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Preface

These are the proceedings of the twenty-fourth International Conference on Formal Methods in Computer-
Aided Design (FMCAD), which was held in Prague, Czech Republic, October 14-18, 2024. The first FMCAD
was organized in 1996, and FMCAD was a bi-annual conference until 2006, when the FMCAD and CHARME
conferences merged into a single FMCAD. Since then, FMCAD has been an annual event. FMCAD 2024 was the
twenty-fourth edition in the series, covering formal aspects of computer-aided system design including verification,
specification, synthesis, and testing. It provided a leading forum to researchers in academia and industry to present
and discuss groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about
computing systems. The program of FMCAD 2024 consisted of one tutorial, three invited talks, the presentation
of the Hardware Model Checking Competition HWMCC’24, a student forum, and the main program consisting of
presentations of 29 accepted peer-reviewed papers. FMCAD 2024 was co-located with the VSTTE 2024 conference,
when took place on October 14-15.

The joint VSTTE/FMCAD tutorial day (October 15) featured two tutorials:

e The VSTTE tutorial: The Lean Programming Language and Theorem Prover, given by Sebastian Ullrich and
Joachim Breitner;
e The FMCAD tutorial: Writing proofs in Dafny, given by Rustan Leino.

The main FMCAD conference (October 16-18) featured three invited talks:

o Tackling Scalability Issues in Bit-Vector Reasoning by Aina Niemetz;
o Some Adventures in Learning Proving, Instantiation and Synthesis by Josef Urban;
o Harnessing SMT Solvers for Reasoning about DeFi Protocols by Mooly Sagiv.

FMCAD 2024 received 56 submissions, out of which the committee decided to accept 29 for publication. Each
submission received at least four reviews. The topics of the accepted papers include machine learning, model
checking, hardware and software validation, SAT&SMT solving and proofs generation. Among the accepted papers,
there are 26 regular papers (23 long and 3 short) and 3 tool/case study papers (all short). FMCAD 2024 hosted the
twelfth edition of the FMCAD Student Forum, which has been held annually since 2013 and provides a platform
for graduate students at any career stage to introduce their research to the FMCAD community. The FMCAD
Student Forum 2024 was organized by Martin Blicha and Nestan Tsiskaridze and featured short presentations of 23
accepted contributions. The proceedings provide a detailed description of the Student Forum and lists all accepted
contributions.

FMCAD 2024 was made possible by the support of a large number of people, as well as our sponsors. The
program committee members and additional reviewers, listed on the following pages, did an excellent job providing
detailed and insightful reviews. The reviews helped us build a strong program and helped the authors improve their
submissions. We thank each and everyone of them for dedicating their time and providing their expertise. We would
like to thank the local organization chair, Mikolas Janota, and the registration chair, Milena Zeithamlov4, who did
an amazing job taking care of the organization and all practical matters. We thank our web master Julie Cailler, our
sponsorship chair Guy Amir, and the Student Forum organizers Martin Blicha and Nestan Tsiskaridze. We thank
the organizers of the HWMCC competition, Armin Biere, Nils Froleyks, and Mathias Preiner. We thank Georg
Weissenbacher, both for his exceptional assistance in organizing the event, communicating to us the decisions of
the steering committee, as well as being the publication chair.

Holding a conference like FMCAD would not be feasible without the financial support of our sponsors. We would
like to express our gratitude to the sponsors, given here in alphabetical order: AWS, Cadence, General Electric
Aerospace, Intel, NSF, Toyota, and VMware by Broadcom.



Last but not least, we thank all authors who submitted their papers to FMCAD 2024, and whose contributions and
presentations form the core of the conference. The conference proceedings are available as Open Access Proceedings
published by TU Wien Academic Press, and through the IEEE Xplore Digital Library.

We are grateful to everyone who presented their paper, gave a keynote or gave a tutorial. We thank all attendees
of FMCAD for supporting the conference and making FMCAD an engaging and enjoyable event.

October 2024 Nina Narodytska VMware by Broadcom, USA
Philipp Riimmer  University of Regensburg, Germany and
Uppsala University, Sweden
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‘@ Formal Methods in Computer-Aided Design 2024

Writing Proofs in Dafny

K. Rustan M. Leino
Amazon Web Services
Seattle, WA
leino@amazon.com

Abstract—Dafny is a verification-aware programming language. In a nutshell, the language is Java-like and has support for writing
specifications and proofs. It has a long history of being used in education, has been the cornerstone of several ambitious research
projects, and is in industrial use at AWS.

This tutorial teaches how to write various kinds of proofs in Dafny. It covers proofs of imperative and functional programs, as well
as the formalization of models and mathematical proofs. It demonstrates different proof styles and shows how to think about and
debug proofs in the Dafny setting.

The tutorial does not assume any prior experience in using Dafny or other proof assistants.
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Tackling Scalability Issues 1n Bit-Vector Reasoning

Aina Niemetz
Stanford University
Stanford, CA
niemetz@cs.stanford.edu

Abstract—Efficiently reasoning about bit-vector constraints in Satisfiability Modulo Theories (SMT) has been an ongoing challenge
for many years. The dominant state-of-the-art approach for solving bit-vector formulas in SMT is bit-blasting, an eager reduction
to propositional logic that is typically combined with aggressive simplifications of the input constraints prior to the actual reduction
step. Even though this eager reduction may come at the cost of significantly increasing the formula size, it is surprisingly efficient
in practice—thanks to state-of-the-art SAT solvers, which are usually able to efficiently deal with complex formulas over millions of
variables. This size increase, however, is a potential bottleneck and the main reason why bit-blasting does not generally scale well
for increasing bit-widths, especially in the presence of arithmetic operators, which translate to large and complex Boolean circuits
on the bit-level.

