that steps PB-CNF and
LRAT-CHECK form the trusted code base for the toolchain—
they must be correct for the overall verification to be sound.
In the case of LRAT-CHECK, one option would be to use a
formally verified checker. In the case of PB-CNF, the tool is
very simple, but it would be good to have a formally verified
version, as is discussed in Section VII.

A. Benchmarks

We demonstrate the effectiveness of our tools (trimming
procedure, clausal translation) and analyze our contributions
by evaluating them on the following benchmark problems:

1) Pigeonhole (PHP) Formulas - PBIP proofs generated by
summing the constraints across all pigeons and holes.

2) Mutilated Chessboard (MCB) Formulas - PBIP proofs
generated by summing the constraints for every square.

3) DIMACS Clique (CLQ) Benchmarks (23 instances) -
OPB/VeriPB proofs generated by Glasgow Clique Solver

4) Subgraph Isomorphism (SIP) Benchmarks (30 instances)
- OPB/VeriPB proofs generated by Glasgow Subgraph
Solver

For the CLQ benchmarks, the CakePB checker [22] was
evaluated on a 55-benchmark subset of the Second DIMACS
Implementation Challenge [36], out of which it was able to
verify 50 graphs. From this subset of 55 benchmarks, we were
able to translate 23 instances to LRAT and fully verify 21 of
them with LRAT-CHECK.
For the SIP benchmarks, we selected 30 instances from

subgraph isomorphism problems hosted by Christien Solnon
[37] and translate all of them down to LRAT and verify them
with LRAT-CHECK.
We ran our tests on the Jetstream2 cluster hosting a system

with a 16-core AMD EPYC-Milan Processor, 60GB RAM,
and 1TB disk space running Ubuntu 22.04.3 LTS.
Our results can be broken down into three sets of experi-

ments: (1) a comparison between PBIP/LRAT proof sizes and
how our pipeline performs against competing tools, (2) an
evaluation of the effectiveness of our trimming procedure, and
(3) an analysis of the runtimes of our toolchain.

B. Proof Sizes

Pigeonhole (PHP)/Mutilated Chessboard (MCB) Bench-
marks: For the pigeonhole and mutilated chessboard prob-

181

4 8 16 32 64 128
102

103

104

105

106

107

108

Number of holes n

KISSAT

PGPBS

PBIP-CHECK

Cook’s Proof
smallest known

4 8 16 32 64 128
102

103

104

105

106

107

108

Chessboard rows and columns n

KISSAT

PBIP-CHECK

PGPBS

PGBDD

Fig. 4. Total number of clauses in proofs for (left) pigeonhole and (right) mutilated chessboard

lems, Figure 3 shows the different file sizes (in bytes) as a
function of problem parameter n (the number of holes in PHP
and the number of rows and columns in MCB). The graphs
show a close correspondence between the CNF and the PBIP
proof sizes, and a polynomial separation between the PBIP
and LRAT proof sizes.
Figure 4 shows the number of clauses in proofs generated

by our toolchain compared to those for proofs generated
by competing tools. We consider here the proof-generating
SAT solver KISSAT [38], the proof-generating pseudo-Boolean
solver PGPBS [29], S. A. Cook’s manually constructed O(n4)
extended resolution proofs [39], and the smallest known proof
(O(n3)) [40]. We see that our PHP proofs asymptotically
match the O(n4) scaling of Cook’s proof. The scaling of
the MCB proofs matches that of PGPBS but is bested by
running the proof-generating BDD package PGBDD with a
carefully devised variable ordering and sequencing of BDD
operations [41]. In both instances, we greatly improve on the
exponential performance of KISSAT.
Maximum Clique/Subgraph Isomorphism Benchmarks: We

evaluate our pipeline on native pseudo-Boolean benchmarks
(CLQ/SIP) starting from VeriPB cutting planes proofs. From
the VeriPB proofs, we run the full pipeline presented in Figure
2 and obtain PBIP and LRAT proofs. Figure 5 compares the
various proof sizes.
The general trend confirms the polynomial separation be-

tween the PBIP and LRAT proof sizes, with some irregularities
due to extreme cases of proof trimming.
Figure 6 summarizes the average proof size increase (per

benchmark suite) across the various proof formats in relation
to the original VeriPB proof (in its non-kernel format).

C. Trimming Effectiveness

Here, we outline the effectiveness of the VeriPB trimming
procedures described in Section V-A and implemented in
IPBIP-HINTS.

Clique Benchmarks: Figure 7 demonstrates the effective-
ness of our trimming on a set of DIMACS clique problems. On
average, over our test suite, 45% of the input VeriPB lemmas
are deemed unnecessary and are therefore trimmed from
the proof. On 3 examples (hamming8-2, c-fat500-10,
and hamming10-2), our trimmed (clausal) PBIP proofs are
in fact shorter than the corresponding (non-clausal) VeriPB
proofs. Notably, these cases are trimmed very aggressively
(averaging 97.5% of lemmas trimmed) and this can be seen
in Figure 5, where the VeriPB line rises above the PBIP line.
The resulting LRAT proof for hamming10-2 is also only 3.7
times larger than the corresponding VeriPB proof.
Subgraph Isomorphism Benchmarks: The proofs generated

by the Glasgow Subgraph Solver [35] for the (unsatisfi-
able) subgraph isomorphism problems were succinct—most
required only a single RUP justification amounting to the
final unsatisfiability result. However, four benchmarks required
more than one lemma. Notably, g3-g12 underwent 91%
trimming, with the corresponding LRAT file being comparable
in size with the corresponding VeriPB file (as depicted in
Figure 5, where the file sizes only differ by a factor of 1.3×).
D. Tool Runtimes

Clique Benchmarks: Our approach incurs a significant cost
(in comparison with CakePB) in both the source trimming
and the clausal translation, as shown in Figure 8. On easy
instances, the trimming (IPBIP-HINTS, in blue) and checking
(PBIP-CHECK in red and LRAT-CHECK in yellow) all perform
moderately well whereas on hard instances, they become quite
slow. Average ratios (in relation to CakePB’s performance)
over the benchmark sets are seen in Figure 9.
Subgraph Isomorphism Benchmarks: Similar to the clique

benchmarks (as seen in Figure 8), our toolchain on subgraph
isomorphism problems generally incurs a large runtime over-
head versus CakePB. However, the trimming procedure does
take less time than CakePB, amounting to 80% of CakePB’s
total runtime. This can be attributed to the succinctness of the

182

ha
mm
in
g6
-2

jo
hn
so
n8
-2
-4

c-
fa
t2
00
-2

c-
fa
t2
00
-1

MA
NN
_a
9

ha
mm
in
g6
-4

c-
fa
t2
00
-5

ha
mm
in
g8
-2

c-
fa
t5
00
-2

c-
fa
t5
00
-1

jo
hn
so
n8
-4
-4

c-
fa
t5
00
-5

c-
fa
t5
00
-1
0

sa
n2
00
_0
.7
_2

ha
mm
in
g1
0-
2

p_
ha
t3
00
-1

sa
n4
00
_0
.5
_1

br
oc
k2
00
_2

sa
n2
00
_0
.7
_1

ke
ll
er
4

p_
ha
t3
00
-2

br
oc
k2
00
_3

p_
ha
t5
00
-1

104

106

108

1010

DIMACS Clique File Sizes (in bytes)

VeriPB Size
PBIP Size
LRAT Size

g4
-g
5

g4
-g
7

g4
-g
6

g4
-g
9

g4
-g
10

g4
-g
11

g4
-g
28

g9
-g
10

g4
-g
13

g8
-g
10

g9
-g
11

g3
-g
12

g7
-g
28

g7
-g
14

g4
-g
33

g4
-g
41

g8
-g
28

g9
-g
28

g1
0-
g2
8

g3
-g
18

g2
-g
3

g1
8-
g2
8

pa
tt
er
n1
-t
ar
ge
t5

pa
tt
er
n4
-t
ar
ge
t5

pa
tt
er
n4
-t
ar
ge
t3
56

pa
tt
er
n1
-t
ar
ge
t3
47

pa
tt
er
n4
-t
ar
ge
t3
9

pa
tt
er
n1
-t
ar
ge
t2
99

pa
tt
er
n1
-t
ar
ge
t3
56

pa
tt
er
n4
-t
ar
ge
t1
28

103

104

105

106

107

108

109

Subgraph Isomorphism File Sizes (in bytes)

Fig. 5. (L) DIMACS MAX-Clique proof file sizes in bytes (R) Subgraph Isomorphism proof file sizes in bytes

Benchmark VeriPB Kernel PBIP LRAT
CLQ 1.9× 11.3× 1682.0×
SIP 2.8× 08.1× 3342.8×

Fig. 6. Average proof size increase between VeriPB (non-kernel) and
Kernel/PBIP/LRAT

generated VeriPB proofs by the subgraph solver, requiring less
effort from our trimming/propagation procedures.

VII. CONCLUSION AND FUTURE WORK

We have presented a pipeline capable of translating native
pseudo-Boolean proofs (in the VeriPB format) to extended res-
olution proofs (in the LRAT format). This involved introducing
the intermediate PBIP (Pseudo-Boolean Implication Proof)
framework, from which a proof-generating BDD package can
generate the LRAT proof.
The work reported here suggests several avenues for future

research.
Verified PB Encodings. As indicated in Figure 2, we use the

unverified program PB-CNF to generate a CNF representation
of the input constraints. Although generating a clausal rep-
resentation of pseudo-Boolean constraints is straightforward,
this still represents a weak link in terms of the trustworthiness
of our toolchain. Based on recent work on formalized CNF
encodings in the Lean proof framework [42], we could pro-
duce verified CNF encodings of PB constraints expressed in
the OPB format and achieve end-to-end verification (verified
encodings of the PB source, verified translation by PBIP-
CHECK, and verified checking via LRAT-CHECK) of our
pipeline.
Supporting a Larger Subset of VeriPB. VeriPB is capa-

ble of even richer modes of reasoning, supporting rules
such as redundancy-based strengthening and dominance-based
strengthening [21]. Converting these to BDD-based proofs

benchmark total u done u trimmed (%)
brock200_2 3758 3388 9.85
brock200_3 14251 14210 0.29
c-fat200-1 17 6 64.71
c-fat200-2 3 1 66.67
c-fat200-5 86 29 66.28
c-fat500-1 9 2 77.78
c-fat500-2 15 2 86.67
c-fat500-5 34 2 94.12
c-fat500-10 65 1 98.46
hamming6-2 17 1 94.12
hamming6-4 82 82 0.0
hamming8-2 65 2 96.92
hamming10-2 257 3 98.83
johnson8-2-4 24 24 0.0
johnson8-4-4 120 115 4.17
keller4 13542 13495 0.35
MANN_a9 71 53 25.35
p_hat300-1 1473 1434 2.65
p_hat300-2 4078 3367 17.44
p_hat500-1 9708 9677 0.32
san200_0.7_1 13396 2604 80.56
san200_0.7_2 450 246 45.33
san400_0.5_1 2276 1554 31.72
g2-g3 701 701 0.0
g3-g12 411 37 91.0
g3-g18 321 69 78.5
g4-g7 21 20 4.76

Fig. 7. VeriPB lemmas trimmed on CLQ/SIP benchmarks - The column
marked “total u” represents the number of lemmas present in the source
VeriPB proof (RUP lemmas logged by the Glasgow solvers in their derivations
of ⊥) and “done u” represents the number of RUP lemmas actually deemed
necessary by our IPBIP-HINTS trimming procedure. The top 23 benchmarks
are max-clique benchmarks while the bottom 4 are (selected) subgraph
isomorphism benchmarks.

183

jo
hn
so
n8
-2
-4

c-
fa
t2
00
-2

ha
mm
in
g6
-2

c-
fa
t2
00
-1

ha
mm
in
g6
-4

MA
NN
_a
9

c-
fa
t5
00
-2

c-
fa
t5
00
-1

jo
hn
so
n8
-4
-4

c-
fa
t5
00
-5

c-
fa
t2
00
-5

ha
mm
in
g8
-2

0

1

2

3

4

5

Ti
m
e
(s
)

DIMACS Clique Runtimes (Easy)

Ipbip-Hints
Pb-Cnf

Pbip-Check
Lrat-Check

kernel + CakePB
CakePB

p_
ha
t3
00
-1

br
oc
k2
00
_2

p_
ha
t5
00
-1

p_
ha
t3
00
-2

ke
ll
er
4

br
oc
k2
00
_3

sa
n4
00
_0
.5
_1

sa
n2
00
_0
.7
_1

0

500

1,000

1,500

2,000

2,500

DIMACS Clique Runtimes (Hard)

g4
-g
5

g4
-g
7

g4
-g
6

g4
-g
9

g4
-g
10

g4
-g
11

g4
-g
28

g9
-g
10

g4
-g
13

g8
-g
10

g9
-g
11

g3
-g
12

g7
-g
28

g7
-g
14

g4
-g
33

g4
-g
41

g8
-g
28

g9
-g
28

g1
0-
g2
8

g3
-g
18

g2
-g
3

g1
8-
g2
8

pa
tt
er
n1
-t
ar
ge
t5

pa
tt
er
n4
-t
ar
ge
t5

pa
tt
er
n4
-t
ar
ge
t3
56

pa
tt
er
n1
-t
ar
ge
t3
47

pa
tt
er
n4
-t
ar
ge
t3
9

pa
tt
er
n1
-t
ar
ge
t2
99

pa
tt
er
n1
-t
ar
ge
t3
56

pa
tt
er
n4
-t
ar
ge
t1
28

0

5

10

15

20

Subgraph Isomorphism Runtimes

Fig. 8. (L) Toolchain performance on (easy) DIMACS Max-Clique benchmarks (M) Toolchain Performance on (hard) DIMACS Max-Clique benchmarks (R)
Toolchain performance on (selected) Subgraph Isomorphism benchmarks
The red dot (labelled CakePB) corresponds to running solely the CakePB checker on an already-generated kernel format while the black dot (labelled kernel
+ CakePB) incorporates the time taken to generate the kernel format as well.
Note: lrat_check was unable to verify p_hat300-2 and brock200_3 from the middle (hard cliques) graph.

Set IPBIP-HINTS PBIP-CHECK LRAT-CHECK

sip 0.8× 9.5× 6.9×
clq (all) 4.4× 42.5× 10.7×
clq (easy) 0.9× 4.2× 2.6×
clq (hard) 10.9× 109.5× 35.3×

Fig. 9. Average runtime overhead (ratio) of each phase in comparison with
CakePB checking.

would require going beyond the implication-based proofs sup-
ported by current proof-generating BDD packages. It requires
having proof rules that allow adding clauses that preserve
satisfiability but exclude possible solutions to a formula,
such as propagation redundancy [5], [43]. Translating the PB
strengthening rules into clausal proofs remains an unsolved
problem.
Fine tuning Performance/Tool Heuristics. Our tools make

use of various heuristics (from proof-specific optimizations
for trimming to BDD variable orderings). Fine-tuning these
and optimizing relevant parts of the toolchain (more efficient
structures for trimming, cache optimization) is definitely of
interest and could see improvements in the tool runtimes
described in Section VI-D.
Improvements to CakePB. Several of the optimizations we

made in our toolchain could be applied to CakePB:
• Direct support for RUP. The CakePB toolchain requires
converting a VeriPB proof into kernel format, replacing
each RUP addition with a sequence of cutting-planes
operations. Our experimental results show that this gen-
erally causes a small expansion in the proof size and a
small time overhead, but it is awkward, and it prompted
the authors to introduce special provisions to help users
debug failed proofs [22]. We have shown that methods
similar to those used by DRAT-trim [1] can be used to
identify the unit propagation steps required to justify a

RUP addition. These steps could be checked directly by
CakePB.

• Proof trimming. Our experimental results show that many
of the steps in VeriPB proofs are not relevant for a
proof of unsatisfiability. Trimming these can reduce the
checking time. It can also enable generating an “unsat
core” identifying the key properties of the problem that
cause it to be unsatisfiable. This capability has many
applications beyond proof generation [44].

ACKNOWLEDGMENTS

The authors thank the MIAO group and their
collaborators—in particular Ciaran McCreesh, Andy Oertel,
and Yong Kiam Tan–for support with their tools, benchmarks,
and general advice regarding pseudo-Boolean solving.
Special thanks to Ciaran McCreesh for numerous in-depth
clarifications on these matters. In addition, the authors
acknowledge Ruben Martins and Joseph Reeves of Carnegie
Mellon for helpful advice and encouraging discussions over
the course of the project. Finally, the authors thank Stephen
Deems of the Pittsburgh Supercomputing Center for providing
the computing resources to run our experiments.
This work was supported by the U. S. National Science

Foundation under grant CCF-2108521.

184

REFERENCES

[1] M. J. H. Heule, “The DRAT format and DRAT-trim checker,” arXiv
preprint arXiv:1610.06229, 2016.

[2] A. Balint, M. J. H. Heule, A. Belov, and M. Järvisalo, “The application
and the hard combinatorial benchmarks in SAT competition 2013,”
Proceedings of SAT Competition, pp. 99–100, 2013.

[3] M. J. H. Heule, W. Hunt, M. Kaufmann, and N. Wetzler, “Efficient,
verified checking of propositional proofs,” in Interactive Theorem Prov-
ing: 8th International Conference, ITP 2017, Brasília, Brazil, September
26–29, 2017, Proceedings 8, pp. 269–284, Springer, 2017.

[4] L. Cruz-Filipe, M. J. H. Heule, W. A. Hunt, M. Kaufmann, and
P. Schneider-Kamp, “Efficient certified RAT verification,” in Automated
Deduction–CADE 26: 26th International Conference on Automated De-
duction, Gothenburg, Sweden, August 6–11, 2017, Proceedings, pp. 220–
236, Springer, 2017.

[5] Y. K. Tan, M. J. H. Heule, and M. O. Myreen, “Verified propagation
redundancy and compositional UNSAT checking in CakeML,” Interna-
tional Journal on Software Tools for Technology Transfer, vol. 25, no. 2,
pp. 167–184, 2023.

[6] M. J. H. Heule, “Schur number five,” CoRR, vol. abs/1711.08076, 2017.
[7] P. M. Dearing, P. L. Hammer, and B. Simeone, “Boolean and graph theo-

retic formulations of the simple plant location problem,” Transportation
Science, vol. 26, no. 2, pp. 138–148, 1992.

[8] Y. Crama and P. L. Hammer, “Recognition of quadratic graphs and
adjoints of bidirected graphs,” in Proceedings of the third international
conference on Combinatorial mathematics, pp. 140–149, 1989.

[9] P. L. Hammer and E. Shlifer, “Applications of pseudo-Boolean methods
to economic problems,” Theory and decision, vol. 1, pp. 296–308, 1971.

[10] F. Barahona, M. Grötschel, M. Jünger, and G. Reinelt, “An application
of combinatorial optimization to statistical physics and circuit layout
design,” Operations Research, vol. 36, no. 3, pp. 493–513, 1988.

[11] F. A. Aloul, A. Ramani, I. Markov, and K. Sakallah, “PBS: a backtrack-
search pseudo-Boolean solver and optimizer,” in Proceedings of the 5th
International Symposium on Theory and Applications of Satisfiability,
pp. 346–353, 2002.

[12] D. Chai and A. Kuehlmann, “A fast pseudo-Boolean constraint solver,”
in Proceedings of the 40th annual Design Automation Conference,
pp. 830–835, 2003.

[13] H. M. Sheini and K. A. Sakallah, “Pueblo: A hybrid pseudo-Boolean
SAT solver,” Journal on Satisfiability, Boolean Modeling and Computa-
tion, vol. 2, no. 1-4, pp. 165–189, 2006.

[14] J. Elffers and J. Nordström, “Divide and conquer: Towards faster pseudo-
Boolean solving.,” in IJCAI, vol. 18, pp. 1291–1299, 2018.

[15] S. Gocht, R. McBride, C. McCreesh, J. Nordström, P. Prosser, and
J. Trimble, “Certifying solvers for clique and maximum common (con-
nected) subgraph problems,” in Principles and Practice of Constraint
Programming (CP), 2020.

[16] S. Gocht, C. McCreesh, and J. Nordström, “An auditable constraint
program solver,” in Principles and Practice of Constraint Programming
(CP), 2022.

[17] S. Gocht, Certifying Correctness for Combinatorial Algorithms by Using
Pseudo-Boolean Reasoning. PhD thesis, Lund University, 2022.

[18] G. S. Tseitin, “On the complexity of derivation in propositional calcu-
lus,” in Automation of Reasoning: 2: Classical Papers on Computational
Logic 1967–1970, pp. 466–483, Springer, 1983.

[19] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Transactions on Computers, vol. 35, no. 8, pp. 677–691,
1986.

[20] R. E. Bryant, “TBUDDY: A proof-generating BDD package,” in Formal
Methods in Computer-Aided Design (FMCAD), pp. 49–58, IEEE, 2022.

[21] B. Bogaerts, S. Gocht, C. McCreesh, and J. Nordström, “Certified
dominance and symmetry breaking for combinatorial optimisation,”
Journal of Artificial Intelligence Research, 2023.

[22] S. Gocht, C. McCreesh, M. O. Myreen, J. Nordström, A. Oertel, and
Y. K. Tan, “End-to-end verification for subgraph solving,” in AAAI
Conference on Artificial Intelligence, 2024.

[23] B. Bogaerts, C. McCreesh, M. O. Myreen, J. Nordström, A. Oertel,
and Y. K. Tan, “Documentation of VeriPB and CakePB for the SAT
competition 2023 (Mar 2023).” https://satcompetition.github.io/2023/
downloads/proposals/veripb.pdf.

[24] W. J. Cook, C. R. Coullard, and G. X. R. Turán, “On the complexity of
cutting-plane proofs,” Discrete Applied Mathematics, vol. 18, pp. 25–38,
1987.

[25] S. A. Cook, “Feasibly constructive proofs and the propositional calcu-
lus,” in ACM Symposium on the Theory of Computing (STOC), pp. 83–
97, 1975.

[26] M. R. Garey and D. S. Johnson, Computers and Intractability. W. H.
Freeman and Company, 1979.

[27] R. E. Bryant and M. J. H. Heule, “Generating extended resolution proofs
with a BDD-based SAT solver,” ACM Transactions on Computational
Logic, vol. 24, no. 4, pp. 1–28, 2023.

[28] R. E. Bryant and M. J. H. Heule, “Dual proof generation for quan-
tified Boolean formulas with a BDD-based solver,” in Conference on
Automated Deduction (CADE), vol. 12699 of LNAI, pp. 433–449, 2021.

[29] R. E. Bryant, A. Biere, and M. J. H. Heule, “Clausal proofs for
pseudo-Boolean reasoning,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pp. 443–461,
Springer, 2022.

[30] C. Sinz and A. Biere, “Extended resolution proofs for conjoining BDDs,”
in Computer Science Symposium in Russia (CSR), vol. 3967 of LNCS,
pp. 600–611, 2006.

[31] T. Jussila, C. Sinz, and A. Biere, “Extended resolution proofs for
symbolic SAT solving with quantification,” in Theory and Applications
of Satisfiability Testing (SAT), vol. 4121 of LNCS, pp. 54–60, 2006.

[32] I. Abío, R. Nieuwenhuis, A. Oliveras, and E. Rodríguez-Carbonell, “A
new look at BDDs for pseudo-Boolean constraints,” Journal of Artificial
Intelligence Research, vol. 45, pp. 443–480, 2012.

[33] O. Roussel and V. Manquinho, “Input/output format and solver re-
quirements for the competitions of pseudo-Boolean solvers.” https:
//www.cril.univ-artois.fr/PB12/format.pdf, 2012.

[34] J. Elffers and J. Nordström, “Divide and conquer: Towards faster pseudo-
boolean solving.,” in IJCAI, vol. 18, pp. 1291–1299, 2018.

[35] C. McCreesh, P. Prosser, and J. Trimble, “The Glasgow subgraph solver:
using constraint programming to tackle hard subgraph isomorphism
problem variants,” in International Conference on Graph Transforma-
tion, pp. 316–324, Springer, 2020.

[36] D. S. Johnson and M. A. Trick, Cliques, coloring, and satisfiability: Sec-
ond DIMACS Implementation Challenge, October 11-13, 1993, vol. 26.
American Mathematical Soc., 1996.

[37] C. Solnon, “Benchmarks for the subgraph isomorphism problem.” http:
//liris.cnrs.fr/csolnon/SIP.html, 2016. visited on May 11th, 2024.

[38] A. Biere and M. Fleury, “Gimsatul, IsaSAT and Kissat entering the SAT
Competition 2022,” in Proc. of SAT Competition 2022 – Solver and
Benchmark Descriptions (T. Balyo, M. Heule, M. Iser, M. Järvisalo,
and M. Suda, eds.), vol. B-2022-1 of Department of Computer Science
Series of Publications B, pp. 10–11, University of Helsinki, 2022.

[39] S. A. Cook, “A short proof of the pigeon hole principle using extended
resolution,” Acm Sigact News, vol. 8, no. 4, pp. 28–32, 1976.

[40] I. Grosof, N. Zhang, and M. J. H. Heule, “Towards the shortest DRAT
proof of the pigeonhole principle,” 2022.

[41] R. E. Bryant and M. J. H. Heule, “Generating extended resolution
proofs with a BDD-based SAT solver,” in Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), Part I, vol. 12651
of LNCS, pp. 76–93, 2021.

[42] C. R. Codel, J. Avigad, and M. J. H. Heule, “Verified encodings for SAT
solvers,” in 2023 Formal Methods in Computer-Aided Design (FMCAD),
pp. 141–151, IEEE, 2023.

[43] M. J. H. Heule, B. Kiesl, and A. Biere, “Strong extension-free proof
systems,” Journal of Automated Reasoning, 2019.

[44] J. P. Marques-Silva, “Minimal unsatisfiability: Models, algorithms, and
applications,” in IEEE Symposium on Multi-Valued Logic, 2010.

185

https://satcompetition.github.io/2023/downloads/proposals/veripb.pdf
https://satcompetition.github.io/2023/downloads/proposals/veripb.pdf
https://www.cril.univ-artois.fr/PB12/format.pdf
https://www.cril.univ-artois.fr/PB12/format.pdf
http://liris.cnrs.fr/csolnon/SIP.html
http://liris.cnrs.fr/csolnon/SIP.html

Formal Methods in Computer-Aided Design 2024

Verified Substitution Redundancy Checking
Cayden R. Codel

Computer Science Department
Carnegie Mellon University

Pittsburgh, USA
ccodel@cs.cmu.edu

Jeremy Avigad
Department of Philosophy
Carnegie Mellon University

Pittsburgh, USA
avigad@cmu.edu

Marijn J. H. Heule
Computer Science Department
Carnegie Mellon University

Pittsburgh, USA
marijn@cmu.edu
Amazon Scholar

Abstract—Modern SAT solvers are trustworthy because their
results can be expressed in formal proof systems and validated
with verified proof checkers. Today, the RAT and PR proof systems
are the de facto standard: they capture many reasoning techniques
used by SAT solvers, and they are supported by efficient, formally-
verified checkers. However, RAT and PR struggle to succinctly
express advanced reasoning techniques like symmetry breaking.
In this paper, we present proof checking tools for the substitu-

tion redundancy (SR) proof system, a powerful generalization of
PR and RAT. We first highlight three problems with linear-size SR
proofs that are not expected to have linear-size PR or RAT proofs.
We then present proof formats for SR with and without unit
propagation hints, a tool to add those hints, and the first verified
SR proof checker. Since SR generalizes other proof systems, our
checker has the distinction of supporting the strongest clausal
proof system to date. Finally, our experimental results show that
SR proofs are much smaller than their RAT counterparts, and
that verified SR proof checking is efficient in practice.

I. INTRODUCTION

Satisfiability (SAT) solving continues to be a crucial tool for
industry and academia. For example, SAT solvers were recently
used to resolve open problems in computational geometry [1, 2]
and to improve lower bounds for a problem in quantum
mechanics [3]. In addition, SAT solvers form the core of SMT
solvers, which are queried a billion times a day by various
Amazon Web Services applications [4].
SAT solving is trustworthy due to the development of

verified proof checking. When reporting that a problem has no
solutions, modern SAT solvers emit a corresponding proof
of unsatisfiability expressed in a formal proof system. By
validating these proofs with verified software, we gain a high
degree of confidence in solver results, particularly those backing
mathematical theorems and industrial security guarantees.
Proof systems and SAT solvers are complementary, with

advances in one driving innovations in the other. For example,
the RAT proof system [5] was developed to validate the learned
clauses produced by CDCL solvers and some inprocessing
techniques. In the other direction, the PR proof system [6],
a generalization of RAT, validates short clauses that solvers
could not initially derive. But solvers have since caught up: the
2nd- and 8th-place finishers at the 2023 SAT Competition used
PR reasoning as a preprocessing step [7, 8]. More generally,

Many thanks to the researchers on the Lean theorem prover Zulip chatroom.
Our research was supported by NSF grant CCF-2229099, AFRL agreement
FA8750-24-9-1000, and the Hoskinson Center for Formal Mathematics.

stronger proof systems enable solvers to use more-powerful
reasoning techniques and produce shorter proofs.
In this paper, we develop verified proof checking tools for the

substitution redundancy (SR) proof system [9–11] (Section II).
SR generalizes PR, such that it can succinctly express a broad
range of symmetry-breaking techniques that PR cannot. We
show this by highlighting three problems that have SR proofs
with size linear in the number of variables and that, as far as
we know, do not have linear-sized PR proofs (Section III).
Currently, no solver supports SR reasoning. However, we

expect that the availability of our fast, verified SR checker will
stimulate the development of SR reasoning and preprocessing
techniques, similar to what happened with PR.
To enable SR proof checking (Section IV), we introduce the

DSR and LSR proof formats (Section V). Like the formats for
RAT and PR, DSR proofs record basic proof steps, while LSR
proofs include unit propagation hints that guide proof checking.
These formats are backwards compatible with the ones for
RAT and PR. Our set of SR proof checking tools (Section VI)
includes a tool that converts DSR proofs into DRAT and a tool
that converts DSR proofs into LSR by adding hints.
We also present the first verified LSR proof checker (Sec-

tion VII), giving it the distinction of supporting the strongest
clausal proof system to date. It implements several data struc-
tures and techniques commonly used in SAT proof checkers,
and we discuss how they impacted our formalization. We
proved our checker correct with the Lean theorem prover [12].
Finally, our experimental results (Section VIII) show the

clear benefits of using a stronger proof system. For example,
we found that the SR proofs from our benchmarks had 0.4%
as many proof lines as their transformations into RAT. We also
show that verified SR proof checking is efficient in practice:
our verified checker performs similarly to cake lpr [13], a
fast, verified PR proof checker written in CakeML [14].

II. SUBSTITUTION REDUNDANCY

We assume that the reader is familiar with SAT.1 Throughout,
let F be a formula in conjunctive normal form (CNF), let C and
D be clauses of boolean literals, and let τ be a truth assignment
on the boolean variables in F . We write ℓ for the negation
of boolean literal ℓ, and ¬C :=

⋀︁
ℓ∈C ℓ for the negation of

a clause C. A partial truth assignment is a non-tautological

1 For background reading, see Ch. 15 of the Handbook of Satisfiability [15].

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 24 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0000-0003-3588-4873
mailto:ccodel@cs.cmu.edu
https://orcid.org/0000-0003-1275-315X
mailto:avigad@cmu.edu
https://orcid.org/0000-0002-5587-8801
mailto:marijn@cmu.edu
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_24
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_24
https://creativecommons.org/licenses/by/4.0/

set of literals taken to be true. We abuse notation by writing
evaluation under (partial) assignments as τ(x).
When a SAT solver claims that a formula F is unsatisfiable,

it emits a proof of unsatisfiability in a formal proof system.
In clausal proof systems, each proof step adds a clause C to
F such that F and F ∧ C are equisatisfiable, meaning that F
is satisfiable if and only if F ∧ C is. Such clauses are called
redundant. The backward direction is trivial, so it suffices
to show only the forward direction. Notably, adding C to F
may (and often does) reduce the set of satisfying assignments,
but the important thing is that satisfiability is preserved. By
producing a series of redundant clauses ending in the empty
clause ⊥, a SAT solver can show that F is unsatisfiable.
Unfortunately, it is NP-hard to determine whether an

arbitrary C is redundant for F [16]. Therefore, most clausal
proof systems instead use a property implying redundancy that
is checkable in polynomial time when provided with a witness.
The SR proof system is based on such a property.
Witnesses for clausal proof systems work as follows. Suppose

we are trying to show that C is redundant for F . If F entails
C, written as F ⊨ C and meaning that for any τ ⊨ F , we have
that τ ⊨ C, then certainly F and F ∧C are equisatisfiable. So
assume that τ satisfies F but does not satisfy C. We can show
that C is redundant by modifying τ into a new assignment
satisfying F ∧ C. The witness σ describes this modification,
and it is used to form the satisfying truth assignment τ ◦ σ.
As a motivating example (discussed further in Section III),

consider the following proof of unsatisfiability for the pigeon-
hole formula on n pigeons and n− 1 holes. To start, we learn
that the first pigeon p1 cannot go in the last hole hn−1, i.e.,
the unit clause x1,n−1. If F ⊨ x1,n−1, then we’d be done, so
assume that τ ⊨ F but τ ⊨ x1,n−1, meaning that τ places p1

in hn−1. One way of modifying τ to satisfy x1,n−1 is to swap
p1 with a different pigeon, say, pn, thus ensuring that p1 ends
up in a different hole while still satisfying the overall formula.
We accomplish this by mapping the variables associated with
p1 to the variables associated with pn, and vice versa, before
evaluating them under τ . Functions called substitutions capture
this technique, and they serve as the witnesses in SR.
Formally, a substitution σ maps boolean variables to either

a boolean literal or a truth value. They can satisfy clauses and
formulas, written as σ ⊨ C and σ ⊨ F . They can also reduce
them. The reduction of C under σ, written as C|σ , is obtained
by mapping σ over its literals and removing those falsified by
σ. The reduction of F under σ, written as F|σ , is obtained by
reducing each of its clauses and removing those satisfied by
σ. We say that σ reduces C if σ does not satisfy C and there
is a literal ℓ ∈ C not mapped to itself under σ, i.e., σ(ℓ) ̸= ℓ.
Notably, σ can reduce C even if C|σ = C, as in the example
where C := x1 ∨ x2 and σ maps x1 and x2 to each other.
Additionally, we can compose substitutions with truth

assignments to form new truth assignments. Define (τ ◦ σ)(x)
as σ(x) if σ(x) ∈ {⊤,⊥} and as τ(σ(x)) otherwise. From
this definition, we can derive the core lemma used to prove
redundancy from the SR property: if σ does not satisfy C,
then τ ◦ σ ⊨ C ⇔ τ ⊨ C|σ. In other words, knowing that τ

satisfies C|σ is the same as knowing that σ modifies τ into an
assignment (τ ◦ σ) satisfying C. The lemma follows from the
definition of composition: let ℓ ∈ C with τ(σ(ℓ)) = ⊤. But
since σ ̸⊨ C, then σ(ℓ) ∈ C|σ , and so τ ⊨ C|σ .
The SR property is based on unit propagation (UP), which

computes in polynomial time the partial assignment implied
by the unit clauses in a formula F . Starting from the empty
partial assignment τ , UP reduces F with the following rule
until fixpoint: if F|τ contains a unit clause x, then τ := τ ∪ x.
If UP finds a unit clause x ∈ F|τ with τ(x) = ⊥, then we
write F ⊢1 ⊥, and we say that we have a UP refutation for
F . Such formulas are unsatisfiable.
We extend this definition to include UP derivations of clauses

and formulas. If C is a clause, then F ⊢1 C if F ∧ ¬C ⊢1 ⊥.
Likewise, if G is a formula, then F ⊢1 G if F ⊢1 C for every
C ∈ G. It is well-known that if F ⊢1 G, then F ⊨ G.
We now define SR. A clause C is substitution redundant

(SR) [9–11] for a formula F if there exists a substitution σ
such that F ∧ ¬C ⊢1 (F ∧ C)|σ .2

The SR property implies redundancy.

Theorem 1 ([9, 10]). Let F be a CNF formula, and let C be
a clause. If C is SR for F , then C is redundant for F .

Proof. It suffices to show the forward direction. If F ⊨ C, then
we’d be done, so assume that τ ⊨ F and τ ⊨ ¬C, and let σ be
a substitution satisfying the SR property for C and F . We will
show that τ ◦ σ ⊨ F ∧ C, meaning that τ ◦ σ ⊨ D for every
D ∈ (F ∧ C). If σ ⊨ D, then so would τ ◦ σ ⊨ D and we’d
be done, so assume otherwise. Thus D|σ ∈ (F ∧ C)|σ. But
the SR property tells us that since τ ⊨ F ∧ ¬C, we have that
τ ⊨ D|σ , and by the lemma, this implies that τ ◦ σ ⊨ D.

SR generalizes PR [6], which itself generalizes RAT [5].3 If
we restrict the witness to be a partial truth assignment, we
obtain PR. If we restrict the witness further to be a partial
assignment defined by a single literal, we obtain RAT.

III. SHORT SR PROOFS

Many problems, including several that are hard for resolution,
have SR proofs with size linear in the number of variables. In
this section, we describe SR proofs for three such problems
that, as far as we know, do not have linear-sized PR proofs.
Our manually-constructed proofs are available at:

https://github.com/marijnheule/sr-proofs.

A. The pigeonhole principle

The pigeonhole principle (PHP) states that if n pigeons are
placed in m < n holes, then at least one hole contains multiple
pigeons. The unsatisfiable PHP CNF formulas on n pigeons
and n − 1 holes consist of O(n2) variables {xp,h}, where
xp,h = ⊤ means that pigeon p is in hole h, and O(n3) clauses,

2 There are several variants of SR. We use the one due to Gocht and
Nordström [10] because it is more general and easier to understand than the
original definition due to Buss and Thapen [9], which requires that σ ⊨ C or
that C|σ is a tautology, and that F|τ ⊢1 F|σ .

3 These proof systems, and their extension-free variants, form a proof
hierarchy with interesting proof-theoretic properties [9, 11].

187

https://github.com/marijnheule/sr-proofs

encoding that each pigeon must be in at least one hole and
that two pigeons cannot both be in the same hole. Resolution
proofs of PHP formulas are exponential in n [17]. Extended
resolution admits proofs of size O(n4) [18], while PR admits
proofs of size O(n3) [16].
PHP SR proofs consist of O(n2) unit clauses [9, 11]. They

recursively use the following scheme to show that pigeon pn
must go in hole hn−1. We start by learning that p1 does not go
in the last hole, i.e., the unit clause x1,n−1. This clause is SR
because if the satisfying assignment τ assigns p1 to hn−1, then
we may modify τ with the substitution σ that instead assigns
pn to hn−1 by swapping (the variables for) the two pigeons.
Formally, σ = {x1,n−1 ↦→ ⊥, xn,n−1 ↦→ ⊤, x1,i ↦→ xn,i,
xn,i ↦→ x1,i} for i ∈ {1, . . . , n − 2}. Next we learn that p2

does not go in the last hole by swapping p2 with pn, and so
on, until only pn can go in hn−1. Now the problem has been
reduced to the PHP formula on n− 1 pigeons. Repeating this
process n− 1 times results in a refutation.

B. Tseitin formulas for expander graphs

Given a simple, undirected graph with an odd number of
black vertices and all others colored white, Tseitin formulas
ask whether there exists a subset of the edges S such that every
black vertex has odd degree in S and every white vertex has
even degree in S. This is not possible by the handshake lemma:
the sum of all vertex degrees in S is even, since each edge
is counted twice, but the sum of black edges (odd) and white
edges (even) must be odd. In the formula, every edge e receives
a variable that encodes whether e ∈ S. Figure 1 illustrates
the Tseitin constraints for a small graph. Tseitin formulas of
expander graphs have exponentially-large resolution proofs [19]
and polynomial-sized PR proofs [20].

6

4

5

3

2

1 e1,2 ⊕ e1,3 = 1

e1,2 ⊕ e2,3 ⊕ e2,4 = 0

e1,3 ⊕ e2,3 ⊕ e3,4 ⊕ e3,5 = 1

e2,4 ⊕ e3,4 ⊕ e4,5 ⊕ e4,6 = 0

e3,5 ⊕ e4,5 ⊕ e5,6 = 0

e4,6 ⊕ e5,6 = 1

Fig. 1. The Tseitin constraints for a small graph, ordered by vertex. If
ei,j = ⊤, then ei,j is in the edge subset S. The symbol ⊕ denotes XOR.

SR does better: any Tseitin formula has an SR proof linear
in the number of edges using the following derivation. First,
we may remove any vertex v incident to only a single edge e
because if v is white, then e cannot be in S, so removing them
both does not affect any other constraint; and if v is black,
then e must be in S, so we may remove them both as long as
we flip the color of the neighbor of v, since removing e will
change the degree-parity of the neighbor. We keep removing
degree-one vertices until a conflict (i.e., a black vertex with
no edges) or until every vertex in the graph has degree at least
two. Such a graph must have a cycle U . For any satisfying S,
we may swap the membership of every edge e ∈ U in S

and get a new satisfying edge set, as doing so maintains the
S-degree-parity of every vertex in U . As a result, we may pick
an arbitrary edge e ∈ U and fix e /∈ S. Repeating this process
will eventually result in a conflict.
We illustrate this process with the graph in Figure 1. Consider

the cycle {e1,2, e1,3, e2,3}. We can learn that the unit clause
e1,2 is SR with the witness σ = {e1,2 ↦→ ⊥, e1,3 ↦→ e1,3,
e2,3 ↦→ e2,3}. Afterwards, vertex v1 is adjacent to only the
edge e1,3. Since v1 is colored black, e1,3 must be in our edge
set S, so we may remove v1 and e1,3 to make the graph smaller,
as long as we swap the color of v3 from black to white.

C. Ramsey numbers

Ramsey number R(k, ℓ) is the smallest n such that every
2-coloring of the edges of the fully-connected graph on n
vertices with the colors red and blue has either a red k-clique
or a blue ℓ-clique. The encoding of R(k, ℓ) is straightforward:
boolean variables {ei,j}1≤i<j≤n represent the color of each
edge, where ei,j = ⊤ means the edge is blue, and for each
k-clique and ℓ-clique, there is a clause stating that at least
one of its edges is blue or red, respectively. An unsatisfiable
formula for any n, k, and ℓ proves that R(k, ℓ) ≤ n.

6

1 2

3

5 4

6

1 2

3

5 4

Fig. 2. A short proof of R(3, 3) ≤ 6. After adding clauses that sort the edges
of vertex v1 by color (blue edges first), fixing the edge e1,4 to either blue or
red forces a red or blue 3-clique, respectively, via unit propagation.

Short SR proofs for small Ramsey numbers can be con-
structed by sorting edges by color. For example, we can assume
that the blue edges for vertex v1 come first, represented by
the clauses e1,j ∨ e1,j+1 for 1 < j < n. Figure 2 illustrates
the refutation derived by adding these four clauses to the
formula for R(3, 3) ≤ 6. These binary clauses are SR. For
instance, symmetry-breaking clause e1,2 ∨ e1,3 has witness
σ = {e1,2 ↦→ ⊤, e1,3 ↦→ ⊥, e2,4 ↦→ e3,4, e3,4 ↦→ e2,4,
e2,5 ↦→ e3,5, e3,5 ↦→ e2,5, e2,6 ↦→ e3,6, e3,6 ↦→ e2,6}.
Ramsey number R(4, 4) = 18. A resolution proof of

R(4, 4) ≤ 18 requires around a billion resolution steps. In
contrast, the SR proof uses only 38 clause addition steps. See
Section X for the argument.

IV. SR PROOF CHECKING

In this section, we discuss the SR proof checking algorithm
and why it checks redundancy, as well as two performance
bottlenecks that are addressed in our verification.
The algorithm (Algorithm 1) is divided into two phases. The

first phase (Lines 1–4) determines whether F ⊢1 C, which
would imply that F ⊨ C, and thus that C is redundant. By
definition, this amounts to showing that F ∧ ¬C ⊢1 ⊥. We

188

start with the partial assignment τ := ¬C (Line 1) and then
try to find a UP refutation for F (Lines 2–4).

Algorithm 1: Validating whether a clause is SR

Input: CNF F , clause C, and witness σ satisfying C
Output: “Yes” if C is SR for F , “No” otherwise.

1 Set τ ← ¬C
2 while there is a D ∈ F|τ with |D| ≤ 1 do
3 if |D| = 0 (i.e., D = ⊥) then return Yes
4 else τ ← τ ∪D
5 if C = ⊥ then return No
6 for D ∈ F do
7 if σ ⊨ D or D is not reduced by σ then continue
8 if τ ⊨ D|σ then continue
9 τ ′ ← τ ∪ ¬D|σ
10 while there is an E ∈ F|τ ′ with |E| ≤ 1 do
11 if |E| = 0 (i.e., E = ⊥) then
12 continue to the next iteration of Line 6
13 else τ ′ ← τ ′ ∪ E
14 return No
15 return Yes

UP

UP

If no UP refutation is found, then τ stores the unit clauses
found by UP on F , and we proceed to the second phase, the SR
check (Lines 5–15). The empty clause ⊥ cannot be SR, so we
stop if C = ⊥ (Line 5). Otherwise, we check the SR property.
In our proof checking tools, we assume that the witness σ
satisfies C, so it suffices to show that F ∧¬C ⊢1 D|σ for each
reduced clause D|σ ∈ F|σ .
The actual SR check looks slightly different. Rather than

iterate across every D|σ , we instead iterate across every D ∈ F
(Line 6), but we skip some clauses (Line 7). If σ ⊨ D, then it
is not in F|σ; and if σ does not reduce D, then since D ∈ F ,
F ∧ ¬C ⊢1 D has a trivial UP refutation. In both cases, we
can skip D and go to the next iteration of the loop.
That leaves the reduced clauses D|σ to be checked. Since τ

stores the unit clauses from UP on F ∧¬C, it suffices to show
that F ∧ τ ⊢1 D|σ . If τ ⊨ D|σ (Line 8), then we have a trivial
UP refutation. Otherwise, we perform UP with the addition
of ¬D|σ to τ , forming τ ′ (Lines 9–13). If UP fails to find a
refutation, then we cannot prove that C is SR (Line 14).
There are two potential computational bottlenecks in this

algorithm. The first is performing UP. In the worst case, we
must reduce every clause in F under τ when looking for unit
and empty clauses. Data structures called watch pointers [21]
are commonly used to efficiently implement this search process.
Yet even with watch pointers, a significant amount of SR proof
checking time is spent performing UP. One way of making
UP more efficient is to be told the series of clauses in F that
become unit or empty. And indeed, the hints in the hinted SR
proof format are precisely these clauses.
The second bottleneck is creating τ ′ on Line 9. If τ contains

many unit clauses, then we want to avoid copying them into a
new τ ′ object for each loop. One idea is to keep a record of
the unit clauses encountered by UP on Lines 10–13, and then
undo their effects on τ ′ afterwards to restore τ . However, this
would take time linear in the number of unit clauses. Instead,
we want a data structure that can do this in constant time. Such

proof ::= [line]
line ::= id, (add | delete),0, \n
add ::= clause, ⟨witness⟩,0, [id], [-id, [id]]

witness ::= p : lit, [lit], ⟨p, [(var, lit)]⟩
delete ::= d, [id] clause ::= [lit]
id, var ::= N \ {0} lit ::= Z \ {0}

Fig. 3. The formal grammar for the LSR proof format. A list with 0 or more
items is written as [·], and an optional object is written as ⟨·⟩. Additions to
the LSR format from LPR are bolded.

a data structure exists and is commonly used in SAT proof
checking tools. We implement it in our SR proof checkers, and
we describe how we formalized it in Section VII.

V. THE SR PROOF FORMATS

We introduce the proof formats for SR without and with hints,
which we call DSR and LSR, respectively.4 Our formats extend
the DPR/LPR proof formats [13], which themselves extend
DRAT/LRAT [22, 23]. Our formats are backwards compatible,
meaning that any RAT or PR proof is also a valid SR proof.
As with RAT and PR, SR proofs comprise addition and

deletion lines. Each addition line contains a clause C claimed
to be redundant. If C is nonempty, then the line may also
contain a substitution witness σ satisfying C. If no witness is
provided, then σ is defined as σ(p) = ⊤, where p is the first
literal of C (called the pivot), and is the identity everywhere
else. That way, σ satisfies C.
In the DSR format, addition lines contain only C and σ,

and the checker must run Algorithm 1. But in the LSR format,
addition lines also contain hints. In LSR, each clause is given
a unique numerical identifier starting at 1. Each hint is the ID
of a clause that becomes unit or conflict under UP. A list of
UP refutation hints are provided for each D|σ ∈ F|σ. While
hints do increase the size of the proof, they generally reduce
proof checking times by making UP much more efficient.
Deletion lines specify clauses in F to delete. Deletion does

not maintain equisatisfiability, but if the formula after deletion
from F is unsatisfiable, then so is F . Deletion speeds up
proof checking by reducing the required number of D|σ UP
refutations to find. It can also increase the set of SR clauses,
as it can remove D|σ clauses that fail the SR check.
The formal grammar for the LSR format is shown in Figure 3.

Figure 4 shows a DIMACS CNF formula and its corresponding
LSR proof for PHP with n = 4. The parts of an LSR addition
line are color-coded. Their order is as follows:

1) A (positive, unique) numerical clause ID. Later LSR lines
refer to the added clause by this ID.

2) The (literals of the) candidate redundant clause C.
3) An optional substitution witness σ beginning with p, the

first literal of C (the pivot). The witness has two parts,

4 The names are acronyms. DSR stands for “deletion SR,” while LSR stands
for “linear SR,” where “linear” means that the hints included in the format
enable proof checking to take time linear in the size of the proof.

189

CNF format

p cnf 12 22
1 2 3 0
4 5 6 0
7 8 9 0

...

LSR format

23 -10 -10 7 -10 8 11 11 8 9 12 12 9 0 7 9 10 -4 3 -6 -8 -12 13 ... 0
24 -7 -7 4 -7 5 8 8 5 6 9 9 6 0 23 6 8 -3 2 -5 -9 -11 12 ... 0
25 -4 -4 1 -4 2 5 5 2 3 6 6 3 0 23 24 5 -2 1 -6 -7 -11 11 ... 0
26 -11 0 24 25 15 16 2 3 20 0
27 0 23 24 25 26 4 21 22 2 3 14 0

Fig. 4. A DIMACS CNF formula (left) and its LSR proof (right). Each line in the CNF is a new clause. LSR addition lines comprise a clause ID (pink), the
literals of the clause (green), and an optional substitution witness containing literals mapped to true (orange) and variables mapped to other literals (blue), with
another appearance of the pivot literal (black) acting as a separator. The line concludes with UP hints (purple) and reduced-clause UP hints (red). Each reduced
clause D|σ is identified with a negative ID, and the positive hints that follow are the UP refutation for D|σ .

separated by another appearance of p:5 first, a list of
literals ℓ that σ maps to true (including p); and second,
a list of variable-literal pairs (v, ℓ) setting σ(v) := ℓ. All
other variables v are mapped to themselves, i.e., σ(v) := v.

4) A separating 0, marking where the hints begin.
5) A list of hints, not necessarily deriving UP refutation,

guiding Line 2 of Algorithm 1.
6) A list of hints deriving UP refutation for each reduced

clause, guiding Line 10. The reduced clause is identified
by the negative of its ID, and the UP hints follow.

If each of the line ID, the hints, and the ending 0 are
removed, then the addition line becomes a DSR addition line.
Currently, our checkers assume that the witness σ satisfies

the candidate clause C (which is the case for all of the SR
proofs that appear in this paper). However, the DSR and LSR
formats can also express proofs where σ causes C|σ to be a
tautology: the proof can simply map the pivot p to itself or to
any other literal in the substitution portion. We plan to support
this general case in the future.

LSR deletion lines start with a line ID, followed by a d
and the IDs of clauses to be deleted. Historically, the line
ID matches the ID of the most-recently-added clause so that
unordered proofs can be sorted. But most modern proof-logging
SAT solvers emit ordered proofs, so the line ID is ignored.

DSR does not use clause IDs, so deletion lines specify the
(literals of the) clause to be deleted directly. Thus, DSR deletion
lines only delete a single clause at a time.
The only addition to the LSR format from LPR is the second

part of the substitution. If no variable-literal mappings are
provided, then the substitution is a partial truth assignment,
which is the type of witness used for PR proofs. It is in this
way that the SR formats are backwards compatible.

VI. SR PROOF CHECKING TOOLS

Absent a dedicated SR proof checker, DSR proofs can
be checked by converting them into DRAT and then using
conventional DRAT/LRAT checkers. We implemented such a
conversion algorithm by extending one that converts DPR proofs
into DRAT [20]. The most important change to the algorithm is

5 The choice to use p as a separator is a historical one. In PR, the pivot
appears twice: once in the clause, and once to indicate when the partial
assignment begins. For SR, we need a way to indicate when variable-literal
mappings occur. Since 0 is a reserved symbol, we use p once again.

that it uses multiple auxiliary variables to convert a single SR
clause addition step into a sequence of DRAT proof steps. More
specifically, it introduces a fresh variable (i.e., one not appearing
in either the formula or the proof) for each SR addition step
and several fresh variables for each variable-literal mapping in
the substitution.
Our implementation is open-source and can be found at:

https://github.com/marijnheule/sr2drat.

We also developed SR proof checking tools. Following the
tradition of drat-trim6 [22] and dpr-trim7 [13], we present
dsr-trim, a tool for adding hints to DSR proofs to create LSR
proofs. The source code is available at:

https://github.com/ccodel/dsr-trim.

At the moment, dsr-trim can only perform forwards checking,
which means that it checks DSR proofs from start to finish and
adds hints as it goes. In contrast, drat-trim and dpr-trim both
additionally implement backwards checking, meaning that they
read the entire DSR proof into memory first and then work
backwards from the derivation of the empty clause, ignoring
unreferenced proof lines. In practice, backwards checking can
significantly reduce the size of proofs. Adding backwards
checking to dsr-trim is ongoing work.
In addition to dsr-trim, we implemented lsr-check, an un-

verified LSR proof checker. Despite SR being more complicated
than PR/DRAT, lsr-check performs comparably to, and often
better than, its sister checkers lrat-check and lpr-check.
Both dsr-trim and lsr-check are configured to parse and/or

produce proofs in the ASCII format presented in Figure 4
and in a custom binary format that is faster to parse.
Compressed proofs tend to be 50-60% smaller in file size.
The compress/decompress tools included with dsr-trim
translate DSR and LSR proofs into and out of this binary format.

VII. THE VERIFIED LSR CHECKER

In this section, we discuss our implementation and verifica-
tion of an LSR proof checker in the Lean 4 interactive theorem
prover [12]. Our checker is open-source and can be found at:

https://github.com/FormalSAT/trestle.

6 https://github.com/marijnheule/drat-trim.
7 https://github.com/marijnheule/dpr-trim.

190

https://github.com/marijnheule/sr2drat
https://github.com/ccodel/dsr-trim
https://github.com/FormalSAT/trestle
https://github.com/marijnheule/drat-trim
https://github.com/marijnheule/dpr-trim

The core of the checker is a function called checkLine

that runs Algorithm 1 with UP hints (i.e., LSR). Ideally, we
would expect its correctness theorem to look like this:

checkLine F C line = ok → eqsat F (F ∧ C).

And indeed, this is equivalent to what we proved in Lean. But
to make our checker efficient, we implemented data structures
that cause the correctness theorem to look more complicated:

theorem checkLine_ok : models R F C →
checkLine ⟨R, τ, σ⟩ line = .ok S →
eqsat F (F ∧ C) := by . . .

There are three main differences between the correctness
theorems. The first is the use of a functional programming
idiom similar to the state monad: checkLine takes a state
triple of a CNF data structure R, a partial assignment τ , and
a substitution σ, along with the LSR line, and it returns an
updated ⟨R, τ, σ⟩ state triple S and its yes/no result. By passing
along R, τ , and σ, Lean can allocate the memory for these
structures once, rather than at the start of each proof line,
which makes the checker more efficient.
The second difference is that the literals of the candidate

clause C are stored in R rather than in a separate object. This
eliminates the need of writing the literals twice: once during
parsing, and once when copying them into R after checking
that C is SR. According to a CPU profiler, this sleight of hand
gives a 10% speedup on our longest-running benchmark.
The third and greatest difference is how we implement R, τ ,

and σ. We implement CNF formulas with a data structure we
call RangeArray. In the correctness theorem, we assume that
R models formula F and candidate clause C. We implement
τ and σ with data structures we call PPA and PS, standing
for “persistent partial assignment” and “persistent substitution.”
These three data structures enable our checker to efficiently
implement UP, but at the cost of a much more complicated
proof of correctness.
In total, our verified checker and its supporting theorems

and data structures comprise 8k LoC, and the verification
took 4 person months. Much of that time was spent adjusting
how the checker iterates across data structures in order to
make the compiled Lean code performant. For example,
implementing reduction (i.e., C|σ) with an API-breaking, tail-
recursive function, as opposed to a foldlM in the Except

monad, gave an immediate speedup of 60% on our longest-
running benchmark. We hope that future versions of the Lean
compiler will be less picky about generating performant code.
In the rest of this section, we discuss the RangeArray

and PPA data structures, as they represent the most technical
portions of our verification. These data structures use techniques
common in other SAT solving tools, including dsr-trim.

A. RangeArray

Given a type of boolean literals ILit, a straightforward
type for CNF formulas is List (List ILit). We use this
datatype in our SAT theory, since Lean provides good support
for lists. However, this datatype suffers from two drawbacks.
The practical drawback is that a nested list unnecessarily

x1 x2

C1

x3 x2 x3

C2

x5

C3

x3 x5

C4

x8 x2 x4

Candidate C

1 −2 3 −2 −3 5 −3 5 8 2 4

0 −3 5 6

data

indexes 9 dataSize

Fig. 5. An example of a RangeArray modeling a formula with four clauses
and a candidate clause C. All literals are stored in a single array data, and
clauses are defined based on index “pointers” in indexes. The candidate
clause is implicitly defined as being the additional literals in data beyond the
index stored in dataSize. The RangeArray deletes clauses by marking
their index as negative. In the example, clause C2 is deleted.

fragments the memory for clauses across separately-allocated
blocks, leading to additional memory overhead and reduced
cache locality. The other drawback is that nested lists cannot
easily implement clause deletion. Recall that SR proofs may
delete clauses from the formula. Because LSR hints are static
IDs, we cannot simply remove deleted clauses from the nested
list, as this would shift the indexes of the remaining clauses.
One hack is to replace the deleted clause with the binary

clause C⊤ := x1 ∨x1, since a tautology behaves like ⊤ in our
SAT theory. But then the proof checker would be hard-coded to
check for deletion by comparing clauses to C⊤, which strikes
us as inelegant and non-modular. Another solution is to use
option types.8 However, options (in our opinion) clutter up code
and proofs, and they add another layer of pointer indirection
in compiled code, which leads to slower runtimes.
Instead, we implemented a common data structure for CNF

formulas we call RangeArray. Figure 5 shows an example.
RangeArrays flatten the nested list datatype so that all literals
lie in a single array data, and clauses are defined using index
“pointers” stored in a second array indexes. Intuitively, the
ith clause starts at position indexes[i] in data, and it has
size indexes[i+1] - indexes[i]. However, deletion is
implemented by setting an index p to −p, so calculations
involving indexes use their absolute value.
The RangeArray has two main benefits. The first benefit is

that all literals lie in the same array, so iteration across an entire
formula has increased cache locality. The second benefit is
the ability to store the candidate clause C in the RangeArray
during proof checking. We do so by adding the literals of C to
data without assigning C an index. To differentiate between
formula literals and candidate clause literals, we store the total
number of formula literals in a variable dataSize. Thus, the
literals of C lie between dataSize and the actual size of data.
The commit operation adds C to the formula by assigning C
an index and increasing dataSize by |C|.
We relate RangeArray to our model for CNF formulas

and clauses with the models predicate. Given a formula
F and a candidate clause C, models R F C means that

8 Values of type Option V are either none or some v, where v:V.

191

g

max |gi|
g1

g2

g3

g4

3

8

8

0

−2

−1

3

8

8

−3

3

−1

4

8

8

−3

3

−1

Add x2 and x3

for one bump Bump g

Fig. 6. An example of the PPA data structure in use. If |gi| ≥ g, then the
sign of gi determines if τ(xi) is true (green) or false (red). Otherwise, τ(xi)
is undefined (gray). On the left, τ := x1, and its truth value is set for 6 rounds
of UP (6 bumps). In the middle, the unit clauses x2 and x3 are added to τ .
On the right, those two truth values are cleared with a bump in O(1) time.

R agrees with F and C on every non-deleted clause, such
that R[indexes[i]+j] = F[i][j] and R[dataSize+i]

= C[i]. We prove that commit and other operations preserve
the models predicate in the appropriate way.

B. Persistent partial assignments

Partial truth assignments can be implemented with an
Array (Option Bool). For any variable v, if A[v] = none,
then τ(v) is undefined, and otherwise A[v] = some b means
that τ(v) = b. However, this implementation would make it
inefficient to run Lines 1 and 9 of Algorithm 1: an array of
booleans would need to be cleared for each LSR line, and
the array would need to be restored from τ ′ to τ after each
reduced-clause check, of which there might be many. All of this
copying and clearing would make proof checking intractable.
A common solution to this problem is to use a technique

we call generation bumping (or timestamping), which enables
O(1) clearing of UP unit clauses. The idea is for the PPA to
store a global generation number g and a generation number gi
for each boolean variable xi. If |gi| ≥ g, then the sign of gi
determines if τ(xi) is true (+) or false (−). Otherwise, τ(xi)
is undefined. Incrementing g, called bumping, clears the truth
values of any xi with |gi| = g. Setting g := max |gi| + 1,
called clearing, clears all truth values.
Proof checkers can use generation bumping because they

know in advance the exact number of bumps any particular truth
value should be set for. Unit clauses found during UP in the
entailment phase (Lines 1–4) must persist in τ for all rounds of
UP in the SR phase (Lines 10–13). Since each reduced clause
UP refutation is marked in the LSR line, proof checkers can
count the expected number of refutations r during parsing,
and then set the generation number for unit clauses in τ to
|gi| := g + r + 1. In the SR phase, new unit clauses added to
τ ′ have their generation numbers set to g so that they can be
cleared afterwards with a single bump. Figure 6 illustrates how
this works. Our verification of checkLine includes careful
bookkeeping to ensure that the unit clauses in τ persist.
Our implementation of PS also uses generation bumping,

except that an additional array stores what each variable is
mapped to under the substitution.

VIII. EXPERIMENTAL RESULTS

Our experimental results demonstrate the clear benefits
of using a strong proof system. We highlight three main
results: (1) that our verified LSR checker performs well against
cake lpr [13], a fast, verified LPR checker, (2) that SR proofs
are smaller than their RAT counterparts, and (3) that our verified
checker incurs reasonable overhead compared to lsr-check,
our unverified LSR checker written in C.
Our benchmarks comprise five families of SR formulas:

Ramsey instance R(4, 4) ≤ 18, Schur number five [24], a
packing problem [1], and PHP and Tseitin formulas. We also
include a similar set of five PR families, where instead of
packing, Schur, and Ramsey, it has Mycielski [25], mutilated
chessboard, and two-pigeons-per-hole (tph) formulas [26].
We ran our experiments on a 2022 M1 Mac Studio with

32 GB of memory and a clock speed of 3.2 GHz. To replicate
our results, use the scripts found at:

https://github.com/ccodel/sr-benchmarking.

A. Comparison to cake lpr

We first show that our verified Lean checker performs
similarly to cake lpr. Our experiments covered the PR proof
families. Figure 7 summarizes our results.
For proofs that took longer than 1 second to verify, our

checker took an average of 81.95 seconds, while cake lpr
took an average of 124.86 seconds. The geometric mean of
the ratio of Lean / cake lpr runtimes was 0.718.
For proofs that took less than 1 second to verify, our checker

took proportionally longer than cake lpr. For example, the
geometric mean of the ratios of runtimes on these instances
was 5.84. A CPU profiler revealed that 75% of the runtime on
these instances was spent on Lean’s initialization code that is
run only once at the start of the program, and so this does not
represent a bottleneck for larger proofs.

B. Comparison of LSR and converted LRAT proofs

Next, we show that SR proofs are smaller than their DRAT
counterparts. For these experiments, we used sr2drat to
translate the DSR proofs into DRAT, which were then translated
into LRAT by drat-trim. (We convert from SR to DRAT instead
of SR to PR because we do not know of a way to use the PR
rule when converting from SR.)
The SR proofs are indeed smaller, both in terms of file size

and the number of proof lines. Figure 8 shows our results. On
average, an LSR proof was 6.2 MB and had 13.2K proof lines,
while the translated LRAT proof was 41.2 MB and had 1.03M
proof lines. The geometric means of ratios of LSR to LRAT for
file size and line count were 0.085 and 0.004, respectively.
Unsurprisingly, the smaller SR proofs were faster to check.

Figure 9 shows the runtimes for our Lean checker on the LSR
proofs compared to cake lpr on the converted LRAT proofs.
On average, our checker took 1.06 seconds, while cake lpr
took 4.00 seconds. For proofs that took longer than 1 second
to check, the geometric mean of the ratio of Lean / cake lpr
proof checking times was 0.255.

192

https://github.com/ccodel/sr-benchmarking

100 101 102 103 104 105 106
100

101

102

103

104

105

106

cake lpr runtime (msecs)

V
er
ifi
ed

L
ea
n
ru
nt
im
e
(m
se
cs
)

LPR proof checking times for Lean vs. cake lpr.

Tseitin
PHP
Mycielski
mchess
tph

Fig. 7. Comparison of proof checking times for our Lean checker and cake lpr
on the PR proof families. Points below the red y = x line indicate that our
checker was faster than cake lpr.

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

LRAT proof size (KB and # lines)

L
S
R
pr
oo
f
si
ze

(K
B
an
d
#
lin
es
)

Proof sizes for LSR vs. converted LRAT proofs.

Tseitin
PHP
Ramsey
packing
Schur
10x smaller

Fig. 8. Proof sizes in terms of KB (♦) and number of proof lines (△) for LSR
proofs and their LRAT conversions via sr2drat and drat-trim. Points below
the red y = x line indicate that the SR proofs were smaller.

101 102 103 104 105

101

102

103

104

105

cake lpr runtime (msecs)

V
er
ifi
ed

L
ea
n
ru
nt
im
e
(m
se
cs
)

Proof checking times for LSR vs. converted LRAT proofs.

Tseitin
PHP
Ramsey
packing
Schur
5x faster

Fig. 9. Comparison of proof checking times for our Lean checker on the
LSR proofs and for cake lpr on the LRAT conversions. Points below the red
y = x line indicate that our checker was faster than cake lpr.

C. Comparison of verified and unverified checking

Finally, we report that the added constant factors of our
verified proof checker are not excessive. On the LSR proofs, our
Lean checker is about 10x slower than our unverified checker
lsr-check. Figure 10 summarizes our results. On average, our
Lean checker took 1.06 seconds, while lsr-check took 0.10
seconds. For proofs that took longer than 1 second to check,
the geometric mean of the ratios of their runtimes was 9.936.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented our tools for verified SR proof
checking. SR admits short proofs for many problems, and
our experimental results show the clear advantages of using
SR over weaker proof systems such as RAT and PR. While
no modern SAT solver supports SR reasoning yet, we hope
that our tools—including our verified SR proof checker—will
support the future development of SR tooling for SAT solving.
There are several avenues for future work. One such avenue

is improving dsr-trim and our verified Lean checker. We plan
to add backwards proof checking to dsr-trim. In addition, the
Lean checker can be made more efficient by minimizing the
number of clauses it checks. We have seen that if D|σ = D,
then it can be skipped during the SR phase. By storing the first
and last clause containing each literal, we can compute the
range of clauses reduced by σ such that clauses outside of this
range are not reduced, and thus do not need to be checked.
Our lsr-check tool implements this technique. While it only
gives modest speedups, we hope that implementing it in Lean
will improve the Lean checker’s runtime.
Another avenue of future work is in automatically generating

symmetry-breaking SR proofs. CDCL SAT solvers tend to
struggle on problems with a high degree of symmetry. Adding

193

100 101 102 103 104
100

101

102

103

104

Unverified lsr-check runtime (msecs)

V
er
ifi
ed

L
ea
n
ru
nt
im
e
(m
se
cs
)

LSR proof checking times for Lean vs. lsr-check.

Tseitin
PHP
Ramsey
packing
Schur
10x slower

Fig. 10. Comparison of proof checking times for our Lean checker against
our unverified checker lsr-check on the SR proof families. Marks on the black
dashed line indicate that the Lean checker was 10x slower than lsr-check.

symmetry-breaking clauses via SR proof steps can be a trusted
way to improve solver runtimes.

X. SHORT SR PROOF OF R(4, 4) ≤ 18

We constructed a short SR proof of R(4, 4) ≤ 18 that consists
of only 38 clauses. The proof consists of four phases. In the
first phase, we assume WLOG that vertex v1 is connected to at
least nine blue edges and that these blue edges connect v1 to the
vertices v2, . . . , v10. To show this, we sort the edges adjacent
to vertex v1 so that the blue edges appear first. The clauses that
express the sorting are of the form e1,i∨e1,i+1 with 1 < i < n.
The SR witnesses for these clauses are a permutation of the
vertices. At this point, we can still exchange the two colors.
We use this to fix the edge e1,10 to blue. The result is shown
in Figure 11. This phase consists of 17 clause addition steps.
In the second phase, we assume WLOG that v2 is connected

to at least five red edges and that these red edges connect
v2 to the vertices v3, . . . , v7. In the proof, we sort the edges
adjacent to vertex v2 with the red edges appearing before the
blue edges. The clauses that express the sorting are of the
form e2,i ∨ e2,i+1 with 2 < i < 11. If we assign edge e2,7 to
blue, then unit propagation will result in a conflict as shown
in Figure 12. Thus, we may fix e2,7, e2,6, e2,5, e2,4, and e2,3
to red. This phase consists of 9 clause addition steps.
In the third phase, observe that there cannot be a red or blue

3-clique among the vertices v3, v4, v5, v6, and v7, because all
of them are connected to v1 with a blue edge and all of them
are connected to v2 with a red edge. There is a unique red-
blue assignment (modulo symmetry) that avoids a red or blue
3-clique among five vertices: a blue 5-cycle and a red 5-cycle.
We fix this assignment after sorting the edge for vertex v3

5

4

3

2
1

18

17

16

15

14

13

12

11
10

9

8

7

6

Fig. 11. First phase: sort the edges for vertex v1 so the blue edges come first,
and fix the edge e1,10 to blue.

5

4

3

2
1

18

17

16

15

14

13

12

11
10

9

8

7

6

Fig. 12. Second phase: sort the edges for vertex v2 so the red edges come
first, and fix e2,7 to blue. This results in a conflict via unit propagation: a red
4-clique v7, v8, v9, v10. As a consequence we can fix e2,7 to red.

(blue edges first). The result is shown in Figure 13. This phase
consists of 7 clause addition steps.
In the fourth and final phase, we first determine that the

edges e2,8, e2,9, and e2,10 must be blue. This is achieved with
two clauses. The first clause assumes e2,8 and e3,8 are red.
This results in a conflict by unit propagation. Afterwards we
only assume that e2,8 is red. This now results in a conflict
by unit propagation as well, as e3,8 is forced to be blue. The

194

5

4

3

2
1

18

17

16

15

14

13

12

11
10

9

8

7

6

Fig. 13. Third phase: There cannot be a 3-clique in red nor a 3-clique in blue
among v3, v4, v5, v6, and v7. There is a unique assignment that achieve this.
We sort the edges among these vertices and fix that unique assignment.

failed assumption allows us to fix e2,8 to blue. See Figure 14.

5

4

3

2
1

18

17

16

15

14

13

12

11
10

9

8

7

6

Fig. 14. Fourth phase: determine that e2,8, e2,9, and e2,10 must be blue.

Afterward the edges e3,8, e3,9, and e3,10 are sorted (red
first). This step is allowed because vertices v8, v9, and v10 are
still interchangeable at this point. Assuming that e3,9 is blue
results in a conflict by UP, so e3,9 (and thus e3,8) needs to
be red. The final refutation comes from the observation that
assuming either e4,8 to red or blue results in a conflict by UP.
This phase consists of 7 clause addition steps.

REFERENCES

[1] B. Subercaseaux and M. J. H. Heule, “The packing
chromatic number of the infinite square grid is 15,” in
Tools and Algorithms for the Construction and Analysis
of Systems, Lecture Notes in Computer Science, pp. 389–
406, 2023.

[2] M. J. H. Heule and M. Scheucher, “Happy ending: An
empty hexagon in every set of 30 points,” 2024.

[3] Z. Li, C. Bright, and V. Ganesh, “A SAT solver and
computer algebra attack on the minimum kochen-specker
problem,” Proceedings of the AAAI Conference on Artifi-
cial Intelligence, vol. 38, pp. 23559–23560, Mar. 2024.

[4] N. Rungta, “A billion SMT queries a day (invited paper),”
in Computer Aided Verification, pp. 3–18, 2022.

[5] M. Järvisalo, M. J. H. Heule, and A. Biere, “Inprocessing
rules,” in Automated Reasoning, pp. 355–370, 2012.

[6] M. J. H. Heule, B. Kiesl, and A. Biere, “Strong extension-
free proof systems,” Journal of Automated Reasoning,
vol. 64, no. 3, pp. 533–554, 2020.

[7] Proceedings of SAT Competition 2023: Solver, Benchmark
and Proof Checker Descriptions. Department of Computer
Science Series of Publications B, 2023.

[8] J. E. Reeves, M. J. H. Heule, and R. E. Bryant, “Pre-
processing of propagation redundant clauses,” Journal of
Automated Reasoning, vol. 67, Sep 2023.

[9] S. Buss and N. Thapen, “DRAT and propagation redun-
dancy proofs without new variables,” Logical Methods in
Computer Science, vol. Volume 17, Issue 2, Apr 2021.

[10] S. Gocht and J. Nordström, “Certifying parity reasoning
efficiently using pseudo-boolean proofs,” Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 35,
pp. 3768–3777, May 2021.

[11] A. Rebola-Pardo, “Even Shorter Proofs Without New
Variables,” in 26th International Conference on Theory
and Applications of Satisfiability Testing (SAT 2023)
(M. Mahajan and F. Slivovsky, eds.), vol. 271 of Leib-
niz International Proceedings in Informatics (LIPIcs),
(Dagstuhl, Germany), pp. 22:1–22:20, Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023.

[12] L. d. Moura and S. Ullrich, “The Lean 4 theorem prover
and programming language,” in Automated Deduction –
CADE 28, pp. 625–635, 2021.

[13] Y. K. Tan, M. J. H. Heule, and M. O. Myreen, “Veri-
fied propagation redundancy and compositional UNSAT
checking in CakeML,” International Journal on Software
Tools for Technology Transfer, vol. 25, no. 2, pp. 167–184,
2023.

[14] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens,
“CakeML: A verified implementation of ML,” in Princi-
ples of Programming Languages (POPL), pp. 179–191,
Jan 2014.

[15] M. J. H. Heule, Proofs of Unsatisfiability, ch. 15, pp. 635–
668. Frontiers in Artificial Intelligence and Applications,
2 ed., 2021.

[16] M. J. H. Heule, B. Kiesl, M. Seidl, and A. Biere,

195

“PRuning through satisfaction,” in Hardware and Software:
Verification and Testing, pp. 179–194, 2017.

[17] A. Haken, “The intractability of resolution,” Theoretical
Computer Science, vol. 39, pp. 297–308, 1985. Third
Conference on Foundations of Software Technology and
Theoretical Computer Science.

[18] S. A. Cook, “A short proof of the pigeon hole principle
using extended resolution,” SIGACT News, vol. 8, pp. 28–
32, oct 1976.

[19] G. S. Tseitin, On the Complexity of Derivation in
Propositional Calculus, pp. 466–483. 1983.

[20] M. J. H. Heule and A. Biere, “What a difference a variable
makes,” in Tools and Algorithms for the Construction and
Analysis of Systems, pp. 75–92, 2018.

[21] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and
S. Malik, “Chaff: engineering an efficient sat solver,” in
Proceedings of the 38th Design Automation Conference,
pp. 530–535, 2001.

[22] N. Wetzler, M. J. H. Heule, and W. A. Hunt, “DRAT-trim:
Efficient checking and trimming using expressive clausal
proofs,” in Theory and Applications of Satisfiability
Testing – SAT 2014, pp. 422–429, 2014.

[23] L. Cruz-Filipe, M. J. H. Heule, W. A. Hunt, M. Kaufmann,
and P. Schneider-Kamp, “Efficient certified RAT verifica-
tion,” in Automated Deduction – CADE 26, pp. 220–236,
2017.

[24] M. J. H. Heule, “Schur number five,” in Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence,
AAAI’18, 2018.

[25] E. Yolcu, X. Wu, and M. J. H. Heule, “Mycielski graphs
and PR proofs,” in Proceedings of the 23rd Conference
on Theory and Applications of Satisfiability Testing (SAT),
no. 12178 in Lecture Notes in Computer Science, pp. 201–
217, 2020.

[26] A. Biere, “Two pigeons per hole problem,” in Proc. of SAT
Competition 2013: Solver and Benchmark Descriptions,
p. 103, 2013.

196

Formal Methods in Computer-Aided Design 2024

2-DQBF Solving and Certification via
Property-Directed Reachability Analysis
Long-Hin Fung∗, Che Cheng∗, Yu-Wei Fan∗, Tony Tan† , Jie-Hong Roland Jiang∗

∗National Taiwan University, Taipei, Taiwan
{r12922017, r11943097, r11943096, jhjiang}@ntu.edu.tw

†University of Liverpool, Liverpool, England
tonytan@liverpool.ac.uk

Abstract—Recently a refined complexity analysis of the satisfi-
ability of Dependency Quantified Boolean Formula (DQBF) was
established. In particular, it is shown that the satisfiability of 3-
DQBF (i.e., DQBF with 3 existential variables) is NEXP-complete
and it becomes PSPACE-complete for 2-DQBF. While all state of
the art DQBF solvers focus on general DQBF, it is natural to ask
if there is an efficient approach for solving 2-DQBF – similar to
how modern SAT solvers differentiate between 2-SAT and 3-SAT
instances.
In this paper we show how to exploit modern Property

Directed Reachbility (PDR) solvers to solve 2-DQBF instances.
We present a novel linear time reduction from 2-DQBF instances
to PDR instances and show how to convert the inductive-invariant
certificates provided by PDR solvers to the Skolem-function
certificates for 2-DQBF instances. The experimental results show
that the approach is indeed more efficient than other state-of-
the-art DQBF solvers, at least in solving 2-DQBF instances.

Index Terms—Dependency quantified Boolean formula
(DQBF), property directed reachability (PDR), model extraction,
Skolem functions

I. INTRODUCTION

The dependency quantified Boolean formula (DQBF) [1,
2] extends the quantified Boolean formula (QBF) [3] with
Henkin quantifiers [4], which allow the dependency set of an
existential variable to be explicitly specified. This extension
makes DQBF a natural formalism for important applications
in system synthesis and verification, such as black-box syn-
thesis [5, 6], controller synthesis [7], engineering change
order [8], distributed synthesis for LTL fragments [9], etc,
all of which are beyond the expressiveness of QBF. These
amotivated the development of various DQBF solvers, e.g.,
HQS [10], Pedant [11, 12], DQBDD [13]. However, the
extension also lifts the complexity of the satisfiability for
DQBF to NEXPTIME-complete [1], in contrast to QBF which
is “only” PSPACE-complete.
Recent theoretical advancement uncovers important proper-

ties of special sub-classes of DQBF. For example, the satisfia-
bility of DQBFde – DQBF with disjoint or equal dependency
sets and CNF matrix – is shown to be in PSPACE [14].
Recently in [15] it is shown that the complexity of DQBF
depends on the number of existential variables in the same
way as the complexity of SAT depends on the width of the
clauses. For example, the complexity of 2-DQBF, i.e., DQBF
with 2 existential variables, is PSPACE-complete and for 3-
DQBF, it becomes NEXP-complete. This is analogous to SAT

whose complexity is NL-complete and NP-complete for 2-SAT
and 3-SAT, respectively. The main difference is the exponential
blow-up for the DQBF counterpart.
Analogous to modern SAT solvers that often differentiate

between 2-SAT and 3-SAT instances and solve them using
different methods, it is natural to ask whether we can do the
same for DQBF. In this paper, we investigate this question.
We are going to exploit the fact that 2-DQBF is essentially a
succinct version of 2-CNF formula [15], which implies that the
(un)satisfiability of 2-DQBF can be established by checking
whether there is a cycle in the (implicit) implication graph
that contains two vertices whose labeling assignments are
contradicting. We transform such a cycle detection problem
into a reachability problem in a way similar to the liveness-
to-safety conversion [16]. This conversion allows the state-of-
the-art model checking algorithms, such as IC3 [17], Property-
Directed Reachability (PDR) [18], and Abstractly Verifying
Reachability (AVR) [19], to be exploited for 2-DQBF solving.*
We also show how to convert the certificates provided by

the PDR algorithm to the certificates for 2-DQBF. For a false
2-DQBF instance, the trace of the corresponding reachability
can be converted directly to a certificate that witnesses the
falsity. For a true 2-DQBF instance, however, the conversion
is not as straightforward. In this case, the PDR algorithm gives
us an inductive state set separating the initial states from the
final states derived from the PDR computation and this set is
only an over-approximation of the reachable states. We will
show how to progressively refine the transition system until it
outputs an inductive set that reflects the appropriate Skolem
functions for the original 2-DQBF instance.
Note that at first glance, 2-DQBF and PDR may seem

to have little in common. PDR is essentially about graph
reachability problem, while 2-DQBF is about circuits with two
black-boxes. Thus, in retrospect, it is surprising that 2-DQBF
can be solved using PDR, owing to the connection between
2-DQBF and 2-SAT established in [15].
Experimental results show that our approach outperforms

all state-of-the-art DQBF solvers which demonstrates the
effectiveness of our approach, at least in solving 2-DQBF
instances. We also compare it with QBF solvers where we

*In this paper we refer to the IC3-based model-checking algorithms as PDR
algorithms.

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 25 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0009-0005-8341-2004
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_25
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_25
https://creativecommons.org/licenses/by/4.0/

reduce 2-DQBF instances to QBF instances. In all instances,
the QBF solvers time out. This is not surprising since the
only known reduction to QBF is the one in [3], which yields a
quadratic blow-up in the number of variables, hence, instances
quickly become too large and beyond the capability of even
the best QBF solvers.
This paper is organized as follows. In Section II we briefly

review the basic notations on DQBF and PDR. We show the
reduction from 2-DQBF instances to PDR instances as well
as the Skolem functions extraction in Section III. Our experi-
mental results are presented in Section IV. We conclude with
Section V. Our code and benchmarks are publicly available
on https://github.com/LH104729/2-DQBF-Solving-and-Certi
fication-via-Property-Directed-Reachability-Analysis.