To tackle these scalability issues, there are two (orthogonal) avenues to explore: developing alternative approaches that do not (mainly)
rely on translations to the SAT level, and improving the scalability of bit-blasting itself. In this talk, we will highlight techniques in
each category: a propagation-based local search procedure as an alternative to bit-blasting, which can only determine satisfiability
but improves performances over bit-blasting on satisfiable instances, and a CEGAR-style abstraction-refinement procedure that
significantly improves the scalability of bit-blasting. We extended the state-of-the-art SMT solver Bitwuzla with both techniques and
show that they significantly improve solver performance on a variety of benchmark sets across all logics supported by Bitwuzla,
including combinations of bit-vectors with arrays, uninterpreted functions and floating-point arithmetic.
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Some Adventures in Learning
Proving, Instantiation and Synthesis

Josef Urban
Czech Institute of of Informatics, Robotics and Cybernetics
Prague, Czech Republic
josef.urban@cvut.cz

Abstract—Human problem solvers often combine deductive reasoning and exploration with learning and pattern matching. In the
recent years such combinations are also increasingly developed for building stronger automated theorem provers, SMT solvers and
conjecturing and synthesis systems.

The methods in this field include equipping the current deductive systems with efficient statistically learned guidance that controls
the choice of the inference steps, using for example fast decision trees, graph neural networks and their combinations.

Learning and AI methods can also be used to automatically design new symbolic strategies for today’s ATPs and SMTs. This has
the advantage of producing explainable ideas for steering the search space, which can be further taken up and modified by the
systems’ developers.

I will also discuss several methods that try to directly synthesize reasoning objects such as instantiations and OEIS explanations,
using various neural approaches.

Perhaps the most interesting aspect of this research are the positive feedback loops between the proving and the learning methods.
I will show that some of them can today go quite far and create quite interesting ‘‘alien” solutions.
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Harnessing SMT Solvers for Reasoning about DeFi
Protocols

Mooly Sagiv
Certora and Tel Aviv University
Tel Aviv, Israel
msagiv@acm.org

Abstract—DeFi (Decentralized Financial) Protocols implement financial programs using low-level programming. DeFi adoption
started to go parabolic in 2020, and it’s still very robust in different market conditions in 2024. Today, DeFi assets exceed 300
billion USD. A fundamental principle behind DeFi is that small open-source software called ‘‘smart contracts” precisely define the
trading conditions and create an open global economy not controlled by governments and people.

However, smart contracts are difficult to implement correctly since their behavior can radically change in different market conditions.
Moreover, hackers constantly try to abuse the code to drain the money stored in the smart contracts. On the positive side, it is pretty
natural to write high-level formal specifications of smart contracts since their economical utilities are well understood. Indeed, this
is a unique domain where software developers are eager to write formal specifications.

I will describe the challenges of harnessing existing SMT solvers for reasoning about smart contracts.
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The FMCAD 2024 Student Forum

Martin Blicha

University of Lugano & Ethereum Foundation

Prague, Czechia
martin.blicha@usi.ch

Abstract—The Student Forum at the International Confer-
ence on Formal Methods in Computer-Aided Design (FMCAD)
gives undergraduate and graduate students the opportunity to
introduce their research to the Formal Methods community
and receive feedback. In 2024, the event took place in Prague,
Czechia. Twenty three students were invited to give a short talk
and present a poster of their work.

Since 2013, the FMCAD Student Forum provides a platform
for undergraduate and graduate students at any career stage
to present their research to the audience of the FMCAD
conference. The 2024 edition of the FMCAD Student Forum
follows the tradition of its predecessors, which took place in:

o Portland, Oregon, USA in 2013 [1]

o Lausanne, Switzerland in 2014 [2]

o Austin, Texas in 2015 [3] and 2018 [4]

e Mountain View, California, USA in 2016 [5]
e Vienna, Austria in 2017 [6]

o San Jose, California, USA in 2019 [7]

o Virtual in 2020 [8] and 2021 [9]

o Trento, Italy in 2022 [10]

o Ames, Towa, USA in 2023 [11]

FMCAD 2024 hosted the twelves edition of the Student
Forum. Graduate and undergraduate students were invited to
submit two-page reports of their current research and ongoing
work in the scope of the FMCAD conference. There were 24
submissions to the forum, 23 of them were accepted one of
which was withdrown. The Student Forum program committee
reviews were based on the overall quality, novelty of the work,
its potential impact on the Formal Methods community, as
well as the potential positive impact on the student to have
the opportunity to participate in the forum. The accepted
submissions covered a wide range of topics relevant to the
FMCAD community, from foundational aspects of automated
reasoning, to analysis and verification of software, hardware,
and neural networks, as well as applications of formal methods
to security and dynamical system. Each submission received
3 reviews. The following contributions have been accepted’
(excluding the withdrawn contribution):

o Csandd Telbisz and Ddéniel Szekeres Correctness Wit-
nesses for Concurrent Software Verification

o Levente Bajczi and Marian Lingsch-Rosenfeld Software
Verification Witnesses for Weak Memory

o Levente Bajczi CHCs for Weak Memory

'Only student authors listed for brevity.

d https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_5

Nestan Tsiskaridze
Stanford University
Stanford, USA

nestan @stanford.edu

o Islam Hamada Incremental Construction of Inductive
Invariants for Model Checking

o Zsbfia Adém, Levente Bajczi, Marek Jankola and Marian
Lingsch-Rosenfeld Towards Validation of More Expres-
sive Software Non-Termination Witnesses

o Luke Miga Verifying Axiomatic Microarchitectural Mod-
els in the Coq Proof Assistant

o Konstantin Britikov Analysis of Multiloop Programs With
Nested Loops Using Transition Power Abstraction

o Rachel Cleaveland Theory of Strings in Symbolic Execu-
tion

o Siddharth Priya Optimizing Rust Programs Using Own-
ership

e Daneshvar Amrollahi Towards Improved Stability for
SMT Solvers

o John Kolesar Coinductive Proofs of Regular Expression
Equivalence in Zero Knowledge

o Feitong Qiao Timed Data Types for Hardware

o Elizaveta Pertseva and Alex Ozdemir Multimodular Rea-
soning for Satisfiability Modulo Theories

o Fuqi Jia A Theory-Agnostic SMT Sampling Framework

o Milan Ganai Hamilton-Jacobi Reachability Estimation

o Samantha Archer SymLeak: Quantifying Side Channel
Leakage with Symbolic Execution

o Daniel Mendoza Towards LLM-assisted hardware verifi-
cation

e Edward Wang Work-in-Progress: An SMT-Based,
Correct-by-Construction Place-and-Route Framework

o Michal Hec¢ko Automata-based Decision Procedure for
Presburger Arithmetic Augmented with Algebraic Rea-
soning

o Aron Ricardo Perez-Lopez and Samantha Archer Word-
Level Model Checking with IC3 in Pono

o Roxana-Mihaela Timon Verification of a dynamic
programming-based algorithm for the Activity Selection
Problem in Dafny

o Mark Somorjai and Mihaly Dobos-Kovics Stack Abstrac-
tion for Interprocedural Software Verification