II. PRELIMINARIES

Let Σ = {0, 1}, where 0 and 1 represent the Boolean
values false and true, respectively. As usual, ¬0 = 1 and
¬1 = 0. Let Σi and Σ∗ denote the sets of Boolean strings of
length i and arbitrary length, respectively. We use the symbols
a, b, c to denote Boolean constants, i.e., elements in Σ, and
the bar version ā, b̄, c̄ to denote Boolean constant vectors,
i.e., strings in Σ∗ with |ā| denoting the length of ā. Tuples
of values from Σ are written as strings, e.g., 100 denotes
(1, 0, 0). Boolean variables are denoted by x, y, z, u, v and the
bar version x̄, ȳ, z̄, ū, v̄ denote vectors of Boolean variables
with |x̄| denoting the length of x̄. We insist that in a vector
x̄ there is no variable occurring more than once. We write
x̄′ to denote the vector obtained by priming all the variables
in x̄. For convenience, we view the vectors x̄, ȳ, z̄ as sets of
variables and use set-theoretic operations on them, e.g., z̄ ⊆ x̄
means every variable in z̄ also occurs in x̄.
As usual, ϕ(x̄) denotes a (Boolean) formula† with vari-

ables x̄. When the variables are not relevant or clear from
the context, we simply write ϕ. For ϕ(x̄) and ψ(z̄) where
z̄ ⊆ x̄, we write ϕ(x̄)⇒ ψ(z̄) to denote that every satisfying
assignment of ϕ is also a satisfying assignment of ψ.
Let ϕ(x̄) be a formula. Let z̄ = (z1, . . . , zm) ⊆ x̄ and

z̄′ = (z′1, . . . , z
′
m). We write ϕ[z̄/z̄′] to denote the formula

obtained by simultaneously substituting each zi with z′i for
each 1 ⩽ i ⩽ m. For a string ā = (a1, . . . , am) ∈ Σm, ϕ[z̄/ā]
denotes the formula obtained by assigning each ai to zi. When
z̄ = x̄, we just write ϕ[ā] instead of ϕ[x̄/ā].
For z̄ ⊆ x̄ and ā ∈ Σ|x̄|, we write ā

⃓⃓
x̄↓z̄ to denote the

projection of ā to the components in z̄ according to the order
of the variables in x̄. For example, if x̄ = (x1, . . . , x5) and
z̄ = (x1, x2, x5), then 00101

⃓⃓
x̄↓z̄ is 001, i.e., the projection of

00101 to its 1st, 2nd and 5th bits.

A. Dependency Quantified Boolean Formula (DQBF)

A dependency quantified Boolean formula (DQBF) in
prenex normal form is a formula of the form:

Φ := ∀x̄ ∃y1(z̄1) · · · ∃yk(z̄k) φ (1)

†The results in this paper also hold when a formula is written in circuit
form, thus, the term “formula” can be taken to also mean “circuit”.

where each z̄i ⊆ x̄ and φ, called the matrix, is a quantifier-free
Boolean formula using variables in x̄∪{y1, . . . , yk}. We called
x̄ the universal variables, y1, . . . , yk the existential variables,
and each z̄i the dependency set of yi. We call Φ a k-DQBF,
where k is the number of existential variables in Φ.
A DQBF Φ in the form of Eq. (1) is satisfiable if there

is a tuple (f1, . . . , fk) of functions, where fi : Σ|z̄i| → Σ
for every 1 ⩽ i ⩽ k, and by replacing each yi with fi(z̄i),
the formula φ becomes a tautology. The tuple (f1, . . . , fk) is
called the (satisfying) Skolem functions for Φ and we say that
Φ is satisfiable by the Skolem functions (f1, . . . , fk), i.e., the
Skolem functions form a model of Φ.
It is known that the complexity of the satisfiability problem

for DQBF is parametric in k, similar to k-SAT: When k = 2,
it is PSPACE-complete and when k = 3, it becomes NEXP-
complete and that there is a parsimonious polynomial-time
reduction from general DQBF to 3-DQBF [15].
Even before [15] it is already known that k-DQBF is indeed

k-CNF formula in an exponentially more succinct represen-
tation [20, 21, 22]. We will briefly review this equivalence
achieved by a simple rewriting technique from [15], which
will be useful later on. Let Φ be k-DQBF as in Eq. (1).
For each 1 ⩽ i ⩽ k and for each c̄ ∈ Σ|z̄i|, let Xi,c̄ be a

variable and for d ∈ Σ, we define the literal Ldi,c̄ as:

Ldi,c̄ :=

{︄
¬Xi,c̄ if d = 0

Xi,c̄ if d = 1

Note that Ldi,c̄ = 1 if and only if Xi,c̄ = d.
For each (ā, b̄) ∈ Σn × Σk, where ā = (a1, . . . , an) and

b̄ = (b1, . . . , bk), define the clause Cā,b̄ as:

Cā,b̄ := L¬b1
1,c̄1

∨ · · · ∨ L¬bk
k,c̄k

where c̄i = ā
⃓⃓
x̄↓z̄i , for each 1 ⩽ i ⩽ k. The expansion of Φ

to a k-CNF formula, denoted by exp(Φ), is defined as:

exp(Φ) :=
⋀︂

(ā,b̄) s.t. φ[(x̄,ȳ)/(ā,b̄)]=0

Cā,b̄

It is known that Φ is satisfiable if and only if its expansion
exp(Φ) is satisfiable (in the sense of Boolean formula) [15].
Moreover, a satisfying Skolem functions (f1, . . . , fk) for
Φ correspond to a satisfying assignment of exp(Φ), where
Xi,c̄ = fi(c̄) for every 1 ⩽ i ⩽ k and c̄ ∈ Σ|z̄i|.
As mentioned in the introduction, one of the main ap-

plications of DQBF is black-box synthesis, also known as
Partial Equivalence Checking (PEC). It is defined as given a
Boolean circuit with some black-boxes, check whether there is
an implementation of the black-boxes such that the function of
the whole circuit is a tautology. It can be naturally expressed
as the satisfiability of DQBF where the number of black-
boxes corresponds to the number of existential variables in
the DQBF.

198

https://github.com/LH104729/2-DQBF-Solving-and-Certification-via-Property-Directed-Reachability-Analysis
https://github.com/LH104729/2-DQBF-Solving-and-Certification-via-Property-Directed-Reachability-Analysis

output

∨

∧ ¬

B1 B2

∨
¬ ∧

x1 x2 x3 x4 x5 x6 x7 x8

Fig. 1: A PEC example with two black-boxes B1 and B2 to
be synthesized.

Consider, for example, the circuit with two black-boxes
in Figure 1. The PEC solution is equivalent to the Skolem
functions of the following 2-DQBF:

∀x1 · · · ∀x10 ∃y1(x2, x9, x5) ∃y2(x5, x10, x8)(︂
x9 = (¬x3 ∨ x4) ∧ x10 = (x6 ∧ x7)

)︂
→
(︂
(x1 ∧ y1) ∨ ¬y2

)︂
The additional variables x9, x10 serve as the Tseitin variable
representing the values of ¬x3 ∨x4 and x6 ∧x7, respectively,
and y1 and y2 are the output variables of the two black-boxes
with the dependency sets (x2, x9, x5) and (x5, x10, x8).

B. Property-Directed Reachability (PDR)

A finite-state transition system is a system S = (x̄, I, T),
where x̄ is a finite set of Boolean variables, the initial condition
I(x̄) is a Boolean formula describing the set of initial states
and the transition relation T (x̄, x̄′) is a Boolean formula
describing the relation between one state and the next. A state
in the system S is a Boolean assignment to the variables in x̄.
Abusing the notation, we denote the states in S by strings in
Σ|x̄|. We will also view a formula ϕ(x̄) as a set of states, i.e.,
the set of strings ā where ϕ[ā] = 1.
A trace in S is a sequence of states ā0, ā1, ā2, . . . such that

I[ā0] = 1 and for every i ⩾ 0, T [āi, āi+1] = 1. A state ā is
reachable (in S), if there is a trace ā0, ā1, ā2, . . . in which ā
appears. A formula P (x̄) is S-invariant if every state reachable
in S satisfies P . It is S-inductive, if I(x̄)⇒ P (x̄) and P (x̄)∧
T (x̄, x̄′) ⇒ P (x̄′). Obviously, P is S-invariant, whenever P
is S-inductive. The converse however is not true: It is possible
that P is S-invariant, but not S-inductive, since the state that
makes P not S-inductive may actually be unreachable in S .
The formula P is often called a safety property.
Given a transition system S and property P , the PDR

algorithm decides if P is S-invariant. As output, it produces
a sequence of Boolean formulas F0, F1, . . . , Fm, all using
variables in x̄, such that:

• Fj is a formula that over-approximates the states that are
reachable in at most j steps, for every 0 ⩽ j ⩽ m.

• If P is S-invariant, Fm ⇒ P and Fm is S-inductive.

• If P is not S-invariant, it outputs a counterexample trace
ā0, ā1, . . . , ām constructed from F1, . . . , Fm that violates
the safety property P , i.e., P [ām] = 0.

For more details on the algorithm and its implementation, we
refer interested readers to [23, 17, 18, 19, 24].

III. 2-DQBF SOLVING AND CERTIFICATION

In this section we will show how to solve the satisfiability
of 2-DQBF with PDR algorithm. We present a linear time
reduction from 2-DQBFs to PDR instances in Section III-A.
We then show how to extract the Skolem functions from the
PDR certificates in Section III-B.

A. Linear time reduction from 2-DQBF to PDR

We first recall the approach for solving 2-SAT instances
which inspires our use of PDR in solving 2-DQBF. Given
a 2-CNF formula ϕ, we may assume w.l.o.g. that it is in
implicative normal form, i.e., a conjunction of implications
between literals:

⋀︁
1⩽i⩽n(ℓi,1 → ℓi,2). It can be viewed as a

directed graph G = (V,E), called the implication graph of ϕ,
where V is the set of all the literals in ϕ and (ℓi,1, ℓi,2) and
(¬ℓi,2,¬ℓi,1) are edges in E for every 1 ⩽ i ⩽ n. The formula
ϕ is not satisfiable if and only if there is a contradicting cycle
in G, i.e., a cycle that contains two contradicting literals. In
other words, checking the (un)satisfiability of ϕ is equivalent
to checking the existence of a contradicting cycle in G.
The main idea behind our encoding of 2-DQBF with a PDR

instance is similar. The only difference is that in the 2-DQBF
setting the edges in the implication graph are not explicitly
given. Instead, they are succinctly represented by the matrix
of the given 2-DQBF and it can be reduced to a PDR instance
in which a counterexample trace corresponds to a contradicting
cycle (in the implication graph of the expansion of 2-DQBF).
To illustrate, the following contradicting cycle:

ℓ0

ℓ1 ℓ2 ℓq−1

ℓq = ¬ℓ0

ℓq+1ℓn−2ℓn−1

where ℓq = ¬ℓ0, can be encoded as a counterexample trace:

init

(0, ℓ0, ℓ0)

(0, ℓ1, ℓ0)

(0, ℓq, ℓ0)

(1, ℓq, ℓ0)

(1, ℓq+1, ℓ0)

(1, ℓn−1, ℓ0)

(1, ℓ0, ℓ0)

where init is the dummy state that serves as the initial state and
the transition relation between two states can be constructed
from the matrix of the 2-DQBF. The change of the first bit
from 0 to 1 occurs when it reaches (0, ℓq, ℓ0) which indicates
the existence of a path from ℓ0 to ¬ℓ0. The safety property
states that the system will not reach (1, ℓ, ℓ) for any literal ℓ.
We now formally present the construction. Given a 2-DQBF

Φ := ∀x̄∃y0(z̄0)∃y1(z̄1) φ(x̄, y0, y1), where |x̄| = n, we
construct the transition system S = (r̄, I, T) where each
component is as follows.

199

The number of variables in r̄ is |r̄| = 6+n+max(|z̄0|, |z̄1|).
For convenience, we denote r̄ as the concatenation of the
following vectors:

r0 r1 k b x̄ kT bT z̄T

where |r0| = |r1| = |k| = |b| = |kT | = |bT | = 1, |x̄| = n and
|z̄T | = max(|z̄0|, |z̄1|). Note that the variables in x̄ are reused
as variables in the transition system S .
The intended meaning of r̄ is to encode a tuple (a, ℓi, ℓ0).

The bit r0 indicates whether it is the initial state. The bit
r1 is the “flag” bit indicating whether we have encountered
(1,¬ℓ0, ℓ0). The vector (k, b, x̄) corresponds to the literal ℓi :=
Lbk,z̄k , and (kT , bT , z̄T) corresponds to the literal ℓ0.
The initial condition I(r̄) is r̄ = 10 · · · 0 that encodes the

dummy init state. The transition relation T (r̄, r̄′) is defined as
ϕ1 ∨ϕ2 ∨ϕ3 where ϕ1 encodes the transition from the initial
state, ϕ2 encodes the transition from the state (r1, ℓi, ℓ0) to
(r′1, ℓi+1, ℓ0), and ϕ3 encodes the transition when the flag bit
changes from 0 to 1. Formally, they are defined as follows.

ϕ1 := (r̄ = 10 · · · 0) ∧ (r′0 = 0) ∧ (r′1 = 0)

∧
{︄
(k′
T = 0) ∧ ((b′, z̄′0) = (b′T , z̄

′
T)) if k′ = 0

(k′
T = 1) ∧ ((b′, z̄′1) = (b′T , z̄

′
T)) if k′ = 1

ϕ2 := (r0 = r′0 = 0) ∧ (r1 = r′1) ∧ (k′ = ¬k)
∧ z̄0 ∩ z̄1 = z̄′0 ∩ z̄′1
∧ (kT , bT , z̄T) = (k′

T , b
′
T , z̄

′
T)

∧
{︄
¬φ[(x̄ \ z̄0)/(x̄

′ \ z̄′0), y0/b, y1/¬b′] if k = 0

¬φ[(x̄ \ z̄1)/(x̄
′ \ z̄′1), y0/¬b′, y1/b] if k = 1

ϕ3 := (r0 = r′0 = 0) ∧ (r1 = 0) ∧ (r′1 = 1)

∧ (k, b, z̄k) = (kT ,¬bT , z̄T)
∧ (k, b, z̄k) = (k′, b′, z̄′k)
∧ (kT , bT , z̄T) = (k′

T , b
′
T , z̄

′
T)

Remark 1. The formula ϕ2 captures all the edges in the
implication graph of exp(Φ) in the sense that:

• For every s̄0, s̄1 ∈ Σ|r̄|, if ϕ2[s̄0, s̄1] = 1, then Ld0a0,c̄0 ∨
Ld1a1,c̄1 is a clause in exp(Φ) where di = s̄i

⃓⃓
r̄↓b, ai =

s̄i
⃓⃓
r̄↓k and c̄i = s̄i

⃓⃓
r̄↓z̄i for 0 ⩽ i ⩽ 1.

• Conversely, for every clause Ld0a0,c̄0 ∨ Ld1a1,c̄1 in exp(Φ),
there is s̄0, s̄1 ∈ Σ|r̄|, such that ϕ2[s̄0, s̄1] = 1, where
di = s̄i

⃓⃓
r̄↓b, ai = s̄i

⃓⃓
r̄↓k and c̄i = s̄i

⃓⃓
r̄↓z̄i for 0 ⩽ i ⩽ 1.

Finally, the safety invariant property P (r̄) is defined as:

P (r̄) := (k, b, z̄k) = (kT , bT , z̄T)→ ¬r1
That S and P capture precisely the satisfiability of Φ is stated
formally in Theorem 1.

Theorem 1. Φ is not satisfiable if and only if the safety
property P is not S-invariant.

Proof. We will show that there is a contradicting cycle in the
implication graph of exp(Φ) if and only if there is trace in S
that violates the safety property P (r̄).
(if) Suppose there is a counterexample trace s̄0, s̄1, . . . , s̄m.
We will use the following notations. For every 1 ⩽ i ⩽ m:

di = s̄i
⃓⃓
r̄↓b, ai = s̄i

⃓⃓
r̄↓k and c̄i = s̄i

⃓⃓
r̄↓z̄ai

.

Also let:

dT = s̄i
⃓⃓
r̄↓bT , aT = s̄i

⃓⃓
r̄↓kT and c̄T = s̄i

⃓⃓
r̄↓z̄aT

.

Note that s̄i
⃓⃓
r̄↓bT and s̄i

⃓⃓
r̄↓kT stay the same for every 1 ⩽ i ⩽

m, thus, dT , aT and c̄T are well defined. Let Li denote the
literal Ldiai,c̄i , for each 1 ⩽ i ⩽ m and LT the literal LdTaT ,c̄T .
By the definition of S and P , we have:

s̄1
⃓⃓
r̄↓r1 = 0, s̄m

⃓⃓
r̄↓r1 = 1 and L1 = Lm = LT .

Since s̄1
⃓⃓
r̄↓r1 and s̄m

⃓⃓
r̄↓r1 differ, there is an index 1 ⩽ q ⩽ m

such that:
s̄q
⃓⃓
r̄↓r1 = 0 and s̄q+1

⃓⃓
r̄↓r1 = 1.

That is, q is the index when the flag bit changes from 0 to
1. This change only happens when ϕ3[s̄q, s̄q+1] = 1, which
means Lq and LT are contradicting literals.
Since ϕ1 holds only on the dummy init state, for every 1 ⩽

i ⩽ m where i ̸= q:

ϕ2[(r̄, r̄
′)/(s̄i, s̄i+1)] = 1.

By Remark 1, each Li∨Li+1 is a clause in exp(Φ), for every
1 ⩽ i ⩽ m − 1 where i ̸= q. By routine inspection, these
clauses form a cycle in the implication graph of exp(Φ) that
contains the literals LT and Lq which are contradicting literals.
(only if) Suppose there is a contradicting cycle in the

implication graph of exp(Φ). Let the cycle be:

ℓ1 → · · · → ℓq → ℓq+1 → · · · → ℓm = ℓ1.

where ℓq is ¬ℓ1.
For each 1 ⩽ i ⩽ m, let di, ai, c̄i be such that Ldiai,c̄i = ℓi.

Let dT , aT , c̄T be such that LdTaT ,c̄T = ℓ1.
Consider the following trace s̄0, s̄1, . . . , s̄m+1, where each

s̄i is as follows.
• s̄0 = 10 · · · 0.
• For 1 ⩽ i ⩽ q, s̄i

⃓⃓
r̄↓r0 = 0, s̄i

⃓⃓
r̄↓r1 = 0, s̄i

⃓⃓
r̄↓k = ai,

s̄i
⃓⃓
r̄↓b = di, and s̄i

⃓⃓
r̄↓z̄ai

= c̄i.

• For i = q + 1, s̄i
⃓⃓
r̄↓r0 = 0, s̄i

⃓⃓
r̄↓r1 = 1, s̄i

⃓⃓
r̄↓k = aq ,

s̄i
⃓⃓
r̄↓b = ¬dq , and s̄i

⃓⃓
r̄↓z̄aq

= c̄q

• For q + 2 ⩽ i ⩽ m, s̄i
⃓⃓
r̄↓r0 = 0, s̄i

⃓⃓
r̄↓r1 = 1, s̄i

⃓⃓
r̄↓k =

ai−1, s̄i
⃓⃓
r̄↓b = di−1, and s̄i

⃓⃓
r̄↓z̄ai−1

= c̄i−1.

• For 1 ⩽ i ⩽ m + 1, s̄i
⃓⃓
r̄↓kT = aT , s̄i

⃓⃓
r̄↓bT = dT and

s̄i
⃓⃓
r̄↓z̄aT

= c̄T .

By routine inspection, s̄0, . . . , s̄m+1 is a counterexample trace
that violates the safety property P .

200

B. Proof extraction and model extraction

In this section, we will show how to extract the certificate
for the original 2-DQBF from the certificate provided by
the PDR algorithm. Let Φ be the given 2-DQBF as in the
previous section and let S = (r̄, I, T) and P be the constructed
transition system and the safety property.
If Φ is unsatisfiable, the PDR algorithm would give us a

counterexample trace s̄0, . . . , s̄m from which we can construct
the contradicting cycle in the implication graph of exp(Φ) as
described in the (if) direction in the proof of Theorem 1. Such
a contradicting cycle is the certificate for the unsatisfiability.
Now, consider the case when Φ is satisfiable. By Theo-

rem 1, P is S-invariant and the PDR algorithm outputs a
Boolean formula S(r̄) that is S-invariant and also is an over-
approximation of the reachable states from the initial states.
We will show how to extract the Skolem functions f0 and f1
for y0 and y1, respectively, from the formula S(r̄).
We first describe the main idea. Let GΦ be the implication

graph of exp(Φ). Let Tr(GΦ) be the transitive closure of GΦ.
To avoid clutter with parentheses, we write L→ L′ to denote
an edge from L to L′. The graph Tr(GΦ) will serve as the
guide in constructing the Skolem functions for Φ. The intuition
is that if the edge Xi,c̄ → ¬Xi,c̄ is present in Tr(GΦ), then
we have to assign Xi,c̄ to 0, which corresponds to the function
fi where fi(c̄) = 0. Similarly, if the edge ¬Xi,c̄ → Xi,c̄ is
present in Tr(GΦ), then we have to assign Xi,c̄ to 1, which
corresponds to the function fi where fi(c̄) = 1. If both edges
are not present in Tr(GΦ), we can freely assign Xi,c̄ to either
0 or 1. This intuition motivates us to introduce the following
definition.

Definition 1. Let 0 ⩽ i ⩽ 1 and c̄ ∈ Σ|z̄i|. The variableXi,c̄ is
free (w.r.t. Φ), if both edges Xi,c̄ → ¬Xi,c̄ and ¬Xi,c̄ → Xi,c̄

are not in Tr(GΦ).

We make a few observations stated formally below that give
us the criterion the satisfying Skolem functions should obey.
(O1) If a variable Xi,c̄ is free, there are Skolem functions

(f0, f1) where fi(c̄) = 0 and (g0, g1) where gi(c̄) = 1.
In other words, if Xi,c̄ is free, we can assign the value
of fi(c̄) to either 0 or 1.

(O2) If Xi,c̄ → ¬Xi,c̄ is an edge in Tr(GΦ), then the value
of fi(c̄) must be 0 for every Skolem function f0, f1 for
Φ.

(O3) If ¬Xi,c̄ → Xi,c̄ is an edge in Tr(GΦ), then the value
of fi(c̄) must be 1.

(O4) It is not possible that both Xi,c̄ → ¬Xi,c̄ and ¬Xi,c̄ →
Xi,c̄ are edges in Tr(GΦ), since both edges forms a
contradicting cycle, which will contradict the assumption
that Φ is satisfiable.

The main technical difficulty in constructing the Skolem
functions is that we do not have the graph Tr(GΦ) explicitly,
but only the formula S(r̄). To connect S(r̄) with Tr(GΦ),
we view the formula S(r̄) as a graph GS , where the set of
vertices is the same as the set of vertices in GΦ and the set
of edges is as follows. For b1, k1, b2, k2 ∈ Σ, for c̄1 ∈ Σ|z̄k1

|

and c̄2 ∈ Σ|z̄k2
|, (Lb1k1,c̄1 , L

b2
k2,c̄2

) is an edge in GS if and only
if

S[0, 0, k2, b2,Extx̄(c̄2, z̄k2), k1, b1, c̄1] = 1, (2)

where Extx̄(c̄2, z̄k2) is the assignment of x̄ where all variables
in z̄k2 are assigned according to c̄ and all variables in x̄ \ z̄k2
are assigned with 0.
The intuition of Eq. (2) is as follows. Recall that the states

in S represent the tuple (b, ℓi, ℓ0) for some literals ℓi, ℓ0. The
set of reachable states in S are such tuples where there is a
path from ℓ0 to ℓi in the graph GΦ, or equivalently, ℓ0 → ℓi
is an edge in Tr(GΦ). Now the graph GS can be viewed as an
over-approximation of Tr(GΦ), i.e., it contains all the edges in
Tr(GΦ) and possibly some other edges that are not in Tr(GΦ).
Lemma 1 below states some useful facts on GS .

Lemma 1. • The set of edges in GS is an over-
approximation of the set of edges in Tr(GΦ).

• If L1 → L2 is an edge in GS and L2 → L3 is an edge
in Tr(GΦ), then L1 → L3 is an edge in GS .

• If L → ¬L is an edge in Tr(GΦ), then ¬L → L is not
an edge in GS .

Proof. For the first bullet item, let L → L′ be an edge in
Tr(GΦ). Since Tr(GΦ) is the transitive closure of GΦ, there
is a path from L to L′ in GΦ, say:

L = L1 → L2 → · · · → Lm = L′

Let di, ai, c̄i be such that Ldiai,c̄i = Li. Then in the transition
system S = (r̄, I, T), consider the states:

s̄0, s̄1, . . . , s̄m,

where s̄0 = 10 · · · 0 and for each 1 ⩽ i ⩽ m:
• s̄i

⃓⃓
r̄↓r0 = 0,

• s̄i
⃓⃓
r̄↓r1 = 0,

• s̄i
⃓⃓
r̄↓k = ai,

• s̄i
⃓⃓
r̄↓b = di,

• s̄i
⃓⃓
r̄↓z̄ai

= c̄i,

• s̄i
⃓⃓
r̄↓kT = a1,

• s̄i
⃓⃓
r̄↓bT = d1,

• s̄i
⃓⃓
r̄↓z̄aT

= c̄1.

It is routine to verify that s̄0, s̄1, . . . , s̄m is a trace in S . In
particular, the state s̄m is reachable, i.e.:

S[0, 0, am, dm,Extx̄(c̄m), a1, d1, c̄1] = 1.

Hence by the definition of GS , L0 → Ln is an edge in GS ,
and thus, Tr(GΦ) is a subgraph of GS .
For the second bullet item, let Li = Ldiai,c̄i for i = 1, 2, 3

with L1 → L2 being an edge in GS and L2 → L3 being
an edge in Tr(GΦ). Consider the states s̄0, s̄1, s̄2, s̄3, where
s̄0 = 10 · · · 0 and for each 1 ⩽ i ⩽ 3:

• s̄i
⃓⃓
r̄↓r0 = 0,

• s̄i
⃓⃓
r̄↓r1 = 0,

• s̄i
⃓⃓
r̄↓k = ai,

• s̄i
⃓⃓
r̄↓b = di,

201

• s̄i
⃓⃓
r̄↓z̄ai

= c̄i,

• s̄i
⃓⃓
r̄↓kT = a1,

• s̄i
⃓⃓
r̄↓bT = d1, and

• s̄i
⃓⃓
r̄↓z̄aT

= c̄1.
By similar arguments as the first bullet item, we can verify
that the state s̄1 is reachable from s̄0, s̄2 is reachable from s̄1,
and s̄3 is reachable from s̄2. Hence,

S[0, 0, a3, d3,Extx̄(c̄3), a1, d1, c̄1] = 1,

and L1 → L3 is an edge in GS .
For the third bullet item, let L→ ¬L is an edge in Tr(GΦ)

and let L = Lda,c̄. Suppose to the contrary that ¬L→ L is an
edge in GS . Consider the states s̄0, s̄1, s̄2, s̄3, s̄4, where:

• s̄0 = 10 · · · 0
• s̄1

⃓⃓
r̄↓r0 = 0, s̄1

⃓⃓
r̄↓r1 = 0, s̄1

⃓⃓
r̄↓k = a, s̄1

⃓⃓
r̄↓b = ¬d,

s̄1
⃓⃓
r̄↓z̄ai

= c̄ ,

• s̄2
⃓⃓
r̄↓r0 = 0, s̄2

⃓⃓
r̄↓r1 = 0, s̄2

⃓⃓
r̄↓k = a, s̄2

⃓⃓
r̄↓b = d,

s̄2
⃓⃓
r̄↓z̄ai

= c̄ ,

• s̄3
⃓⃓
r̄↓r0 = 0, s̄3

⃓⃓
r̄↓r1 = 1, s̄3

⃓⃓
r̄↓k = a, s̄3

⃓⃓
r̄↓b = d,

s̄3
⃓⃓
r̄↓z̄ai

= c̄ ,

• s̄4
⃓⃓
r̄↓r0 = 0, s̄4

⃓⃓
r̄↓r1 = 1, s̄4

⃓⃓
r̄↓k = a, s̄4

⃓⃓
r̄↓b = d,

s̄4
⃓⃓
r̄↓z̄ai

= c̄ ,

• For 1 ⩽ i ⩽ 4, s̄i
⃓⃓
r̄↓kT = a, s̄i

⃓⃓
r̄↓bT = ¬d, and

s̄i
⃓⃓
r̄↓z̄aT

= c̄.
It is routine to check that s̄i is reachable from s̄i−1 for every
1 ⩽ i ⩽ 4. In particular, the state s̄4 violates the property P ,
which is a contradiction to the existence of S. Hence ¬L→ L
is not an edge in GS .

Now consider the following candidate Skolem functions for
0 ⩽ i ⩽ 1:

fi(z̄i) := S[0, 0, i, 1,Extx̄(z̄i), i, 0, z̄i] = 1 ∧
S[0, 0, i, 0,Extx̄(z̄i), i, 1, z̄i] = 0

where Extx̄(z̄i) denotes the substitution of all variables in
x̄ \ z̄i with 0. Intuitively it means that for every c̄ ∈ Σ|z̄i|, we
assign fi(c̄) = 1 if and only if L0

i,c̄ → L1
i,c̄ is an edge in GS

and L1
i,c̄ → L0

i,c̄ is not an edge in GS .
Note that after the first call of the PDR algorithm, the

candidate Skolem functions are not necessary the correct ones,
because the formula S(r̄) is only an over-approximation of the
reachable states, as shown in the following example.

Example 1. Let ψ := ∀x ∃y0(x)∃y1(x) y0 ̸= y1, which
is obviously satisfiable. The first call of the PDR algorithm
gives us the formula S(r̄) where the graph GS is depicted in
Figure 2. The candidate Skolem functions f0, f1 defined by
GS are the constant function 0, which obviously are not the
correct Skolem functions for ψ.

To verify that the candidate functions f0, f1 are indeed the
Skolem functions for Φ, we check the satisfiability of the
formula:

¬φ(x̄, y0, y1) ∧ y0 = f0(z̄0) ∧ y1 = f1(z̄1) (3)

X0,0 ¬X0,0 X0,1 ¬X0,1

X1,0 ¬X1,0 X1,1 ¬X1,1

Fig. 2: The transitive closure of the implication graph of the
expansion exp(ψ) has only the black edges, while the graph
GS also contains the red edges.

If it is unsatisfiable, then f0, f1 are indeed Skolem functions
for y0, y1. Otherwise, we need to refine either f0 or f1. Let
(ā, b0, b1) be a satisfying assignment of the formula in Eq. (3).
Let c̄0 = ā

⃓⃓
x̄↓z̄0 and c̄1 = ā

⃓⃓
x̄↓z̄1 . It implies the clause Cā,b0,b1

in exp(Φ) is violated, i.e., both literals L¬b0
0,c̄0

and L¬b1
1,c̄1

have
value 0. Note also that since φ(ā, b0, b1) = 0, by definition,
the clause Cā,b0,b1 is in exp(Φ), hence, both Lb00,c̄0 → L¬b1

1,c̄1

and Lb11,c̄1 → L¬b0
0,c̄0

are edges in GΦ, hence, in Tr(GΦ). In this
case we can show that both X0,c̄0 and X1,c̄1 are free, as stated
formally in the following lemma.

Lemma 2. Suppose Φ is satisfiable and suppose (ā, b0, b1) is a
satisfying assignment of the formula in Eq. (3). Let c̄0 = ā

⃓⃓
x̄↓z̄0

and c̄1 = ā
⃓⃓
x̄↓z̄1 . Then, both X0,c̄0 and X1,c̄1 are free.

Proof. Since (ā, b0, b1) is a satisfying assignment of the
formula in Eq. (3), it is also a satisfying assignment for ¬φ.
Thus, the clause Cā,b0,b1 is in exp(Φ), which means that:

Lb11,c̄1 → L¬b0
0,c̄0

and Lb00,c̄0 → L¬b1
1,c̄1

are both edges in GΦ, hence, in Tr(GΦ).
Assume to the contrary that at least one of X0,c̄0 and X1,c̄1

is not free. We first assume that X0,c̄0 is not free, i.e., one of
L¬b0

0,c̄0
→ Lb00,c̄0 and Lb00,c̄0 → L¬b0

0,c̄0
is an edge in Tr(GΦ). The

case when X1,c̄1 is not free can be treated in a similar manner.
If L¬b0

0,c̄0
→ Lb00,c̄0 is an edge Tr(GΦ), then there is a sequence

of edges in Tr(GΦ):

Lb11,c̄1 → L¬b0
0,c̄0

→ Lb00,c̄0 → L¬b1
1,c̄1

.

Since Tr(GΦ) is the transitive closure of Gφ, the edge Lb11,c̄1 →
L¬b1

1,c̄1
is also in Tr(GΦ) and hence in GS . By Lemma 1,

L¬b1
1,c̄1

→ Lb11,c̄1 is not an edge in GS . By the construction of f1,
we have f1(c̄1) = ¬b1, which contradicts the assumption that
(ā, b0, b1) is a satisfying assignment of ¬φ∧y0 = f0∧y1 = f1.
If Lb00,c̄0 → L¬b0

0,c̄0
is an edge in Tr(GΦ), by Lemma 1,

Lb00,c̄0 → L¬b0
0,c̄0

is an edge in GS and L¬b0
0,c̄0

→ Lb00,c̄0 is not an
edge in GS . By the construction of f0, we have f0(c̄0) = ¬b0,
which contradicts the assumption that (ā, b0, b1) is a satisfying
assignment of ¬φ ∧ (y0 = f0) ∧ (y1 = f1).

Remark 2. It is worth noting that Lemma 2 does not contradict
with the fact that (f0, f1) are not the correct Skolem functions
for Φ. It is possible that there are correct Skolem functions

202

X0,0 ¬X0,0 X0,1 ¬X0,1

X1,0 ¬X1,0 X1,1 ¬X1,1

Fig. 3: The closure of the original implication graph are the
black edges in black. Edges added to the closure after adding
X0,0 → ¬X0,0 are in blue. The red edges are the over-
aprroximated edges.

g0, g1, where g0 agrees with f0 on c̄0, but differ from f1 on
c̄1, or that g0 differs from f0 on c̄0, but agrees with f1 on c̄1.
To “fix” the candidate functions f0, f1, we add edges into

the graph GS . Consider the 2-DQBF ψ in Example 1. Taking
the constant functions f0, f1 = 0, the formula in Eq. (3) has
a satisfying assignment: x = 0, y0 = 0, y1 = 0. Lemma 2
implies that both X0,0 and X1,0 are free. We can “refine”
the function fi by adding the edge X0,0 → ¬X0,0, which is
equivalent to fixing the value f0(x) to 0. Note that to add the
edge X0,0 → ¬X0,0 into the graph GS , we only need to add
it to the transition of the system S . After calling the PDR
algorithm again, the graph GS is now as in Figure 3 and the
candidate Skolem functions become f0 = 0, f1 = 1, which
are indeed correct Skolem functions of ψ.
We formalise this idea in Algorithm 1. The while-loop

corresponds to the refinement of the candidate Skolem func-
tions. In Line 10 we force an assignment the assignment
f0,c̄0 = b0 by adding the edge L¬b0

0,c̄0
→ Lb00,c̄0 to the transition

relation T . The correctness of Algorithm 1 is stated formally
in Theorem 2.

Theorem 2. Algorithm 1 is correct.

Proof. The correctness of the reduction to the PDR instance
S and P follows from Theorem 1. What is left is to show that
the output Skolem functions f0, f1 are indeed the satisfying
Skolem functions for Φ (when Φ is satisfiable).
It suffices to show that the refinement step is correct. Sup-

pose Φ is satisfiable. Let (ā, b0, b1) be a satisfying assignment
of ¬ϕ∧y0 = f0∧y1 = f1. Lemma 2 implies that both f0(c̄0)
and f1(c̄1) are free, where c̄0 = ā

⃓⃓
x̄↓z̄0 and c̄1 = ā

⃓⃓
x̄↓z̄1 . Thus,

there are satisfying Skolem functions for Φ regardless of what
we choose to assign in the refinement step.
In each refinement step, we force one assignment, and

the number of free variables decreases by at least one per
refinement. Hence the algorithm will terminate and the output
(f0, f1) are correct Skolem functions.

Note that in the refinement step in Algorithm 1, we choose
to force f0(c̄0) = b0, which will implicitly force f1(c̄1) = ¬b1,
due to the clause Cā,b0,b1 in exp(Φ). Alternatively, we may
choose to force f0(c̄0) = b0, but this choice will not implicitly
force the value of f(c̄1). In our experiments we implement the

Algorithm 1 2DQR
Input: 2-DQBF Φ := ∀x̄ ∃y0(z̄0)∃y1(z̄1) ϕ(x̄, y0, y1)

1: Run the reduction as in Section III-A on Φ.
2: Let S = (r̄, I, T) and P be the output.
3: Run the PDR algorithm on S with the safety property P
4: if P is S-invariant then ▷ The input Φ is satisfiable
5: Let S(r̄) be the inductive safe set formula.
6: Construct the formulas f0(z̄0) and f1(z̄1) based on S.
7: while ¬ϕ ∧ y0 = f0 ∧ y1 = f1 is satisfiable do ▷ Refinement
8: Let (ā, b0, b1) be the satisfying assignment.
9: Let c̄0 = ā

⃓⃓
x̄↓z̄0 and c̄1 = ā

⃓⃓
x̄↓z̄1 .

10: T ← T ∨ ASSIGN(0, c̄0, b0) ▷ Forcing an assignment
11: Call the PDR algorithm on S = (r̄, I, T) and P .
12: Let S(r̄) be the inductive safe set formula.
13: Construct the formulas f0(z̄0) and f1(z̄1) based on S.
14: return f0, f1.
15: else ▷ The input Φ is not satisfiable
16: return UNSAT.

17: procedure ASSIGN(i, c̄, b0)
18: return (r0 = r′0 = 1)∧ (r1 = r′1)∧ (k = k′ = i)∧ (z̄i = z̄′i =

c̄) ∧ (¬b = b′ = b0) ∧ (kT , bT , z̄T) = (k′T , b
′
T , z̄

′
T)

forcing of f0(c̄0) = b0, which we believe is more efficient than
the other due to the “implicit” forcing.

IV. EXPERIMENTAL EVALUATION

Benchmarks: We generate two families of benchmarks:
PEC and succinct graph 2-colorability, which are then con-
verted to 2-DQBF.
(PEC) We generate PEC instances with two black-boxes

from the ISCAS89 benchmarks [25], where we randomly
choose two “sub-circuits” from each circuit and replace them
with two black-boxes. We ensure that the dependency sets of
the sub-circuits ranges from “being disjoint” to “being almost
equal”. The instances have 33-674 (universal) variables and
the states in the constructed transition systems have 61-1071
bits. In total, there are 624 instances. Each instance is post-
processed with the command fraig in ABC [26] and the
resulting test case is in circuit form.
The above method would generate satisfiable instances. We

obtain unsatisfiable instances by swapping the dependencies
set. Though such swapping does not always guarantee unsatis-
fiability, but it almost always produces unsatisfiable instances.
(Succinct graph 2-colorability) This family of benchmarks is

based on the succinct graph models introduced in [27] where,
instead of being given the list of edges in the graph, we are
given a Boolean circuit that represents the edges in the graph.
Let C(ū, v̄) be a Boolean circuit where |ū| = |v̄| = n. It
represents a graph GC where {0, 1}n is the set of vertices and
two vertices ā and b̄ are adjacent if and only if C(ā, b̄) = 1.
The problem of succinct graph 2-colorability is defined as:
Given a circuit C, decide if the graph GC is 2-colorable.
We generate 2-colorability instances by first generating two

random permutation circuits D,D′ : {0, 1}n → {0, 1}n. We
consider the graph where (x, x′) is an edge if the first bit of
D(x) is the same as the first bit of D′(x′). If we let D′ = D,
the graph defined by C is bipartite, i.e. 2-colorable. Otherwise,
the graph is unlikely to be bipartite.

203

Each random permutation is constructed in m rounds. In
each round, we randomly pick k ∈ [n], generate a clause
c ⊆ {x1, · · · , xn} with Pr[xi ∈ c] = 1

2 for i ̸= k and xk ̸∈ c,
and let xk to be xk ⊕ c. We generate one instance for each
n ∈ {2, · · · , 127} and set m = 2n. Again, each instance is
post-processed with the command fraig in ABC [26]. The
resulting instances are in circuit form.
We then use the following reduction to obtain 2-DQBF.

On input circuit C(ū, v̄) where |ū| = |v̄| = n, let Φ be the
following 2-DQBF:

∀x̄1∀x̄2 ∃y1(x̄1)∃y2(x̄2)
(︁
x̄1 = x̄2 → y1 = y2

)︁
∧ (︁

C(x̄1, x̄2) → y1 ̸= y2
)︁

where |x̄1| = |x̄2| = n. Intuitively, we regard the values 0, 1
as the colors and view a coloring on the vertices as a Boolean
function f : {0, 1}n → {0, 1}. The formula Φ states that y1
and y2 must represent the same function and that two adjacent
vertices have different colors. Thus, Ψ is satisfiable if and only
if the graph GC is 2-colorable.
Setup: We implement our method, which we call 2DQR,

using AVR [19] as the PDR solver and Z3 [28] as the SAT
solver and a parser for the SMT-LIB 2 format. We compare
its performance (with or without Skolem function generation
for satisfiable test cases) with DQBDD [13], HQS [10] and
Pedant [11, 12]. We run DQBDD without generating the
Skolem functions, while HQS and Pedant are run both with
and without Skolem function generation. The latest version of
HQS does not support Skolem function generation. When the
Skolem functions are needed, we use an older version of HQS.
Otherwise, we use the latest version. Since HQS and Pedant
do not take circuit form as input, Tseitin transformation is
applied to the instances before being fed to HQS and Pedant.
Each solver had 600 seconds to solve each instance. We run
the experiments on Ubuntu 22.04.3 LTS with 48 GB of 2400
MHz DDR4 memory and i5-13400 CPU.
Results: In the first batch of experiments, we compare

2DQR with other DQBF solvers on the PEC instances. The
cactus plots in Figure 4a show the results, where the horizontal
axis corresponds to the running time (s) and the vertical
axis to the number of solved instances. 2DQR means without
Skolem function generation and 2DQR_skolem means with
Skolem function generation. The time is measured starting
from when the input DQBF is read until it terminates/time
out, i.e., it includes the reduction time to PDR instance, the
pre-processing step fraig in ABC and the output generation.
For satisfiable instances, 2DQR outperforms the other

solvers by large margins. We remark that the Skolem function
generation introduces little run-time overhead since in most
cases, they need very few extra calls to the PDR solver. For
unsatisfiable instances, 2DQR outperforms HQBDD and HQS,
while Pedant outperformed 2DQR by a small margin.
Next, we provide a pairwise comparison between our

method and other solvers. The scatter plots in the log scale are
shown in Figure 4b, where each point represents an instance.
The horizontal axis corresponds to the time spent by 2DQR
and the vertical axis represents that by the compared solver.

In most plots, there are a lot of points lying on the bottom
right plane, a lot of which have minor differences and are
solved within 10 seconds by both methods. Also, there are a
lot of points lying on the top boundary of the graph, indicating
that there are a lot of cases that are solved by 2DQR but not
the others. As for the graph of Pedant v.s. 2DQR on the
unsatisfiable cases, the dots are quite close to the center line,
and there are only four cases in which Pedant solves but
2DQR does not.
Next, we analyze the circuit size generated by the three

methods, 2DQR generates an AIG in SMT2 format, while
HQS and Pedant generate an AIG in AIGER format. For a
fair comparison, we first remove the Tseitin variables from
the Skolem function given by HQS and Pedant using ABC,
which is done by first removing the definition from the file
and running read skolem.aig; write skolem.aig
on ABC. As for 2DQR, we transform the
SMT2 format to verilog format and run
read skolem.v; strash; write skolem.aig.
We also use fraig in ABC to do some optimization.
For the post-processing steps above, 2DQR takes 26 sec-

onds, 2DQR with fraig 33 seconds, HQS 10 seconds, HQS
with fraig 28 seconds, and Pedant 74 seconds. However,
Pedant with fraig takes more than a day to post-process,
so we exclude it here. In Figure 4c, we plot the number of
AND gates in the Skolem function as a scatter plot to give a
pairwise comparison between solvers. Only instances solved
by both solvers appear in this plot. It shows that 2DQR and
HQS performed similarly, and both outperformed Pedant
with quite a large margin. When fraig is used, that are
slight reductions on the number of AND gates for every solver.
Figure 4d shows that the performance of 2DQR and HQS are
similar, but 2DQR and 2DQR with fraig are slightly better
than HQS and HQS with fraig. Note also that Pedant’s
distribution is not close to the others.
In the construction of Skolem functions, on most PEC

instances, there is no extra call to the PDR algorithm. Out
of 624 instances, two require 1 extra call, one requires 2 extra
calls, one requires 17 extra calls, one requires 22 extra calls
and one 29 extra calls.
In the second batch of experiments, we consider the 2-

colorability instances. Figure 5 shows the results, where the
horizontal axis corresponds to the number of bits of the
graph, and the vertical axis corresponds to the time needed to
solve the instance. The vertical axis is in log scale for better
resolution. For the satisfiable instances, 2DQR outperforms the
other solvers by quite a large margin. Here, each instance
needs at least one more extra PDR call for the generation of
the Skolem function, which is expected as we need to choose
a color to assign to a partition before we can get a coloring.
For the unsatisfiable instances, 2DQR, DQBDD, and HQS could
not solve any instance of size at least 12 bits, but Pedant
solves almost all of them.
Additional remark: PEC (with 2 black boxes) and succinct

2-colorability are both PSPACE-complete [15, 29]. Thus, it is
natural to ask if we can reduce them to QBF instances and use

204

0 100 200 300 400 500 600

Time

200

250

300

350

400

450

500

550

600

650
#

 o
f

s
o
lv

e
s

SAT

2DQR

HQS

DQBDD

pedant

2DQR_skolem

HQS_skolem

pedant_skolem

0 100 200 300 400 500 600

Time

200

250

300

350

400

450

#
 o

f
s
o
lv

e
s

UNSAT

2DQR

HQS

DQBDD

pedant

(a) Number of solves vs time in PEC instances. The black horizontal dotted line indicates the number of instances.

10 2 10 1 100 101 102 103

10 2

10 1

100

101

102

103

D
Q

B
D

D

SAT

10 2 10 1 100 101 102 103

10 2

10 1

100

101

102

103
UNSAT

10 2 10 1 100 101 102 103

10 2

10 1

100

101

102

103

H
Q

S

10 2 10 1 100 101 102 103

10 2

10 1

100

101

102

103

10 2 10 1 100 101 102 103

2DQR

10 2

10 1

100

101

102

103

p
e
d
a
n
t

10 2 10 1 100 101 102 103

2DQR

10 2

10 1

100

101

102

103

(b) Scatter plot for the time needed on each instance.

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

H
Q

S
_
fr

a
ig

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

H
Q

S

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

2DQR_fraig

100

101

102

103

104

105

106

107

p
e
d
a
n
t

100 101 102 103 104 105 106 107

2DQR

100

101

102

103

104

105

106

107

(c) Scatter plot for the number of AND gates in the Skolem function on
each test case. fraig denotes the usage of fraig during post processing.
The axes are the number of AND gates.

100 102 104 106
0

25

50

2DQR_fraig

100 102 104 106
0

25

50

2DQR

100 102 104 106
0

25

50

HQS_fraig

100 102 104 106
0

25

50

HQS

100 102 104 106
0

25

50

pedant

(d) Histogram for the number of AND gates in the Skolem function of each method. The x-axis is the number of AND gates and the y-axis is the number
of instances.

Fig. 4: Various plots for PEC instances.

205

0 20 40 60 80 100 120

of bits

10 2

10 1

100

101

102

103

T
im

e
SAT

2DQR

HQS

DQBDD

pedant

2DQR_skolem

HQS_skolem

pedant_skolem

0 20 40 60 80 100 120

of bits

10 2

10 1

100

101

102

103

T
im

e

UNSAT

2DQR

HQS

DQBDD

pedant

Fig. 5: Time needed to solve for n-bit 2-colorability test cases.

QBF solvers to solve them. In all instances QBF solver time
out. This is not surprising since the only known reduction to
QBF is the one in [3] which yield quadratic blow-up in the
number of variables. For example, in the PEC instances with
n universal variables, the resulting QBF would have about
24(n+2)2 variables. Our smallest PEC instance already uses
24 universal variables, and the resulting QBF would have at
least 16000 variables, which is beyond the capability of current
QBF solvers.

V. CONCLUSIONS

We introduce a novel technique to use PDR algorithms
to solve 2-DQBF instances. The main insight is based on
the properties that 2-DQBF is essentially a succinct 2-CNF
formula. We also give a method for extracting both the positive
and negative certificates for 2-DQBF based on the certificates
provided by the PDR solver. We implement our reduction
with AVR as the PDR solver and empirically show that
this approach performs better than the state-of-the-art DQBF
solvers on most of the PEC and 2-colorability test cases with
a very large margin, except Pedant on some unsatisfiable
2-colorability test cases.
We believe our work is just the tip of the iceberg. First, we

note that the Skolem function generation could be improved
if we use an incremental approach, i.e., by modifying AVR to
support incremental solving like [30]. Another direction is to
efficiently integrate our 2-DQBF solver inside a general DQBF
solver, which is very similar in spirit to how modern SAT
solvers utilize 2-SAT solvers, e.g., when applying the Unit
Propagation strategy, the SAT solver inadvertently is solving
2-SAT instances. We leave this as future work.

ACKNOWLEDGEMENTS

We acknowledge the generous funding from the National
Science and Technology Council of Taiwan under grant NSTC
111-2923-E-002-013-MY3 and the NTU Center of Data Intel-
ligence: Technologies, Applications, and Systems under grant
NTU-113L900903.

REFERENCES

[1] G. Peterson, J. Reif, and S. Azhar. “Lower bounds for mul-
tiplayer noncooperative games of incomplete information”.
In: Computers & Mathematics with Applications 41.7 (2001),
pp. 957–992.

[2] V. Balabanov, H.-J. K. Chiang, and J.-H. R. Jiang. “Henkin
quantifiers and Boolean formulae: A certification perspective
of DQBF”. In: Theoretical Computer Science 523 (2014),
pp. 86–100.

[3] L. J. Stockmeyer. “The polynomial-time hierarchy”. In: The-
oretical Computer Science 3.1 (1976), pp. 1–22.

[4] L. Henkin. “Some Remarks on Infinitely Long Formulas”. In:
Journal of Symbolic Logic 30.1 (1961), pp. 167–183.

[5] C. Scholl and B. Becker. “Checking equivalence for partial
implementations”. In: Design Automation Conference (DAC).
2001, pp. 238–243.

[6] K. Gitina et al. “Equivalence checking of partial designs using
dependency quantified Boolean formulae”. In: International
Conference on Computer Design (ICCD). 2013, pp. 396–403.

[7] R. Bloem, R. Könighofer, and M. Seidl. “SAT-Based Synthe-
sis Methods for Safety Specs”. In: Verification, Model Check-
ing, and Abstract Interpretation (VMCAI). 2014, pp. 1–20.

[8] J.-H. R. Jiang, V. N. Kravets, and N.-Z. Lee. “Engineer-
ing Change Order for Combinational and Sequential Design
Rectification”. In: Design, Automation & Test in Europe
Conference & Exhibition (DATE). 2020, pp. 726–731.

[9] K. Chatterjee et al. “Distributed synthesis for LTL fragments”.
In: Formal Methods in Computer-Aided Design (FMCAD).
2013, pp. 18–25.

[10] R. Wimmer et al. “From DQBF to QBF by Dependency
Elimination”. In: International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT). 2017, pp. 326–343.

[11] F. Reichl, F. Slivovsky, and S. Szeider. “Certified DQBF Solv-
ing by Definition Extraction”. In: International Conference on
Theory and Applications of Satisfiability Testing (SAT). 2021,
pp. 499–517.

[12] F. Reichl and F. Slivovsky. “Pedant: A Certifying DQBF
Solver”. In: International Conference on Theory and Appli-
cations of Satisfiability Testing (SAT). 2022, 20:1–20:10.

[13] J. Sı́c and J. Strejcek. “DQBDD: An Efficient BDD-Based
DQBF Solver”. In: International Conference on Theory and
Applications of Satisfiability Testing (SAT). 2021, pp. 535–
544.

[14] C. Scholl et al. “A PSPACE Subclass of Dependency Quan-
tified Boolean Formulas and Its Effective Solving”. In: AAAI
Conference on Artificial Intelligence (AAAI). 2019, pp. 1584–
1591.

206

[15] L. Fung and T. Tan. “On the Complexity of k-DQBF”.
In: International Conference on Theory and Applications of
Satisfiability Testing (SAT). 2023, 10:1–10:15.

[16] A. Biere, C. Artho, and V. Schuppan. “Liveness Checking
as Safety Checking”. In: Electronic Notes in Theoretical
Computer Science 66.2 (2002), pp. 160–177.

[17] A. Bradley. “SAT-Based Model Checking without Unrolling”.
In: Verification, Model Checking, and Abstract Interpretation
(VMCAI). 2011, pp. 70–87.

[18] N. Eén, A. Mishchenko, and R. Brayton. “Efficient Implemen-
tation of Property Directed Reachability”. In: Formal Methods
in Computer-Aided Design (FMCAD). 2011, pp. 125–134.

[19] A. Goel and K. Sakallah. “AVR: Abstractly Verifying Reacha-
bility”. In: International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS). 2020,
pp. 413–422.

[20] U. Bubeck. “Model-Based Transformations for Quantified
Boolean Formulas”. PhD thesis. University of Paderborn,
2010.

[21] A. Fröhlich et al. “iDQ: Instantiation-Based DQBF Solving”.
In: Pragmatics of SAT Workshop (POS). 2014.

[22] V. Balabanov and J. R. Jiang. “Reducing Satisfiability and
Reachability to DQBF”. In: QBF Workshop. 2015.

[23] A. Bradley and Z. Manna. “Checking Safety by Inductive
Generalization of Counterexamples to Induction”. In: For-
mal Methods in Computer-Aided Design (FMCAD). 2007,
pp. 173–180.

[24] T. Seufert et al. “Everything You Always Wanted to Know
About Generalization of Proof Obligations in PDR”. In: IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 42.4 (2023),
pp. 1351–1364.

[25] F. Brglez, D. Bryan, and K. Kozminski. “Combinational
profiles of sequential benchmark circuits”. In: Proceedings
of IEEE International Symposium on Circuits and Systems
(ISCAS). 1989, pp. 1929–1934.

[26] R. Brayton and A. Mishchenko. “ABC: An Academic
Industrial-Strength Verification Tool”. In: International Con-
ference on Computer Aided Verification (CAV). 2010, pp. 24–
40.

[27] H. Galperin and A. Wigderson. “Succinct Representations of
Graphs”. In: Inf. Control. 56.3 (1983), pp. 183–198.

[28] L. De Moura and N. Bjørner. “Z3: An efficient SMT solver”.
In: International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS). 2008,
pp. 337–340.

[29] C. Papadimitriou and M. Yannakakis. “A Note on Succinct
Representations of Graphs”. In: Inf. Control. 71.3 (1986),
pp. 181–185.

[30] M. Blankestijn and A. Laarman. “Incremental Property Di-
rected Reachability”. In: Formal Methods and Software Engi-
neering. 2023, pp. 208–227.

207

Formal Methods in Computer-Aided Design 2024

Projective Model Counting for IP Addresses in
Access Control Policies

Loris D’Antoni, Andrew Gacek, Amit Goel, Dejan Jovanović,
Rami Gökhan Kıcı, Dan Peebles, Neha Rungta, Yasmine Sharoda, Chungha Sung

Amazon Web Services
Seattle, USA

{lorisd,gacek,amgoel,dejajov,ramikici,dgp,rungta,sharoday,chunghs}@amazon.com

Abstract—Zelkova is an AWS service that answers questions
about Identity and Access Management (IAM) access policies
such as “Does this policy allow public access?”. Zelkova formal-
izes IAM policies and the meaning of “public” as a logical query
that can be solved using SMT solvers. Among other conditions,
Zelkova defines a policy as public if it allows access from a
number of IP addresses that exceeds a given threshold. Encoding
this check so that it is supported by all SMT solvers in the
Zelkova portfolio is difficult because counting and restricting the
number of models are not core SMT features. We describe two
SMT encodings for checking whether the number of IPs allowed
by a policy exceeds a given bound. Both encodings generate an
SMT formula that can be discharged with a single call to an off-
the-shelf SMT solver. Our approach takes less than 3s to detect
whether a policy is public for 99.999% of the evaluated policies.

I. INTRODUCTION

Millions of customers use AWS to store their data in a vari-
ety of resources such as databases and key-value stores. These
resources are secure-by-default and accessible only when the
customer grants access. The customer can grant access by
authoring policies in the Identity and Access Management
(IAM) language. The IAM language can express properties
varying from simple sharing to complex constraints with a
logical combination of positive and negative operators.
AWS offers tools to help customers write and understand

their policies. One of these tools is Block Public Access
(BPA) [9] which protects customers from accidentally attach-
ing “public” policies to their resources.
The central design decision in BPA is the exact definition

of “public”, and three factors are at play here. First, the
definition must match a customer’s intuitions about public
access. Second, the definition must be mathematically precise
so it can be checked in a provable way. Specifically, a precise
mathematical definition of public access allows us to check
whether a policy is public using Zelkova [6], an IAM policy
analysis service based on SMT solvers. Third, the definition
must require no additional information from the customer so
that BPA itself can be a one-click solution.
The key idea underlying the AWS definition of public is

to examine a customer policy and extract out the trusted
entities—e.g. individual account IDs, networks, or users. In
general, a policy should only reference a limited number of
trusted entities. If there is any access granted outside this small

set of trusted entities, e.g., due to misuse of wildcards—e.g.,
a policy that allows access from any account ID—the policy
is considered to be granting public access. However, when
reasoning about IP addresses, treating each IP as a separate
trusted entity may make a policy look public when it really
is not. A single customer may own a large collection of IP
addresses, all of which are grouped together and considered
trusted—e.g., the company may own the 19.0.0/8 range
of IP addresses. This Classless Inter-Domain Routing (CIDR)
notation represents the set of 224 ≈ 1.7 × 106 IP addresses
between 19.0.0.0 and 19.255.255.255 inclusively. A
single customer policy could reference hundreds of similarly
sized CIDR blocks, which in total amounts to granting access
to the entire internet. Such a policy should be considered
public, so we need to update our definition of BPA to handle
IP addresses. For the domain of IP addresses we have decided
to draw a line at a specific number of IP addresses that
can be allowed before a policy is considered public. From
conversations with customers, we identified that any number
of IP addresses larger than a single /8 CIDR block—i.e., 224

IP addresses—should be considered public.
To check for public access, Zelkova turns an IAM policy

into a logical query that is discharged using a portfolio of SMT
solvers. The original version of the BPA check [9] removes
all trusted parts of the policy and then compiles the remaining
parts into a single logical formula. If an SMT solver finds a
model for the generated formula, the policy allows untrusted
access and is marked public. To support IP addresses as trusted
entities, we must precisely count how many IP addresses are
allowed by the policy after the other trusted parts are removed.
Today, there are no SMT solvers that support precise model

counting and that can solve this problem within a few sec-
onds [19]. Therefore, we encode this bounded projective IP-
counting problem into a single SMT query using arithmetic.
The key idea of our encoding is to split the set of IP addresses
into equivalence classes for which counting is trivial and then
reduce the bounded projective IP-counting problem to an SMT
query that checks if the sum of the IP counts in the “allowed”
equivalence classes exceeds the given bound. We also present
an encoding that eliminates the need for arithmetic by pre-
computing minimal sets of summands which will exceed the
bound. These two encodings allow us to solve the bounded
projective IP-counting problem using existing SMT solvers

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 26 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_26
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_26
https://creativecommons.org/licenses/by/4.0/

with the time constraints imposed by AWS customer needs
(i.e., within 3 seconds per check). We remark that both
encodings use a single SMT query and do not rely on features
such as incremental solving of multiple SMT queries (e.g.,
one per equivalence class), which may result in expensive
enumeration and are not necessarily supported by all SMT
solvers.
Contributions: This paper makes three contributions:
We formalize the bounded projective IP-counting prob-

lem (Section II) and illustrate how Block Public Access needs
to solve this problem (Section III).
We design two sound and efficient SMT encodings for

solving the bounded projective IP-counting problem (Sec-
tion IV). The encodings compute equivalence classes of IP
addresses and separately compute the sizes of each equivalence
class, thus bypassing the need to reason about individual IP
addresses and the need for model counting. The first encoding,
which is supported by all but one of the SMT solvers in the
Zelkova portfolio, requires support for arithmetic operations
(e.g., summing) on top of the theories already required by
Zelkova. The second uses a knapsack-based approach to iden-
tify combinations of equivalence classes that can exceed the
threshold and avoids arithmetic operations, thus imposing no
additional requirements on the SMT solver. This last encoding
is supported by all SMT solvers in the Zelkova portfolio.
We evaluate the encodings on 700,000 policies containing

IP addresses; our approaches take less than 3s (the time limit
required by the target application) to detect whether a policy
is public for 99.999% of the evaluated policies (Section V).

II. THE BOUNDED PROJECTIVE IP-COUNTING PROBLEM

In this section, we first describe the AWS policy language
and its semantics, and then define the problem of checking
whether the number of IP addresses for which at least one
request is allowed by a given policy exceeds a given bound.
The AWS policy language is defined as serialized JSON [1].

In this paper, we describe a simplified abstract syntax of the
core constructs of the language to simplify our exposition. As
done in prior work [9], we model an IAM policy as a set of
statements that can either allow or deny a set of requests. A
request is granted when it is allowed by at least one statement
and not denied by any statement. In the rest of the section, we
formalize these concepts.
Requests. We assume a set of variables V , which represent
the possible fields in a request—e.g., principal, action,
resource, and sourceIP are variables.
A request r : V → val is a function that maps a variable

to its value (the value can be null). For example, the partial
snippet of a request r1 shown in Figure 1 maps the variable
principal to the value 111122223333:user/Bob, the
variable action to the value s3:ListBucket, the variable
resource to the value bucket/invoices, and the vari-
able sourceIP to the value 20.121.201.3. Each variable
v ∈ V is associated with a value of a specific type in IAM and
we use τ(v) to denote it. Common value types are booleans,
strings, and IP addresses. Less common types are integers

r1:(principal: 111122223333:user/Bob,
action : s3:ListBucket,
resource : bucket/invoices,
sourceIP : 20.121.201.3,
username : Bob, ...)

Fig. 1: A request allowed by statement s3 in Figure 2.

and floats. Every request contains the variables principal,
action, and resource, whereas others are optional. Re-
quests might not contain values for all the variables, so we
allow r to map variables to the special value null.

Statements. A statement s is a pair (e,Ψ) where e is either
the value allow (we call these statements allow-statements)
or the value deny (we call these statements deny-statements),
and Ψ : V -→ pred is a partial function that maps variables to
predicates. For example, in the statement s3 = (allow,Ψ3)
in Figure 2, Ψ3 maps the variable action to the predicate
stating that the action of a request should start with s3: (i.e.,
the predicate is represented by the pattern s3:*). Common
predicate types are simplified regular expressions to restrict
values of strings, boolean comparisons, and Classless Inter-
Domain Routing (CIDR) [3] descriptions of sets of IP ad-
dresses. For example, the IP range 20.0.0.0/7 allows the
232−7 = 33, 554, 432 IPv4 addresses in the range 20.0.0.0
to 21.255.255.2551, which also includes the IP address
20.121.201.3 from the request r1 in Figure 1.
We use V (s) to denote the set of variables in the domain of

Ψ—i.e., all the values for which the partial function is defined.
Every statement always maps the variables principal,
action, and resource to a predicate.
Intuitively, a statement matches a request if, for every

variable appearing in the statement, the request’s values are
models of the corresponding predicates in the statement.
Definition (Statement-Matching Requests): Given a re-

quest r and a statement s = (e,Ψ) we say that s matches
the request r if and only if, for every v ∈ V (s), the value
r(v) is a model of the predicate Ψ[v]. We write M(s) to
denote the set of all requests matched by s—i.e, M(s) = {r |�
v∈V (s) Ψ[v](r(v))}.
The statement s3 = (allow,Ψ3) in Figure 2 has five

keys principal, action, resource, sourceIP, and
username and matches the request r1 in Figure 1.
We simplify the syntax of IAM policies and assume that

each key is associated with its predicate. Our implementation
maps the JSON representation of statements to this predicate
format; this translation is straightforward and syntax-directed
and we do not present it formally here.

Policies. A policy P = {s1, s2, ..., sn} is a set of statements
and we use AS(P) (resp. DS(P)) to denote all the allow
(resp. deny) statements in P. We write P = (AS(P), DS(P))

1We note that some of the IP addresses in this range are not usable, e.g.,
20.0.0.0 and 21.255.255.255, but in this paper we assume the size
of a CIDR also considers unusable IP addresses.

209

s1:(allow, (principal: *,
action : s3:*,
resource : bucket/*,
sourceIP : 201.0.0.0/7,
account : 444455556666))

- -
s2:(allow, (principal: *,

action : s3:*,
resource : bucket/*,
sourceIP : 14.0.0.0/7,
username : Alice))

- -
s3:(allow, (principal: *,

action : s3:*,
resource : bucket/*,
sourceIP : 20.0.0.0/7,
username : Bob))

- -
s4:(deny, (principal: *,

action : s3:*,
resource : bucket/*,
sourceIP : 14.0.0.0/8))

Fig. 2: An IAM policy with three allow statements s1, s2, s3
and one deny statement s4. The predicates in green describe IP
ranges, and the predicates 14.0.0.0/7 and 14.0.0.0/8
describe overlapping sets of IP addresses.

to directly denote these two sets and a and d instead of s to
denote an allow or deny statement respectively.
Definition (Granted Requests): A policy P grants a

request r if and only if there exists an allow statement that
matches the request, i.e., ∃a ∈ AS(P). r ∈ M(a), and there
does not exist a deny statement that matches the request, i.e.,
∀d ∈ DS(P). r ̸∈ M(d). We write Granted(P) to denote
the set of all requests granted by the policy P , which can be
defined as follows.

Granted(P) = (
6

a∈AS(P)

M(a)) \ (
6

d∈DS(P)

M(d))

The policy depicted in Figure 2 has three allow statements
and one deny statement and allows the request r1 shown in
Figure 1, which only matches statement s3.

Problem Definition. Given a policy P we define the set of
IPs for which at least one request is granted by P as the set
IPSet(P) = {r(sourceIP) | r ∈ Granted(P)}. We are
now ready to define the problem solved in this paper.
Definition (Bounded Projective IP-Counting Problem):

The bounded projective IP-counting problem is to determine
if the number of IP addresses from which at least one request
is allowed by a policy P exceeds a given IP-count threshold
τ , which formally can be stated as |IPSet(P)| > τ .

III. ILLUSTRATIVE EXAMPLE

We illustrate our approach for solving the IP-count bound-
ing problem using the example policy presented in Figure 2.
This policy is for an Simple Storage Service (S3) bucket [2],

an object storage service, and it consists of four statements s1,
s2, s3 and s4.
The first statement s1 grants access for anyone from account

444455556666 to perform S3 actions on any S3 object in
the bucket bucket. The second statement s2 grants access for
a user named Alice to perform S3 actions on any S3 object in
the bucket bucket. Similarly, the third statement s3 grants
access for a user named Bob to perform S3 actions on the
same objects. Because users work in different companies, the
statements allow requests from different ranges of IP addresses
for each user (denoted in green).
The fourth statement s4 is a deny-statement that removes

access for any requests coming from an IP in the range
14.0.0.0/8. This IP range is a subset of the IP range
14.0.0.0/7 allowed by statement s2.
The question we are interested in answering is whether the

policy in Figure 2 allows public access to the S3 bucket. As
discussed in Section I, some AWS customers want to consider
a resource to be publicly accessible if the number of IP ad-
dresses from which one can issue an allowed request exceeds
a given threshold. However, not all IPs should contribute to
the total count. In our example, the statement s1 only allows
requests from a specific account ID. Because account IDs are
assigned by AWS (unlike usernames), this statement is already
associated with what in Section I we called a trusted entity
and it is irrelevant how many IP addresses it allows access
from. The existing work on AWS public access [9] can detect
such trusted entities and remove this statement from the policy
before we need to reason about IP addresses.
Once statement s1 has been removed, we are ready to count

how many IP addresses the other statements allow requests
from. In this section, we assume that the threshold is τ =
224 = 16, 777, 216 IP addresses—i.e., the size of a single /8
CIDR block, which is the largest block size owned by a single
entity. In general, the threshold can be set to any value.
Checking whether the number of IP addresses exceeds the

threshold requires counting how many IP addresses one can
issue an allowed request from, a problem that on the surface
requires going beyond the capability of SMT solvers, the
current tool of choice for reasoning about public access in IAM
policies [9], [6]. The encodings proposed in this paper provide
a way of checking if the number of allowed IP addresses
exceeds the threshold τ using traditional SMT solvers (i.e.,
without counting models).
We discuss what are the key insights of the encoding.
IP Equivalence Classes: The SMT encoding used by

Zelkova to describe what requests each statement allows (or
denies) is a conjunction of monadic predicates2 where each
predicate describes what values a request can contain for
each specific variable, and particularly for source IPs. For
example, the statement s2 is translated by Zelkova into the
following SMT formula ϕs2 involving the theory of Strings
(e.g., L(R) denotes the language of a regular expression R),

2We use the term monadic for predicates that involve one variable—e.g.,
the predicate x > 0 is monadic, whereas the predicate x > y is polyadic.

210

and bit-vectors (e.g., in ip range(sourceIP,I) denotes a
predicate for checking if the value of variable sourceIP is
in the set of bit-vectors encoding IPs belonging to the CIDR
block I):

principal ∈ L(*) ∧ action ∈ L(s3:*)∧
resource ∈ L(bucket/*)∧

in ip range(sourceIP,20.0.0.0/7)∧
username = “Alice”

(1)

The final result describing whether a request is allowed by
the policy is expressed by the formula ϕP (x̄,sourceIP) =
(ϕs1∨ϕs2∨ϕs3)∧¬ϕs4 , that is, a request is allowed by the pol-
icy if it is allowed by an allow statement and not denied by any
deny statement. The notation ϕP (x̄,sourceIP) separates the
variable sourceIP from all other free variables—i.e., x̄. Our
goal is to check whether #SAT (∃x̄. ϕP (x̄,sourceIP)) >
224. Because the source IP predicates are all monadic (i.e., they
do not interact with other variables other than sourceIP), the
predicate ϕP (x̄,sourceIP) can be expressed as a Boolean
combination of predicates of the following form (where i
denotes the ith statement):

ψ1
i (x̄) ∧ ψ2

i (sourceIP)

Therefore, our first key idea is that we can take
all satisfiable Boolean combinations of the predicates
ψ2
i (sourceIP)—i.e., all the predicates of the form

in ip range(sourceIP,range)—to obtain IP predicates
describing equivalence classes of IP addresses—i.e., if a
request is allowed (resp. denied) with an IP address, replacing
that address with another one in the same class will still make
the request allowed (resp. denied).
We show in Section IV-B how to compute equivalence, but

in our example, after removing s1, we have 3 equivalence
classes (other combinations are unsatisfiable and we simplify
each predicate in ip range(sourceIP,range) as simply
its range range):

• e1 = 14.0.0.0/8 is the result of the Boolean combi-
nation 14.0.0.0/7∧¬20.0.0.0/7∧14.0.0.0/8;

• e2 = 20.0.0.0/7 is the result of the Boolean combina-
tion ¬14.0.0.0/7∧20.0.0.0/7∧¬14.0.0.0/8;

• e3 = 15.0.0.0/8 is the result of the Boolean combina-
tion 14.0.0.0/7∧¬20.0.0.0/7∧¬14.0.0.0/8.

In our example, each predicate is defined using a single CIDR
block, but in general, a predicate can be described as a union
of CIDR blocks; we support this more general form in our
approach presented in Section IV.
Counting IPs without Model Counting: Once we have

computed equivalence classes, it is trivial to compute how
many IP addresses each class contains using the definition of
a CIDR block.

• |e1| = |14.0.0.0/8| = 224 = 16, 777, 216;
• |e2| = |20.0.0.0/7| = 225 = 33, 554, 432; and
• |e3| = |15.0.0.0/8| = 224 = 16, 777, 216.
With this information available, we can now write an SMT

formula that checks whether the sum of allowed IPs exceeds

the threshold. (We write ϕP (x̄,ip) to denote the result of
substituting the variable sourceIP with the constant ip in
the formula ϕP).

(if ∃x̄. ϕP (x̄,14.0.0.0) then 224 else 0) +
(if ∃x̄. ϕP (x̄,20.0.0.0) then 225 else 0) +
(if ∃x̄. ϕP (x̄,15.0.0.0) then 224 else 0) > 224

(2)

Intuitively, each row uses the formula ϕP to check if the policy
allows a representative IP address from each equivalence class,
in which case it contributes the size of that class to the counter.
In this case, the policy is public because it allows access from
224 + 225 > 224 IP addresses.
The constraint in (2) requires arithmetic to describe whether

the number of IP addresses exceeds the threshold. Because
some SMT solvers do not support both the theories of strings
and arithmetic at the same time [21], in Section IV we
also introduce a version of the encoding that pre-computes
what combinations of equivalence classes can exceed that
given threshold and generates a formula that does not involve
arithmetic. In our example, the minimal combinations of
equivalence classes that exceed the threshold are |e1| + |e3|
and |e2|, therefore one can write an SMT formula that does
not use arithmetic and that checks whether the sum of allowed
IPs exceeds the threshold as follows:

(ϕP (x̄,14.0.0.0) ∧ ϕP (x̄,15.0.0.0)) ∨
ϕP (x̄,20.0.0.0)

(3)

In this case, the formula is satisfied by making the second
disjunct true, thus denoting that the 225 IP addresses allowed
by the equivalence class e2 exceed the threshold 224.

IV. COUNTING IPS WITHOUT MODEL COUNTING

Before presenting our technique for solving the bounded
projective IP-counting problem presented in Section II, we
recall that our goal is to devise an SMT-based approach for
solving the problem that does not rely on model counting.
At the high-level, given a policy P and a threshold τ our

main approach proceeds in two steps:
1) We compute a set of equivalence classes of IP addresses

such that all the IP addresses appearing in the same
equivalence class e are treated the same way by the policy
P (Section IV-B)—i.e., if a request r with an IP address
in e is granted (resp. not granted) by the policy P , the
request obtained by replacing the IP address with any
member of the equivalence class e is still granted (resp.
not granted).

2) Once the equivalence classes are computed, we can
separately compute the size of each equivalence class
(i.e., the number of IP addresses in it), and rewrite the
SMT formula encoding the policy semantics to remove
any mention of IP addresses and instead directly reason
about the size of each equivalence class (Section IV-C).

Step 2 in the algorithm above requires arithmetic operations,
and for some solvers, specifically NFA2SAT [21], this theory
is not supported in combination with the many theories (e.g.,
strings) required to model IAM policies. To address this

211

limitation, we introduce a new encoding that avoids arithmetic
and instead uses a knapsack-based approach to compute a new
formula that identifies combinations of equivalence classes that
can lead to exceeding the threshold. The formula is entirely
expressible in propositional logic (Section IV-D).
Before presenting our approaches, we distill the essence

of the problem solved by our approach to a purely logical
formalization that is agnostic from the specific problem of
counting IPs (Section IV-A).

A. Bounded Projective Counting Problem

Prior work on verifying policies in the IAM language [9],
[6] has shown how, given a policy P , one can create a
formula ϕP (x1, . . . , xn) that is satisfied exactly by all the
granted requests in the set Granted(P). Specifically, each
variable xi corresponds to a variable in the set V , and a
satisfying assignment c1, . . . , cn corresponds to the request
mapping each variable to the corresponding value—i.e., [x1 -→
c1, . . . , xn -→ cn].
Thanks to the above formalization if we consider

sourceIP to denote the variable denoting a source IP address
in a request, by appropriately massaging the formula ϕ, we can
express the bounded projective IP-counting problem defined in
Section II as a formula of the following form

#SAT (∃x̄. ϕP (x̄,sourceIP)) > τ (4)

Here #SAT (·) is the function denoting the number of sat-
isfying assignments to a formula. Because sourceIP is the
only non-quantified (i.e., free) variable, the set of satisfying as-
signments to the formula ∃x̄. ϕP (x̄,sourceIP) corresponds
exactly to the set IPSet(P). Thus, Equation (4) correctly
captures the bounded projective IP-counting problem.
With this observation, we can focus the rest of the section

on the following generalized version of the counting problem.
Definition (Bounded Projective Counting Problem): We

say that a formula ϕ(x, y) exceeds a y-count threshold τ if
the following is true:

#SAT (∃x. ϕ(x, y)) > τ (5)

In the rest of the section, we show how one can avoid solv-
ing the hard #SAT (·) problem over the quantified formula
∃x. ϕ(x, y) by instead solving an easier satisfiability problem
over formulas involving only y.

B. Computing Equivalence Classes

Given a formula of the form ∃x. ϕ(x, y), the first step of our
algorithm is to compute equivalence classes for the variable y
for the following equivalence relation, which captures that two
values of y are equivalent if they behave the same for every
possible value of x. Because computing maximal equivalence
classes is in general unnecessary and in fact something we
want to avoid (as we will see later), we instead define valid
partitions of the domain into equivalent elements.
Definition (y-equivalence, y-partition): Given a formula

ϕ(x, y) say that two constants c1 and c2 are y-equivalent iff

∀x. ϕ(x, c1) ⇐⇒ ϕ(x, c2).

We say a partition Π = {e1, . . . , ej} forms a y-partition
of the domain Dom(y) with respect to y-equivalence iff (i)
Π is a valid partition of Dom(y) (i.e., the union of all ei is
Dom(y), and all elements of Π are disjoint), and (ii) for every
class ei ∈ Π, all elements of ei are y-equivalent.
If the variable y only appears within monadic predicates

in the formula ϕ(x, y) (which is the case for the problem of
IP-count bounding), we can always compute a y-partition of
Dom(y) by computing the set of minimal satisfiable Boolean
combinations of all the monadic predicates over y, also called
minterms [16].
For example, if the only predicates involving y in the

formula ϕ(x, y) are the monadic predicates ψ1(y) and ψ2(y),
a valid y-partition can be computed as the set

Π = {ψ1 ∧ ψ2,¬ψ1 ∧ ψ2, ψ1 ∧ ¬ψ2,¬ψ1 ∧ ¬ψ2}
If any of the predicates in Π is unsatisfiable, they can be
discarded before continuing to the next steps. In the worst
case, the y-partition can contain exponentially many classes
in the size of the formula ϕ(x, y), but in practice this is rarely
the case.
The appealing aspect of computing y-partitions in the

aforementioned way is that one does not need to reason
about satisfiability of the whole formula ϕ(x, y) and instead
only needs to check satisfiability of Boolean combinations
of predicates involving y, which in our application domain,
counting IPs, is a very friendly theory to work with, as we
illustrate next.
sourceIP-equivalence: For IP addresses, each monadic

predicate appearing in an IAM statement is a union of CIDR
blocks c1 ∪ . . .∪ cn (in our running example, each union only
contain one CIDR block). We note that two CIDR blocks
can be disjoint, or one can be a subset of the other; other
logical relations are not possible—e.g., partial overlap. We
can therefore assume that c1 ∪ . . . ∪ cn contains all disjoint
CIDR blocks (ones that are subsets of others can be removed).
After this pre-processing, by collecting positive and negative

terms, any satisfiable Boolean combination of unions of CIDR
blocks can be written in the following form:

(ψ1 ∩ . . . ∩ ψj) \ (ψj+1 ∪ . . . ∪ ψk).

The right-hand side of the \ is itself a union of CIDR blocks.
We next show that the left-hand side can also be rewritten

as a union of CIDR blocks and that the \ of two unions of
CIDR blocks can also be translated to a union of CIDR blocks.
Given two unions of CIDR blocks C1 ∪ . . .∪Cn and D1 ∪

. . . ∪ Dm, their intersection can be defined as the union of
CIDR blocks ∪i≤n,j≤mCi∩Dj , where the intersection of two
CIDR blocks is defined as:
1) C ∩D = ∅ if C is disjoint from D;
2) IP1/M1 ∩ IP2/M2 = IP2/M2 ∩ IP1/M1 = IP1/M1

if IP1/M1 is a subset of IP2/M2—i.e., M1 ≥ M2 and
the first M2 bits of IP1 and IP2 are the same.

Given two unions of CIDR blocks C1 ∪ . . .∪Cn and D1 ∪
. . . ∪Dm, their difference can be defined as ∪i≤n(∩j≤mCi \
Dj) where

212

1) C \D = ∅ if C ⊆ D;
2) C \D = C if C ∩D = ∅;
3) if IP1/M1 ⊃ IP2/M2—i.e., M1 < M2 and the

first M1 bits of IP1 and IP2 are the same—
we recursively split the CIDR of IP1/M1 into two
longer CIDR blocks (the one obtained by choosing the
(M1+1)-th bit to be 0 or 1, respectively) and recur-
sively subtract IP2/M2 from them—i.e., IP1/M1 ∩
IP2/M2 = (IP1[1..M1]0/M1+1 \ IP2/M2) ∪
(IP1[1..M1]1/M1+1 \ IP2/M2).

Because of the 0-1 splitting in case 3, the above algorithm
guarantees that CIDR blocks appearing in the final union are
all disjoint.
Example (From Section III): In the example in Sec-

tion III, the class e3 = 15.0.0.0/8 is the result of
14.0.0.0/7 \ (20.0.0.0/7 ∪ 14.0.0.0/8). First, we
rewrite the formula as (14.0.0.0/7 \ 20.0.0.0/7) ∩
(14.0.0.0/7\14.0.0.0/8)) following the definition of \
on unions of CIDR blocks. The first conjunct is 14.0.0.0/7
following case 2 of the definition of \ on CIDR blocks,
whereas the second conjunct is rewritten as (14.0.0.0/8 \
14.0.0.0/8)∪(15.0.0.0/8\14.0.0.0/8)) following
case 3. Now, the first disjunct rewrites to the empty set (case 1),
and the second disjunct rewrites to 15.0.0.0/8 (case 2). Fi-
nally, e3 = 14.0.0.0/7∩15.0.0.0/8 = 15.0.0.0/8.

C. Arithmetic Approach

The arithmetic approach formalizes the IP counting problem
as a summation problem. Recall that our goal is to asses
whether the formula in Equation (5) is true. One way to
encode this problem as an SMT formula involving arithmetic
operations for counting is to rewrite the formula as follows:

(Σc∈Dom(y) if ∃x. ϕ(x, c) then 1 else 0) > τ (6)

By skolemizing the existentially quantified variable x, we can
simplify the formula as follows:

(Σc∈Dom(y) if ϕ(xc, c) then 1 else 0) > τ (7)

The encoding in Equation (6) is expressible as an SMT for-
mula whenever Dom(y), the domain of y, is finite. However,
if the domain of y is large (which is the case when y represents
IP addresses) solving Equation (6) will either require a very
large SMT formula or iterating over many possible smaller
formulas (one per IP address).
We call this approach the Arithmetic Approach (AA).

Our Arithmetic Approach sidesteps this problem thanks to
the previously computed equivalence classes, which we call
ECy(ϕ(x, y))). For every equivalence class e in the set
ECy(ϕ(x, y)), we use the symbol repe to denote a repre-
sentative value of y from that class. Equation (7) can then be
optimized as the following formula:

(Σe∈ECy(ϕ(x,y)) if ϕ(xe, repe) then |e| else 0) > τ (8)

If we consider the example formula in Equation (1), and
the equivalence class e1 = 14.0.0.0/8 the formula

ϕ(xe1 ,14.0.0.0) can be obtained by replacing the variable
x with xe1 and the variable sourceIP with the concrete IP
14.0.0.0. The encoding in Equation (8) is expressible as
an SMT formula whenever the size |e| of an equivalence class
e is computable.
Because our y-partition algorithm computes equivalence

class that are expressed as monadic predicates ψ(y), all one
needs to generate the formula in Equation (8) is a technique
for counting the number of models for the theory of y, a trivial
problem for predicates involving IPs.
Theorem (Soundness of Arithmetic Approach): A for-

mula ϕ(x, y) exceeds a y-count threshold τ iff Equation (8)
holds.

Proof. We know that for any two elements c1, c2 in the same
y-equivalence class e ∈ ECy(ϕ(x, y)), the following holds
∀x. ϕ(x, c1) ⇐⇒ ϕ(x, c2). Thus, ∃x. ϕ(x, repe) holds iff
∃x. ϕ(x, c) holds for every c ∈ e. Therefore, the formula
if ∃x. ϕ(x, repe) then |e| else 0 correctly computes the size
of the equivalence class e.

Note that if the formula ϕ(x, y) lies in a theory T , the
constraints in Equation (8) are in the theory T + QFLIA.
Counting IPs: In particular, when y represents IP addresses,

|e| can be computed efficiently. If e is represented by a set of
disjoint CIDR blocks—which the Boolean operations defined
in Section IV-B guarantee—then |e| is the sum of the size of
each CIDR block. In particular, for IPv4, the size of a CIDR
IP/M is 232−M—e.g., |14.0.0.0/8| = 224.

D. Arithmetic-free Approach

The arithmetic approach discussed in Section IV-C requires
adding an arithmetic theory on top of the theory T needed
to reason about the formula ϕ(x, y). In some cases, an SMT
solver might support the theory T , but not the combined the-
ory, e.g., T +QFLIA. For example, the NFA2SAT solver [21]
is a powerful solver used by Zelkova [6] to prove properties of
policies, and relies on SAT solving to reason about strings and
does not support arithmetic. Since industrial applications rely
on portfolio solving to provide performance and robustness, an
ideal solution to the bounded projective IP-counting problem
should work with all possible available solvers.
In this section, we describe an approach for solving the y-

count bounding problem entirely within the theory T—i.e.,
without the need for an arithmetic theory for counting. We
call this approach the Arithmetic-free Approach (AFA).
At a high level, the AFA proceeds in the following steps:

1) First, it uses a dynamic programming algorithm (a variant
of knapsack) to compute all minimal combinations of
equivalence classes C that can cause the threshold τ to
be exceeded.

2) Then, it creates a new constraint ψC that is satisfied ex-
actly by combinations of equivalence classes that exceed
the threshold τ .

213

Computing Minimal Possible Violations: We have shown
in Section IV-C how we can compute the size |e| of every
equivalence class e. First, we define the combinations of
equivalence classes that are minimal possible violations of the
given threshold. Given a set A of equivalence classes, we write
Weight(A) to denote the sum of the sizes of the equivalence
classes in A—i.e., Weight(A) =

'
e∈A |e|.

Definition (Minimal Possible Violation): Given a set of
equivalence classes EC, we say that a subset A ⊆ EC forms
a possible violation of the threshold τ iff the sum of the sizes
of each class exceeds the threshold—i.e., Weight(A) > τ .
Furthermore, A is a minimal possible violation iff no

strict subset of A is a possible violation—i.e., ¬∃e ∈
A. Weight(A) ≥Weight(A \ {e}) > τ .
In the worst case, if we have n equivalence classes, it

is possible to have 2O(n) minimal possible violations. For
example, if we have a threshold of n/2 and each class has
weight 1, there are approximately

�
n
n/2

!
minimal possible

violations—i.e., all ways to pick n/2 classes from the set. In
practice, the number of minimal possible violations is often
much smaller as illustrated by the following example.
Example (Minimal IP Violations): We discussed in Sec-

tion III how the example in Figure 2 leads to three equivalence
classes, 14.0.0.0/8, 20.0.0.0/7, and 15.0.0.0/8.
The minimal possible violations are obtained by the sets

{14.0.0.0/8,15.0.0.0/8} and {20.0.0.0/7}.
The problem of computing the set of all minimal possible

violations can be solved using a variant of the knapsack
dynamic programming algorithm. Intuitively, starting from an
empty set, one can build incrementally larger subsets, by
adding additional equivalence classes as long as the unused
equivalence classes can still be used to cross the threshold.
By considering the equivalence classes ordered by their size,
this process ensures that we can stop as soon as we cross the
threshold, resulting in a minimal possible violation.
Minimal Satisfiable Violations: We now assume we have

computed the set MPV = {A1, . . . , Am} of all minimal
possible violations. The last step is to find one that is an actual
satisfiable violation—i.e., a set Ai such that each class e ∈ A
makes the formula ∃x. ϕ(x, repe) true.
To encode this problem as a constraint, we introduce for

each class e, a new variable ve to model whether the class
e corresponds to a positive class (i.e., one that makes the
formula ∃x. ϕ(x, repe) true) or a negative class (i.e., one
that makes the formula ∃x. ϕ(x, repe) false). After replacing
the existentially quantified variable x with xe, we get the
constraint:

ve ⇔ ϕ(xe, repe) (9)

The y-count bounding problem can then be solved by
checking satisfiability of the following formula, which simply
looks for a minimal possible violation A ∈ MPV consisting
only of positive classes. �

A∈MPV

�
e∈A

ve (10)

For our example in Section III, we obtain Equation (3).

Arithmetic Arithmetic-free
fastest % fastest # fastest % fastest

cvc4 2,012 0.3% 403 0.1%
cvc5 196,431 28.0% 92,412 13.2%
trivial 500,927 71.6% 500,996 71.5%
z3 622 0.1% 241 0.1%

nfa2sat N/A N/A 105,948 15.1%
timeout (3s) 13 0.0% 7 0.0%

TABLE I: The numbers of problems solved by every solver
in the Zelkova portfolio.

Theorem (Soundness of Arithmetic-free Approach):
A formula ϕ(x, y) exceeds a y-count threshold τ iff the
conjunction of the constraints in Equations (9) and (10) is
satisfiable.

Proof. In Equation (9), variable ye can only be true if every
∃x. ϕ(x, repe) holds. From the definition of y-equivalence,
we have that ∃x. ϕ(x, repe) holds iff ∃x. ϕ(x, c) holds for
every c ∈ e. Therefore Equation (10) is true iff and only if
there exists a combination of minimal possible violations that
is actually satisfiable. The definition of MPV and minimal
satisfiable violation ensures that if any violation exists—i.e.,
there exists a set of equivalence classes that exceeds the
threshold—there also exists a minimal satisfiable version of
it that is considered in Equation (10).

If ϕ(x, y) lies in a theory T , assuming a decision proce-
dure for counting models over each equivalence class e, the
constraints in Equations (9) and (10) are in the theory T .

V. IMPLEMENTATION AND EVALUATION

The Block Public Access (BPA) feature detects if a bucket
is publicly accessible (Public) or not (Not Public), and
is integrated in many AWS services. Some services use BPA
as a preventative control that prevents attaching any policy
that is detected to be public to an AWS resource. BPA is an
essential guard rail to ensure data is not exposed to broad
access. Other detective services, like Config, Macie, Guard
Duty and Security Hub, reports to customers which resources
have public policies attached, without preventing any access.
Implementation: BPA is built on top of Zelkova’s encoding

of IAM policies and runs on the portfolio of solvers supported
by Zelkova. Zelkova runs on AWS Lambda, a serverless com-
puting platform that runs applications without users needing
to provision or manage servers. Zelkova currently uses the
solvers CVC4, CVC5, Z3, and NFA2SAT [21] as part of its
portfolio. The arithmetic-free approach is supported by all
solvers, whereas the arithmetic approach produces an encoding
that is not supported by NFA2SAT [21]. Zelkova invokes all
supported solvers in parallel and returns the results as soon as
one of the solvers provides the answer.
Evaluation: We evaluate the performance of our encodings

on 700K randomly chosen policies that contain IP addresses
and set a timeout of 3 seconds. The BPA checker [9] performs
a pre-processing step that simplifies statements that do not
allow any access to untrusted entities. This step removes a

214

large number of statements, thus leaving us with 225,215
policies to still analyze with our technique. We report a
timeout if none of the solvers terminates within 3s, the timeout
used in production for BPA checks. We run our experiments
on an x86 64 cloud desktop running Amazon Linux version
2 with 96 CPUs and 382GB memory.
Table I shows how many times (# fastest) and for what

percentage of the benchmarks (% fastest) each solver was
the fastest. The arithmetic approach described (Section IV-C)
times out on 13 policies whereas the arithmetic-free approach
(Section IV-D) times out on 7 policies. The arithmetic-free
approach could solve 6/13 problems the arithmetic approach
timed out on, whereas the arithmetic approach couldn’t solve
any of the policies the arithmetic-free approach timed out on.
The average running time of the arithmetic approach is 8ms,

with 50% of the policies terminating within 3ms, 90% of the
policies terminating within 21ms, and 99.99% of the policies
terminating within 850ms. The average running time of the
arithmetic-free approach is 8ms, with 50% of the policies
terminating within 3ms, 90% of the policies terminating within
21ms, and 99.99% of the policies terminating within 709ms.
The arithmetic-free approach is on average 0.09 times

slower (geomean) than arithmetic approach. However, it times
out on 6 fewer policies.
The arithmetic-free approach enables using the NFA2SAT

solver [21], and for 105,948 queries (15.13% of our dataset)
the NFA2SAT was faster than any other solver. Table I presents
the number of problems solved by each solver in the Zelkova
portfolio for both techniques.
To summarize, both solving approaches are effective for the

BPA application and the arithmetic-free approach can solve
more queries, but is slightly (0.09 times) slower.
We further analyze the experiments. The formula size ranges

from 2K to 1,095K bytes (avg. 17K), the number of equiva-
lence classes ranges from 1 to 9 (avg. 1.1), the time taken to
compute equivalence classes ranges from 1ms to 254ms (avg.
2ms), and the SMT solver takes 1ms to 1,559ms (avg. 8ms).
The time taken to compute the MPV sets in the arithmetic-free
approach ranges from 1ms to 50ms (avg. 1ms). The additional
data indicates that the SMT solvers takes most of the time
needed to check BPA for IPs.

VI. RELATED WORK

Previous work on Block Public Access [9] did not address
the issue of counting IP addresses; this new use case emerged
afterwards through conversations with customers. The previ-
ous work was designed for cases where there were a relatively
small number of trusted values drawn from an overwhelmingly
larger universe of possibilities. The difference in size between
the trusted values and the possible universe meant that no
model counting was necessary; any set of trusted values was
small enough. For IP addresses, one needs to consider large
sets of trusted values drawn from the limited universe of IP
addresses. Here one must count models to precisely capture
the boundary between public and non-public access.

Quacky [17] can quantify the permissions provided by IAM
policies. It uses model counting to count how many requests
of size up to a certain bound a policy can match. While
Quacky solves a different problem, their methodology could
be in principle adapted to count how many IPs one can
issues requests from. As we have argued, model counting is
a feature supported by very few solvers; Quacky uses one
solver called ABC [5], which only supports strings and integer
constraints (and thus limited sets of policies). Furthermore,
model counting is generally expensive: for simple EC2 policies
consisting of often just one statement, Quacky incurs an
average running time of more than 100s, a time that is not
acceptable for customers using BPA. We attempted using the
solver abc used by Quacky [17] to quantify permissions of
access control policies, but abc did not support the constraints
generated by Zelkova, specifically the theory of bit vectors.
To put other work in context, we will consider them through

the lens of the requirements of Zelkova. Zelkova is a live
AWS service handling customer access policies and supporting
many security use cases where soundness is paramount.
Model Counting in SAT: Model counting and model enu-

meration [19] are established research areas in the SAT com-
munity, with a wide range of application in domains that re-
quire quantitative analysis—e.g., probabilistic inference [13].
Approaches from SAT that directly enumerate and count
Boolean-level models have straightforward translations to the
SMT level [20], and are available in some SMT solvers [15].
In our domain, it is insufficient to enumerate the Boolean
structure without accounting for the complex SMT formulas
involving, e.g., strings, generated by Zelkova to model IAM
policies. Enumerating all models is also infeasible due to the
size of the solution space—i.e., a typical threshold for the IP-
count bounding problem is 224!
Approximate Model Counting: To avoid enumeration of all

models in SAT, approximate model counting [12] relies uses
universal hashing to provide provable approximations. Beyond
the initial theoretical results [23], this approach yielded highly
scalable tools for SAT problems [11], [18] with extensions
to extended to some SMT theories, such as bit-vectors [10]
and linear arithmetic [14]. These results do not work in the
presence of string constraints, which are ubiquitous when
modeling IAM policies. Most importantly, our application
domain—i.e., counting IPs—requires exact results and cannot
rely on probabilistic approximations.
Model Counting in SMT: Precise model counting at the

SMT level has mostly focused on individual theories such
as integers [8] and restricted theory of strings [22]. Our
domain requires reasoning about many string operations, often
combined with the theories of arithmetic over integers. The
most relevant work that attempts to cover these theories
translates string and integer constraints into automata repre-
sentations that facilitates counting of feasible solutions [4], [5].
Because this line of work relies on transforming constraints
to automata, it is limited to string constraints with integer
bounds and thus cannot handle the full multi-sorted constraints
required by Zelkova.

215

Summary: In contrast to related work, our approach encodes
the counting constraints into a single SMT query that relies
on standard SMT-LIB [7] language and theories. The use of
standard SMT language allows one to rely on battle-tested
general-purpose SMT solvers that match Zelkova’s portfolio
approach and goals.

VII. CONCLUSION

This paper defined the IP-count bounding problem as the
problem of checking whether the number of IPs from which
an IAM policy allows requests exceeds a given bound. The
bounded projective IP-count problem is formalized logically
as the bounded projective counting problem where the goal is
to check whether a formula #SAT (∃x. ϕ(x, y)) > τ is true.
We presented two SMT encodings of the bounded projective

counting problem that avoid the need to solve a model
counting problem—i.e., the#SAT (·) primitive—for which no
performant solver support exists. Our encodings are general:
if the variable y only appears within monadic predicates in the
formula ϕ(x, y) and one has access to a model counter for the
theory of y (but one for the theory of x is not required!), our
encodings generate SMT formulas that are true iff the bounded
projective counting problem admits a solution.
The generality of our encoding opens opportunities to solve

other bounding problems for IAM policies, but also in other
domains, e.g., if constraints denote valid tuples in a table and
one wants to bound the number satisfying assignments for the
values of a numerical column.

REFERENCES

[1] Amazon Web Services. Amazon IAM, Apr 2024. URL: https://docs.
aws.amazon.com/IAM/latest/UserGuide/access policies.html.

[2] Amazon Web Services. Amazon S3, Apr 2024. URL: https://aws.
amazon.com/s3/.

[3] Amazon Web Services. What is CIDR?, Apr 2024. URL: https://aws.
amazon.com/what-is/cidr/.

[4] A. Aydin, L. Bang, and T. Bultan. Automata-based model counting
for string constraints. In International Conference on Computer Aided
Verification, pages 255–272. Springer, 2015.

[5] A. Aydin, W. Eiers, L. Bang, T. Brennan, M. Gavrilov, T. Bultan,
and F. Yu. Parameterized model counting for string and numeric
constraints. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2018, page 400–410,
New York, NY, USA, 2018. Association for Computing Machinery.
doi:10.1145/3236024.3236064.

[6] J. Backes, P. Bolignano, B. Cook, C. Dodge, A. Gacek, K. Luckow,
N. Rungta, O. Tkachuk, and C. Varming. Semantic-based automated
reasoning for AWS access policies using SMT. In 2018 Formal Methods
in Computer Aided Design (FMCAD), pages 1–9. IEEE, 2018.

[7] C. Barrett, A. Stump, C. Tinelli, et al. The SMT-LIB standard: Version
2.0. In Proceedings of the 8th international workshop on satisfiability
modulo theories (Edinburgh, UK), volume 13, page 14, 2010.

[8] A. I. Barvinok. A polynomial time algorithm for counting integral points
in polyhedra when the dimension is fixed. Mathematics of Operations
Research, 19(4):769–779, 1994.

[9] M. Bouchet, B. Cook, B. Cutler, A. Druzkina, A. Gacek, L. Hadarean,
R. Jhala, B. Marshall, D. Peebles, N. Rungta, et al. Block public access:
trust safety verification of access control policies. In Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages 281–
291, 2020.

[10] S. Chakraborty, K. Meel, R. Mistry, and M. Vardi. Approximate
probabilistic inference via word-level counting. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 30, 2016.

[11] S. Chakraborty, K. S. Meel, and M. Y. Vardi. A scalable approximate
model counter. In Principles and Practice of Constraint Programming:
19th International Conference, CP 2013, Uppsala, Sweden, September
16-20, 2013. Proceedings 19, pages 200–216. Springer, 2013.

[12] S. Chakraborty, K. S. Meel, and M. Y. Vardi. Approximate model
counting. In Handbook of Satisfiability, pages 1015–1045. IOS Press,
2021.

[13] M. Chavira and A. Darwiche. On probabilistic inference by
weighted model counting. Artificial Intelligence, 172(6):772–
799, 2008. URL: https://www.sciencedirect.com/science/article/pii/
S0004370207001889, doi:10.1016/j.artint.2007.11.002.

[14] D. Chistikov, R. Dimitrova, and R. Majumdar. Approximate counting
in SMT and value estimation for probabilistic programs. In Tools and
Algorithms for the Construction and Analysis of Systems: 21st Inter-
national Conference, TACAS 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London,
UK, April 11-18, 2015, Proceedings 21, pages 320–334. Springer, 2015.

[15] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. The
MathSAT5 SMT solver. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 93–107.
Springer, 2013.

[16] L. D’Antoni and M. Veanes. Automata modulo theories. Commun.
ACM, 64(5):86–95, 2021. doi:10.1145/3419404.

[17] W. Eiers, G. Sankaran, A. Li, E. O’Mahony, B. Prince, and T. Bultan.
Quacky: Quantitative access control permissiveness analyzer. In Pro-
ceedings of the 37th IEEE/ACM International Conference on Automated
Software Engineering, pages 1–5, 2022.

[18] S. Ermon, C. Gomes, A. Sabharwal, and B. Selman. Taming the curse
of dimensionality: Discrete integration by hashing and optimization. In
International Conference on Machine Learning, pages 334–342. PMLR,
2013.

[19] C. P. Gomes, A. Sabharwal, and B. Selman. Model counting. In
Handbook of satisfiability, pages 993–1014. IOS press, 2021.

[20] S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT techniques
for fast predicate abstraction. In Computer Aided Verification: 18th
International Conference, CAV 2006, Seattle, WA, USA, August 17-20,
2006. Proceedings 18, pages 424–437. Springer, 2006.

[21] K. Lotz, A. Goel, B. Dutertre, B. Kiesl-Reiter, S. Kong, R. Majumdar,
and D. Nowotka. Solving string constraints using SAT. In C. Enea
and A. Lal, editors, Computer Aided Verification - 35th International
Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings,
Part II, volume 13965 of Lecture Notes in Computer Science, pages 187–
208. Springer, 2023. doi:10.1007/978-3-031-37703-7_9.

[22] L. Luu, S. Shinde, P. Saxena, and B. Demsky. A model counter
for constraints over unbounded strings. In Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 565–576, 2014.

[23] L. Stockmeyer. The complexity of approximate counting. In Proceedings
of the fifteenth annual ACM symposium on Theory of computing, pages
118–126, 1983.

216

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/what-is/cidr/
https://aws.amazon.com/what-is/cidr/
https://doi.org/10.1145/3236024.3236064
https://www.sciencedirect.com/science/article/pii/S0004370207001889
https://www.sciencedirect.com/science/article/pii/S0004370207001889
https://doi.org/10.1016/j.artint.2007.11.002
https://doi.org/10.1145/3419404
https://doi.org/10.1007/978-3-031-37703-7_9

Formal Methods in Computer-Aided Design 2024

Toward Exhaustive Sequential Redundancy Removal
Rohit Dureja∗ , Jason Baumgartner∗, Raj Kumar Gajavelly∗ , Robert Kanzelman∗, and Kristin Y. Rozier†

∗IBM Corporation †Iowa State University

Abstract—Hardware designs often contain logical redundan-
cies: pairs of behaviorally-equivalent gates. Sequential redun-
dancy removal is the process of removing gates that are
behaviorally-equivalent within the reachable states of a design. It
has many applications in the hardware design process, including
logic optimization, equivalence checking, accelerating functional
verification, and engineering change-order optimization.
Redundancy removal is an intricate process, orchestrating

various algorithms to compute equivalence-classes of potentially-
equivalent gates, then to prove their validity. In this paper, we
introduce techniques to enable exhaustive redundancy removal
on practical designs, such as resource-balancing the underlying
algorithms; self-tailoring them to sequentially-deep logic; and
detailing an orders-of-magnitude optimization to the Proof Graph
essential to proving non-inductive redundancies. We integrate
these techniques within a state-of-the-art redundancy removal
framework, illustrating their efficacy on various benchmarks.

I. INTRODUCTION
Hardware designs are often rife with logical redundancies.

Some are deliberate, e.g. to improve circuit timing or imple-
ment error-resilience features. Many are unexpected and unde-
sired; including them in semiconductor devices degrades cost
and circuit performance, and increases power consumption.
In verification, logical redundancies are even more preva-

lent, e.g. due to input constraints disabling various functional-
ity, and redundancies arising between design and testbench
logic. Equivalence checking (EC) and engineering change
order (ECO) tools compare two related designs; significant
redundancy is common between those designs. Redundancy
removal is highly-beneficial to verification scalability, solving
some properties outright [1]–[3]; is the core solving procedure
of EC [4, 5]; and can yield smaller ECOs [6].
Sequential redundancy removal frameworks (Fig. 1) iden-

tify, then eliminate, functionally-equivalent gates. Each sus-
pected redundancy requires proving a property, called a miter,
confirming that a pair of gates behave identically in the
reachable states of a design. Simulation is used to refine
incorrect equivalence-classes of gates, correcting inaccurate
miters [4, 7]. Once a miter is proven, design size and power
can be reduced by replacing one of its gates by the other [5].
The choice of which gate to eliminate can be delay- and
placement-aware yielding higher-performance circuits.
Many techniques have been proposed to accelerate redun-

dancy removal. For example: combinational redundancy re-
moval solves miters from topologically-shallowest to deepest,
reducing effort for deeper miters by leveraging early-merging
and prior refinements [8, 9]. Speculative reduction models
assumptions through structural logic simplifications, enabling
a transformation-based verification (TBV) suite of model-
checking algorithms to benefit from those assumptions to

solve the non-inductive miters [2]. A Proof Graph enables
early-merging of selective miters even before a fixedpoint
of all-miters-proven is achieved, minimizing the number of
proofs necessary to converge, and yielding reductions even if
a resource-limit precludes convergence [10].
Contributions: We introduce various improvements to se-

quential redundancy removal in the pursuit of exhaustiveness.
(1) We present sequential resource-sweeping (Sec. III-A)

to self-tailor SAT-based bounded model-checking (BMC) [11]
and induction to the sequential depth of the design, enabling
them to solve deeper miters. This yields ≈ 5% greater redun-
dancy removal in less runtime via induction, and ≈ 20% fewer
incorrect miters deferred to TBV. (2)We propose techniques to
balance counterexample simulation runtime with solving effort
(Sec. III-B), yielding ≈ 30% overall speedup (Sec. III-B).
(3) We address scalability challenges of deep-counterexample
generation and simulation, via: separate eager shallow vs. lazy
deep simulation phases to accelerate ≈ 16% additional deep–
logic refinement (Sec. III-C); obtaining ≈ 34% complementary
deep refinements via seeded-state BMC (Sec. III-D); and min-
imally-lossy techniques to approximate pathologically-deep
miters impractical to simulate (Sec. III-E). (4) We present a
near-linear-runtime algorithm to construct a Proof Graph [10],
improving scalability by orders of magnitude (Sec. III-F).
Experiments in Sec. IV show our techniques yielding 2.1×
speedup to EC, 32.4% speedup with 16.9% more solves in
model-checking, and enabling exhaustive redundancy removal
on netlists up to 857110 AND gates, 75952 registers.

II. PRELIMINARIES AND RELATED WORK

We represent a hardware design as a netlist N , comprising
a directed graph G = ⟨V,E⟩. Vertices V represent logic gates
of different types: constants, primary inputs, combinational
primitives such as AND gates, and sequential primitives such
as registers. Edges E ⊆ V × V represent interconnections
between gates. The fanin (fanout) of gate u is the set of gates
reachable by traversing edges backward (forward) from u. A
strongly-connected component (SCC) is a set of gates having
a directed path between every pair of gates within the SCC.
Registers have initial values defining their time-0 behavior,

and next-state functions defining their time-i+1 behavior. A
trace is a sequence of Boolean valuations to gates over
timesteps, beginning from an initial state consistent with
initial-values at time 0. A state is a Boolean valuation to the
registers; a reachable state is one reachable along a trace.
Certain gates may be labeled as properties, representing a
verification objective to obtain a counterexample trace illus-
trating an assertion of that gate, or to prove the absence of any

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 27 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0000-0002-7152-8115
https://orcid.org/0009-0000-9917-5617
https://orcid.org/0000-0002-7152-8115
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_27
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_27
https://creativecommons.org/licenses/by/4.0/

exhaustive sequential redundancy removal (Netlist N)
1: Create equivalence-classes of gates in N , where gate u in class Q(u)

is suspected functionally-equivalent to every other gate in Q(u).
2: Select a representative gate R(Q(u)) from each class Q(u).
3: Construct speculatively-reduced netlist N ′ (§II-A2) replacing the

source gate u of each (u, v) ∈ E by R(Q(u)); else copy N ′ = N .
4: For each gate v, add a miter to N ′ falsified when v ̸≡ R(q(v)).
5: Construct a Proof Graph P from N ′ and the set of miters M .
6: Attempt to falsify or prove each miter (§II-A1).
7: If P was computed or speculative-reduction was not used, merge the

soundly-proven-miter gates onto their representatives (§II-A3).
8: If a miter was not proven, refine equivalence classes to separate their

gates (simulating available counterexamples, §II-A4); goto Step 2.
9: Merge proven miter gates onto their representatives.

Fig. 1. Exhaustive sequential redundancy removal algorithm.

counterexample. During redundancy removal, properties called
miters are created confirming the equivalence of postulated
gate redundancies. Each miter is represented as an XOR over
the suspected gate equivalence. Certain gates may be labeled
as observables, e.g. primary outputs of the design. A merge of
gate u onto gate v consists of moving output edges of u onto
v, then deleting u. Any gate not in the fanin of a property or
observable is irrelevant to netlist behavior, outside of its cone
of influence (COI). After merging a pair of redundant gates, a
secondary set of gates may become irrelevant in this way.

A. Redundancy Removal

Fig. 1 shows an exhaustive-capable sequential redundancy
removal algorithm. It first overapproximates the redundancy
candidates, represented as equivalence classes of gates sus-
pected as pairwise functionally-equivalent in all reachable
states. Initial equivalence-classes are constructed via: (1) run-
time options and syntactic information, e.g. whether to com-
pute redundancies only over registers vs. all gate types, and
whether to pre-filter e.g. via corresponded signal name pairs
in equivalence-checking; (2) compatible random-simulation
signatures [4, 7]. (While not depicted for brevity, redundancy-
removal can efficiently be performed modulo inversion.)
The miter properties M are then created and solved, com-

paring each gate to its equivalence-class representative. If a
miter is falsified, its counterexample shows a miscompare of
the corresponding gates (and/or fanin gates, due to speculative
reduction). Simulating a counterexample on the original netlist
often refines additional incorrect equivalence-classes. If a miter
is unsolved due to resource limits or incomplete proof tech-
nique, it must be pessimistically pruned from its equivalence-
class. If allmiters are proven, the equivalence-classes represent
valid redundancies; the netlist may be optimized by merging
equivalent gate-pairs. Else the process repeats until this fixed-
point is achieved, or global timeout.
1) Induction: k-Induction [12] is commonly used to prove

miters [1, 4]. The base case is bounded model checking
(BMC), validating miters during the first k timesteps from the
initial states. The inductive step verifies miters in k timesteps
from any state (reachable or not) which satisfies the set of

(a) (b) (c)

Fig. 2. Assumption modeling for scalable redundancy removal. (a) Suspected
redundancies over gates. (b) Speculatively-reduced netlist with miters over
suspected redundancies. (c) Proof Graph representing miter dependencies.

mutually-postulated equivalences within fewer timesteps. Us-
ing a sufficiently-large k and unique-state constraints, induc-
tion can be a complete proof technique [1]. Though BMC and
induction solve NP-complete problems and become unscalable
as k increases, rendering them incomplete in practice.
Redundancy removal of large netlists often requires solv-

ing millions of miters, partially because each gate may be
compared to a sequence of varying representatives across
refinements. BMC can efficiently falsify, and k-induction can
efficiently prove, many miters. Though practical netlists often
comprise non-inductive miters. Discarding even a single non-
inductive yet accurate miter precludes exhaustive redundancy
removal, and often causes an iterative avalanche of fanout
miters to become unscalable as equivalence-classes are refined.
Stronger algorithms (logic reduction, abstraction, alternate
proof and falsification techniques) are thus useful to solve the
non-inductive miters to enable exhaustiveness [2, 3].
2) Speculative reduction: An assume-then-prove paradigm

enables assuming certain miters when proving others [1, 4].
Speculative reduction [2] models assumptions by replacing the
fanout edge from each gate to an edge from its equivalence-
class representative, aside from input edges to the miters them-
selves (necessary for soundness). Fig. 2a shows suspected-
redundant gate pairs {e, f} and {g, h}; Fig. 2b shows the
speculatively-reduced netlist with miters me,f and mg,h.
Speculative reduction reduces the amount of logic in the

fanin of each miter, making many inductive and often yield-
ing orders of magnitude speedup. However, speculatively-
reducing an incorrect miter alters fanout behavior of its
non-representative speculatively-reduced gate, i.e. e and g in
Fig. 2b. Therefore, this technique hinders the ability to early-
merge a proven miter’s gates until all of its fanin speculatively-
reduced gates have been proven accurate. Therefore, spec-
ulative reduction may require a fixedpoint of proving all
remaining miters, before any merge can be safely performed.
3) Early merging: A Proof Graph records the set of miters

whose speculatively-reduced gates may alter the behavior of
fanout miters, allowing to early-merge certain proven miters
before converging a fixedpoint [10]. The Proof Graph is a
directed graph P = ⟨M,D⟩ with one vertex in M per miter,
and edges D ⊆ M ×M representing dependencies of fanout
miters upon the speculative-reduced gate of each miter. Miter
m1 is dependent on miter m2 if the speculatively-merged gate
of m2 is in the fanin of either gate of m1. Fig. 2c shows a
Proof Graph for the speculatively-reduced netlist of Fig. 2b.

218

A miter proof is sound when the miters of all of its
fanin speculatively-merged gates are proven. When a miter
is soundly proven, its gates may be safely merged, regard-
less of other falsified or unproven miters. Sound proofs are
propagated through fanout nodes of the Proof Graph, which
may enable proven fanout miters to become soundly-proven.
For k-induction, the Proof Graph only needs to record miter-
dependencies relevant to the k-timestep unrolled netlist, along
with dynamically-added SAT proof dependencies upon postu-
lated induction-hypothesis constraints. For TBV, all transitive
fanin dependencies are recorded, to ensure soundness using
arbitrary model-checking algorithms [10].
The Proof Graph does not alter the set of miters to be

proven. It improves scalability by: (1) prioritizing miter-
solution order, generalizing combinational topological order-
ing [8, 9] to cyclic sequential netlists. Leaves can be solved
first, minimizing effort wasted solving possibly-unsound
miters. With parallel orchestration, leaf miters can be stub-
bornly solved, in parallel to time-balanced iteration among
others [13]. (2) More redundancy is identifiable before global
timeout. (3) The number of times each miter is repeatedly
solved across refinements is reduced. This is especially im-
portant when using stronger model-checking algorithms to
solve non-inductive miters: a PSPACE-complete problem. (4)
Early-merging within the original netlist yields other speedups,
e.g. faster simulation, unrolling, SAT, and future Proof Graph
reconstruction.
4) Trace simulation: When a miter is falsified, simulating

its counterexample on the original netlist identifies a set of
inaccurate miters. Failed induction proofs yield counterexam-
ples starting from possibly-unreachable induction leak states;
those may be simulated to refine other non-inductive miters.
Simulation can consume significant runtime, and thus re-

quires careful orchestration. Bit-parallel simulation atomically
simulates 64 independent patterns in each 64-bit machine
word. Counterexamples from BMC, induction, and TBV may
be accumulated into machine words [7, 14], allowing each
simulation to refine multiple counterexamples. Additional pro-
posed improvements include packing compatible counterex-
amples into the same machine-word pattern [14]; randomizing
unimportant input values; and permuting copies of counterex-
amples across patterns, e.g. with distance-1 modifications [15].
With shallow analysis, e.g. k-induction with small k, each

miter affects only a local fanout region. This allows to de-
compose the netlist into slightly-overlapping components to be
analyzed in parallel using fixed-depth simulation [5, 16, 17].
Exhaustive redundancy removal additionally requires deep
analysis across more timesteps. As the depth of analysis
increases, the inter-dependence of miters extends toward the
entire cone-of-influence; windowing becomes ineffective, and
simulation of the sequential netlist becomes inevitable.

III. EXHAUSTIVE REDUNDANCY REMOVAL

We describe the main contributions and experimentally eval-
uate their isolated impact on exhaustive redundancy removal

sequential resource sweeping (Netlist N , Miters M)
1: Miters Mu := ∅, Mi := ∅, Ms := ∅ # sets of miters
2: for k ∈ 0, 1, 2, 3, . . . : # iterate over increasing k-depth
3: for satLimit ∈ min, . . . , max : # iterate over SAT limits
4: # run BMC to increase bounded-proof depth ≥ k

5: ⟨proved, falsified, unsolved⟩ := BASECASE(k, M , N , satLimit) # BMC
6: ↪→ Check all miters with proof-depth < k using BMC
7: ↪→ Update proof-depth of newly-BMC-proved
8: ↪→ Simulate falsified miters to refine equivalence-classes
9: M := M \ falsified # discard BMC-falsified miters
10: Mu := Mu \ { proved ∪ falsified } # update unsolved miters
11: if satLimit ≡ max : Mu := Mu ∪ unsolved # cache unsolved miters
12: # run induction on miters adequately checked by BMC
13: Mi := M # snapshot active-miters for later rollback from induction leaks
14: if Ms ̸≡ ∅ :
15: M := Ms ∪ newly-BMC-proved, Ms:= ∅ # restore snapshotted miters
16: else
17: M := M \ (miters with proof-depth < k) # base-case inconclusive
18: M := M \ Mu # drop miters unsolved in prior induction steps
19: repeat # fixedpoint (FP) iterations
20: N ′ := SPECREDUCE(N , M), Graph G := PROOFGRAPH(N ′, M)
21: ⟨proved, falsified, unsolved⟩ := INDUCTIVESTEP(k, G, N ′, satLimit)
22: ↪→ Check miters in leaves of Proof Graph G

23: ↪→ Update Proof Graph for proven miters # enable early-merging
24: ↪→ Simulate falsified miters to refine equivalence-classes
25: N := EARLYMERGE(N , G) and remove merged miters from M , Mi

26: M := M \ falsified # drop falsified miters (induction leaks)
27: if satLimit ≡ max : Mu := Mu ∪ unsolved # cache unsolved miters
28: else if |unsolved| > 0 and Ms ≡ ∅ : # FP iteration with unsolved
29: Ms := M # snapshot miters for next SAT iteration
30: M := M \ unsolved # drop inconclusive miters
31: until fixedpoint (no unsolved or falsified) for k at satLimit
32: M := Mi # restore active-miter snapshot to roll-back induction leaks
33: if n-steps with no merging or timeout : break # self-tailor depth

Fig. 3. Sequential resource-sweeping using BMC and k-induction

in this section. End-to-end experimental results for various
formal applications appear in Section IV.

A. Sequential resource-sweeping

Most miters are easy to solve at shallow BMC or in-
duction depth, becoming unscalable as depth increases. Be-
cause satisfiability checking is NP-complete, some miters are
pathologically-difficult, even at shallow depth. Large netlists
often contain a diversity of logic, often comprising a mix of
easier and difficult miters.
Borrowing from combinational equivalence checking [8, 9],

sequential redundancy removal frameworks typically solve
unfolded miters from topologically-shallower to deeper. Shal-
low miters are often easier; their solution simplifies fanout
miters through merging unfolded gates, and refining incor-
rect equivalence-classes. Resource-limits may be applied, and
another fixedpoint iteration attempted after refining unsolved
miters. Due to diversity of miter-difficulty, combinational
netlist simplification via BDD- and SAT-sweeping may benefit
from iterating unsolved miters with increasing resource-limits,
solving gradually-more-difficult miters without indefinite de-
lays caused by pathological miters [7, 9].
For exhaustive sequential redundancy removal, additional

resource-sweeping controls and equivalence-class management
are necessary across k values, and to optimally defer miters
into TBV. We introduce sequential resource-sweeping in Fig. 3
to manage these intricacies. For each k-depth, each miter is

219

checked using increasing SAT-resource limits (lines 3–32). The
induction base-case is validated by BMC (lines 5–8). The
miters falsified with BMC are inaccurate, and permanently
discarded (line 9). Any miter unsolved by BMC is skipped
for that resource-limit, as induction would be unsound (line
17). The remaining miters are checked using induction (lines
19–31). Miters are solved from topologically-shallowest to
deepest, using an inductive Proof Graph [10]; early-merging
of soundly-proven miters is performed after iterating its leaves
(line 25), offering runtime benefits (Sec. II-A3). Any miter
unproven by induction is discarded (line 26 and 30). Because
k-induction is incomplete, it may spuriously falsify accurate
miters. For exhaustiveness, it is thus essential to snapshot and
restore active miters Mi (line 13 and 32, resp.) to prevent
induction leaks from permanently discarding accurate miters.
After completing a lossy fixedpoint, SAT resource is incre-

mented up to a configurable maximum value, and previously-
unsolved miters Ms are snapshotted to check anew (line 29).
Any miter unsolved by the maximum SAT-limit during BMC
(line 11) or induction (line 27) is deferred to TBV (line 18).
Miters are then restored from Ms if available, incrementally
reusing prior effort (line 15). Note that any proofs obtained us-
ing a subset of miters are valid for a superset. Thus induction-
proved results when Ms was snapshotted may be re-applied
after restoring, despite adding any newly-BMC-proved miters.
However, the induction-hypotheses upon which reused proofs
relied must also be annotated onto the inductive Proof Graph.
Prior refinements reflected in Ms may be pessimistic within
the current SAT-limit and k if any newly-BMC-proved miters
are added. While spuriously-refined miters will be checked
at higher k values or by TBV, this temporary lossiness may
be compensated for, by: (i) using a dedicated pre-induction
BMC phase, which often helps overall scalability anyway; (ii)
skipping the restoration of Ms if newly-BMC-proved is non-
empty; or (iii) selectively restoring previously-falsified miters
that share logic with newly-BMC-proved to check anew.
The algorithm terminates after n timesteps without conclu-

sive result, or global timeout (line 33). Exhaustive redundancy
removal often benefits from deeper BMC than induction, to
minimize wasted effort trying to prove inaccurate miters and
to accelerate early-merging; n ≥ 5 for BMC, and n ≥ 2
for induction, are used in all experiments. While many miters
are sequentially shallow, robust redundancy removal requires
self-tailoring to deeper netlists. Solving easier miters at greater
BMC and induction depth is often faster than deferring those
to TBV: inductive Proof Graphs have fewer dependencies,
enabling earlier merging; counterexample generation for BMC
requires less reconstruction effort than through a sequence of
TBV engines. Thus it is beneficial to defer only the difficult
miters to TBV, not the easier deep miters.
Most prior work imposes SAT resource-limits via bounding

backtracks [9] or decisions [7]. While effective, those do not
closely align with actual runtime. Time-limits are volatile and
hurt reproducibility. We have found the number of propaga-
tions as a reproducible runtime-aligned metric, which also
allows balancing simulation and solver runtime (Sec. III-B).

102

103

104

105

102 103 104 105

Sw
ee

pi
ng

 O
FF

Sweeping ON

(a) #BMC refinements

 0

 15

 30

 45

 0 15 30 45

Sw
ee

pi
ng

 O
FF

Sweeping ON

(b) BMC depth

0

3

6

9

 0 15 30 45

#R
ef

in
em

en
ts

 (1
00

0s
)

BMC depth (k)

Sweeping ON
Sweeping OFF

(c) #Refinements vs k

102

103

104

105

102 103 104 105

Sw
ee

pi
ng

 O
FF

Sweeping ON

(d) #Induction merges

0

5

10

15

0 5 10 15

Sw
ee

pi
ng

 O
FF

Sweeping ON

(e) Induction depth

15

20

25

30

35

 0 4 8 12

#M
er

ge
s (

10
00

s)

Induction depth (k)

Sweeping ON
Sweeping OFF

(f) #Merges vs k

Fig. 4. Sequential resource-sweeping effectiveness: BMC and Induction for
industrial logic optimization (◦) and model-checking benchmarks [18] (⋄)

We evaluate sequential resource-sweeping in Fig. 4 for dif-
ficult industrial logic optimization and model-checking bench-
marks [18]. Redundancy removal begins with a refinement
phase of increasing-depth BMC, with 1800-second timeout
early-terminated by 5 timesteps without refinement; then a
proof phase of increasing-depth induction with 36000-second
timeout early-terminated by 2 timesteps without merging.1

SAT propagation-limits increment by 10× from 10000 to
10000000 when resource-sweeping, and are unbounded other-
wise. For industrial benchmarks, sequential resource-sweeping
enables 30.3% deeper BMC on average (32.4% for model-
checking) (Fig. 4b), yielding up to 20.7% more refinements
(23.1% for model-checking) (Fig. 4a). It also enables deeper
induction (Fig. 4e), yielding 5.2% more merged gates on aver-
age (3.4% for model-checking) (Fig. 4d). Note that unbounded
SAT-resource can sometimes solve a lucky miter with modestly
more than the maximum resource-sweeping SAT-limit, and
thus occasional modest losses for resource-sweeping occur.
These are offset by more-frequent, larger wins by deferring
difficult-for-SAT miters to TBV, while enabling BMC and
induction to solve easier deeper miters.
Fig. 4c and Fig. 4f show detailed per-k refinement and

merging respectively for a single deep benchmark. BMC
completes 12 more steps, and induction goes 6 steps deeper,
with resource-sweeping enabled. While some common success
is achieved at shallower k, self-tailoring depth when resource-
sweeping yields 201.5% more refinements and 32.4% more
merged gates at greater depth.

B. Resource-balanced simulation

Bit-parallel simulation allows atomically refining multiple
counterexamples, packed into each bit of a machine word.

1The time-limits used in these experiments are rarely encountered, though
are imposed for uncommon yet inevitable pathological scenarios.

220

 6000

 10000

 14000

 18000

 0 15 30 45 60 75

C
um

ul
at

iv
e

R
un

tim
e

(s
ec

on
ds

)

Design Instance

Sweep OFF/Balance OFF/1 Pattern
Sweep ON/Balance OFF/1 Pattern
Sweep ON/Balance OFF/64 Patterns
Sweep ON/Balance ON/Gradual
Sweep ON/Balance ON/Sharp
Sweep ON/Balance ON/Dynamic

(a) SEC Benchmarks

 1000

 2000

 3000

 4000

 0 20 40 60 80

C
um

ul
at

iv
e

R
un

tim
e

(s
ec

on
ds

)
Design Instance

Sweep OFF/Balance OFF/1 Pattern
Sweep ON/Balance OFF/1 Pattern
Sweep ON/Balance OFF/64 Patterns
Sweep ON/Balance ON/Gradual
Sweep ON/Balance ON/Sharp
Sweep ON/Balance ON/Dynamic

(b) Model-checking benchmarks [18]

Fig. 5. Cumulative runtime with resource-balanced simulation

Resource-sweeping ensures that easier miters are solved early,
while difficult miters are deferred. When SAT-limits are small,
miters are solved quickly: accumulating more traces before
simulating is often faster. As SAT-limits increase, miter solving
is slower: simulating fewer traces more-frequently is often
faster. For greatest scalability, it thus is beneficial to tailor
simulation frequency as miters are solved within the resource-
sweeping loop of Fig. 3 (lines 8 and 24).
Predictive tuning of how many traces to accumulate vs.

SAT-limit can be improved via dynamic resource-balancing,
comparing runtime of the prior simulation to runtime of
solvers since the last simulation. When either exceeds the
other by more than a configurable threshold, simulation can
be deferred or expedited. (For better reproducibility, runtime
can be estimated by comparing number of gates and timesteps
simulated vs. SAT-propagations since the last simulation.)
While resource-sweeping ensures somewhat-balanced resource
per miter, dynamic balancing adjusts for factors such as the
percentage of miters proven vs. falsified vs. resource-exceeded,
or unexpected solver-resource variance using less-predictable
model-checking algorithms via TBV.
We evaluate resource-balancing in Fig. 5a on industrial se-

quential equivalence-checking (SEC) benchmarks, and Fig. 5b
on model-checking benchmarks. SAT-limits increment by 10×
from 10000 to 1000000 propagations. Cumulative runtime
is plotted for: (1) resource-sweeping disabled (baseline);
simulation-resource balancing disabled with (2) each trace
simulated vs. (3) 64 traces accumulated; resource-balancing
enabled with (4) gradual tapering of 64 patterns at 10000
propagations, 32 at 100000, and 1 at 1000000, (5) sharp
tapering from 64 patterns at 10000 propagations to 1 above; (6)
dynamic runtime balancing. Note that unsolved benchmarks
are not plotted, for clarity. Settings (3)-(6) are 8.38%, 10.07%,
20.87% and 27.28% faster, respectively, than (2) in Fig. 5a; vs.
3.24%, 25.92%, 11.18% and 32.71% in Fig. 5b. The reason
that sharp tapering wins for SEC, and gradual for model-
checking, is due to the percentage of miters falsified: corre-
sponded signal-name pairing for SEC ensures fewer incorrect
non-inductive miters. Dynamic balancing adjusts effectively to
either scenario. Setting (1) for SEC without resource-sweeping
is 18.4% and 60.6% slower compared to setting (2) and (6),

102

103

104

105

102 103 104 105

D
ee

p
Si

m
ul

at
io

n
O

FF

Deep Simulation ON

(a) #Refinements (log)

0

25

50

75

100

 0 15 30 45 60

#R
ef

in
em

en
ts

 (1
00

0s
)

Design Instance

Deep ON
Deep OFF
Sweep OFF

(b) #Refinements

0

4

8

12

 0 16 32 48

#R
ef

in
em

en
ts

 (1
00

0s
)

BMC depth (k)

Deep ON
Deep OFF

(c) #Refinements vs k

Fig. 6. Deep simulation BMC for logic optimization on industrial (◦), and
public QUIP [20] and ITC99 [21] benchmarks (▽)

respectively; vs. 4.23% and 54.9% slower for these easier
model-checking benchmarks.

C. Lazy deep simulation

In lossy redundancy removal frameworks using only shal-
low fixed-depth induction [5, 16], deep simulation is unnec-
essary: incorrect miters are discarded along with accurate
non-inductive miters. Exhaustive redundancy removal requires
equivalence-classes to be corrected before miters can be
proven. Deep simulation may arise due to deep counterexam-
ples found by BMC or TBV, or simulating beyond shallower
trace length to propagate refinements through fanout logic.
While deep simulation is expensive, its refinements offset the
expense of explicitly computing long miter counterexamples
as NP- or PSPACE-complete problems.
Simulation consumes nearly identical runtime per timestep.

When balancing solver vs. imminent simulation runtime con-
sidering prior simulation runtime, depth should be considered.
We introduce the concept of lazy deep simulation using its
own deep-simulation trace storage, distinct from traditional
eager shallow simulation for minimal-depth simulation. Eager
shallow simulation is faster, and should occur more-frequently
using fewer traces. Very-shallow simulation may be paral-
lelized via simulating slightly-overlapping windowed compo-
nents [5, 16, 17]. Lazy deep-simulation is slower, evaluating
the sequential netlist. It thus should occur less-frequently,
sometimes accumulating more traces into multiple machine
words to leverage multi-word simulation speedup [19].
Shallow vs. deep simulation benefit from different resource-

balanced parameters affecting how many timesteps beyond
trace length to simulate: a maximum extension parameter,
and an inactivity limit to early-terminate the extension if
insufficient refinements occur during the prior n timesteps.
We evaluate lazy deep simulation during BMC in Fig. 6

for industrial and public logic optimization benchmarks.
Deep simulation is run when 640 patterns are accumulated,
with a maximum overall 900-second timeout early-terminated
with maximum extension of 2048 (vs. 10 for shallow), and
inactivity-limit of 100 (vs. 4 for shallow). Deep simulation
enables a median 15.78% more refinements (Fig. 6a), and
median 30.15% compared to disabled sequential resource-
sweeping (Fig. 6b). Fig. 6c shows per-k refinement for the
deep benchmark of Fig. 4c. Vertical lines indicate running deep
simulation, thrice after accumulating 640 patterns and once as

221

BMC terminates. Each deep simulation provides 12.56% more
refinements on average, improving BMC (and subsequent
proof) scalability. BMC completes 6 additional timesteps via
this speedup, yielding 39.48% additional refinements.

D. Seeded BMC

When a miter is falsified, simulating its counterexample of-
ten refines additional miters. Randomizing and permuting bit-
parallel patterns, and simulating beyond trace length, increase
the number of secondary refinements. Though the return on
runtime investment, and probability of secondary refinements,
via additional simulation often quickly saturates.
Secondary refinements may be obtained via semi-formal

methods: when simulation encounters an interesting state (e.g.
one that refines an equivalence-class), one can seed BMC
into that state, trying to falsify additional miters [19]. If
miters are falsified by seeded BMC, eager simulation of those
counterexamples can be accelerated starting from the seeded
state vs. initial state; especially valuable for very-deep TBV
traces. Seeded-BMC traces may also be appended to the
deep-simulation trace storage to increase the probability of
secondary refinements during later deep simulation. To balance
overall runtime, seeded BMC runtime may be configured to a
fraction of time-elapsed to obtain those counterexamples.
One challenge to maximizing seeded BMC refinements is

that controllability to propagate the new refinement scenario
into adjacent logic may be limited by prior input valuations
locked into the seeded state. It thus is often useful to seed
BMC into a state several timesteps before the refinement of
interest. The optimal number of timesteps varies by netlist and
by miter. It can be approximated by the number of registers
along simple paths between the refined equivalence class and
primary inputs. It can also be varied, dynamically adjusting to
a setting suitable for the netlist.
We evaluate seeded BMC in Fig. 7a during logic-

optimization of public design benchmarks. Seeded BMC is
run directly after refining TBV counterexamples, starting
from already-refined equivalence-classes; their refinements are
thus complementary. Seeded BMC runtime is limited to the
lesser of 200 seconds, 25% of TBV runtime to produce the
trace, or 50 timesteps without refinement. Seeded BMC thus
consumes at most 25% of TBV runtime; in these experiments
it consumed less than 3%. Despite the advantages given
to TBV, seeded BMC yields 39.2% more falsified miters
than TBV, while TBV generates 2.18× as many refinements.
Fig. 7b identically evaluates larger proprietary industrial de-
signs. Seeded BMC yields 11.1% more falsified miters than
TBV, while TBV generates 1.7× as many refinements.

E. Approximating pathologically-deep logic

Industrial netlists often comprise sequentially-deep logic
components, such as large counters or linear-feedback shift-
registers (LFSRs). Incorrect miters dependent upon such com-
ponents might be falsifiable with traces of minimum-length
exponential with respect to their register count. Such compo-
nents pose two challenges. (i) BMC and induction become

102

103

104

105

 15 30 45 60

Fa
ls

ifi
ed

 M
ite

rs
, R

ef
in

em
en

ts

Design Instance

TBV Refinements
Seeded-BMC Refinements

TBV Falsified Miters
Seeded-BMC Falsified Miters

(a) QUIP [20] and ITC99 [21] benchmarks

102

103

104

105

 10 20 30 40 50

Fa
ls

ifi
ed

 M
ite

rs
, R

ef
in

em
en

ts

Design Instance

TBV Refinements
Seeded-BMC Refinements

TBV Falsified Miters
Seeded-BMC Falsified Miters

(b) Industrial benchmarks

Fig. 7. Cumulative seeded BMC vs. TBV refinements for logic optimization

unscalable too-shallowly to converge very-deep miters. TBV
is often necessary, using heavier model-checking algorithms
to solve PSPACE-complete miters, including localization [22]
and logic reductions to reduce miter size, phase abstrac-
tion [23] to reduce sequential depth, well-tuned IC3 [24, 25]
and BDD-based reachability [26] as general solvers, and semi-
formal bug-hunting [19]. (ii) Simulating a very-deep trace
may be prohibitively slow. While TBV may use tailored tech-
niques to analyze deep miters (e.g. parameterized traces [27]),
speculative-reduction and logic transformations applied within
TBV require simulating traces on the original netlist (not
only its deep components) to enable precise refinements.
For extremely-deep traces, potentially billions of timesteps
long, lossy shortcuts are inevitable. The following are useful
minimally-lossy strategies.
(1). As refinement depth or BMC bound exceed a config-

urable threshold, a depth-compensation graph can annotate
gates with: (i) most-recent refinement depth; (ii) most-recent
bounded proof depth; (iii) the snapshotted equivalence-class
for which the former were obtained. The behavior of known-
deep gates can be randomly permuted when simulating bit-
parallel copies of a trace. Because the trace pattern itself is not
permuted, precise refinements occur. The random-permutation
may cause pessimistic refinements, discarding valid miters. To
limit the pessimism, permutation can be synchronized across
the snapshotted equivalence-class gates, similar to induction
counterexamples [28]. If new refinements occur, simulation
may be rolled-back, and newly-mismatched candidates may
be permuted for continued simulation. This process can flatten
a pathological sequence of double-length counterexamples
across refinements to near-linear simulation depth, similar

222

to forcing X-pessimism to accelerate convergence in three-
valued approximate reachability analysis [29].
(2). Seeded BMC (Sec. III-D) can falsify deeper miters

from a simulated state, though often becomes unscalable too
shallowly to converge on large counters. It is sometimes
useful to overapproximate seeded BMC, randomly permuting
the value of known-deep gates, to be less dependent upon
simulation probabilities to propagate permuted values.
(3). In cases, the first concerningly-deep counterexample is

too deep to simulate, or even to generate. E.g., if a design
has a 64-bit LFSR, each bit may toggle shallowly, though
a compare-to value may only be reached incredibly-deeply.
If simulating a counterexample is impractical, the offending
miter may be blindly refined as if unsolved, losing the ability
to propagate refinements to fanout logic. Simulation permuta-
tion of deep gates may nonetheless be useful in other ways,
e.g. reusing previous (or future) counterexamples [14].

F. Linear Proof Graph construction

The Proof Graph [10] has one node per miter. Fanout
edges represent the miters whose behavior is compromised
by speculative-reduction until that node’s miter is proven. The
miters correlating to a node may be merged as soon as its
fanin miters are proven, regardless of other unproven miters.
Early merging has many runtime benefits (Sec. II-A3).
The Proof Graph is reconstructed whenever a new

speculatively-reduced netlist is created, at each iteration of
Fig. 1. Scalable construction is thus critical. Lossy redundancy
removal, e.g. using shallow fixed-depth induction [5], may
choose to not use a Proof Graph, instead deferring all merging
until fixed-point. Despite the overhead of deferred merging,
e.g. causing repeated proving of accurate miters across refine-
ments, this shortcut is motivated by the traditional runtime
overhead of constructing the Proof Graph vs. lossy-solver
runtime. Early merging is a practical necessity to enable ex-
haustive redundancy removal on large netlists, which requires
solving PSPACE-complete non-inductive miters via general
model-checking algorithms. In this section, we describe a
scalable graph-labeling algorithm to compute a minimally-
sized Proof Graph.
When using arbitrary model-checking algorithms to solve

miters, all transitive fanin dependencies are recorded in
the Proof Graph. Traditional iterative construction (e.g. [10]
Alg. 7) traverses the fanin of each miter m′ to find the
speculatively-reduced gates M ′ which affect its behavior
(stopping at vs. recursing through M ′, to contain runtime);
edges from M ′ to m′ are iteratively added to the Proof Graph.
This initial Proof Graph can be vastly larger than a condensed
version due to duplicate and transitively-implied edges, risking
memout. Postprocessing is proposed to condense the Proof
Graph to be irredundant and acyclic [10], reclaiming memory
before TBV. Though iterative fanin traversal and compaction
are often a runtime bottleneck on large netlists.
We propose a method to directly compute an optimally-

sized Proof Graph (Fig. 8), using a single netlist traversal. Our
algorithm uses an efficient graph-labeling approach [31, 32],

createProofGraph graphLabeling (Spec-Reduced Netlist N ′, Miters M)
1: Compute SCC within N ′ # Tarjan’s linear algorithm [30]
2: for each gate g ∈ topologically-sorted gates in N ′ :
3: if g is not in a multi-gate SCC :
4: if g is speculatively-reduced : # g is the non-rep. gate of a miter
5: Miter m := miter corresponding to g

6: # add dependencies of m in the fanin of g
7: for each miter n with index i such that bitvector(g)[i] ≡ 1 :
8: add edge(n, m) # add dependency n→m to graph
9: # create singleton bitvector for miter m

10: unsigned idx := get unique index for miter m

11: clear bitvector(g); bitvector(g)[idx] := 1 # singleton bitvector
12: # copy / union bitvector to fanout gates
13: for each gate h in the fanout of g : # propagate to fanout
14: if h is part of SCC S : h := representative gate of SCC S

15: bitvector(h) := bitvector(h) ∪ bitvector(g) # copy / union
16: delete bitvector(g) # cleanup
17: else if g is representative gate of SCC S :
18: if S contains miters :
19: # add cyclic dependencies between miters in SCC S

20: Miters M [] := get all miters in S, unsigned j := 0
21: while j+1 < size(M) :
22: Miter n := M [j], Miter m := M [j+1]
23: add edge(n, m) # add dependency n→m to graph
24: Miter n := M [size(M)], Miter m := M [0]
25: add edge(n, m) # add dependency n→m to graph
26: # add dependencies for miters in the fanin of SCC S

27: Miter m := miter corresponding to representative gate of SCC S

28: for each miter n with index i such that bitvector(g) [i] ≡ 1 :
29: add edge(n, m) # add dependency n→m to graph
30: # create singleton bitvector for miter m

31: unsigned idx := get unique index for miter m

32: clear bitvector(g); bitvector(g) [idx] := 1 # singleton bitvector
33: # copy / union bitvector to fanout gates
34: for each gate h in the fanout of gates in S : # traverse to fanout
35: if h is part of SCC T : h := representative gate of SCC T

36: bitvector(h) := bitvector(h) ∪ bitvector(g)
37: delete bitvector(g) # cleanup

Fig. 8. Graph labeling algorithm for Proof Graph construction.

propagating miter-dependency information as a bitvector. Each
speculatively-reduced gate is represented with a unique bit-
index, though all miters within an SCC reuse a single bit-
index, yielding a massive practical compaction.
Linear SCC identification [30] identifies the strongly-

connected components; each gate within an SCC is given
the bit-index of a representative miter therein (line 1). The
algorithm then iterates gates in a topological order, propagat-
ing fully-populated bitvectors denoting miter dependencies to
fanout logic. When gate g is traversed, bitvector copy or union
operators propagate g’s bitvector to fanout gates (lines 13–15
and 34–36), accumulating their fanin dependencies. If g is a
speculatively-reduced gate, all miters with indexed bits set to
1 in its bitvector are added as Proof Graph fanin edges to the
node for g’s miter (lines 7–8). Fanout edges of speculatively-
reduced gates propagate only that gate’s corresponding bit-
index vs. all transitive fanin dependencies (lines 10–11).
A single bitvector is maintained for all nodes in an SCC,

at its representative gate g (line 14, 35). If the SCC contains
miters, a single unique bitvector index for a representative
miter m therein is associated with all of that SCC’s miters
(line 27). The dependencies (asserted bitvector indices) of all
SCC inputs become Proof Graph fanin edges of the SCC-

223

TABLE I
PROOF GRAPH CONSTRUCTION RESOURCES FOR LOGIC OPTIMIZATION

#Gates #Miters
Iterative [10] Graph Labeling (Fig. 8)

Time (s) Memory Time (s) Memory

b1 4,476,762 192,445 4368.8* 340 GB* 9.12 134.5 MB
b2 1,043,224 969,135 889.3 15.8 GB 3.58 353.8 MB
b3 833,584 517,979 420.1 11.9 GB 1.49 188.6 MB
6s125 3,232,742 2,885,658 >684 >32 GB 15.13 1.03 GB
6s350 3,774,149 1,511,759 >14400 5.6 GB 47.02 559.78 MB

BOLD: 32GB memout. [*]: runtime, memory estimate for complete construction.

100

101

102

103

104

100 101 102 103 104

G
ra

ph
 L

ab
el

in
g

Iterative

(a) Time (seconds)

101

102

103

104

101 102 103 104

G
ra

ph
 L

ab
el

in
g

Iterative

(b) Peak memory (MB)

101

102

103

104

101 102 103 104
G

ra
ph

 L
ab

el
in

g

Iterative

(c) Graph size (MB)

Fig. 9. Proof Graph construction resources for logic optimization on industrial
logic optimization (◦) and model-checking benchmarks [33] (⋄)

representative miter m (lines 28–29). The one-hot bitvector
for m is then propagated to all SCC outputs (lines 31–32).
Miters inside an SCC are added to the Proof Graph in lines
20–25 as a cyclic chain through representativem, to minimally
record their inter-dependency.
Propagating a one-hot bitvector to the fanout of

speculatively-reduced gates ensures a minimally-sized Proof
Graph without unnecessary transitively-implied edges. When
later annotating the Proof Graph with solver results, tran-
sitive traversal is generally necessary anyway [10]. Adding
transitively-implied edges tends to degrade performance, bloat-
ing graph size and requiring more unsuccessful fanout-edge
traversals: until a miter is proven, soundly-proven results for
fanin miters cannot propagate through that miter anyway.

Theorem 1 (Sound). Given speculatively-reduced netlist N ′

and miters M , Fig. 8 generates a sound Proof Graph: every
fanout dependency of speculatively-reduced gate g is transi-
tively reachable via fanout traversal of g’s Proof Graph node.

Theorem 2 (Optimal). Proof Graph P = ⟨M,E⟩ generated
by Fig. 8 has minimal size. I.e., there does not exist a Proof
Graph P ′ with fewer nodes or edges correctly representing
the dependencies of N ′ and M .

Table I shows resources to construct the Proof Graph
for selected large industrial and model-checking benchmarks,
using the traditional iterative approach [10] vs. graph-labeling
(Fig. 8). This highlights the scalability limitation of the former,
precluding TBV on the largest netlists. Fig. 9 shows resources
across more industrial and model-checking benchmarks; each
run with 32GB memory-limit and 14400-second timeout.
Graph-labeling is up to 98.34× (Fig. 9a) faster with a 53.77%
lower peak memory requirement on average (Fig. 9b), and en-
ables the Proof Graph creation for 17 more benchmarks within
resource-limits. While the iterative approach postprocesses the

101

102

103

104

105

101 102 103 104 105

W
ith

 Im
pr

ov
em

en
ts

Without improvements

(a) SEC runtime (seconds)

5.0*105

1.0*106

1.5*106

 1 10 100 1000

C
um

ul
at

iv
e

R
un

tim
e

(s
ec

on
ds

)

#Solves

Without Improvements: 3330 Solves
With Improvements: 3891 Solves

(b) Runtime vs # solves, model-checking

Fig. 10. Runtime for SEC and model-checking [33] benchmarks

Proof Graph by SCC compaction and pruning transitively-
implied edges, graph labeling generates a 59.25% smaller
Proof Graph without costly postprocessing (Fig.9c).

IV. EXPERIMENTAL RESULTS

In this section, we show end-to-end results for various
redundancy removal applications, using the contributions of
Sec. III. Though to minimize memouts, these all benefit from
the scalable Proof Graph presented in Sec. III-F. Our tech-
niques are implemented within RuleBase: Sixthsense Edition
[34], building upon the techniques presented in [13, 32].
1) Property- and Equivalence-Checking: Fig. 10a com-

pares end-to-end runtime with vs. without our improvements
on 384 SEC benchmarks, using the refinement phase of Fig. 6
with 15-second seeded BMC, 4-hour induction, and 12-hour
overall time-limits using 1-process TBV. Our improvements
solve 362 common benchmarks 2.1× faster on average, with
22 unique solves. Fig. 10b shows model-checking speedup,
using a similar configuration though without corresponded
signal-name filtering. Cumulative runtime is 32.4% faster, and
16.9% more properties are solved using our improvements.
2) Logic Optimization: We present logic optimization re-

sults in Fig. 11a for public design benchmarks, and Fig. 11b
for industrial designs. Exhaustive logic optimization is a global
concern [35], and particularly challenging: (1) Unlike SEC,
name-correlation cannot fragment equivalence-classes to pairs.
Large equivalence-classes require many refinements to correct,
iteratively comparing a gate to many different representatives.
(2) Redundancy removal is not early-terminated when proper-
ties are solved. These benchmarks were preprocessed using
1-induction. On public benchmarks, preprocessing removes
1442832 gates. Deeper-k induction removes an additional 959
gates, then TBV an additional 40494, for 2.9% greater redun-
dancy removal overall. Redundancy-removal was exhaustive
for 65 of 74 netlists (containing up to 373338 AND gates and
8809 registers), capping resource at 64GB 3-day 5-process.
No-reduction points are not plotted. Miters of depth ≥ 32768
(up to 250125) were encountered on 3 netlists; synchronized
random-permutation (Sec. III-E) losslessly aided convergence.
The industrial benchmarks are evolving components, al-

ready redundancy-removed at prior logic iterations. Lever-
aging our contributions, deeper-k induction removes an ad-

224

101

102

103

104

105

 5 10 15 20 25

#G
at

es
 R

ed
uc

ed

Design Instance

TBV
k=9
k=8

k=7
k=6
k=5

k=4
k=3
k=2

(a) QUIP [20] and ITC99 [21] benchmarks

101

102

103

104

105

 10 20 30 40 50

#G
at

es
 R

ed
uc

ed

Design Instance

TBV
k=13
k=11

k=9
k=7
k=5

k=4
k=3
k=2

(b) Industrial benchmarks

Fig. 11. Cumulative deep-k induction and TBV logic optimization

ditional 167462 gates (76259 with k ≥ 3), and TBV an
additional 14248. Practical benefits were significantly greater
due to multiple on-chip copies of each component. Exhaus-
tiveness was achieved for 11 of 59 netlists (containing up
to 857110 AND gates and 75952 registers). Miters of depth
≥ 32768 (some above 100M) were encountered on 21 netlists.
Without the contributions presented in this paper, exhaustive
redundancy removal was achievable for only 2 netlists.

V. CONCLUSIONS

Global energy use of semiconductor devices doubles every
three years, mandating a new type of Moore’s Law for energy
efficiency [35]. Sequential redundancy removal is one of many
remedies, and has many other applications.
We introduce various techniques to improve the scalability

of sequential redundancy removal, eliminating bottlenecks
to exhaustiveness. Sequential resource-sweeping self-tailors
to netlist depth, yielding > 20% greater equivalence-class
refinement via BMC and ≈ 5% greater inductive redundancy
removal, on average. Resource-balanced simulation acceler-
ates redundancy-removal by ≈ 30% on average. Lazy deep
simulation yields ≈ 16%, and seeded-state BMC ≈ 34%,
additional refinements with minor runtime overhead. Graph-
labeling Proof Graph construction boosts scalability by two
orders of magnitude, making TBV practical on very-large
netlists. Heuristics are introduced to prevent pathologically-
deep logic from derailing convergence. Overall, our techniques
yield 2.1× speedup to SEC, 32.4% speedup with 16.9% more
solves on large difficult model-checking problems, and enabled
exhaustive redundancy removal on large netlists up to 857110
AND gates, 75952 registers.

ACKNOWLEDGMENTS

We would like to thank the reviewers for their valuable
feedback and comments. Kristin Y. Rozier is supported by
NSF:CCRI grant 2016592 and NSF:CAREER grant 1664356.

REFERENCES

[1] P. Bjesse and K. Claessen, “SAT-based verification without state space
traversal,” in Formal Methods in Computer-Aided Design (FMCAD),
pp. 409–426, Oct 2000.

[2] H. Mony, J. Baumgartner, V. Paruthi, and R. Kanzelman, “Exploiting
suspected redundancy without proving it,” in Design Automation Con-
ference (DAC), pp. 463–466, Jun 2005.

[3] R. Brayton, N. Een, and A. Mishchenko, “Using speculation for se-
quential equivalence checking,” in International Workshop on Logic and
Synthesis (IWLS), Jun 2012.

[4] C. A. J. van Eijk, “Sequential equivalence checking without state space
traversal,” in Design, Automation and Test in Europe (DATE), pp. 618–
623, Feb 1998.

[5] A. Mishchenko, M. Case, R. Brayton, and S. Jang, “Scalable and
scalably-verifiable sequential synthesis,” in International Conference on
Computer-Aided Design (ICCAD), 2008.

[6] S. Krishnaswamy, H. Ren, N. Modi, and R. Puri, “DeltaSyn: An efficient
logic difference optimizer for ECO synthesis,” in 2009 International
Conference on Computer-Aided Design (ICCAD), pp. 789–796, 2009.

[7] A. Kuehlmann, “Dynamic transition relation simplification for bounded
property checking,” in International Conference on Computer-Aided
Design (ICCAD), November 2004.

[8] D. Brand, “Verification of large synthesized designs,” in International
Conference on Computer-Aided Design (ICCAD), November 1993.

[9] A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai, “Robust boolean
reasoning for equivalence checking and functional property verification,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 21, no. 12, 2002.

[10] M. Case, J. Baumgartner, H. Mony, and R. Kanzelman, “Optimal re-
dundancy removal without fixedpoint computation,” in Formal Methods
in Computer-Aided Design (FMCAD), pp. 101–108, Oct 2011.

[11] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without bdds,” in Tools and Algorithms for the Construction and Anal-
ysis of Systems (W. R. Cleaveland, ed.), (Berlin, Heidelberg), pp. 193–
207, Springer Berlin Heidelberg, 1999.

[12] M. Sheeran, S. Singh, and G. Stålmarck, “Checking safety properties
using induction and a SAT-solver,” in Formal Methods in Computer-
Aided Design (FMCAD), pp. 127–144, Nov 2000.

[13] R. Dureja, J. Baumgartner, R. Kanzelman, M. Williams, and K. Y.
Rozier, “Accelerating parallel verification via complementary property
partitioning and strategy exploration,” in Formal Methods in Computer-
Aided Design (FMCAD), Sep 2020.

[14] S. Lee, H. Riener, A. Mishchenko, R. K. Brayton, and G. D. Micheli,
“A simulation-guided paradigm for logic synthesis and verification,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 41, no. 8, pp. 2573–2586, 2022.

[15] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een, “Improvements
to combinational equivalence checking,” in International Conference on
Computer-Aided Design (ICCAD), pp. 836–843, November 2006.

[16] A. Mishchenko and R. Brayton, “Integrating an AIG Package, Simulator,
and SAT Solver,” in International Workshop on Logic and Synthesis
(IWLS), June 2018.

[17] V. N. Possani, A. Mishchenko, R. P. Ribas, and A. I. Reis, “Parallel com-
binational equivalence checking,” in IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Oct 2019.

[18] “Hardware Model Checking Competition 2017, Single property bench-
marks,” http://fmv.jku.at/hwmcc17.

[19] P. K. Nalla, R. K. Gajavelly, J. Baumgartner, H. Mony, R. Kanzelman,
and A. Ivrii, “The art of semi-formal bug hunting,” in International
Conference on Computer-Aided Design (ICCAD), ACM, 2016.

[20] “Altera corporation/intel: Quartus II University Interface Program,”
https://github.com/ispras/hdl-benchmarks/tree/master/hdl/quip.

[21] F. Corno, M. S. Reorda, and G. Squillero, “RT-level ITC’99 bench-
marks and first ATPG results,” IEEE Design & Test of Computers,
https://github.com/cad-polito-it/I99T, vol. 17, no. 3, 2000.

225

[22] P. Chauhan, E. Clarke, J. Kukula, S. Sapra, H. Veith, and D. Wang,
“Automated abstraction refinement for model checking large state spaces
using SAT based conflict analysis,” in Formal Methods in Computer-
Aided Design (FMCAD), pp. 33–51, 2002.

[23] P. Bjesse and J. Kukula, “Automatic generalized phase abstraction for
formal verification,” in International Conference on Computer-Aided
Design (ICCAD), pp. 1076–1082, November 2005.

[24] A. R. Bradley, “SAT-based model checking without unrolling,” in
Verification, Model Checking, and Abstract Interpretation (VMCAI),
p. 70–87, 2011.

[25] R. Dureja, A. Gurfinkel, A. Ivrii, and Y. Vizel, “IC3 with Interal Signals,”
in Formal Methods in Computer-Aided Design (FMCAD), (New Haven,
CT, USA), IEEE/ACM, Oct. 2021.

[26] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L.
Dill, “Symbolic model checking for sequential circuit verification,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 13, pp. 401–424, April 1994.

[27] C. Wang, A. Gupta, and F. Ivancic, “Induction in CEGAR for detect-
ing counterexamples,” in Formal Methods in Computer Aided Design
(FMCAD), pp. 77–84, 2007.

[28] H. Mony, J. Baumgartner, A. Mishchenko, and R. Brayton, “Speculative
reduction-based scalable redundancy identification,” in Design, Automa-
tion and Test in Europe (DATE), pp. 1674–1679, Apr 2009.

[29] M. L. Case, J. Baumgartner, H. Mony, and R. Kanzelman, “Approximate
reachability with combined symbolic and ternary simulation,” in Formal
Methods in Computer-Aided Design (FMCAD’11), pp. 109–115, 2011.

[30] R. Tarjan, “Depth first search and linear graph algorithms,” in SIAM
Journal on Computing, 1972.

[31] G. Cabodi, P. Camurati, and S. Quer, “A graph-labeling approach for
efficient cone-of-influence computation in model-checking problems
with multiple properties,” Software: Practice and Experience, vol. 46,
no. 4, pp. 493–511, 2016.

[32] R. Dureja, J. Baumgartner, A. Ivrii, R. Kanzelman, and K. Y. Rozier,
“Boosting verification scalability via structural grouping and semantic
partitioning of properties,” in Formal Methods in Computer Aided
Design (FMCAD), pp. 1–9, Oct 2019.

[33] “Hardware Model Checking Competition 2010-2017,” http://fmv.jku.at,
Selected all non-liveness benchmarks, filtered to largest file sizes. Fig.
10b prunes timeout-vs-timeout.

[34] H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman, and A. Kuehlmann,
“Scalable automated verification via expert-system guided transfor-
mations,” in Formal Methods in Computer-Aided Design (FMCAD),
pp. 159–173, 2004.

[35] M. Mann and V. Putsche, “Semiconductor: Supply chain
deep dive assessment,” February 24, 2022. United States.
https://www.osti.gov/biblio/1871585 “The global energy use of
products featuring semiconductors has doubled every three years since
2010 primarily due to the accelerating use of semiconductors in all
facets of our modern economy and the deceleration of energy efficiency
increases due to miniaturization. This exponential growth in energy use
is projected to accelerate...”.

226

Formal Methods in Computer-Aided Design 2024

DAG-Based Compositional Approaches for LTLf to
DFA Conversions

Suguman Bansal
Georgia Institute of Technology, USA

suguman@gatech.edu

Yash Kankariya
Georgia Institute of Technology, USA

ykankariya3@gatech.edu

Yong Li
University of Liverpool, UK
yong.li3@liverpool.ac.uk

Abstract—Scalable and efficient conversions of LTL over finite
horizon (LTLf) to their deterministic finite automata (DFA) remain
a critical bottleneck in several applications of LTLf. Recently,
compositional approaches have seen remarkable success in scaling
the conversion to large formulas. Here the input formula is first
decomposed into smaller subformulas, each of which can be
easily converted to their DFAs, then these DFAs are composed
to generate the desired DFA. This work proposes a series of
simple-yet-effective optimizations to improve the performance
of compositional approaches based on reducing the number of
composition steps required to generate the desired DFA.
We incorporate these optimizations in a tool called Lisa2 that

builds on one of the state-of-the-art tools for LTLf-to-DFA con-
version. A comprehensive empirical evaluation of Lisa2 demon-
strates overall improvements on both parameters of the number
of benchmarks solved and runtime. Most remarkably, it demon-
strates significant improvement over structured benchmarks
where runtime speedups range between 1.5x to 8000x under fair
comparisons to prior state-of-the-art tools.

I. INTRODUCTION

Linear Temporal Logic over finite traces [1] (LTLf) is the
finite-horizon counterpart of Linear Temporal Logic (LTL)
over infinite traces [2]. LTLf is rapidly gaining popularity
among real-world applications where behaviors are better
expressed over a finite but unbounded horizon. These include
applications in planning and synthesis [3], [4], [5], [6], re-
inforcement learning [7], [8], [9], business processes [10],
verification [11].
A critical challenge facing its applications is the conversion

of LTLf specifications into their equivalent deterministic finite
automata (DFAs). This is not unexpected since the LTLf-to-
DFA conversion exhibits a double-exponential blow-up in the
size of the input specification in the worst-case [1], [12]. Yet,
state-of-the-art LTLf-to-DFA conversion tools like Lisa [13]
and Lydia [14] often succeed at converting large formulas.
Their success can be attributed to compositional algorithms
which are split into two phases. First, in the decomposition
phase a large LTLf formula is decomposed into smaller
subformulas using the formula’s Abstract Syntax Tree (AST).
Next, in the composition phase, subformulas at the leaves of
the AST are converted to their DFAs using direct LTLf-to-
DFA tools suitable for smaller formulas, such as Spot [15] or
Mona [16]. Then, these DFAs are composed using language-
theoretic and/or automata-based operations to obtain the DFA
of the original formula. For DFA composition, the AST of the
formula is traversed bottom-up.

Through this work, we propose a series of simple yet
effective optimizations to improve the performance of com-
positional algorithms. Our first optimization aims at striking a
balance between the time spent in converting subformulas at
the leaves of the AST into their DFAs and the time spent in
composing the intermediate DFAs. The deeper the AST is un-
rolled, the smaller are the subformulas at the leaves of the AST.
While these smaller subformulas may be easier to convert
into their DFAs, it increases the number of composition steps
required to traverse the AST. To this end, we propose to unroll
the AST on their outermost boolean operators only. In contrast,
both Lisa and Lydia unroll at the extremes: Lisa unrolls
on the outermost conjunction only whereas Lydia unrolls
completely till the propositional literals.

Our other optimizations focus on reducing the number of
composition steps required during the bottom-up traversal by
modifying the AST. Our first optimization is based on elimi-
nating subformula duplication within the AST. This eliminates
multiple computations of the DFA of the same subformula
that may be present at multiple locations in the AST of a
formula. Such duplication is not uncommon in structured, real-
world formulas. Our second optimization is based on using
semantics-preserving syntactic transformations to the formula.
In particular, subformulas of the form φ =

�k
i=1(ψ ∨ φi)

are rewritten as φ = ψ ∨�k
i=1 φi, as the latter requires fewer

composition steps: The former representation of φ will require
2k − 1 composition steps (k steps to create the DFA for
all (ψ ∨ φi) and k − 1 steps from the outer conjunction of
these clauses). Whereas, the latter will require only k steps
of which k − 1 steps are required to create the DFA for
the large conjunction and one more is required to compose
with ψ. Neither Lisa nor Lydia incorporate either of these
optimizations.

We have implemented these optimizations in a tool
Lisa2 that builds on the existing tool Lisa. The compositional
algorithm in Lisa2 differs from Lisa as follows: (a). In the
decomposition phase, the formula is unrolled on all outermost
boolean operations using the formula’s AST, (b). Next, there
is an additional optimization phase in which duplicate removal
and syntactic transformations modify the AST to a DAG as
opposed to the AST, (c). Finally, in the composition phase,
formulas at the leaves of the DAG are converted to their
DFA and then these intermediate DFAs are composed in a

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 28 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0000-0002-0405-073X
https://orcid.org/0000-0002-7301-9234
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_28
https://creativecommons.org/licenses/by/4.0/

bottom-up traversal of the DAG. Lisa2 also differs from
Lisa and Lydia in supporting multiple representations for
DFAs. It permits Spot’s [15] labeled-graph and Reduced-
Ordered BDD (ROBDD) [17] (which is used by Lisa) as well
as Mona’s Shared Multi-Terminal BDD (ShMTBDD) (which
is used by Lydia) [16]. Permitting both datastructures makes
Lisa2 more versatile than prior tools. An additional benefit
is that this enables fair comparison with Lisa and Lydia.
While these prior tools implement differing compositional
approaches, a fair comparison of these algorithms has not
been possible since the performance of these tools is also
affected by the complementary strengths of the underlying
datastructure for DFAs. In particular, ROBDD may be slower
but require less memory whereas ShMTBDD can be blazingly
fast but are memory exhaustive. With the flexibility in choice
of DFA datastructure, Lisa2 can compare different algorithmic
approaches by ensuring that their underlying datastructures are
identical, hence xrendering fairer comparisons.
A comprehensive empirical evaluation demonstrates signif-

icant improvements over prior state-of-the-art tools in both
the number of benchmarks solved and their runtime. We
evaluated the performance of Lisa2 against Lisa and Ly-
dia on LTLf benchmarks (a collection of randomly generated
formulas and structured formulas) from the LTLf track in
SYNTCOMP20231. While Lisa2 outperforms both baselines
comprehensively, its performance on the structured bench-
marks is most remarkable. Not only Lisa2 solves ∼50%
more structured benchmarks than prior approaches, it also
demonstrates runtime improvements in the range of 1.5x-
8000x (with more benchmarks recording high runtime im-
provement), highlighting the strength of our tool on realistic
benchmarks.

II. PRELIMINARIES AND NOTATIONS

A. Linear Temporal Logic over Finite Traces (LTLf)

LTLf [1] extends propositional logic with finite-horizon
temporal operators. The syntax of LTLf over a finite set of
propositions Prop is identical to LTL, and defined as

ϕ := true | false | a ∈ Prop | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1Uϕ2

where X (Next) and U (Until), are temporal operators. We
include their dual operators, N (Weak Next) and R (Release),
defined as Nϕ ≡ ¬X¬ϕ and ϕ1Rϕ2 ≡ ¬(¬ϕ1U¬ϕ2). We
also use typical abbreviations such as Fϕ ≡ trueUϕ, Gϕ ≡
falseRϕ, ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2.
The semantics of LTLf can be found in [1].
Wlog, we assume formulas are given in negation normal

form (NNF), i.e., the negation operator (¬) appears in front
of propositions only. In the given syntax, all formulas can be
converted to their NNF with no blow-up in length.
Every LTLf formula ϕ over Prop can be converted into

a deterministic finite-state autoamta (DFA) D with alphabet
Σ = 2Prop and at most double-exponential number of states in
|ϕ| such that L(D) = L(ϕ) [1].