We formed a program committee to cover a wide range
of topics so students could receive expert feedback on their
work. The 2024 FMCAD Student Forum program committee
consisted of Martin Blicha (co-chair), Nestan Tsiskaridze (co-
chair), Guy Amir, Haniel Barbosa, Armin Biere, Nikolaj
Bjgrner, William Eiers, Katalin Fazekas, Alberto Griggio,

This article is licensed under a Creative
BY Commons Attribution 4.0 International License


https://fmcad.org/FMCAD24
https://orcid.org/0000-0001-8140-4098
https://orcid.org/0000-0002-4729-9770
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_5
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_5
https://creativecommons.org/licenses/by/4.0/

Arie Gurfinkel, Petra Hozzova, Antti Hyvérinen, Ahmed Irfan,
Konstantin Korovin, Daniel Larraz, Ondfej Lengal, Alexander
Nadel, Andres Noetzli, Rodrigo Otoni, Sophie Rain, Mark
Santolucito, Christoph Sticksel, Hari Govind V. K., and Yoni
Zohar.

We would like to thank the organizers of FMCAD, as well
as the FMCAD Student Forum program committee, who have
made the FMCAD Student Forum possible. We would like
to thank FMCAD, NSF, Amazon Web Services, Cadence, GE
Aerospace, Intel, Toyota, and VMWare for providing student
travel support and making it possible to award travel grants
to all students. Additionally, we are grateful to the student
authors and their research mentors who have contributed their
excellent work to the program.
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Abstract—The Hardware Model Checking Competition 2024
(HWMCC’24) was the 12th competitive event for hardware
model checking tools. The competition was affiliated to the 24th
conference on Formal Methods in Computer-Aided Design 2024
(FMCAD’24), which took place in Prague, Czech Republic, from
October 14 to 18, 2024.

Index Terms—Automated Reasoning, Model Checking, Hard-
ware Verification, Word-level Reasoning, Bit-Vectors, Certificates

The Hardware Model Checking Competition (HWMCC’24)
in 2024 is the 12" incarnation in this series of competitive
events to evaluate hardware model checking. Since it started
in 2007 it was repeated annually with some exceptions. After
the previous competition in 2020 the organizers took a break
to resume the competition in 2024. The competition in 2024 is
affiliated, as most of the time, with the conference on Formal
Methods in Computer-Aided Design (FMCAD), which is
considered the primary venue for formal hardware verification.
Alternatively in 2007, 2008, 2010 and 2014 it was affiliated
with the conference of Computer-Aided Verification (CAV).

The previous competition in 2020 continued with word-
level tracks, which were introduced in 2019. These word-level
tracks focus on bit-vector models with and without arrays in
the BTOR2 format [1]. This suggests that model checkers
participating in this track should make use of SMT solvers
over the theory of bit-vectors. Before 2019 all competition
tracks used bit-level models in the AIGER format [2], but were
split into safety, multi-property, liveness and deep tracks. Since
2014 and particularly in 2017, the last competition before
2019, the ABC tool [3] dominated almost all bit-level tracks.

One motivation for moving to word-level tracks is the
conjecture that SMT solving is more effective than plain
SAT solving if the models are given in terms of bit-vectors.
However, in 2019 the word-level model checkers could not
fulfill this promise and were trailing ABC by a large margin
in terms of performance. This was particularly the case for
unsatisfiable properties, where a bad state violating the single
safety property can not be reached. Note, that ABC was run on
AIGER models obtained from the BTOR2 models through bit-
blasting, except for the array track, as bit-blasting of BTOR2
models with arrays is difficult. Having arrays, modelling
memory or caches, is considered a feature of SMT solvers
and should give them an advantage over bit-level reasoning.

In 2020 the picture changed and word-level model checkers
started to become competitive to ABC on the bit-vector
track without arrays, while not losing their advantage on bit-
vector models with arrays, as bit-blasting arrays was still not
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available. Therefore, the organizers of HWMCC’ 24 decided to
continue both word-level tracks, i.e., with and without arrays.

While the previous competition in 2020 focused on word-
level exclusively, the single safety property track came back
in 2024. However, as a novel feature, participating model
checkers are required to produce model-checking certificates.
These certificates were actually AIGER circuits and should
have an inductive property. They further need to simulate
the original circuit as formalized in [4], [5], [6]. The tool
CERTIFAIGER is used to check both requirements using SAT
solvers. The goal of the certified track is to increase trust in
verification results produced by model checkers, following the
success story of proof producing SAT solvers in both academia
and industry, e.g., producing proofs became mandatory in the
main track of the SAT competition in 2016 [7].

More details on the competition, including provided tools,
submission procedure and deadlines, the results and their
presentation are available at the competition home page [8].

REFERENCES

[1] A. Niemetz, M. Preiner, C. Wolf, and A. Biere, “Btor2 , BtorMC and
Boolector 3.0,” in Computer Aided Verification - 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I, ser.
Lecture Notes in Computer Science, H. Chockler and G. Weissenbacher,
Eds., vol. 10981. Springer, 2018, pp. 587-595.

[2] A. Biere, K. Heljanko, and S. Wieringa, “AIGER 1.9 and beyond,”
Institute for Formal Models and Verification, Johannes Kepler University,
Altenbergerstr. 69, 4040 Linz, Austria, Tech. Rep. 11/2, 2011.