1https://www.syntcomp.org

B. Abstract Syntax Tree

The Abstract Syntax Tree (AST) is an n-ary tree represen-
tation of an LTLf formula. Formally, for an LTLf formula φ,
(1). Every node corresponds to a subformula of the formula ϕ.
In particular, the root of the AST corresponds to the formula
itself, (2). For every node, the operator of the node is given
by the outermost (primary) operator of its subformula, (3).
For every node, its children correspond to the immediate
subformulas of the formula in that node. Formulas with unary
operators (such as ¬, X, F, and so on), binary operators (U
and R), and n-ary operators (∨ and ∧) consist of one, two,
and n-many children, respectively. The order of children is
crucial for temporal operators U and R. For the remaining
operators, the order of children does not alter the semantics
of the formula since the operators are commutative.

III. RELATED WORK

Optimizations in compositional LTLf-to-DFA
approaches.: The current state-of-the-art AST-based
compositional tools, Lisa [13] and Lydia [14], employ
various optimizations to counter its inherent non-elementary
complexity. In addition to aggressive DFA minimization [16]
and order in which DFAs at each node are composed [13],
the tools optimize on the depth to which the ASTs are
unrolled during formula decomposition. For instance,
Lisa decomposes the original formula at its outermost
conjunction only, thus creating a k-ary AST of depth one.
Thus, the leaves represent subformulas as opposed to atomic
propositions. On the other hand, Lydia [14] generates the
full k-ary AST up to literals in the leaves. This way tools
attempt to trade-off between resources spent in the direct
conversion of subformulas at the leaves and composition
steps. The tools also optimize on the data structure used for
explicit state-space representations of the DFAs. Lisa stores
DFAs as labeled-graphs and in symbolical state-space using
Reduced-Ordered Binary Decision Diagrams (ROBDD) [17]
if necessary. Lydia stores DFAs using Shared Multi-Terminal
Binary Decision Diagrams (ShMTBDD) of Mona [16].

Direct LTLf-to-DFA conversions.: Spot [15] and
Mona [16] are two popularly used tools for direct LTLf-to-
DFA conversions of smaller formulas. Spot translates the
LTLf formula into an LTL formula with equivalent semantics,
converts this formula into a Büchi automaton [18], and then
transforms this Büchi automaton into a DFA. The Mona-
based approach translates LTLf into first-order logic over finite
traces (FOL) and then Mona converts the FOL formula into
a DFA. Both generate minimal DFAs in explicit state-space
representation.

DAG-based compositional approaches.: Mona also uses
directed acyclic graphs (DAGs) to represent formulas as we
do in this work [19]. The differences lie in the ways we
identify equivalent subformulas and the depth of the DAGs.
Mona identifies equivalent formulas φ and φ′ by checking
whether there is an order-preserving renaming of propositions
in φ such that φ and φ′ are identical, while we check the
syntax equivalence of two formulas, simpler but much more

228

efficient. Moreover, Mona’s DAG unrolls till its literals while
our DAG unrolls on boolean operators only. To the best of
our knowledge, Lisa and Lydia do not use DAG since no
intermediate DFAs are stored for later use in their source code.

Optimizations in LTL to automata conversion: The con-
version of LTL (Linear Temporal Logic) [2] to automata
forms has received much attention. While the conversion
incurs a single-exponential and double-exponential blow-up
for the non-deterministic and deterministic versions automata
versions, significant work has gone into developing optimiza-
tions for LTL to automata. However, these optimizations are
too sophisticated for LTLf to automata translations, where
relatively simpler translations have been shown to be more
effective.

IV. OPTIMIZATIONS

We propose a series of optimizations to be applied to
compositional approaches for LTLf-to-DFA conversion. The
first optimization (Section IV-A) determines the depth to
which an input formula’s AST is unrolled during formula
decomposition into smaller subformulas. The remaining two
optimizations are geared to reduce the computation required
during the composition phase by reducing the number of com-
position operations. Here, the first optimization compresses
this AST by removing duplicate subformulas (Section IV-B).
The second optimization performs semantics-preserving syn-
tactic transformations that are guaranteed to reduce the number
of composition steps (Section IV-C).

A. Depth of AST Unrolling

Our first optimization is based on the depth to which
an input LTLf formula is unrolled to obtain smaller sub-
formulas. We propose to unroll subformulas only if their
outermost operator is a boolean operator. Recall, since we
assume formulas are given in NNF, the outermost boolean
operators are effectively only the conjunction operator or the
disjunction operator as negations appear before propositions
only. Consequently, for formulas at the leaves of this tree, the
outermost operator could be any of the temporal operators.
Figure 1 illustrates such an unrolling of an AST.
We make this choice to strike a balance between the

conversion of subformulas to DFAs at the leaves vs. the
composition of DFAs at intermediate nodes to obtain the final
DFA. Prior state-of-the-art approaches Lisa and Lydia take
diametrically opposite routes in this regard. Lisa unrolls the
AST at its outermost conjunction only. I.e., given an LTLf
formula ϕ =

�n
i=1 ϕi, Lisa decomposes the original formula

into the n-subformulas given by ϕis. The disadvantage of
this decomposition is that in the worst case, the ϕis could
be too large to be handled by an off-the-shelf LTLf-to-DFA
conversion tools like Spot or Mona. The advantage, however,
is that once the DFAs for the ϕis are created, the approach
requires only n−1 composition steps, where each composition
consists of polynomial-time operations of DFA product and
DFA minimization only. In contrast, Lydia unrolls the AST
completely. I.e., its leaves comprise of literals (propositions

or their negation). This ensures that the DFA at the leaf node
is obtained trivially. However, not only do the number of
composition operations increase dramatically, the composition
operations may become more complex. In particular, the
composition at nodes with a boolean operator comprise of
polynomial-time operations identical to Lisa, but the composi-
tion at nodes with temporal operators may involve exponential-
time operations such as projection and/or determinization.
Our choice to unroll only on boolean operators ensures that

all composition operations require polytime operations only
while also ensuring that the size of subformulas at the leaves
are small, hence combining the benefits of Lisa and Lydia.

B. Duplicate Removal

For our next optimization, we observe that in several
formulas, an intermediate subformula may appear more than
once in the formula’s AST. This results in redundant com-
putation during the composition phase as it generates the
DFA for equivalent subformulas multiple times. To eliminate
such redundant recomputation, we propose to merge nodes of
equivalent subformulas. This is illustrated in Figure 2 where
formula θ1 that appeared twice in Figure 1 has been merged
into one node. Such duplication removal will result in the AST
being converted to a DAG as the merged nodes are required
to serve multiple parent nodes.
In order to merge nodes in an AST, we must check if the

formulas at two or more nodes are equivalent. LTLf formula
equivalence is PSPACE-complete, hence we must resort to
computationally inexpensive approaches to identify formula
equivalence. Tools such as Spot offer inexpensive syntactic
checks to examine formula equivalence. We combine these
checks with leveraging the parent-child relationship between
nodes in the AST to identify equivalent formulas.
To elaborate further, first we identify formula equivalence

between the leaf nodes of the AST using syntactic checks,
and merge each class of equivalent formulas into one leaf
node. This converts the AST into a DAG as the merged
leaf nodes will now serve multiple parent nodes. Next, it
is easy to see that two non-leaf nodes are equivalent if
all their children nodes are identical and their operators are
identical. All such formula equivalence in non-leaf nodes can
be identified efficiently in a single bottom-up traversal of the
DAG that simultaneously merges equivalent non-leaf nodes
into one node.
Note that this procedure may fail to recognize equivalent

subformulas that do not adhere to our inexpensive checks.
Despite this incompleteness, we observe that sometimes it can
reduce the number of nodes in the AST/DAG by 30-40% in
negligible time, hence demonstrating its effectiveness.

C. Semantics-Preserving Transformation

The final optimization aims to reduce the number of com-
position steps using semantics-preserving syntactic transfor-
mation of the formula. Lemma 1 motivates our optimization:

229

v0,∨

v1,∧

θ1 θ1,1 θ1,2

· · · vk,∧

θ1 θk,1 θk,2

Fig. 1: AST unrolled on boolean
operators only.

v0,∨

v1,∧ · · · vk,∧

θ1,1 θ1,2 θ1 θk,1 θk,2

Fig. 2: After duplicate removal. θ1
has been merged.

v0,∧

θ1 v′
0,∨

v′
1,∧

θ1,1 θ1,2

· · · v′
k,∧

θk,1 θk,2

Fig. 3: After Transformation. θ1 has
been pulled out.

Lemma 1. Consider the following formula,

φ = ◦′ki=1

�
(θ1 ◦ · · · θl) ◦ (θi,1 ◦ · · · θi,mi

)
�

(1)

where ◦, ◦′ ∈ {∨,∧} s.t. ◦′ ̸= ◦, and for all i ∈ [k], mi ≥ 0.
Then φ is equivalently written as:

φ′ = (θ1 ◦ · · · θl) ◦
�
◦′ki=1(θi,1 ◦ · · · θi,mi)

�
(2)

using the laws of associativity. Assuming the DFAs for all θi
and θi,j are given, the required composition steps to create
the DFA for φ is O(l · (k − 1)) more than those required to
create the DFA for φ′.

Proof. We begin with a sketch of the argument. In practice,
a product over k DFAs requires k − 1 products between two
DFAs. Now, notice that the intermediate DFA for the common
segment θc = (θ1 ◦ · · · θl) is constructed k − 1 times more in
φ that in φ′. By pulling out the common segment θc using the
laws of associativity in φ′, the DFA for θc is constructed only
once, amounting to the difference.
The formal argument follows: Let us first analyze the

number of products required in φ. For every i ∈ [k], the clause
(θ1 ◦ · · · θl) ◦ (θi,1 ◦ · · · θi,mi

) requires l + mi − 1 products.
Next, these clauses are combined using products to obtain φ.
Since there are k clauses, we require k−1 additional products.
Therefore, evaluating φ requires (k−1)+Σk

i=1(l−1+mi) =
k · l − 1 + Σk

i=1mi product operations.
Next, we analyse the number of products required in φ′.

For every i ∈ [k], the clause (θi,1 ◦ · · · θi,mi
) requires mi − 1

products. In addition, these k clauses are combined using k−1

products to form the DFA for
�
◦′ki=1(θi,1 ◦· · · θi,mi

)
�
. Hence,�

◦′ki=1(θi,1 ◦ · · · θi,mi
)
�
requires k − 1 + Σk

i=1(mi − 1) =

(Σk
i=1mi)−1 operations. Combined with l many θjs to obtain

φ′, we require l−1+Σk
i=1mi products to form φ′. Therefore,

constructing the DFA via φ′ requires O(l · (k − 1)) fewer
operations than creating the same DFA via φ, where l is the
number of subformulas common to k-many clauses in φ.

Our optimization, therefore, applies the associative law to
transform nodes of the form φ to nodes of the form φ′ in
the DAG obtained after duplicate removal. As earlier, the

transformation is carried out by an analysis of the parent-
child relations between nodes. A node v0 is eligible for the
transformation if the formula it represents is of the form φ,
i.e. : (a) the outermost boolean operator should differ from
the outermost boolean operator of all of its children, and (b)
all its children share a common child of their own, referring
to θc = (θ0 ◦ · · · θl) in φ. In the DAG, the common child
of all children is simply a common grandchild node. The
common grandchildren are obtained from the intersection of
all of children of vi’s for i ≥ 1. In Figure 2, node v0 is eligible
for the transformation with a single common grandchild in
θ. When eligible, the transformation pulls out all common
segment θc. In the DAG, this translates to promoting all
common grandchildren of v0 to direct children of v0 and
the ealier children of v0 are modified accordingly. Figure 2
to Figure 3 illustrate the transformation. Observe that the
transformation may result in the creation of new nodes such
as v′

0, · · · , v′
k in Figure 3.

As earlier, these transformations are carried out in a single
bottom-up traversal (reverse topological order) of the DAG
starting with the leaf nodes. In instances when the transforma-
tion results in the creation of a new node (such as v′

0, v
′
1, · · · v′

k

in Figure 3), the new nodes are examined for duplicates using
the earlier approach. Then the transformation is recursively
applied to v′

0 first and then to v′
1, · · · v′

k before returning to
the next node as per the reverse topological order.

V. COMPOSITIONAL ALGORITHM

For the sake of completion, we present an outline of the
compositional algorithm. W.l.o.g., our algorithm receives an
LTLf formula in NNF and outputs a minimal DFA for the
formula. The algorithm proceeds in three phases: First is
the decomposition phase in which the input LTLf formula is
decomposed into smaller subformulas based on its AST. The
AST is unrolled on boolean operators only. This is followed
by the optimization phase in which the proposed duplication
removal and semantic-transformations are applied. As a result,
the AST is converted to a DAG. Finally, in the composition
phase, the subformulas at the leaves of the DAG, i.e. nodes
with no outgoing edges in the DAG, are converted to their

230

minimal DFA form. Next, the DAG is traversed bottom-up
starting with the leaves, i.e. the DAG is traversed in reverse
topological order. During this traversal, the minimal DFA at a
node is created if the minimal DFA at all its children have
already been constructed. The primary difference from the
AST-based composition is that the DFA at a node in the AST
can be removed from memory as soon as the DFA in its parent
node has been constructed. In the case of a DAG, the DFA at
a node is discarded only after the DFA at all its parent nodes
have been generated.

VI. IMPLEMENTATION DETAILS

We have implemented compositional algorithm in a tool
called Lisa22. Lisa2 takes an LTLf formula in NNF as its
input and outputs its minimal DFA in explicit representation.
In brief, Lisa2 extends a current state-of-the-art tool Lisa to

incorporate the optimizations described in Section IV. In de-
tail, Lisa2 has been written in C++. It uses Spot LTLf parser
to parse the input formula. The input formula is decomposed
into a DAG following the optimizations described in Sec-
tion IV. To convert the subformulas at the leaves of the DAG,
Lisa2 converts the LTLf formulas at the leaf nodes to their
equivalent first-order logic (FOL) and uses Mona to convert
the FOL formulas to their minimal DFAs. The DFAs are then
composed as described in Section V. Similar to Lisa [13],
Lisa2 deploys two performance-enhancing heuristics (a)
aggressive DFA minimization, i.e. each DFA (intermediate of
final) is minimized as soon as it is created, and (b) smallest-
first heuristic that always picks the smallest two (minimal)
DFAs to compose during a k-way product construction (for
both conjunction and disjunction).
Lisa2 generates DFA in explicit-state representation, i.e.,

the states are given explicitly and the transitions are given
as labeled formulas over the propositions of the input LTLf
formula. Lisa2 supports two datastructures to represent the
final and all intermediate DFAs: (a) Spot’s labeled graphs and
Reduced Ordered BDD (ROBDD) and (b). Mona’s Shared
Multi-Terminal BDD (ShMTBDD). We refer to these two vari-
ants of our tool as Lisa2-Spot and Lisa2-Mona, respectively.
These tool variants use the DFA manipulation APIs provided
by Spot and Mona, respectively, for all DFA operations
including the product construction and minimization.

Tool Features: By supporting both Spot and Mona,
Lisa2 is the only LTLf-to-DFA conversion tool that can
support both datastructures, adding to its versatility in applica-
tions. Another motivation to support both DFA datastructures
is to enable fair comparison for future algorithmic advances
in LTLf-to-DFA conversion tools. Prior tools Lisa and Ly-
dia support only one of the two Spot’s labeled graphs
+ ROBDD combination and ShMTBDD, respectively. These
datastructures have complementary benefits (ROBDD may be
slower but require less memory whereas ShMTBDD are faster
but are memory extensive.) and a bear significant impact
the performance of their tools. As a result, performance

2https://github.com/suguman-lab/lisa2

comparisons between prior tools are unable to differentiate
between the improvement caused by the algorithm vs. the
improvement caused by the datastructure. Thus the ability to
switch between DFA datastructures within Lisa2 creates the
opportunity for more fair comparisons of algorithmic advances
in LTLf-to-DFA tools.

A. Implementation-Level Optimizations

Lisa2 incorporates several implementation-level optimiza-
tions. Few key ones are described below.
First, formulas of the form G(

�m
i=0 φi) and F(

�m
i=0 φi) are

equivalently written as
�m
i=0(Gφi) and

�m
i=0(Fφi), respec-

tively, to promote deeper decomposition on boolean operators.
Had the formulas been retained in their earlier format, then
the formulas would not be decomposed any further since the
outermost operator is temporal. This optimization generates
smaller subformulas.
Second, Lisa2 already identifies few subformula duplica-

tions (using Spot’s inexpensive methods to determine formula
equivalence) during the unrolling of the formula’s AST. As a
result, the outcome of the unrolling may already be a DAG as
opposed to an AST. We do this as we observed that in some
cases, the AST obtained from unrolling on boolean operators
could become very large. Combining the unrolling with a
shallow duplication-removal curb the growth in the AST.
We observe that in practice most DAG/AST nodes do not

possess a common grandchild, making the node ineligible for
the semantics-preserving transformation. Instead, it is more
likely that several nodes possess a popular grandchild that may
be a child of most but not all children of the node. In these
cases, we perform the transformation only with the children
that share the popular grandchild.

VII. EXPERIMENTAL ANALYSIS

A. Design and Setup for Empirical Evaluation

Baselines and Fair Comparisons: We compare Lisa2 to
the three state-of-the-art baselines: Lydia, Lisa, and Lisa-
Explicit. All three tools are based on compositional algorithms.
They differ in the depth of unrolling, few algorithmic details,
and the underlying DFA datastructure. Lydia unrolls to
the literals whereas Lisa and Lisa-Explicit unroll on the
outermost conjunction only. In terms of DFA data structure,
Lydia uses Mona’s ShMTBDD while Lisa and Lisa-
Explicit use Spot’s labeled-graphs and ROBDDs. Since tool
performance is known to be impacted by the DFA datastruc-
ture, we establish the following fair comparisons:

• Lisa2-Mona vs. Lydia
• Lisa2-Spot vs. Lisa and Lisa-Explicit

All tools accept inputs in Spot-parsable format, ensuring
consistency among tools in input format.

231

Benchmarks: We use benchmarks from the LTLf-track at
SYNTCOMP 20233. We evaluate on 490 benchmarks of which
400 formulas are generated randomly and the remaining 90
are structured formulas derived from the ”two-player games”
category. Among the structured benchmarks, we use 20, 10,
and 60 benchmarks from the single counter, double counter,
and nim benchmark classes, respectively.

Set-up: All experiments were conducted on a single node
of a high-performance cluster (https://pace.gatech.edu/). Each
node consists of four quad-core Intel-Xeon processors running
at 2.6 GHz with 4hrs timeout and 16GB of RAM each.

B. Performance-Related Observations

We begin by examining the performance of Lisa2 against its
counterparts w.r.t. runtime and number of benchmarks solved.
Overall, Lisa2 not only solves more benchmarks that all other
counterparts, it also improves the runtime significantly. Most
remarkable is its performance on the structured benchmarks
where Lisa2 solves ∼50% more benchmarks and displays
runtime improvements in the range of 2x-8000x. We describe
our observations and inferences in detail below.

Lisa2 demonstrates the best overall performance: The
cactus plots of the performance of all tools in Figure 4a
(cactus plot on all benchmarks) and Figure 4b (cactus plot
on structured benchmarks only) demonstrate that variants of
Lisa2 solve the most number of benchmarks in both cases.
Recall the fair comparisons from the previous section. We
observe that on all benchmarks, Lisa2 Mona outperforms
Lydia and Lisa2-Spot is comparable to/better than its fair
counterparts.
Lisa2 comprehensively outperforms its fair counterparts

on structured benchmarks. Lisa2-Spot solves almost twice
as many benchmarks that its fair counterparts while Lisa2-
Mona solves ∼40% more benchmarks than Lydia. This high-
lights the benefits of our optimizations on realistic bench-
marks. More broadly, it reflects the merits of identifying and
leveraging patterns appearing in structured (realistic) formulas.
Next, we examine each structured benchmark class in detail.

Lisa2 performs remarkably on the nim benchmarks.:
Both variants of Lisa2 outperform their fair counterparts by
a large margin in both, the number of benchmarks solved
and runtime. Lisa2 solves almost twice as many benchmarks
as their counterparts (Figure 5). Furthermore, the runtime
speedup ranges between 2x-8000x with most benchmarks
displaying greater than 500x speedup on Mona’s ShMTBDD
data structure; and on average 5x speedup on Spot’s labeled-
graph and ROBDD data structure (Table I).
This outcome is impressive as the nim-benchmarks had

proven to be challenging for prior compositional approaches.
This occurs since on these benchmarks the intermediate (min-
imal) DFAs tend to be very large even though final (mininal)

3SYNTCOMP: https://www.syntcomp.org. Benchmarks were taken from
https://github.com/whitemech/finite-synthesis-datasets/tree/main. We chose
benchmarks from the whitemech repository because (a). All SYNTCOMP23
benchmarks in LTLf track were obtained by converting the whitemech
benchmarks to TLSF format, (b). All baseline tools natively support the format
used in whitemech as opposed to the TLSF format used by SYNTCOMP.

0 50 100 150 200 250
Number of solved cases over time

300 350

1e8

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Ti
m

eo
ut

 (
in

 m
ill

is
ec

on
ds

)

Lisa2
Lisa2

(a) Cactus plot: All benchmarks. Timeout 4hrs

0 10 6020 30 40 50
Number of solved cases over time

2.0

1.5

1.0

0.5

0.0

2.5

3.0

3.5

Ti
m

eo
ut

 (i
n

m
illi

se
co

nd
s)

1e7
Swift-mona
Swift-spot
Lydia
Lisa
Lisa-exp

Lisa2
Lisa2

(b) Cactus plot: Structured benchmarks. Timeout 4hrs

Fig. 4: Overall Performance

DFA is quite small. Hence, it is not uncommon for Lisa or
Lydia to fail at an intermediate stage due to memory or time
shortage. We attribute Lisa2’s success to our optimizations
in reducing the number of compositional steps. For most
benchmarks in the nim-class, after duplication removal and
semantic transformations, the resulting DAG comprised of 5-
20% fewer compositions steps than the AST obtaining from
unrolling on boolean operators only. In another class of nim-
benchmarks derived from [20], this reduction even ranged
between 20-50%, resulting in better performance gain.
These experiments clearly demonstrate the advantage of

reducing the composition steps.
Performance on counter benchmarks: On the single- and

double-counter classes of benchmarks, Lisa2-Mona demon-
strates 1.4x-100x runtime improvement over Lydia. Whereas,
Lisa2-Spot displays 1.5x-100x runtime improvement over
Lisa but is sometimes slower than Lisa-Explicit, as demon-
strated in Table II.
We attribute the performance of Lisa2 on the counter

232

Fig. 5: Number of benchmarks solved on the nim class. x- and
y-axes denote benchmark class (total instances in brackets) and
num. of benchmarks solved, respectively.

Cases Lisa2-Mona Lydia Lisa2-Spot Lisa Lisa-exp
nim 01 1 10 21 10 0 0
nim 01 2 30 44 20 0 0
nim 01 3 30 89 40 10 10
nim 01 4 50 277 50 20 10
nim 01 5 50 1087 80 50 40
nim 01 6 80 4413 100 120 100
nim 01 7 90 16929 110 210 220
nim 01 8 120 64115 160 - -
nim 01 9 190 181994 200 - -
nim 01 10 230 780581 240 - -
nim 01 11 380 1652381 330 - -
nim 01 12 420 3203658 360 - -
nim 01 13 620 - 560 - -
nim 01 14 820 - 780 - -
nim 01 15 2220 - 910 - -
nim 01 16 9780 - 810 - -
nim 01 17 49100 - 810 - -
nim 01 18 - - 1300 - -
nim 01 19 108890 - 1490 - -
nim 01 20 - - 1820 - -
nim 02 1 20 69 30 20 10
nim 02 2 40 483 80 60 80
nim 02 3 80 5979 180 380 400
nim 02 4 130 92548 380 2040 1760
nim 02 5 200 650682 820 - -
nim 02 6 350 3574672 2430 - -
nim 02 7 480 - 8890 - -
nim 02 8 1150 - 76890 - -
nim 02 9 2540 - 348840 - -
nim 02 10 3950 - 466940 - -
nim 02 11 - - - - -
nim 02 12 17690 - 452700 - -
nim 02 13 - - - - -
nim 02 14 - - - - -
nim 02 15 - - 3970670 - -
nim 03 1 60 465 110 160 160
nim 03 2 160 52220 810 3050 3260
nim 03 3 1110 1653251 27080 - -
nim 03 4 2110 - 91610 - -
nim 03 5 4000 - 396780 - -
nim 03 6 7270 - 1215350 - -
nim 04 1 180 23813 1050 3920 4520
nim 04 2 2540 7083597 75430 - -
nim 04 3 - - 1670340 - -
nim 04 4 - - 6634310 - -
nim 05 1 1310 755274 23500 112100 123220
nim 05 2 - - 1718010 - -

TABLE I: Runtime in millisecs for nim. Timeout 4hrs

Cases Lisa2-Mona Lydia Lisa2-Spot Lisa Lisa-exp
counter 1 10 7 10 10 10
counter 2 10 17 40 60 60
counter 3 10 33 310 560 540
counter 4 10 57 20 10 10
counter 5 20 82 20 30 10
counter 6 50 156 50 60 30
counter 7 200 371 170 300 100
counter 8 810 1111 690 9560 290
counter 9 3520 4212 2870 125350 990
counter 10 15190 16611 14770 113410 3700
counter 11 66390 76345 61690 - 15130
counter 12 366250 474631 277750 - 90000
counter 13 1910580 2419211 1762580 - 430210
counter 14 9241030 10013917 7970190 - -
counter 15 - - - - 550
counters 1 10 17 50 80 70
counters 2 10 55 10 10 10
counters 3 20 150 30 80 30
counters 4 80 1103 130 1220 170
counters 5 600 25784 1000 29540 1060
counters 6 7850 660391 8090 941940 7380
counters 7 74590 - 60060 - 47080

TABLE II: Runtime in millisecs for counters. Timeout 4hrs.

benchmarks to the unrolling depth. This is because for
most of these benchmarks, duplication removal and semantic
transformation did not result in any significant reduction in
composition steps as the benchmarks exhibit neither multiple
occurrences of a subformula nor are their patterns amenable
to the syntactic transformation. We observed that Lydia would
fail because of the accumulation in number and size of
intermediate DFAs in its AST that unrolls till the literals.
This is aggravated by the ShMTDD datastructure to represent
DFAs as they can become memory extensive. On the other
hand, on these benchmarks, Lisa and Lisa-Explicit benefit
from the shallowest unrolling. Lisa2-Spot unrolls the formula
deeper than Lisa and Lisa-Explicit, resulting in many more
composition steps. The runtime of Lisa2-Spot compared to
Lisa-Explicit is further affected as the underlying datastructure
of Spot’s labeled graphs and ROBDDs are known to result in
slower compositions.
A closer examination of this class of benchmark revealed

a potential avenue for improvement. While the formulas did
not have duplicates, they had several symmetric subformulas
upto propositional isomorphism. Further optimizations based
on leveraging such similarities within such formulas could
further improve the performance of LTLf-to-DFA conversion
tools, including ours.

Lisa2-Spot vs. Lisa2-Mona.: We compare the perfor-
mance of Lisa2-Spot and Lisa2-Mona. Note that here the
underlying algorithm is identical. The only difference between
the two is the choice of datastrcture for DFA representations.
As a result, we expect this experiment to highlight the impact
of datastructure on a tool’s performance.
Our observations confirm that the datastructure plays a vital

role in a tool’s performance, as we observe that the tools
Lisa2 Mona and Lisa2-Spot display the same differences
displayed by the underlying datastrcuture, i.e. the observed
trend is that Lisa2-Mona consumes more memory but is
faster while Lisa2-Spotmay be slower but it consumes lesser

233

Cases Lisa2-Spot
Lisa2-Spot
(Dup. Rem.
only)

Lisa2-Mona
Lisa2-Mona
(Dup. Rem.
only)

nim 01 01 10 20 10 10
nim 01 02 20 20 30 20
nim 01 03 40 40 30 40
nim 01 04 50 60 50 50
nim 01 05 80 70 50 70
nim 01 06 100 100 80 90
nim 01 07 110 120 90 110
nim 01 08 160 150 120 140
nim 01 09 200 170 190 230
nim 01 10 240 210 230 210
nim 01 11 330 290 380 280
nim 01 12 360 350 420 440
nim 01 13 560 500 620 640
nim 01 14 780 570 820 870
nim 01 15 910 690 2220 1750
nim 01 16 810 810 9780 4270
nim 01 17 810 780 49100 50760
nim 01 18 1300 1170 - -
nim 01 19 1490 1400 108890 81370
nim 01 20 1820 1700 - -
nim 02 01 30 40 20 30
nim 02 02 80 80 40 40
nim 02 03 180 180 80 90
nim 02 04 380 400 130 140
nim 02 05 820 770 200 220
nim 02 06 2430 2240 350 330
nim 02 07 8890 4870 480 510
nim 02 08 76890 66990 1150 1150
nim 02 09 348840 276800 2540 2380
nim 02 10 466940 4576480 3950 5000
nim 02 11 - 2953960 - 6930
nim 02 12 452700 299940 17690 18400
nim 02 13 - 13147500 - -
nim 02 14 - - - -
nim 02 15 3970670 4717260 - -
nim 03 01 110 100 60 60
nim 03 02 810 700 160 170
nim 03 03 27080 8580 1110 640
nim 03 04 91610 173470 2110 1800
nim 03 05 396780 314470 4000 5810
nim 03 06 1215350 9473690 7270 -
nim 04 01 1050 890 180 210
nim 04 02 75430 104110 2540 2120
nim 04 03 1670340 1093050 - -
nim 04 04 6634310 14091500 - -
nim 05 01 23500 17230 1310 1070
nim 05 02 1718010 5659390 - -

TABLE III: Ablation Study: Runtime in millisecs for nim
benchmarks on Lisa2 and its version with the duplicate
removal optimization (i.e. no semantic transformation) only.
The lower runtime is in bold. Timeout 4hrs.

memory, hence is capable to solve more benchmarks.
These observations further highlight the need for fair com-

parisons in LTLf-to-DFA conversions that we raised earlier,
hence reflects on the importance of tools supporting both
datastrucutres for DFA representation.

C. Ablation Study

Finally, we perform an ablation study to examine the effect
of each optimization individually. Together the optimizations
of duplicate removal and syntactic transformation reduce
the number of composition operations. We are interested in
studying their effects individually. For this, we compare the

performance of Lisa2 (under each DFA datastructure choice)
against its own version in which the syntactic transformation
has been disabled, i.e., they only applied duplicate removal.
Figure 5 demonstrates the performance of Lisa2-Spot and

Lisa2-Mona against their variants that perform duplicate
removal only. Apriori, one would imagine that compounding
reduction in composition steps through duplicate removal and
syntactic transformation would result in improved performance
(both in number of benchmarks solved and runtime). How-
ever, Figure 5 demonstrates that in some cases (nim 02) the
variant that only performed duplicate removal solved more
benchmarks. This surprising result led us to further examine
the runtime of these tools, shown in Table III. This reveals
that there are a significant number of cases where only per-
forming duplicate removal performed better than compounding
both optimizations and there are equally many cases where
compounding optimizations displayed the stronger runtime
performance. In either case, the overall runtime performance
is still an improvement over prior state-of-the-art tools.
In order to understand this behavior, we first ascertained

that each optimization consumes such a negligible amount of
time that it cannot be considered to be the reason behind run-
time decline. Similarly, we ascertained that each optimization
contributed to reducing the number of composition steps.
We conclude that the unpredictability, despite the reduction

in number of composition steps, arises due to the creation of
new nodes (new subformulas) after syntactic transformation.
To elaborate further, syntactic transformations may result in
creating subformulas that were not originally present in the
input formula. It is possible that the new formulas are such
that even though their DFA construction may require fewer
composition steps, these steps may be more expensive as an
intermediate DFA may be difficult to create. This results in
unpredictability in performance when both optimizations are
compounded. In contrast, duplicate removal never creates any
new node (new subformula). It only reduces the number of
times some nodes may be computed. Hence, duplicate removal
will always reduce the overall runtime.

VIII. CONCLUDING REMARKS

This work presents Lisa2 which incorporates a series
of simple-yet-effective optimizations for compositional ap-
proaches for LTLf-to-DFA conversion. Empirical evaluations
of this tool displays significant performance improvement,
especially on structured benchmarks derived from real-world
scenarios: Lisa2 solves ∼50% more benchmarks and shows
runtime improvement in the range of 1.5x-8000x.
Our optimizations are based on reducing the number of

composition steps required to construct the desired DFA.
Despite the remarkable performance of Lisa2, our experiments
reveal that simply reducing the number of composition steps
may not be sufficient, especially if the reduction is accom-
panied with the creation of new subformulas for which DFA
construction may be hard to generate.
We also emphasize on the need for fair comparison to

compare algorithmic advances. This is crucial for LTLf-to-

234

DFA conversion as the choice of datastructure for DFAs have
a significant impact on a tool’s performance.
Acknowledgements: We thank Marco Favorito and Kuldeep

Meel for their help in setting up baseline tools. We thank
the anonymous reviewers for their valuable feedback. This
work has been supported by the EPSRC through grant
EP/X021513/1 and Georgia Institute of Technology’s Presi-
dential Undergraduate Research Award for Fall 2023.

REFERENCES

[1] G. De Giacomo and M. Y. Vardi, “Linear temporal logic and linear
dynamic logic on finite traces,” in IJCAI. AAAI Press, 2013, pp. 854–
860.

[2] A. Pnueli, “The temporal logic of programs,” in FOCS. IEEE, 1977,
pp. 46–57.

[3] A. Camacho, E. Triantafillou, C. Muise, J. Baier, and S. McIlraith, “Non-
deterministic planning with temporally extended goals: Ltl over finite
and infinite traces,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 31, no. 1, 2017.

[4] G. De Giacomo, F. M. Maggi, A. Marrella, and F. Patrizi, “On the
disruptive effectiveness of automated planning for ltlf-based trace align-
ment,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 31, no. 1, 2017.

[5] J. A. Baier and S. McIlraith, “Planning with temporally extended goals
using heuristic search,” in ICAPS. AAAI Press, 2006, pp. 342–345.

[6] M. Lahijanian, S. Almagor, D. Fried, L. E. Kavraki, and M. Y. Vardi,
“This time the robot settles for a cost: A quantitative approach to
temporal logic planning with partial satisfaction.” in AAAI. AAAI
Press, 2015, pp. 3664–3671.

[7] R. Brafman, G. De Giacomo, and F. Patrizi, “LTLf/LDLf non-markovian
rewards,” in AAAI, vol. 32, no. 1, 2018.

[8] A. Camacho, R. T. Icarte, T. Q. Klassen, R. A. Valenzano, and S. A.
McIlraith, “LTL and beyond: Formal languages for reward function
specification in reinforcement learning.” in IJCAI, vol. 19, 2019, pp.
6065–6073.

[9] K. Jothimurugan, S. Bansal, O. Bastani, and R. Alur, “Compositional
reinforcement learning from logical specifications,” Advances in Neural
Information Processing Systems, vol. 34, pp. 10 026–10 039, 2021.

[10] M. Pesic, D. Bosnacki, and W. M. P. van der Aalst, “Enacting declarative
languages using LTL: avoiding errors and improving performance,” in
SPIN. Springer, 2010, pp. 146–161.

[11] S. Bansal, Y. Li, L. M. Tabajara, M. Y. Vardi, and A. Wells, “Model
checking strategies from synthesis over finite traces,” in International
Symposium on Automated Technology for Verification and Analysis.
Springer, 2023, pp. 227–247.

[12] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,”
in CAV. Springer, 1999, pp. 172–183.

[13] S. Bansal, Y. Li, L. Tabajara, and M. Vardi, “Hybrid compositional
reasoning for reactive synthesis from finite-horizon specifications,” in
AAAI, vol. 34, no. 06, 2020, pp. 9766–9774.

[14] G. De Giacomo and M. Favorito, “Compositional approach to translate
LTLf/LDLf into deterministic finite automata,” in Proceedings of the In-
ternational Conference on Automated Planning and Scheduling, vol. 31,
2021, pp. 122–130.

[15] A. Duret-Lutz, E. Renault, M. Colange, F. Renkin, A. G. Aisse,
P. Schlehuber-Caissier, T. Medioni, A. Martin, J. Dubois, C. Gillard,
and H. Lauko, “From spot 2.0 to spot 2.10: What’s new?” in Computer
Aided Verification - 34th International Conference, CAV 2022, Haifa,
Israel, August 7-10, 2022, Proceedings, Part II, ser. Lecture Notes in
Computer Science, S. Shoham and Y. Vizel, Eds., vol. 13372. Springer,
2022, pp. 174–187.

[16] J. G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, R. Paige,
T. Rauhe, and A. Sandholm, “Mona: Monadic second-order logic in
practice,” in TACAS. Springer, 1995, pp. 89–110.

[17] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Transactions on Computers, vol. 100, no. 8, pp. 677–691,
1986.

[18] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper, “Simple on-the-fly
automatic verification of linear temporal logic,” in PSTV. Springer,
1995, pp. 3–18.

[19] N. Klarlund and A. Møller, MONA Version 1.4: User Manual, Jan 2001.

[20] L. M. Tabajara and M. Y. Vardi, “Partitioning techniques in LTLf
synthesis,” in IJCAI. AAAI Press, 2019, pp. 5599–5606.

235

Formal Methods in Computer-Aided Design 2024

Clausal Equivalence Sweeping
Armin Biere

University Freiburg
Freiburg, Germany

biere@cs.uni-freiburg.de

Katalin Fazekas
TU Wien

Vienna, Austria
katalin.fazekas@tuwien.ac.at

Mathias Fleury
University Freiburg
Freiburg, Germany

fleury@cs.uni-freiburg.de

Nils Froleyks
Johannes Kepler University

Linz, Austria
nils.froleyks@jku.at

Abstract—The state-of-the-art to combinational equivalence
checking is based on SAT sweeping. It recursively establishes
equivalence of internal nodes of two circuits to prove equivalence
of their outputs. The approach follows the topological order
from inputs to outputs and makes use of simulation to refine
the set of potentially equivalent nodes to reduce the number of
SAT solver queries. This non-uniform hybrid reasoning, using
both the circuit structure and a clausal encoding, is complex to
orchestrate. In earlier work, clausal encoding was avoided using
a dedicated circuit-aware SAT solver. Instead, we propose to
perform SAT sweeping directly on the clausal encoding of the
complete equivalence checking problem within the SAT solver, but
again relying on a second, dedicated, internal SAT solver. Both
SAT solvers work on a clausal representation. This allows to
transparently make use of all the advanced reasoning capabilities
of the SAT solver, particularly pre- and inprocessing techniques.

Index Terms—Equivalence Checking, SAT Sweeping, Miters,
Equivalence Reasoning, Conjunctive Normal Form, Backbones.

I. INTRODUCTION

Hardware equivalence checking is considered one of the old-
est and most successful industrial formal verification techniques.
Its purpose is to formally prove that a synthesized circuit
matches its golden model. While early approaches [1] relied on
binary decision diagrams (BDDs), more recent approaches rely
on SAT sweeping [2]. It is fair to assume that SAT sweeping
is important in commercial equivalence checking tools too.
The state-of-the-art [3]–[8] uses a hybrid approach to detect

equivalent literals through SAT sweeping. It follows the
topological structure of the two compared circuits and uses
incremental queries to the SAT solver as well as dedicated
SAT solving engines which can be made aware of the circuit
structure too [4]–[6]. It can also focus the SAT solving effort
on small parts of the circuit, which avoids the overhead in
having the SAT solver deal with the full combined problem.
This hybrid approach is in contrast to a monolithic approach,

advertised in this paper, in which the equivalence checking
problem (the miter [9]) is translated once as a whole into
a clausal representation in conjunctive normal form (CNF)
and then simply given to a SAT solver. The advantage
of the monolithic approach is that it can easily make use
of sophisticated preprocessing [10] and inprocessing [11]
techniques implemented in modern SAT solvers.

This work was supported by the state of Baden-Württemberg through
bwHPC, the German Research Foundation (DFG) through grant INST
35/1597-1 FUGG, by the Austrian Science Fund (FWF) under project No.
T-1306, and by a gift from Intel Corporation.

In this paper we combine the benefits of both approaches
by using within the main SAT solver (KISSAT) a second
embedded simple SAT solver (KITTEN) for SAT sweeping
directly on CNF. This not only improves monolithic solving
of miters substantially but also reduces solving time on other
formulas in CNF for which no circuit structure is available.
Hybrid SAT sweeping relies on structural hashing to remove

isomorphic parts of the miter. For instance, when comparing
two identical copies of the same circuit, structural hashing
alone can prove equivalence. In the monolithic approach this
is much harder, at least for plain CDCL solving [10], which
empirically fails on such isomorphic miters [12], [13].
Our recent work [14] on clausal congruence closure allows

to simulate structural hashing on the CNF level. It relies on
gate extraction and succeeds in solving such simple isomorphic
miters instantly. Alone it falls far behind hybrid approaches
on more practically relevant miters checking equivalence of
optimized (synthesized) and original (golden) circuits, unless
it is combined with clausal equivalence sweeping, presented
in this paper. This monolithic sweeping approach has not been
described nor evaluated in the literature before, except briefly
being mentioned in system descriptions of KISSAT in SAT
competition proceedings [15], [16]. For more related work
from the SAT and CP community see [14], [17], [18].

II. PRELIMINARIES

We assume the reader is familiar with standard notations
in SAT, i.e., we work with formulas F in conjunctive normal
form (CNF), usually denoted as a set F = {C1, . . . , Cm}.
Each clause C is a set of literals C = {l1, . . . , ln}, with each
literal l being a variable v or its negation v. We also use
logical notation F = C1 ∧ · · · ∧ Cm and C = l1 ∨ · · · ∨ ln as
well as logical negation ¬v = v̄ and assume ¬¬l = l. Besides
variables we also use the Boolean constants B = {0, 1}.
The variables are taken from a fixed set V , which we assume

to be totally ordered via ≤. The variable v of a literal l is
obtained as |l| = v, meaning l = v or l = ¬v. The variable
order yields a preorder on the set of all literals, denoted as L,
and the Boolean constants as follows: l ≤ l′ iff |l| ≤ |l′| and
0, 1 ≤ l for all l, l′ ∈ L (note l ≤ ¬l and ¬l ≤ l). We also
use the irreflexive version <, where additionally |l| ≠ |l′|.
With V(C) = {|l| | l ∈ C} and V(F) = {V(C) | C ∈ F}

we denote the set of variables of a clause and a formula and
similarly for L(C) and L(F) for its literals. Let |S| refer to
the number of elements of a set S.

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 29 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0000-0001-7170-9242
mailto:biere@cs.uni-freiburg.de
https://orcid.org/0000-0002-0497-3059
mailto:katalin.fazekas@tuwien.ac.at
https://orcid.org/0000-0001-7170-9242
mailto:fleury@cs.uni-freiburg.de
https://orcid.org/0000-0003-3925-3438
mailto:nils.froleyks@jku.at
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_29
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_29
https://creativecommons.org/licenses/by/4.0/

full-sweeping (CNF G)
1 literal representative ρ : L → L ∪ B with ρ(l) = l
2 if G is unsatisfiable return λl.(l ̸= |l|) // map v ↦→ 0

3 pick initial assignment σ with σ(G) = 1
4 backbone candidates B ← {l ∈ L(G) | σ(l) = 1}
5 equivalent literals partition P ← {B}
6 while B ̸= ∅
7 pick l ∈ B and set B ← B\{l}
8 if exists model σ with σ(G ∧ ¬l) = 1 // SAT call
9 B ← {l ∈ B | σ(l) = 1} // refine backbone
10 P ← refine (P , σ) // refine partition
11 else
12 ρ ← propagate (G, ρ ◦ {l ↦→ 1} ◦ {¬l ↦→ 0})
13 remove from L ∈ P all l ∈ L with ρ(l) ∈ B
14 G ← ρ(G)
15 while exists literal class L ∈ P with |L| > 1
16 pick k, l ∈ L with k < l
17 if exists σ with σ(G ∧ l ∧ ¬k) = 1 or // SAT call
18 σ(G ∧ ¬l ∧ k) = 1 // SAT call
19 P ← refine (P , σ) // refine partition
20 else
21 ρ ← ρ ◦ {l ↦→ k} ◦ {¬l ↦→ ¬k}
22 remove l from L in P
23 return ρ

Fig. 1: Pseudo code of our full SAT sweeping routine, which in
practice is only applied to variable environments (cf. Fig.4/5).
We use the ‘◦’ operator to denote function composition.

An assignment σ : V → B is extended to literals, clauses
and formulas by applying Boolean simplification. A formula
F is satisfiable if there is an assignment σ with σ(F) = 1, also
called satisfying assignment or model. Let ⊥ = {∅} denote the
unsatisfiable CNF consisting of the empty clause ∅. Given a
satisfiable formula F , a literal l is a backbone of F if σ(l) = 1
for all models σ of F . This can be checked by showing that
F ∧ ¬l is unsatisfiable. Two literals k and l are equivalent if
σ(k) = σ(l) in all models σ of F . This can be checked by
showing that F ∧ l∧¬k is unsatisfiable as well as F ∧¬l∧ k.

III. ALGORITHM

Our unbounded algorithm for full-sweeping is shown in
Fig. 1. It returns a mapping ρ of the literals L of the given
formula to literals or to Boolean constants B = {0, 1}. We
further assume ρ(¬l) = ¬ρ(l) and ρ(l) ≤ l as it is common
in this kind of union-find data-structure.
The entire sweeping algorithm has three phases. First, lines

1–5, it tries to find a satisfying assignment σ. If none exists,
an arbitrary constant mapping ρ is returned, i.e., ρ(v) = 0 for
all v ∈ V , guaranteed to falsify at least one clause. Otherwise,
σ is used to determine the backbone candidates B (literals set
to true) and an initial equivalence class of literals also all set
to true. Note that thereby negations of these literals are also
considered potentially equivalent with each other.

refine (P , σ)
1 R ← ∅
2 for all L ∈ P
3 Li ← {l ∈ L | σ(l) = i} for i ∈ B
4 if L0 = ∅ or L1 = ∅ then R ← R ∪ {L}
5 else R ← R ∪ {L0} ∪ {L1}
6 return R

Fig. 2: Refinement of equivalent literal partition.

propagate (CNF F , literal mapping ρ : L → L ∪ B)
1 F ← ρ(F) // pre-simplify
2 while ∅ ̸∈ F and there is a unit clause {l} ∈ F
3 ρ ← ρ ◦ {l ↦→ 1} ◦ {¬l ↦→ 0}
4 F ← ρ(F) // simplify
5 return ρ

Fig. 3: Unit propagation on a literal mapping.

In the second phase, lines 6–14, each remaining l in the
backbone candidate set B is checked to have a model of the
formula falsifying l. If such a model exists, we remove all
falsified literals from B in that model and refine the equivalence
classes in the partitioning according to Fig. 2 by splitting
classes inconsistent with that model into one class of literals
assigned to 0 and one class of literals assigned to 1. Otherwise,
there is no model of the formula which sets the considered
backbone candidate l to 0. So we update ρ by setting l
permanently to 1 and ¬l to 0 and propagate this information
over the formula, as shown in Fig. 3, which might deduce
additional constant assignments. Afterwards, the formula is
simplified (line 14) by applying the updated mapping.
In the third phase, lines 15–22, after backbone extraction, we

check for each pair of remaining equivalent literals candidates,
within the same equivalence class, whether there exists a model
of the formula with the two literals assigned to different values.
If this is the case we split their equivalence class as well as
all other equivalence classes which are inconsistent with the
model. Otherwise, we have shown that these two literals are
equivalent and record that information by mapping the larger
literal to the smaller (and accordingly their negations).
This procedure calls a SAT oracle in three places and as

such is not really useful to simplify a formula for which we
only want to know whether it is satisfiable. Thus in order to
use this sweeping procedure in the context of SAT solving,
we have to limit the effort put into these SAT calls. There are
two obvious ways to achieve this. Either we replace the oracle
calls by some cheaper procedure to limit the run-time of the
oracle or we apply full sweeping only to a subset of literals.
We have explored the first option before in LINGELING [19]

and SPLATZ [20] without much success though. Therefore,
KISSAT uses the second approach, shown in Fig. 4. As in
hybrid approaches [4]–[6], we focus each full-sweeping only
on a small part of the formula, assuming that the cheap-to-
detect equivalences are between literals close to each other.

237

bounded-sweeping (CNF F , bound k ∈ N)
1 working set Γ ← V(F) // all variables in F
2 while Γ ̸= ∅
3 pick v ∈ Γ and set Γ ← Γ\{v}
4 G ← environment ({v}, ∅, F , k)
5 ρ ← full-sweeping (G) // sweep environment clauses
6 ρ ← propagate (F , ρ) // propagate ρ on whole F
7 F ′ ← ρ(F) // simplify F with ρ
8 if ∅ ∈ F ′ return ⊥ // return CNF with empty clause
9 Γ ← Γ ∪ V(F ′\F) // add variables in changed clauses
10 F ← F ′

11 return F

Fig. 4: Pseudo code of our bounded SAT sweeping routine.

environment (variables V , CNF G, CNF F , bound k ∈ N)
1 if k = 0 return G
2 G′ ← {C ∈ F | V ∩ V(C) ̸= ∅} // clauses with V
3 V ′ ← ⋃︁V(G′) // variables in clauses with V
4 return environment (V ′, G′, F , k − 1)

Fig. 5: Compute bounded environment of a variable.

To this extent we consider two variables (and thus their
literals) to be “very close” if they occur in the same clause and
extend this notion recursively in a breadth-first manner limited
by some bound k, i.e., the distance between two variables.
We further decided to restrict the part of a formula to which
full sweeping is applied to consist of all clauses containing
variables a maximum distance away from a given variable v,
i.e., the environment of v as shown in Fig. 5.
The bounded-sweeping algorithm goes over all variables v

of the formula and performs full sweeping on the environment
of v. The whole formula is then simplified by applying the
mapping ρ obtained from the full sweeping of the environment
(line 7). All variables in clauses that changed during that
simplification are reconsidered (line 9). This approach is sound
as both local backbones and equivalences of a sub-formula
are of course also backbones and equivalences of the whole
formula. It is obviously not complete but gives substantial
improvements in practice, as our experiments will show.

IV. IMPLEMENTATION

The use of a dedicated light-weight SAT solver in hybrid
approaches (cf. [6]) provided the motivation to explore using
a separate light-weight little SAT solver (KITTEN) within our
full-blown state-of-the-art big SAT solver (KISSAT). This al-
lows to (i) solve only parts of a big formula by copying it, and
(ii) avoids any other interaction of solving the small problems
such as keeping statistics, variable scores etc. untouched, and
(iii) allows to record proofs in memory in case it becomes
necessary to export proofs from the small to the big solver,
without the need to support this feature in the big solver.
Although clausal equivalence sweeping, presented in this

paper, was the first application of KITTEN inside KISSAT, it

was also used to mine definitions [21], [22], and to improve
bounded variable elimination [23]. The article on definition-
mining [21] contains implementation details about KITTEN.
Most of the time SAT calls during sweeping in Fig. 1 are of

course satisfiable as otherwise the formula would radically
simplify. Even though often trivial to solve (few or no
conflicts), these satisfiable queries are relatively expensive, as a
full model of the environment has to be constructed, i.e., at least
linear in the number of variables in the environment. Motivated
by the usefulness of model rotation in MUS extraction [24],
we added an API call “kitten_flip_literal” to KITTEN,
which checks after a model has been found, whether the value
of a single literal can be flipped, without falsifying any clause.
Flipping can be implemented efficiently by traversing only

the clauses watched by that literal, an insight which helped
to improve stand-alone backbone extraction [25] (after porting
it to CADICAL). Without using watches, model rotation
appears to be too costly [26]. In our implementation of clausal
equivalence sweeping, we aggressively use literal flipping
whenever we find a model (at line 9 and 19 in Fig. 1) to refine
both backbone candidates and the equivalent literal classes,
i.e., any backbone candidate and any literal in an equivalence
literal class can be removed if it can be flipped. This technique
reduces the number of full satisfiable queries substantially.
Despite a small bound of distance k = 3 (which actually

starts at k = 2 and only is increased to k = 3 in the next
inprocessing round after successful completion of sweeping),
we also limit the number of variables (213 = 8192) and
clauses (215 = 32768) allowed in an environment. Still,
also in contrast to clausal congruence closure [14], clausal
equivalence sweeping is too costly to run until completion on
larger instances. Therefore we limit the effort (time spent in
KITTEN measured in “ticks” – an approximation of cache line
accesses) relative to the time spent during CDCL, as with other
inprocessing procedures, preempt sweeping and continue later
with the remaining variables in the next inprocessing round.

V. BENCHMARKS

We evaluated our approach on problems of the hardware
model checking competition (HWMCC) from 2012 [27] and
2020 [28] and from the SAT competition 2022 and 2023. The
AIGER [29] problems from HWMCC are encoded into CNF
based on detecting and encoding XOR and ITE gates in an
optimized way instead of the default AND gate encoding.
Moreover, each miter comes in two versions: iso and opt.

The former (iso) compares each circuit with an isomorphic
copy of itself, while the latter set (opt) uses the command dc2
of ABC to optimize the original circuit and then compares this
optimized circuit with the original circuit [30]–[32].
Evaluating our technique on SAT competition benchmarks

allows us to assess the potential overhead and benefits of our
approach on more general SAT instances that may have less
underlying structure which can be exploited by our technique.

VI. EXPERIMENTS

We implemented our approach in KISSAT and evaluated its
performance on the bwForCluster Helix, utilizing AMD Milan

238

0 1000 2000 3000 4000 5000

26
0

28
0

30
0

32
0

34
0 100% = 341 instances50 sec 500 sec

341 abc− fra ig
341 k issa t−defau lt
341 k issa t−proo f
341 k issa t−no−sw eep
340 dpr− tr im
339 k issa t−no−congruence
329 k issa t−no−congruence−no−sw eep

Fig. 6: Number of solved isomorphic miters (y-axis) from 341
HWMCC’12 benchmarks in the given time (x-axis in seconds).
The legend displays the number of solved instances per solver.

EPYC 7513 CPUs, with 15 GB of memory and 5000 second
time limit. All plots follow the SAT competition set-up [33]
showing the number of solved instances (y-axis) over the time
it took to solve them (on the x-axis in seconds). Source code
is available at [32] and experimental data at [32], [34].
In our experiments we compare the default configuration

of KISSAT (kissat-default), where both SAT sweeping and
clausal congruence closure [14] is enabled, to activating only
one or none of these techniques. Additionally, we consider
runs of the default configuration with proof production enabled
(kissat-proof), and present here the required time to check these
produced proofs using DPR-TRIM as well (dpr-trim).
Figures 6-9 depict the results of the experiments on the

HWMCC problems. Here we compare our approach to the
state-of-the-art SAT sweeping technique [6] implemented in
ABC, available as fraig -y in ABC superseding fraig -x

used in the cec command (according to personal communica-
tion with the author of ABC). The results show that our pure
SAT-based approach, that sees only the clausal representation
of the circuits is able to perform comparable to the hybrid
approach specialized in reasoning about circuits. Regarding
SAT competition problems, we follow [35] and include SBVA-
CADICAL, winner of the SAT Competition 2023. The results
in Fig. 10-14 demonstrate that sweeping and congruence
closure both contribute to better performance on these more
generic competition problems too. Fig. 13/14 also compare
solving times versus checking times with DPR-TRIM.
In Fig. 12 we show results on 5 challenging miters from the

IWLS’22 paper [6] (originating from [5]) which introduced
the advanced SAT sweeping technique implemented in ABC
(through the command “fraig -y”) as also used in our
experiments. Again sweeping gives a substantial improvement
in our monolithic approach. Note that one miter “test02” can
actually be solved by congruence closure instantly (faster than
ABC) and does not need sweeping (cf. [14] for details).
We further extracted from the log files [32], [34] the

following numbers. The time spent in clausal equivalence
sweeping with kissat-default is for hwmcc12/opt on average
13.72 sec (0.00 sec - 636.67 sec) and 21.77% (3.26% - 80.98%),

0 1000 2000 3000 4000 5000

26
0

28
0

30
0

32
0

34
0 100% = 341 instances50 sec 500 sec

336 k issa t−defau lt
335 k issa t−proo f
335 abc− fra ig
334 k issa t−no−congruence
331 dpr− tr im
330 k issa t−no−congruence−no−sw eep
329 k issa t−no−sw eep

Fig. 7: Number of solved optimized miters (y-axis) from 341
HWMCC’12 benchmarks in the given time (x-axis in seconds).
The legend displays the number of solved instances per solver.

0 1000 2000 3000 4000 5000

26
0

27
0

28
0

29
0

30
0

31
0

32
0

100% = 324 instances50 sec 500 sec

324 abc− fra ig
324 k issa t−no−sw eep
324 k issa t−defau lt
324 k issa t−proo f
324 dpr− tr im
309 k issa t−no−congruence
296 k issa t−no−congruence−no−sw eep

Fig. 8: Number of solved isomorphic miters (y-axis) from 324
HWMCC’20 benchmarks in the given time (x-axis in seconds).
The legend displays the number of solved instances per solver.

for hwmcc20/opt on average 31.42 sec (0.00 sec - 636.67 sec)
and 17.89% (3.26% - 80.98%), for iwls22 on average 64.35 sec
(0.00 sec - 104.51 sec) and 9.81% (0.00% - 10.92%), for
sc2022 on average 34.75 sec (0.04 sec - 681.70 sec) and 4.52%
(0.13% - 29.70%), for sc2023 on average 29.65 sec (0.00 sec
- 437.05 sec) and 5.87% (0.06% - 93.72%).

0 1000 2000 3000 4000 5000

26
0

27
0

28
0

29
0

30
0

31
0

32
0

100% = 324 instances50 sec 500 sec

320 abc− fra ig
309 dpr− tr im
309 k issa t−defau lt
309 k issa t−proo f
307 k issa t−no−congruence
305 k issa t−no−sw eep
298 k issa t−no−congruence−no−sw eep

Fig. 9: Number of solved optimized miters (y-axis) from 324
HWMCC’20 benchmarks in the given time (x-axis in seconds).
The legend displays the number of solved instances per solver.

239

0 1000 2000 3000 4000 5000

0
10

0
20

0
30

0
40

0 100% = 400 instances

315 k issa t−defau lt
314 k issa t−proo f
312 k issa t−no−sw eep
305 k issa t−no−congruence
304 k issa t−no−congruence−no−sw eep
291 sbva−cad ica l

Fig. 10: Number of solved SAT Competition 2022 main track
benchmarks (y-axis) in the given time (x-axis in seconds). The
legend displays the number of solved instances per solver.

0 1000 2000 3000 4000 5000

0
10

0
20

0
30

0
40

0 100% = 400 instances

287 sbva−cad ica l
277 k issa t−no−congruence
275 k issa t−defau lt
275 k issa t−proo f
275 k issa t−no−sw eep
273 k issa t−no−congruence−no−sw eep

Fig. 11: Number of solved SAT Competition 2023 main track
benchmarks (y-axis) in the given time (x-axis in seconds). The
legend displays the number of solved instances per solver.

0 1000 2000 3000 4000 5000

1
2

3
4

5

100%

5 instances50 sec 500 sec

5 abc− fra ig
5 dpr− tr im
5 k issa t−proo f
5 k issa t−defau lt
5 k issa t−no−sw eep
5 k issa t−no−congruence
4 k issa t−no−congruence−no−sw eep

Fig. 12: Number of solved miters (on the y-axis) of the 5
IWLS’22 benchmarks in the given time (on the x-axis in
seconds). The legend displays the number of solved instances
per solver. One of the miters, i.e., test02, is instantly solved
by KISSAT with clausal congruence closure even though it was
considered challenging in [6]. This is due normalization during
ITE gates extraction. See [14] for a more detailed explanation.

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

159 k issa t−defau lt
158 k issa t−proo f
157 k issa t−no−sw eep
155 k issa t−no−congruence−no−sw eep
154 k issa t−no−congruence
151 dpr− tr im
148 sbva−cad ica l

Fig. 13: Number of solved unsatisfiable SAT Competition
2022 main track benchmarks (y-axis) in the given time (x-axis
in seconds). The total number of unsatisfiable instances is
unknown though. The legend displays the number of solved
instances per solver.

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

163 sbva−cad ica l
151 k issa t−defau lt
151 k issa t−no−congruence
151 k issa t−proo f
150 k issa t−no−sw eep
148 k issa t−no−congruence−no−sw eep
137 dpr− tr im

Fig. 14: Number of solved unsatisfiable SAT Competition
2023 benchmarks (y-axis) in the given time (x-axis in seconds).
The total number of unsatisfiable instances is unknown though.
The legend displays the number of solved instances per solver.

The number of backbones and equivalences found were for
hwmcc12/opt 70 780 backbones and 446 784 equivalences, for
hwmcc20/opt 12 976 backbones and 162 427 equivalences, for
iwls22 2 052 backbones and 58 792 equivalences, for sc2022
298 065 backbones and 1 590 810 equivalences, for sc2023
838 120 backbones and 4 019 861 equivalences.
The percentage of satisfiable queries was for hwmcc12/opt

91.45%, for hwmcc20/opt 95.27%, for iwls22 94.25%, for
sc2022 95.64%, for sc2023 96.00% and the ratio of success-
fully flipped literals over the number of satisfiable queries
was for hwmcc12/opt 12.77, for hwmcc20/opt 32.34, for iwls22
21.03, for sc2022 64.05, for sc2023 23.34.

VII. CONCLUSION

We presented a “big-little” approach to clausal equivalence
sweeping directly on CNF using an embedded SAT solver
KITTEN inside of KISSAT and show that it improves solving
hard equivalence checking problems substantially as well as
being useful on plain CNF problems from the SAT competition.

240

REFERENCES

[1] A. Kuehlmann and F. Krohm, “Equivalence checking using cuts and
heaps,” in Proceedings of the 34st Conference on Design Automation,
Anaheim, California, USA, Anaheim Convention Center, June 9-13, 1997,
E. J. Yoffa, G. D. Micheli, and J. M. Rabaey, Eds. ACM Press, 1997,
pp. 263–268.

[2] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust boolean
reasoning for equivalence checking and functional property verification,”
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 21, no. 12,
pp. 1377–1394, 2002.

[3] V. N. Possani, A. Mishchenko, R. P. Ribas, and A. I. Reis, “Parallel
combinational equivalence checking,” IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst., vol. 39, no. 10, pp. 3081–3092, 2020.

[4] L. G. Amarù, F. S. Marranghello, E. Testa, C. Casares, V. N. Possani,
J. Luo, P. Vuillod, A. Mishchenko, and G. D. Micheli, “SAT-sweeping
enhanced for logic synthesis,” in 57th ACM/IEEE Design Automation
Conference, DAC 2020, San Francisco, CA, USA, July 20-24, 2020.
IEEE, 2020, pp. 1–6.

[5] H. Zhang, J. R. Jiang, L. G. Amarù, A. Mishchenko, and R. K. Brayton,
“Deep integration of circuit simulator and SAT solver,” in 58th ACM/IEEE
Design Automation Conference, DAC 2021, San Francisco, CA, USA,
December 5-9, 2021. IEEE, 2021, pp. 877–882.

[6] H. Zhang, J. R. Jiang, A. Mishchenko, and L. G. Amarù, “Improved
large-scale SAT sweeping,” in Proc. 31st International Workshop on
Logic & Synthesis, 2022.

[7] Z. Chen, X. Zhang, Y. Qian, Q. Xu, and S. Cai, “Integrating exact simula-
tion into sweeping for datapath combinational equivalence checking,” in
IEEE/ACM International Conference on Computer Aided Design, ICCAD
2023, San Francisco, CA, USA, October 28 - Nov. 2, 2023. IEEE,
2023, pp. 1–9.

[8] H. Pan, R. Zhang, Y. Xia, L. Wang, F. Yang, X. Zeng, and Z. Chu,
“A semi-tensor product based circuit simulation for sat-sweeping,” in
Design, Automation & Test in Europe Conference & Exhibition, DATE
2024, Valencia, Spain, March 25-27, 2024. IEEE, 2024, pp. 1–6.

[9] D. Brand, “Verification of large synthesized designs,” in Proceedings
of the 1993 IEEE/ACM International Conference on Computer-Aided
Design, 1993, Santa Clara, California, USA, November 7-11, 1993,
M. R. Lightner and J. A. G. Jess, Eds. IEEE Computer Society / ACM,
1993, pp. 534–537.

[10] A. Biere, M. Järvisalo, and B. Kiesl, “Preprocessing in SAT solving,” in
Handbook of Satisfiability - Second Edition, ser. Frontiers in Artificial
Intelligence and Applications, A. Biere, M. Heule, H. van Maaren, and
T. Walsh, Eds. IOS Press, 2021, vol. 336, pp. 391–435.

[11] M. Järvisalo, M. Heule, and A. Biere, “Inprocessing rules,” in Automated
Reasoning - 6th International Joint Conference, IJCAR 2012, Manchester,
UK, June 26-29, 2012. Proceedings, ser. Lecture Notes in Computer
Science, B. Gramlich, D. Miller, and U. Sattler, Eds., vol. 7364.
Springer, 2012, pp. 355–370.

[12] A. Biere, M. Heule, M. Järvisalo, and N. Manthey, “Equivalence
checking of HWMCC 2012 circuits,” in Proc. of SAT Competition 2013
– Solver and Benchmark Descriptions, ser. Department of Computer
Science Series of Publications B, A. Balint, A. Belov, M. Heule, and
M. Järvisalo, Eds., vol. B-2013-1. University of Helsinki, 2013, p.
104.

[13] M. Heule, M. Järvisalo, and A. Biere, “Revisiting hyper binary resolu-
tion,” in Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems, 10th International Confer-
ence, CPAIOR 2013, Yorktown Heights, NY, USA, May 18-22, 2013.
Proceedings, ser. Lecture Notes in Computer Science, C. P. Gomes and
M. Sellmann, Eds., vol. 7874. Springer, 2013, pp. 77–93.

[14] A. Biere, K. Fazekas, M. Fleury, and N. Froleyks, “Clausal Congruence
Closure,” in 27th International Conference on Theory and Applications
of Satisfiability Testing, SAT 2024, August 21-24, 2024, Pune, India, ser.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024.

[15] A. Biere, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat, Paracooba
entering the SAT Competition 2021,” in Proc. of SAT Competition 2021
– Solver and Benchmark Descriptions, ser. Department of Computer
Science Report Series B, T. Balyo, N. Froleyks, M. Heule, M. Iser,
M. Järvisalo, and M. Suda, Eds., vol. B-2021-1. University of Helsinki,
2021, pp. 10–13.

[16] A. Biere and M. Fleury, “Gimsatul, IsaSAT and Kissat entering the
SAT Competition 2022,” in Proc. of SAT Competition 2022 – Solver and
Benchmark Descriptions, ser. Department of Computer Science Series of

Publications B, T. Balyo, M. Heule, M. Iser, M. Järvisalo, and M. Suda,
Eds., vol. B-2022-1. University of Helsinki, 2022, pp. 10–11.

[17] M. Heule and A. Biere, “Blocked clause decomposition,” in Logic for
Programming, Artificial Intelligence, and Reasoning - 19th International
Conference, LPAR-19, Stellenbosch, South Africa, December 14-19, 2013.
Proceedings, ser. Lecture Notes in Computer Science, K. L. McMillan,
A. Middeldorp, and A. Voronkov, Eds., vol. 8312. Springer, 2013, pp.
423–438.

[18] M. Codish, Y. Fekete, and A. Metodi, “Backbones for equality,” in
Hardware and Software: Verification and Testing - 9th International
Haifa Verification Conference, HVC 2013, Haifa, Israel, November 5-7,
2013, Proceedings, ser. Lecture Notes in Computer Science, V. Bertacco
and A. Legay, Eds., vol. 8244. Springer, 2013, pp. 1–14.

[19] A. Biere, “Lingeling and friends entering the SAT Race 2015,” Insti-
tute for Formal Models and Verification, Johannes Kepler University,
Altenbergerstr. 69, 4040 Linz, Austria, Tech. Rep. 15/2, 2015.

[20] ——, “Splatz, Lingeling, Plingeling, Treengeling, YalSAT Entering the
SAT Competition 2016,” in Proc. of SAT Competition 2016 – Solver
and Benchmark Descriptions, ser. Department of Computer Science
Series of Publications B, T. Balyo, M. Heule, and M. Järvisalo, Eds.,
vol. B-2016-1. University of Helsinki, 2016, pp. 44–45.

[21] M. Fleury and A. Biere, “Mining definitions in Kissat with Kittens,”
Formal Methods Syst. Des., vol. 60, no. 3, pp. 381–404, 2022.

[22] J. E. Reeves, M. J. H. Heule, and R. E. Bryant, “Moving definition
variables in quantified boolean formulas,” in Tools and Algorithms for the
Construction and Analysis of Systems - 28th International Conference,
TACAS 2022, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7,
2022, Proceedings, Part I, ser. Lecture Notes in Computer Science,
D. Fisman and G. Rosu, Eds., vol. 13243. Springer, 2022, pp. 462–
479.

[23] N. Eén and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” in Theory and Applications of Satisfiability
Testing, 8th International Conference, SAT 2005, St. Andrews, UK, June
19-23, 2005, Proceedings, ser. Lecture Notes in Computer Science,
F. Bacchus and T. Walsh, Eds., vol. 3569. Springer, 2005, pp. 61–75.

[24] A. Belov and J. Marques-Silva, “Accelerating MUS extraction with re-
cursive model rotation,” in International Conference on Formal Methods
in Computer-Aided Design, FMCAD ’11, Austin, TX, USA, October 30
- November 02, 2011, P. Bjesse and A. Slobodová, Eds. FMCAD Inc.,
2011, pp. 37–40.

[25] A. Biere, N. Froleyks, and W. Wang, “Cadiback: Extracting backbones
with cadical,” in 26th International Conference on Theory and Applica-
tions of Satisfiability Testing, SAT 2023, July 4-8, 2023, Alghero, Italy,
ser. LIPIcs, M. Mahajan and F. Slivovsky, Eds., vol. 271. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023, pp. 3:1–3:12.

[26] M. Janota, I. Lynce, and J. Marques-Silva, “Algorithms for computing
backbones of propositional formulae,” AI Commun., vol. 28, no. 2, pp.
161–177, 2015.

[27] A. Biere, K. Heljanko, M. Seidl, and S. Wieringa, “Hardware
model checking competition (hwmcc’12),” 2012. [Online]. Available:
https://fmv.jku.at/hwmcc12

[28] A. Biere, N. Froleyks, and M. Preiner, “Hardware model checking
competition (hwmcc’20),” 2020. [Online]. Available: https://hwmcc.
github.io/2020

[29] A. Biere, K. Heljanko, and S. Wieringa, “AIGER 1.9 and beyond,”
Institute for Formal Models and Verification, Johannes Kepler University,
Altenbergerstr. 69, 4040 Linz, Austria, Tech. Rep. 11/2, 2011.

[30] A. Biere, K. Fazekas, M. Fleury, and N. Froleyks, “CNF Encoded
Isomorphic and Optimized Miters from Hardware Model Checking
Competition 2020 Models,” May 2024. [Online]. Available: https:
//doi.org/10.5281/zenodo.11202461

[31] A. Biere, “CNF Encoded Isomorphic and Optimized Miters from
Hardware Model Checking Competition 2012 Models,” Mar. 2024.
[Online]. Available: https://doi.org/10.5281/zenodo.10823128

[32] [Online]. Available: https://cca.informatik.uni-freiburg.de/ces
[33] N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda, “SAT

Competition 2020,” Artif. Intell., vol. 301, p. 103572, 2021.
[34] A. Biere, K. Fazekas, M. Fleury, and N. Froleyks, “Clausal

equivalence sweeping paper logs,” May 2024. [Online]. Available:
https://doi.org/10.5281/zenodo.11203283

[35] A. Biere, M. Järvisalo, D. Le Berre, K. S. Meel, and S. Mengel,
“The SAT practitioner’s manifesto,” Sep. 2020. [Online]. Available:
https://doi.org/10.5281/zenodo.4500928

241

https://fmv.jku.at/hwmcc12
https://hwmcc.github.io/2020
https://hwmcc.github.io/2020
https://doi.org/10.5281/zenodo.11202461
https://doi.org/10.5281/zenodo.11202461
https://doi.org/10.5281/zenodo.10823128
https://cca.informatik.uni-freiburg.de/ces
https://doi.org/10.5281/zenodo.11203283
https://doi.org/10.5281/zenodo.4500928

Formal Methods in Computer-Aided Design 2024

Automatic Verification of Right-greedy
Numerical Linear Algebra Algorithms

Carl Kwan
The University of Texas at Austin

Austin, TX, United States of America
carlkwan@cs.utexas.edu

Warren A. Hunt, Jr.
The University of Texas at Austin

Austin, TX, United States of America
hunt@cs.utexas.edu

Abstract—We present an automatic verification process for
formally proving the correctness of a class of greedy numerical
linear algebra algorithms. To demonstrate our methodology,
we present theorem prover verifications of LU and Cholesky
decompositions. We formalize a framework for reasoning about
matrices and matrix algorithms by partitioning matrices and
developing a generalized form of the inductive invariant common
to this class of greedy algorithms. Our framework enables users
to readily verify any algorithm in this class automatically by
simply defining the algorithm itself and specifying the class of
matrices on which the algorithm performs. Our framework is also
adaptable to other greedy numerical linear algebra algorithms.
To our knowledge, this is the first automatic approach to verifying
an entire class of numerical linear algebra algorithms.

Index Terms—Numerical linear algebra, LU decomposition,
Cholesky factorization theorem, Automated theorem proving.

I. INTRODUCTION

Linear algebra is everywhere, permeating across the natural,
mathematical, social, applied, and, in particular, computing
sciences. The prevalence of linear algebra includes critical
applications in which linear algebra computations are used
to build modern infrastructure, perform data analysis affecting
policy making, engineer control systems, secure information,
create scientific models, and develop hardware, software, and
cyberphysical systems. Determining the correctness of these
linear algebra computations is vital. Numerical linear algebra
concerns algorithms designed to perform such computations
accurately. However, implementations of such algorithms can
still fail with disastrous consequences. The potential human
and capital losses due to inadequate numerical implementa-
tions necessitates formal methods.
We present a formal method for automatically verifying

a class of greedy numerical linear algebra algorithms. We
demonstrate the utility of our approach by verifying a par-
ticular flavor of the LU and Cholesky decompositions; that
is, we verify that the product of the decomposed matrix is
the original matrix itself under the appropriate conditions. We
choose these specific decompositions because the development
or improvement of any new family of numerical linear algebra
algorithms typically begins with one of the “three amigos”:
LU, Cholesky, or QR decomposition. This makes LU and
Cholesky two of the most ubiquitous algorithms in numerical

This work was supported in part by Intel Corporation and Amazon Science.

methods. In this paper, we describe our approach to their
mechanization.
To the best of our knowledge, any verification of numerical

linear algebra algorithms by way of theorem prover is a new
area of research. By applying our approach to two of the
three amigos, we intend to embark on a significant line of
research involving the systematic and portable verification of
families of numerical linear algebra algorithms. One major
novel contribution we make is to identify the level of ab-
straction appropriate for reasoning with theorem provers. If
we implement matrix algorithms and reason at the level of
their scalar entries, such as in Algorithm 1, then our proofs
would be intractable because the mathematical expressions
quickly become too large and unwieldy. Moreover, such an
approach is not easily portable to other algorithms, even if
they are in the same family. If we reason at too high a level,
then verifying instantiated algorithms would require significant
user effort, thus reducing automation. In this paper, we apply
a partitioned approach to reasoning about matrices and their
algorithms, which enable our verification of LU and Cholesky
decompositions using the same shared framework.
LU and Cholesky decompositions are vital numerical tech-

niques with broad applications in linear algebra. LU de-
composition factorizes a matrix into a product of lower and
upper triangular matrices. Cholesky decomposition specifically
applies to symmetric positive definite matrices, breaking them
down into the product of a lower triangular matrix and its
transpose. Let

• LU(A) compute the LU decomposition of A;
• Chol(A) compute Cholesky decompositions of A;
• Lu be the strictly lower triangular part of LU(A), placing
1s on the diagonal;

• U retrieve the upper triangular part of LU(A).
• L be the lower triangular part of Chol(A); and

Specifically, we verify that
1) if every principal leading submatrices of A is nonsingu-

lar, then A = LuU ; and
2) if A is symmetric positive definite, then A = LLT .

We discuss the conditions on A later. Both LU and Cholesky
decompositions facilitate solving linear systems, performing
matrix inversions, and calculating determinants efficiently.
Cholesky is particularly useful when solving linear least-

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 30 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0009-0001-8195-7706
https://orcid.org/0009-0004-1444-2544
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_30
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_30
https://creativecommons.org/licenses/by/4.0/

squares problems, performing Monte Carlo simulations, and
optimizing quadratic forms. These sorts of decompositions
play crucial roles in numerical stability, computational ef-
ficiency, and analysing the accuracy of solutions, making
them fundamental tools in diverse fields such as physics,
engineering, finance, and machine learning.
The particular variants of LU and Cholesky decomposi-

tion in this paper are sometimes known as “right-greedy”.
“Right-greedy” refers to the particular submatrices that are
updated in a partitioned representation of the matrix on which
an algorithm operates during the main body of a loop or
recursion. At each step of the algorithm, we update the
nearest submatrices into the desired form. As the algorithm
proceeds, the components are updated from left to right1. Our
method enables the theorem prover verification of a right-
greedy algorithm automatically with very few user-provided
hints. To discharge the algorithmic proof of correctness using
a theorem prover, the only knowledge necessary is the matrix
partitioning and a recognizer for the class of matrices on which
the algorithm is expected to operate. Our approach is the first
to enable the mechanical verification of an entire family of
numerical linear algebra algorithms.
We perform our modeling and verification with ACL2, an

industrial-strength first-order logic automated theorem prover
with support for the real numbers via non-standard analy-
sis [1], [2]. One advantage of using ACL2 is that the structure
of the numerical linear algebra algorithms in which we are
interested is well suited to ACL2’s extensive support for
rewriting and induction. Another advantage of using ACL2 is
the support for execution via an underlying Lisp interpreter de-
fined within the theorem prover logic. ACL2 is unique among
theorem provers in its capability execute code at the speeds
of modern programming languages within the theorem prover
itself, making our verified numerical linear algebra programs
directly applicable to real-world problems. We use the ACL2
language to model commercial linear algebra applications,
and we analyze such codes mechanically for their fitness to
purpose using the ACL2 theorem prover.
There are very few verification efforts for numerical linear

algebra. First, the sheer number of numerical algorithms, even
for linear algebra, is daunting, and new ad hoc algorithms for
specific applications are often being published. Verifying just
the algorithms for critical applications would be an endless
affair, requiring large-scale organization and resources. Our
work addresses the verification of not just one algorithm
or application, but an entire family of numerical algorithms.
Second, different algorithms can have different structures
and correctness criteria. This suggests separate proofs for
each individual algorithm. Even identifying structures that
are exploitable for verification purposes is challenging. Third,
there is an over reliance of indexing in typical presentations
of numerical algorithms. Consider the LU decomposition
algorithm in Algorithm 1, which is representative of numerical
algorithms [3]. Here,

1Section IV provides a visual treatment of “right-greedy”.

Algorithm 1 Right-greedy LU decomposition (Stewart). [3]
for k = 1 : n− 1 do
if A[k, k] = 0 Error
A[k + 1 : n, k] = A[k + 1 : n, k]/A[k, k]
A[k + 1 : n, k + 1 : n]

= A[k+1 : n, k+1 : n]−A[k+1 : n, k]A[k, k+1 : n]

• A[a, b] refers to the scalar in the a-th row and b-th
column,

• A[a : b, c] refers to the column vector from row a to row
b in column c,

• A[a, b : c] refers to the row vector from column b to
column c in row a,

• A[a : b, c : d] refers to the submatrix from row a to row
b and from column c to column d.

Indexing obfuscates the design and intent of the algorithm to
the point where it is unclear what is a matrix, what is a vector,
or even what is a scalar in the main loop. Unbounded proofs
for algorithms of this sort can be discharged by induction
or rewriting by a general purpose theorem prover. Fourth,
ACL2 has extensive support for execution within its logic and
numerical linear algebra algorithms are usually designed to
be executed. Some theorem provers can generate executable
source or machine code but these tend to be unverified and un-
optimized, which limits their utility especially since unverified
but optimized numerical linear algebra libraries already exists.
Fifth, the scope of linear algebra algorithms is sometimes
limited to a class of matrices for which the definition is not
conducive to formalization. For example, Cholesky decom-
position is designed for matrices that are symmetric positive
definite, and the usual definition for positive definite involves
quantifying over all vectors. We want to avoid quantifiers in
the definition of, say, positive definite because they limit the
execution of a recognizer for such matrices.
In this paper we provide our solutions to the five chal-

lenges described. To address the first two challenges and
partially address the third, we take advantage of the Formal
Linear Algebra Methods Environment (FLAME) [4]. FLAME
is an approach for systematically deriving numerical linear
algebra algorithms that circumvents the problem of indexing
by representing numerical linear algebra algorithms in terms
of operations on the submatrices in a partitioned form of
the original matrix. The partitioned form is not only more
readable from a human perspective, but also exposes invariants
that facilitates ACL2 reasoning and verification. The problem
with algorithms in the original FLAME approach is that they
are loop-based and mathematical correctness follows from
identifying loop-invariants. In our approach, we recast loops
into recursions and instead identify generalizable inductive
invariants, which better aligns with the spirit of ACL2.
To address the last two challenges and finish addressing

the third, we develop ACL2 mechanisms to enable automatic
reasoning about linear algebra algorithms, define constructive
recognizers for the matrices on which these algorithms operate,

243

and execute them. It is important for these recognizers to be
executable because they can also serve as an efficient way to
check whether a matrix is part of a solvable problem before
performing more costly procedures. Execution is handled
natively by ACL2. To reason about matrix algorithms, we
develop our own ACL2 rules for partitioning matrices and
finding inductive invariants. Another contribution we make is
to identify and develop definitions that enable constructive rec-
ognizers for matrices that satisfy an algorithm’s precondition.
The rest of this paper is organized as follows: first, we

discuss the limited existing literature on linear algebra and
theorem proving; second, we introduce the basics of ACL2
and linear algebra; third, we motivate our mechanical method
for automatically verifying numerical linear algebra algorithms
by describing how to verify LU and Cholesky decompositions;
fourth, we describe how to generalize the techniques used
to verify our two motivating examples; finally, we conclude
by summarizing our approach and discussing its immediate
application and future work.

II. RELATED WORK

While theories of matrices and vector space exists in ACL2
and other theorem provers, there are practically no theorem
prover verifications of numerical linear algebra algorithms.
For the ACL2 theorem prover, the closest relevant existing
paper of which we are aware is a formalization and proof
of correctness for LU decomposition [5]. There has also
been ACL2 work on using abstract single threaded objects
to compute the column echelon form of a matrix [6]. Other
relevant ACL2 papers include formalizations of matrices [7],
[8], vectors (both real and abstract) [9], [10], and vector-
valued functions [11]. An application of ACL2 matrices is
the VWSIM circuit simulator for rapid, single-flux, quantum
(RSFQ) circuits, which is written in ACL2 and based on
repeatedly solving linear systems of the form Ax = b [12].
However, VWSIM’s matrix solver is not ACL2 verified.
Expanding the purview to theorem provers in general, we

find formal theories for matrices that either do not support
execution or are limited to basic matrix arithmetic operations
(e.g., addition, multiplication, etc.). These include Coq, Lean,
Isabelle, and HOL4. In the Coq community, there are at
least five proposed formal models for basic matrix theory and
recent work towards integrating them has been published [13].
There is a Lean proof that positive definite matrices have
an LDL decomposition [14]; however, none of the functions
involved in the proof are computable. Isabelle formalizations
of many matrix procedures, including algorithms for Gauss-
Jordan elimination, Schur decomposition, and finding various
normal forms, are in the Archive of Formal Proofs but none
are natively executable [15]. There is also a HOL4 theory for
basic matrix ideas and operations [16]. While many of these
theorem provers are excellent at modelling mathematics, they
have little to no support for the direct execution of numerical
code, making them unsuited to our purposes.
FLAME is a major influence on our work. In addition

to describing how to derive families of numerical linear

algebra algorithms and demonstrate their correctness based
on different loop-invariants, FLAME also provides an alter-
nate partitioning-based framework for backwards error anal-
ysis [17]. However, no formal method tools are used in the
FLAME project and FLAME algorithms are not recursive.
While FLAME derivations of algorithms such as LU and
Cholesky decompositions indicate a natural inductive step,
its mathematical proofs for the correctness and existence of
these decompositions deviate significantly from our approach.
Our approach to correctness is to define a recursive variant
of the algorithms of interest and then constructively define
a recognizer which induces an induction on the partitioning
of the matrix. Existence follows because we posit an explicit
algorithm which computes the desired decomposition.
No prior theorem-prover-based work supports FLAME-style

analyses. ACL2-specified algorithms are our best option. Our
work is the first to provide techniques for formally verifying
families of executable numerical linear algebra algorithms.

III. ACL2 BASICS

Our theorem prover of choice is ACL2, a first-order logic
with support for highly automated reasoning by way of exten-
sive rewriting heuristics and induction. ACL2 contains many
built-in features and tooling which support software engi-
neering efforts, proof and theory management, user-controlled
rewriting, file I/O and parsing of large-scale designs, calling
internal and external automated solvers in a sound manner, and
much more, all with extensive publicly-available documenta-
tion. ACL2 formalizes an applicative subset of pure Common
Lisp, which enables ACL2 code to be efficiently compiled and
executed.
In ACL2, functions are total, that is, all functions map

all objects in the logic. By first-order, we mean quantifiers
can only predicate over individuals (though we avoid explicit
quantifiers in practice). The return on this restriction is that
first-order logic theorem proving is highly developed, semi-
decidable, and allows for truly automated reasoning. ACL2
is primarily based on term-rewriting, which is a set of rules
for replacing one logical expression with another equivalent
expression. Sophisticated heuristics for rewriting and extensive
support for automatic induction allows ACL2 to be a highly
automated and efficient tool appealing to commercial applica-
tions. ACL2 is sometimes referred to as an industrial-strength
theorem prover, where it ensures the correctness of critical
systems. ACL2 has been deployed to verify industrial-scale
hardware designs and software systems at companies such as
Intel, AMD, Oracle, Collins Aerospace, IBM, and ARM [18].
Table 1 lists some commonly used ACL2 functions, macros,

and commands. A comprehensive description of the built-
in ACL2 functions can be found in the ACL2 documenta-
tion [19]. Table 2 lists some commonly used ACL2 linear
algebra functions which we do not further describe in this
paper. We take advantage of some defined primitive matrix
functions [7], but define our own functions to support rea-
soning about numerical linear algebra algorithms, accessing
their results, and executing the algorithms themselves. For

244

functions which are central to this paper, such as recognizers
for nonsingular matrices, more implementation details will be
provided as we discuss the verification process.
Finally, we make a distinction between vanilla ACL2 and

ACL2(r). Vanilla ACL2 numbers only include rationals and
complex rationals. ACL2(r) is the version of ACL2 with sup-
port for real and complex numbers in general via non-standard
analysis. In either case, computations on concrete numerics
(rational, floating-point, or otherwise) are handled by the
Common Lisp backend of ACL2 / ACL2(r), which enables the
theorem prover to support native execution at modern speeds.
In this paper, ACL2(r) is only necessary for taking square
roots in the Cholesky decomposition algorithm. The square-
root function used is the logical definition acl2-sqrt,
which involves operations on nonstandard numbers. To make
execution more amenable, we deploy a version of Cholesky
which employs an iterative square-root function sqrt-iter,
which has been verified to converge to acl2-sqrt [2], as
a drop in replacement. It is possible to reason about square
roots in vanilla ACL2 using only its algebraic properties, e.g.,
by augmenting the field of ACL2 numbers with some √ .
Instead of developing a new theory in ACL2, we decided to
simply use ACL2(r).

IV. LINEAR ALGEBRA BASICS

One core idea of our approach is to recast algorithms in
terms of operations on submatrices in a partitioned form of
the original matrix. Originally, this partitioning was meant to
make linear algebra code more intelligible and reasoning from
a human perspective easier. However, it also enables machine
reasoning in a verification context, which we will discuss in
Sections V and VI. To see this partitioning in action, we derive
the LU decomposition. An LU decomposition for a matrix A
are matrices L and U where L is lower triangular with “1”s on
the diagonal (i.e. unit lower triangular), U is upper triangular,
and A = LU . In the interest of memory optimization, the unit
lower triangular requirement makes it possible to overwrite
the upper part of A with the upper part of U and the strictly
lower part of A with the strictly lower part of L during the
algorithm. Partition A, L, and U as follows:

A :=

(︃
α11 aT12
a21 A22

)︃
, L :=

(︃
1
ℓ21 L22

)︃
,

U :=

(︃
υ11 uT12

U22

)︃
.

Before we continue, a note on notation: lower-case Greek
letters are field scalars; lower-case Latin letters are vectors;
upper-case Latin letters are matrices; and assume that any
posed variables are “conformal”, e.g., if A is m × n, then
a21 is (m − 1) × 1 and aT12 is 1 × (n − 1). Setting A = LU
gives(︃

α11 aT12
a21 A22

)︃
=

(︃
1
ℓ21 L22

)︃(︃
υ11 uT12

U22

)︃
. (1)

We want Equation (1) to hold after performing the algorithm,
i.e.

α11 = υ11 , a21 = υ11ℓ21 ,

aT12 = uT12 , A22 = ℓ21u
T
21 + L22U22 .

Since A is given, uT12 and υ11 are obvious. Solving for the
remaining components of L and U forces

ℓ21 = a21α
−1
11 ,

and
L22U22 = A22 − a21α

−1
11 aT12 . (2)

This suggests an algorithm which requires merely updating
a21 and A22. In particular, Equation (2) in the derivation
above suggests a natural induction hypothesis which facilitates
a recursive algorithm, i.e. our recursive call is to simply call
the same LU decomposition algorithm on the smaller matrix
A22 − a21α

−1
11 aT12.

Consider our version of LU decomposition in Algorithm 2.
Contrasting Algorithm 2 with Algorithm 1 elucidates the
advantages of viewing numerical linear algebra algorithms
through the lens of partitioned matrices. In terms of aesthetics
alone, Algorithm 2 is more elegant than Algorithm 1. The
technical advantages of this is that coherent code facilitates
intelligent modularity, software reliability, codebase mainte-
nance, and high performance, while enhancing confidence in
its correctness.
Indeed, for our purposes, the major advantage of the pre-

sentation in Algorithm 2 is that partitioning the matrix at the
start and end of the algorithm exposes an inductive invariant.
At the start of the algorithm, all components of the matrix are
highlighted red, indicating that none of the present components
are in the desired “LU” form. The inductive invariant is that by
the time a recursive call is initiated, all but the “bottom right”
component is green, indicating that everything except A22 is
already in LU form. To remedy the final form, Equation (2)
indicates that we should simply call LU on A22.
The progress of a right-greedy algorithm is visualized in

Figure 1. Step (1) represents a matrix prior to the updates in a
particular recursive call. Green indicates portions of the matrix
that are already in the desired form and red indicates portions
of the matrix that still need to be updated. Step (2) represents
the matrix while updates are made during a recursive call.
Purple indicates the portions of the matrix that are being
updated. Step (3) represents the matrix just prior to the next
recursive call. As the algorithm progresses, the portion of the
matrix not yet in in the desired form reduces in size, until
no part of the matrix needs to be updated, at which point the
algorithm terminates.
What makes Algorithm 2 “right-greedy” is that the four

bottom right purple-colored components as shown in Step (2)
of Figure 1 are the submatrices of A to be updated within a
recursive call.
The visualization of Figure 1 is algorithm agnostic in that

the same progression holds for any right-greedy algorithm
– not just LU. Indeed, we can undergo a similar derivation

245

Table 1 Common ACL2 functions, macros, and other commands used in this paper.
Command Description
defun Define a function symbol, e.g. (defun add-1 (x) (+ x 1))
define A richer alternative to defun; enforces guard checking and more
defthm Name and prove a theorem, e.g. (defthm <-add-1 (< x (add-1 x)))
list Define a list, e.g. (list 1 2 3) returns (1 2 3)
car Returns the head of a list, e.g. (car (list 1 2 3)) returns 1
cons Construct a pair, e.g. (cons 1 (list 2)) returns (1 2)
/ Divide two numbers or return the reciprocal of a number, e.g. (/ 1 2) or (/ 2)

acl2-sqrt Square root of an ACL2 number, e.g. (acl2-sqrt 2)
b* Binder for local variables; often used to simplify control flow statements

Table 2 ACL2 linear algebra functions.
Function Intended Signature Description
matrixp Rn×m → {t,nil} Matrix recognizer, e.g. (matrixp (list (list 1 0 0))) returns t
m-emptyp Rn×m → {t,nil} Empty matrix recognizer, e.g. (m-emptyp nil) returns t
m-empty {} → R0×0 Returns an empty matrix, e.g. (m-empty) returns nil
mzero N× N→ Rn×m Returns a zero matrix, e.g. (mzero 1 1) returns (list (list 0))

row-car Rn×m → Rm Returns the first row of a matrix
col-car Rn×m → Rn Returns the first column of a matrix
row-cdr Rn×m → R(n−1)×m Remove a matrix’s first row
col-cdr Rn×m → Rn×(m−1) Remove a matrix’s first column
row-cons Rn×m → R(n+1)×m Append a row to a matrix
col-cons Rn×m → Rn×(m+1) Append a column to a matrix

m+ Rn×m × Rn×m → Rn×m Matrix addition
m* Rn×m × Rm×ℓ → Rn×ℓ Matrix multiplication
sm* R× Rn×m → Rn×m Scalar-matrix multiplication
sv* R× Rn → Rn Scalar-vector multiplication

out-* Rn × Rn → Rn×n Outer product multiplication
get-L Rn×m → Rn×m Get a matrix’s lower triangular part
get-U Rn×m → Rn×m Get a matrix’s upper triangular part

Algorithm 2 LU decomposition (ACL2).
procedure LU(A ∈ Rm×n)

Partition A =

(︃
α11 aT12
a21 A22

)︃
▷ If n,m > 1, then α11 ∈ R, a21 ∈ R(n−1)×1,

aT12 ∈ R1×(m−1), A22 ∈ R(n−1)×(m−1)

if m = 0 or n = 0 then ▷ Edge case

return
(︁)︁

▷ Return an empty matrix

else if n = 1 then ▷ Base case

return
(︃

α11

a21α
−1
11

)︃
else if m = 1 then ▷ Base case

return A
else ▷ Recursive case

a21 := a21α
−1
11

A22 := A22 − a21a
T
12

return
(︃
α11 aT12
a21 LU(A22)

)︃

(1) (2) (3)

Figure 1: Progress of a right-greedy algorithm: (1) prior to
updates ; (2) during updates; (3) after updates.

for the right-greedy Cholesky decomposition. Given a (real)
symmetric positive definite matrix A, i.e. A = AT and
vTAv > 0 for all nonzero compatible vectors v, a Cholesky
decomposition for A is a lower triangular matrix L such that
A = LLT . Partition as before:

A :=

(︃
α11 aT12
a21 A22

)︃
, L :=

(︃
λ11

ℓ21 L22

)︃
.

Setting A = LLT gives(︃
α11 aT12
a21 A22

)︃
=

(︃
λ11

ℓ21 L22

)︃(︃
λ11 ℓT21

LT22

)︃
(3)

246

Algorithm 3 Cholesky decomposition (ACL2).
procedure CHOL(A ∈ Rm×n)

Partition A =

(︃
α11 aT12
a21 A22

)︃
▷ If n,m > 1, then α ∈ R, a21 ∈ R(n−1)×1,

aT12 ∈ R1×(m−1), A22 ∈ R(n−1)×(m−1)

if m = 0 or n = 0 then ▷ Edge case

return
(︁)︁

▷ Return an empty matrix

else if n = 1 then ▷ Base case

return
(︃ √

α11

a21α
−1
11

)︃
else if m = 1 then ▷ Base case

return
(︁√

α11 aT21
)︁

else ▷ Recursive case
α11 :=

√
α11

a21 := a21α
−1
11

A22 := A22 − a21a
T
21

return
(︃
α11 aT12
a21 CHOL(A22)

)︃

forces

λ11 = ±√α11, ℓ21 = a21λ
−1
11 ,

L22L
T
22 = A22 − ℓ21ℓ

T
21. (4)

For our purposes, we pick λ11 =
√
α11. Again, note that Equa-

tions (3) and (4) suggest a natural recursion. Our Cholesky
decomposition algorithm is Algorithm 3.
Comparing Algorithm 3 with Algorithm 2 emphasizes the

similar derivations, with the only contrast being the update to
α11 in Algorithm 3. This extra update is necessary because
the diagonals in a Cholesky decomposition are the same. In
Algorithm 2, this update isn’t necessary because we store the
diagonal of an LU decomposition in L.

V. VERIFYING RIGHT-GREEDY LU DECOMPOSITION

Here we describe our verification of an LU decomposition
algorithm in ACL2. There are a few points to observe in this
section. First, we describe some further ACL2 details as this
will be the first instance of an ACL2 program in this paper.
Second, note how we specify the algorithm’s conditions for
success. The textbook conditions require all principal leading
submatrices to be nonsingular, which is a quantified statement
and undesirable for executional efficiency. LU decomposition
is only one numerical linear algebra algorithm; we are in-
terested in verifying an entire family of algorithms. Third,
the proof of correctness for our ACL2 LU decomposition
program goes hand-in-hand with the derivation in Section IV.
A pen-and-paper proof may directly apply the derivation as
an induction step to prove the LU decomposition correct
by construction. However, in ACL2, we first specify the LU

decomposition algorithm as an executable program, and then
prove it correct. Ideas in this section will be discussed at a
higher level of abstraction in Section VII.
With the exception of some extra edge cases, Program 1

implements Algorithm 2 directly. The macro define is a
wrapper for defun that simplifies many common aspects
of function definition in ACL2, such as guards. Since ACL2
functions are total, guard checking is used to validate certain
conditions or constraints before proceeding with execution.
Guard checking is employed to enhance the robustness and
reliability of ACL2 code by preventing the execution of code
under inappropriate or unexpected circumstances.
The b* in the definition of lu is an example of an ACL2

macro for binding local variables with support for control
flow. The first argument to b* is a list of “bindings” and the
second argument is the ACL2 expression to which the bindings
apply. For example, the binding (alph (car (col-car
A))) declares the local variable alph to be equal to (car
(col-car A)), i.e. the first element of the first column in
A. If no early-exit bindings (such as unless) are triggered,
then the value of the b* expression is the value of the second
argument to b* with the bindings given by the first argument.
It is challenging to formalize the typical conditions for an

LU decomposition of a matrix A to succeed. For one, they
are presented as a quantified statement over the submatrices
of A: all principal leading submatrices of A need to be
nonsingular. If A is n× n, the principal leading submatrices
of A are the k × k “top left” submatrices of A, where
k ∈ [1, n]. While ACL2 supports quantifiers via Skolem
functions, these are not executable. We want a recognizer for
LU decomposable matrices to be at least executable, not to
mention efficient, because: (1) it can serve as a guard; and (2)
our recognizer will also serve to induce an induction scheme
for proving the correctness of lu. The other problem with
the typical conditions is that nonsigularity is challenging to
formalize. Thanks to the Invertible Matrix Theorem, there are
over 20 equivalent characterizations for nonsingularity, most
of which are computationally inefficient, require significant
theory building, or also involve quantified statements.
Our solution is to use Schur complements. Consider Equa-

tion (1)(︃
α11 aT12
a21 A22

)︃
=

(︃
1
ℓ21 L22

)︃(︃
υ11 uT12

U22

)︃
.

(1 revisited)
Notice that if α11 ̸= 0, then A is LU decomposable iff the
RHS of Equation (2)

L22U22 = A22 − a21α
−1
11 aT12 (2 revisited)

is also LU decomposable. This is interesting because it reduces
the condition for a matrix to be LU decomposable into a
condition about a smaller matrix, which is reminiscent of
some “induction step”. Indeed, the RHS of Equation (2) is the
Schur complement of α11 in A. While mathematical references
commonly describe the conditions for a matrix to be LU
decomposable in terms of the leading principal submatrices,

247

Program 1 ACL2 implementation of LU decomposition Algorithm 2.

(define lu ((A matrixp)) ...
(b* (;; BASE CASES

((unless (matrixp A)) (m-empty)) ;; If A not a matrix, return empty
((if (m-emptyp A)) A) ;; If A empty, return A
(alph (car (col-car A))) ;; alph := "top left" scalar in A
((if (zerop alph)) ;; If alph zero, return a zero
(mzero (row-count A) ;; matrix of the same dimensions

(col-count A))) ;; as A
((if (m-emptyp (col-cdr A))) ;; If A is a column, return
(row-cons (list alph) ;; [1] [a1] = [a1] = A

(sm* (/ alph) ;; [a2/a1] [a2]
(row-cdr A)))) ;; [...] [...]

((if (m-emptyp (row-cdr A))) A) ;; If A is a row, return A

;; PARTITION
(a21 (col-car (row-cdr A))) ;; [alph | a12] := A
(a12 (row-car (col-cdr A))) ;; [----------]
(A22 (col-cdr (row-cdr A))) ;; [a21 | A22]

;; UPDATE
(a21 (sv* (/ alph) a21)) ;; a21 := a21 / alph
(A22 (m+ A22 (sm* -1 (out-* a21 a12))))) ;; A22 := A22 - a21 * a12

;; RECURSE ;; [alph | a12]
(row-cons (row-car A) ;; [--------------]

(col-cons a21 (lu A22)))) ...) ;; [a21 | LU(A22)]

Program 2 ACL2 theorem for LU decomposition correctness.

(defthm lu-correctness
(b* ((LU (lu A))

(L (get-unit-L LU))
(U (get-U LU)))
(implies (and (equal (col-count A)

(row-count A))
(nonsingular-submatrices-p A))

(equal (m* L U) A)))))

the proof that these conditions are sufficient reduces to an
induction step that depends on Equation (2) [3].
To see the connection with nonsingular principal submatri-

ces, observe that if no zeros appear after k recursive steps, then
the k-th principal leading submatrix is nonsingular because
its determinant is nonzero. Instead of reasoning with determi-
nants, which are rarely useful in numerical algorithms [20],
Schur complements provide a more concise ACL2 condition
for success and generalizes to other algorithms.

VI. VERIFYING RIGHT-GREEDY CHOLESKY
DECOMPOSITION

Here we briefly describe our verification of the right-greedy
Cholesky decomposition. Our focus will be on the common-
alities with LU decomposition verification, some peculiarities
in recognizing symmetric positive definite matrices, and less
on ACL2 implementation details.
In order for a matrix A to have a Cholesky decomposition, it

must be symmetric positive definite. Symmetric simply means
AT = A, but positive definite requires vTAv > 0 for all
nonzero compatible v. The latter is once again a quantified
statement, which has all the implications discussed previously

Program 3 ACL2 theorem for Cholesky decomposition cor-
rectness.

(defthm chol-correctness
(b* ((L (get-L (chol A)))

(Lt (mtrans L)))
(implies (and (equal (mtrans A) A)

(positive-definite-p A)
(equal (col-count A)

(row-count A)))
(equal (m* L Lt) A)))))

in Section V. In order to define a executable recognizer
for positive definite matrices, we once again look at Schur
complements to satisfy Sylvester’s criterion for a symmetric
matrix to be positive definite. Sylvester’s criterion states that a
symmetric matrix is positive definite iff the principal leading
submatrices are positive. The latter is equivalent to each
principal leading submatrix having a positive determinant.
From Section V, we saw that recursively computing Schur
complements along the diagonal of A exhibits the determinants
of the principal leading submatrices of A. Thus we merely
need to check that each of these determinants are positive,
which is how positive-definite-p in Program 3 is
defined. The theorem for right-greedy Cholesky decomposition
correctness then passes with minimal user-provided hints.

VII. GENERALIZING RULES FOR AUTOMATED
VERIFICATION

Generalizing the ideas of Sections V and VI, our method to
verifying the LU and Cholesky decompositions can be gener-
alized to any right-greedy numerical linear algebra algorithms.
1) Define a recursive right-greedy algorithm.

248

2) Verify the derivation using the partitioned matrix ap-
proach.

3) Define a recursive recognizer for the appropriate class
of matrices.

4) Induct according to a scheme automatically suggested
by the recognizer.

The only steps which require human involvement is in Step
1 and 3. All that is required of a user is to define the algorithm
to be verified and the class of matrices for which the algorithm
computes. Step 4 is performed automatically because induction
in ACL2 requires no human involvement. Step 2 is made
automatic thanks to a formalized approach to deriving right-
greedy algorithm. Observe that the RHS of both Equations (1)
and (3) are simply instances of matrix multiplication between
general partitioned matrices

BC =

(︃
β11 bT12
b21 B22

)︃(︃
γ11 cT12
c21 C22

)︃
=

(︃
β11γ11 + bT12c21 β11c

T
12 + bT12C22

b21γ11 +B22c21 b21c
T
12 +B22C22

)︃. (5)

We formalize Equation (5) as an ACL2 rewrite rule which fires
automatically when verifying the LU and Cholesky deriva-
tions. More generally, suppose we want to verify a right-greedy
algorithm which computes B and C such that BC = A. The
updates performed by a right-greedy algorithm’s recursive step
will be to compute β11, γ11, b21, c21, bT12, and cT12 such that

α11 = β11γ11 + bT12c21, aT12 = β11c
T
12 + bT12C22,

a21 = b21γ11 +B22c21

all hold. Then the algorithm’s recursive call will be to find the
decomposition

B22C22 = A22 − b21c
T
12. (6)

The above identities are easily translated into ACL2 rewrite
rules as an instantiation of the rewrite rule for Equation (5).
Given these rewrite rules, the induction in Step 4 discharges
automatically.
The LU and Cholesky decompositions we verify are instan-

tiations of the above. Note that Equation (2)

L22U22 = A22 − a21α
−1
11 aT12 (2 revisited)

is a case of Equation (6). If α11 ̸= 0 also holds, then A = LU .
Similarly, Equation (4)

L22L
T
22 = A22 − ℓ21ℓ

T
21 (4 revisited)

is a case of Equation (6). If α11 > 0 and a12 = a21 also hold,
then A = LLT . These rules follow directly from Equation (5)
with little user-guidance in ACL2.

VIII. CONCLUSION

We demonstrated a formal method for automatically veri-
fying right-greedy numerical linear algebra algorithms. At the
heart of our approach is the partitioned matrix environment
which we use to define and verify derivations of recursive
right-greedy algorithms. Partitioning and defining algorithms

in this manner promotes automated reasoning and verifica-
tion by introducing induction schemes. We’ve implemented
our method using the ACL2 theorem prover. The choice of
theorem prover is not vital provided that it supports induction.
However, ACL2 provides two additional major benefits. First
ACL2 offers a high degree of automation beyond what is
possible with other theorem provers. Second, our verified for-
malizations are natively executable within the logic of ACL2;
this provides industrial-level computational performance. This
is particularly important because numerical algorithms are
usually meant to be implemented and executed in real world
systems. No other theorem prover offers the same level of
execution performance.
Our work involved writing 1593 lines of new ACL2 code,

used to introduce 262 new ACL2 events. Verifying the new
ACL2 code required 6 793 576 prover steps, which were
performed automatically. Performing these steps took 9.76
seconds and ACL2 used 1.37 GB of memory on a laptop. The
interested reader may try using our code [21] to decompose
their own matrices.
There are immediate applications for our work. We dis-

cussed determinants in Sections V and VI. Note that if A =
LU is LU decomposable, then det(A) = det(L) det(U) =
det(U) is simply the product of the diagonal of U . Another
consequence of formalizing a right-greedy LU decomposition
algorithm is that the computed U is actually the row echelon
form of A. This means that (defun ge (A) (get-U
(lu A))) is the ACL2 verified formalization of Gaussian
elimination. One very important application of LU decompo-
sition is that it can be used to solve a linear system b = Ax.
If A = LU , then b = Ax = (LU)x = L(Ux) indicates that
one can first solve b = Ly via forwards substitution and then
y = Ux via backwards substiution to solve b = Ax. Cholesky
can be applied similarly. We have formalized backwards and
forwards substitution in ACL2, which is beyond the scope of
this paper, but this indicates we have a verified and executable
method for solving systems of linear equations in ACL2.
The applications of numerical linear algebra in which safety,

correctness, and accuracy are critical indicates a need for
formally verified numerical linear algebra software systems.
In addition to solving linear systems, we can pursue the
verification of other executable numerical linear algebra algo-
rithms. The class of right-greedy algorithms includes classical
QR decomposition, which has yet to be formally verified.
Proving this in ACL2 would give rise to verified executable
implementations of LU, Cholesky, and QR decompositions
(sometimes referred to as the “three amigos” by the scientific
computing community), which could serve as the beginnings
of a fully verified numerical linear algebra library.
Right-greedy algorithms are a major player in scientific

and high-performance computing, with many dozens of such
algorithms serving as the basis for ongoing research. Targeting
improved performance on not just dense, but also sparse and
block matrices across architectures such as GPUs and FGPAs
place variants of right-looking algorithms in the hundreds.
Other names for “right-greedy” are “right-looking”, “data-

249

driven” or “submatrix”. Our approach can be augmented to
verify other families of numerical linear algebra algorithms. In
the FLAME framework, identifying different loop invariants
suggests derivations of other algorithmic flavors, such as “left-
greedy”, “up-greedy”, “bordered”, etc. We want to develop
formal methods for automatically verifying these other fami-
lies of numerical linear algorithms.
Another important FLAME idea is using the partitioned

matrix approach to perform backwards error analysis. For-
malizing bounds on errors and proving the convergence of
iterative numerical algorithms are vital to the reliability of
their implementations. This would involve notions such as
matrix norms or the condition number of a matrix. ACL2
supports matrix and vector analysis by way of nonstandard
analysis [11], [22] and recent developments in the ACL2
research community include a deep embedding of floating-
point numbers into the ACL2 logic. This provides all the
formal tools necessary to perform ACL2 backwards error
analysis of numerical linear algebra algorithms and we intend
to pursue these sorts of proofs.
Linear algebra underlies modern scientific computing infras-

tructure. It is critical real world linear algebra computations are
accurate and correct. We endeavour to guarantee the veracity
of these computations by developing verified numerical linear
algebra libraries. Our method for automating the verification
of right-greedy numerical linear algebra algorithms is founda-
tional to achieving this objective.

ACKNOWLEDGMENTS

We thank Robert van de Geijn, Margaret Myers, and the
anonymous reviewers for their helpful comments and feed-
back.

REFERENCES

[1] M. Kaufmann and J. S. Moore, “ACL2 home page,” https://cs.utexas.
edu/∼moore/acl2/, 1997, accessed 2024-06-25.

[2] R. A. Gamboa and M. Kaufmann, “Nonstandard analysis in ACL2,” J.
Autom. Reason., vol. 27, no. 4, p. 323–351, November 2001.

[3] G. W. Stewart, Matrix Algorithms Volume I: Basic Decompositions,
1st ed., 1998.

[4] J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn,
“FLAME: Formal linear algebra methods environment,” ACM Trans.
Math. Softw., vol. 27, no. 4, pp. 422–455, December 2001.

[5] C. Kwan, “Classical LU decomposition in ACL2,” Electronic Proceed-
ings in Theoretical Computer Science, vol. 393, pp. 1–5, November
2023.

[6] L. Lambán, F. J. Martı́n-Mateos, J. Rubio, and J.-L. Ruiz-Reina, “Using
abstract stobjs in ACL2 to compute matrix normal forms,” in Interactive
Theorem Proving, M. Ayala-Rincón and C. A. Muñoz, Eds. Cham:
Springer International Publishing, 2017, pp. 354–370.

[7] J. Hendrix, “Matrices in ACL2,” 2003. [Online].
Available: https://www.cs.utexas.edu/users/moore/acl2/workshop-2003/
contrib/hendrix/hendrix.pdf

[8] R. Gamboa, J. Cowles, and J. Van Baalen, “Using ACL2 arrays
to formalize matrix algebra,” 2003. [Online]. Available: https:
//www.cs.uwyo.edu/∼ruben/static/pdf/matalg.pdf

[9] C. Kwan and M. R. Greenstreet, “Real vector spaces and the Cauchy-
Schwarz inequality in ACL2(r),” Electronic Proceedings in Theoretical
Computer Science, vol. 280, pp. 111–127, October 2018.

[10] C. Kwan, Y. Peng, and M. R. Greenstreet, “Cauchy-Schwarz in ACL2(r)
abstract vector spaces,” Electronic Proceedings in Theoretical Computer
Science, vol. 327, pp. 90–92, May 2020.

[11] C. Kwan and M. R. Greenstreet, “Convex functions in ACL2(r),”
Electronic Proceedings in Theoretical Computer Science, vol. 280, pp.
128–142, October 2018.

[12] W. A. Hunt, Jr., V. Ramanathan, and J. S. Moore, “VWSIM: A circuit
simulator,” in Proceedings Seventeenth International Workshop on the
ACL2 Theorem Prover and its Applications, Austin, Texas, USA, 26th-
27th May 2022, ser. Electronic Proceedings in Theoretical Computer
Science, R. Sumners and C. Chau, Eds., vol. 359. Open Publishing
Association, 2022, pp. 61–75.

[13] Z. Shi and G. Chen, “Integration of multiple formal matrix models
in Coq,” in Dependable Software Engineering. Theories, Tools, and
Applications, W. Dong and J.-P. Talpin, Eds. Cham: Springer Nature
Switzerland, 2022, pp. 169–186.

[14] “Lean mathlib3 documentation: LDL decomposition,”
https://leanprover-community.github.io/mathlib docs/linear algebra/
matrix/ldl.html, accessed 2023-07-13.

[15] R. Thiemann and A. Yamada, “Matrices, Jordan normal forms, and
spectral radius theory,” Archive of Formal Proofs, August 2015, https:
//isa-afp.org/entries/Jordan Normal Form.html, Formal proof develop-
ment.

[16] Z. Shi, Y. Zhang, Z. Liu, X. Kang, Y. Guan, J. Zhang, and X. Song,
“Formalization of matrix theory in HOL4,” Advances in Mechanical
Engineering, vol. 6, pp. 195–276, 2014.

[17] P. Bientinesi and R. A. van de Geijn, “Goal-oriented and modular
stability analysis,” SIAM J. Matrix Anal. Appl., vol. 32, no. 1, p.
286–308, March 2011.

[18] W. A. Hunt, M. Kaufmann, J. S. Moore, and A. Slobodova, “Industrial
hardware and software verification with ACL2,” Philosophical Trans-
actions of the Royal Society of London Series A, vol. 375, no. 2104,
September 2017.

[19] ACL2, User manual for the ACL2 Theorem Prover and the
ACL2 Community Books, accessed 2024-07-12. [Online]. Available:
https://www.cs.utexas.edu/users/moore/acl2/current/manual/index.html

[20] L. N. Trefethen and D. Bau, III, Numerical Linear Algebra. Philadel-
phia, PA: Society for Industrial and Applied Mathematics, 1997.

[21] M. Kaufmann and J. S. Moore, “ACL2 system and community books,”
https://github.com/acl2/acl2, 2014.

[22] C. Kwan, “Towards formalized matrix analysis and algorithms,” in
International Symposium on Artificial Intelligence and Mathematics,
2022.

250

https://cs.utexas.edu/~moore/acl2/
https://cs.utexas.edu/~moore/acl2/
https://www.cs.utexas.edu/users/moore/acl2/workshop-2003/contrib/hendrix/hendrix.pdf
https://www.cs.utexas.edu/users/moore/acl2/workshop-2003/contrib/hendrix/hendrix.pdf
https://www.cs.uwyo.edu/~ruben/static/pdf/matalg.pdf
https://www.cs.uwyo.edu/~ruben/static/pdf/matalg.pdf
https://leanprover-community.github.io/mathlib_docs/linear_algebra/matrix/ldl.html
https://leanprover-community.github.io/mathlib_docs/linear_algebra/matrix/ldl.html
https://isa-afp.org/entries/Jordan_Normal_Form.html
https://isa-afp.org/entries/Jordan_Normal_Form.html
https://www.cs.utexas.edu/users/moore/acl2/current/manual/index.html
https://github.com/acl2/acl2

Formal Methods in Computer-Aided Design 2024

Formally Verified Rounding Errors of the
Logarithm-Sum-Exponential Function

Paul Bonnot∗, Benoı̂t Boyer† , Florian Faissole† , Claude Marché∗ and Raphaël Rieu-Helft‡
∗Université Paris-Saclay, CNRS, ENS Paris-Saclay, Inria, LMF, 91190, Gif-sur-Yvette, France

†Mitsubishi Electric R&D Centre Europe, Rennes, France
‡TrustInSoft, 75014 Paris, France

Abstract—We study the numerical accuracy of some specific
computer program performing numerical computations. Such
a numerical accuracy is expressed in terms of a bound on
the difference between the floating-point computation and the
corresponding rounding-free computation using mathematical
real numbers. We do not only seek to discover such a bound
“on paper” but we aim at obtaining computer-assisted formal
proofs that this bound is correct for any possible inputs. The
function we study comes from the domain of machine learning: a
function computing the logarithm of the sum of exponentials of a
sequence. The bound obtained is an original result, parameterized
by the error bounds of the underlying implementations of the
logarithm and exponential functions. The methodology we follow
to conduct our formal proofs is also original, using a combination
of the Why3 environment for deductive verification, an original
modelling of floating-point computations using unbounded num-
bers, and the J3 environment for proving properties on C source
code.

I. INTRODUCTION
Software is involved in many industrial systems nowadays.

In cyber-physical systems in a broad sense, the software
controlling a system must perform numerical computations,
that are typically based on floating-point arithmetic. The
floating-point representation of numbers, and the operations
on them, are standardized by the IEEE-754 standard [43].
Despite of these rules, guessing the accuracy of a program
that compounds thousands of elementary operations, without
software assistance, becomes almost impossible. However,
recent history has shown that underestimating these errors
could have catastrophic consequences [57]. That explains the
recent interest for the formal verification of floating-point
properties of numerical programs in proof assistants [12],
[55] or deductive verification platforms [14]. Formally proving
the accuracy of floating-point computations is a complex
topic addressed by different approaches in the scientific lit-
erature. Recent overviews of this topic can be found in the
Handbook of Floating-Point Arithmetic [53], or surveys by
Melquiond [50] and Boldo et al. [18].
In contrast with elementary operations, the accuracy of

mathematical functions, say as provided by the libm library
for C code, is not enforced by the standard and could depend
on the target architecture and on a specific library. The same
goes for more complex mathematical algorithms, for which

0This research was supported partly by the bilateral contract ProofInUse-
MERCE and partly by the Décysif project funded by the Île-de-France region
and by the French government in the context of “Plan France 2030”

the accuracy strongly depends on the accuracies of underlying
libm functions. In addition, the proof makes sense only if
the parameterized bound assumed on libm functions can be
realized by some implementation. For these reasons, there
was very little effort to formally verify programs that call
mathematical functions implementations.
An example of algorithm making use of libm functions is

the Log-Sum-Exp algorithm, abbreviated as LSE. It is typically
used in machine-learning applications [24], [35], [52]. This
algorithm is a smooth approximation of the max function, the
smoothness property of inner functions being a pre-requisite
for the efficiency of machine-learning algorithms. It applies to
an n-dimensional vector a = (a1, . . . , an) and computes the
logarithm of the sum of exponentials over its ai components:

LSE(a) = log

 ∑︂
1≤i≤n

exp(ai)


This function is frequently used in implementations of statis-
tical classifiers [42], [48] and satisfies the following property:

max
1≤i≤n

(ai) ≤ LSE(a) ≤ max
1≤i≤n

(ai) + log(n)

Blanchard et al. [10] showed that the rounding error of a
floating-point implementation of the LSE function can be
bounded by relatively tight values as long as no overflow or
underflow occurs. They present a pen-and-paper proof taking
advantage of both floating-point arithmetic specificities and
mathematical properties of the log and exp functions. They
assume that the implementations of these two functions are
correctly rounded, that is, their relative errors are bounded by
the ε unit round-off (see Section II). Therefore, they provide
the best accuracy that can be achieved in the considered
floating-point format.
Compared to Blanchard et al. [10], one of the contribution

of this paper is to consider the possibility of using less accurate
but more efficient implementations of exp and log. Such
implementations may be useful in contexts involving energy-
saving small devices like IoT [38]. Another contribution is to
give formal proofs of our results. Generally speaking, obtain-
ing formal proofs on the accuracy of floating-point programs is
not a simple task. One can start from a software environment
for proving functional properties of programs, and augment
it with a formalization of floating-point arithmetic, typically
via a library built on top of a formalization of real numbers

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 31 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0000-0002-6655-9857
https://orcid.org/0000-0001-5792-0658
https://orcid.org/0000-0003-3035-1269
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_31
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_31
https://creativecommons.org/licenses/by/4.0/

that provides a rounding function and its logical properties. It
was done for example by Boldo and Filliâtre [17] using the
Coq proof assistant, augmented with the Flocq library [22]
for floating-point arithmetic, allowing to prove programs using
the Coq general-purpose environment. These proofs typically
require a large amount of manually written proof steps. To
obtain a higher degree of automation, Ayad and Marché [5]
proposed a setting making use of the Frama-C [46] environ-
ment for static analysis on C source code, with a dedicated
library of ACSL [9] specifications that allows to discharge the
proofs to various theorem provers, in particular SMT solvers.
Boldo and Marché [19] presented an overview of what could
be achieved on increasingly complex codes, using combination
of automated solvers and the Coq proof assistant for the most
complex proof obligations. With the addition, later on, of some
built-in support for floating-point operations in SMT solvers,
Fumex et al. [34] showed that this methodology can reach a
fairly high amount of automation.
Initially we planned to follow the methodology above to

prove a C code for LSE. Yet, to achieve the proofs in a
reasonably simple manner, we achieved two important points
that should be emphasized: first, the use of the intermediate
language WhyML, and second the use unbounded floating-
point numbers. The rest of this paper is organized as follows.
In Section II we expose original results bounding the accuracy
of LSE, parameterized by assumed accuracies of implemen-
tations of exp and log. Unbounded Floating-Point numbers
are detailed in Section II-B. We present our formalization in
Section III, formalizing our results up to a formal proof of a
C code computing LSE. The WhyML language is introduced
in Section III. We discuss related work in Section IV and
conclude in Section V with an overview of future work. Due
to lack of space, we do not include pen-and-paper proofs
here: these proofs can be found in an extended research report
of ours [23], to which the reader should refer for any more
technical details. The code formalizing our results is publicly
available on the Toccata gallery [20], specifically at URL
https://toccata.gitlabpages.inria.fr/toccata/gallery/lse.en.html.

II. STATEMENT OF ACCURACY RESULTS

A. Preliminaries on Floating-Point Arithmetic

The IEEE-754 standard [43] defines several formats of
representation of floating-point numbers. A format is charac-
terized by a precision p as well as upper and lower bounds
emax and emin for the exponent. A floating-point number
is either a value among +∞, −∞ and NaN or a value
±m × 2e−p+1 where m, e ∈ Z, 0 ≤ m ≤ 2p − 1 and
emin ≤ e ≤ emax. The largest representable number in this
format is maxf = (2 − 2−p−1) × 2emax , and the smallest
positive representable number is 2emin−p+1.
In this paper we are not interested in a particular format

since our proof methodology is independent of the format
used, however only two formats are currently supported in
our formal proofs: single format (32 bits) where p = 24,
emax = 127 and emin = −126, and double format (64

bits) where p = 53, emax = 1023 and emin = −1022. For
simplicity we focus on the double format.
We use the symbol rnd to denote the rounding of a real

number to a floating-point number. The IEEE-754 standard
defines several rounding modes. Here we consider only the
mode nearest-ties-to-even: when a real number x lies within
an interval [x1;x2] of two consecutive floating-point numbers,
then rnd(x) is either x1 or x2: the one of these which is closest
to x, or in case x is exactly in the middle, the one among x1

and x2 whose mantissa is even. Also, when x is too large
(larger than or equal to the middle of maxf and 2 × 2emax),
rnd(x) is +∞.
We use the symbols ⊕, ⊖, ⊗, ⊘ to denote the basic

operations of addition, subtraction, multiplication and division
of floating-point numbers. As specified by IEEE-754, all
these operations must use the best possible rounding, that is
x⊕y = rnd(x+y) and similarly for the three other operations.
The main property of the rounding function that we use in

this paper is the following: for any real number x such that
|x| ≤ maxf , rnd(x) is finite and

|rnd(x)− x| ≤ ε|x|+ η (1)

where ε = 2−p

1+2−p and η = 2emin−p. This property can be
considered as well-known and folklore in the literature, see
for example Jeannerod and Rump [44]. In seminal publica-
tions, such as the Handbook of Computer Arithmetic [54]
or Higham’s survey [41], the simpler term ε = 2−p is used
instead of 2−p

1+2−p , inducing a slightly larger bound. Jeannerod
and Rump [44, Theorem 2.1] showed that the refined bound
is actually optimal in the sense that there exist some inputs
values and floating-point formats (with certain conditions) for
which it is attained. In most cases, the precision gain obtained
using this optimal bound instead of 2−p is small. Anyway, the
latter results and proofs simply use the symbol ε to denote
either of the bounds.
As remarked by Jeannerod and Rump [44], Property (1) can

be refined in the special case of addition because underflowing
additions are exact:

|(x⊕ y)− (x+ y)| ≤ ε|x+ y| (2)

that is, the term η can be removed from Formula (1). Moreover,
it should be noted that (see for example the Handbook [54])

|(x⊕ y)− (x+ y)| ≤ |x| (3)

and symmetrically

|(x⊕ y)− (x+ y)| ≤ |y| (4)

The combination of the formulas (2), (3) and (4) is used later
on to obtain bounds on compound sums.

B. Unbounded Floating-Point Numbers

The notion of unbounded floating-point number is somewhat
simple, and is in fact not original: it is commonly used
in the literature on numerical programs [54] and also in
advanced formalization such as Flocq [22]. Roughly speaking,

252

https://toccata.gitlabpages.inria.fr/toccata/gallery/lse.en.html

unbounded floating-point number are very much like stan-
dard IEEE floating-point numbers, except that their exponent
can be arbitrarily large: it is a value ±m × 2e−p+1 where
0 ≤ m ≤ 2p − 1, emin ≤ e without upper bound on e. As a
consequence, unlike standard floating-point numbers, the four
basic operations on unbounded floating-point numbers never
overflow. There is no need for special values for infinities to
represent the result of unbounded floating-point operations.
On the other hand, notice that unbounded floats include sub-
normal numbers. There is an injection from finite IEEE float
numbers to unbounded float numbers. The properties (2), (3)
and (4) indeed hold for unbounded floating-point numbers.
This fact allows us to separate the proofs concerning functional
behavior of numerical programs from the proof of absence of
overflow: to prove a property on floating-numbers it suffices
to prove the same on unbounded floats, and separately prove
that each floating-point operation involved does not overflow
nor produces NaN values.

C. Accuracy of Compound Summations

The compound sum of a vector (a1, . . . , an) of floating-
point numbers is the sum of all ai. Defining it properly is more
complex than the compound sum of real numbers because ⊕
is not associative. It is thus necessary to choose the order in
which the additions are done. We make the choice to associate
to the left, meaning that we define the compound sum from
am (included) to ak (excluded), denoted by

⨁︂
m≤i<k

ai, by the

following recursive equations.⨁︂
m≤i<k

ai = 0 if k ≤ m

⨁︂
m≤i<k

ai =

 ⨁︂
m≤i<k−1

ai

⊕ ak−1 when m < k

Associating to the left is important because it impacts the final
result of a sum. Yet the bounds we prove in the following are
invariant by permutation of the element of the input vector. In
other words, the same bounds could be proved when the sum
is performed in any other order.
The following states a bound on compound sums, as a slight

reformulation of a theorem by Jeannerod and Rump [44].

Theorem II.1 (Accuracy of compound sums). For any vector
a of unbounded doubles, and any m ≤ n:⃓⃓⃓⃓

⃓⃓ ⨁︂
m≤i<n

ai −
∑︂

m≤i<n
ai

⃓⃓⃓⃓
⃓⃓ ≤ (n−m− 1)ε

∑︂
m≤i<n

|ai|

The proof of this theorem [23] is far for trivial and make
a clever use of properties (2), (3) and (4). From the previous
theorem, we deduce the following corollary, which is useful
in the proofs we perform.

Corollary II.2 (Bound on sums). For any constant S andMa,
any vector a, any indices m and n such that n−m ≤ S and
|ai| ≤Ma for any m ≤ i < n we have

|
⨁︂

m≤i<n
ai| ≤Ma × S × (1 + ε(S − 1))

D. Approximations of exp and log

In implementations using floating-point numbers, not only
the sum is subject to rounding, but also the computations of
functions exp and log. Here, we do not discuss any particular
implementations of these two functions. Instead, we assume
given implementations for them with given bounds in the
rounding errors they perform. We do not want to rely, as
Blanchard et al. [10] do, on perfectly rounded implementations
of exponential and logarithm. Instead we assume we have
implementations that are possibly less precise, the precision
of them being specified as parameters.
Concerning exponential first, we assume given an imple-

mentation ˆ︃exp which satisfies the following property: for any
real x such that |x| ≤Mexp,

|ˆ︃exp(x)− exp(x)| ≤ Eexp exp(x)

where Mexp and Eexp are two positive parameters. In the
following we need to assume Eexp ≤ 0.5, a reasonable
assumption, which in particular implies that ˆ︃exp(x) is always
non-negative. Concerning logarithm we assume similarly an
implementation satisfying the following property: for any real
x such 0 < x ≤Mlog

|ˆ︂log(x)− log(x)| ≤ Elog| log(x)|
where Mlog and Elog are positive parameters.
Notice that we do not claim that there exist implementations

of approximations of exponential and logarithm, satisfying the
properties above, for any value of the parameters Eexp, Mexp,
Elog and Mlog. We just assume we are given some. Indeed
it is known in the literature that such implementations exist
for double precision, with a correct rounding, that is with
Eexp = Elog = ε, Mlog = maxf, and Mexp at most 708
(for larger values the exponential overflows): see for example
Daramy et al. [29] and the implementations provided by the
CORE-MATH project [56].
Notice also that we assume only some relative error (Eexp

and Elog) but no absolute error. For exponential, this is not
needed because for an argument at least −708 the result
is never a sub-normal. For a completely different reason,
the logarithm do not need to return any sub-normal either,
because the logarithm of the floating-point successor of 1 is
around 2−52, larger than a sub-normal too (and similar for the
predecessor).

E. Accuracy of LSE

Our main result concerning the accuracy of the computation
of ˆ︃LSE is given by Theorem II.5 below. To prove this theorem
we need to establish first a few auxiliary lemmas. In these
lemmas, we consider arbitrary positive constants A and B.

253

The first lemma is in fact a generalization of Theorem II.1
on the accuracy of compounds sums, when the input vector is
itself subject to errors.

Lemma II.3 (Accuracy of sums, generalized). Given any
vectors a and ˆ︁a such that for all i, |ˆ︁ai − ai| ≤ A|ai| + B
we have:⃓⃓⃓⃓
⃓⃓ ⨁︂
0≤i<n

ˆ︁ai −
∑︂

0≤i<n
ai

⃓⃓⃓⃓
⃓⃓ ≤ (A+ (n− 1)ε(1 +A))

∑︂
m≤i<n

|ai|

+Bn (1 + (n− 1)ε)

The next lemma is necessary to propagate errors bounds
through the mathematical log.

Lemma II.4 (Error propagation for mathematical logarithm).
For any positive real numbers x and ˆ︁x such that |ˆ︁x−x| ≤ Ax,
with A < 1 we have:

|log ˆ︁x− log x| ≤ − log(1−A)

These results are combined to get the final result we target,
as follows.

Theorem II.5 (Accuracy of LSE). For any n ≥ 1, and no
larger than 251, any vector a of size n such that for all i,
|ai| ≤Ma for some Ma ≤Mexp, and assuming that

exp(Ma)(1 + Eexp)n(1 + ε(n− 1)) ≤Mlog (5)

we have⃓⃓⃓ˆ︃LSE(a)− LSE(a)
⃓⃓⃓
≤ Elog|LSE(a)| −

log (1− (Eexp + (n− 1)ε(1 + Eexp))) (1 + Elog)

The hypothesis (5) above is required to call the ˆ︂log function
on the proper interval of definition. A bound on the size of
the input is needed to apply Lemma II.4 with A = Eexp +
(n−1)ε(1+Eexp): to show that A is smaller than 1, together
with the hypothesis Eexp ≤ 0.5, the bound 251 on n suffices.

F. Discussion on the Variations of the Bound on Accuracy

The error bound of ˆ︃LSE has two parts :
• A relative part, which is Elog

• A constant part :

− log (1− (Eexp + (n− 1)ε(1 + Eexp))) (1 + Elog)

We note that − log(1 − x) < 2x for x ≤ 1
2 . We can

therefore bound the constant error by

2× (Eexp + (n− 1)ε(1 + Eexp)) (1 + Elog)

The factors that dominate the constant bound are Eexp

and ε× (n− 1).
In Section IV, we compare this bound with the one proposed

by Blanchard et al. [10].
The error bound grows linearly with Elog, Eexp and n. Since

it is possible to choose an implementation of ˆ︂log andˆ︃exp with
specific bounds, having the error bound of ˆ︃LSE depending on
Eexp and Elog is useful in order to control the error.

To give some instances of the obtained bound, we can
choose specific values for the parameters Elog, Eexp, Mexp,
Mlog, Ma and n. Let us assume reasonable bounds in practice
on n and Ma that is 210 = 1024 and Ma = 25.

• Let us assume first we have some correctly rounded
implementations of exponential and logarithm, that is
Eexp = 2−53 and Elog = 2−53. Then, to ensure that
hypothesis (5) of Theorem II.5 holds, it suffices to have
Mlog larger than

exp(Ma)(1 + Eexp)n(1 + ε(n− 1))

≤ exp(25)(1 + 2−53)210(1 + 2−53 × 1023)

≤ 7.38× 1013

Assuming thus that the implementation of ˆ︂log is correctly
rounded on the domain given by the bound Mlog above,
the relative error on LSE is Elog = 2−53 and the absolute
error is bounded by

2× (Eexp + (n− 1)ε(1 + Eexp)) (1 + Elog)

≤ 2× (︁2−53 + 1023× 2−53(1 + 253)
)︁
(1 + 2−53)

≤ 2.28× 10−13

• Let us assume less precise implementations of exponen-
tial and logarithm with Eexp = 2−40 and Elog = 2−36.
These are some bounds for efficient implementations of
exponential and logarithm that empirically seemed suffi-
ciently accurate and energy-saving for industrial applica-
tions like IoT systems or deep-learning frameworks [38].
Then, to ensure that hypothesis (5) of Theorem II.5 holds,
it suffices to have Mlog larger than

exp(Ma)(1 + Eexp)n(1 + ε(n− 1))

≤ exp(25)(1 + 2−40)210(1 + 2−53 × 1023)

≤ 7.38× 1013

that is roughly the same bound as above with correct
rounding on ˆ︃exp and ˆ︂log. In other words, the required
bound on the input domain of logarithm depends mostly
on the bound on inputs and the number of elements in
the input sequence. The relative error on the computation
of LSE is now Elog = 2−36 and the absolute error is
bounded by

2× (Eexp + (n− 1)ε(1 + Eexp)) (1 + Elog)

≤ 2× (︁2−40 + 1023× 2−53(1 + 253)
)︁
(1 + 2−36)

≤ 2.05× 10−12

This absolute error is roughly twice the absolute error
of the case with correct rounded implementations of exp
and log.

Notice that if the size of the sequence is significantly larger
than the assumed bound 1024, then the required value forMlog

gets significantly larger, indeed it increases roughly linearly
with this size.

254

(** The type of unbounded floats in "double" format *)
type udouble

(** injection of udouble to real numbers *)
function to_real udouble : real

(** The rounding function *)
function uround mode real : udouble

constant eps:real = 0x1p-53 / (1.0 + 0x1p-53)
constant eta:real = 0x1p-1075

axiom uround_rne: forall x:real.
abs (uround RNE x - to_real x) <= eps * abs x + eta

(** addition *)
function uadd (x y:udouble) : udouble =

uround RNE (to_real x + to_real y)

(** properties (2), (3) and (4) *)
axiom add_rounding : forall x y:udouble.

abs (to_real (uadd x y) - (to_real x + to_real y))
<= abs (to_real x + to_real y) * eps

axiom add_bound_left: forall x y:udouble.
abs (to_real (uadd x y) - (to_real x + to_real y))
<= abs (to_real x)

axiom add_bound_right: forall x y:udouble.
abs (to_real (uadd x y) - (to_real x + to_real y))
<= abs (to_real y)

Fig. 1. Theory of unbounded doubles in WhyML (excerpt): conversion to
real numbers, rounding, addition and its properties.

III. FORMALIZATION OF THE ACCURACY RESULT

In this section we show how we formalized the statement
of Theorem II.5. We first summarize the methodology we
followed. We then consider successively the formalization of
LSE accuracy theorem in WhyML (Section III-B) and then a
proof of a corresponding C code (Section III-C).
Our methodology makes use of the unbounded floating-

point numbers introduced in Section II-B and heavily relies on
WhyML. WhyML is the language of Why3 [11], a general-
purpose environment for deductive verification. Why3 is used
as an intermediate tool by several front-ends including Frama-
C [46] for C code and by Spark for Ada code [49]. The Why3
environment allows the user to access a large set of different
provers, including Coq and Gappa. Moreover, nowadays there
are alternatives to the use of Coq for proving pure mathemati-
cal facts, including dReal [36] and Metitarski [1]. Concerning
the reasoning on floating-point computation, Why3 gives ac-
cess to SMT solver which support the SMT-LIB floating-point
theory, such as CVC4 [7], cvc5 [6], Z3 [33] and Alt-Ergo-
FPA [26]. But WhyML also proposes to the user a large set
of techniques and tools to achieve complex proofs, for example
via the use of lemma functions, which are, roughly speaking,
a way to construct a proof by writing a program.

A. WhyML Formalization of Unbounded Floating-Point Num-
bers

A starting point of our formalization was to design a
new WhyML theory for unbounded floats. An excerpt of
that theory is given in Figure 1. In this theory, the type

constant exp_max_value :real (* constant Mexp *)
axiom exp_max_value_spec: 0.0 < exp_max_value

constant exp_error:real (* constant Eexp *)
axiom exp_error_bound : 0.0 < exp_error <= 0.5

function u_exp (x:udouble) : udouble (* function ˆ︃exp *)
axiom u_exp_spec : forall x:udouble.
abs (to_real x) <= exp_max_value →
abs (to_real (u_exp x) - exp (to_real x))
<= exp (to_real x) * exp_error

Fig. 2. Declaration of ˆ︃exp in WhyML, with assumed accuracy.

1 let lemma lse_accuracy (a:int → udouble) (size:int) (max_a:real)
2 requires { 1 <= size }
3 requires { from_int (size - 1) <= 0x1p51 }
4 requires {
5 forall i. 0 <= i < size →
6 abs (to_real (a i)) <= max_a <= exp_max_value }
7 requires {
8 exp max_a * (1.0 + exp_error) *
9 from_int size * (1.0 + eps * from_int (size - 1))
10 <= log_max_value }
11 ensures {
12 let err = exp_error + eps * from_int (size - 1)
13 * (1.0 + exp_error) in
14 abs (to_real (u_lse a size) - lse_exact a size) <=
15 log_error * abs (lse_exact a size)
16 - log (1.0 - err) * (1.0 + log_error) }

Fig. 3. Statement of Theorem II.5 in WhyML.

udouble is abstract, and only assumed to be given a function
to_real which returns the real number represented by any
udouble. The rounding function uround that rounds any real
number to a udouble is also declared abstractly. The basic
operations are defined as the rounding of the real operations.
The properties (2), (3) and (4) are stated as axioms in the
theory. To provide guarantees that this theory is consistent with
IEEE floats, it is realized using Coq and its Flocq library.

B. Accuracy of LSE proved in WhyML

To start with, we need to declare the approximations of exp
and log that we consider. The declaration of ˆ︃exp is shown in
Figure 2 and the one of ˆ︂log is similar. These declarations are
axiomatic so as to make them parametric in the values of
Mexp, Eexp and such. The definitions of u_sum for

⨁︁
and

u_lse for ˆ︃LSE follows naturally.
The WhyML statement corresponding to Theorem II.5 is

given in Figure 3. Preconditions on lines 2–3 express that
the size of the array is between 1 and 251. The precondition
on lines 4–6 expresses the bound on the array elements,
and the precondition on lines 7–10 expresses Hypothesis (5).
the post-condition on lines 11–16 expresses the bound on
accuracy given by Theorem II.5. The text of WhyML proof
of Theorem II.5 is given by the body of the lse_accuracy

lemma function, displayed in Figure 4. It more or less follows
the paper proof detailed in our report [23]. Notice on lines 3–
12 the invocation of Lemma II.3, and on lines 36–42 the
invocation of Lemma II.4.

255

1 let ghost s : udouble = u_sum (u_exp_fun a) 0 size in
2 let ghost sum_exps : real = sum (exp_fun a) 0 size in
3 begin
4 (* statement corresponding to Lemma (II.3) *)
5 ensures {
6 abs ((to_real s) - sum_exps) <=
7 sum_exps * (exp_error +
8 eps * from_int (size - 1) * (1.0 + exp_error)) }
9 (* invocation of Lemma (II.3) proved earlier *)
10 u_sum_accuracy_combine_pos
11 exp_error 0.0 (exp_fun a) (u_exp_fun a) 0 size;
12 end;
13 begin
14 ensures { sum_exps > 0.0 }
15 sum_strictly_pos (exp_fun a) 0 size;
16 end;
17 begin (* required domain for calling u_log *)
18 ensures { 0.0 < to_real s <= log_max_value }
19 assert { forall i. 0 <= i < size →
20 0.0 <= to_real (u_exp (a i)) <=
21 exp max_a * (1.0 + exp_error)
22 by abs (to_real (u_exp (a i)) - exp (to_real (a i)))
23 <= exp (to_real (a i)) * exp_error
24 so to_real (u_exp (a i)) <=
25 exp (to_real (a i)) * (1.0 + exp_error) };
26 (* invocation of Corollary (II.2) *)
27 u_sum_constant_bounds (exp max_a *
28 (1.0 + exp_error)) (u_exp_fun a) size 0 size;
29 end;
30 let ghost r : udouble = u_log s in
31 assert { r = u_lse a size };
32 let ghost err : real = exp_error +
33 eps * from_int (size - 1) * (1.0 + exp_error)
34 in
35 assert { err < 1.0 };
36 begin
37 ensures {
38 abs (log (to_real s) - log sum_exps) <=
39 - log (1.0 - err) }
40 (* invocation of Lemma (II.4) on log *)
41 log_combine_err sum_exps (to_real s) err 0.0;
42 end;
43 assert {
44 (log_error + 1.0) *
45 (abs (log (to_real s) - log sum_exps)) <=
46 - log (1.0 - err) * (log_error + 1.0)
47 by (log_error + 1.0 >= 0.0) };
48 assert {
49 abs (to_real r - lse_exact a size)
50 <= abs (to_real r - log (to_real s)) +
51 abs (log (to_real s) - log sum_exps)
52 <= (log_error + 1.0) *
53 (abs (log (to_real s) - log sum_exps))
54 + log_error * abs (lse_exact a size)
55 <= log_error * abs (lse_exact a size)
56 - log (1.0 - err) * (log_error + 1.0) }

Fig. 4. Proof of Theorem II.5 in WhyML.

To proceed with the proof, we ask Why3 to generate a
set of verification conditions (VCs for short). On this lemma
function, Why3 generates 30 VCs. All of them except one
are proved by the Alt-Ergo SMT solver within a 5 seconds
time limit. The only remaining one corresponds to the formula
0 < to_real s on line 18 of Figure 4, which can be proved
instead using the FPA variant of Alt-Ergo [26]. See our
report [23] for more technical details on the proofs.

C. Proving a C code implementing LSE

We aim to achieve proofs on concrete C code. For that,
we use the environment TIS-kernel, a fork of Frama-C, and
its J3 plug-in for deductive verification, which is a prototype

1 /*@ requires 0 < size <= 1024 && max_a <= exp_max_value;
2 @ requires \initialized (&a[0..size-1]);
3 @ requires
4 @ \forall integer i;
5 @ 0 <= i < size ==> \abs(a[i]) <= max_a;
6 @ // the hypothesis (5) of Theorem II.5
7 @ requires
8 @ \exp(max_a) * (1.0 + exp_error) * size *
9 @ (1.0 + (eps * (size - 1))) <= log_max_value;
10 @ // additional requirements to prevent
11 @ // overflow on addition
12 @ requires max_a <= 701.0;
13 @ requires log_max_value <= 0x1p1023;
14 @ // result is equal to the WhyML def of LSE on udouble
15 @ ensures to_udouble(\result) == u_lse(a, size);
16 @ // the accuracy property
17 @ ensures \abs(\result - lse_exact(a, size)) <=
18 @ log_error * \abs(lse_exact(a,size))
19 @ - \log(1 - (exp_error + eps * (size - 1) *
20 @ (1 + exp_error))) * (1 + log_error);
21 @*/
22 double log_sum_exp(size_t size) {
23 int i;
24 double s = 0.0;
25 /*@ loop invariant 0 <= i <= size;
26 @ loop invariant // to prove the first post-condition
27 @ to_udouble(s) == u_sum_of_u_exp(a, 0, i);
28 @ // for proving s is the domain of the log
29 @ loop invariant (i == 0 ? s == 0.0 : 0.0 < s);
30 @ loop invariant
31 @ \forall integer j; 0 <= j < i ==>
32 @ \abs(to_real(u_exp(to_udouble(a[j])))) <=
33 @ \exp(max_a) * (1.0 + exp_error) ;
34 @ loop assigns i, s;
35 @ loop variant (size - i);
36 @*/
37 for (i = 0; i < size; i++) {
38 /*@ assert 0.0 <= to_real(u_exp(to_udouble(a[i]))) ;
39 @ assert to_real(to_udouble(a[i])) <= max_a ;
40 @ assert
41 @ \exp(to_real(to_udouble(a[i]))) <= \exp(max_a) ;
42 @ assert
43 @ \abs(to_real(u_exp(to_udouble(a[i])))
44 @ - \exp(to_real(to_udouble(a[i]))))
45 @ <= \exp(max_a) * exp_error ;
46 @ assert
47 @ to_real(u_exp(to_udouble(a[i])))
48 @ <= \exp(max_a) * (1.0+exp_error) ;
49 @ assert // invocation of Corollary (II.2)
50 @ usum_double_bound(u_sum_of_u_exp(a, 0, i),
51 @ \exp(max_a) * (1.0 + exp_error), size);
52 @*/
53 s += exp_approx(a[i]);
54 }
55 /*@ assert // another invocation of Corollary (II.2)
56 @ usum_double_bound(to_udouble(s),
57 @ \exp(max_a) * (1.0 + exp_error), size);
58 @*/
59 return log_approx(s);
60 }

Fig. 5. C code for computing LSE, annotated with ACSL specifications.

under development. Alternatively, there should be no technical
difficulty to achieve the proofs of our C code using the
regular Frama-C environment and its Wp plug-in for deductive
verification.
Our C code computing the LSE function is given on

Figure 5. In a first step, let’s ignore the potential floating-
point overflow, and focus on proving the accuracy property.
To specify the intended behavior and its properties, we build a
bridge to WhyML definitions (see our report [23] for technical
details), so that for example we can use the WhyML definitions

256

/*@ requires \abs(x) <= exp_max_value;
@ ensures to_udouble(\result) == u_exp(to_udouble(x));
@ assigns \nothing;
@*/

extern double exp_approx(double x);

/*@ requires 0 < x <= log_max_value;
@ ensures to_udouble(\result) == u_log(to_udouble(x));
@ assigns \nothing;
@*/

extern double log_approx(double x);

Fig. 6. External C functions for ˆ︃exp and ˆ︂log, specified in ACSL.

of u_exp and u_log in the ACSL annotations. It provides in
particular a function to_udouble that promotes a regular C
double to an unbounded double. We declare and specify the
auxiliary C functions for computing approximations of exp
and log, as shown on Figure 6.
The first post-condition, on lines 14–15 of Figure 5, thus

expresses that the result of the C function is equal to the
LSE function defined in WhyML. The second post-condition,
on lines 16–20 of Figure 5, expresses the expected bounding
property, as stated by Theorem II.5. The second post-condition
is going to be proved easily from the first one, and the accuracy
result on u_lse already proved in WhyML. The precondition
on lines 3–5 is required to allow calling the exponential inside
its correct domain. The precondition on lines 6–9 expresses the
required hypothesis 5 of Theorem II.5.
The first post-condition on lines 14–15 is an easy conse-

quence of the definition of the LSE function, and the loop
invariant given on lines 26–27. The post-condition on lines 16–
20 is proved by invoking the proof of the same statement
already done in WhyML. Together with the simple loop
invariants on lines 25 and 29, all the VCs are proved, in
particular the expected post-conditions, except two of them.
The first unproved VC is related to line 59 where it is required
to show that s fits in the expected domain of the approximated
logarithm. The second unproved VC is related to line 53 where
it is requires to show the absence of floating-point overflow
when performing addition.
To prove the VC on line 59 and thus prove that the sum s

on line 59 fits in the expected range of the log, we need to state
the additional loop invariants on lines 29 and 30–33 to bound
the sum. To prove that these invariants hold, we need again to
invoke Corollary II.2. Achieving this proof is a bit involved,
requiring all the extra intermediate assertions on lines 38–51.
The last VC remaining to prove is the absence of numerical

overflow when computing the addition on line 53. It is indeed
expected since the C code operates on true IEEE floating-point
numbers and not the unbounded ones. To achieve this, the
given pre-conditions are not enough, we need to assume extra
bounds on the inputs. So far we assumed the input numbers
smaller than Mexp, for which no upper bound is assumed
so far. Yet, we add the exponentials of these numbers, and
summing up to say 1024 of these numbers, we can indeed have
an overflow. A tighter bound must be assumed. We assume

here, on lines 12–13 of Figure 5, that Ma is smaller than 701
and Mlog is smaller than 21023. With these extra assumptions,
and thanks to the already stated and proved loop invariants on
lines 29 and 30–33, the VC is proved.
In all, 56 VCs are generated. 49 of them are proved by

Alt-Ergo, within a 5 seconds time limit. For the rest, we tried
CVC4 and cvc5, which are able to solve 6 VCs, and the last
one remaining is proved by the FPA variant of Alt-Ergo.

IV. RELATED WORK

As far as we know, the only contribution focusing on
rounding errors of LSE-based algorithms is the work of
Blanchard et al. [10]. They bound the rounding errors of the
LSE function and its gradient, namely the softmax function.
In this work, the authors assume that the exponential and
logarithm functions are implemented with correct rounding,
i.e., Eexp = Elog = ε. In contrast, we provide a proof which
is parameterized with arbitrary error bounds for the called
functions. It means that we can rely on any implementations of
these functions without invalidating the bounds. Going back
to Theorem II.5, if we take Eexp = ε, we get a bound in
which the relative error term is Elog = ε and the constant
term is − log (1− (ε+ (n− 1)ε(1 + ε))) (1+ε), that is, about
− log (1− nε)+O(u2). Blanchard et al.’s relative error term is
identical. Their constant term is about (n+1)ε+O(u2), which
is actually very slightly tighter than ours, but of comparable
order of magnitude. Yet, a strength of our accuracy result is
that is parametric in the accuracies of exp and log, instead of
assuming ideally precise implementations. Moreover, another
main strength compared to this work is the fact that we made
formal proofs.
Our work can also be compared to other contributions

targeting the end-to-end formal proof of numerical software
written in C. For instance, Appel and Bertot [3] have combined
the Verifiable Software Toolchain (VST) [2], [4], Flocq [21],
[22] and Gappa [30] to formally-verify an example of square
root implementation using the Newton method. VST ensures
the correctness of the C code, while Flocq and Gappa are
used as backend tools to check numerical accuracy facts.
Kellison et al. [45] propose a Coq formal proofs library, called
LAProof, for rounding error analysis of basic linear algebra
operations, e.g. inner product or matrix-matrix multiplication.
As an application example, the authors prove a C program
computing a sparse matrix-vector multiplication using the
VST [2] approach and the LAProof library.
Boldo et al. [13], [15] formalized a numerical integration

scheme for a wave partial differential equation in Coq. They
not only formally proved a bound on the mathematical er-
rors [15], but also a bound on the rounding errors [13]. These
works have been used as a basis for the formal verification
of a wave equation resolution C program [16], based on
the the Jessie plug-in of Frama-C. The most complex proof
obligations related to numerical errors are discharged to Coq.
Becker et al. [8] developed a CakeML extension for op-

timizing floating-point arithmetic in Standard ML. Their ap-
proach relies on an end-to-end soundness proof linking a real-

257

number specification of the initial code with the code obtained
after optimization. The approach is entirely automated (code
and proof generation) and targets the optimization of floating-
point kernels, which are essentially blocks of floating-point
computations free of control flow instructions. The roundoff
errors are obtained and proved by using the prover FloVer
(interval-based prover in HOL4).

V. CONCLUSION AND FUTURE WORK

We presented bounds on the accuracy of an implementation
of the LSE function. The resulting expressions for the bounds
are parametric in the precision of the underlying implementa-
tions of exp and log, and also parameterized by bounds on the
size of the argument vectors, and bounds on the values of the
vectors components. The given bounds are proved on paper
and then in WhyML, using Why3 constructs such as lemma
function to provide proofs that follow more or less the paper
proofs. We also proved some C implementation by reusing the
results proved in WhyML. The proofs are made simpler by
using a theory of unbounded floating-point numbers, allowing
us to separate the reasoning on accuracy from the reasoning
on absence of overflow.

a) Future work.: The bounds exhibited by Blanchard et
al. [10] show that naive implementations of these functions
are relatively well-behaved regarding numerical accuracy, but
prone to spurious overflow. The authors then study an alter-
native implementation to bypass this issue. The principle is to
find the maximal value α = max(xi) among the components
of the input vector and to rewrite the LSE expression as
follows:

LSE(x) = α+ log

 ∑︂
1≤i≤n

exp(xi − α)


As for all i, xi − α ≤ 0, the exponential takes a reasonable
value whatever is the magnitude of the components of x,
therefore, the risk of overflow is limited. They also prove that
the accuracy of this alternative evaluation is not only as good
as with the standard evaluation, but even slightly better. In
practice, most applications using the LSE function rely on the
shifted version. The proof of the error bounds associated to this
alternative evaluation which is presented by Blanchard et al.
uses rather sophisticated mathematical arguments, e.g. Taylor
series expansions of the log(1+x) quantity. Providing a formal
proof of this result could be an interesting perspective.
In the presented work, some parts of the proof are performed

with a high level of automation. Making formal verification
processes automatic and push-button has a strong impact on
their industrial applicability. While the studied example is
rather intricate and would be difficult to fully automate, there
are plenty of applicative source code in which simple combi-
nations of mathematical functions calls appear. For instance,
we could try to apply our methodology on benchmarks from
the FPBench [27] or COPRIN projects [51]. Most examples
from these benchmarks are loop-free which strongly eases the
verification process. We could try to handle these examples

in a fully automatic way, providing bounds depending on
error bounds for the mathematical functions implementations
appearing in the source code.
For now, we assume error bounds on the implementations

of the mathematical functions log and exp. Our formally
proved bounds apply only when implementations satisfying
the assumptions are provided. It is known in the literature
that correctly-rounded implementations of these functions can
be achieved, e.g. in the recent CORE-MATH library [56]. To
complement our work, we envision the formal verification
of the errors induced by such implementations. In the late
20th century, Harrison [39], [40] formally verified implemen-
tations of specific floating-point exponential and trigonometric
functions implementations in HOL, but the proofs were ad
hoc, low-level and far from automatic. More recently, the
Gappa tool [30] has been partly used to bound rounding errors
of floating-point implementations of functions from the CR-
LIBM library [28], [32], [31]. However, proofs are not fully
automatic and are devoted to specific implementations. In
addition, these works only focus on rounding errors, without
taking the mathematical approximation errors into account.
Geneau de Lamarlière et al. [37] provide a methodology
and tooling to ease the formal proofs of low-level floating-
point components with a minimal user effort. Their approach
relies on a framework for modeling and reasoning on floating-
point expressions with some facilities, without neglecting
potential exceptional behaviors. For that purpose, they offer
tools in the Coq proof assistant to automate the proof of the
absence of exceptional behaviors, so that the user can reason
on real numbers representation of floating-point expressions.
This work is typically applied on mathematical functions
implementations, e.g. exp and log. Combining our approach
with their methodology would be valuable to complete the
toolchain. A longer-term goal could be the development of a
formally verified implementation synthesis tool, in the spirit
of the Metalibm tools [47], [25]. Metalibm already enables
the generation of Gappa scripts certifying the synthesized
implementations, but this feature is limited to some pieces
of code.
Our work is not limited to the LSE function. We already

applied our methodology to others, including the following
extension related to computing mutual information:

SLSE(a) =
∑︂

0≤i<n
log2

 ∑︂
0≤j<n

exp

(︃
− (ai + ρ− aj)

2

2

)︃
Some bounds on accuracy are already obtained on paper [23].
Yet, we did not yet satisfactorily achieve a formal proof. We
identified remaining issues in our proof methodology, that
deserve future work. In particular, the formal proofs that we al-
ready made on SLSE require a large amount of manual steps,
so it is desirable to automate the process. We currently plan
to automate the application of so-called “forward propagation
lemmas”, which are properties similar to our Lemma II.4 for
logarithm, but applied to additions, multiplications, exponen-
tial. We believe that automating the application of such lemmas

258

would naturally be reused for proving any code proceeding
by composing numerical functions and operations. Another
concern is related to the methodogy to deal directly with
C code. Our current methodology is far from being usable
by non-expert users. This is illustrated for example by the
numerous assertions that we had to add in our C code for LSE,
on lines 38–51 of Figure 5. There are constructs available in
WhyML that would be nice to have at the C level: we think
in particular, on one hand, about arbitrary lambda-expressions,
and on the other hand the ability to call ghost functions. In
fact, ghost functions are in principle present in ACSL [9], but
they are limited to ghost C programs, whereas we would need
to have ghost logic functions that would accept logic types
are parameters: these include real numbers, unbounded floats,
functions (lambda-expressions), etc.

REFERENCES

[1] Behzad Akbarpour and Lawrence C. Paulson. Metitarski: An automatic
theorem prover for real-valued special functions. Journal of Automated
Reasoning, 44(3):175–205, 2010. Tool page at http://www.cl.cam.ac.uk/
∼lp15/papers/Arith/. doi:10.1007/s10817-009-9149-2.

[2] Andrew Appel. Verified software toolchain. In European Symposium
on Programming, volume 6602 of Lecture Notes in Computer Science,
pages 1–17. Springer, 2011. Tool page at https://vst.cs.princeton.edu/.
doi:10.5555/1987211.1987212.

[3] Andrew Appel and Yves Bertot. C-language floating-point proofs
layered with VST and Flocq. Journal of Formalized Reasoning, 13(1):1–
16, 2020. URL: https://inria.hal.science/hal-03130704/.

[4] Andrew Appel and Ariel Kellison. Vcfloat2: Floating-point error
analysis in coq. In Proceedings of the 13th ACM SIGPLAN International
Conference on Certified Programs and Proofs, pages 14–29, 2024.

[5] Ali Ayad and Claude Marché. Multi-prover verification of floating-point
programs. In Jürgen Giesl and Reiner Hähnle, editors, Fifth International
Joint Conference on Automated Reasoning, volume 6173 of Lecture
Notes in Artificial Intelligence, pages 127–141, Edinburgh, Scotland,
July 2010. Springer. URL: http://hal.inria.fr/inria-00534333.

[6] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna
Lachnitt, Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed,
Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew
Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A versatile
and industrial-strength SMT solver. In Dana Fisman and Grigore Rosu,
editors, Tools and Algorithms for the Construction and Analysis of Sys-
tems, volume 13243 of Lecture Notes in Computer Science, pages 415–
442. Springer, 2022. doi:10.1007/978-3-030-99524-9_24.

[7] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli.
CVC4. In Computer Aided Verification, volume 6806 of Lecture Notes
in Computer Science, pages 171–177. Springer, 2011. http://cvc4.cs.
stanford.edu/web/. doi:10.1007/978-3-642-22110-1_14.

[8] Heiko Becker, Robert Rabe, Eva Darulova, Magnus O. Myreen, Zachary
Tatlock, Ramana Kumar, Yong Kiam Tan, and Anthony C. J. Fox. Veri-
fied compilation and optimization of floating-point programs in cakeml.
In Karim Ali and Jan Vitek, editors, 36th European Conference on
Object-Oriented Programming, ECOOP 2022, June 6-10, 2022, Berlin,
Germany, volume 222 of LIPIcs, pages 1:1–1:28. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.
ECOOP.2022.1.

[9] Allan Blanchard, Claude Marché, and Virgile Prevosto. Guide to
Software Verification with Frama-C — Core Components, Usages, and
Applications, chapter Formally Expressing what a Program Should Do:
the ACSL Language. Springer-Verlag, 2024. URL: https://inria.hal.
science/hal-04265707.

[10] Pierre Blanchard, Desmond J Higham, and Nicholas J Higham. Ac-
curately computing the log-sum-exp and softmax functions. IMA
Journal of Numerical Analysis, 41(4):2311–2330, 2021. doi:10.
1093/imanum/draa038.

[11] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei
Paskevich. Let’s verify this with Why3. International Journal on
Software Tools for Technology Transfer (STTT), 17(6):709–727, 2015.
See also http://toccata.gitlabpages.inria.fr/toccata/gallery/fm2012comp.
en.html. URL: http://hal.inria.fr/hal-00967132/en, doi:10.1007/
s10009-014-0314-5.

[12] Sylvie Boldo. Floats & Ropes: a case study for formal numerical
program verification. In 36th International Colloquium on Automata,
Languages and Programming, volume 5556 of Lecture Notes in Com-
puter Science - ARCoSS, pages 91–102, Rhodos, Greece, July 2009.
Springer. doi:10.1007/978-3-642-02930-1_8.

[13] Sylvie Boldo. Floats and ropes: A case study for formal numeri-
cal program verification. In 36th International Colloquium on Au-
tomata, Languages and Programming, volume 5556 of Lecture Notes
in Computer Science, pages 91–102. Springer, 2009. doi:10.1007/
978-3-642-02930-1_8.

[14] Sylvie Boldo. Deductive formal verification: how to make your floating-
point programs behave. PhD thesis, Université Paris-Sud, 2014.

[15] Sylvie Boldo, François Clément, Jean-Christophe Filliâtre, Micaela
Mayero, Guillaume Melquiond, and Pierre Weis. Formal proof of a wave
equation resolution scheme: the method error. In Interactive Theorem
Proving, volume 6172 of Lecture Notes in Computer Science, pages
147–162. Springer, 2010. URL: http://hal.inria.fr/inria-00450789/en,
doi:10.1007/978-3-642-14052-5_12/.

[16] Sylvie Boldo, François Clément, Jean-Christophe Filliâtre, Micaela
Mayero, Guillaume Melquiond, and Pierre Weis. Wave equation
numerical resolution: a comprehensive mechanized proof of a C
program. Journal of Automated Reasoning, 50(4):423–456, April
2013. URL: http://hal.inria.fr/hal-00649240/en/, doi:10.1007/
s10817-012-9255-4.

[17] Sylvie Boldo and Jean-Christophe Filliâtre. Formal verification of
floating-point programs. In 18th IEEE International Symposium on
Computer Arithmetic, pages 187–194, 2007. URL: https://usr.lmf.cnrs.fr/
∼jcf/publis/caduceus-floats.pdf, doi:10.1109/ARITH.2007.20.

[18] Sylvie Boldo, Claude-Pierre Jeannerod, Guillaume Melquiond, and Jean-
Michel Muller. Floating-point arithmetic. Acta Numerica, 32:203–
290, 2023. URL: https://hal.science/hal-04095151, doi:10.1017/
S0962492922000101.

[19] Sylvie Boldo and Claude Marché. Formal verification of numerical
programs: from C annotated programs to mechanical proofs. Mathe-
matics in Computer Science, 5:377–393, 2011. URL: http://hal.inria.fr/
hal-00777605, doi:10.1007/s11786-011-0099-9.

[20] Sylvie Boldo and Claude Marché. Toccata gallery of verified programs,
section “floating-point computations”. https://toccata.gitlabpages.inria.
fr/toccata/gallery/fp.en.html, 2023.

[21] Sylvie Boldo and Guillaume Melquiond. Computer Arithmetic and
Formal Proofs: Verifying Floating-point Algorithms with the Coq Sys-
tem. ISTE Press - Elsevier, December 2017. URL: https://hal.inria.fr/
hal-01632617.

[22] Sylvie Boldo and Guillaume Melquiond. Some formal tools for
computer arithmetic: Flocq and Gappa. In Mioara Joldes and Fabrizio
Lamberti, editors, 28th IEEE International Symposium on Computer
Arithmetic, 2021. URL: https://hal.inria.fr/hal-03233227.

[23] Paul Bonnot, Benoı̂t Boyer, Florian Faissole, Claude Marché, and
Raphaël Rieu-Helft. Formally verified bounds on rounding errors in con-
crete implementations of logarithm-sum-exponential functions. Research
Report 9531, Inria, 2023. URL: https://inria.hal.science/hal-04343157.

[24] Sven Brüggemann and Corrado Possieri. On the use of difference
of log-sum-exp neural networks to solve data-driven model predictive
control tracking problems. IEEE Control Systems Letters, 5(4):1267–
1272, 2020. doi:10.1109/LCSYS.2020.3032083.

[25] Nicolas Brunie, Christoph Lauter, and Guillaume Revy. Precision
adaptation for fast and accurate polynomial evaluation generation. In
30th International Conference on Application-specific Systems, Archi-
tectures and Processors, volume 2160-052X, pages 41–41. IEEE, 2019.
doi:10.1109/ASAP.2019.00-32.