[3] R. K. Brayton and A. Mishchenko, “ABC: an academic industrial-strength
verification tool,” in Computer Aided Verification, 22nd International
Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings,
ser. Lecture Notes in Computer Science, T. Touili, B. Cook, and P. B.
Jackson, Eds., vol. 6174.  Springer, 2010, pp. 24-40.

[4] E. Yu, N. Froleyks, A. Biere, and K. Heljanko, “Stratified certification
for k-induction,” in 22nd Formal Methods in Computer-Aided Design,
FMCAD 2022, Trento, Italy, October 17-21, 2022, A. Griggio and
N. Rungta, Eds. IEEE, 2022, pp. 59-64.

, “Towards compositional hardware model checking certification,”

in Formal Methods in Computer-Aided Design, FMCAD 2023, Ames, IA,

USA, October 24-27, 2023, A. Nadel and K. Y. Rozier, Eds. IEEE,

2023, pp. 1-11.

N. Froleyks, E. Yu, A. Biere, and K. Heljanko, “Certifying phase ab-

straction,” in Automated Reasoning - 12th International Joint Conference,

IJCAR 2024, Nancy, France, July 3-6, 2024, Proceedings, Part I, ser.

Lecture Notes in Computer Science, C. Benzmiiller, M. J. H. Heule, and

R. A. Schmidt, Eds., vol. 14739. Springer, 2024, pp. 284-303.

T. Balyo, M. J. H. Heule, and M. Jérvisalo, “SAT Competition 2016:

Recent developments,” in Proceedings 31st AAAI Conference on Artifi-

cial Intelligence, February 4-9, 2017, San Francisco, California, USA,

S. Singh and S. Markovitch, Eds. AAAI Press, 2017, pp. 5061-5063.

A. Biere, N. Froleyks, and M. Preiner, 2024. [Online]. Available:

https://hwmcc.github.i0/2024/

(5]

[6

[t

[7

—

[8

—_

This article is licensed under a Creative
BY Commons Attribution 4.0 International License


https://fmcad.org/FMCAD24
https://orcid.org/0000-0001-7170-9242
mailto:biere@cs.uni-freiburg.de
https://orcid.org/0000-0003-3925-3438
mailto:nils.froleyks@jku.at
https://orcid.org/0000-0002-7142-6258
mailto:preiner@cs.stanford.edu
https://hwmcc.github.io/2024/
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_6
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_6
https://creativecommons.org/licenses/by/4.0/

‘@ Formal Methods in Computer-Aided Design 2024

Efficiently Synthesizing Lowest Cost Rewrite Rules
for Instruction Selection

Ross Daly
Stanford University
Stanford, CA, USA
rdaly525@cs.stanford.edu

Jackson Melchert

Stanford University

Stanford, CA, USA
melchert@stanford.edu

Pat Hanrahan
Stanford University
Stanford, CA, USA
hanrahan@cs.stanford.edu

Abstract—Compiling programs to an instruction set architec-
ture (ISA) requires a set of rewrite rules that map patterns
consisting of compiler instructions to patterns consisting of ISA
instructions. We synthesize such rules by constructing SMT
queries, whose solutions represent two functionally equivalent
programs. These two programs are interpreted as an instruc-
tion selection rewrite rule. Existing work is limited to single-
instruction ISA patterns, whereas our solution does not have
that restriction. Furthermore, we address inefficiencies of existing
work by developing two optimized algorithms. The first only
generates unique rules by preventing synthesis of duplicate and
composite rules. The second only generates lowest-cost rules
by preventing synthesis of higher-cost rules. We evaluate our
algorithms on multiple ISAs. Without our optimizations, the
vast majority of synthesized rewrite rules are either duplicates,
composites, or higher cost. Our optimizations result in synthesis
speed-ups of up to 768 x and 4004 x for the two algorithms.

I. INTRODUCTION

As we approach the end of Moore’s law and Dennard
scaling, drastically improving computing performance and
energy efficiency requires designing domain-specific hardware
architectures (DSAs) or adding domain-specific extensions to
existing architectures [22]. As a result, many DSAs have
been developed in recent years [4], [8], [24], [27], [30], each
with its own custom instruction set architecture (ISA) or ISA
extension.

Targeting such ISAs from a compiler’s intermediate repre-
sentation (IR) requires a custom library of instruction selection
rewrite rules. A rewrite rule is a mapping of an IR pattern
to a functionally equivalent ISA pattern. Manual specification
of rewrite rules is error-prone, time-consuming, and often
incomplete. It is therefore desirable to automatically generate
valid rewrite rules.
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When specifying instruction selection rewrite rules, there
are two common cases. When ISAs have complex instructions,
rewrite rules will often map multi-instruction IR patterns to a
single ISA instruction. When ISAs have simple instructions,
rewrite rules will often map a single IR instruction to a multi-
instruction ISA pattern. A rewrite rule generation tool should
be able to create rewrite rules for both cases. We call such
rewrite rules many-to-many rules.

Generating instruction selectors is not a new idea. Most
relevant to this work is Gulwani et al. [21] who use a satisfia-
bility modulo theories (SMT) solver to synthesize a loop-free
program that is functionally equivalent to a given specification.
Their approach is called component-based program synthesis
(CBPS), as each synthesized program must include functional
components from a given component library. Buchwald et
al. [6] use and extend CBPS to efficiently generate multi-
instruction loop-free IR programs equivalent to a single ISA
instruction program; that is, they solve the many-to-one rewrite
rules synthesis problem. However, multi-instruction ISA pro-
grams cannot be synthesized.

Both of these algorithms produce many duplicate rules,
which are removed during a post-processing step. As we show,
this adds significant additional cost. Another issue is that
CBPS as currently formulated does not incorporate the notion
of optimizing for cost. In practice, we often want only the set
of lowest-cost rules, making it unnecessary (and expensive) to
generate equivalent higher-cost rules.