[26] Sylvain Conchon, Mohamed Iguernlala, Kailiang Ji, Guillaume
Melquiond, and Clément Fumex. A three-tier strategy for reasoning
about floating-point numbers in SMT. In Computer Aided Verification,
volume 10427 of Lecture Notes in Computer Science, pages 419–
435, 2017. URL: https://hal.inria.fr/hal-01522770, doi:10.1007/
978-3-319-63390-9_22.

[27] Nasrine Damouche, Matthieu Martel, Pavel Panchekha, Chen Qiu,
Alexander Sanchez-Stern, and Zachary Tatlock. Toward a standard

259

http://www.cl.cam.ac.uk/~lp15/papers/Arith/
http://www.cl.cam.ac.uk/~lp15/papers/Arith/
https://doi.org/10.1007/s10817-009-9149-2
https://vst.cs.princeton.edu/
https://doi.org/10.5555/1987211.1987212
https://inria.hal.science/hal-03130704/
http://hal.inria.fr/inria-00534333
https://doi.org/10.1007/978-3-030-99524-9_24
http://cvc4.cs.stanford.edu/web/
http://cvc4.cs.stanford.edu/web/
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.4230/LIPICS.ECOOP.2022.1
https://doi.org/10.4230/LIPICS.ECOOP.2022.1
https://inria.hal.science/hal-04265707
https://inria.hal.science/hal-04265707
https://doi.org/10.1093/imanum/draa038
https://doi.org/10.1093/imanum/draa038
http://toccata.gitlabpages.inria.fr/toccata/gallery/fm2012comp.en.html
http://toccata.gitlabpages.inria.fr/toccata/gallery/fm2012comp.en.html
http://hal.inria.fr/hal-00967132/en
https://doi.org/10.1007/s10009-014-0314-5
https://doi.org/10.1007/s10009-014-0314-5
https://doi.org/10.1007/978-3-642-02930-1_8
https://doi.org/10.1007/978-3-642-02930-1_8
https://doi.org/10.1007/978-3-642-02930-1_8
http://hal.inria.fr/inria-00450789/en
https://doi.org/10.1007/978-3-642-14052-5_12/
http://hal.inria.fr/hal-00649240/en/
https://doi.org/10.1007/s10817-012-9255-4
https://doi.org/10.1007/s10817-012-9255-4
https://usr.lmf.cnrs.fr/~jcf/publis/caduceus-floats.pdf
https://usr.lmf.cnrs.fr/~jcf/publis/caduceus-floats.pdf
https://doi.org/10.1109/ARITH.2007.20
https://hal.science/hal-04095151
https://doi.org/10.1017/S0962492922000101
https://doi.org/10.1017/S0962492922000101
http://hal.inria.fr/hal-00777605
http://hal.inria.fr/hal-00777605
https://doi.org/10.1007/s11786-011-0099-9
https://toccata.gitlabpages.inria.fr/toccata/gallery/fp.en.html
https://toccata.gitlabpages.inria.fr/toccata/gallery/fp.en.html
https://hal.inria.fr/hal-01632617
https://hal.inria.fr/hal-01632617
https://hal.inria.fr/hal-03233227
https://inria.hal.science/hal-04343157
https://doi.org/10.1109/LCSYS.2020.3032083
https://doi.org/10.1109/ASAP.2019.00-32
https://hal.inria.fr/hal-01522770
https://doi.org/10.1007/978-3-319-63390-9_22
https://doi.org/10.1007/978-3-319-63390-9_22

benchmark format and suite for floating-point analysis. In Numerical
Software Verification, pages 63–77. Springer, 2017. doi:10.1007/
978-3-319-54292-8_6.

[28] Catherine Daramy, David Defour, Florent de Dinechin, and Jean-Michel
Muller. Cr-libm: a correctly rounded elementary function library. In
Advanced Signal Processing Algorithms, Architectures, and Implemen-
tations XIII, volume 5205, pages 458–464. SPIE, 2003.

[29] Catherine Daramy-Loirat, David Defour, Florent de Dinechin, Matthieu
Gallet, Nicolas Gast, Christoph Lauter, and Jean-Michel Muller. CR-
LIBM: a library of correctly rounded elementary functions in double-
precision. Research report, LIP, 2006. URL: https://ens-lyon.hal.science/
ensl-01529804.

[30] Marc Daumas and Guillaume Melquiond. Certification of bounds
on expressions involving rounded operators. ACM Transactions on
Mathematical Software (TOMS), 37(1):1–20, 2010.

[31] Florent De Dinechin, Christoph Lauter, and Guillaume Melquiond.
Certifying the floating-point implementation of an elementary function
using gappa. IEEE Transactions on Computers, 60(2):242–253, 2010.

[32] Florent De Dinechin, Christoph Quirin Lauter, and Guillaume
Melquiond. Assisted verification of elementary functions using gappa.
In Proceedings of the 2006 ACM symposium on Applied computing,
pages 1318–1322, 2006.

[33] Leonardo de Moura and Nikolaj Bjørner. Z3, an efficient SMT solver. In
TACAS, volume 4963 of Lecture Notes in Computer Science, pages 337–
340. Springer, 2008. doi:10.1007/978-3-540-78800-3_24.

[34] Clément Fumex, Claude Marché, and Yannick Moy. Automating the
verification of floating-point programs. In Andrei Paskevich and Thomas
Wies, editors, Verified Software: Theories, Tools, and Experiments.
Revised Selected Papers Presented at the 9th International Conference
VSTTE, number 10712 in Lecture Notes in Computer Science, Hei-
delberg, Germany, December 2017. Springer. URL: https://hal.inria.fr/
hal-01534533/.

[35] Bolin Gao and Lacra Pavel. On the properties of the softmax function
with application in game theory and reinforcement learning. arXiv
preprint arXiv:1704.00805, 2017.

[36] Sicun Gao, Jeremy Avigad, and Edmund M. Clarke. δ-complete decision
procedures for satisfiability over the reals. In Bernhard Gramlich, Dale
Miller, and Uli Sattler, editors, Automated Reasoning, pages 286–300.
Springer, 2012. doi:978-3-642-31365-3_23.

[37] Paul Geneau de Lamarlière, Guillaume Melquiond, and Florian Faissole.
Slimmer formal proofs for mathematical libraries. In Theo Drane and
Anastasia Volkova, editors, Proceedings of the 30th IEEE International
Symposium on Computer Arithmetic, Portland, OR, USA, September
2023.

[38] Cédric Gernigon, Silviu-Ioan Filip, Olivier Sentieys, Clément Coggiola,
and Mickaël Bruno. Low-precision floating-point for efficient on-board
deep neural network processing, 2023. arXiv:2311.11172.

[39] John Harrison. Floating point verification in hol light: the exponential
function. In International Conference on Algebraic Methodology and
Software Technology, pages 246–260. Springer, 1997.

[40] John Harrison. Formal verification of floating point trigonometric
functions. In International conference on formal methods in computer-
aided design, pages 254–270. Springer, 2000.

[41] Nicholas J Higham. Accuracy and stability of numerical algorithms.
SIAM, 2002. doi:10.1137/1.9780898718027.

[42] Taocheng Hu and Jinhui Yu. LogSumExp for unlabeled data processing.
In 15th International Conference on Software Engineering Research,
Management and Applications, pages 63–69. IEEE, 2017. doi:10.
1109/SERA.2017.7965708.

[43] IEEE standard for floating-point arithmetic, 2008. https://dx.doi.org/
10.1109/IEEESTD.2008.4610935. doi:10.1109/IEEESTD.2008.
4610935.

[44] Claude-Pierre Jeannerod and Siegfried M. Rump. On relative errors
of floating-point operations: optimal bounds and applications. Math-
ematics of Computation, 87:803–819, 2018. URL: https://hal.inria.fr/
hal-00934443, doi:10.1090/mcom/3234.

[45] Ariel E. Kellison, Andrew W. Appel, Mohit Tekriwal, and David S.
Bindel. LAProof: A library of formal proofs of accuracy and correctness
for linear algebra programs. In Proceedings of the 30th IEEE Interna-
tional Symposium on Computer Arithhmetic (ARITH), September 2023.
To appear.

[46] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,
and Boris Yakobowski. Frama-c: A software analysis perspective.

Formal Aspects of Computing, 27(3):573–609, May 2015. doi:10.
1007/s00165-014-0326-7.

[47] Olga Kupriianova and Christoph Lauter. Metalibm: A mathematical
functions code generator. In International Congress on Mathematical
Software, volume 8592 of Lecture Notes in Computer Science, pages
713–717. Springer, 2014. doi:10.1007/978-3-662-44199-2_
106.

[48] Radek Mackowiak, Lynton Ardizzone, Ullrich Kothe, and Carsten
Rother. Generative classifiers as a basis for trustworthy image classifi-
cation. In Computer Vision and Pattern Recognition, pages 2971–2981,
2021. doi:10.1109/CVPR46437.2021.00299.

[49] John W. McCormick and Peter C. Chapin. Building High Integrity
Applications with SPARK. Cambridge University Press, 2015. doi:
10.1017/CBO9781139629294.

[50] Guillaume Melquiond. Formal Verification for Numerical Computations,
and the Other Way Around. Habilitation à diriger des recherches,
Université Paris Sud, April 2019. URL: https://tel.archives-ouvertes.
fr/tel-02194683.

[51] Jean-Pierre Merlet. Parallel Robots, chapter Structural synthesis
and architectures, pages 19–94. Springer, 2006. doi:10.1007/
1-4020-4133-0_2.

[52] Taiki Miyagawa and Akinori F Ebihara. The power of log-sum-exp:
Sequential density ratio matrix estimation for speed-accuracy optimiza-
tion. In International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 7792–7804, 2021.
URL: https://proceedings.mlr.press/v139/miyagawa21a.html.

[53] Jean-Michel Muller, Nicolas Brisebarre, Florent De Dinechin, Claude-
Pierre Jeannerod, Vincent Lefevre, Guillaume Melquiond, Nathalie
Revol, Damien Stehlé, Serge Torres, et al. Handbook of floating-point
arithmetic. Springer, 2018.

[54] Jean-Michel Muller, Nicolas Brunie, Florent de Dinechin, Claude-Pierre
Jeannerod, Mioara Joldes, Vincent Lefèvre, Guillaume Melquiond,
Nathalie Revol, and Serge Torres. Handbook of Floating-point Arith-
metic (2nd edition). Birkhäuser Basel, July 2018. URL: https://hal.inria.
fr/hal-01766584, doi:10.1007/978-3-319-76526-6.

[55] Pierre Roux. Formal Proofs of Rounding Error Bounds - With
Application to an Automatic Positive Definiteness Check. Journal
of Automated Reasoning, 57(2):135–156, 2016. doi:10.1007/
s10817-015-9339-z.

[56] Alexei Sibidanov, Paul Zimmermann, and Stéphane Glondu. The CORE-
MATH project. In 29th IEEE Symposium on Computer Arithmetic, pages
26–34, 2022. URL: https://inria.hal.science/hal-03721525, doi:10.
1109/ARITH54963.2022.00014.

[57] US Government Accountability Office. Defense patriot missile: Software
problem led to system failure at dhahran, saudi arabia. US Government
Accountability Office Reports, rapport no. GAO/IMTEC-92-26, 1992.

260

https://doi.org/10.1007/978-3-319-54292-8_6
https://doi.org/10.1007/978-3-319-54292-8_6
https://ens-lyon.hal.science/ensl-01529804
https://ens-lyon.hal.science/ensl-01529804
https://doi.org/10.1007/978-3-540-78800-3_24
https://hal.inria.fr/hal-01534533/
https://hal.inria.fr/hal-01534533/
https://doi.org/978-3-642-31365-3_23
https://arxiv.org/abs/2311.11172
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1109/SERA.2017.7965708
https://doi.org/10.1109/SERA.2017.7965708
https://dx.doi.org/10.1109/IEEESTD.2008.4610935
https://dx.doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935
https://hal.inria.fr/hal-00934443
https://hal.inria.fr/hal-00934443
https://doi.org/10.1090/mcom/3234
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/978-3-662-44199-2_106
https://doi.org/10.1007/978-3-662-44199-2_106
https://doi.org/10.1109/CVPR46437.2021.00299
https://doi.org/10.1017/CBO9781139629294
https://doi.org/10.1017/CBO9781139629294
https://tel.archives-ouvertes.fr/tel-02194683
https://tel.archives-ouvertes.fr/tel-02194683
https://doi.org/10.1007/1-4020-4133-0_2
https://doi.org/10.1007/1-4020-4133-0_2
https://proceedings.mlr.press/v139/miyagawa21a.html
https://hal.inria.fr/hal-01766584
https://hal.inria.fr/hal-01766584
https://doi.org/10.1007/978-3-319-76526-6
https://doi.org/10.1007/s10817-015-9339-z
https://doi.org/10.1007/s10817-015-9339-z
https://inria.hal.science/hal-03721525
https://doi.org/10.1109/ARITH54963.2022.00014
https://doi.org/10.1109/ARITH54963.2022.00014

Formal Methods in Computer-Aided Design 2024

Symbolic Computer Algebra for Multipliers
Revisited - It’s All About Orders and Phases

Alexander Konrad Christoph Scholl
University of Freiburg, Freiburg, Germany
{konrada, scholl}@informatik.uni-freiburg.de

Abstract—Using Symbolic Computer Algebra (SCA) enabled
a huge progress in formal verification of arithmetic circuits in
recent years. Several different approaches have been proposed
showing great success especially for the verification of multipliers.
Some of them are based on precomputing and simplifying
polynomials for specific circuit structures like converging cones
while others take advantage of known or detected hierarchy
information to replace and simplify particular sub-circuits of the
design. In this paper we propose a new method that avoids the
use of such methods and applies only two dynamic approaches:
(1) choosing a good substitution order for the backward rewriting
process and (2) adjusting the phases of signals occurring in the
intermediate polynomials during the verification process. Both
methods are simply based on a greedy local search taking the
sizes of intermediate polynomials into account. Our experimental
results show that this method is very competitive with already
existing tools and it improves their robustness, e.g. against
optimizations of the verified circuits using logic synthesis.

I. INTRODUCTION

Arithmetic circuits account for an important part in cir-
cuit designs, be it general-purpose processors or specialized
hardware aimed for computationally intensive applications
like cryptography, signal processing or machine learning. The
infamous Pentium bug [1] from 1994 raised the communities’
awareness about the need of formal methods to verify the
correctness of arithmetic circuit designs. Today, the design
of arithmetic circuits is not limited to the major processor
vendors only, but is also done by various different suppliers
of special-purpose embedded hardware who cannot afford to
employ large teams of specialized verification engineers being
able to provide human-assisted theorem proofs. This results
in a growing interest for fully automatic formal verification of
arithmetic circuits.
Especially the verification of multiplier and divider cir-

cuits remained a challenging problem for long time. While
BDD-based methods [2], [3] suffer from exponential space
complexity, SAT-based methods [4], [5] face exponential run
times for larger bit-widths. *BMDs [6]–[8] were presented
as a suitable verification data structure for multipliers, but
unfortunately *BMDs based verification approaches did not
fulfill expectations in practice. Nevertheless, methods based on
Symbolic Computer Algebra (SCA) have shown great progress
for the automatic formal verification of gate-level multipliers
and dividers in recent years. They enabled the verification

This work was supported by the German Research Foundation (DFG) within
the project VerA (SCHO 894/5-1).

of large and complex arithmetic circuit structures, including
finite field multipliers [9], integer multipliers [10]–[25], mod-
ular multipliers [26] and divider circuits [27]–[31]. Here the
verification task has been reduced to an ideal membership test
for the specification polynomial based on so-called backward
rewriting, proceeding from the outputs of the circuit in the
direction of the inputs. For integer multipliers, SCA-based
methods are closely related to verification methods based on
word-level decision diagrams like *BMDs, since polynomials
can be seen as “flattened” *BMDs [29]. In addition, rewriting
based approaches [32], [33] have also shown to be able to
verify complex multipliers as well as arithmetic modules with
embedded multipliers at the register transfer level.
Most multiplier architectures are basically composed of

three stages: (1) Partial Product Generator (PPG), (2) Partial
Product Accumulator (PPA) and (3) Final Stage Adder (FSA).
Surprisingly, difficulties with exponential polynomial sizes in
SCA-based multiplier verification often occurred when using
fast adders [34] as the FSAs, and not so often when using
complex PPAs. A first hint in this direction was already given
by the theoretical analysis for *BMDs in the work of Keim et
al. [35]. Most recently three major approaches were published
to tackle this problem:

• [18], [19], [21], [24] use reverse engineering and detec-
tion of converging cones to precompute polynomials for
sub-circuits and simplify those polynomials early on by
avoiding so-called vanishing monomials.

• [20], [22], [25], [36] use heuristics to detect a parallel
prefix adder, replace it by a simple ripple-carry adder
and use SAT to prove the soundness of this replacement,
changing the multiplier circuit into a structure for which
rewriting is much easier.

• [23] uses the adder detection from [20] to determine a
parallel prefix adder, but it does not replace the adder
by a simpler form. Instead, it introduces dual variables
and uses a new approach of carry rewriting to avoid
the occurrence of exponential peak polynomials in the
rewriting steps of the parallel prefix adder.

In this paper, we present a new method which consists of
two dynamic approaches. First, we advance the idea from
[21] of dynamically finding a good substitution order for the
backward rewriting process. For this we partition the circuit
into blocks and use a hierarchical approach to select a good
candidate block for the next substitution step as well as a

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 32 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_32
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_32
https://creativecommons.org/licenses/by/4.0/

good substitution order for the block itself, with the aim of
keeping intermediate polynomials as small as possible. Sec-
ond, we adjust the phases of signals occurring in intermediate
polynomials during the backward rewriting with the same
goal. Both of our new dynamic approaches work as greedy
local search algorithms that only take the current polynomial
size into account. As a result, we are not as dependent as
other approaches on the detection of specific sub-circuits. This
makes our method more robust to circuit optimizations. The
simplicity of the approach additionally paves the way for easier
certifiability.
The experimental results show that our simple method is

very competitive with other existing approaches, being able to
verify almost all unoptimized 64-bit multiplier circuits which
are at our disposal. However, the main advantage of our
method is seen in the verification of optimized benchmarks
where we outperform other tools by a large margin.
The paper is structured as follows: In Sect. II we provide

background on the basic SCA-method and multiplier circuits.
In Sect. III we summarize and discuss existing methods to
motivate the need of the novel approach presented in Sect. IV.
We evaluate our new approach in Sect. V and conclude with
final remarks in Sect. VI.

II. PRELIMINARIES

A. SCA for Verification

For the presentation of SCA we basically follow [29].
SCA-based approaches work with polynomials and reduce the
verification task to an ideal membership test using a Gröbner
basis representation of the ideal. The ideal membership test
is performed using polynomial division. While Gröbner basis
theory is very general and, e.g., can be applied to finite field
multipliers [9] and truncated multipliers [20] as well, for
integer arithmetic it boils down to substitutions of variables for
gate outputs by polynomials over the gate inputs (in reverse
topological order), if we choose an appropriate “term order”
(see [14] or [17], e.g.). Here we restrict ourselves to exactly
this view.
For integer arithmetic we consider polynomials over binary

variables (from a set X = {x1, . . . , xn}) with integer coeffi-
cients from Z, i. e., a polynomial is a sum of terms, a term is
a product of a monomial with an integer, and a monomial is a
product of variables from X . Polynomials represent pseudo-
Boolean functions f : {0, 1}n ↦→ Z.
As a simple example consider the full adder from Fig. 1.

The full adder defines a pseudo-Boolean function fFA :
{0, 1}3 ↦→ Z with fFA(a0, b0, c) = a0 + b0 + c. We can
compute a polynomial representation for fFA by starting with
a weighted sum 2c0 + s0 (called the “output signature” in
[13]) of the output variables. Step by step, we replace the
variables in polynomials by the so–called “gate polynomials”.
This replacement is performed in reverse topological order of
the circuit, see Fig. 1. We start by replacing c0 in 2c0 + s0
by its gate polynomial h2 + h3 − h2h3 (which is derived
from the Boolean function c0 = h2 ∨ h3). Finally, we arrive
at the polynomial a0 + b0 + c (called the “input signature”

in [13]) representing the pseudo-Boolean function defined by
the circuit. During this procedure (which is called backward
rewriting) the polynomials are simplified by reducing powers
vk of variables v with k > 1 to v (since the variables are
binary), by combining terms with identical monomials into
one term, and by omitting terms with leading factor 0. We can
also consider a0 + b0 + c = 2c0 + s0 as the “specification” of
the full adder. The circuit implements a full adder iff backward
rewriting, now starting with 2c0 + s0 − a0 − b0 − c instead
of 2c0 + s0, reduces the “specification polynomial” to 0 in
the end. (This is the notion usually preferred in SCA-based
verification.)
The correctness of the method relies on the fact that poly-

nomials (with the above mentioned simplifications resp. nor-
malizations) are canonical representations of pseudo-Boolean
functions (up to reordering of the terms). (This is proven in
[29], e.g..)

B. Multiplier Circuits

In the following, we briefly summarize textbook knowledge
on multipliers. For more details, see [34], e.g.. Most integer
multipliers are composed of three stages: The first stage is
the Partial Product Generator (PPG) which generates partial
products from the bits of the two input operands. Examples
are Simple PPGs, which just compute the logical AND of
all bits of the first input and all bits of the second input,
or PPGs with Booth Encoding which reduce the number of
generated partial products using Booth’s Algorithm [37]. The
second stage is the Partial Product Accumulator (PPA) which
sums up all the partial products until they are reduced to two
numbers only. Well-known accumulation structures are array
accumulation, Wallace trees [38] or Dadda trees [39]. The
third stage consists of the Final Stage Adder (FSA) which
converts the resulting two numbers from the PPA stage into
the final binary representation of the output product. Any two
operand adder networks can be used here, ranging from simple
examples such as the well-known ripple-carry adder to more
complex structures such as various implementations of parallel
prefix adders. Such implementations include the Kogge-Stone
adder [40], the Brent-Kung adder [41] and the Ladner-Fischer
adder [42], to name just a few.

C. Specification Polynomial for Unsigned Multipliers

In this paper, we focus on unsigned gate-level integer
multipliers with input bits a0, . . . , an−1, b0, . . . , bn−1 of mul-
tiplier and multiplicand and output bits p0, . . . , p2n−1 of the
product. The corresponding specification polynomial, which is
the starting point of the backward rewriting process, is

Pspec(p0, . . . , p2n−1, a0, . . . , an−1, b0, . . . , bn−1) =
2n−1∑︂
i=0

2ipi − (

n−1∑︂
j=0

2jaj) · (
n−1∑︂
k=0

2kbk). (1)

As explained in Sec.II-A the multiplier circuit is correct iff
backward rewriting reduces Pspec to 0.

262

b0

a0

c

c0

s0

h1

h2

h3

c0 = h2 + h3 − h2h3
s0 = c+ h1 − 2ch1
h3 = ch1
h2 = a0b0
h1 = a0 + b0 − 2a0b0

2c0 + s0
c0→ 2h2 + 2h3 − 2h2h3 + s0
h3→ 2h2 + 2ch1 − 2ch1h2 + s0
s0→ 2h2 − 2ch1h2 + c+ h1
h2→ 2a0b0 − 2a0b0ch1 + c+ h1
h1→ a0 + b0 + c

Fig. 1: Full adder circuit with series of substitutions.

In the SCA-based verification for integer arithmetic we use
terms with coefficients from Z in the polynomials. However,
for n-bit integer multipliers the polynomial computations can
be performed in Z22n instead of Z which is desirable, since it
improves efficiency by reducing the maximal coefficient size.
In this case the specification polynomial can be defined as

Pspec,mod(p0, . . . , p2n−1, a0, . . . , an−1, b0, . . . , bn−1) =2n−1∑︂
i=0

2ipi − (

n−1∑︂
j=0

2jaj) · (
n−1∑︂
k=0

2kbk)

 mod 22n. (2)

In the following paragraph, we give the sketch of a proof
that a circuit fulfills the specification from Eqn. (1) iff it fulfills
the specification from Eqn. (2) (a similar proof is given in
[20]): Consider the polynomial Pspec from Eqn. (1). For all
possible assignments to pi, aj , bk ∈ {0, 1} it holds that Pspec
evaluates to a value in {−(2n−1)2, . . . , 22n−1} (which is easy
to see since the upper bound is reached for p0, . . . , p2n−1 = 1
and a0, . . . , an−1, b0, . . . , bn−1 = 0, and the lower bound is
reached for the opposite case). By replacing variables by their
gate polynomials (without modulo 22n) we obtain functions
depending on a different set of variables, but their range is
still a subset of the range of Pspec. In the end (after all
substitutions) we get a function whose range is still a subset
of {−(2n−1)2, . . . , 22n−1} (regardless of whether the circuit
is correct or not). If we now apply a modulo 22n operation on
those values, they might change, but still 0 will be mapped to 0
and values different from 0 will be mapped to values different
from 0, since the absolute values in {−(2n−1)2, . . . , 22n−1}
are all smaller than 22n. Therefore it holds: All assignments
consistent with some circuit C evaluate Pspec to 0 iff all
assignments consistent with C evaluate Pspec,mod to 0. This
means that we can perform all polynomial computations in
Z22n instead of Z during backward rewriting.

III. REVIEW OF EXISTING APPROACHES

A large number of excellent and non-trivial methods has
been presented in the literature to enable SCA-based multiplier
verification and increase its efficiency. Most of those methods
are tailored towards certain structural properties of existing
multiplier circuits. Here we will review and analyze existing

approaches from the literature. Some of those techniques
mentioned here have been described in the literature based
on computations with Gröbner bases (like the elimination of
certain polynomials from Gröbner bases). Here we prefer a
description based on backward rewriting, as already mentioned
in Sect. II-A. Note however that the difference is only in the
representation, not in the actual contents.
The first approach is the detection of so-called “atomic

blocks” in the multiplier design [19]. Atomic blocks may be
XOR gates, half adders (HAs), full adders (FAs), or Com-
pressors (CMs). In [19], [24] and [17] the information about
atomic blocks is used to enable a hierarchical polynomial com-
putation: Polynomials for atomic blocks are computed first and
during the backward rewriting the local polynomials for atomic
blocks are used for replacements in the global specification
polynomial. If atomic blocks have several outputs, then either
polynomials for the outputs are computed separately and are
handled as mentioned above, or the “word-level” polynomial
for the atomic block (like 2c0 + s0 = a0 + b0 + c for a
FA) is used for rewriting the global specification polynomial,
provided that it has an appropriate form (in the case of the
FA mentioned above: if the only terms containing c0 and s0
in the specification polynomial are 2k+1c0 and 2ks0).
Note that in our work we use atomic block detection as well,

but we always perform replacements by backward rewriting on
the gate level, not on the block level. Atomic blocks are only
used to guide the order in which we replace the gates.
Sayed-Ahmed et al. [14] observed that polynomials can

be simplified based on the observation that the sum outputs
s and the carry outputs c of HAs can never be 1 at the
same time. Therefore, terms containing both c and s (called
“vanishing monomials”) can be removed from the polynomial
immediately. The authors of [14], [18] argue that vanishing
monomials are the main cause of polynomial size explosions
during backward rewriting of multipliers. This technique is
used in other works like [15] as well. In [18] the observation
was used in the context of a hierarchical polynomial computa-
tion. [18] computes so-called Convergent Gate Cones (CGCs)
which are logic cones where paths from outputs of the same
half adder (HA) converge in a common node. The polynomials
of CGCs are precomputed, vanishing monomials are removed

263

during this computation, and the “cleaned” polynomials for
CGCs are used during the final backward rewriting. If large
CGCs occur, the advantage of this method is not clear at first
sight, since the vanishing monomials can only be removed at
the end of backward rewriting of a CGC. However, in fast final
stage adders (FSAs) like carry-lookahead or parallel prefix
adders there are usually overlapping CGCs of different sizes.
It is essential that the method from [18] starts with the smaller
CGCs, cleans them, and uses the resulting polynomials when
polynomials for larger, overlapping CGCs are computed. In
[26] the approach has been generalized to arbitrary pairs of
contradicting signals.
The idea of a hierarchical polynomial computation has also

been applied in [21], [24] to fanout-free cones of gates which
are not included in atomic blocks and CGCs. This technique
has been called “Common Term Rewriting” in [14].
The special treatment of CGCs was motivated by difficulties

of SCA-based methods when the FSA is a parallel prefix adder.
Kaufmann et al. [20], [23] propose other techniques to tackle
the same problem. They substitute a final parallel prefix adder
by a simple ripple-carry adder and then verify the resulting
simplified multiplier. In [20] the equivalence of the substituted
parallel prefix adder with a ripple-carry adder is proven by
SAT solving. [23] introduces the concepts of dual variables
and tail substitution and uses them during “carry rewriting”
inside the detected FSA. For both [20] and [23] certain circuit
structures inside the FSA as well as the FSA bounds have
to be structurally detected. Those methods work well and are
fast for clean multipliers (as the circuit rewriting from [32],
[33] as well), but they become problematic, if logic synthesis
steps at the gate level have destroyed the clear structure. This
observation is clearly confirmed by our experiments in Sect. V.
Finally, the order of traversing the circuit during backward

rewriting is of utmost importance. Reverse topological order-
ings are usually not unique, but leave a lot of degrees of
freedom. Different orderings may lead to totally different sizes
of the intermediate polynomials during backward rewriting.
Some methods try to find good static orders for the traversal
(and sometimes need structural information about the circuit
to find them). [13] performs a “row-wise” traversal of the
multiplier (which resembles a breadth-first search in the cir-
cuit, augmented with information on hierarchy bounds), [15]
performs a “column-wise” traversal (which resembles a depth-
first search). In [15] a decomposition of the multiplier speci-
fication polynomial into column-wise “sub-specifications” is
used in addition (needing an additional multiplier-specific
reasoning for correctness). In contrast, in [21] a dynamic
substitution order was proposed. Here the order in which
backward rewriting processes the circuit is not determined
beforehand, but it is adjusted dynamically based on the sizes
of intermediate polynomials. It is important to note that the dy-
namic substitution order is used in the context of hierarchical
polynomial computation on the level of “components” (atomic
blocks, CGCs, fanout-free cones) here. The substitution orders
to compute polynomials for the components are still chosen
statically.

Most of the approaches mentioned above work well, when
they are applied to clean multipliers at the gate level where
logic synthesis has not been applied, but they become weaker,
when they are applied to multipliers which are optimized by
logic synthesis. This does not only hold for methods which
rely on the detection of FSA boundaries and FSA structures
as mentioned above [20], [23], but also for other methods: The
hierarchical polynomial computation becomes weaker, if the
boundaries of atomic blocks are destroyed by logic synthesis;
the removal of vanishing monomials based on CGCs gets into
trouble, if HAs at the origin of CGCs cannot be detected
anymore due to logic restructuring; the computation of static
replacement orders may suffer as well, if the circuit structures
are destroyed on which the order computation relies (like
XOR-skeletons for the computation of column-wise slices in
[25]).
For this reason, we investigate in this paper whether it is

possible to increase the robustness of SCA-based verification
of multipliers by avoiding complex approaches which are
vulnerable against changes to the clean multiplier structure.
Our goal is to simplify the approach and at the same time
to increase its robustness. We restrict ourselves to a flat and
non-hierarchical polynomial computation based on backward
rewriting with gate polynomials, but we invest considerable
effort into the computation of good substitution orders. More-
over, we deeply integrate the technique of phase optimization
into our order optimization to make the approach more robust
against the selection of unfavourable orders.

IV. BACKWARD REWRITING WITH PHASE AND ORDER
OPTIMIZATION

In this section we present our SCA-based verification
method which is based on two simple ingredients: The op-
timization of “phases” of signals and the optimization of
the order of gate replacements during backward rewriting.
Both methods are integrated into an overall phase and order
optimization, but we begin with the description of phase
optimization.

A. Phase Optimization

The idea of phase optimization is to adjust the phases of
occurring signals during backward rewriting to keep interme-
diate polynomial sizes small and to make backward rewriting
more robust, e.g., against different orderings. The approach
is based on the observation that replacing variables by their
negation in intermediate polynomials may reduce the sizes of
those polynomials.

Example 1. Let us consider the function f(x1, x2, x3) = x1∨
x2 ∨ x3 which computes the disjunction of 3 inputs. It is easy
to see that the polynomial for f is p = x1 + x2 + x3 −
x1x2 − x1x3 − x2x3 + x1x2x3 with 7 terms. Now we change
the phase of one variable, let’s say x1, i.e., we introduce a
“new input variable” called x1 representing the negation of
x1 and replace x1 in p with 1 − x1. This results in p′ =
1− x1 + x1x2 + x1x3 − x1x2x3 with 5 terms. Changing the
phase of x2 (i.e. replacing x2 with 1 − x2) results in p′′ =

264

Algorithm 1 Phase Optimization.
Input: Polynomial P , Set of candidate signals S
Output: Polynomial P with optimized phases
1: for each s ∈ S do
2: old size ← size(P);
3: P ← Flip-Phase(s, P); ▷ flip signal s in P
4: new size ← size(P);
5: if old size < new size then P ← Flip-Phase(s, P) ▷ flip s back
6: return P ;

1−x1 x2+x1 x2x3 and changing the phase of x3 finally results
in p′′′ = 1 − x1 x2 x3 with 2 terms. The example shows that
phase optimization is able to reduce the sizes of polynomials.
If f(x1, x2, x3) = x1 ∨ x2 ∨ x3 is part of a larger circuit and
x1 has to be replaced with the polynomial of another gate
g, then the phase flipping of x1 has of course to be reverted
before replacing x1 with the polynomial of g. Anyway, our
hope is that phase optimization is able to reduce the size of
intermediate polynomials. If g is constant 1, e.g., then reverting
the phase flipping of x1 results in 1 − x2 x3 + x1x2 x3 and
after replacing x1 with constant 1 we arrive at p′′′′ = 1. The
experimental results in Sect. V show that our hope for the
benefits of phase optimization is well founded.

We perform phase optimization by a simple greedy algo-
rithm, see Alg. 1. The algorithm is a general function of the
polynomial package and, therefore, does not need any circuit
information, but only uses the polynomial which should be
optimized and a set of candidate signals which are objective
to the optimization. For every candidate signal s the following
is done: Saving the current size of the polynomial P (which is
just the number of terms in P , line 2), then flipping the phase
of the signal s in P (line 3). If the now achieved polynomial
size is larger than before, the phase change was not beneficial
and s is flipped again to restore the previous polynomial (line
5). Only if the polynomial size could have been reduced by
the phase change, the flipped phase is kept in the polynomial
and the algorithm continues with the next candidate signal.
In the end, a smaller polynomial with optimized phases is
found or (in case no phase changes led to a smaller size) the
original polynomial remains. Therefore our phase optimization
never increases the polynomial size. In our implementation, we
perform phase optimization after each rewriting step. To save
computation time, we restrict the search space of the phase
optimization by choosing the set S of candidate signals in
Alg. 1 as the set of variables which were newly introduced
into the polynomial in the last rewriting step.
The correctness of flipping phases of signals during back-

ward rewriting can be seen easily: Consider some arbitrary
gate g of a circuit computing the signal xi. Phase flipping
of xi can be simulated by inserting two consecutive inverters
immediately at the output of g (which apparently does not
change the function of the circuit). The signal after the first
inverter is called xi, the signals before the first inverter and
after the second inverter are called xi. Phase flipping for
xi corresponds to backward rewriting of the second inverter
(introducing xi into the polynomial). Reverting phase flipping

101 102 103 104 105 106

101

102

103

104

105

106

with Phase Optimization

N
o
O
pt
im
iz
at
io
ns

Peak Poly. size
diagonal

Fig. 2: Peak polynomial sizes for different orderings.

before replacement of g corresponds to backward rewriting of
the first inverter (introducing xi into the polynomial again).
Before showing how we integrate phase optimization into

our dynamic order optimization approach, we present an
example which shows that phase optimization makes backward
rewriting much more robust against changes of replacement
orders. The example is a toy example chosen for illustration,
but the demonstrated effect is similar to the effects occurring
during backward rewriting of parallel prefix adders which
contain large OR trees in their implementation. Large OR
trees may be a problem for SCA-based methods due to their
exponential polynomial representation, see also [20] and [23].

Example 2. Consider a circuit with 32 input signals
i0, . . . , i31. The 32 input signals are connected to 32 inverters
and the outputs of inverters are the inputs of a balanced OR
tree. It is clear that this circuit basically implements a NAND
function with 32 inputs. Thus, backward rewriting starting with
the polynomial po = o for the output variable o leads to the
final polynomial p = 1− i0 · . . . · i31. The final polynomial has
size 2 (number of terms).
Backward rewriting proceeds in reverse topological order

and of course there is a huge number of different possible
reverse topological orders to traverse the circuit. In our
experiment, we randomly choose one of the possible reverse
topological orders and perform backward rewriting with and
without phase optimization. We repeat the experiment 10.000
times with different random choices. Fig. 2 shows a scatter plot
with each data point representing one possible traversal order.
The y-axis indicates the peak polynomial size during backward
rewriting using this order without phase optimization and the
x-axis with phase optimization (note that the axes are scaled
logarithmically). Fig. 2 shows that with phase optimization the
peak polynomial size is always between 7 and 9. Without phase
optimization, the peak polynomial sizes vary considerably
and in 698 out of 10.000 cases our chosen upper bound of
1.000.000 terms is exceeded. The large intermediate sizes of
the polynomials in the version without phase optimization can
be easily explained by the fact that the intermediate polyno-
mials often represent disjunctions of a large number of inputs

265

which have exponential representations as polynomials [23].
Apparently, phase optimization keeps intermediate polynomial
sizes small and makes the backward rewriting much more
robust.

Our phase optimization is related to the method from [23]
using dual variables. In contrast to [23] we do not introduce
dual phases xi and xi of variables, but we only enable flipping
the phases of variables, i.e., we flip all occurrences of a signal
in the polynomial. This makes the approach much simpler
and does not need additional handling and simplification steps
in the polynomial (like the merging algorithm in [23] which
checks if two terms can be merged into one because they only
differ in one dual variable).
Interestingly, as also observed in [43], phase optimization

is strongly related to replacing the so-called positive Davio
decomposition by negative Davio decomposition in K*BMDs
[44]. In contrast to K*BMDs, *BMDs [6] only allow posi-
tive Davio decomposition. The positive Davio decomposition
wrt. variable x1 decomposes a function f : {0, 1}n ↦→ Z
according to f = fx1=0 + x1 · (fx1=1 − fx1=0). fx1=0

and fx1=1 are the functions resulting from f by replacing
the variable x1 by 0 and 1, respectively. The correctness of
the decomposition can be easily shown by case distinction
wrt. x1 = 0, x1 = 1. *BMDs are graphs which basically
represent the “sub-functions” fx1=0 and fx1=1 − fx1=0 by
nodes. The representation of Boolean polynomials without
phase flipping corresponds to positive Davio decomposition:
If p is the polynomial for f , then the polynomial for fx1=0

contains all terms which do not include x1 (in Example 1
x2 + x3 − x2x3) and x1 · (fx1=1 − fx1=0) contains all terms
which do include x1 (in Example 1 x1 − x1x2 − x1x3 +
x1x2x3 = x1 · (1 − x2 − x3 + x2x3)). Thus, *BMDs can be
seen as a factored form of Boolean polynomials. The negative
Davio decomposition wrt. x1 decomposes f according to
f = fx1=1+(1−x1)·(fx1=0−fx1=1). By replacing 1−x1 with
x1 it is easy to see that negative Davio decomposition corre-
sponds to Boolean polynomials with phase flipping for x1. In
Example 1 fx1=1 = 1, fx1=0−fx1=1 = −1+x2+x3−x2x3,
and fx1=1 + x1 · (fx1=0− fx1=1) = 1+ x1 · (−1+ x2 + x3−
x2x3) = p′.
Whereas [43] performs phase optimization as well, its opti-

mization approach is pretty complex: It translates polynomials
into K*BMDs, then uses a K*BMD minimization method [45]
that changes the decomposition types (positive or negative
Davio) of the variables, and finally it translates the K*BMDs
back into polynomials – in the hope that size reductions
in K*BMDs translate into size reductions of polynomials.
As already mentioned above, our implementation of phase
optimization is much simpler: It greedily optimizes the phases
of variables and additionally restricts the phase optimization
to variables newly introduced into the polynomial in the last
rewriting step.

B. Backward Rewriting with Dynamic Order Optimization
Now we introduce our new method of backward rewriting

with Dynamic Order Optimization. It can be seen as an

Algorithm 2 Rewriting with Dynamic Order Optimization.
Input: Specification polynomial SP init ; Circuit CUV
Output: TRUE iff specification holds
1: SPi ← SP init ;
2: A ← Detect-Atomic-Blocks(CUV);
3: B ← Compute-EABs(A,CUV);
4: for each b ∈ B do
5: Penalty[b] ← 1;
6: C ← Get-First-Candidate-EABs(B);
7: while C is not empty do
8: for each c ∈ C do
9: Score[c] ← Count-Occurrence(c, SPi) · Penalty[c];
10: sortedC ← Sort-Candidates-Ascending(C, Score);
11: SPold ← SPi; chosen ← 0;
12: j ← 0; upB fac ← 1; best j ← −1;
13: while chosen = 0 do
14: SPi ← SPold;
15: (success, SPi) ← Rewrite(SPi, sortedC[j], upB fac);
16: if success = TRUE then
17: threshold ← 0.01× Get-Node-Count(sortedC[j]);
18: growth ← (size(SPi)− size(SPold))/size(SPold);
19: if growth < threshold then
20: chosen ← sortedC[j];
21: else
22: best j ← Save-Best-Candidate-So-Far(SPi, j);
23: Penalty[sortedC[j]] ← Penalty[sortedC[j]]× 2;
24: else
25: Penalty[sortedC[j]] ← Penalty[sortedC[j]]× 2;
26: j ← j + 1;
27: if chosen = 0 and j = size(sortedC) then
28: if best j ≥ 0 then
29: chosen ← sortedC[best j];
30: (success, SPi) ← Rewrite(SPi, chosen, upB fac);
31: else
32: j ← 0; upB fac ← upB fac× 2;
33: C ← Update-Candidates(B, C, chosen);
34: if size(SPi) = 0 then return TRUE else return FALSE;

improvement of the algorithm from [21] which was the first
work to introduce dynamic rewriting in a SCA context.
The observation is that during backward rewriting, usually,

there are several candidates (be it on the lower level of
individual nodes or on a higher “component” level like atomic
blocks or fan-out-free cones) to choose from for the next
substitution step. The goal is always to find a substitution order
which keeps intermediate polynomials small. While it is easier
to find “good” static orderings (which are computed before
the rewriting process started) for clean multiplier circuits,
this task gets hard for optimized circuits where the clean
boundaries between different functional blocks might vanish,
e.g. due to applied logic synthesis. The idea of Dynamic Order
Optimization is to take the current polynomial into account
to choose good candidates for the next substitution step. We
combine this idea with our new phase optimization approach
to achieve a stronger dynamic ordering.
We start with a rough overview of our Dynamic Order

Optimization: Basically, we use two dynamic procedures on
different hierarchy levels to obtain a good dynamic order for
backward rewriting. On the higher “component level” (see
Alg. 2) we use dynamic ordering on the level of components,
choosing a good candidate component in every step. In our
case the components are so-called Extended Atomic Blocks

266

(EABs) [31]. On the lower level (see Alg. 3) we use dynamic
ordering as well, but now on the level of individual circuit
nodes inside the components. This is an important difference
to the approach from [21] which uses a dynamic ordering
approach on the component level, but a static approach for
precomputing polynomials of those components (which are
used later on in a global rewriting procedure).
Now we come to a more detailed description of our method:

Our algorithm for backward rewriting with Dynamic Order
Optimization is depicted in Algs. 2 and 3. We start in Alg. 2
with the specification polynomial SP init and the circuit under
verification CUV in AIG format. In the beginning we detect
atomic blocks (XORs, HAs, FAs, as well as single sum
and carry outputs of FAs) (see line 2). Next, we combine
these atomic blocks and the remaining gates of the circuit
into Extended Atomic Blocks (EABs) [31] (line 3). The idea
of EABs is to combine atomic blocks and remaining gates
into fanout-free cones to partition the circuit into functionally
and structurally related subcircuits. While [31] uses EABs to
compute don’t cares on their inputs to optimize polynomials
during backward rewriting and [21] uses a similar concept
called “components” with the purpose of locally precomputing
polynomials for those components before using them in a
global rewriting procedure, we use EABs only for the purpose
of helping to find good substitution orders.
For every EAB we initialize a penalty factor of 1 (line 5).

Next the initial list of candidate EABs is computed (line 6). To
do substitutions in reverse topological order, this list contains
all EABs which only have fan-outs into primary outputs but
not into any other EABs. Our method can be seen as a two-
leveled, hierarchical ordering approach. The first, upper level,
working on the level of EABs, is described by the while loop
from lines 7 to 33. In each round one candidate EAB for
substitution is picked in a dynamic fashion and the candidate
set is adjusted, until all EABs and therefore the complete
circuit has been substituted. In detail this works as follows: A
score is assigned to each candidate which is computed as the
number of occurrences of the candidate’s output signals in SPi
multiplied by the individual penalty factor of the candidate
(lines 8 and 9). Afterwards, the candidates are sorted by their
scores in ascending order (line 10). The intuition is to prefer
candidates with small numbers of output signal occurrences
in the polynomial, since from a worst-case perspective many
occurrences of EAB output signals in the current polynomial
lead to a higher risk of a large polynomial after substitution of
this EAB, see also [21], Example 6. Here this idea is adjusted
by an additional penalty factor which will be explained later.
In the inner while loop from lines 13 to 32 the actual

selection of the candidate EAB happens by iterating through
the sorted candidates until a suitable one has been chosen.
First, the old polynomial is restored. Next, the actual back-
ward rewriting steps are performed for the current candidate
(line 15). The details of how an EAB is rewritten are shown
in Alg. 3 and will be explained later. At this point it is
only important that rewriting may succeed or fail due to
size limitations, which will be indicated by the return value

success. If it succeeded, a polynomial is returned where
all nodes from the current candidate have been rewritten.
Otherwise the rewriting has been aborted. In the successful
case a threshold (line 17) defines how much growth of SPi is
acceptable for the current candidate. This threshold increases
with the number of AIG nodes in the candidate EAB to
avoid a bias towards the selection of small EABs (whose
replacement cannot increase the polynomial too much). If
the growth of SPi stays below the threshold the candidate
is accepted (line 20). Otherwise it is checked if the current
candidate produced the smallest polynomial size so far and
is therefore saved as best candidate until now (line 22). The
penalty factor of the current candidate EAB is increased, if
it either has not been accepted (line 23) or the rewriting of
the candidate even failed due to the size limit (line 25). The
idea of a penalty factor is to avoid that the same candidates
get checked unsuccessfully over and over again, because their
occurrence count is small, but their substitution is very costly
all the same.
In case all candidates have been checked and none of

them stayed below the threshold (line 27), the best found
candidate is rewritten again. This way we do not need to
repeat the complete iteration as long as one candidate could
have been rewritten successfully. Only in the case that none of
the candidates could have been rewritten without aborting, the
upper bound factor upB fac used for the internal rewriting
of Alg. 3 is increased (line 32) and the iteration starts with
the same set of candidates again. By this increasing it is
guaranteed that eventually some candidate can be rewritten
successfully (assuming unlimited resources). After a candidate
was chosen, the set of candidate blocks is adjusted (line 33):
The chosen candidate is removed and new candidate EABs,
which are fan-ins of the just chosen one might get included,
if all of their fan-out EABs have already been substituted. At
the end the algorithm returns TRUE if SPi has been reduced
to 0, meaning the specification is fulfilled by the circuit.
Next, we explain the actual rewriting process for an EAB

which can be seen as the second, lower level of our hierarchi-
cal ordering approach working on the level of individual nodes
inside of EABs. The algorithm is shown in Alg. 3. As inputs it
takes the current polynomial SPi, an EAB E and some factor
upB fac. An upper bound for intermediate polynomial sizes
is computed (line 2) as follows: If 10× size(SPi) < 100, 000
the upper bound is set to 10 × size(SPi), otherwise it is
set to size(SPi) + 100, 000. Additionally the upper bound is
multiplied by the upB fac factor afterwards.
Before computing an order dynamically, the algorithm first

tries rewriting with two predefined orders based on breadth-
first-search and depth-first-search (line 3), with applying phase
optimization after every node rewriting. It is history dependent
(based on successful rewriting for the current EAB in the past)
which order is tested first, and if the first order fails (due to
exceeding the upper bound limit) the second is tried. In case
one of the orders was successful, TRUE is returned together
with the rewritten polynomial SPi.
Only if none of the two predefined orders was successful,

267

Algorithm 3 Dynamic Rewriting of an EAB.
Input: Polynomial SPi, EAB E, Factor upB fac
Output: ((TRUE if successful, FALSE otherwise), Polynomial SPi)
1: SPstart ← SPi;
2: upperBound = Compute-Upper-Bound(size(SPi), upB fac);
3: (success, SPi) ← Try-Rewriting-With-BFS-DFS-Orders(SPi, E);
4: if success = FALSE then
5: SPi ← SPstart;
6: success ← TRUE;
7: N ← Get-First-Candidate-Nodes(nodes(E));
8: while N is not empty and success = TRUE do
9: for each n ∈ N do
10: Score[n] ← Count-Occurrence(n, SPi);
11: sortedN ← Sort-Candidates-Ascending(N, Score);
12: SPold ← SPi; chosen ← 0; j ← 0;
13: while chosen = 0 do
14: SPi ← SPold;
15: SPi ← Rewrite(SPi, sortedN [j]);
16: SPi ← Phase-Opt(SPi, Get-Inputs(sortedN [j]));
17: threshold ← 0.1;
18: growth ← (size(SPi)− size(SPold))/size(SPold);
19: if growth < threshold then
20: chosen ← sortedN [j];
21: else
22: best j ← Save-Best-Candidate-So-Far(SPi, j);
23: j ← j + 1;
24: if chosen = 0 and j = size(sortedN) then
25: chosen ← sortedN [best j];
26: SPi ← Rewrite(SPi, chosen);
27: SPi ← Phase-Opt(SPi, Get-Inputs(chosen));
28: N ← Update-Candidates(nodes(E), N, chosen);
29: if size(SPi) > upperBound then
30: success ← false;
31: SPi ← SPstart;
32: return (success, SPi)

dynamic ordering is started. The dynamic ordering on the node
level works very similar to the dynamic ordering on EAB level
of Alg. 2, thus we will keep the description short here. Again
candidates, which are individual circuit nodes here, are sorted
based on a scoring and we look for a candidate which can keep
the relative polynomial growth below a threshold (which is a
fixed value of 0.1 here) or, if such candidate does not exist, the
best found so far is picked. This is repeated until all nodes have
been rewritten. After each (tentative or final) node rewriting we
immediately apply phase optimization to the newly introduced
signals (lines 16, 27). There is one special case for nodes of the
EAB being part of an atomic block (XORs, HAs, FAs, single
FA outputs) that is not explicitly represented in Alg. 3: They
are only rewritten if all output nodes of the atomic block are in
the candidate set N and whenever one of the output nodes of
the atomic block should be rewritten, then all the nodes in the
atomic block are rewritten in a fixed precomputed order. The
major difference to Alg. 2 is that after every chosen candidate
node it is checked whether the current polynomial size exceeds
the upper bound (line 29). If this is the case, the dynamic
rewriting of this EAB E is aborted and returns FALSE together
with the starting polynomial SPstart. Therefore, the rewriting
of an EAB is not always completed. This is used in Alg. 2 to
avoid investing too much space and time in the rewriting of
one specific candidate EAB, while there may be other suitable
EABs to choose from.

C. Simple Certifiability

Certification is an important aspect to increase the trust in
fully automatic tools. To this day, most SCA-based verification
tools lack certification. Kaufmann et al. have made efforts to
provide (easily checkable) certificates for different versions of
their rewriting tools so far [20], [22], [25], [36]. They even
showed in [36] unsoundness for an existing SCA-based tool by
using fuzzing techniques. An alternative approach to guarantee
the soundness of an automatic verification is to formally verify
the verification tool itself. This approach is taken by Temel et
al. [32], [33], [46] for the automatic verification of multipliers
(which is not based on SCA, however). They verified the
verification tool with the ACL2 theorem prover [47].
We want to highlight that the simplicity of our new approach

facilitates certification, although our prototype tool does not
yet produce certificates. Whereas the intensive search process
for a good substitution order and for a good phase assignment
for the intermediate polynomials may be expensive, it is easy
to write out the final set of signals to virtually insert double
inverters for phase optimization (see Sect. IV-A) as well as
the finally computed substitution order. The substitutions are
only performed at the gate level and not in a hierarchical
manner and we do not use any properties derived by SAT or
other techniques which would need a separate proof method.
Thus, a simple dedicated and formally verified proof checker
could be used whose memory requirements are limited by the
memory requirements of the verifier or the certificate could
be simply mapped to the existing practical algebraic calculus
(PAC) format [48].

V. EXPERIMENTAL RESULTS

We have implemented the new method from this paper in
our tool DYNPHASEORDEROPT. Tests have been run on a
single core of an Intel Xeon CPU E5-2650v2 with 2.60GHz.
Resources were limited to 32GB main memory and 12 hours
of CPU run time. For comparison we also run the following
SCA-based multiplier verification tools on the same setup:
AMULET 2.2 [25], [36], TELUMA [23], REVSCA-2.0 [24]
and DYPOSUB [21]. First experiments with the VeSCMul tool
by Temel et al. [32], [33], [46] have shown that it is not
suitable for flat AIG-based designs as we consider them here,
since their rewriting method relies on hierarchy information
and in case of flat AIG-based designs it fails even for multi-
pliers with very small bitwidths. Therefore, the comparison
with VeSCMul was omitted. The examined benchmark set
contains 310 different unsigned 64-bit multiplier circuits and
is composed of:

• all 192 64-bit unsigned multipliers from the aoki-
benchmark set [49] (which unfortunately is no longer
available online and therefore was obtained from the
artifact data of [22])

• all 28 possible 64-bit unsigned multipliers obtainable
from the multiplier generator GenMul [50], [51]

• all 90 possible 64-bit stand-alone unsigned multipliers
obtainable from the multiplier generator multgen [52].

268

100 101 102 103 104
0

100

200

300

CPU time in seconds, time limit = 12 h

N
um

be
r
of

so
lv
ed

in
st
an
ce
s

(a) No optimization.

100 101 102 103 104
0

100

200

300

CPU time in seconds, time limit = 12 h

(b) Optimized with resyn3.

100 101 102 103 104
0

100

200

300

CPU time in seconds, time limit = 12 h

Our Tool
AMulet 2.2
TeluMA
RevSCA-2.0
DyPoSub

(c) Optimized with dc2.

Fig. 3: Verification times for different tools and optimizations.

100 101 102 103 104
0

100

200

300

Maximum Memory Usage in MB

N
um

be
r
of

so
lv
ed

in
st
an
ce
s

(a) No optimization.

100 101 102 103 104
0

100

200

300

Maximum Memory Usage in MB

(b) Optimized with resyn3.

100 101 102 103 104
0

100

200

300

Maximum Memory Usage in MB

Our Tool
AMulet 2.2
TeluMA
RevSCA-2.0
DyPoSub

(c) Optimized with dc2.

Fig. 4: Maximum memory usage for different tools and optimizations.

The multiplier circuits cover a wide range of different imple-
mentation options for PPGs, PPAs, and FSAs (see Sect. II-B).
We provide the benchmark set, our tool and experimental data
at [53].

The experimental results are shown in Tab. I. Col. 1 states
the used tool. For each tool, we differentiate between five types
of results (Col. 2): “Solved” means that the tool has success-
fully verified that the multiplier is correct within the given
resource limits. “TO” indicates a time out, i.e. exceeding the
time limit, while “MO” indicates a memory out, i.e. exceeding
the available main memory. “SegFault” means the program
was terminated by a segmentation fault and “F.Buggy” states
that the multiplier circuit has been erroneously reported as
buggy. For testing the robustness of the tools we consider
different optimizations on the benchmark set given in Cols. 3
to 5 which are either none or the ABC [54], [55] commands
resyn3 and dc2. The numbers in Cols. 3 to 5 indicate how
many results of each type a specific tool (indicated by the
row) has produced for a given optimization variant (indicated
by the column). In Col. 6 we sum up the results over all
benchmarks. For AMULET 2.2 we first used its standard
method which substitutes possible complex FSAs and verifies
the modified circuits afterwards. Since AMULET 2.2 produced
several segmentation faults when trying to substitute complex

FSAs in optimized benchmarks, we have chosen the following
approach: Whenever AMULET 2.2 produced a segmentation
fault when trying to substitute complex FSAs, we omitted the
substitution and ran the verification on the original circuit.

It can be seen that none of the tools is able to suc-
cessfully verify all 310 unoptimized benchmarks (Col. 3).
Our tool solves the most with 300 benchmarks, followed by
AMULET 2.2 with 243, DYPOSUB with 239, REVSCA-2.0
with 238 and TELUMA with 221. The advantage of our
tool can be seen even better in the results for optimized
circuits. With logic optimization, we are still able to solve
275 benchmarks for resyn3 and 226 for dc2. Here we also see
the large deficit of AMULET 2.2 and TELUMA which can
only solve up to 23 for any optimized benchmark set. While
AMULET 2.2 runs into time outs for most instances, TELUMA
also produces up to 143 segmentation faults for the optimized
benchmarks. REVSCA-2.0 and DYPOSUB perform better on
optimized benchmarks, but still lag behind our tool. They solve
at least 62 benchmarks less for resyn3 and 57 less for dc2.
In total, our tool is able to solve 801 benchmarks while the
second best tool, REVSCA-2.0, only solves 620 (Col. 6). In
contrast to our tool, all comparison tools produce segmentation
faults and even erroneously reported buggy results on some of
the benchmark.

269

TABLE I: Verification results for different tools.

Optimization
Tool Result none resyn3 dc2 sum

Our tool
DYNPHASE-
ORDEROPT

Solved 300 275 226 801
TO 10 34 76 120
MO 0 1 8 9

SegFault 0 0 0 0
F.Buggy 0 0 0 0

AMULET
2.2 [25], [36]

Solved 243 23 7 273
TO 57 282 303 642
MO 2 5 0 7

SegFault 0 0 0 0
F.Buggy 8 0 0 8

TELUMA [23]

Solved 221 11 2 234
TO 89 219 165 473
MO 0 1 0 1

SegFault 0 77 143 220
F.Buggy 0 2 0 2

REVSCA-
2.0 [24]

Solved 238 213 169 620
TO 21 20 53 94
MO 21 70 73 164

SegFault 12 0 0 12
F.Buggy 18 7 15 40

DYPOSUB [21]

Solved 239 211 151 601
TO 18 23 98 139
MO 24 69 54 147

SegFault 12 0 0 12
F.Buggy 17 7 7 31

More details on the results are shown in Fig. 3 and Fig. 4
where we show cactus plots for the required run times and
the maximum memory usage, respectively, for all tools and all
optimizations (but only for solved instances). Fig. 3 shows that
AMULET 2.2 and TELUMA are excellent wrt. time efficiency.
All instances that could be solved needed 233 CPU seconds
or less. A similar picture emerges for memory efficiency
(Fig. 4). However, this advantage is paid by a much lower
robustness; other tools show significantly better results for
optimized benchmarks. This can be explained by the fact that
AMULET 2.2 and TELUMA are tailored towards detecting
certain structural pecularities in the circuit implementations.
They are very fast, if those characteristics are found in the
benchmarks. If logic synthesis has destroyed those structural
properties, the other tools (and in particular our tool DYN-
PHASEORDEROPT) can demonstrate their robustness and their
consistent performance for the general case.
In summary, the presented results show that our new tool

DYNPHASEORDEROPT is not only able to solve almost all
unoptimized benchmarks within reasonable times, but it also
performs better than the other tools especially on optimized
benchmarks, confirming the higher overall robustness of our
method.
Finally, we investigated for our tool DYNPHASEORDEROPT

the detailed question of whether it makes sense to try two

TABLE II: Statistic on successful orders used in Alg. 3.

Optimization % BFS % DFS % Dynamic
none 97.63 2.32 0.05

resyn3 98.49 1.47 0.04
dc2 98.40 1.58 0.02

precomputed orders based on breadth-first-search (BFS) and
depth-first-search (DFS) first, before computing a dynamic
order in Alg. 3 on the level of individual nodes within an
EAB. The goal of this approach is to avoid time-intensive
dynamic order computations for simple cases where BFS or
DFS are sufficient. Tab. II clearly shows that the approach
does make sense. For the table we consider all successful
cases where the ordering for an EAB was not discarded later
on by choosing another EAB to be processed before it on
the higher “component level” of Alg. 2. We count how often
BFS, DFS, and dynamic ordering was used, separately for each
optimization (none, resyn3, dc2). Tab. II gives the fraction for
each ordering method. It shows that most EABs are ordered
by BFS. This fact may seem surprising at first sight, but can
be explained by the fact that BFS is the default first order to
try and it is chosen in all simple cases such as very small
EABs with only a few nodes, EABs consisting of only one
atomic block (like an XOR gate, an HA, or an FA which is
anyway ordered according to a fixed precomputed order), or
EABs which are just not very sensitive to different rewriting
orders. Even though the number of dynamic orders applied
on the level of individual nodes within an EAB is only up to
0.05 %, it is still important to use dynamic ordering to avoid
exponential blowups while rewriting the individual nodes of
an EAB in cases where neither BFS nor DFS are successful,
since even the occurrence of just one such EAB in the entire
circuit can lead to a failed verification attempt. Moreover, note
that the precomputed BFS and DFS orders are used only on the
level of individual nodes, while on the higher level of ordering
EABs (see Alg. 2) a dynamic approach is always used.

VI. CONCLUSIONS AND FUTURE WORK

We have discussed the latest SCA-based approaches to fully
automatic verification of multiplier circuits and presented a
new, particularly simple method for this task. The new method
consists of two major contributions. The first is our Phase
Optimization algorithm which dynamically adjusts the phases
of variables in occurring polynomials to reduce intermediate
polynomial sizes. The second is our backward rewriting with
dynamic Order Optimization, which uses several heuristics
to create a dynamic order for backward rewriting that keeps
intermediate polynomial sizes as small as possible. Our exper-
iments show that our simpler method does not only compete
well with latest tools on clean benchmarks but also adds more
robustness, e.g. for the verification of optimized circuits. We
believe that our dynamic approaches will be crucial for the
verification of multipliers as well as other arithmetic circuits
in the future.

270

REFERENCES

[1] T. Coe, “Inside the Pentium FDIV bug,” Dr. Dobbs J., vol. 20, no. 4,
pp. 129—-135, 1995.

[2] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” TC, vol. 35, no. 8, pp. 677–691, 1986.

[3] J. R. Burch, “Using BDDs to verify multipliers,” in DAC, 1991, pp.
408–412.

[4] J. P. M. Silva and T. Glass, “Combinational equivalence checking using
satisfiability and recursive learning,” in DATE. IEEE Computer Society
/ ACM, 1999, pp. 145–149.

[5] E. I. Goldberg, M. R. Prasad, and R. K. Brayton, “Using SAT for
combinational equivalence checking,” in DATE. IEEE Computer
Society, 2001, pp. 114–121.

[6] R. E. Bryant and Y. A. Chen, “Verification of arithmetic circuits with
binary moment diagrams,” in DAC, 1995, pp. 535–541.

[7] R. E. Bryant and Y. Chen, “Verification of arithmetic circuits using
binary moment diagrams,” STTT, vol. 3, no. 2, pp. 137–155, 2001.

[8] K. Hamaguchi, A. Morita, and S. Yajima, “Efficient construction of
binary moment diagrams for verifying arithmetic circuits,” in ICCAD,
1995, pp. 78–82.

[9] J. Lv, P. Kalla, and F. Enescu, “Efficient Gröbner basis reductions for
formal verification of Galois field arithmetic circuits,” TCAD, vol. 32,
no. 9, pp. 1409–1420, 2013.

[10] O. Wienand, M. Wedler, D. Stoffel, W. Kunz, and G. Greuel, “An
algebraic approach for proving data correctness in arithmetic data paths,”
in CAV, 2008, pp. 473–486.

[11] F. Farahmandi and B. Alizadeh, “Gröbner basis based formal verification
of large arithmetic circuits using gaussian elimination and cone-based
polynomial extraction,” MICPRO, vol. 39, no. 2, pp. 83–96, 2015.

[12] M. Ciesielski, C. Yu, D. Liu, and W. Brown, “Verification of gate-level
arithmetic circuits by function extraction,” in DAC, 2015, pp. 52:1–52:6.

[13] C. Yu, W. Brown, D. Liu, A. Rossi, and M. Ciesielski, “Formal
verification of arithmetic circuits by function extraction,” TCAD, vol. 35,
no. 12, pp. 2131–2142, 2016.

[14] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler,
“Formal verification of integer multipliers by combining Gröbner basis
with logic reduction,” in DATE, 2016, pp. 1048–1053.

[15] D. Ritirc, A. Biere, and M. Kauers, “Column-wise verification of
multipliers using computer algebra,” in FMCAD, 2017, pp. 23–30.

[16] C. Yu, M. Ciesielski, and A. Mishchenko, “Fast algebraic rewriting based
on And-Inverter graphs,” TCAD, vol. 37, no. 9, pp. 1907–1911, 2017.

[17] D. Ritirc, A. Biere, and M. Kauers, “Improving and extending the
algebraic approach for verifying gate-level multipliers,” in DATE, 2018,
pp. 1556–1561.

[18] A. Mahzoon, D. Große, and R. Drechsler, “PolyCleaner: clean your poly-
nomials before backward rewriting to verify million-gate multipliers,” in
ICCAD, 2018, pp. 129:1–129:8.

[19] ——, “RevSCA: Using reverse engineering to bring light into backward
rewriting for big and dirty multipliers,” in DAC, 2019, pp. 185:1–185:6.

[20] D. Kaufmann, A. Biere, and M. Kauers, “Verifying large multipliers by
combining SAT and computer algebra,” in FMCAD, 2019, pp. 28–36.

[21] A. Mahzoon, D. Große, C. Scholl, and R. Drechsler, “Towards formal
verification of optimized and industrial multipliers,” in DATE, 2020, pp.
544–549.

[22] D. Kaufmann and A. Biere, “AMulet 2.0 for verifying multiplier
circuits,” in TACAS. Springer, 2021, pp. 357–364.

[23] D. Kaufmann, P. Beame, A. Biere, and J. Nordström, “Adding dual
variables to algebraic reasoning for gate-level multiplier verification,” in
DATE. IEEE, 2022.

[24] A. Mahzoon, D. Große, and R. Drechsler, “RevSCA-2.0: Sca-based
formal verification of nontrivial multipliers using reverse engineering
and local vanishing removal,” TCAD, vol. 41, no. 5, pp. 1573–1586,
2022.

[25] D. Kaufmann and A. Biere, “Improving AMulet2 for verifying multiplier
circuits using SAT solving and computer algebra,” STTT, vol. 25, no. 2,
pp. 133–144, 2023.

[26] A. Mahzoon, D. Große, C. Scholl, A. Konrad, and R. Drechsler, “Formal
verification of modular multipliers using symbolic computer algebra and
boolean satisfiability,” in DAC, 2022.

[27] A. Yasin, T. Su, S. Pillement, and M. J. Ciesielski, “Formal verification
of integer dividers: Division by a constant,” in ISVLSI, 2019, pp. 76–81.

[28] ——, “Functional verification of hardware dividers using algebraic
model,” in VLSI-SoC, 2019, pp. 257–262.

[29] C. Scholl and A. Konrad, “Symbolic computer algebra and SAT based
information forwarding for fully automatic divider verification,” in DAC,
2020.

[30] C. Scholl, A. Konrad, A. Mahzoon, D. Große, and R. Drechsler,
“Verifying dividers using symbolic computer algebra and don’t care
optimization,” in DATE. IEEE, 2021, pp. 1110–1115.

[31] A. Konrad, C. Scholl, A. Mahzoon, D. Große, and R. Drechsler, “Divider
verification using symbolic computer algebra and delayed don’t care
optimization,” in FMCAD. IEEE, 2022, pp. 1–10.

[32] M. Temel, A. Slobodová, and W. A. Hunt, “Automated and scalable
verification of integer multipliers,” in CAV, 2020, pp. 485–507.

[33] M. Temel and W. A. Hunt, “Sound and automated verification of real-
world RTL multipliers,” in FMCAD. IEEE, 2021, pp. 53–62.

[34] I. Koren, Computer Arithmetic Algorithms, 2nd ed. A. K. Peters, Ltd.,
2001.

[35] M. Keim, R. Drechsler, B. Becker, M. Martin, and P. Molitor, “Poly-
nomial formal verification of multipliers,” Form Methods Syst. Des.,
vol. 22, no. 1, pp. 39–58, 2003.

[36] D. Kaufmann and A. Biere, “Fuzzing and delta debugging and-inverter
graph verification tools,” in TAP@STAF. Springer, 2022, pp. 69–88.

[37] A. D. Booth, “A signed binary multiplication technique,” The Quarterly
Journal of Mechanics and Applied Mathematics, vol. 4, no. 2, pp. 236–
240, 01 1951.

[38] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Trans. on
Electronic Comp., vol. EC-13, pp. 14–17, 1964.

[39] L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza,
vol. 34, pp. 349–356, 1965.

[40] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient
solution of a general class of recurrence equations,” IEEE Computer,
vol. 22, no. 8, pp. 786–793, 1973.

[41] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,” IEEE
Computer, vol. 31, no. 3, pp. 260–264, 1982.

[42] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” Journal
of the ACM, vol. 27, no. 4, pp. 831–838, 1980.

[43] A. A. R. Sayed-Ahmed, D. Große, M. Soeken, and R. Drechsler,
“Equivalence checking using gröbner bases,” in FMCAD. IEEE, 2016,
pp. 169–176.

[44] R. Drechsler, B. Becker, and S. Ruppertz, “K*BMDs: A new data
structure for verification,” in European Design & Test Conf. IEEE
Computer Society, 1996, pp. 2–8.

[45] S. Höreth and R. Drechsler, “Dynamic minimization of word-level
decision diagrams,” in DATE. IEEE Computer Society, 1998, pp. 612–
617.

[46] M. Temel, “Vescmul: Verified implementation of S-C-Rewriting for
multiplier verification,” in TACAS. Springer, 2024, pp. 340–349.

[47] W. Hunt, M. Kaufmann, J. Moore, and A. Slobodova, “Industrial
hardware and software verification with ACL2,” Philos. Trans. R. Soc.
A, vol. 375, p. 20150399, 2017.

[48] D. Kaufmann, M. Fleury, and A. Biere, “The proof checkers pacheck
and pastèque for the practical algebraic calculus,” in FMCAD. IEEE,
2020, pp. 264–269.

[49] N. Homma, Y. Watanabe, T. Aoki, and T. Higuchi, “Formal design
of arithmetic circuits based on arithmetic description language,” IEICE
Trans. Fundamentals, vol. 89-A, pp. 3500–3509, 2006.

[50] A. Mahzoon, D. Große, and R. Drechsler, “GenMul: Generating archi-
tecturally complex multipliers to challenge formal verification tools,” in
Recent Findings in Boolean Techniques, R. Drechsler and D. Große,
Eds. Springer International Publishing, 2021, pp. 177–191.

[51] ——, “Genmul,” 2023. [Online]. Available: https://ics.jku.at/research/
sca-verification/genmul/

[52] M. Temel, “Fast multplier generator multgen,” 2019. [Online].
Available: https://github.com/temelmertcan/multgen

[53] A. Konrad and C. Scholl, “Benchmarks, binaries and experimental
data,” 2024. [Online]. Available: https://abs.informatik.uni-freiburg.de/
src/projects view.php?projectID=24

[54] R. K. Brayton and A. Mishchenko, “ABC: an academic industrial-
strength verification tool,” in CAV, 2010, pp. 24–40.

[55] “ABC: A system for sequential synthesis and verification,” available at
https://people.eecs.berkeley.edu/∼alanmi/abc/, 2019.

271

https://ics.jku.at/research/sca-verification/genmul/
https://ics.jku.at/research/sca-verification/genmul/
https://github.com/temelmertcan/multgen
https://abs.informatik.uni-freiburg.de/src/projects_view.php?projectID=24
https://abs.informatik.uni-freiburg.de/src/projects_view.php?projectID=24
https://people.eecs.berkeley.edu/~alanmi/abc/

Formal Methods in Computer-Aided Design 2024

Combining Symbolic Execution with
Predicate Abstraction and CEGAR

Martin Jonáš
Masaryk University
Brno, Czechia

martin.jonas@mail.muni.cz

Jan Strejček
Masaryk University
Brno, Czechia

strejcek@fi.muni.cz

Alberto Griggio
Fondazione Bruno Kessler

Trento, Italy
griggio@fbk.eu

Abstract—The paper presents a simple, yet effective program
verification technique that combines symbolic execution with
implicit predicate abstraction and CEGAR. The technique can
prove correctness of many programs that are beyond the reach of
the standard symbolic execution because their symbolic execution
tree is prohibitively large or even infinite. The technique has
been implemented in the software model checker KRATOS. Our
experimental evaluation shows that it also decides correctness
of some programs that were decided neither by the standard
symbolic execution nor by IC3 with predicate abstraction (all
implemented in KRATOS).

Index Terms—Program verification, symbolic execution, pred-
icate abstraction, CEGAR.

I. INTRODUCTION

Symbolic execution [Kin76] is a powerful and popular
technique for static program analysis. It consists in exploring
the behaviours of the program by traversing its control flow
graph one path at the time, accumulating the constraints visited
during such traversal in formulas called path conditions, which
are then checked with a constraint solver (e.g., a SAT or SMT
solver) for feasibility. Symbolic execution has been applied
effectively to different program analysis tasks, including auto-
mated test generation [Kin76], software verification [JNS11],
input filtering [CCZ+07], program debugging [QRLV12], and
program repair [NQRC13], [MYR16]. Although primarily
aimed at finding feasible paths satisfying a desired condition
(e.g., reaching a target location, or traversing a specific set
of locations), symbolic execution can also be used to prove
unreachability of some error locations, by exhaustively enu-
merating all the feasible paths. In practice, however, this often
diverges, because the number of such paths in many programs
is prohibitively large or infinite (a simple example is shown
in Fig. 1).
In this paper, we present a simple technique for improving

the effectiveness of symbolic execution at proving unreach-
ability. The main idea is to integrate implicit predicate ab-
straction [JM07], [Ton09] in the enumeration of paths, so as
to ensure that the (abstract) symbolic execution tree is always

M. Jonáš and J. Strejček have been supported by the Czech Science
Foundation grant GA23-06506S. A. Griggio has been supported by the PNRR
project FAIR - Future AI Research (PE00000013), under the NRRP MUR
program funded by the NextGenerationEU, and by the PNRR MUR project
VITALITY (ECS00000041), Spoke 2 ASTRA - Advanced Space Technologies
and Research Alliance.

finite (for a given set of predicates). This is done by setting up
abstraction locations covering all program loops, assigning to
each such location a finite set of abstraction predicates, and
then restricting the symbolic exploration to abstract simple
paths, i.e., paths in which all abstract states can occur at
most once. To better control when the abstraction is applied,
we also assign to each abstraction location an abstraction
threshold saying that the abstraction is not applied in this
location before the number of occurrences of the location in
the current path exceeds the threshold. This can help avoiding
the imprecise abstraction for loops with a small number of
iterations. We show how these ideas can be integrated in
a standard symbolic execution algorithm and included in a
standard CEGAR loop [CGJ+03] with little effort, and demon-
strate its effectiveness by evaluating our implementation in the
KRATOS [GJ23] software model checker on a benchmark set
obtained from the latest Competition on Software Verification
SV-COMP [Bey24]. In particular, our results show that the
new technique significantly improves the peformance of the
symbolic execution engine of KRATOS on safe benchmarks
(i.e., where the error location is unreachable), and it also can
prove correctness of some programs that could not be verified
by the other compared engines of KRATOS (within the given
resource bounds), thus contributing to its overall performance
on the benchmark set.
Paper outline: The rest of the paper is organized as follows.

We introduce general background notions in Section II and
standard symbolic execution in Section III. Our combination
of symbolic execution, implicit abstraction, and CEGAR is
described in Section IV. We present experimental evaluation in
Section V and discuss related work in Section VI. Finally, we
draw conclusions and discuss future directions in Section VII.

II. PRELIMINARIES

Logic: We work in the setting of standard first-order logic.
We use the standard notions of theory, satisfiability, and
validity of a formula. For each term t and an assignment µ
to variables and possibly uninterpreted function and relation
symbols, µ(t) denotes the result of the evaluation of t under
µ. Similarly, for a formula ϕ, we denote as µ(ϕ) the result of
the evaluation of ϕ under µ. If the formula evaluates to true ,
we say that µ is a model of ϕ and write µ |= ϕ. We assume
that we work over a theory whose quantifier-free fragment

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 33 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0000-0003-4703-0795
martin.jonas@mail.muni.cz
https://orcid.org/0000-0001-5873-403X
strejcek@fi.muni.cz
https://orcid.org/0000-0002-3311-0893
griggio@fbk.eu
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_33
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_33
https://creativecommons.org/licenses/by/4.0/

init

a

b

c

d e

f

g

err

[n > 0]

x := 5

[n > 0]

[x ̸= y] [x = y]

y := x x := x+ 1

[n ≤ 0]

[x− y > 1]

n := n− 1

Fig. 1. A safe CFA where symbolic execution runs forever.

is decidable, i.e., there is a computable function ISSAT(ϕ)
that returns true if ϕ is satisfiable and false otherwise. For
presentation purposes, all the examples in the paper are over
the theory of linear integer arithmetic, but the concepts work
for any theory with decidable quantifier-free fragment.
Mathematical notation: For each function f : A → B and

a ∈ A, b ∈ B, we denote by f [a← b] the function that maps
a to b and x to f(x) for all x in A ∖ {a}. The domain of a
(partial) function f is denoted as dom(f). For each set A, we
denote as A+ the set of all non-empty sequences of elements
from A. If u, v ∈ A+, we denote their concatenation as u.v
(or just uv, if it is clear from the context). We denote the set
of Booleans as B = {true, false}.
Programs: We consider programs represented by control-

flow automata (CFA). Let Vars be a fixed set of pro-
gram variables. A control flow automaton is a tuple A =
(L, init , err , E), where L is a finite set of program locations,
init ∈ L is the initial location, err ∈ L ∖ {init} is the
error location, and E ⊆ L × Ops × (L ∖ {init}) is a finite
set of edges between program locations that are labeled by
operations. We assume that init has only outgoing edges. Each
operation o ∈ Ops has one of the three following forms:
1) an assumption [ϕ], where ϕ is a formula over Vars ,
2) an assignment x := t, where x ∈ Vars and t is a term

over Vars , or
3) a nondeterministic assignment x := ∗, where x ∈ Vars .

We assume that if a single location has multiple outgoing
edges, all of them are assumptions. A CFA used as a running
example can be found in Fig. 1.
A (control-flow) path π leading to a location lk ∈ L

is a nonempty finite sequence of consecutive edges π =
(l1, o1, l2)(l2, o2, l3) . . . (lk−1, ok−1, lk) ∈ E+ where l1 =
init . The path is called error path if lk = err .
A program state is a pair (l, µ), where l ∈ L is a program

location and µ is an assignment of values to program variables.

There is a transition (l, µ)
(l,o,l′)−−−−→ (l′, µ′) between two states

along the edge (l, o, l′) ∈ E if one of the following holds:
1) o = [ϕ], µ |= ϕ, and µ = µ′, or

2) o = (x := t) and µ′ = µ[x← µ(t)], or
3) o = (x := ∗) and µ′(v) = µ(v) for all v ∈ Vars ∖ {x}.

A path π = (l1, o1, l2)(l2, o2, l3) . . . (lk−1, ok−1, lk) is feasi-
ble if there exists a sequence of assignments µ1, µ2, . . . , µk

satisfying (li, µi)
(li,oi,li+1)−−−−−−−→ (li+1, µi+1) for all 1 ≤ i < k.

For example, the path π = (init , [n > 0], a)(a, x := 5, b) in
our running example is feasible, but the path π.(b, [n ≤ 0], g)
is not due to the contradictory assumptions on the value of n.
A CFA is called unsafe if there is a feasible error path and it

is called safe otherwise. In the rest of the paper, we assume that
(L, init , err , E) is an arbitrary fixed CFA and we are interested
in proving whether the CFA is safe or unsafe. We also assume
that Vars contains only the program variables used in the CFA.

III. SYMBOLIC EXECUTION
Symbolic execution [Kin76] is a technique that system-

atically explores all feasible paths of a given CFA. The
main idea is that instead of concrete input values, symbolic
execution uses variables representing arbitrary input values.
Consequently, values of program variables are terms over
the input variables. When symbolic execution evaluates an
assumption [ϕ], the program variables in ϕ are replaced by
the corresponding terms and the resulting formula is added to
the so-called path condition. The path condition is satisfiable
if and only if the corresponding path is feasible. When the path
condition becomes unsatisfiable, symbolic execution explores
another path. Now we present symbolic execution formally.
Let Inputs be a countably infinite set of variables that

represent inputs of the program. A symbolic state is a pair
(pc,m), where pc is a formula over Inputs called a path
condition and m is a symbolic memory which assigns to each
program variable x ∈ Vars a term m(x) over Inputs that
represents the current value of x. We extend m to arbitrary
terms and formulas. Namely, if t is a term over Vars , m(t) is
the result of simultaneously replacing each program variable x
in t by m(x). Analogously, m(ϕ) is the formula over Inputs
obtained from a formula ϕ over Vars in the same way. Given
a symbolic state s, by s.pc we denote its path condition and
by s.m its symbolic memory.
We assume that there is a function fresh() whose every

call returns a fresh variable from Inputs and a function
freshMem() whose every call returns a symbolic memory that
assigns to each program variable a fresh input variable.
We define a function next that for each symbolic state s

and each operation o ∈ Ops returns the successor symbolic
state next(s, o). For a state s = (pc,m) and an operation o,
we set

next(s, o) =

��
(pc ∧m(ϕ),m), if o = [ϕ],

(pc,m[x← m(t)]), if o = (x := t),

(pc,m[x← fresh()]), if o = (x := ∗).
Algorithm 1 presents standard symbolic execution formu-

lated as a recursive function exploring the tree of all feasible
paths in a depth-first manner.
The function SYMEX(l, s, h) has three arguments: the cur-

rent location l, the current symbolic state s, and the sequence h

273

Algorithm 1 Standard symbolic execution
1: function SYMEX(l, s, h)
2: h← h.(l, s) ▷ update history
3: if l = err then
4: return (UNSAFE, h)
5:
6: for (l, o, l′) ∈ E do ▷ for each outgoing edge
7: s′ ← next(s, o) ▷ successor state
8: if o is an assumption then
9: if not ISSAT(s′.pc) then
10: continue ▷ the path is not feasible
11: h′ ← h.o ▷ new history with the operation
12: if SYMEX(l′, s′, h′) = (UNSAFE, h′′) then
13: return (UNSAFE, h′′) ▷ feasible error path
14:
15: return SAFE ▷ all outgoing feasible paths are safe

tracking the history of the current path (i.e., h stores the visited
pairs of a location and a symbolic state interleaved with the
performed operations). To symbolically execute a given CFA,
we call SYMEX(init , s0, ε), where s0 = (true, freshMem())
is a symbolic state with path condition true and a fresh
symbolic memory. The function first extends the history with
(l, s). If the current location is err , then it returns UNSAFE
and the current history representing the detected feasible error
path. Otherwise, the function processes the edges leading from
the current location l one by one. The operation of the edge is
evaluated and if it changes the current path condition into an
unsatisfiable one, the path is infeasible and we terminate its
exploration. Otherwise, the operation is added to the history
and symbolic execution is recursively called from the location
and symbolic state after the operation. If this recursive call
detects a feasible error path, the function produces the same
verdict. If the recursive call finishes without finding any
feasible error path, we continue with the next edge. If all
edges are processed without finding any feasible error path,
the function returns SAFE.
The biggest disadvantage of standard symbolic execution is

its unability to show that a system with an infinite number
of feasible paths is safe. This is, for example, the case of
the CFA in Fig. 1: for each j > 0, the path going through
locations init .a(bcdfbcef)jbg is feasible. Symbolic execution
of such a path leads to the symbolic state with memory
m(n) = vn − 2j, m(x) = 5 + j, and m(y) = 5 + (j − 1)
and path condition equivalent to vn = 2j ∧ vy ̸= 5,
where vn, vy ∈ Inputs represent the initial values of program
variables n, y, respectively.

IV. EXTENDING SYMBOLIC EXECUTION
WITH PREDICATE ABSTRACTION

One of the techniques used to reduce the number of
states and paths of programs is predicate abstraction [BR02],
[BHJM07]. Given a CFA A with program variables Vars and
a set P of formulas over Vars called the predicates, the
predicate abstraction is used to construct an abstract system

ˆ︁AP such that if the error state is unreachable in ˆ︁AP, it is
also unreachable in the original system A. The system ˆ︁AP has
Boolean variables VarsP = {xP | P ∈ P} that correspond to
the predicates and its states are thus pairs (l, µP) of a location
l and an assignment µP : VarsP → B representing the current
values of the predicates. There is a relation H(µ, µP) between
assignments to variables of the original and the abstracted
system that holds if and only if µ(P) = µP(xP) for all P ∈ P.
There is a transition (l, µP)

(l,o,l′)−−−−→ (l′, µ′
P) in ˆ︁AP if and only

if there exists a transition (l, µ)
(l,o,l′)−−−−→ (l′, µ′) in A such

that H(µ, µP) and H(µ′, µ′
P). The predicate abstraction can

be further refined by assigning different sets of predicates to
different program locations or by abstracting only in a subset
of the locations [BKW10]. The computation of the transition
relation in the abstract system is potentially expensive as
it needs many SMT queries or alternative approaches with
quantified SMT queries or AllSMT queries. This potentially
expensive computation can be avoided by implicit predicate
abstraction [JM07], [Ton09], where the abstraction itself is
embedded in SMT queries asking for the existence of a certain
path in the abstract system.
In the rest of this section, we present the main contribution

of the paper, which is extending the symbolic execution with
predicate abstraction and CEGAR. We do this in three concep-
tual steps. First, in Section IV-A we formalize the considered
abstractions, define feasibility of paths in the abstract system,
and introduce the simplicity of these paths which intuitively
means that a path cannot pass the same abstract state twice.
Section IV-B then presents our algorithm for symbolic exe-
cution extended with implicit predicate abstraction. Finally,
Section IV-C incorporates the algorithm in a CEGAR loop that
checks feasibility of the obtained abstract counterexamples and
refines the abstraction.

A. Precision Function, Feasible and Simple Abstract Paths

First of all, we define precision functions that specify where,
when, and what abstraction to use. Let F denote the set of
formulas over program variables. A precision function is an
arbitrary partial function p : L → N0 × Pfin(F) that assigns
to a program location l a pair p(l) = (c,P) of a non-negative
integer c called threshold and a finite set P of predicates.
Locations in dom(p) are called abstraction locations and the
abstraction will be used only there. For an abstraction location
l, the value p(l) = (c,P) says that the abstraction in location
l is applied only when the current path visits l at least c
times and the abstraction uses the formulas of P as abstraction
predicates. We refer to c and P assigned to l by p with p(l).c
and p(l).P, respectively. In the following, we always assume
that p denotes some precision function.
Given a path π = (l1, o1, l2)(l2, o2, l3) . . . (lk−1, ok−1, lk),

we say that li is an abstraction point on π if it is an abstraction
location that appears at least p(li).c times in l1, l2, . . . , li−1.
Given an abstraction location l, we say that two assignments
µ, µ′ are p(l)-equivalent if they satisfy the same predicates
assigned to l by p, i.e., for each P ∈ p(l).P it holds that

274

init a b g

µ0

n ↦→ 3
x ↦→ 10
y ↦→ 4

µ′1
n ↦→ 3
x ↦→ 10
y ↦→ 4

µ1

n ↦→ 3
x ↦→ 10
y ↦→ 4

µ′2
n ↦→ 3
x ↦→ 5
y ↦→ 4

µ2

n ↦→ 0
x ↦→ 8
y ↦→ 2

µ′3
n ↦→ 0
x ↦→ 8
y ↦→ 2

=

p(b)-equivalent as
µ′2(x−y < 1) =
= µ2(x−y < 1) =
= false

[n > 0] x := 5 [n ≤ 0]

Fig. 2. A p-feasible path for p(b) = (0, {x− y < 1}) that is not feasible.

µ(P) = µ′(P). The values µ(P) of the abstraction predicates
P ∈ p(l).P form the abstract state associated to l.

Definition 1 (p-feasible path). We say that a control-flow
path π = (l1, o1, l2)(l2, o2, l3) . . . (lk−1, ok−1, lk) is p-feasible
if there exist assignment sequences µ1, µ2, . . . , µk−1 and
µ′
2, µ

′
3, . . . , µ

′
k such that for each edge (li, oi, li+1) there is

a transition (li, µi)
(li,oi,li+1)−−−−−−−→ (li+1, µ

′
i+1) and for each

1 < i < k it holds that if li is an abstraction point on π
then µi, µ

′
i are p(li)-equivalent and µi = µ′

i otherwise.

Theorem 1. Each feasible path is also p-feasible for each
precision function p.

Proof. Let π = (l1, o1, l2)(l2, o2, l3) . . . (lk−1, ok−1, lk) be a
feasible path. As the path is feasible, there exist assignments
µ1, µ2, . . . , µk such that (li, µi)

(li,o,li+1)−−−−−−→ (li+1, µi+1) for
each 1 ≤ i < k. The path is also p-feasible as the assignment
sequences µ1, µ2, . . . , µk−1 and µ′

2 = µ2, µ
′
3 = µ3, . . . , µ

′
k =

µk clearly satisfy all the conditions in Definition 1.

Note that the other implication does not hold. For example,
the path (init , [n > 0], a)(a, x := 5, b)(b, [n ≤ 0], g) of the
running example is not feasible as mentioned in Section II, but
Fig. 2 shows that it is p-feasible for precision function with
dom(p) = {b} and p(b) = (0, {x− y > 0}).
It would not be useful to modify the symbolic execution

to explore all p-feasible paths instead of all feasible paths as
Theorem 1 implies that the number of p-feasible paths can only
be higher. The key observation for our approach is that we do
not have to explore all p-feasible paths, but only the paths that
do not contain two abstraction points with the same location
and abstract state. We call such paths p-simple. Formally, this
is stated by the following definition and theorem.

Definition 2 (p-simple path). A control-flow path π =
(l1, o1, l2)(l2, o2, l3) . . . (lk−1, ok−1, lk) is called p-simple if it
is p-feasible and there exist assignment sequences from the
definition of p-feasibility that additionally satisfy the follow-
ing: for all 1 ≤ i < j ≤ k such that li is an abstraction point
on π and li = lj it holds that µi, µ′

j are not p(li)-equivalent.

Theorem 2. If there exists a feasible error path, then for each
precision function p there is a p-simple error path.

Proof. Let π = (l1, o1, l2)(l2, o2, l3) . . . (lk−1, ok−1, lk) be a
feasible path leading to lk = err and p be a precision function.
Because π is feasible, there exist assignments ν1, ν2, . . . , νk

such that (li, νi)
(li,oi,li+1)−−−−−−−→ (li+1, νi+1) for each 1 ≤ i < k.

We show by induction that for each 1 < i ≤ k there exists a
path ρ leading to li and assignment sequences µ1, µ2, . . . , µ|ρ|
and µ′

2, µ
′
3, . . . , µ

′
|ρ|+1 showing that ρ is p-simple and

1) νi = µ′
|ρ|+1 or

2) the last location on ρ is an abstraction point and νi, µ
′
|ρ|+1

are p(li)-equivalent
Note that for i = k this proves the statement.
Base case (i = 2) Consider the path ρ = (l1, o1, l2) and

assignments µ1 = ν1 and µ′
2 = ν2. The path is p-feasible as

(l1, µ1)
(l1,o1,l2)−−−−−−→ (l2, µ

′
2). It is also p-simple as l1 = init has

no incoming edges and thus l1 ̸= l2.
Induction step (i > 2) The induction hypothesis gives

us a path ρ′ leading to li−1 and assignment sequences
µ1, µ2, . . . , µ|ρ′| and µ′

2, µ
′
3, . . . , µ

′
|ρ′|+1 showing that ρ′ is p-

simple and

1) νi−1 = µ′
|ρ′|+1 or

2) the last location on ρ′ is an abstraction point and
νi−1, µ

′
|ρ′|+1 are p(li−1)-equivalent.

Consider the path ρ′′ = ρ′.(li−1, oi−1, li) and the as-
signment sequences prolonged with µ|ρ′|+1 = νi−1 and
µ′
|ρ′|+2 = νi. Note that ρ′′ is p-feasible as ρ′ is p-simple,

(li−1, µ|ρ′|+1)
(li−1,oi−1,li)−−−−−−−−→ (li, µ

′
|ρ′|+2), and

1) µ|ρ′|+1 = νi−1 = µ′
|ρ′|+1 or

2) the last but one location on ρ′′ is an abstraction point,
and µ|ρ′|+1 = νi−1, µ

′
|ρ′|+1 are p(li−1)-equivalent.

If ρ′′ is also p-simple, we can simply set ρ = ρ′′ as νi =
µ′
|ρ′|+2 = µ′

|ρ′′|+1.
If ρ′′ is not p-simple, it has to be because of adding the last

edge as ρ′ is p-simple. Hence, there exists an abstraction point
li′ on ρ′ such that li′ = li and µi′ , µ

′
|ρ′′|+1 are p(li)-equivalent.

However, then we can set ρ to be the prefix of ρ′ ending with
li′ . Such ρ leads to li, it is p-simple, its last location is an
abstraction point and νi = µ′

|ρ′|+2 = µ′
|ρ′′|+1, µi′ = µ|ρ|+1 are

p(li)-equivalent.

The important benefit of restricting the attention to p-simple
paths is that for a suitable choice of the precision function
p, there are only finitely many p-simple paths. In particular,
we want to use a precision function p such that every cycle
in the CFA contains at least one abstraction location. This is
formalized by the following theorem, which will guarantee ter-
mination of the symbolic execution with predicate abstraction
formulated in the next subsection.

Theorem 3. Let p be a precision function such that each
control-flow cycle contains at least one abstraction location
l ∈ dom(p). Then the set of p-simple paths is finite.

275

Algorithm 2 Symbolic execution with predicate abstraction
1: function SYMEXPA(l, s, h, p)
2: h← h.(l, s) ▷ update history
3: if l = err then
4: return (UNSAFE, h)
5:
6: if ABSTRACT?(l, h, p) then ▷ should we abstract?
7: mA ← freshMem()
8: pcA ← s.pc ∧ eq(p(l).P, s.m,mA)
9: pcA ← pcA ∧ simple(p(l).P, l,mA, h)
10: s← (pcA,mA)
11:
12: for (l, o, l′) ∈ E do ▷ for each outgoing edge
13: s′ ← next(s, o) ▷ successor state
14: if o is an assumption or ABSTRACT?(l, h, p) then
15: if not ISSAT(s′.pc) then
16: continue ▷ the path is not p-simple
17: h′ ← h.o ▷ new history with the operation
18: if SYMEXPA(l′, s′, h′, p) = (UNSAFE, h′′) then
19: return (UNSAFE, h′′) ▷ p-simple error path
20:
21: return SAFE ▷ all outgoing p-simple paths are safe

Proof. We show that the length of each p-simple path is
bounded from above by a constant. Let LA = dom(p) be
the set of abstraction locations, LN = L ∖ LA be the set
of all non-abstraction locations, and π be a p-simple path.
Since π is p-simple, it contains each abstraction location l
at most p(l).c + 2|p(l).P| times. Overall, it contains at most
b =

∑︁
l∈LA

p(l).c+ 2|p(l).P| abstraction locations. Since each
control-flow cycle contains at least one abstraction location,
the path π does not contain more than |LN | consecutive
locations from LN . There are at most b + 1 consecutive
segments of locations from LN (initial, terminal, and between
each two abstraction locations). The length of the path is thus
at most b+ (b+ 1)|LN |.

B. Symbolic Execution with Implicit Predicate Abstraction

The symbolic execution with predicate abstraction is com-
puted by Algorithm 2. It is a modification of Algorithm 1
(the different parts are in red) that explores p-simple paths
instead of feasible paths. In particular, Algorithm 2 builds path
conditions that are satisfiable iff the corresponding path is p-
simple.
The function ABSTRACT?(l, h, p) returns true iff l is an

abstraction location that has already been visited at least
p(l).c times by the current path (i.e., we are in an abstraction
point). If this is not the case, the next step proceeds as in
the standard symbolic execution. If we are in an abstraction
point with a location l and a symbolic state s, we perform the
abstraction before processing the next step. The abstraction
resets the symbolic memory to a fresh memory mA. To
ensure that mA represents assignments that are p(l)-equivalent

with assignments represented by s.m , we add the formula
eq(p(l).P, s.m,mA) to the path condition, where

eq(P,m,m ′) =
⋀︂
P∈P

(m(P)↔ m ′(P)).

To ensure p-simplicity, we add to the path condition the for-
mula simple(p(l).P, l,mA, h) satisfied by assignments where
the memory mA is not p(l)-equivalent with any memory
previously visited by the path in an abstraction point with
the same location l. Formally, we define

simple(P, l,m, h) =
⋀︂

(l′,s′)∈aPoints(h)
l′=l

¬eq(P,m, s′.m)

where aPoints(h) is the set of abstraction points and their cor-
responding symbolic states in the history h, i.e., aPoints(h)
contains the pairs (l′, s′) such that l′ is an abstraction location
appearing in h at least p(l).c times before the pair (l′, s′).
Theorem 2 implies that the algorithm is sound, i.e., if it

returns SAFE, there is no feasible error path in the CFA.
On the other hand, if the algorithm returns (UNSAFE, h),
the p-simple error path represented by the history h can be
infeasible. Theorem 3 implies that the algorithm terminates for
each precision function p that defines at least one abstraction
location on each control-flow cycle. This is true as there is only
a finite number of p-simple paths and the algorithm checks
satisfiability of the path condition that enforces p-simplicity
one step after each abstraction point.
Algorithm 2 proves that our running example is correct if

we use the precision function that specifies the only abstraction
location b with p(b) = (0, {n > 0, x− y > 1, x = y}). We do
not show the full computation due to space limits. Figure 3
sketches the computaiton along the path through locations
init .ab.cdfb.cefb.cdfb.c that ends with an unsatisfiable path
condition meaning that the path is not p-simple. The figure
fully presents the initial symbolic state, the symbolic state
after the first two operations, and the symbolic state after the
first abstraction (corresponding to the first values of mA and
pcA in the algorithm). From the symbolic states after the next
three abstractions and the final symbolic state we show only
the symbolic memories and some imporant consequences of
the path conditons.

C. Abstraction Refinement Loop
Algorithm SYMEXPA can be integrated into the standard

CEGAR loop that checks the returned counterexamples for
feasibility and iteratively refines the precision until SYMEXPA
decides that the system is safe or a feasible error path is found.
An implementation of this loop is presented in Algorithm 3.
The algorithm uses three external functions:

• INITIALPRECISION() returns an initial set of abstraction
locations with their thresholds and abstraction predicates,
chosen either heuristically or by the user.

• ISFEASIBLE(cex) checks feasibility of the path given by
cex . This can be done by performing the standard sym-
bolic execution along the path and checking satisfiability
of the path condition.

276

init

b

b

b

b

c

m1:
n ↦→ vn1
x ↦→ vx1
y ↦→ vy1

true

m ′
1:
n ↦→ vn1
x ↦→ 5
y ↦→ vy1

vn1 > 0

m2:
n ↦→ vn2
x ↦→ vx2
y ↦→ vy2

pc2 ≡
vn1 > 0 ∧ eq(p(b).P,m ′

1,m2)

m3:
n ↦→ vn3
x ↦→ vx3
y ↦→ vy3

pc3 which implies
vx3 = vy3 ∧ vx3−vy3 ≤ 1

m4:
n ↦→ vn4
x ↦→ vx4
y ↦→ vy4

pc4 which implies vn3 > 0∧
∧ vx3 = vy3 ∧ vx3−vy3 ≤ 1

m5:
n ↦→ vn5
x ↦→ vx5
y ↦→ vy5

pc5 which implies vn3 > 0∧
∧ vx3 = vy3 ∧ vx3−vy3 ≤ 1∧
∧ vx5 = vy5 ∧ vx5−vy5 ≤ 1∧
∧¬eq(p(b).P,m3,m5)

m5:
n ↦→ vn5
x ↦→ vx5
y ↦→ vy5

pc5 ∧ vn5 > 0 which implies
false ≡ eq(p(b).P,m3,m5)∧
∧¬eq(p(b).P,m3,m5)

[n > 0]
x := 5

[n > 0]
[x ̸= y]
y := x

n := n−1

[n > 0]
[x = y]

x := x+1
n := n−1

[n > 0]
[x ̸= y]
y := x

n := n−1

[n > 0]

abstraction

abstraction

abstraction

abstraction

Fig. 3. A sketch of the run of SYMEXPA(init , (true, freshMem()), ε, p) on
the path going through locations init .ab.cdfb.cefb.cdfb.c with the precision
function p(b) = (0, {n > 0, x− y > 1, x = y})

Algorithm 3 Symbolic execution with predicate abstraction
and CEGAR
1: function SYMEXPA-CEGAR()
2: p← INITIALPRECISION()
3: s← (true, freshMemory())
4: while SYMEXPA(init , s, ε, p) = (UNSAFE, cex) do
5: if ISFEASIBLE(cex) then
6: return (UNSAFE, cex) ▷ real counterexample
7: p← REFINE(p, cex)
8: return SAFE ▷ abstract system is safe

• REFINE(p, cex) generates new predicates that block the
spurious counterexample. Here, we treat it as a black-box
that can be implemented by any existing technique for
predicate generation. As a back-up solution for the case
when predicate generation fails, the abstraction threshold
can be increased for all locations on the path.

Similarly to BLAST [BHJM07], Algorithm 3 can be im-
proved by not restarting the symbolic execution from scratch
after a refinement. The symbolic execution can simply back-
track to the highest location whose precision was increased
and restart from there with the new precision.

V. EXPERIMENTAL EVALUATION
A. Implementation

We implemented the algorithm proposed in Section IV-C,
including the symbolic execution backtracking after a re-

finement, in the KRATOS [GJ23] software model checker.
The changes overall amounted to 778 lines of C++ code,
including new user options related to the algorithm, logging,
and statistics computation. The abstraction is performed only
at loop heads. Refinement is implemented by computing
sequence interpolants at the loop heads from the unsatisfiable
feasibility query. The implementation relies on the SMT solver
MathSAT5 [CGSS13] both for constraint solving and for
interpolant computation. Because the proposed technique does
not support function calls, the implementation first eagerly
inlines all functions (and thus does not support unbounded re-
cursion). Note that all engines of KRATOS, including the newly
implemented one, support dynamic memory by modeling the
heap and pointers using the theory of arrays.
The implementation is closed-source, but the binary is

publicly available for academic and non-commercial use from
https://www.fi.muni.cz/∼xjonas/papers/fmcad24 symexecia/.

B. Experimental setup

For evaluation, we considered all the C programs from
the ReachSafety category of the 2024 edition of the annual
software verification competition SV-COMP [Bey24]. The cat-
egory consists of 11 222 C programs divided into 15 bench-
mark families. We compare the standard symbolic execution
implemented in KRATOS (symexec) and its proposed exten-
sion with implicit predicate abstraction and CEGAR using
initial abstraction thresholds 0, 1, and 100 (symexecia-0,
symexecia-1, symexecia-100, respectively). As external ref-
erence points, we execute the benchmarks using IC3 with
implicit predicate abstraction [CGMT16] implemented in
KRATOS (IC3IA), symbolic execution with CEGAR imple-
mented in CPACHECKER [BL16] (CPA-symexec+), and finally
SYMBIOTIC 10 [JKN+24] (Symbiotic) as a well performing
participant of SV-COMP based on the state-of-the-art symbolic
executor KLEE [CDE08].
The experiments were performed on several identical PCs

equipped with Intel Core i7-8700 CPU @ 3.20 GHz and
32 GiB of RAM. Each execution was limited to use a single
CPU core, 5 minutes of wall time, and 8 GiB of RAM. For
reliable benchmarking, all experiments were executed using
BENCHEXEC [BLW19].
We observed that some of the tools produced false positives,

i.e., returned unsafe for benchmarks marked as safe. In par-
ticular, CPA-symexec+ has 44 false positives (23 in Arrays, 1
in Fuzzle, and 20 in Heap), IC3IA has 5 false positives (all in
Hardness), Symbiotic has 1 false positive (in Fuzzle), symexec
has 3 false positives (2 in Hardness and 1 in Hardware), and
symexecia-100 has 1 false positive (in Hardware). We do not
consider these results in the rest of the evaluation and focus
only on the correctly solved benchmarks.

C. Results

We first compare the results of the standard symbolic
execution implemented in KRATOS with the proposed sym-
bolic execution with predicate abstraction and CEGAR. The
numbers of correctly solved benchmarks are shown in Table I.

277

https://www.fi.muni.cz/~xjonas/papers/fmcad24_symexecia/

TABLE I
NUMBERS OF CORRECTLY SOLVED UNSAFE (U) AND SAFE (S) BENCHMARKS BY STANDARD SYMBOLIC EXECUTION AND
SYMBOLIC EXECUTION WITH PREDICATE ABSTRACTION AND CEGAR WITH VARIOUS INITIAL ABSTRACTION THRESHOLDS.

Total symexec symexecia-0 symexecia-1 symexecia-100
Family U S U S U S U S U S

Arrays 113 320 5 10 57 4 59 4 53 8
BitVectors 15 34 11 21 10 23 10 24 11 27
Combinations 430 241 55 10 0 2 0 2 4 7
ControlFlow 29 37 3 3 4 15 3 7 3 6
ECA 480 783 18 0 25 51 29 44 28 0
Floats 268 804 39 202 10 200 10 200 10 200
Fuzzle 0 15 0 0 0 0 0 0 0 0
Hardness 0 4005 0 824 0 2315 0 1646 0 833
Hardware 497 727 62 0 47 44 50 49 71 32
Heap 73 166 20 52 20 48 20 49 21 52
Loops 201 528 114 282 73 194 84 195 111 286
ProductLines 265 332 178 86 129 156 128 104 213 86
Recursive 54 102 0 0 0 0 0 0 0 0
Sequentialized 400 184 4 0 3 4 4 3 6 0
XCSP 59 60 47 49 47 49 47 49 47 49

Total 2884 8338 556 1539 425 3105 444 2376 578 1586

TABLE II
NUMBERS OF CORRECTLY SOLVED UNSAFE (U) AND SAFE (S) BENCHMARKS BY COMPETING TOOLS

AND THE BEST CONFIGURATION OF SYMBOLIC EXECUTION WITH PREDICATE ABSTRACTION AND CEGAR.

Total CPA-symexec+ IC3IA Symbiotic symexecia-0
Family U S U S U S U S U S

Arrays 113 320 68 1 66 1 86 65 57 4
BitVectors 15 34 11 11 12 27 13 16 10 23
Combinations 430 241 122 0 60 24 211 0 0 2
ControlFlow 29 37 9 15 4 15 18 4 4 15
ECA 480 783 38 279 145 347 270 0 25 51
Floats 268 804 33 156 31 78 21 335 10 200
Fuzzle 0 15 0 0 0 0 0 0 0 0
Hardness 0 4005 0 6 0 3160 0 98 0 2315
Hardware 497 727 38 9 114 202 48 0 47 44
Heap 73 166 50 26 20 46 70 119 20 48
Loops 201 528 110 110 57 130 132 306 73 194
ProductLines 265 332 128 271 249 286 265 94 129 156
Recursive 54 102 0 1 0 0 50 44 0 0
Sequentialized 400 184 82 7 7 10 244 51 3 4
XCSP 59 60 11 0 46 50 38 50 47 49

Total 2884 8338 700 892 811 4376 1466 1182 425 3105

The proposed technique significantly improves the number of
decided safe benchmarks (1539 vs 3105 with initial threshold
0) and also slightly improves the number of decided unsafe
benchmarks (556 vs 578 with initial threshold 100). The im-
provements occur among multiple benchmark families. Differ-
ent initial abstraction thresholds provide different benefits and
downsides (see for example safe benchmarks from BitVectors
and Loops or unsafe benchmarks from ProductLines). Intu-
itively, the chosen thresholds determine the numbers of loop
unrollings after which the abstraction is applied. Therefore,
if some loops of the program need only a small number of
iterations, a higher threshold allows exploring them precisely
by the standard symbolic execution without applying the
abstraction. The experiments show that this might be cheaper
and beneficial in some cases.
Out of the 3530 benchmarks decided by symexecia-0,

2673 were decided without any refinements. Additionally, 149

benchmarks were decided after 1 refinement and required
at most 8 predicates per abstraction location, 52 after 2
refinements with at most 28 predicates, 114 after 3 refinements
with at most 14 predicates, 69 after 4 refinements with at most
101 predicates. The remaining 473 benchmarks required at
least 5 refinements and at most 204 predicates per location.
Table II presents a comparison of the best-performing con-

figuration of our algorithm, symexecia-0, with other competing
tools. It can be seen that our algorithm outperforms other
symbolic-execution-based competitors, Symbiotic and CPA-
symexec+, on several families of safe benchmarks and also
on some families of unsafe benchmarks. On the other hand,
symexecia-0 is outperformed by the other engine of KRATOS,
IC3IA. However, we note that symexecia can be easily imple-
mented into virtually any existing symbolic execution engine,
whereas this is not the case of IC3IA as it uses a significantly
different and more complex algorithm.

278

sym execia−100

sym execia−0sym exec sym execia−1C PA −sym exec+ IC 3IA V B S o ld V B S newS ym bio tic

0.1

1

10

100
T /O

0 2000 4000 6000
C orrectly so lved benchm arks

W
al

l t
im

e
(s

)
Too l

C PA −sym exec+
IC 3IA
S ym bio tic
sym exec
sym execia−0
sym execia−1
sym execia−100
V B S new
V B S o ld

Fig. 4. The cactus plot of benchmarks solved by each tool. For each tool, the corresponding line shows the number of benchmarks (x-axis) solved in at most
the given number of seconds of wall time (y-axis).

TABLE III
NUMBERS OF CORRECTLY SOLVED UNSAFE (U) AND SAFE (S)

BENCHMARKS BY VIRTUAL-BEST SOLVER OF IC3IA + SYMEXEC
IMPLEMENTED IN KRATOS AND THE VIRTUAL-BEST SOLVER OF IC3IA +

SYMEXEC + ALL VARIANTS OF SYMEXECIA.

VBS old VBS new Gain
Family U S U S

Arrays 71 11 72 12 2
BitVectors 12 31 12 31 0
Combinations 68 26 68 27 1
ControlFlow 5 15 5 15 0
ECA 156 347 159 347 3
Floats 41 225 41 225 0
Fuzzle 0 0 0 0 0
Hardness 0 3208 0 3369 161
Hardware 134 202 134 202 0
Heap 22 52 22 52 0
Loops 127 358 129 368 12
ProductLines 258 315 258 327 12
Recursive 0 0 0 0 0
Sequentialized 7 10 7 10 0
XCSP 47 50 47 50 0

Total 948 4850 954 5035 191

To see whether the proposed technique brings any additional
benefit to KRATOS compared to a simple parallel portfolio
combination of predicate abstraction implemented in IC3IA
and standard symbolic execution, we also compare the virtual-
best solver composed of IC3IA+symexec (denoted as VBS old)
and the virtual-best solver that also includes all variants of
symexecia-* (denoted as VBS new). The results are shown in
Table III. Symexecia brings 6 newly solved unsafe benchmarks
and 185 safe benchmarks across multiple benchmark families.
We also compared the runtime of all the tools. The number

of solved benchmarks depending on the time-out is presented
in the cactus plot in Figure 4. The plot supports all of the quan-
titative results from the tables and the previous paragraphs.
Additional plots and tables and all the logfiles from our

experiments and scripts used for their analysis can be found at
https://www.fi.muni.cz/∼xjonas/papers/fmcad24 symexecia/.
Overall, despite its simplicity, our algorithm significantly

outperforms symbolic-execution-based competitors on safe
benchmarks and can solve benchmarks that can be solved
neither by standard symbolic execution nor by more advanced
approaches as IC3 with predicate abstraction.

VI. RELATED WORK

Our procedure can be seen as an instance of a more general
family of techniques combining exploration of CFA paths
with abstraction and refinement, using (lazy) predicate ab-
straction [BHJM07], [BKW10] and/or interpolants [McM06],
[McM10], [BW12], possibly combined with symbolic exe-
cution and invariant inference [JNS11], [McM10]. All such
approaches work by constructing abstract reachability graphs,
in which nodes correspond to abstract states representing an
overapproximation of states that are reachable by following
some specific program paths, and rely on node coverage, i.e.,
showing that all the states represented by a given node n
are contained within the states represented by a previously-
visited node m, to ensure that the constructed abstract graph
is finite. Our method, on the other hand, does not require
the explicit computation of abstract states, and it relies only
on (abstract) simple path constraints for making the abstract
space finite. This is conceptually much simpler to integrate in a
standard symbolic execution algorithm than approaches based
on abstract states and covering such as [JNS11]; it should
however be acknowledged that the technique of [JNS11] can
potentially result in more compact abstract graphs.
There are other techniques that combine symbolic execution

and abstraction, but in a different way and with a different aim
than our procedure. For example, [APV09] extends symbolic
execution with memory abstraction, but explicitly stores the
visited abstract states, computes underapproximations of fea-
sible paths, the abstract domain is fixed beforehand, there is no
refinement, and the technique requires a dedicated algorithm
for subsumption check. In [RMV09], the authors propose to
use the abstract counterexample obtained by other means to
guide the computation of standard symbolic execution on the
original program towards the error location.

279

https://www.fi.muni.cz/~xjonas/papers/fmcad24_symexecia/

Another recent technique for combining symbolic execu-
tion with CEGAR and interpolation-based refinement is pro-
posed in [BL16]. The difference with our approach is that
in [BL16] the abstraction consists in tracking only a subset
of the program variables and CFA constraints precisely (with
interpolation-based refinement used to increase the set of vari-
ables and constraints to track), but the core symbolic execution
algorithm is not modified; in particular, the technique does not
guarantee that only finite abstract spaces are explored during
each iteration of the CEGAR loop.

VII. CONCLUSIONS AND FUTURE WORK

We presented a program verification technique that com-
bines symbolic execution with implicit predicate abstraction
and CEGAR, and implemented it the software model checker
KRATOS. Our experimental evaluation showed that, despite its
simplicity, the technique is effective in improving not only
the proving capabilities of symbolic execution, but also the
overall performance of KRATOS, by solving some benchmarks
that could not be decided by its other verification engines.
As future work, we plan to extend the technique with

interprocedural analysis, i.e., to handle function calls without
relying on inlining. We also want to investigate additional
ways of computing predicates during refinement, instead of
relying on interpolation, and additional strategies for exploring
the symbolic execution tree besides the current depth-first
search.

REFERENCES

[APV09] Saswat Anand, Corina S. Pasareanu, and Willem Visser. Sym-
bolic execution with abstraction. Int. J. Softw. Tools Technol.
Transf., 11(1):53–67, 2009.

[Bey24] Dirk Beyer. State of the art in software verification and witness
validation: SV-COMP 2024. In TACAS (3), volume 14572 of
Lecture Notes in Computer Science, pages 299–329. Springer,
2024.

[BHJM07] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak
Majumdar. The software model checker blast. Int. J. Softw.
Tools Technol. Transf., 9(5-6):505–525, 2007.

[BKW10] Dirk Beyer, M. Erkan Keremoglu, and Philipp Wendler. Predicate
abstraction with adjustable-block encoding. In FMCAD, pages
189–197. IEEE, 2010.

[BL16] Dirk Beyer and Thomas Lemberger. Symbolic execution with
CEGAR. In ISoLA (1), volume 9952 of Lecture Notes in
Computer Science, pages 195–211, 2016.

[BLW19] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Reliable bench-
marking: requirements and solutions. Int. J. Softw. Tools Technol.
Transf., 21(1):1–29, 2019.

[BR02] Thomas Ball and Sriram K. Rajamani. The SLAM project: de-
bugging system software via static analysis. In John Launchbury
and John C. Mitchell, editors, POPL, pages 1–3. ACM, 2002.

[BW12] Dirk Beyer and Philipp Wendler. Algorithms for software model
checking: Predicate abstraction vs. impact. In FMCAD, pages
106–113. IEEE, 2012.

[CCZ+07] Manuel Costa, Miguel Castro, Lidong Zhou, Lintao Zhang, and
Marcus Peinado. Bouncer: Securing software by blocking bad
input. In OSR, pages 117–130. ACM, 2007.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE:
unassisted and automatic generation of high-coverage tests for
complex systems programs. In OSDI, pages 209–224. USENIX
Association, 2008.

[CGJ+03] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and
Helmut Veith. Counterexample-guided abstraction refinement for
symbolic model checking. J. ACM, 50(5):752–794, 2003.

[CGMT16] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano
Tonetta. Infinite-state invariant checking with IC3 and predicate
abstraction. Formal Methods Syst. Des., 49(3):190–218, 2016.

[CGSS13] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma,
and Roberto Sebastiani. The MathSAT5 SMT solver. In TACAS,
volume 7795 of Lecture Notes in Computer Science, pages 93–
107. Springer, 2013.

[GJ23] Alberto Griggio and Martin Jonáš. Kratos2: An SMT-based
model checker for imperative programs. In CAV (3), volume
13966 of Lecture Notes in Computer Science, pages 423–436.
Springer, 2023.

[JKN+24] Martin Jonáš, Kristián Kumor, Jakub Novák, Jindřich Sedláček,
Marek Trtı́k, Lukáš Zaoral, Paulı́na Ayaziová, and Jan Strejček.
Symbiotic 10: Lazy memory initialization and compact symbolic
execution - (competition contribution). In TACAS (3), volume
14572 of Lecture Notes in Computer Science, pages 406–411.
Springer, 2024.

[JM07] Ranjit Jhala and Kenneth L. McMillan. Interpolant-based tran-
sition relation approximation. Log. Methods Comput. Sci., 3(4),
2007.

[JNS11] Joxan Jaffar, Jorge A. Navas, and Andrew E. Santosa. Unbounded
symbolic execution for program verification. In RV, volume 7186
of Lecture Notes in Computer Science, pages 396–411. Springer,
2011.

[Kin76] James C. King. Symbolic execution and program testing. Com-
mun. ACM, 19(7):385–394, 1976.

[McM06] Kenneth L. McMillan. Lazy abstraction with interpolants. In
CAV, volume 4144 of Lecture Notes in Computer Science, pages
123–136. Springer, 2006.

[McM10] Kenneth L. McMillan. Lazy annotation for program testing and
verification. In CAV, volume 6174 of Lecture Notes in Computer
Science, pages 104–118. Springer, 2010.

[MYR16] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. An-
gelix: Scalable multiline program patch synthesis via symbolic
analysis. In ICSE, pages 691–701. IEEE, 2016.

[NQRC13] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury,
and Satish Chandra. Semfix: Program repair via semantic
analysis. In ICSE, pages 772–781. IEEE Press, 2013.

[QRLV12] Dawei Qi, Abhik Roychoudhury, Zhenkai Liang, and Kapil
Vaswani. Darwin: An approach to debugging evolving programs.
TOSEM, page 19, 2012.

[RMV09] Neha Rungta, Eric G. Mercer, and Willem Visser. Efficient
testing of concurrent programs with abstraction-guided symbolic
execution. In Corina S. Pasareanu, editor, Model Checking
Software, 16th International SPIN Workshop, Grenoble, France,
June 26-28, 2009. Proceedings, volume 5578 of Lecture Notes
in Computer Science, pages 174–191. Springer, 2009.

[Ton09] S. Tonetta. Abstract Model Checking without Computing the
Abstraction. In FM, pages 89–105, 2009.

280

Formal Methods in Computer-Aided Design 2024

Efficient Synthesis of Symbolic Distributed
Protocols by Sketching

Derek Egolf
Northeastern University
Boston, MA USA

egolf.d@northeastern.edu

William Schultz
Northeastern University

Boston, MA
schultz.w@northeastern.edu

Stavros Tripakis
Northeastern University

Boston, MA
stavros@northeastern.edu

Abstract—We present a novel and efficient method for synthesis
of parameterized distributed protocols by sketching. Our method
is both syntax-guided and counterexample-guided, and utilizes
a fast equivalence reduction technique that enables efficient
completion of protocol sketches, often significantly reducing the
search space of candidate completions by several orders of
magnitude. To our knowledge, our tool, SCYTHE, is the first
synthesis tool for the widely used specification language TLA+.
We evaluate SCYTHE on a diverse benchmark of distributed
protocols, demonstrating the ability to synthesize a large scale
distributed Raft-based dynamic reconfiguration protocol beyond
the scale of what existing synthesis techniques can handle.

Index Terms—distributed protocols, synthesis, syntax-guided,
counterexample-guided, sketching

I. INTRODUCTION

Distributed protocols have become a crucial component in
the operation of modern computer systems, including financial
infrastructure [9], [8] and cloud data storage systems [10],
[12]. In addition to being consequential and widely used, the
complexity of these protocols makes them notoriously hard to
design and reason about.
Automated verification of distributed protocols has made

great advances in recent years. Specifically, inductive invariant
inference methods have allowed for fuller automation of the
verification of safety properties [18], [21], [50], [48], [41],
[39]. State of the art tools in this domain are able to verify non-
trivial specifications of parameterized, infinite-state protocols,
written in languages such as TLA+ [28] or Ivy [35]. Such
verification efforts include not just protocol specifications es-
pecially designed to fit into the decidable fragment of Ivy [34],
but also generally undecidable specifications of protocols such
as Raft written in TLA+ [41], [39] or Paxos written in Ivy [34],
[19]. Progress is also being made towards fuller automation
of the verification of liveness properties, e.g., see [49].
On the other hand, automated synthesis of distributed pro-

tocols is less advanced. This discrepancy might be expected
because synthesis is intuitively a harder problem than veri-
fication: verification is about checking that a given system
is correct, while synthesis involves inventing a system and

This material is partly supported by the National Science Foundation under
Graduate Research Fellowship Grant #1938052, and Award #2319500. Any
opinion, findings, and conclusions or recommendations expressed in this
material are those of the authors(s) and do not necessarily reflect the views
of the National Science Foundation.

ensuring that it is correct. Theory supports this intuition: model
checking finite-state distributed systems is decidable, but syn-
thesis of finite-state distributed systems is generally undecid-
able [37], [45], [46]. Synthesis of parameterized distributed
protocols is also generally undecidable [25]. But even when
decidable, synthesis “from scratch” is still a harder problem
than verification, e.g., single-module reactive synthesis from
LTL specifications is doubly exponential in the size of the LTL
formula [36].
An easier problem than doing synthesis from scratch is to do

synthesis by sketching [42], [43]. Sketching turns the synthesis
problem into a completion problem: given a sketch (i.e., an
incomplete system with holes) the goal is to complete the
sketch such that the completion satisfies a given correctness
specification. The holes are typically missing state variable
updates, guards, or parts thereof. Completing a hole means
finding the missing expression.
In this paper, we consider the problem of synthesis of

distributed protocols by sketching. Contrary to prior works that
either apply only to special classes of protocols [30], [24], or
target protocols in an ad-hoc specification language [4], our
work targets general protocols written in TLA+ [28], a highly
expressive specification language with widespread use in both
academia and the industry [32].
Our approach follows the counterexample-guided inductive

synthesis (CEGIS) paradigm [43], [20]: a learner is respon-
sible for generating candidate solutions, while a verifier is
responsible for checking whether a candidate satisfies the
requirements.
Our synthesis method is truly syntax-guided in the sense

that our synthesis loop explores directly the space of can-
didate symbolic expressions that can be generated from a
given grammar. In contrast, previous work [4] explores the
space of (finite) interpretations of uninterpreted functions. Our
synthesis tool generates expressions, whereas the synthesis
tool of [4] generates input-output tables (which can then be
passed to an external SyGuS solver [1] to obtain an expression
as a post-processing step). Our method does not rely on an
external SyGuS solver.
A crucial component of our synthesis algorithm is how ex-

actly we generate candidate expressions from a given grammar
(or grammars, in the case of multiple holes). A naive, breadth-
first enumeration of all possible expressions in the grammar

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 34 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_34
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_34
https://creativecommons.org/licenses/by/4.0/

does not scale. Instead, we use a novel technique that em-
ploys cache-based enumeration coupled with an equivalence
reduction with short-circuiting. This technique allows us to
not only avoid checking semantically equivalent expressions,
but also to avoid generating redundant expressions in the first
place. Indeed, some of our experiments show a reduction in
the number of generated expressions of more than three orders
of magnitude.
We implement our method in a synthesis tool called

SCYTHE. SCYTHE synthesizes protocols that are parameter-
ized, i.e., in a form that is directly generalizable to an arbitrary
number of nodes. Some of our synthesized protocols can be
instantiated with infinite-domain variables, i.e., we can handle
infinite-state protocols. SCYTHE is able to synthesize complex
expressions from non-trivial grammars. For example, SCYTHE
can synthesize the guard expression

∀Q1 ∈ Quorums(config[i]),
∀Q2 ∈ Quorums(new config) : Q1 ∩Q2 ̸= ∅

(1)

which is parameterized by i, the node that is executing
reconfiguration, and it can also synthesize the state variable
update

votes′ = [votes EXCEPT [n1] = votes[n1] ∪ {n2}] (2)

which is parameterized by n1 and n2, the nodes that are
exchanging votes.
We evaluate SCYTHE on a suite of non-trivial benchmarks,

including variants of the Raft dynamic reconfiguration proto-
col [33], [40], [41]. SCYTHE is able to synthesize correct and
sometimes novel protocols in less than an hour and often in
a matter of minutes. Although SCYTHE itself only guarantees
correctness for a finite protocol instance, we were able to prove
a-posteriori (using TLAPS [11]) that the synthesized protocols
are in fact correct for an arbitrary number of nodes, as well
as in some cases for infinite-domain state variables.
In summary, this work makes the following contributions:

(1) A novel distributed protocol synthesis method that is both
syntax-guided as well as counterexample-guided. (2) Novel
techniques to accelerate the search of candidate completions,
often reducing the search space by several orders of magni-
tude. (3) The synthesis tool SCYTHE which, to our knowledge,
is the only tool able to handle a diverse suite of real-world
distributed protocol benchmarks written in a broadly used
language such as TLA+. (4) Formal correctness proofs which
demonstrate that SCYTHE is able to synthesize infinite-state,
parameterized protocols that are safe for any protocol instance.

II. PRELIMINARIES

A. Protocol Representation in TLA+

We consider symbolic transition systems modeled in
TLA+ [28], e.g., as shown in Fig. 1. A primed variable, e.g.,
vote yes′, denotes the value of the variable in the next state.
Formally, a protocol is a tuple ⟨PARAMS,VARS, INIT,NEXT⟩.
PARAMS is a set of parameters that may vary from one
instantiation of the protocol to the other, but do not change

during the execution of the protocol (e.g. a set of node ids
Node in Fig. 1 line 1). VARS is the set of state variables
(e.g. Fig. 1 line 2). INIT and NEXT are predicates specifying,
respectively, the initial states and the transition relation of the
system, as explained in detail in Sections II-B and II-D.
TLA+ is untyped, but for purposes of synthesis we assume

that each symbol in PARAMS and VARS is typed. Supported
types include Bool and Int, and sets or arrays of types. If T1
and T2 are types, then an element of type (Set T1) is a set of
elements of type T1 and an element of type (Array T1 T2) is
a map from elements of type T1 to elements of type T2.
A tuple ⟨CONST,VARS, INIT,NEXT⟩ denotes an instance of

a protocol, where CONST is a mapping of PARAMS to values.
For instance, [Node -→ {n1, n2, n3}] characterizes one instance
of the protocol in Fig. 1 and [Node -→ {a0, b0}] characterizes
another. The values of parameters need not be finite sets, e.g.,
MaxVal might have type Int and specify a bound on some
value. Note that a protocol is technically not operational until
the symbols in PARAMS are assigned to values, since the
valuation of INIT and NEXT may depend on the valuation
of the symbols in PARAMS.
A symbol in PARAMS may have type Domain, which

designates it as an opaque set. If Prm is a PARAMS symbol
of type Domain and CONST assigns Prm to set P , then an
object x has type (OfDomain Prm) if and only if x ∈ P .
For instance, if symbol Node in Fig. 1 has type Domain,
then the symbol vote yes has type (Set (OfDomain Node)).
(Alternatively, Node could have type (Set Int), but this typing
would allow the protocol to, e.g., do arithmetic on node ids,
which may not be desirable.) We discuss in Section III-B the
use of opaque sets.

B. Protocol Semantics

A state of a protocol instance is an assignment of values to
the variables in VARS. INIT is a predicate mapping a state to
true or false; if a state satisfies INIT (if it maps to true), it is
an initial state of the protocol.
The transition relation NEXT is a predicate mapping a pair

of states to true or false. If a pair of states (s, t) satisfies NEXT,
then there is a transition from s to t, and we write s→ t. A
state is reachable if there exists a run of the protocol instance
containing that state. A run of a protocol instance is a possibly
infinite sequence of states s0, s1, s2... such that (1) s0 satifies
INIT, (2) si → si+1 for all i ≥ 0, and (3) the sequence satisfies
optional fairness constraints. We omit a detailed discussion
of fairness. At a high-level, some transitions are called fair
and under certain conditions, they must be taken. In this way,
certain sequences of states are excluded from the set of runs
of the protocol. In particular, if a sequence of states that would
otherwise be a run ends in a certain cycle, that sequence may
be excluded from the set of runs of a protocol due to fairness
constraints.

C. Properties and Verification

We support standard temporal safety and liveness properties
for specifying protocol correctness. Safety is often specified

282

1 CONSTANT Node
2 vars := (vote yes, go commit, go abort)
3 GoCommit :=
4 ∧ vote yes = Node
5 ∧ go commit′ = Node
6 ∧ go abort′ = go abort
7 VoteYes(n) :=
8 ∧ vote yes′ = vote yes ∪ {n}
9 ∧ go commit′ = go commit
10 ∧ go abort′ = go abort
11 INIT :=
12 ∧ vote yes = ∅
13 ∧ go commit = ∅
14 ∧ go abort = ∅
15 NEXT :=
16 ∨ GoCommit
17 ∨ ∃n ∈ Node : VoteYes(n)

Fig. 1. An example of a TLA+ protocol (excerpt).

using a state invariant: a predicate mapping a state to true
or false. A protocol instance satisfies a state invariant if
all reachable states satisfy the invariant. A protocol instance
satisfies a temporal property if all runs (or fair runs, if fairness
is assumed) satisfy the property. A protocol satisfies a property
if all its protocol instances satisfy the property.

D. Modeling Conventions

We adopt standard conventions on the syntax used to
represent protocols, particularly on how NEXT is written.
Specifically, we decompose NEXT into a disjunction of actions
(e.g. Fig. 1 lines 15-17). An action is a predicate mapping
a pair of states to true or false; e.g., action GoCommit of
Fig. 1. We decompose an action into the conjunction of a pre-
condition and a post-condition. A pre-condition is a predicate
mapping a state to true or false; if the pre-condition of an
action is satisfied by a state, then we say the action is enabled
at that state. For instance, Fig. 1 line 4 says that action
GoCommit is enabled only when all nodes have voted yes.
We decompose a post-condition into a conjunction of post-

clauses, one for each state variable. A post-clause determines
how its associated state variable changes when the action is
taken. For instance, Fig. 1 line 5 shows a post-clause for
the state variable go commit, denoted by priming the variable
name: go commit′.
In general, post-clauses may be arbitrary predicates involv-

ing the primed variable (e.g. v′ ∈ e). We assume that all
synthesized post-clauses are of the form v′ = e where e does
not contain any primed variables, but make no assumptions
on the post-clauses that we do not synthesize. In synthesis,
non-determinism is used extensively, e.g., for modeling the
environment. We note that the v′ = e assumption does not
limit us to deterministic protocols, since multiple actions may
be enabled at the same state.
Some actions are parameterized. For instance on line 7 of

Figure 1, the action VoteYes is parameterized by a symbol n.
From line 17, we can infer that n denotes an element of the set
Node. The arguments of an action are those symbols like n.
The domain of an argument to an action is the set quantified
over for that argument in NEXT. For example, the domain

of argument n of action VoteYes is the set Node. We require
that the domain of an argument be a symbol from PARAMS
of type Domain. An action may have multiple arguments; the
domain of an action is the Cartesian product of the domains
of its arguments. A parameterized action denotes a family of
actions, one for each element in its domain.
If s → t is a transition and (s, t) satisfies an action A, we

can say that A is taken and write s
A−→ t. Note that (s, t) may

satisfy multiple actions and we may annotate the transition
with any of them. We write s

A(v⃗)−−−→ t to explicitly denote the
arguments to A; v⃗ is empty in the case of non-parameterized
actions. In this way, runs of a protocol may be outfitted with a
sequence of actions. Annotating runs of a protocol with actions
is critical for our synthesis algorithm, since annotations allow
us to “blame” particular actions for causing a counterexample
run (c.f. Section IV-C). Fairness constraints are often specified
using actions: we may say A is (strongly) fair to mean that
action A must be taken if it is enabled infinitely often.

III. SYNTHESIS OF DISTRIBUTED PROTOCOLS

A. Protocol Sketches

A tuple ⟨PARAMS,VARS,HOLES, INIT,NEXT0⟩ is a pro-
tocol sketch, where PARAMS, VARS, and INIT are as in a
TLA+ protocol and NEXT0 is a transition relation predicate
containing the hole names found in HOLES. HOLES is a
(possibly empty) set of tuples, each containing a hole name
h, a list of argument symbols v⃗h, an output type th, and a
grammar Gh. A hole represents an uninterpreted function of
type th over the arguments v⃗h. Each hole is associated with
exactly one action Ah and it appears exactly once in that
action. The grammar of a hole defines the set of candidate
expressions that can fill the hole.
For example, a sketch can be derived from Fig. 1 by

replacing the update of line 8 with vote yes′ = h(vote yes, n),
where h is the hole name, the hole has arguments vote yes and
n, the return type is (Set (OfDomain Node)), and the action of
the hole is VoteYes(n). One grammar for this hole might be
(in Backus Normal Form):

E ::= ∅ | {n} | vote yes | (E ∪ E) | (E ∩ E) | (E \ E)

which generates all standard set expressions over the empty
set, the singleton set {n}, and the set vote yes. We note that,
in general, each hole of a sketch may have its own distinct
grammar.
A hole is either a pre-hole or a post-hole. If the hole is a

pre-hole, it is a placeholder for a pre-condition of the action.
If the hole is a post-hole, it is a placeholder for the right-hand
side of a post-clause of the action, e.g., as in vote yes′ =
h(vote yes, n), where h is a post-hole. We do not consider
synthesis of the initial state predicate and therefore no holes
appear in INIT.
The arguments of a hole h may include any of the protocol

parameters in PARAMS, the state variables in VARS, and the
arguments of Ah if the action is parameterized. If h is a pre-
hole, then its return type is boolean. If the hole is a post-hole,

283

its type is the same as its associated variable, e.g., hole h
above has the same type as vote yes.

B. Problem Statements

A completion of a sketch is a protocol derived from the
sketch by replacing each hole with an expression from its
grammar. Informally, the synthesis task is to find a completion
of the protocol that satisfies a given property. The distinction
between a protocol and an instance of a protocol is important
here; it may be easier to find a completion of a protocol such
that a specific (e.g., finite) instance satisfies a property than to
find a completion such that all instances satisfy the property.
Therefore, we define two versions of the synthesis problem:

Problem 1. Let ⟨PARAMS,VARS,HOLES, INIT,NEXT0⟩
be a sketch and Φ a property. Let CONST be
an assignment to PARAMS. Find a completion,
⟨PARAMS,VARS, INIT,NEXT⟩, of the sketch such that
the instance ⟨CONST,VARS, INIT,NEXT⟩ satisfies Φ.
Problem 2. Let ⟨PARAMS,VARS,HOLES, INIT,NEXT0⟩
be a sketch and Φ a property. Find a completion,
⟨PARAMS,VARS, INIT,NEXT⟩, of the sketch such that
every instance of the completion satisfies Φ.

In this paper we focus on solving Problem 1. It is a
more tractable problem and we are able to use a model
checker as a subroutine in cases where the instance has finitely
many states. It turns out that in many cases, a solution to
Problem 1 generalizes and is also a solution to Problem 2.
This generalizability comes from the fact that the symbols in
PARAMS are opaque; e.g., we may refer to the set of nodes
Node, but we cannot refer to any particular element of Node
without quantification. Indeed, as we show in Section V, our
tool is able to synthesize protocols that generalize, i.e., they
are also solutions to Problem 2.

IV. OUR APPROACH

As mentioned in the introduction, we follow the CEGIS
paradigm which includes two main components: a learner and
a verifier. In our case, the learner and verifier interact in a loop
with the following steps: (1) the learner generates a candidate
completion X , if one exists, that satisfies a (possibly empty)
set of pruning constraints (i.e., X is pruned if it violates the
constraints), (2) the verifier checks X against the supplied
property Φ, (3) if X satisfies Φ, a solution is found and the
algorithm terminates, (4) if X does not satisfy Φ, the verifier
produces a counterexample run r, (5) the learner uses r to
add new pruning constraints, and we repeat until a solution is
found or the search space is exhausted.
Our learner component has three subcomponents: the ex-

pression generator (EG), the pruning constraint checker
(PCC), and the counterexample generalizer (CXG). EG gener-
ates expressions from grammars, as detailed in Section IV-A.
PCC checks each generated expression against the current set
of pruning constraints, as explained in Section IV-B. CXG
is invoked in Step (5) to update the pruning constraints by

generalizing the information contained in the counterexamples,
as detailed in Section IV-C.
Pruning constraints eliminate candidate completions that are

guaranteed to exhibit previously encountered counterexamples,
without having these candidates checked by the verifier, which
is often an expensive subroutine. A naive way to do that
would be to keep a list L of counterexamples seen so far, and
then check whether a candidate exhibits any of the runs in
L. Instead, we use more sophisticated pruning constraints that
encode counterexamples as logical constraints on uninterpreted
functions, c.f. Sections IV-B and IV-C.
As our verifier in Step (2), we use an off-the-shelf TLA+

model checker, specifically TLC [51]. We will not discuss
TLA+ model checking further as it is standard.

A. Expression Generation

Recall that candidate protocols are completions of some
sketch, which are in turn charaterized as members of some
grammar. In the case of multi-hole sketches, completions are
characterized as members of the cross-product of the gram-
mars. Therefore, generating candidate protocols reduces to
enumerating expressions from grammars. Note that, although
grammars have a finite representation, the language (i.e., set of
expressions) of a grammar may be infinite and the expressions
therein may be arbitrarily large.
We experimented with three grammar enumeration tech-

niques: (1) a naive breadth-first algorithm, (2) a cache-based
algorithm, and (3) an extension of the cache-based algorithm
that exploits semantic equivalence of expressions.
1) Naive Breadth-First Algorithm: A naive breadth-first

search algorithm is to keep a priority queue (sorted by size) of
partial expressions, i.e. expressions containing both terminals
and non-terminals. A partial expression is discharged from the
queue by considering all possible ways to replace the non-
terminals using the grammar rules and substituting those into
the partial expression. For example, if the partial expression
is d := E ∪ (x ∪ E) and the grammar has a production
G := E ::= x | y | E ∪ E, we would consider nine different
partial expressions, one for each pair of productions of the
E rule, since E appears twice in the expression d. After
substituting, we can immediately return those expressions
which do not contain non-terminals and add to the queue those
that do. Our experience was that this algorithm was too slow
in practice, since it iterates over and performs substitutions on
larger and larger partial expressions.
2) Cache-Based Algorithm: In the cache-based algorithm,

our learner generates all candidates of size n before it gener-
ates any candidates of size n+ 1. Expressions are essentially
trees and our notion of size is the number of nodes in the
tree, e.g., the size of (a + b) + c is 5. We keep a cache
mapping each integer n to the set of all non-partial expressions
of that size, for each non-terminal. We then use this cache
to build larger non-partial expressions, substituting only into
productions (partial expressions) that appear in the grammar.
There are often many expressions of size n. We use generators

284

to yield a stream of expressions, which avoids generating all
expressions of a given size at once.
As an example of the cache-based algorithm, suppose we

want to generate the expressions of size 5 for the non-terminal
E in the grammar G above. Assume we already have a cache
containing all expressions of size 1,2,3, and 4 for E. Then we
can generate all expressions of size 5 by substituting pairs of
expressions into the rule E ::= E ∪ E such that the sum of
the sizes of the two expressions is 5.
3) Equivalence Reduction: Because the cache-based algo-

rithm reuses all expressions of a given size many times over,
it is important to keep the cache as small as possible. In
particular, if two expressions are semantically equivalent, only
one should appear in the cache. To illustrate, consider that
there are only 16 boolean expressions over two variables,
modulo equivalence. The grammar B ::= x | y | ¬B | B ∧B
can express all 16 of these expressions, but it generates
infinitely many expressions. The number of expressions of size
n is O(2n).
When we generate a new expression, we compute a normal

form for that expression. We then check if we have already
generated an expression with that normal form. If we have,
we do not return the new expression and we do not add it to
the cache. We implement normal forms for (1) set expressions
containing the operations ∪, ∩, and \, (2) boolean expressions
containing the operations ∨, ∧, and ¬, (3) equality expressions,
and (4) inequality expressions. We use DNF as the normal
form for boolean expressions. Our normal form for set expres-
sions exploits the correspondence between set expressions and
boolean functions and then uses DNF. Equality between sets
A and B is equivalent to ∅ = (A\B)∪(B\A); we exploit this
fact to obtain a normal form for equality between two sets.
In addition to equivalence reduction by normal forms, we

also exploit the semantics of expressions to short-circuit the
generation of expressions. Short-circuiting is a technique that
allows us to avoid iterating over large parts of the search space.
For instance, if we are generating expressions of size 5 for
the rule E ∪E, we can consider pairs of expressions of sizes
(1,4) and (2,3), but we can exploit the commutativity of union
by ignoring sizes (4,1) and (3,2). Without this technique, we
would have to iterate over twice as many pairs of expressions,
compute their normal forms, and check if these normal forms
are in the cache. In general, for commutative operation ⊙ if
we are generating expression e1⊙e2, we first pick e1 and only
iterate over choices for e2 that are at least as large as e1.

B. Counterexamples and Pruning Constraints

1) Counterexamples: A counterexample is a run of the
protocol annotated with actions: s0

A1(v⃗1)−−−−→ s1
A2(v⃗2)−−−−→

. . .
Ak(v⃗k)−−−−→ sk. The run is reported as a safety, deadlock, or

liveness violation. If the run is a safety or deadlock violation,
it is interpreted as a path. If it is a liveness violation, it is
interpreted as a path leading to a cycle, called a lasso. In the
case of liveness, sk = si for some i < k and si is the state
that first injects into the cycle.

2) Pruning Constraints: Our pruning constraints are logical
constraints over propositional logic with equality and unin-
terpreted functions. For example, suppose we have the holes
h1(a, b) and h2(b, c). Then, an example of a pruning constraint
is the formula π := (h1(0, 1) ̸= True) ∨ (h2(1, 2) ̸= 1). π
constrains the candidate expressions for the holes h1 and h2.
For example, replacing h1 and h2 with the expressions a < b
and c− b, respectively, violates π, because 0 < 1 = True and
2−1 = 1. Replacing h1 and h2 with a < b and b, respectively,
also violates π. Hence, π prunes at least two completions.
Formally, a pruning constraint is a disjunction of terms,

where each term is a triple containing (1) a hole h, (2) a
mapping s⋆ from the arguments of h to values, and (3) a
literal value of the output type of h. For instance, in π above,
the first term has h = h1(a, b), s⋆ = [a -→ 0, b -→ 1], and
y = True. The second term has h = h2(b, c), s⋆ = [b -→
1, c -→ 2], and y = 1. Let τ := (h, s⋆, y) be a term and
let �h be an interpretation (in our case, an expression) for the
uninterpreted function h. Then �h satisfies τ if �h(s⋆) ̸= y.
If h1, h2,, hm are the uninterpreted functions in a pruning
constraint π and X := �h1,�h2, ...,�hm are interpretations for
the hi (i.e. a completion), then X satisfies π if the disjunction
of the τ terms in π is satisfied.
In each run, our algorithm maintains a set of pruning

constraints, interpreted as a conjunction (of disjunctions of
terms). A completion satisfies a set of pruning constraints
if it satisfies all constraints in the set. Because we want to
avoid seeing any counterexample more than once, the learner
will pass a completion X to the verifier only if X satisfies
every pruning constraint. I.e., a pruning constraint π prunes
completions that do not satisfy π. PCC checks against the
pruning constraints by substituting the expressions of the holes
into the constraints and performing evaluation. Each type of
counterexample (safety, deadlock, liveness) requires a slightly
different encoding as a pruning constraint, as explained next.

C. Counterexample Generalization

A pruning constraint π is under-pruning w.r.t. run r and
sketch S if there exists a completion X of S such that X
satisfies π and r is a run of X . π is over-pruning w.r.t. run
r and sketch S if there exists a completion X of S such that
X does not satisfy π and r is not a run of X . π is optimal
if it is neither under- nor over-pruning. π is sub-optimal if it
is under-pruning, but not over-pruning. Our primary goal is
to avoid over-pruning constraints, since over-pruning results
in an incomplete algorithm, i.e., an algorithm that might miss
valid completions.
In what follows we present three techniques to encode

into pruning constraints, safety, deadlock, and liveness coun-
terexamples, respectively. Our safety pruning constraints are
optimal (Theorem 2), but our deadlock and liveness pruning
constraints are sub-optimal (Theorems 3 and 4). In practice,
these sub-optimal constraints are sufficient to avoid many
completions that exhibit the corresponding violations; the
bottleneck in our experiments is not the number of model
checker calls.

285

1) Encoding Safety Counterexamples: Intuitively, a safety
violation can be fixed by “cutting” at least one transition in
the counterexample run, either by violating its guard or by
modifying its state update. Let r = s0

A1(v⃗1)−−−−→ s1
A2(v⃗2)−−−−→

. . .
Ak(v⃗k)−−−−→ sk be a safety violation and suppose that the com-

pletion is characterized by the interpretations �h1,�h2, ...�hm. We
denote the pruning constraint for r as πsafe(r) and construct
it as follows. πsafe(r) is a disjunction of τ -terms. For each

s
A(v⃗)−−−→ t in the counterexample, we construct a set of τ -terms.

In particular, for each hole hi in the action A, we construct
the term τA(v⃗),i := (hi, s

⋆, y), where y := �hi(s∗) and where
s⋆ is the predecessor state s, restricted to the arguments of
hi, including the arguments to the action A. The pruning
constraint is then the disjunction containing all τA(v⃗),i.
For instance, suppose the safety violation is [a, b, c -→

0, 1, 2]
A−→ [a, b, c -→ 1, 1, 2]. Suppose additionally that

h1(a, b) is a pre-hole in A and a′ = h2(b, c) is a post-hole
in A. Suppose that the completion that resulted in the safety
violation had �h1(0, 1) = True and �h2(1, 2) = 1. Then τA,1 =
(h1, [a -→ 0, b -→ 1], True) and τA,2 = (h2, [b -→ 1, c -→ 2], 1).
The pruning constraint would be τA,1 ∨ τA,2, which corre-
sponds to π from before. This constraint ensures that the pre-
condition of A is not satisfied in the state [a, b, c -→ 0, 1, 2] or
that a ̸= 1 after taking action A in that state.
2) Encoding Deadlock Counterexamples: Informally, a

pruning constraint of a deadlock violation is similar to that of
a safety violation because a deadlock violation can be fixed
by making the deadlocked state sk unreachable. But another
way to fix a deadlock violation is to make sk undeadlocked,
which may be done by weakening the pre-condition of some
action that is not enabled in sk.
Formally, the deadlock pruning constraint for run r is

defined to be πdead(r) := πsafe(r)∨πρ(r), where πρ(r) is a dis-
junction of ρ-terms, each of the form ρA(v⃗),i,k := (hi, s

⋆
k, y),

where s⋆k is sk restricted to the arguments of hi and where
y := �hi(s⋆k). We construct a ρ-term for every action A and
every pre-hole hi in A such that �hi(sk) = False. Then πρ(r)
is the disjunction of all all ρ-terms.
3) Encoding Liveness Counterexamples: The constraint for

a liveness violation can be thought of as a generalization of
the constraint for a deadlock violation. It is sufficient to do
one of (1) break the path to the cycle using τ -terms, (2) break
the cycle using τ -terms, or (3) weaken the pre-condition of
some fair action that is not enabled in some state of the cycle
using ρ-terms, making the cycle unfair. Formally, we denote
our liveness pruning constraint as πlive(r). We construct it as
πlive(r) := πsafe(r) ∨ π′

ρ, where π′
ρ is the disjunction of the

following ρ-terms: For each fair action A, for every v⃗ in the
domain of A, for every j such that sj is in the cycle, and for
every pre-hole hi in A such that �hi(sj) = False, we construct
the term ρA(v⃗),i,j .
4) Fairness and Stuttering: Although we are able to handle

both weakly and strongly fair actions, we did not treat them
differently above in πlive. That construction may be under-
pruning in the presence of weakly fair actions, but it will never

over-prune and therefore our algorithm is complete. None of
our benchmarks required weak fairness when modeling the
synthesized protocols.
Stuttering (a special liveness violation) occurs when there

are no fair, enabled, non-self-looping actions in the final state
of the violation. In constrast, deadlock violations occur when
there is no enabled action at all. We denote the pruning con-
straint for a stuttering violation as πstut(r) := πsafe(r)∨πτ∨π′

ρ.
In addition to the τ -terms from πsafe(r), we add πτ , which is
the disjunction of τA(v⃗),i for every post-hole hi in every fair
action A. We add π′

ρ as we did for a typical liveness violation,
except the only sj in the cycle is the last state of r, sk.

Theorem 1. Let r be a counterexample of a completion of the
sketch S. If r is a safety violation then πsafe(r) is optimal w.r.t.
r and S. If r is a deadlock, liveness, or stuttering violation then
πdead(r), πlive(r), and πstut(r), respectively, are sub-optimal
w.r.t. r and S. — The proof can be found in Appendix A.

V. IMPLEMENTATION AND EVALUATION

Implementation and Experimental Setup: We implemented
our method (Section IV) in a tool, SCYTHE, which supports
many features of the TLA+ language and utilizes the TLC
model checker [51] as verifier. SCYTHE is written in Python
and takes as input (1) a TLA+ file defining the protocol and its
sketch and (2) a configuration file defining the grammars and
types along with protocol parameters. Our grammars are typed
regular tree grammars [15] and our implementation essentially
uses the standard SYNTH-LIB input format for SyGuS [1]. We
ran each experiment on a dedicated 2.40 GHz CPU.
Benchmarks: Our benchmark suite contains seven distinct

protocols: (1) decentralized lock service (decentr. lock), (2)
server-client lock service (lock serv), (3) Peterson’s algo-
rithm for mutual exclusion, (4) two phase commit (2PC),
(5) consensus, (6) sharded key-value store (sharded kv), (7)
raft-reconfig, and (8) raft-reconfig-big. (7) and (8) are non-
trivial, reconfigurable variants of the Raft protocol [33], [40],
[41]. Our benchmarks are adapted from safety verification
benchmarks that have been used in recent years [41], [17].
These existing benchmarks contain a suite of correct, manually
crafted protocols and we refer to each manually crafted
solution as the ground truth. We report statistics about the
ground truth for reference, but we do not use this information
during synthesis. For instance, we do not assume knowledge
of which variables a missing expression depends on.
Adapting verification benchmarks for synthesis by sketching

requires a number of steps, some of which are non-trivial. We
discuss the most salient points of these steps next.
Holes: For each protocol we performed many synthesis

experiments by varying the number of holes in the protocol
sketch. All our experiments, as well as instructions for repro-
ducing them, can be found on GitHub [13]. Representative
experiments are summarized in Table I, explained below.
Grammars: Each hole requires a grammar. SCYTHE is

flexible; the user can provide a different grammar for each
hole, or reuse grammars across holes. SCYTHE grammars are

286

modular in the sense that they contain a general-purpose part
(e.g., the grammar of boolean or arithmetic or set expressions)
plus a hole-specific part (e.g., the terminals which are the
hole’s arguments). We implemented a library that allows
to build grammars by (1) automatically constructing non-
terminals based on the types of the hole’s arguments and
(2) exposing to the user common sub-grammars that can be
deployed across protocols.
Liveness and Fairness: Our benchmarks come from existing

suites focusing on safety verification [41], [17]. Performing
synthesis against only safety properties often results in vacu-
ous solutions that satisfy safety in trivial ways (e.g. by filling
a pre-hole with the expression False). Therefore, we augment
each benchmark with additional liveness properties and any
necessary fairness constraints.
Implementability Constraints: In addition to excluding vac-

uous solutions by adding extra properties, we sometimes need
to exclude unimplementable solutions, for instance, solutions
violating implicit communication/observability constraints be-
tween the protocol processes. For example, replacing the post-
condition in line 8 of Fig. 1 with vote yes′ = ∅ results in
an unimplementable protocol because a node cannot directly
change the vote state of another node. To avoid such so-
lutions, we used arrays instead of sets (e.g., vote yes is an
array mapping process ids to booleans). Then, we restricted
the grammar to only contain array access expressions with
appropriate indices.
Explicitly Modeling the Environment: We had to modify

several of the verification benchmarks of [41] in order to
explicitly separate the (controllable) protocol from its (un-
controllable) environment, so as to prevent synthesis of parts
belonging to the environment.
Results: TLA+ LOC is the number of lines of code of

the ground truth TLA+ protocol specification, which is the
same as the lines of code in the sketch and the synthesized
protocols, since all synthesized expressions are printed to one
line, regardless of size. ID refers to the number used to identify
the experiment in the full results table [13]. “#pre/post holes”
is the number of pre- and post-holes in the sketch, and k
refers to k = k1 + k2 + ... + kn, where each ki is the size
of the expression (c.f. Section IV-A) used in the ground truth
protocol for the ith hole. “gram. LOC” is the number of lines
(non-boilerplate) code in the python script used to generate the
grammar. Every protocol uses the same grammar generation
script, regardless of which or how many holes are poked.
We report Execution Statistics for the tool with and with-

out equivalence reduction. The column “generated / model
checked” reports the number of completions generated by
the tool vs those model checked (the rest were pruned). The
column k′ is either the size of the expression found by the tool,
or the size of the largest expression the tool considered before
it timed out (marked with a ≥ symbol). If there are multiple
holes then k′ is the sum of all expression sizes. Column “total
/ model checking time” reports the total execution time vs
the time devoted to model checking (both in seconds). TO
indicates that the tool timed out after 1 hour; TO** is explained

below. Note that TLC is called without a timeout; hence, it
performs exhaustive model checking on the finite protocol
instances specified by the user configuration.
As Table I shows, our efficient expression generation tech-

nique with equivalence reduction achieves impressive results,
sometimes reducing the number of generated expressions by
more than three orders of magnitude (c.f. raft-reconfig ID 121
where only 271 expressions are generated with reduction, vs
> 690,000 without reduction at the TO point). In all cases, the
number of completions model checked is much smaller than
those generated, which shows how critical pruning constraints
are to scalability. With equivalence reduction, execution time
is typically dominated by model checking, although there
are exceptions (e.g. 2pc). Without equivalence reduction, the
time is typically dominated by expression generation, which
demonstrates the importance of the equivalence reduction.
Qualitatively, SCYTHE often synthesizes large, non-trivial

expressions, e.g., single expressions of size 14 in the cases
of raft-reconfig ID 121 and raft-reconfig-big ID 714, and
multiple expressions of combined size up to 18 in other cases.
Expressions (1) and (2) shown in Section I are two concrete
examples of synthesized expressions.
Novel Solutions: The protocols synthesized by SCYTHE

were often identical (or almost identical, up to commuta-
tivity of an operator such as ∧, etc.) to the ground truth.
In other cases, however, SCYTHE found novel, non-vacuous
solutions. SCYTHE often found solutions with shorter ex-
pressions. One notable example comes from the experiment
2pc ID 303, where instead of the ground-truth expression
e1 := ∅ ≠ (P \A) ∪ (P ∩N), SCYTHE found the expression
e2 := P ̸= (A \N), where P is the set of all nodes, A is the
set of alive nodes, and N is the set of nodes that voted no. So
e1 says “There is a node that is dead or there is at least one
node that voted no.” In the context of the protocol, e1 and e2
are equivalent, but a proof requires the subtle reasoning that
both A and N are subsets of P , since P is the set of all nodes.
Correctness of Infinite Instances: A protocol synthesized

by SCYTHE is a solution to Problem 1, i.e., is correct for the
finite instance specified by the user. This correctness follows
from the fact that during the synthesis loop the verifier (TLC)
exhausts the state space of the specified finite instance. As it
turns out, the protocols of Table I produced by SCYTHE are
also solutions to Problem 2. Specifically, for each protocol
of Table I except peterson, we used the TLA+ Proof System
(TLAPS) [11] to prove that all instances of that protocol satisfy
the key safety property (our TLAPS proofs did not consider
liveness; the four peterson variants involve only two processes
and need no extra verification). For our TLAPS proofs we used
techniques similar to those reported in [40].
In all but two cases, the initial solutions produced by

SCYTHE proved to be correct. For raft-reconfig ID 343 and
raft-reconfig-big ID 709, SCYTHE initially produced a solution
which is correct for up to 3 nodes, but which we were surprised
to find is incorrect for 4 or more nodes. To address this
scenario, we added to the tool an extra-check option to perform
an additional model checking step with larger parameter values

287

Execution Stats
Sketch Parameters w/o eq. reduction w/ eq. reduction

Protocol TLA+

LOC ID #pre/post
holes k

gram.
LOC

generated/
model checked k′ total / model

checking time
generated/
model checked k′ total / model

checking time
decentr. lock 48 486 1 / 3 21 28 93403 / 136 16 674 / 193 3020 / 117 16 190 / 175
lock serv 83 599 2 / 6 16 22 384569 / 85 16 2116 / 134 7483 / 80 16 159 / 120
lock serv 83 611 2 / 6 16 22 665463 / 104 ≥16 TO / 1094 4064 / 84 16 145 / 124
peterson 105 475 3 / 1 19 53 442553 / 324 12 2731 / 453 485 / 243 12 348 / 346
peterson 105 375 2 / 2 19 53 583201 / 264 13 3355 / 356 1369 / 267 13 364 / 357
peterson 105 413 3 / 1 22 53 582616 / 353 ≥12 TO / 602 7073 / 1259 15 1809 / 1753
peterson 105 547 2 / 6 22 53 643529 / 167 ≥16 TO / 483 5569 / 222 17 329 / 301
2pc 134 303 2 / 0 15 46 690411 / 24 ≥8 TO / 1494 65994 / 23 9 388 / 43
2pc 134 558 3 / 5 18 46 410675 / 87 14 2301 / 179 89027 / 88 14 629 / 171
2pc 134 485 2 / 2 17 46 681190 / 44 ≥10 TO / 492 493492 / 55 11 2654 / 110
2pc 134 513 2 / 6 18 46 642178 / 162 ≥18 TO / 1641 98009 / 211 18 886 / 382
consensus 127 624 2 / 6 17 56 550501 / 97 17 3442 / 606 9988 / 63 17 427 / 375
consensus 127 550 2 / 6 22 56 483126 / 162 ≥17 TO / 1116 53994 / 286 18 2291 / 2011
sharded kv 112 302 1 / 1 13 44 248298 / 13 13 1325 / 49 469 / 14 13 59 / 57
sharded kv 112 365 1 / 3 22 44 611512 / 129 ≥16 TO / 941 3149 / 149 17 472 / 455
raft-reconfig 174 463 1 / 3 21 82 64832 / 64 14 462 / 128 1958 / 65 14 139 / 129
raft-reconfig 174 343 2 / 0 21 82 608586 / 215 ≥11 TO / 484 41411 / 251 17 750 / 530
raft-reconfig 174 121 1 / 0 18 82 694552 / 12 ≥12 TO / 3589 271 / 13 14 31 / 27
raft-reconfig-big 304 708 1 / 3 21 85 67237 / 78 14 1815 / 1465 3155 / 84 14 1668 / 1651
raft-reconfig-big 304 709 2 / 0 21 85 2231397 / 220 ≥12 TO** / 3950 282106 / 252 17 TO** / 12943
raft-reconfig-big 304 710 1 / 0 18 85 658492 / 12 ≥12 TO / 3588 1369 / 13 14 368 / 359
raft-reconfig-big 304 714 1 / 7 25 85 221648 / 101 18 2662 / 1519 6500 / 102 18 1802 / 1768

TABLE I

than those used in the synthesis loop, right before outputting
the final solution (if the extra-check fails, the tool continues
to search for a solution). SCYTHE with extra-check found a
correct (for all instances) solution for raft-reconfig ID 343
in 750 secs (this includes the time spent for extra-checks).
SCYTHE with equivalence redution also found a correct (for
all instances) solution for raft-reconfig-big ID 709, although it
timed out after a total of four hours (TO**) while performing
the final extra-check for 4 nodes—that single final extra-check
took about 2 hours. For ID 709, SCYTHE without equivalence
reduction failed to find a solution as it spent 4 hours generating
expressions that were much smaller (≤ size 12) than the
solution found with equivalence reduction (size 17).

VI. RELATED WORK

Past works synthesize explicit-state, finite-state ma-
chines [2], [5], [14], [16]. In contrast, we synthesize symbolic
and parameterized infinite-state machines. TRANSIT [47]
cannot process counterexamples automatically and requires a
human in the synthesis loop. [30] and [6] use cut-off tech-
niques which only apply to a special class of self-stabilizing
protocols in symmetric networks, and [24] study a special
class of distributed agreement-based systems. [29] consider
only threshold-guarded distributed protocols. In contrast, our
work applies to general distributed protocols.
As discussed in Section I, [4] synthesize interpretations

of uninterpreted functions represented as finite lookup tables,
whereas we synthesize symbolic expressions directly. We use
TLA+ models with parameterized actions. In contrast, [4] use
extended finite state machines (EFSMs) which do not have
parameterized actions. It is unclear whether expressions such
as (1) and (2) on page 282 could be synthesized by [4].
Like [4], we use CEGIS and our counterexample encodings

are similar. Unlike [4], we rely neither on an external SyGuS
solver nor on an SMT solver. [4] encodes the search space

of candidate interpretations as SMT formulas and calls an
SMT solver to generate the next candidate. SMT queries are
both expensive and numerous in the context of CEGIS. In
contrast, we use efficient grammar enumeration techniques and
we bypass SMT solvers by checking candidate expressions
directly against the pruning constraints (Section IV).
Like [4], our tool synthesizes solutions that are guaranteed

correct only up to the finite instances model checked in the
CEGIS loop. Unlike [4], we went one step further and proved
with TLAPS that the solutions produced by our tool are
actually correct for all instances. As discussed in Section V,
this step is not redundant: there were surprising cases of
solutions which are correct for 3 nodes but not for 4 or more
nodes. It is unclear whether the protocols synthesized in [4]
are correct beyond the finite model checked instances.
[26] use genetic programming and [23] use machine learn-

ing for synthesis. Generally, these approaches are not guar-
anteed to find a solution even if one exists, i.e. they are
incomplete. In contrast, our approach is complete.
None of the works cited above use syntax to guide the

search, none use equivalence of expressions with short-
circuiting to reduce the search space, and none handle state
variables with infinite domains. To our knowledge, ours is
the only truly syntax-guided synthesis method for symbolic,
parameterized distributed protocols.
Existing SyGuS solvers use SMT formulas to express prop-

erties, and are therefore not directly applicable to distributed
protocol synthesis which requires temporal logic properties.
But our techniques for generating expressions and checking
them against pruning constraints are generally related to term
enumeration strategies used in SyGuS [1]. Both EUSolver [3]
and cvc4sy [38] are SyGuS solvers that generate larger ex-
pressions from smaller expressions. EUSolver uses divide-
and-conquer techniques in combination with decision tree
learning and is quite different from our approach. To our

288

knowledge, EUSolver does not employ equivalence reduction.
The “fast term enumeration strategy” of cvc4sy is similar to
our cache-based approach and also uses equivalence reduction
techniques. To our knowledge, cvc4sy does not use short-
circuiting.
In our work, we assume that the user has a means of con-

structing the appropriate sketch; we do not address the problem
of “sketch inference.” Work on scenarios [2] and flows [44]
is directly applicable to this problem of coming up with a
sketch. The sketch may also arise from a manually constructed,
incorrect protocol that the user wishes to repair [7], along with
knowledge of where a bug exists. Likewise, we assume that
the user provided a sketch-property pair that is realizable—
i.e., there exists a completion of the sketch that satisfies the
property. Recent work on unrealizability logic [22], [27], [31]
provides insight on how to identify unrealizable synthesis
instances and communicate appropriate information to the user
to help facilitate sketch debugging. A synthesis pipeline that
integrates our work with that above is a promising direction
for future work.

VII. CONCLUSION

We present the only, to our knowledge, truly syntax-guided
synthesis method for symbolic, parameterized, infinite-state
distributed protocols. We show experimentally that our method
and tool are able to synthesize non-trivial completions across
a broad set of non-trivial protocols written in TLA+, and
prove that these completions generalize correctly (i.e., preserve
safety) in all possible instances.
Our sketch-based approach to distributed protocol synthesis

is motivated by several factors. First, a common pattern in the
design of distributed protocols is to extend an existing protocol
(e.g. a non-reconfigurable protocol) with a new feature (e.g. re-
configuration). Indeed, our benchmarks include variants of the
Raft dynamic reconfiguration protocol [33], [40], [41], and we
focus on synthesizing the “Reconfig” action of those protocols.
Sketching naturally fits this design pattern. Second, if a bug
has been localized to a specific part of a protocol, sketching
can be used to repair the protocol [7]. Finally, synthesis “from
scratch” is a special case of synthesis by sketching where
the sketch admits all protocols as completions. Therefore, no
generality is lost when studying a sketch-based approach to
synthesis and tractability is gained.
Future work includes: (1) further ways to reduce the search

space and short-circuit parts of the search; (2) optimization of
the SCYTHE-TLC interface to avoid running a new instance
of (and repeatedly initializing) TLC each time SCYTHE needs
to check a candidate protocol; (3) addressing the problems of
sketch inference and unrealizability handling for the synthesis
of distributed protocols; and (4) automating the final, all-
instances verification step (generally an undecidable problem),
by potentially combining TLAPS with state of the art inductive
invariant inference techniques [39].