This paper presents an algorithm for automatically gen-
erating a complete set of many-to-many rewrite rules. We
address the above issues by preventing the synthesis of both
duplicate and high-cost rules at rule generation time, using
exclusion techniques. As a further optimization, we generate
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rules in stages and exclude composite rules, i.e., rules that
can be composed of smaller rules found in previous stages.
These ensure we produce a small but complete set of rewrite
rules. Compared to previous work, our approach eliminates
unnecessary rules and significantly reduces the time required
to produce the unique necessary ones.

Our contributions are as follows:

« We define generalized component-based program synthe-
sis (GCBPS) as the task of synthesizing two functionally
equivalent programs using two component libraries. We
then present an SMT-based synthesis approach inspired
by Gulwani et al. to solve it.

o« We present an iterative algorithm genAll to generate
all unique many-to-many rules up to a given size. We
identify a set of equivalence relations for patterns encoded
as programs and for rules that map IR programs to
ISA programs. We use these relations to enumerate and
exclude duplicate rules. Furthermore, we directly exclude
composite rewrite rules. These result in up to a 768 x
synthesis speed-up.

« We present an algorithm genAll; .~ which generates only
the lowest-cost rules by incorporating a cost metric in
addition to excluding duplicate and composite rewrite
rules. This results in a synthesis speed-up up to 4004 x.

The rest of the paper is organized as follows. Section II
discusses instruction selection, existing rule generation meth-
ods, SMT, and program synthesis. Section III describes a
program synthesis query for generating many-to-many rules.
Section IV presents an algorithm for generating only unique
rewrite rules and defines duplicates and composites. Section V
presents an algorithm for synthesizing only the lowest-cost
rules. Section VI evaluates both algorithms, and Section VII
discusses limitations and further optimizations.

II. BACKGROUND AND RELATED WORK
A. Instruction Selection

Instruction selection is the task of translating code in the
compiler’s intermediate representation (IR) to functionally
equivalent code for a target ISA. Typically, a library of rewrite
rules is used in instruction selection. A rewrite rule is a
mapping from an IR pattern consisting of IR instructions
to a functionally equivalent ISA pattern consisting of ISA
instructions. Such patterns can be expression trees or directed
acyclic graphs (DAGs).

Significant work has been devoted to developing rewrite rule
tiling algorithms to perform instruction selection [1], [5], [12],
[14]-[17], [19], [26], [29]. For each rule in the rule library, a
tiling algorithm first finds all fragments from the IR program
in which the rule’s IR pattern exactly matches that fragment.
Then, the instruction selector finds a tiling of these matches
that completely covers the basic block and minimizes the total
rule cost according to some cost metric.

Simple instruction selectors only handle tree-based IR pat-
terns, which is inefficient for reused computations. Modern
instruction selectors like LLVM use DAG-based matching that

allows for both richer rules and better tiling. Koes et al.
[26] describe a similar near-optimal DAG-based instruction
selection algorithm [5]. We want to generate rules that can be
used with such modern DAG-based instruction selectors.

B. Generating Instruction Selectors

Generating instruction selectors from instruction semantics
has been a topic of research interest [6], [7], [9], [10], [23].
Dias and Ramsey [10] introduce an algorithm for generating
rewrite rules based on a declarative specification of the ISA.
While this solves part of the many-to-many rule task, their
work relies on an existing set of algebraic rewrite rules for
synthesizing semantically equivalent rules. Our work uses
SMT for the instruction and program semantics. However,
incorporating certain kinds of algebraic rewrite rules could
be an avenue for future optimizations.

Daly et al. [9] propose a way to synthesize instruction
selection rewrite rules from the register-transfer level (RTL)
specification of a processor. Their algorithm requires a set
of pre-specified IR patterns. In contrast, we can efficiently
synthesize rules that consider all possible multi-instruction IR
patterns up to a given size. Their approach for synthesizing
complex instruction constants and handling floating point
types could be combined with the approaches in this paper.

The most relevant to this work is the work by Buch-
wald et al. [6], which leverages component-based program
synthesis to generate rules with multi-instruction IR patterns
and single-instruction ISA patterns. In contrast, our work
synthesizes rules with both multi-instruction IR patterns and
multi-instruction ISA patterns. We additionally prevent the
synthesis of duplicate, composite, and high-cost rewrite rules,
unlike any of the above approaches.

C. Program Synthesis and Equivalence

We use SMT-based program synthesis to enumerate a com-
plete set of instruction selection rewrite rules. In program
synthesis enumeration, it is common to remove equivalent
solutions [3]. We use the equivalence relation defined in
Section IV-A to determine equivalent rewrite rules. In prior
work [2], observational equivalence (i.e., programs with the
same semantics) has been used for de-duplication [2], however
observational equivalence does not take into account the
structure of the program, which is essential for rewrite rule
pattern matching.

D. Logical Setting and Notation

We work in the context of many-sorted logic (e.g., [13]),
where we assume an infinite set of variables of each sort
and the usual notions of terms, formulas, assignments, and
interpretations. Terms are denoted using non-boldface symbols
(e.g., X). Boldface symbols (e.g., X) are used for sets,
tuples, and multisets, whose elements are either terms or other
collections of terms. Y := (Y7, ..., Yy ) defines a tuple, where
Y| = N and Y; refers to the i-th element. Z := {2"} defines
a multiset, where the multiplicity of element z is n € N.
Both v and ¢ are used to denote formulas. ¢)(X) is a formula



whose free variables are a subset of X. We use M F ¢(X) to
denote the satisfiability relation between the interpretation M
and the formula 7). Assuming X is a collection of variables,
Mx denotes the assignment to those variables induced by M.
For an assignment «, we write o = (X)) if M | ¢(X) for
every interpretation M such that Mx = a.

E. Component-based Program Synthesis

CBPS is a program synthesis task introduced by Gulwani
et al. The inputs to the task are:

o A specification S := (15,09, ¢ spec(I%,0%)) containing
a tuple of input variables I, a single output variable O°,
and a formula ¢gpec (I%,0%) relating the inputs and the
output.

A library of components (e.g., instructions) K, where the
k-th component Ky, := (I, Ok, ¢r(Ix, Ox)) consists of
a tuple of input variables I, a single output variable
Oy, and a formula ¢ (I, Oy) defining the component’s
semantics.

An example component for an addition instruction is shown
below using the theory of bit-vectors, QF_BV, where BV,
is an n-bit sort and +, is addition modulo 2".

(o : BV 116, 11 : BV (1g)), O : BV j16), Lo +116) 11 = O)

The task is to synthesize a valid program functionally
equivalent to the specification using each component from K
exactly once.

For notational convenience, we group together the
set of all inputs and outputs of the components:
W = Uq, 04, )ek (Or U (UIL)). Gulwani et al. encode
the program structure using a connection constraint:
Geonn (L, I%, 0%, W). This is a formula representing how the
program inputs (I¥) and program output (O°) are connected
via the components. The connections are specified using
location variables L. We do not go into the details of how
location variables encode connections (they are in [21]). It
is sufficient for our purposes to know that these are integer
variables, and an assignment to them uniquely determines a
way of connecting the components together into a program.
The program semantics ¢, are defined as the components’
semantics conjoined with the connection constraint:

Pprog(L,1%,0%, W) :

(/\ ¢k(Ika Ok)) A ¢conn(La 157 OS’ W)
k

(D

They define a verification constraint that holds if a par-
ticular program is both well-formed (specified using a well-
formedness constraint ,yp,) and satisfies the specification

(bspec:

bverif = Yupp(L) AVI®, 05 W. )

(bp'rog(LaISaOS)W) - ¢5pec(IS>OS)-

A synthesis formula ¢y, existentially quantifies L in (2):

Gsyntn = TLVI®, 0% W. 3)
1bwfp (L) A (¢prog (L7 IS7 OS, W) - ¢spec (IS, OS)) .

This formula can be solved using a technique called counter-
example guided inductive synthesis (CEGIS). CEGIS solves
such exist-forall formulas by iteratively solving a series of
quantifier-free queries and is often more efficient than trying
to solve the quantified query directly. More details are in
[21]. For our purposes, we assume the existence of a CEGIS
implementation, CEGIS, which takes an instance of ¢gynin
and returns a model M with the property that My, = ¢yeris,
from which a program that is a solution to CBPS can be
constructed.

III. COMPONENT-BASED PROGRAM SYNTHESIS FOR
MANY-TO-MANY RULES

Given the IR and ISA instruction sets K& and K!54,
Buchwald et al. [6] use CBPS to synthesize rewrite rules.
They use a single ISA instruction k54 € K54 for the CBPS
specification and a subset of the IR instructions for the CBPS
components. A solution to the resulting ¢,yn¢, formula gives
a program P If P54 is the single-instruction program
consisting of k94, they interpret the pair (P, P/54) as an
instruction selection rewrite rule.

However, Buchwald et al.’s solution is insufficient for gen-
erating many-to-many rules, as they cannot synthesize IR and
ISA programs that both contain multiple instructions. Instead,
two functionally equivalent programs need to be synthesized.
We first define an extension to CBPS called generalized
component-based program synthesis (GCBPS) to address this
problem. Then, we show how to construct a synthesis query
whose solutions represent pairs of functionally equivalent
programs.

A. Generalized Component-based Program Synthesis

We define the GCBPS task as that of synthesizing two
programs, P?® and P?, represented using location variables
L® and L°, given two sets of components K® and K°, two
sets of inputs I, I” where |1%| = |I°|, and two outputs O%, O°
where the following conditions hold true:

1) P“ uses each component in K exactly once.

2) P? uses each component in K® exactly once.

3) P is functionally equivalent to P?.

B. Solving GCBPS

We start with the CBPS verification constraint from (2)
using components K (and a corresponding set of inputs and
outputs W), but modify it slightly by introducing variables
(I*,0%) that are fresh copies of (I, 0%):

Gupp (L) AVI®, 0%, W15, 0%,
(¢ng (Laa Iav Oav Wa) A ¢5P€C(IS’ OS)) ==
((ri 1 = 1) — 0" =0%).

4)



Assuming the formulas for both the program and the specifi-
cation, if their inputs are the same, their outputs must also be
the same.

We next replace the specification program with a different
component-based program using components K® and quantify
over that program’s inputs I°, output O and component
variables W?:

¢vem‘f = qufp(La) A 7/)wfp (Lb) A VIaa Iba Oa7 Ob7 Wa’ W?.
&)
(L% I% 0 W) A gy (L, I, 0%, W) ) =

( a
prog prog

/\iIFIZI- = 0% =0").
((n I =17) ")

This is our generalized verification constraint stating the
correctness criteria for when two component-based programs
are semantically equivalent.

To synthesize such a pair of programs, a synthesis formula
Gsynth is defined by existentially quantifying L® and L? in the
verification formula (5):

Gsyntn = ILY, LOVIC TP, 0%, 0%, W, WP,
7v[”wfp (La) A 7v[’wfp (Lb)A

(( (L% 1%, 0% W) A g0 (L2, 17, 0°, W) =
((n If=10) = O°

ob)>.

As above, we assume that calling CEGIS on ¢sypn, returns
a model M such that Myayre = @ueris. This can be
converted into a pair of programs (P? P?) representing a
rewrite rule that is a solution for the GCBPS task. We
write rewriteRule(K®, Kb Mypa, My,) for the rewrite rule
constructed from a specific model M using the component
sets K and K°.

(6)

a
prog

IV. GENERATING ALL MANY-TO-MANY REWRITE RULES

Buchwald et al. [6] describe an iterative algorithm,
IterativeCEGIS, to synthesize rewrite rules using CBPS. This
algorithm iterates over all multisets of IR instructions up to
a given size and only runs synthesis on each such multiset.
Compared to running synthesis using all the IR instructions at
once, this iterative algorithm works better in practice.

However, lterativeCEGIS cannot synthesize rewrite rules
with both multi-instruction IR programs and multi-instruction
ISA programs. Furthermore, it produces duplicate rewrite
rules which are then filtered out in a post-synthesis filtering
step. Although the results are correct, this approach is highly
inefficient because each call to CEGIS is expensive, and a
CEGIS call is made, not just for some duplicate rules, but for
every duplicate rule. In our approach, we make the requirement
that a solution is not a duplicate part of the CEGIS query itself,
ensuring that each successful CEGIS query finds a new, non-
redundant rewrite rule.