REFERENCES

[1] Rajeev Alur, Rastislav Bodı́k, Garvit Juniwal, Milo M. K. Martin,
Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando

Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-guided
synthesis. In Formal Methods in Computer-Aided Design, FMCAD 2013,
Portland, OR, USA, October 20-23, 2013, pages 1–8. IEEE, 2013.

[2] Rajeev Alur, Milo Martin, Mukund Raghothaman, Christos Stergiou,
Stavros Tripakis, and Abhishek Udupa. Synthesizing Finite-state Proto-
cols from Scenarios and Requirements. In Haifa Verification Conference,
volume 8855 of LNCS. Springer, 2014.

[3] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. Scaling
enumerative program synthesis via divide and conquer. In Tools
and Algorithms for the Construction and Analysis of Systems - 23rd
International Conference, TACAS 2017, volume 10205 of Lecture Notes
in Computer Science, pages 319–336, 2017.

[4] Rajeev Alur, Mukund Raghothaman, Christos Stergiou, Stavros Tripakis,
and Abhishek Udupa. Automatic completion of distributed protocols
with symmetry. In Daniel Kroening and Corina S. Pasareanu, editors,
Computer Aided Verification - 27th International Conference, CAV,
volume 9207 of Lecture Notes in Computer Science, pages 395–412.
Springer, 2015.

[5] Rajeev Alur and Stavros Tripakis. Automatic synthesis of distributed
protocols. SIGACT News, 48(1):55–90, 2017.

[6] Roderick Bloem, Nicolas Braud-Santoni, and Swen Jacobs. Synthesis
of self-stabilising and byzantine-resilient distributed systems. In Swarat
Chaudhuri and Azadeh Farzan, editors, Computer Aided Verification -
28th International Conference, CAV, volume 9779 of Lecture Notes in
Computer Science, pages 157–176. Springer, 2016.

[7] Borzoo Bonakdarpour and Sandeep S. Kulkarni. Automated model
repair for distributed programs. SIGACT News, 43(2):85–107, 2012.

[8] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of
blockchains. 2016.

[9] Vitalik Buterin. Ethereum white paper: A next generation smart contract
& decentralized application platform. 2013.

[10] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-
pher Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev,
Christopher Heiser, Peter Hochschild, et al. Spanner: Google’s globally
distributed database. ACM Transactions on Computer Systems (TOCS),
31(3):1–22, 2013.

[11] Denis Cousineau, Damien Doligez, Leslie Lamport, Stephan Merz,
Daniel Ricketts, and Hernan Vanzetto. TLA+ Proofs. 18th International
Symposium on Formal Methods (FM 2012), 7436:147–154, January
2012.

[12] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s highly
available key-value store. ACM SIGOPS operating systems review,
41(6):205–220, 2007.

[13] Derek Egolf. scythe-fmcad2024. https://github.com/egolf-cs/
scythe-fmcad2024.

[14] Derek Egolf and Stavros Tripakis. Synthesis of distributed protocols
by enumeration modulo isomorphisms. In ATVA 2023 - Part I, Lecture
Notes in Computer Science, pages 270–291. Springer, 2023.

[15] Joost Engelfriet. Tree automata and tree grammars. CoRR,
abs/1510.02036, 2015.

[16] Bernd Finkbeiner and Sven Schewe. Bounded synthesis. Int. J. Softw.
Tools Technol. Transf., 15(5-6):519–539, 2013.

[17] Aman Goel. IvyBench. https://github.com/aman-goel/ivybench, Ac-
cessed: 2024-04-22.

[18] Aman Goel and Karem Sakallah. On Symmetry and Quantification:
A New Approach to Verify Distributed Protocols. In NASA Formal
Methods: 13th International Symposium, NFM 2021, page 131–150,
2021.

[19] Aman Goel and Karem A. Sakallah. Towards an automatic proof of
lamport’s paxos. In 2021 Formal Methods in Computer Aided Design
(FMCAD), pages 112–122, 2021.

[20] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program
synthesis. Foundations and Trends in Programming Languages, 4(1-
2):1–119, 2017.

[21] Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno. Finding
Invariants of Distributed Systems: It’s a Small (Enough) World After
All. In 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), pages 115–131. USENIX Association, April
2021.

[22] Qinheping Hu, John Cyphert, Loris D’Antoni, and Thomas W. Reps.
Exact and approximate methods for proving unrealizability of syntax-
guided synthesis problems. In Alastair F. Donaldson and Emina

289

https://github.com/egolf-cs/scythe-fmcad2024
https://github.com/egolf-cs/scythe-fmcad2024
https://github.com/aman-goel/ivybench

Torlak, editors, Proceedings of the 41st ACM SIGPLAN International
Conference on Programming Language Design and Implementation,
PLDI 2020, London, UK, June 15-20, 2020, pages 1128–1142. ACM,
2020.

[23] Yujie Hui, Drew Ripberger, Xiaoyi Lu, and Yang Wang. Learning
distributed protocols with zero knowledge. In Machine Learning for
Systems at NeurIPS 2023, 2023.

[24] Nouraldin Jaber, Christopher Wagner, Swen Jacobs, Milind Kulkarni,
and Roopsha Samanta. Synthesis of distributed agreement-based systems
with efficiently-decidable verification. In TACAS 2023, volume 13994
of Lecture Notes in Computer Science, pages 289–308. Springer, 2023.

[25] Swen Jacobs and Roderick Bloem. Parameterized synthesis. Log.
Methods Comput. Sci., 10(1), 2014.

[26] Gal Katz and Doron Peled. Synthesizing solutions to the leader election
problem using model checking and genetic programming. In Haifa
Verification Conference, HVC’09, page 117–132. Springer, 2009.

[27] Jinwoo Kim, Loris D’Antoni, and Thomas W. Reps. Unrealizability
logic. Proc. ACM Program. Lang., 7(POPL):659–688, 2023.

[28] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley, Jun 2002.

[29] Marijana Lazic, Igor Konnov, Josef Widder, and Roderick Bloem.
Synthesis of distributed algorithms with parameterized threshold guards.
In 21st International Conference on Principles of Distributed Systems,
OPODIS, volume 95 of LIPIcs, pages 32:1–32:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017.

[30] Nahal Mirzaie, Fathiyeh Faghih, Swen Jacobs, and Borzoo Bonakdar-
pour. Parameterized synthesis of self-stabilizing protocols in symmetric
networks. Acta Informatica, 57(1-2):271–304, 2020.

[31] Shaan Nagy, Jinwoo Kim, Loris D’Antoni, and Thomas W. Reps.
Automating unrealizability logic: Hoare-style proof synthesis for infinite
sets of programs. CoRR, abs/2401.13244, 2024.

[32] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc
Brooker, and Michael Deardeuff. How Amazon Web Services Uses
Formal Methods. Commun. ACM, 58(4):66–73, March 2015.

[33] Diego Ongaro and John Ousterhout. In search of an understandable
consensus algorithm. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14), pages 305–319. USENIX Association, June 2014.

[34] Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. Paxos
Made EPR: Decidable Reasoning about Distributed Protocols. Proc.
ACM Program. Lang., 1(OOPSLA), Oct 2017.

[35] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and
Sharon Shoham. Ivy: Safety Verification by Interactive Generalization.
In Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’16, pages 614–630. ACM,
2016.

[36] A. Pnueli and R. Rosner. On the synthesis of a reactive module.
In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’89, page 179–190, New
York, NY, USA, 1989. Association for Computing Machinery.

[37] A. Pnueli and R. Rosner. Distributed reactive systems are hard to
synthesize. In Proceedings of the 31th IEEE Symposium on Foundations
of Computer Science, pages 746–757, 1990.

[38] Andrew Reynolds, Haniel Barbosa, Andres Nötzli, Cesare Tinelli, and
Clark Barrett. CVC4SY: Smart and fast term enumeration for syntax-
guided synthesis. In Isil Dillig and Serdar Tasiran, editors, Proceedings
of the 31st International Conference on Computer Aided Verification
(CAV), volume 11561 of Lecture Notes in Computer Science, pages 74–
83. Springer, July 2019.

[39] William Schultz, Edward Ashton, Heidi Howard, and Stavros Tripakis.
Scalable, Interpretable Distributed Protocol Verification by Inductive
Proof Slicing. arXiv eprint 2404.18048, 2024.

[40] William Schultz, Ian Dardik, and Stavros Tripakis. Formal verification
of a distributed dynamic reconfiguration protocol. In Proceedings of the
11th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2022, page 143–152. ACM, 2022.

[41] William Schultz, Ian Dardik, and Stavros Tripakis. Plain and Simple
Inductive Invariant Inference for Distributed Protocols in TLA+. In
22nd Formal Methods in Computer-Aided Design, FMCAD 2022, pages
273–283. IEEE, 2022.

[42] Armando Solar-Lezama. The sketching approach to program synthesis.
In Proceedings of the 7th Asian Symposium on Programming Languages
and Systems, APLAS ’09, pages 4–13. Springer, 2009.

[43] Armando Solar-Lezama. Program sketching. Int. J. Softw. Tools Technol.
Transf., 15(5-6):475–495, oct 2013.

[44] Murali Talupur, Sandip Ray, and John Erickson. Transaction flows
and executable models: Formalization and analysis of message passing
protocols. In Roope Kaivola and Thomas Wahl, editors, Formal
Methods in Computer-Aided Design, FMCAD 2015, Austin, Texas, USA,
September 27-30, 2015, pages 168–175. IEEE, 2015.

[45] John G. Thistle. Undecidability in decentralized supervision. Systems
& Control Letters, 54(5):503–509, 2005.

[46] Stavros Tripakis. Undecidable Problems of Decentralized Observation
and Control on Regular Languages. Information Processing Letters,
90(1):21–28, April 2004.

[47] Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-
Haim, Milo M. K. Martin, and Rajeev Alur. TRANSIT: specifying
protocols with concolic snippets. In Hans-Juergen Boehm and Cormac
Flanagan, editors, ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’13, Seattle, WA, USA, June
16-19, 2013, pages 287–296. ACM, 2013.

[48] Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh. DuoAI: Fast,
Automated Inference of Inductive Invariants for Verifying Distributed
Protocols. In Marcos K. Aguilera and Hakim Weatherspoon, editors,
16th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 2022), pages 485–501. USENIX Association, 2022.

[49] Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh. Mostly
automated verification of liveness properties for distributed protocols
with ranking functions. Proceedings of the ACM on Programming
Languages (POPL), 8:1028–1059, jan 2024.

[50] Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana,
and Gabriel Ryan. DistAI: Data-Driven Automated Invariant Learning
for Distributed Protocols. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 2021), pages 405–421.
USENIX Association, July 2021.

[51] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model Checking
TLA+ Specifications. In Laurence Pierre and Thomas Kropf, editors,
Correct Hardware Design and Verification Methods, pages 54–66,
Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

APPENDIX

A. Proof of Theorem 1

Theorem 1 follows from the four theorems below.

Theorem 2. Let r be a safety violation of a completion of the
sketch S. Then πsafe(r) is optimal w.r.t. r and S.

Proof. For brevity, π := πsafe(r). To show that π is optimal,
we must show that for any completion X of the sketch S, X
satisfies π if and only if r is not a run of X . First suppose X
satisfies π. Then π is not an empty disjunction and moreover
there exists a τA(v⃗),i in π that is satisfied by X . This τ -

term corresponds to some transition s
A(v⃗)−−−→ t in r. If the

hi corresponding to the τ -term is a pre-hole, then the action
A(v⃗) is disabled in state s of X . Suppose hi is a post-hole
corresponding to the state variable x. Then x has some value
vx in t. BecauseX satisfies π, we know that after taking action
A(v⃗) in state s, x has some value v⋆x ̸= vx. In either case, r
is not a run of X because it cannot transition from s to t by
action A(v⃗).
Now suppose X does not satisfy π. Then none of the τ -

terms in π are satisfied. Let T = s
A(v⃗)−−−→ t be a transition in

r. We will show that X contains all such T and therefore r
is a run of X . There are two cases: (1) the action of T has
holes in it, or (2) it does not. In case (2), T is a transition that
is present in every completion of the sketch. In case (1), we
can leverage that X violates all τA(v⃗),i that were constructed
for T . If it violates all τA(v⃗),i for all pre-holes, then A(v⃗) is

290

enabled in state s. If it violates all τA(v⃗),i for all post-holes,
then t is a successor of s by action A(v⃗) in X .

Theorem 3. Let r be a deadlock violation of a completion of
the sketch S. Then πdead(r) is sub-optimal w.r.t. r and S.

Proof. Let π := πdead(r) for brevity. π is under-pruning
because although ρ terms ensure that some pre-condition for
some action A is weakened for deadlocked state sk, it is
possible that multiple pre-conditions need to be weakened in
order for A to be taken in sk.
Let X be a completion of the sketch S that does not satisfy

π. To show that π is not over-pruning, we must show that r
is a run of X and that the final state is deadlocked in X . As
with the πsafe proof, we know that X has all the transitions in
r, since all τ -terms are violated. Furthermore, we know that
the final state of r is deadlocked in X because all ρ-terms are
violated and therefore no pre-condition is weak enough to be
taken in order to escape the deadlocked state.

Theorem 4. Let r be a liveness violation of a completion of
the sketch S. Then πlive(r) is sub-optimal w.r.t. r and S.

Proof. Let π := πlive(r). As with the deadlock case, π is
under-pruning because X satifying π may only weaken one
pre-condition of a fair action where it is necessary to weaken
multiple pre-conditions to enable a fair action and make a
cycle unfair.
Let X be a completion of the sketch S that does not satisfy

π. Then all τ -terms are violated, so r is a run of X , so long
as fairness constraints are satisfied. Fairness constraints are
satisfied because all of the ρ-terms in π are violated. I.e., ρ-
terms ensure there does not exist a fair action in X that is
enabled in the cycle of r.

Theorem 5. Let r be a stuttering violation of a completion
of the sketch S. Then πstut(r) is sub-optimal w.r.t. r and S.

Proof. Let π := πstut(r) and suppose X0 is a completion of S
that exhibits r. As with the deadlock and liveness violations,
π is under-pruning because X satisfying π may only weaken
one pre-condition of a fair action where it is necessary to
weaken multiple pre-conditions to enable a fair action and
make stuttering unfair.
Let X be a completion of the sketch S that does not satisfy

π. We must show that r is a run of X . All terms of πsafe(r)
are violated, so the last state, sk, of r is reachable in X by
taking the sequence of transitions in r. Now, each fair action
A of X is either enabled or disabled in sk. We must show that
all enabled fair actions are self-looping. Because the terms in
π′
ρ are violated, we know that the non-self-looping fair actions

that were disabled in state sk of X0 are also disabled in state
sk of X . Because the terms in πτ are violated, we know that
states that were self-looping in X0 are still self-looping in X ,
if they are enabled in X .

291

Formal Methods in Computer-Aided Design 2024

Ownership in low-level intermediate representation
Siddharth Priya

University of Waterloo
Waterloo, Canada

siddharth.priya@uwaterloo.ca

Arie Gurfinkel
University of Waterloo
Waterloo, Canada

arie.gurfinkel@uwaterloo.ca

Abstract—The concept of ownership in high level languages can
aid both the programmer and the compiler to reason about the
validity of memory operations. Previously, ownership semantics
has been used successfully in high level automatic program veri-
fication to model a reference to data by a first order logic (FOL)
representation of data instead of maintaining an address map.
However, ownership semantics is not used in low-level program
verification. We have identified two challenges. First, ownership
information is lost when a program is compiled to a low-level
intermediate representation (e.g., in LLVM IR). Second, pointers
in low-level programs point to bytes using an address map (e.g.,
in unsafe Rust) and thus the verification condition (VC) cannot
always replace a pointer by its FOL abstraction. To remedy
the situation, we develop ownership semantics for an LLVM-
like low-level intermediate representation. Using these semantics,
the VC can opportunistically model some memory accesses by a
direct access of a pointer cache that stores byte representation
of data. This scheme reduces instances where an address map
must be maintained, especially for mostly safe programs that
follow ownership semantics. For unsafe functionality, memory
accesses are modelled by operations on an address map and we
provide mechanisms to keep the address map and pointer cache
in-sync. We implement these semantics in SEABMC, a bit-precise
bounded model checker for LLVM. For evaluation, the source
programs are assumed to be written in C. Since C does not
have ownership built-in, suitable macros are added that introduce
and preserve ownership during translation to LLVM-like IR for
verification. This approach is evaluated on mature open source C
code. For both handcrafted benchmarks and practical programs,
we observe a speedup of 1.3x–5x during SMT solving.

I. INTRODUCTION

Ownership is a scheme to control aliasing of references in
high level languages. It has been studied in a long line of
academic research [1], [2], [3], [4]. More recently, the concept
has gained attention due to Rust, a popular systems language
that offers low level control like C/C++ and uses ownership
semantics to record aliases and mutation of data. In Rust, (1) a
value has exactly one owner, (2) a reference to a value (called a
borrow) cannot outlive the owner, and (3) a value can have one
mutable reference xor many immutable references. A program
that follows this programming discipline allows the Rust
compiler to reason about memory safety statically. However,
for reasons of expressivity and performance, programs may
need to break this discipline for certain operations. For this,
Rust provides unsafe code blocks where the static checks are
temporarily turned off.
While, ownership can aid in generating correct and efficient

code, it is also useful in program verification. Usually, the pres-
ence of aliasing necessitates an address map to soundly model

object accesses through different aliases. With ownership, this
map can be eliminated when it is known that only a single
reference exists. This has been useful for program verification.
For example, the Move Prover [5] replaces references by ob-
jects in the generated verification conditions (VC). Similarly,
RustHorn [3], [6] is able to generate pure First Order Logic VC
for safe Rust programs without introducing a memory model.
The advances in verification using ownership semantics

have not made their way to verification of low-level programs.
One of the problems is that low-level languages do not support
ownership out of the box. As an example, LLVM bitcode
is a register based intermediate representation (IR) used by
C, C++, and, Rust compilers. It only has an attribute for
marking pointers as noalias [7] and no ownership operations.
The noalias attribute is useful for optimization. However, the
semantics of noalias in unclear and has caused confusion [8].
Another challenge is that ownership in high-level language
does not translate directly to low-level settings. For example,
in verification of safe Rust programs, it is correct to model
a reference by the FOL representation of the value it refers
to. However, this model does not work for LLVM-like IR
(and unsafe Rust) because such languages (dialect) have
pointers that treat values as a collection of bytes and rely on
pointer arithmetic to access individual bytes. In verification,
the standard solution models memory using an address map
from addresses to byte or word values. However, such address
maps are expensive to execute symbolically.
This work improves the state-of-the-art by the following

contributions. First, we develop an ownership semantics for an
LLVM-like low level language that operates on single words
in memory. This language replaces unrestricted aliasing with
mutable borrow, read-only borrow, and copy operations that
track outstanding aliases for a memory allocation. Second, we
define a caching mechanism for capturing data at a pointer
itself. This cache can by written and read by operations on
the pointer. A pointer cache allows us to replace memory
accesses in the generated VC by the cache whenever correct
to do so. This can simplify the VC and improve the solving
time. For mostly safe programs, many memory accesses may
be replaced by pointer cache accesses. These semantics are
discussed in Section II.
Third, we discuss our design for VCGen and especially

modelling the borrow operation in Section III. Borrowing tem-
porarily transfers memory access rights from the lender pointer
(a.k.a. lender) to the borrowing pointer (a.k.a. borrower). In

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 35 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0000-0002-2172-9525
https://orcid.org/0000-0002-5964-6792
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_35
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_35
https://creativecommons.org/licenses/by/4.0/

the given semantics, this means that the pointer cache is also
copied from lender to borrower. However, the borrower is
assumed to return the borrow by the first instance of a memory
access by a lender. This means that the updated cache at
the borrower must be copied back to the lender before this.
This transfer ordinarily requires a memory model that allows
shared accesses between the borrower and lender aliases. A
more efficient way uses prophecy variables [9] and was first
proposed in [3]. We adapt the prophecy solution to our setting.
Fourth, to make our ownership semantics practical, we add

support for multi-word memory operations and evaluate the
semantics by incorporating it in SEABMC [10]. SEABMC is
a bit-precise bounded model checking engine for SEAHORN
that uses an SMT solver as its backend. To ease writing
programs using these ownership semantics, the user writes
C programs laced with calls to ownership macros. During
compilation, the macros expand to LLVM intrinsics that are
then interpreted using the given semantics to generate VC.
The benchmark programs are a mix of handcrafted examples
and practical programs. The handcrafted examples are used
to fine tune performance and show what is possible. The
practical programs are from the mbedTLS project - an open-
source SSL/TLS library and has routines for encryption and
secure communications. We get a speedup of 1.3x–5x during
SMT solving. We see that the verification simplicity (speedup)
correlates positively with the number of memory accesses that
can be replaced by pointer cache accesses in a program.

II. OSEA-IR LANGUAGE

In this section, we present the syntax and semantics of the
OSEA-IR language. To simplify the presentation, we propose
machines that work with a single datatype bv(N), a bit-vector
of N bits, as the word size. We impose two restrictions. First,
all memory operations - allocation, load, and, store work on
a single word. Second, the machine can only store integers
in memory and does not support store and load of pointers.
We lift the first restriction in Section IV, and the second in an
extended version [11].
Syntax. We introduce ownership semantics on the base lan-
guage SEA-IR [10]. SEA-IR is an intermediate representa-
tion (IR) itself based on LLVM IR. LLVM assumes a register
based machine and dependency between memory operations
are implied. SEA-IR explicates this dependency information
between memory operations by introducing memory registers.
We assume that the type of each register is known. Figure 1
shows the ownership extended syntax of SEA-IR called
OSEA-IR. We use R to represent a scalar register, P for a
pointer register and M for a memory register. A legal OSEA-IR
program is assumed to be in a Static Single Assignment (SSA)
form. OSEA-IR primarily replaces unrestricted alias creation
by new operations that introduce and remove aliases in a
restricted manner. The mk_own instruction initializes memory
at the given location (simlar to a Box::new(n) in Rust). The
mut_mkbor, mut_mksuc instructions occur in pairs. The first creates
a mutable borrow pointer from a lender pointer. The second

creates a succeeding pointer from the lender pointer that be-
comes active after the mutable borrow ends. The mut_mkbor_off

is similar to a mut_mkbor and creates a pointer at an offset
within an allocation. It must be followed by a mut_mksuc

instruction. The ro_* instructions create read-only borrows of
the lending pointer. The cpy_* instructions create unrestricted
copies of the lending pointer. The mut_mkbor_mem2reg instruction
borrows (loads) a pointer stored in memory to a register. The
mov_reg2mem instruction moves (stores) a pointer in a register to
memory. There is no move instruction between registers since
the operation is equivalent to α-renaming.
Semantics of M0. The semantics are given in terms of a
machine M0 and is based on the stacked borrows model
for Rust [12]. In our formulation, each pointer type (ptype)
is one of owned (o), mutably borrowed (mb), immutably
borrowed (rb), or, copied (c). Access to memory is controlled
by maintaining a per-location borrow stack that captures both
valid accessors and access order. The configuration of M0

is given by the program counter state (P), register map
(R : id → value), address map (M : addr → value) and
a borrow store state (SB : addr → stack((tag, ptype))). A
value is either a bit-vector bv(N) or a pointer type. An address
(addr) is represented as a bit-vector. A pointer is a tuple of
(addr, tag) and is considered fat on account of additional
metadata carried along with the address1. A tag : bv(N) is a
unique id given to a pointer when it is defined. Operations that
introduce and remove aliases, then push and pop alias tags on
the borrow stack, respectively. Each borrow stack entry also
stores ptype along with an identifier for finer access control.
An important restriction is that memory access is allowed for
an alias if its tag is top-of-(borrow)stack for that address.
The semantics for relevant pointer introduction, aliasing,

and, removal are given through operations on the borrow
stack (B) in Table I. A borrow stack state is represented
as a list B = e :: B1, where e is the top of stack and
B1 represents the rest of the stack. We do not explicitly
show effect of operations on (P,R,M) nor do we give the
semantics for all instructions ofM0 due to space constraints.
The interested reader is referred to the stacked borrows [12]
and SEA-IR [10] papers for further background. The mk_own

operation allocates and stores n at the given location. This
operation must provide a location that is un-allocated. After
the operation, the new pointer tag is pushed onto the stack
with ptype = o. The mutable borrow operations use mut_mkbor,
mut_mksuc instructions that always occur in a pair on a lender
pointer p0 to create a borrowed pointer q0 and a succeeding
pointer p1. For a successful operation, the borrow stack is
popped until p0 is on top and its ptype is either an owning or
a mutably borrowed pointer. This operation removes p0.tag as
an accessor and instead pushes p1.tag, the succeeding pointer
and q0.tag, the borrowed pointer, to the borrow stack in that
order. The associated type of a pointer is also added to each
stack entry. Note that the type of q1 is always mb. However

1We use the shorthand .addr to refer to the first tuple element, similarly
for other elements.

293

⟨S⟩ ::= . . . | ⟨OS⟩
⟨RDEF⟩ ::= . . . |

⟨P⟩, ⟨M⟩ = mk own ⟨R⟩, ⟨M⟩
⟨P⟩ = mut mkbor ⟨P⟩ | ⟨P⟩ = mut mkbor off ⟨P⟩, ⟨R⟩ | ⟨P⟩ = mut mksuc ⟨P⟩ |
⟨P⟩ = ro mkbor ⟨P⟩ | ⟨P⟩ = ro mkbor off ⟨P⟩, ⟨R⟩ | ⟨P⟩ = ro mksuc ⟨P⟩ |
⟨P⟩ = cpy mkcpy1 ⟨P⟩ | ⟨P⟩ = cpy mkcpy1 off ⟨P⟩, ⟨R⟩ | ⟨P⟩ = cpy mkcpy2 ⟨P⟩ |

⟨MDEF⟩ ::= . . . | ⟨P⟩, ⟨M⟩ = mut mkbor mem2reg ⟨P⟩, ⟨M⟩ | ⟨M⟩ = mov reg2mem ⟨P⟩, ⟨P⟩, ⟨M⟩
⟨OS⟩ ::= die ⟨P⟩

Fig. 1: Ownership instr. in OSEA-IR grammar, where R, P, and M are scalar registers, pointer registers, and memory registers respectively.

Operation Pre-condition Post-condition
p,m1 = mkown n, m0 SB [p.addr] = ∅ SB [p.addr] = (tagp, o) :: []

q0 = mut_mkbor p0

p1 = mut_mksuc p0

SB [p0.addr] = B0 :: (tagp0 , t) :: B1,

t ∈ {o,mb}, p0.tag = tagp0
SB [p0.addr] = (tagq0 ,mb) :: (tagp1 , t) :: B1

c1 = cpy_mkcpy1 p0

c2 = cpy_mkcpy2 p0

SB [p0.addr] = B0 :: (tagp0 , t) :: B1,

p0.tag = tagp0
SB [p0.addr] = (tagc1 , c) :: (tagc2 , t) :: B1

die q
SB [q.addr] = (tagq , tq) :: (tagp, tp) :: B1,

q.tag = tagq , tq = mb, tp ∈ {o,mb} SB [q.addr] = (tagp, tp) :: B1

m1 = store r, p, m0
SB [p.addr] = B0 :: (tagp, tp) :: B1,

tp ̸= rb, p.tag = tagp

SB [p.addr] = B2 :: (tagp, tp) :: B1,

(p.tag = tagp, tp ∈ {o,mb}) =⇒ (B2 = ∅),

(tp = c) =⇒ (B2 = B0)

r = load p, m
SB [p.addr] = B0 :: (tagp, tp) :: B1,

p.tag = tagp

SB [p.addr] = B2 :: (tagp, tp) :: B1,

(tp ∈ {o,mb, rb}) =⇒ (B2 = [(tagq , tq) ∈ B0 | tq = c]),

(tp = c) =⇒ (B2 = B0)

TABLE I: Effect of selected operations on borrow stack (SB) in machine M0. Effects on R and M are not shown.

the type of p1 depends on the type of p0. The intent is for q0
to have access rights till it surrenders them to p1.

The copy operation creates two copies c1 and c2 using
cpy_mkcpy1 and cpy_mkcpy2 instructions. A copied pointer cor-
responds to a raw pointer in Rust. The lender pointer p0 for
a copy operation can be of any ptype. Similar to a mutable
borrow operation, all entries on top of p0 are popped from
the borrow stack and p0 itself is removed. Next c1 :: c2 are
pushed onto the borrow stack in that order. The ptype of c1
is always c. However, the ptype of c2 depends on the lender
pointer p0. This ensures that the ptype of a lender pointer is
not lost through successive copy operations. Finally, the die

operation surrenders access rights for a pointer by popping off
its entry from the borrow stack. It is only defined for a mutably
borrowed pointer q and signals transfer of data from such a
pointer to its immediate lender, which must be of ptype = o
or ptype = mb. The pointer q must be top of borrow stack.
The die operation is an extension of stacked borrows and is
useful for returning information from a mutable borrow to
the succeeding pointer without going through shared memory.
The store instruction writes a value to memory. If the lender
pointer p is mutably borrowed or owning then all elements
before p are popped. If p is copied then borrow stack remains
unchanged. The load instruction reads values from memory
into a register using a lender pointer p. If p is owning, mutably
borrowed or read-only borrowed, then all pointers above p
(except copied pointers) are removed from the borrow stack.
If p is copied, then the borrow stack is unchanged. Finally,
the observable state ObsStateM0 of machineM0 is given by
the tuple (P,R,M, SB).

Let us look at an example of how M0 operates in Fig. 2.
The intent of the program is to (1) create an owned pointer,
(2) make its alias (3) update data through the alias, and,
(4) observe the data through the owned pointer. At line 5,
a word of memory is allocated with (addr=0x4,tag=1) in the
register map at key p0, the integer 42 is written to memory at
M[0x4], and the tag value 1 is pushed to the borrow stack at
SB[0x4]. Next an alias is created using the mutable borrow
operation at lines 7–8 using tags 3 and 2 for borrowed q0

and succeeding pointer p1 respectively. First the tag for p1

is pushed, then the tag for q0 is pushed. The next couple of
lines load 42 using q0, increment it, and write it back. The
program ends the mutable borrow in line 14. This removes
q0’s tag from SB. Now only p1 can access addr 0x4. Finally,
the program reads the new value 43 from addr 0x4 in line 16.

Semantics ofM1. We now define an extension toM0 called
M1. In M1, a fat pointer additionally has a cache bit-vector
field called val. Each store operation also updates val with the
value to be written to memory. A load from memory may be
replaced by val when correct to do so. A pointer value now
becomes (addr, tag, val). Overall, the semantics of existing
instructions aim to maintain the val cache. The semantics is
laid out in Table II. The mk_own instruction updates its cache
with the value it initialized the memory allocation with. The
pair of mut_mkbor and mut_mksuc operations have two cases: (1) if
the lender is top-of-(borrow)stack then the operation reads the
value stored at lender pointer p0 and updates the caches of q0
and p1 with that value; (2) if the lender is not top of stack
then the value at lender may be stale and the correct value
is read from memory. The pair of cpy_mkcpy1 and cpy_mkcpy2

294

Operation Pre-condition Post-condition

p = mkown n – R[p] = (p.addr, tagp, n),M [p.addr] = n

q0 = mut_mkbor p0

p1 = mut_mksuc p0
R[p0] = (p0.addr, tagp0 , vp)

R[q0] = (p0.addr, tagq0 , v), R[p1] = (p0.addr, tagp1 , v),

(B0 = ∅) =⇒ (v = vp),

(B0 ̸= ∅) =⇒ (v = M [p0.addr])

c1 = cpy_mkcpy1 p0

c2 = cpy_mkcpy2 p0
R[p0] = (p0.addr, tagp0 , vp)

R[c1] = (p0.addr, tagc1 , v), R[c2] = (p0.addr, tagc2 , v),

(B0 = ∅ ∧ t = {o,mb, rb}) =⇒ (v = vp),

¬(B0 = ∅ ∧ t = {o,mb, rb}) =⇒ (v = M [p0.addr])

die q R[q] = (q.addr, tagq , n)
R[p] = (q.addr, tagp, n),

∃p.R[p] = (q.addr, tagp,)

m1 = store r, p, m0 R[p] = (p.addr, tagp,) M [p.addr] = v,R[p] = (p.addr, tagp, v)

r = load p, m R[p] = (p.addr, tagp, vp)

R[r] = v,R[p] = (p.addr, tagp, v),

((B0 = ∅, tp ∈ {o,mb}) =⇒ (v = vp))

((B0 ̸= ∅ ∨ tp = c) =⇒ (v = M [p.addr]))

TABLE II: Effect of selected operations on SB ,R, and M in machineM1 in addition to pre-and-post conditions from Table I.

1 fun main() {
2 BB0:
3 m00 = mem.init()
4 ; R = [] M = [] SB = []
5 p0,m0 = mk_own 42, m00
6 ; R[p0] = (0x4,1) M[0x4] = 42 SB[0x4] = 1 :: []
7 q0 = mut_mkbor p0
8 p1 = mut_mksuc p0

9 ;
R[p1] = (0x4,2)
R[q0] = (0x4,3) M SB[0x4] = 3 :: 2 :: []

10 r1 = load q0, m0
11 R[r1] = 42 M SB ;
12 m1 = store r1 + 1,q0,m0
13 ; R M[0x4] = 43 SB
14 die q0
15 ; R M SB[0x4] = 2 :: []
16 r = load p1, m1
17 ; R[r] = 43 M SB
18 halt
19 }

Fig. 2: Example of M0 operation. Effect on register map (R),
memory map (M), and borrow store (SB) shown in pink.

instructions similarly update the cache of c1 and c2 with the
correct value. The die instruction transfers the value cached at
q to the cache of the immediately succeeding pointer, called
p here. The transfer to the succeeding pointer occurs by first
searching for the pointer with the correct tag in the register
map R and then updating the corresponding val field. Since we
do not support the storage of pointers to memory, the search
through R is enough to find the right pointer. Note that the die

operation enables transfer of a value from a mutable borrow to
the succeeding pointer without using shared memory. A store

instruction updates the cache with the value r to be written to
memory. This value is then written to memory and to p.val. In
M1, a store does not support storing pointers to memory. This
restriction is lifted in an extended version [11]. A load has two
cases. First, if the lender pointer p is top-of-(borrow)stack, and
is mutably borrowed or owning, then the read from memory
is replaced by a read of the val (cache) field. Second, if the
load uses a lender pointer p that is not top-of-(borrow)stack,
or is copied, then the read from memory proceeds as usual.
In the second case, the pointer cache is also updated with the
value read from memory.
The optimisation we describe for the load instruction is

correct becauseM1 always maintains the following invariant:

Theorem 1 (Cache equivalence). For all pointers in the reg-
ister map, if the pointer is top-of-(borrow)stack and is owning
or mutably borrowed then the pointer cache value is the same
as the value of memory at address of the pointer. Formally,
let R be a register map, M memory, and SB a borrow store.
Then,

(R[p] = (addr, tagp, n)) ∧
(SB [addr] = (tagp, tp) :: B) ∧

(tp ∈ {o,mb})) =⇒ M [addr] = n

Proof. The proof proceeds by structural induction on the
syntax of the program P. Assume Thm. 1 holds in some
configuration (P0, R0,M0, SB0). The next instruction takes
the configuration to (P1, R1,M1, SB1

). We case-split on each
possible instruction. We illustrate the process through some of
the relevant instructions.

• store keeps the cache in-sync with memory according to
given semantics;

• mut_mkbor keeps the mutably borrowed pointer cache in-
sync with memory since the lender cache value is already
in-sync (by assumption) and mutably borrowed pointer
cache gets this value;

• die, before this die Thm. 1 holds for the mutably bor-
rowed pointer. Then, die copies cache value from muta-
bly borrowed pointer to succeeding pointer, keeping the
succeeding pointer cache in-sync with memory. ■

We now define ObsStateM1 for M1 as a tuple
(P,R,M, S) with the pointer val field excluded from view.
Let ≡ be the equivalence relation between M0 and M1

defined as follows: sm0

M0 ≡ sm1

M1 ↔ ObsStateM0(sM0) =
ObsStateM1(sM1). By Thm. 1, starting in equivalent observ-
able states, both M0 and M1 operate in lock-step. Thus, the
following theorem holds:

Theorem 2. The relation ≡ is both a forward and a backward
simulation between M0 and M1.

Thus, safety of M1 implies safety of M0 and vise versa.

III. VC GENERATION

295

1 fun main() {
2 BB0:
3 m00 = mem.init()
4 ;m00

5 p0,m0 = mk_own 42, m00

6 ;p0.addr = 4 ∧ p0.val = 42 ∧
7 ;m0 = m00[p0.addr ↦→ 42]

8 q0 = mut_mkbor p0
9 p1 = mut_mksuc p0

10 ;q0.addr = p0.addr ∧ q0.val = p0.val ∧ q0.retval = x ∧
11 ;p1.addr = p0.addr ∧ p1.val = x ∧ p1.retval = p0.retval

12 r1 = load q0, m0

13 ;r1 = q0.val

14 m1 = store r1 + 1, q0, m0

15 ;q1.addr = q0.addr ∧ q1.retval = q0.retval ∧
16 ;q1.val = r1 + 1 ∧m1 = m0[q1.addr ↦→ q1.val]

17 die q0

18 ;q1.val = q1.retval

19 r = load p1, m1

20 ;r = p1.val

21 assert r == 43

22 ;¬(r = 43)

23 halt
24 }

Fig. 3: Verification condition (VC) shown in yellow.

We introduce the general encoding of an OSEA-IR pro-
gram and the modelling of mutable borrows in particular
using the example in Fig. 3. Note that this example runs
throughout this section. For now, we suggest the reader
ignore the generated VC (in yellow). We focus on aliasing
instructions and how the pointer cache is affected. The mk_own

instruction defines p0 writing 42 to both memory and the
pointer cache maintaining Cache Equivalence. The mut_mkbor,
mut_mksuc instructions create aliases q0, p1 from p0. Here, the
cache at p0 is copied to q0 and p1, again maintaining the cache
equivalence invariant. The q0 mutably borrowed alias updates
memory (and its pointer cache) to 43. It then surrenders access
rights using the die instruction. At this point, the succeeding
alias p1 becomes active (top-of-(borrow)stack). However, for
p1 to maintain cache equivalence (Theorem 1), it must get a
copy of q0’s cache. This is not straightforward since there is no
explicit transfer instruction from q0 to p1. The standard solution
is to use shared memory so that q0 can write to this memory
on a die and the succeeding pointer p1 can then read from
this memory on next access. However, the aim of caching is
to eschew memory accesses as much as possible to keep the
operation (and VC) simple. The concrete semantics of M1

provides one alternative to accessing memory. There, a die

instruction finds the succeeding pointer tag in the borrow store
SB and then searches through the register map R to update
the pointer cache with the same tag. This mechanism is as (or
more) expensive to execute symbolically as shared memory.
An elegant solution proposed in RustHorn [3] uses a prophecy
variable [9] to model the return of a mutable borrow in the VC.
We adapt the scheme to VC generation (VCGen) for OSEA-
IR. We now explain VCGen, emphasizing the role of prophecy
variables to model return of a mutable borrow.
The VC is generated using the sym translation function.

It builds up the VC in a recursive, bottom-up fashion on the
abstract syntax tree of an OSEA-IR program. For simplicity
of presentation, we assume that two fundamental sorts are
used in the encoding: bit-vector of 64 bits, bv(64), and a map
between bit-vectors, bv(64) → bv(64). We now revisit the
example and explain the VC for each line of source code.
Line 4 models mem.init as m00, a free variable. Line 6 models
the mk_own instruction. It updates memory at m00[addr] to 42
and defines the fat pointer p0. A fat pointer is modelled as
a tuple (addr, val, retval). Here addr holds the address, val
holds the current cache value (42 here), and retval holds a
prophecy value, the use of which will be laid out soon. A
mutable borrow operation occurs in lines 10–11. The lender
pointer p0 creates two aliases, the mutable borrow q0 and the
succeeding pointer p1. The location p0.addr is copied to both
q0.addr and p1.addr. The cache at p0.val is copied to q0.val.
To set up the return of the cache value from the mutably
borrowed alias to the succeeding pointer, we entangle the
q0.retval and p1.val field using a fresh prophecy value x.
This prophecy x will resolve to the correct cache value when
q0 dies. When this happens, p1 instantly gets the same value
in its cache in p1.val. Moving ahead, lines 13–16 model the
increment of the value pointed to by q0. Note that apart from
updating the value in memory, the q0.val variant q1.val also
gets the updated value. Finally, in line 18, the die operation
causes the prophecy x to be constrained by equating q1.val and
q1.retval. As expected, this defines p1.val to get the correct
cache value 43 maintaining cache equivalence. The transfer
of cache from q0 to p1 is, therefore, modelled without any
expensive symbolic operations involving memory accesses or
register map lookups. In the end, we see that the generated
VC is unsatisfiable and the property is valid.
We now describe the function sym for selected pointer

operations. The semantics of mk_own is given in Fig. 4. We
assume that an address ℓ is given by an external allocator. The
allocator should follow the usual property that ℓ has not been
allocated previously. Note that p0.retval field is free since
an owning pointer does not return the cache value to another
alias. We define sym for mutable borrow and die operations
in Fig. 5. The mutable borrow aliasing operation copies the
addr field from the lender to the borrower and succeeding
pointer. The cache is wired as follows. First, the mutably
borrowing pointer gets the lender cache using q0.val = p0.val.
Second, we entangle p1.val with the free symbol q0.retval
using the tngle macro. The macro itself entangles the first
argument with the second by equating them. Third, p1.retval
gets the prophecy in p0.retval to model cascading borrows
(reborrows). The sym for die equates the given pointer’s val
and retval field, constraining the prophecy value in q.retval
and returning the borrow.
In summary, the fat pointer concept is our workhorse in

mapping two previous high level VCGen schemes to a low-
level verification setting. First, the reference elimination mech-
anism is replaced by fat pointers that cache values. Second,
a fat pointer field holds a prophecy value that expresses the
cache value after returning from a mutable borrow.

296

sym(p0, m1 = mk_own n, m0) ≜ ∃ℓ.(m1 = m0[ℓ ↦→ n]) ∧
(p0.addr = ℓ) ∧ (p0.val = n)

Fig. 4: Definition of sym for mk_own.

tngle(r1, r2) ≜ r1 = r2

sym(q_0 = mut_mkbor p_0; p_1 = mut_mksuc p_0) ≜
q0.addr = p0.addr ∧ q0.val = p0.val ∧

tngle(p1.val, q0.retval) ∧ p1.retval = p0.retval

sym(die q) ≜ q.val = q.retval

Fig. 5: Definition of sym for mutable borrow, die, and tngle macro
for entanglement.

IV. TOWARDS A PRACTICAL MACHINE

In Section II, we described M0 and M1, both machines
that could only allocate a single word through mk_own. We lift
this restriction now in M2. To allocate multiple words (wide
allocations), we change the mk_own syntax. Instead of taking
a bit-vector to write to memory, it now takes a bit-vector
allocation size argument. For cache equivalence to hold, the
pointer cache width must now be wide enough to cache multi-
byte allocation data. This complicates the design of the cache.
To keep things simple, instead of hard-wiring the pointer cache
to replicate memory contents, we only cache a summary of the
data in memory and provide operations to set and get the cache
value using set_cache and get_cache, respectively. A property
to be verified can be cached at the pointer. Pointer aliasing
operations copy the value as before. The decoupling of cache
from load and store operations does introduce burden on the
programmer to update the cache as required. As we move
towards a practical machine, we also add a new unique (u)
variant to pointer type ptype. A unique pointer is created using
begin_unique and end_unique instructions.
The syntax of these new instructions is given in Fig. 6.

The mk_own instruction takes three arguments - the bit-vector
to write, the size (in bytes) of the allocation and the incom-
ing memory to update. The operation now does not update
memory or the pointer cache since that is the programmer’s
responsibility. The begin_unique and end_unique operations take
a copied (unique) pointer and define a unique (copied) pointer
with the same addr and val fields as the source pointer. These
operations are useful when the user only wants to mark a
pointer as unique temporarily. The get_cache instruction returns
the val field of a pointer. the set_cache instruction takes a
pointer and a value. It then defines a new pointer where all
fields are the same as the source pointer, except the val field
that has been updated to the given value.
Verification pipeline. To evaluate the efficacy of ownership
intrinsics for verification, we use the SEABMC bit-precise
bounded model checker. SEABMC operates on LLVM IR
programs. For this work, the SEABMC VCGen process has
been enhanced to handle ownership instructions. It is cumber-
some to construct low-level OSEA-IR programs by hand to
be verified in SEABMC. To ease the task, we provide an API
for adding ownership semantics to C programs resulting in a
C-like programming language with ownership semantics. The

⟨RDEF⟩ ::= . . . | ⟨P⟩, ⟨M⟩ = mk own ⟨R⟩, ⟨M⟩ |
⟨P⟩ = begin unique ⟨P⟩ | ⟨P⟩ = end unique ⟨P⟩ |
⟨P⟩ = set cache ⟨P⟩, ⟨R⟩ | ⟨R⟩ = get cache ⟨P⟩

Fig. 6: Grammar of new instructions for OSEA-IR.
1 extern void escapeToMemory(char *);
2 int main() {

3 char *p = MK OWN(0, sizeof(char));

4 char c = nd_char();
5 assume (c == 42);

6 SET CACHE(p, c);

7 *p = c;
8 char *b;

9 MUT BORROW(b, p);

10 if (nd_bool()) {
11 c = nd_char();
12 assume(c > 43);

13 SET CACHE(b, c);

14 *b = c;
15 escapeToMemory(b);
16 }

17 DIE(b);

18 char r;

19 GET CACHE(p, r);

20 sassert(r == 42 || r > 43);
21 return 0;}

Fig. 7: A C program with Ownership macros in yellow.

API is in the form of C macros. The C program is compiled
to an OSEA-IR program. The low-level OSEA-IR program
then generates the VC in SMT-LIB form. This is finally sent
to an SMT solver. We discuss the API using the example
high level program in Fig. 7. The program starts in line 3,
the MK_OWN macro allocates a byte of memory to an owning
pointer. The next line uses the nd_char function to assign a
non-deterministic char to c. The value of c is constrained to
be 42 using an assume statement. In line 6, the cache at pointer
p is set to the value of c using the SET_CACHE macro. The value
is also stored in memory using pointer p. The macro MUT_BORROW

in line 9 then creates a mutable borrow. Internally, the macro
expands to mut_mkbor and mut_mksuc with b getting the mutable
borrow and p getting the succeeding pointer. Next, the non-
deterministic boolean value from nd_bool is used in line 10
to conditionally update b’s cache to a non-deterministic value
greater than 43. The escapeToMemory function takes the address
of b thwarting any optimisation attempts to promote b to a
register. Finally, b dies in line 17 using the macro DIE. The
succeeding pointer’s cache is now read using GET_CACHE into r

in line 19. The sassert (static assert) then checks that the value
of r is either 42 or greater than 43.
For the program in Fig. 7, Fig. 8a is its OSEA-IR form

and Fig. 8b is the generated VC. We now describe the VCGen
inM2 using Fig. 8. The ownership instructions are highlighted
in yellow in both figures. The MK_OWN macro in C becomes the
mk_own instruction in OSEA-IR and is translated to SMT-LIB
form using sym. Note that in M2, mk_own does not write to
memory or update the pointer cache. The symbolic semantics
therefore only allocates memory and provides a previously
unallocated address addr0. The set_cache instruction in line 7
defines a pointer p3 with the same addr as p2 and the cache
updated to r5. The mutable borrow occurs in lines 9–10. The

297

1 fun main() {
2 BB0:
3 m3 = mem.init()

4 p2, m0 = mk own 1, m3

5 r5 = nd_char()
6 r6 = r5 == 42

7 p3 = set cache p2 r5

8 m1 = store r5, p3, m0

9 p5 = mut mkbor p3

10 p6 = mut mksuc p3

11 r15 = nd_bool();
12 r17 = r15 == 42
13 br r17, ERR, BB1
14
15 BB1:
16 r18 = nd_char()
17 r19 = r18 > 43
18 r20 = r6 && r19

19 p23 = set cache p5 r18

20 m2 = store r18, p23, m1
21 escapeToMemory(p0)
22 br ERR
23
24 ERR:
25 r22 = select r17, r6, r20
26 p24 = select r17, p5, p23

27 die p24

28 r29 = get cache p6

29 r30 = r29 == 42
30 r31 = r29 > 43
31 r32 = r30 || r31
32 A = not r32
33 assume A
34 assert false
35 halt
36 }

(a) OSEA-IR program.

p2.addr = addr0 ∧m0 = m3 ∧
r6 = (r5 = 0) ∧
p3.addr = p2.addr ∧ p3.val = r5 ∧
p5.addr = p3.addr ∧ p6.addr = p3.addr ∧
tngle(p5.retval, p6.val) ∧ p5.val = p3.val ∧
r17 = (r15 = 0) ∧
r19 = r18 > 1 ∧
r20 = r6 ∧ r19 ∧
p23.addr = p5.addr ∧ p23.val = r18 ∧
r22 = ite(r17, r6, r20) ∧
p24 = ite(r17, p5, p23) ∧
p24.retval = p24.val ∧ r22 ∧
r29 = p6.val ∧
r30 = r29 = 0 ∧
r31 = r29 > 1 ∧
r32 = (r30 ∨ r31) ∧
a = ¬r32 ∧
a ∧
¬false

(b) SMT-LIB program.

Fig. 8: Program from Fig. 7 in OSEA-IR and SMT-LIB forms.
Ownership intrinsics and their counterpart expressions in SMT are
highlighted in yellow.

1 enum status {O, C};
2 int unit_proof(const char **fnames,
3 int n) {
4 FILE *f[MAX];// assume n < MAX
5 for(int i=0; i < n; i++) {
6 set_shad(f[i], O);
7 f[i] = open(fnames[i], "w");}
8 size_t choose = nd_size_t();
9 assume(choose < n);
10 FILE *file = f[choose];
11 write(file);
12 // check file closed
13 sassert(get_shad(file) == C);}

(a) A unit proof.

1 void write(FILE *fp) {
2 // check file opened
3 sassert(get_shad(fp) == O);
4 fputc(’a’, fp);
5 // mark closed
6 set_shad(fp, C);
7 fclose(fp);}

(b) An SUT.

Fig. 9: An example of typestate storage in shadow memory.

semantics copies the lender p3.addr to p5.addr and p6.addr.
The val and retval fields are set up as usual. The cache of
the borrowed pointer p5 is conditionally updated in line 19.
The borrowed (variant) pointer p24 dies in line 27 with the
usual semantics. The cache of the succeeding pointer p6 is read
into r29 in line 28. The lines 29–32 set up verification such
that if an execution satisfies assume A then it reaches the error
state (assert false). An important consequence of ownership
semantics is that the SMT-LIB program does not need to
model the store instruction in line 20.

V. EVALUATION

0 20 40 60 80 100

Ownsem(s)

0

20

40

60

80

100

B
a
s
e
li
n
e
(s

)

flight_append_shad

write_records_shad

write_handshake_shad

write_handshake_main

many_buffers_main

y = x

y = 3x

Fig. 10: Solve time (in sec.) using ownership semantics vs baseline.

We would like to cache verification properties for practical
programs. We first describe properties of interest and our
baseline property carrying mechanisms through the example
in Fig. 9. Here, we want to check that a write function in
Fig. 9b writes only to an open file and the file is always
closed after a write. The state of the file object is encoded as
a typestate property [13] that records (and checks) operations
that have occurred on an object. The write function is called
using the unit proof harness in Fig. 9a. It defines n file pointers
based on user input. The typestate is marked open for each
file pointer in shadow memory using the set_shad function.
Shadow memory is an address map (addr to bv(64)). It is
used to stash verification relevant object metadata. In practice,
shadow memory is provided by verification and testing tools
like SEABMC and Memcheck [14]. If shadow memory is not
available then metadata can be stashed in a separate main
(program) memory allocation, which is available when the
program is built in debug or verification mode. In the example,
after the typestate is set to open for each file pointer, we choose
one file pointer file out of n for calling write — the system
under test (SUT). In the SUT, we first check that the typestate
of the file object is open using get_shad to get the typestate
value. Then the char ’a’ is written and the file is closed, with
the typestate marked as closed. Finally, the harness checks that
the file typestate is indeed closed.
Note in the given unit proof, the write and read of shadow

memory can resolve to 1-of-n allocations since any file object
can be chosen. Therefore, in the VC, memory access involves
solving an ITE (if-then-else) expression for a choice. However,
solving this ITE is redundant since we only want to check
that a given operation occurred on the chosen file pointer.
An alternative would be to store typestate in the file (fat)
pointer cache itself. With this optimisation, an ITE would not
be traversed since read, writes of the typestate would be at the
pointer (using get_cache and set_cache) leading to simpler VC.
We base our experiments on this idea utilizing the SEABMC

model checking engine for SEAHORN. SEABMC originally
takes a SEA-IR program as input and generates VC that are

298

solved by an SMT solver. We enhance SEABMC to now take
OSEA-IR programs as input. Using the C macro API, C unit
proofs are compiled to SMT. We then measure how typestate
cached at pointers compares to typestate stored in memory.
The C unit proofs we work with come from mbedTLS [15],

a C library of cryptographic primitives, SSL/TLS and DTLS
protocols. In particular, we look at three functions in ssl_msg.c

that handles SSL message construction and de-construction.
The flow we consider are (1) flight_append that appends
messages to the current flight of messages, (2) write_records

that encrypts messages into records and sends them on the
wire, and, (3) write_handshake that writes handshake messages.
Each SUT operates on a byte buffer data structure. We are
interested in recording and checking typestate properties for
such a buffer. However, similar to example Fig. 9, the unit
proof is set up such that a single byte buffer pointer may
point to 1-of-n buffer objects. Therefore, we study if using
pointer caching improves solver performance.
The experiments are run on an Intel(R) Xeon(R) E5-2680

CPU operating at 2.70GHz with 64 GiB of main memory.
The generated VC are solved using Z3 [16] smtfd tactic. The
scatter plot in Fig. 10 shows the solving time for unit proof
with ownership semantics (ownsem) in the x-axis. The y-axis
records the solving time for the same unit proof that either uses
shadow memory or main memory as the baseline. The legend
clarifies the memory we compare against using either shad
or main in the name suffix. We run each flow for increasing
number of byte buffers behind a pointer (e.g., 2, 4, 6, . . .) and
stop when the running time in either ownsem or baseline mode
reaches 100 seconds. The many_buffers benchmark is hand-
crafted and shows a consistent 3x improvement for ownsem.
The flows from mbedTLS show more spread. For small number
of buffers, ownsem and baseline are usually head-to-head. As
the number of buffers increase, ownsem outperforms baseline.
For write_handshake_shad, the performance boost is 1.3x when
using 8 buffers. For write_records_shad, the performance boost
at 8 buffers is 5x. This is shown on the scatter plot. Looking
at the SMT solver metrics, we see internal metrics like sat

conflicts and sat backjumps correlate with the timings (See [11]
for details). When a unit proof is faster, fewer conflicts and
backjumps are seen compared to the baseline. This is indirect
evidence that the performance boost is due to VC simplicity.
Simplification of VC itself depends on how many memory

accesses can be soundly replaced by pointer cache accesses.
VC simplicity is affected by (1) the extent a conditional
typestate check depends on program memory state, and (2) the
number of typestate memory accesses as a fraction of the total
number of memory accesses. As an example, for a conditional
check such as if(*unrelated_ptr == 1){get_cache(ptr);}, a read
of ptr cache using get_cache does not access ptr memory. How-
ever, for the check to be reachable, the guarding if condition
does require a memory access. Therefore, it is not always
possible to remove dependency on program memory for con-
ditional typestate checks. Also if the unit proof (and the SUT)
do not set/get typestate checks frequently then replacing such
checks by pointer cache accesses has limited benefits. The data

and units proofs to reproduce our experiments are available at
https://github.com/priyasiddharth/mbedtls-ownsem.
Overall, a speedup in solving time occurs as expected.

The speedup is due to simpler VC. However, the speedup is
sensitive to the property expressed as a typestate check and
number of operations on object (pointer) that affect typestate.

VI. RELATED WORK

RustBelt [17], Oxide [18] formalize subsets of high level
Rust. RustBelt uses a continuation passing style functional
language to describe the semantics. Oxide uses a high level
language similar to Rust. These approaches do not map
directly to a low–level register machine like LLVM. Stacked
Borrows [12] formulates Rust ownership semantics as a stack
discipline working on de–sugared (MIR) Rust syntax that
represents memory by an address map. Its aim is to provide a
reference semantics for the borrow checker separate from the
production version in the Rust compiler. Stacked Borrows is
implemented in the MIR interpreter (MIRI) and is part of the
Rust standard distribution. We rely heavily on stacked borrows
to design low-level semantics for this paper.
The Move Prover [5] uses reference elimination to replace

a reference by its data. It assumes an alias free memory
model and solves the problem of return of a mutable borrow
by recording the origin (lender) of a mutable borrow and
returning data to it explicitly rather than utilizing prophecies.
RustHorn [3] uses a prophecy value to model return of
a mutable borrow and assumes a safe Rust-like language
and, therefore, forgoes modelling an address map entirely.
RustHornBelt [6] extends this work to cover unsafe Rust where
the safety in the unsafe part is manually proven in Iris [19], a
concurrent separation logic prover built on top of Coq [20].
Verus [21], Prusti [22], and Creusot [23] are deductive ver-

ifers for Rust. Creusot uses RustHorn style prophecy variables.
These deductive tools can model complicated features of the
language, like polymorphism, directly. This paper focuses on
low-level memory manipulating programs.
The memory models used in CBMC [24], LLBMC [25],

and stock SeaBMC [10] assume an unsafe language allowing
unrestricted aliasing of pointers and support pointer arithmetic.
Kani [26] is a Rust verifier that compiles to goto-cc, the same
low-level backend as CBMC. Ownership information, though,
is lost is this conversion. Overall, we expect these low-level
tools would perform similar to our baseline experiments.

VII. CONCLUSION

We describe formal ownership semantics for multiple low-
level machines of increasing complexity. Particularly, we ex-
plain the mechanism for caching values at fat pointers and
keeping the values in-sync with memory. We use the given se-
mantics to describe VCGen for BMC such that the number of
occurrences of memory accesses in the VC is reduced. For this
we model return of mutable borrows using prophecy values
added to fat pointers. We evaluate the efficiency of generated
VC by experiments using the SEABMC tool. Overall, we see
improvements in solving time and attribute it to the simplicity
of VC.

299

https://github.com/priyasiddharth/mbedtls-ownsem

REFERENCES

[1] M. Fähndrich and R. DeLine, “Adoption and focus: Practical linear
types for imperative programming,” in Proceedings of the 2002
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Berlin, Germany, June 17-19, 2002, J. Knoop
and L. J. Hendren, Eds. ACM, 2002, pp. 13–24. [Online]. Available:
https://doi.org/10.1145/512529.512532

[2] D. Grossman, J. G. Morrisett, T. Jim, M. W. Hicks, Y. Wang,
and J. Cheney, “Region-based memory management in cyclone,” in
Proceedings of the 2002 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Berlin, Germany, June
17-19, 2002, J. Knoop and L. J. Hendren, Eds. ACM, 2002, pp.
282–293. [Online]. Available: https://doi.org/10.1145/512529.512563

[3] Y. Matsushita, T. Tsukada, and N. Kobayashi, “Rusthorn: Chc-
based verification for rust programs,” ACM Trans. Program. Lang.
Syst., vol. 43, no. 4, pp. 15:1–15:54, 2021. [Online]. Available:
https://doi.org/10.1145/3462205

[4] J. Noble, J. Vitek, and J. Potter, “Flexible alias protection,” in
ECOOP’98 - Object-Oriented Programming, 12th European Conference,
Brussels, Belgium, July 20-24, 1998, Proceedings, ser. Lecture Notes
in Computer Science, E. Jul, Ed., vol. 1445. Springer, 1998, pp.
158–185. [Online]. Available: https://doi.org/10.1007/BFb0054091

[5] D. L. Dill, W. Grieskamp, J. Park, S. Qadeer, M. Xu, and J. E. Zhong,
“Fast and reliable formal verification of smart contracts with the move
prover,” in Tools and Algorithms for the Construction and Analysis of
Systems - 28th International Conference, TACAS 2022, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part
I, ser. Lecture Notes in Computer Science, D. Fisman and G. Rosu,
Eds., vol. 13243. Springer, 2022, pp. 183–200. [Online]. Available:
https://doi.org/10.1007/978-3-030-99524-9 10

[6] Y. Matsushita, X. Denis, J. Jourdan, and D. Dreyer, “Rusthornbelt:
a semantic foundation for functional verification of rust programs
with unsafe code,” in PLDI ’22: 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation,
San Diego, CA, USA, June 13 - 17, 2022, R. Jhala and
I. Dillig, Eds. ACM, 2022, pp. 841–856. [Online]. Available:
https://doi.org/10.1145/3519939.3523704

[7] L. Developers. (2024) llvm website. [Online]. Available: https:
//llvm.org/docs/LangRef.html#noalias-and-alias-scope-metadata

[8] R. Developers. (2024) Rust website. [Online]. Available: https:
//github.com/rust-lang/rust/issues/54878#issuecomment-429578187

[9] M. Abadi and L. Lamport, “The existence of refinement mappings,”
Theor. Comput. Sci., vol. 82, no. 2, pp. 253–284, 1991. [Online].
Available: https://doi.org/10.1016/0304-3975(91)90224-P

[10] S. Priya, Y. Su, Y. Bao, X. Zhou, Y. Vizel, and A. Gurfinkel, “Bounded
model checking for LLVM,” in 22nd Formal Methods in Computer-
Aided Design, FMCAD 2022, Trento, Italy, October 17-21, 2022,
A. Griggio and N. Rungta, Eds. IEEE, 2022, pp. 214–224. [Online].
Available: https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 28

[11] S. Priya and A. Gurfinkel, “Ownership in low-level intermediate
representation,” 2024. [Online]. Available: https://arxiv.org/abs/2408.
04043

[12] R. Jung, H. Dang, J. Kang, and D. Dreyer, “Stacked borrows: an aliasing
model for rust,” Proc. ACM Program. Lang., vol. 4, no. POPL, pp.
41:1–41:32, 2020. [Online]. Available: https://doi.org/10.1145/3371109

[13] R. E. Strom and S. Yemini, “Typestate: A programming language con-
cept for enhancing software reliability,” IEEE Transactions on Software
Engineering, vol. SE-12, no. 1, pp. 157–171, 1986.

[14] N. Nethercote and J. Seward, “How to shadow every byte of
memory used by a program,” in Proceedings of the 3rd International

Conference on Virtual Execution Environments, VEE 2007, San
Diego, California, USA, June 13-15, 2007, C. Krintz, S. Hand,
and D. Tarditi, Eds. ACM, 2007, pp. 65–74. [Online]. Available:
https://doi.org/10.1145/1254810.1254820

[15] mbedTLS Developers. (2023) mbedtls project. [Online]. Available:
https://github.com/Mbed-TLS/mbedtls

[16] L. M. de Moura and N. S. Bjørner, “Z3: an efficient SMT solver,” in
Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, ser.
Lecture Notes in Computer Science, C. R. Ramakrishnan and J. Rehof,
Eds., vol. 4963. Springer, 2008, pp. 337–340. [Online]. Available:
https://doi.org/10.1007/978-3-540-78800-3 24

[17] R. Jung, J. Jourdan, R. Krebbers, and D. Dreyer, “Rustbelt: securing the
foundations of the rust programming language,” Proc. ACM Program.
Lang., vol. 2, no. POPL, pp. 66:1–66:34, 2018. [Online]. Available:
https://doi.org/10.1145/3158154

[18] A. Weiss, D. Patterson, N. D. Matsakis, and A. Ahmed, “Oxide: The
essence of rust,” CoRR, vol. abs/1903.00982, 2019. [Online]. Available:
http://arxiv.org/abs/1903.00982

[19] R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon,
L. Birkedal, and D. Dreyer, “Iris: Monoids and invariants as an
orthogonal basis for concurrent reasoning,” in Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2015, Mumbai, India, January 15-17,
2015, S. K. Rajamani and D. Walker, Eds. ACM, 2015, pp. 637–650.
[Online]. Available: https://doi.org/10.1145/2676726.2676980

[20] C. Developers. (2024) The coq proof assistant. [Online]. Available:
https://coq.inria.fr/

[21] A. Lattuada, T. Hance, C. Cho, M. Brun, I. Subasinghe, Y. Zhou,
J. Howell, B. Parno, and C. Hawblitzel, “Verus: Verifying rust
programs using linear ghost types,” Proc. ACM Program. Lang.,
vol. 7, no. OOPSLA1, pp. 286–315, 2023. [Online]. Available:
https://doi.org/10.1145/3586037

[22] V. Astrauskas, A. Bı́lý, J. Fiala, Z. Grannan, C. Matheja, P. Müller,
F. Poli, and A. J. Summers, “The prusti project: Formal verification
for rust,” in NASA Formal Methods - 14th International Symposium,
NFM 2022, Pasadena, CA, USA, May 24-27, 2022, Proceedings, ser.
Lecture Notes in Computer Science, J. V. Deshmukh, K. Havelund,
and I. Perez, Eds., vol. 13260. Springer, 2022, pp. 88–108. [Online].
Available: https://doi.org/10.1007/978-3-031-06773-0 5

[23] X. Denis, J. Jourdan, and C. Marché, “Creusot: A foundry for the
deductive verification of rust programs,” in Formal Methods and
Software Engineering - 23rd International Conference on Formal
Engineering Methods, ICFEM 2022, Madrid, Spain, October 24-27,
2022, Proceedings, ser. Lecture Notes in Computer Science, A. Riesco
and M. Zhang, Eds., vol. 13478. Springer, 2022, pp. 90–105. [Online].
Available: https://doi.org/10.1007/978-3-031-17244-1 6

[24] D. Kroening, P. Schrammel, and M. Tautschnig, “CBMC: the C
bounded model checker,” CoRR, vol. abs/2302.02384, 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2302.02384

[25] F. Merz, S. Falke, and C. Sinz, “LLBMC: bounded model checking
of C and C++ programs using a compiler IR,” in Verified Software:
Theories, Tools, Experiments - 4th International Conference, VSTTE
2012, Philadelphia, PA, USA, January 28-29, 2012. Proceedings, ser.
Lecture Notes in Computer Science, R. Joshi, P. Müller, and A. Podelski,
Eds., vol. 7152. Springer, 2012, pp. 146–161.

[26] K. Developers. (2023) The kani book. [Online]. Available: https:
//model-checking.github.io/kani/

300

https://doi.org/10.1145/512529.512532
https://doi.org/10.1145/512529.512563
https://doi.org/10.1145/3462205
https://doi.org/10.1007/BFb0054091
https://doi.org/10.1007/978-3-030-99524-9_10
https://doi.org/10.1145/3519939.3523704
https://llvm.org/docs/LangRef.html#noalias-and-alias-scope-metadata
https://llvm.org/docs/LangRef.html#noalias-and-alias-scope-metadata
https://github.com/rust-lang/rust/issues/54878#issuecomment-429578187
https://github.com/rust-lang/rust/issues/54878#issuecomment-429578187
https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_28
https://arxiv.org/abs/2408.04043
https://arxiv.org/abs/2408.04043
https://doi.org/10.1145/3371109
https://doi.org/10.1145/1254810.1254820
https://github.com/Mbed-TLS/mbedtls
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3158154
http://arxiv.org/abs/1903.00982
https://doi.org/10.1145/2676726.2676980
https://coq.inria.fr/
https://doi.org/10.1145/3586037
https://doi.org/10.1007/978-3-031-06773-0_5
https://doi.org/10.1007/978-3-031-17244-1_6
https://doi.org/10.48550/arXiv.2302.02384
https://model-checking.github.io/kani/
https://model-checking.github.io/kani/

ISBN 978-3-85448-065-5

www.tuwien.at/academicpress
9 783854 480655

The Conference on Formal Methods in Computer-Aided
Design (FMCAD) is an annual conference on the theory
and applications of formal methods in hardware and system
ൎീൊൄ൐ാഽൌൄൈേഷ ഻഼ഹസഺ ൉ൊൈൎൄിീോ ഽ ൅ീഽിൄേൂ ുൈൊ്െ ൌൈ ൊീോീഽൊാൃീൊോ
in academia and industry for presenting and discussing
groundbreaking methods, technologies, theoretical results,
and tools for reasoning formally about computing systems.
FMCAD covers formal aspects of computer-aided system
ിീോൄൂേ ൄോ൅്ിൄേൂ ൎീൊൄ൐ാഽൌൄൈേശ ോ൉ീാൄ൐ാഽൌൄൈേശ ോ൏േൌൃീോൄോശ ഽേി
testing.

	Cover
	Front Matter
	Preface
	Organizing Committee
	Program Committee
	Additional Reviewers
	Table of Contents
	01
	02
	03
	04
	05
	References

	06
	References

	07
	Introduction
	Background and Related Work
	Instruction Selection
	Generating Instruction Selectors
	Program Synthesis and Equivalence
	Logical Setting and Notation
	Component-based Program Synthesis

	Component-based Program Synthesis for Many-to-Many Rules
	Generalized Component-based Program Synthesis
	Solving GCBPS

	Generating All Many-to-Many Rewrite Rules
	Excluding Duplicate Rules
	Excluding Composite Rules

	Generating All Lowest-Cost Rules
	Evaluation
	Implementation
	Instruction Specifications
	Rewrite Rule Synthesis
	Synthesis Time Improvement with genAll
	Synthesis Time Improvement with genAllLC
	Total Speed-up
	Cost Metric Comparisons

	conclusion
	References

	08
	Introduction
	Background
	DRAT Extensions for SMT
	Syntax of eDRAT
	Valido: A Toolchain for Checking eDRAT Proofs

	Elaborator and Validator for QF_LRA
	Elaborator and Validator for QF_UF
	Experiments
	Proof Production Cost
	Proof Size and Proof Checking Time

	Related and Future Work
	Conclusion
	References

	09
	Introduction
	Preliminaries
	The Decision Procedure
	Alphabet Reduction
	Encoding Word Equations
	Encoding Words
	Encoding l-Substitutions
	Matching Patterns To Words

	Finding and Refining Bounds
	Experimental Evaluation
	Conclusion
	References

	10
	Introduction
	Preliminaries
	CDCL(T)-Based SMT Solvers
	Portfolio Solving with Lemma Sharing
	Related Work

	An Architecture for Portfolio-Based SMT Solving
	Workers
	Central Broker

	Portfolio Strategies
	Delayed Sharing
	Guided Randomization

	Implementation
	Local Filtering
	Sending Lemmas from the Broker
	Monitoring

	Evaluation
	Configuration
	Scalability and Effectiveness of Guided Randomization
	Comparison with State-Of-The-Art Tools
	Comparison to a Legacy Version of z3

	Conclusion
	References
	References

	11
	Introduction
	Overview of the MinErrLoc Approach
	Minimum Error Sources
	Reduction to MaxSMT

	Tyro Architecture
	Frontend
	Polymorphic Types
	Constraint Generation
	Intermediate Representation (IR)
	SMT Encoder
	Backend

	Evaluation
	Timing
	Localization Accuracy

	Related Work
	Future Work
	Conclusion
	Acknowledgements
	References
	Appendix
	Polymorphic Types
	Classical Type Inference

	12
	I Introduction
	II Background
	III Query Context
	III-A Export the Unsatisfiable Core
	III-B Most of the Context is Irrelevant
	III-C Irrelevant Context Harms Stability
	III-D Context Pruning is Axiom Selection

	IV Shake
	IV-A The Naive Shake Algorithm
	IV-B Shake with Quantifiers
	IV-C Shake with Frequent Symbols
	IV-D Shake with Distance Limit

	V Evaluation
	V-A Experimental Setup
	V-B Distribution of Shake Distances
	V-C Context Relevance Ratio
	V-D Stability Improvement
	V-E Frequency Configuration
	V-F Solving Performance Impact

	VI Related Work
	VII Limitations
	VIII Conclusion
	IX Acknowledgement
	References

	13
	Introduction
	Overview
	Functional Description
	Optimizations
	Data-structure optimizations
	Procedure optimizations

	Evaluation
	Objectives and Evaluation Method
	Experimental Setup
	Results

	Related Work
	Conclusion
	References
	Appendix A: Background on E-graphs
	Appendix B: Algorithms Pseudo Code
	Appendix C: Walkthrough for Example 2

	14
	Introduction
	Preliminaries
	The Lattice Construction
	Operations of Lattice WL0

	Operations on Lattice Elements
	A Model Program
	Computations in WL0
	Predicates

	Tokenization
	Related Works and Discussion
	Complexity of operations in WL0

	Conclusion and Future Work
	References

	15
	Introduction
	Preliminaries
	Property Types
	DNNs, DNN Verification, and Dynamical Systems.
	Control Lyapunov Barrier Functions

	Related Work
	Control Certificates
	Formal Verification of Neural Certificates
	Data-driven Neural Certificates

	Reach-Avoid methods

	Reach-While-Avoid Certificates
	RWA certificates
	FRWA certificates
	CEGIS loop

	Compositional Certificates
	Evaluation
	Case Study
	DNN architecture
	Implementation and Setup
	Experimental Results

	Conclusion
	Acknowledgements
	References

	16
	Introduction
	Verification Tasks and datasets
	Inductive Loop Invariant Inference
	The problem
	Basic algorithm
	Basic prompt
	Prompt with domain-specific instructions
	Pruning incorrect invariants with Houdini
	Using LLMs to repair incorrect invariants
	Comparing different LLMs
	Qualitative analysis
	Loop invariant inference for programs with arrays

	Program Termination
	Recursive programs
	Related work
	Threats to validity

	References

	17
	Introduction
	This Paper

	Related Work and Motivation
	Structured Translation of Structured NL
	Unstructured Translation of Unstructured NL
	End-to-end Translation
	Interactive Translation

	Our Approach: Structured Translation of Unstructured NL

	SynthTL Approach and Tool: Structured Translation of Unstructured Natural Language to Temporal Logics
	Interactive TL Specification Generation
	Sub-Translation Tree Generation and Validation
	Structured Translation of Sub-Translation Trees to TL Specifications
	LLM Prompts for Sub-Translation Tree Generation
	Sub-Translation Tree Expressiveness

	Searching for Translations that Hold on DUT
	Fixing Culprit Sub-Translations or the DUT

	SynthTL Utilities: Model Checker-guided Translation Search and Culprit Identification
	Translation Search Utility
	Sub-Tree Pruning in Translation Search
	Batch Model Checking

	Culprit Identification Utility

	Case Study: Translating an Industrial NL Specification to TL with SynthTL
	Evaluation of TL Generation and Validation
	Evaluation of Translation Search
	Evaluation of Batch Model Checking
	Evaluation of Culprit Identification
	Culprit Identification Given an Incorrect TL Specification and a Correct DUT
	Culprit Identification Given a Correct TL Specification and an Incorrect DUT

	Conclusion
	References

	18
	Introduction
	Motivating Example
	Protocol Description
	TLA+ Encoding
	Model Checking TwoPhase
	Compositional Verification and Recomposition

	Preliminaries
	Labeled Transition Systems
	TLA+
	CRA-Style Compositional Verification

	Parallel Composition in TLA+
	Model Checking with Recomposition
	The Recomp-Verify Algorithm
	Algorithm Overview
	Algorithm Details

	Decomposition
	Decomposition Algorithm
	State Variable Partitioning
	Specification Slicing

	Static Specification Reduction
	Compositional Verification
	Correctness Analysis

	Choosing Efficient Recomposition Maps
	Recomposition Map Reduction Heuristic
	Choosing a Portfolio of Strategies

	Experimental Results
	Implementation
	Experiments
	Results and Discussion
	RQ1
	RQ2
	Discussion

	Related Work
	Limitations and Future Work
	References

	19
	Introduction
	Summary
	Running example
	Proposal: Symbolically testing specifications
	Correctness
	Completeness

	Implementation and evaluation
	Mutating values
	Results
	Limitations

	Related work
	Conclusion
	Appendix A: Extended version of the JSON examples
	Appendix B: Alternate proposal
	References

	20
	Introduction
	Background
	Preliminaries
	Abstraction
	Asynchronous Composition

	A compositional approach with Abstraction Refinement
	Verification of concurrent parameterized systems
	Refinement
	Implementation and first results

	Conclusions and future work
	References

	21
	Introduction
	Background and related work
	Notation & Definitions
	Conformance Testing against Mealy Machines

	Semi-open-state Testing and GQR-open
	Cache-coherence protocol interoperability
	Directory-based cache coherence protocols
	Connection to semi-open-state testing

	Application to a real in-silicon implementation
	Testing setup and methodology
	Experience and results

	Conclusion and future work
	Acknowledgements
	References

	22
	Introduction
	This Paper

	Background and Motivation
	Memory Consistency Model Overview
	The C11 Memory Consistency Model
	Update-Based Cache Coherence Protocols

	MemGlue Preliminaries
	MemGlue Overview
	Why Update-based Consistency Protocols?
	Why a Novel Protocol?

	MemGlue Hardware Primitives
	Write Propagation and Shim Integration

	Ordered MemGlue Consistency Protocol
	MemGlueO Protocol
	Refining the Protocol
	Timestamps
	SC Writes

	System-wide Proof of MemGlueO
	Per-Cluster Proofs
	Translation Scheme

	Unordered MemGlue Consistency Protocol
	Reorderings Allowed in MemGlueU
	MemGlueU Protocol
	SC-per-location
	Happens-Before Orderings

	System-wide Proof of MemGlueU

	Verifying MemGlue's Correctness
	Model Checking
	Proof

	Related Work
	Conclusions
	References

	23
	Introduction
	Related Work
	Preliminaries
	Pseudo-Boolean Formulas
	(Reverse) Unit Propagation
	Trusted Binary Decision Diagrams
	Cutting Planes

	PBIP: Pseudo-Boolean Implication Proof
	PBIP Proof Structure
	PBIP File Format

	PBIP Trimming and Checking
	Hinting and Trimming Cutting-Planes and RUP Proofs
	Lemma Justification via RUP
	Arithmetic/Cutting Planes Reasoning

	BDD-Based PBIP Checking and LRAT Generation

	Implementation and Results
	Benchmarks
	Proof Sizes
	Trimming Effectiveness
	Tool Runtimes

	Conclusion and Future Work
	References

	24
	Introduction
	Substitution redundancy
	Short SR proofs
	The pigeonhole principle
	Tseitin formulas for expander graphs
	Ramsey numbers

	SR proof checking
	The SR proof formats
	sr proof checking tools
	The verified lsr checker
	RangeArray
	Persistent partial assignments

	Experimental results
	Comparison to cake_lpr
	Comparison of lsr and converted lrat proofs
	Comparison of verified and unverified checking

	Conclusion and future work
	Short sr Proof of R(4,4) ≤18

	25
	Introduction
	Preliminaries
	Dependency Quantified Boolean Formula (DQBF)
	Property-Directed Reachability (PDR)

	2-DQBF Solving and Certification
	Linear time reduction from 2-DQBF to PDR
	Proof extraction and model extraction

	Experimental Evaluation
	Conclusions

	26
	Introduction
	The Bounded Projective IP-counting Problem
	Illustrative Example
	Counting IPs without Model Counting
	Bounded Projective Counting Problem
	Computing Equivalence Classes
	Arithmetic Approach
	Arithmetic-free Approach

	Implementation and Evaluation
	Related Work
	Conclusion
	References

	27
	Introduction
	Preliminaries and Related Work
	Redundancy Removal
	Induction
	Speculative reduction
	Early merging
	Trace simulation

	Exhaustive Redundancy Removal
	Sequential resource-sweeping
	Resource-balanced simulation
	Lazy deep simulation
	Seeded BMC
	Approximating pathologically-deep logic
	Linear Proof Graph construction

	Experimental Results
	Property- and Equivalence-Checking
	Logic Optimization

	Conclusions
	References

	28
	Introduction
	Preliminaries and Notations
	Linear Temporal Logic over Finite Traces (LTLf)
	Abstract Syntax Tree

	Related Work
	Optimizations
	Depth of AST Unrolling
	Duplicate Removal
	Semantics-Preserving Transformation

	Compositional Algorithm
	Implementation Details
	Implementation-Level Optimizations

	Experimental Analysis
	Design and Setup for Empirical Evaluation
	Performance-Related Observations
	Lisa2 demonstrates the best overall performance
	Performance on counter benchmarks

	Ablation Study

	Concluding Remarks
	References

	29
	Introduction
	Preliminaries
	Algorithm
	Implementation
	Benchmarks
	Experiments
	Conclusion
	References

	30
	Introduction
	Related Work
	ACL2 Basics
	Linear Algebra Basics
	Verifying Right-greedy LU Decomposition
	Verifying Right-greedy Cholesky Decomposition
	Generalizing Rules for Automated Verification
	Conclusion
	References

	31
	Introduction
	Statement of Accuracy Results
	Preliminaries on Floating-Point Arithmetic
	Unbounded Floating-Point Numbers
	Accuracy of Compound Summations
	Approximations of and
	Accuracy of LSE
	Discussion on the Variations of the Bound on Accuracy

	Formalization of the Accuracy Result
	WhyML Formalization of Unbounded Floating-Point Numbers
	Accuracy of LSE proved in WhyML
	Proving a C code implementing LSE

	Related work
	Conclusion and future work
	References

	32
	Introduction
	Preliminaries
	SCA for Verification
	Multiplier Circuits
	Specification Polynomial for Unsigned Multipliers

	Review of Existing Approaches
	Backward Rewriting with Phase and Order Optimization
	Phase Optimization
	Backward Rewriting with Dynamic Order Optimization
	Simple Certifiability

	Experimental Results
	Conclusions and Future Work
	References

	33
	Introduction
	Preliminaries
	Symbolic Execution
	Extending Symbolic Execution with Predicate Abstraction
	Precision Function, Feasible and Simple Abstract Paths
	Symbolic Execution with Implicit Predicate Abstraction
	Abstraction Refinement Loop

	Experimental Evaluation
	Implementation
	Experimental setup
	Results

	Related Work
	Conclusions and Future Work
	References

	34
	Introduction
	Preliminaries
	Protocol Representation in TLA+
	Protocol Semantics
	Properties and Verification
	Modeling Conventions

	Synthesis of Distributed Protocols
	Protocol Sketches
	Problem Statements

	Our Approach
	Expression Generation
	Naive Breadth-First Algorithm
	Cache-Based Algorithm
	Equivalence Reduction

	Counterexamples and Pruning Constraints
	Counterexamples
	Pruning Constraints

	Counterexample Generalization
	Encoding Safety Counterexamples
	Encoding Deadlock Counterexamples
	Encoding Liveness Counterexamples
	Fairness and Stuttering

	Implementation and Evaluation
	Related Work
	Conclusion
	References
	Appendix
	Proof of Theorem 1

	35
	Introduction
	OSEA-IR language
	VC Generation
	Towards a practical machine
	Evaluation
	Related work
	Conclusion
	References

	Cover_FMCAD_2024_II