Our iterative algorithm, genAll, is shown in Figure 1. It
takes as parameters the IR and ISA component sets, K/

genAll(K'R KA NTR NISAY.
Sk < {}
for ni,n2 € [1, N'F] x [1, N'54]:
for m™ € multicomb(K'®,n):
for m™ € multicomb(K™* ny) :
for IR 194 ¢ alilnputs(m'™, m™4):
6, LI LISA
GCBPS(m™®, m
¢ < ¢ A -AllComposites(Sr, .. .)
Sr + Sr U
CEGISAll(¢, m"™ m™4 L7 1.754)
return Sg

ISA IR TISA
I, T59)

o

10

Fig. 1: Iterative algorithm to generate all unique rewrite rules
up to a given size.

1 CEGISAll(¢, m'™®, m™4 L® L154).

2 Sr = {}

3 while True:

4 M «— CEGIS(¢)

5 if M=1: return Sg

6 R « rewriteRule(m™ m™* My, My 1sa)

7 Sr + Sr U {R}

8 ¢ — oA jwdup (R: (LIRv LISA))

Fig. 2: AlISAT algorithm to synthesize all unique rules. Line 8
excludes all rules that are duplicates of the current synthesized
rewrite rule.

and K'94 respectively, as well as a maximum number of
components of each kind to use in rewrite rules, N% and
NI54 and iteratively builds up a set Si of rewrite rules,
which it returns at the end. Line 3 shows that n; and ns
iterate up to these maximum sizes. Line 4 iterates over all
multisets of elements from K'% of size n, using a standard
multicombination algorithm multicomb [25] (not shown). Line
5 is similar but for multisets from K754 of size no. Next, for a
given choice of multisets, line 6 enumerates all possible ways
of selecting input vectors from those multisets that could create
well-formed programs by constructing two fresh sets of input
variables. Line 7 constructs fresh sets of location variables L/
and L’%4 and returns them along with the instantiated GCBPS
synthesis formula (using Equation (6))." Line 8 excludes all
composite rules from the synthesis search space. Composite
rules are rules that can be constructed using the current set
of rules Si and are thus unnecessary for instruction selection.
We discuss this in more detail in Section IV-B. Finally, on
line 9, the current set of rules S is updated with the result
of calling CEGISAIl, which we describe next.

Figure 2 shows the CFEGISAIl algorithm that performs
the AISAT [20], [31] task. Its parameters are the synthesis
formula ¢, the multisets m’® and m’4, and the location
variables L% and LS4, 1t returns a set Sp of rewrite rules.
Initially, this set is empty. The algorithm iteratively calls

'We augment the well-formed program constraint in (6) to prevent syn-
thesizing programs containing dead code and unused inputs. This can be
accomplished by enforcing that each input and intermediate value is used
in at least one location.



a standard CEGIS algorithm to solve the synthesis query,
constructing a new rewrite rule R, which is added to the set
Sg of rewrite rules, when the call to CEGIS is successful. The
iteration repeats until the CEGIS query returns L, indicating
that there are no more rewrite rules to be found. Note that
after each iteration, the ¢y, formula is refined by adding
the negation of a formula capturing the notion of duplicates
for this rule. We describe how this is done next.

A. Excluding Duplicate Rules

Consider the two distinct rules below. As a syntactical con-
vention, infix operators are used for IR patterns and function
calls for ISA patterns.

L+ (IQ . Ig) — add(Il, mul(IQ, ,[3))
(Il . Ig) + I2 — add(Ig, mul(Il, Ig))

The two IR patterns represent the same operation despite the
fact that the variable names and the order of the commutative
arguments to addition are both different. Both rules would
match the same program fragments in an instruction selector
and would result in the same rewrite rule application. Thus, we
consider such rules to be equivalent and would like to ensure
that only one is generated by our algorithm.

We first define a rewrite rule equivalence relation, ~ .
Informally, two rules are equivalent if replacing either one
by the other has no discernible effect on the execution of an
instruction selection algorithm. We make this more formal by
considering various attributes of standard instruction selection
algorithms.

Commutative Instructions Modern pattern matching algo-
rithms used for instruction selection try all argument orderings
for commutative instructions [5]. We define the commutative
equivalence relation ~¢m as PIE ~cm P iff PIF is a
remapping of P{f’s commutative instruction’s arguments.

Same-kind Instructions Programs P generated by GCPBS
have a unique identifier, the program line number, for each
instruction. This means that if two instructions of the same
kind appear in a program, interchanging their line numbers
results in a different program, even though it makes no
difference to the instruction selection algorithm. We define
the same-kind equivalence relation ~ g as PIF ~pn PR
iff P17 is the result of remapping the line numbers for same-
kind instructions in P{%,

Data Dependency Modern instruction selection algorithms
perform pattern matching, not based on a total order of instruc-
tions, but on a partial order determined by data dependencies.
Many different sequences may thus lead to the same partial
order. We define ~pm as PIE ~p PLIE iff PIF and PP
have the same data dependency graph.

Rule Input Renaming For a given rewrite rule, the input vari-
ables used for the IR program must match the input variables
used for the ISA program, but the specific variable identifiers
used do not matter. We define the equivalence relation ~ jrue
on rules (i.e., pairs of programs) as Ry ~jme Ro iff Ro is
the result of remapping variable identifiers in R;.

Rule Equivalence The first three equivalence relations defined
above are for IR programs, but the analogous relations (~ s,
~isa, ~pisa) for ISA instructions are also useful.

Putting everything together, we define rule equivalence
~rule as follows.

~IR = &J{NCIR,NKIR,NDJR} @)
~ISA = L'U{NC«JSA7 ~KISA, ND]SA} ()
~rute = W{(~IR ® ~1sa), ~prue } 9

Overall IR equivalence is defined as the transitive closure
of the union (notated with W) of the three individual IR
relations. ISA equivalence is defined similarly. Overall rewrite
rule equivalence is then defined using the ® operator, where
~YR="a &® ~p is defined as: (al, b2) ~R (ag, bg) iff a1 ~g a2
and b; ~p bso. Specifically, rule equivalence is obtained by
combining IR equivalence in this way with ISA equivalence,
and then combining the result with ~ e using 4.

The set of all duplicates of rule R is the rule equivalence
class [R]ure, where R’ € [Rlyye <= R ~pue R gy
can be constructed as the disjunction of all elements of the
equivalence class [R]uze

B. Excluding Composite Rules

We also exclude any rule whose effect can already be
achieved using the current set of generated rules (line 8
of Figure 1). We elucidate this using a simple example.
Assume the algorithm just constructed a new query for the
multisets m’®, m’54, and the input I’E (line 7 of Fig-
ure 1), and assume that the rule library Sy currently contains
rules for addition (I; + Is — add(I1, I2)) and multiplication
(I1 - Iy — mul(I, I)). Consider the following cases.

D) If I'® = (I;), m'® = {4}, and m’4 = {add}, then

the rule I; + I; — add(Iy,1;) will be synthesized by
CEGISAIL. But this rule is a specialization of the existing
rule for addition. Any use of this specialized rule could
instead be replaced by the more general rule, and this
rule can thus be excluded. Note that we order the inputs
on line 6 of Figure 1 to guarantee that the most general
version of a rule is found first.
If ' = (I,I5,13), m™® = {+,.}, and m’4 =
{add, mul}, then the composite rule (I; + (I2 - I3)) —
add(Iy, mul(Is, I3)) will be synthesized by CEGISAII.
Using similar logic, any use of this composite rule
could instead use the simpler and more general rules
for addition and multiplication, and this rule can thus
be excluded. The multiset ordering used in lines 4 and
5 of Figure 1 ensures that subsets are visited before
supersets, guaranteeing that smaller rules are found first.
A specialized rule can be interpreted as a composite rule
composed of the general rule with fewer inputs.

2)

Only composite rules that would have been synthesized
for a particular query need to be excluded. In general, for a
specific query based on m’?, m’4, and 1'%, we enumerate
and exclude composite rules R := (P, P/94) that meet the
following criteria:



genAll, (KB K54 NIE NS cost) :
Kortea + sortByCost(K, NTS4 cost)
Sk + {}
for n € [1,N'B]:
for m'® € multicomb(K™ n):
for m™ € K,prieq:
Ceur cost(mISA)
for I'® 14 ¢ alllnputs(m™ m'4):
6, LR LI5A
GCBPS(m'™ m
¢ < ¢ N —AllComposites ;- (Sr, Ceur, - - -)
Sr < Sr U
CEGISAll ¢ (¢, m'E m™4 LIE L154)

1
2
3
4
5
6
7
8
9

ISA IR fISA
I T0)

10
11

12 return Sgi

Fig. 3: Iterative algorithm to generate all lowest-cost rules.
ISA multisets are ordered by cost. CEGISAIl is modified to
exclude rules with duplicate IR programs.

R has exactly [I'f| inputs.

P'% has the same components as m'%.

P’54 has the same components as m!54,

P'% is built from the IR programs of already-found rules

inS R-

o P54 s the result of applying the rewrite rules used to
build P%,

This enumeration is encapsulated by the call to

AllComposites on line 8 of Figure 1.

V. GENERATING ALL LOWEST-COST RULES

Because all duplicates are excluded, the genAll algorithm
generates only unique rewrite rules. However, two unique rules
can share the same IR pattern. For a particular IR pattern, only
the lowest-cost rule is needed for some cost metric. Knowing
the instruction selection cost metric at rule-generation time
presents another time-saving opportunity because we can also
prevent the synthesis of high-cost rules.

We make a few assumptions about such a cost metric.

« The cost for an instruction selection tiling is equal to the
sum of the costs of each tiling rule’s ISA program.

o The cost of an ISA program P54 only depends on the
instruction contents, not the program structure. This cost
is the sum of the cost of each instruction in the program.

While these assumptions are a restriction on the space of
possible cost metrics, they are sufficient to represent common
ones like code size and energy. If the compiler’s cost metric
violates these assumptions, the genAll algorithm can be used
instead. This restricted space of cost metrics has the important
property that the cost of any rule that would be synthesized
using the components m’54 can be determined up front as
the sum of the cost of each component.

Figure 3 shows our synthesis algorithm updated to only
synthesize the lowest-cost rules for each unique IR pattern.
The first change is to sort all possible mulitsets of ISA
instructions up to size N'94 by cost (lower cost first) (line
2). This ordering ensures that the first rule synthesized for a

particular IR program will be the lowest-cost version of that
rule. Therefore, after synthesizing a new rule, all rules with
a duplicate IR program can be excluded. The second change
excludes rules with duplicate IR programs. A duplicate IR
program is defined using the IR equivalence relation:

~iRe = W{~gm, ~gm, ~pm, ~pm ) (10)

This is the same definition as (7), but with an additional
relation ~;x defined as P{% ~ i PLIE iff PIF is the result
of remapping variable identifiers in PI®. The CEGISAllLc
function called on line 11 is the same as CEGISAIl, except
that it uses ~ g, instead of ~;r when constructing ) gyyp.

The third change modifies AllComposites to use the

known up-front cost cost(m’4). To see how this works,
we consider again the example from Section IV-B. As be-
fore, we assume Sg currently contains two rules: one for
addition (I 4+ Is — add(I,I3)) and one for multiplication
(I1 - Iy — mul(I1,I3)). We assume the target (ISA) expres-
sions for these rules have cost 5 and 10, respectively. Consider
the following situation:

e Suppose I'f' = (I ,15,I3), and m’f = {+ .} It
might be possible to synthesize a rule that has IR pat-
tern (I + (I2 - I3)). We know that the composite rule
(I1 + (Iz - I3)) — add(Iy,mul(I3,13)) would have a
cost of 15 since rule costs are additive. Therefore, we
can exclude any rule that matches this IR pattern and has
cost(m!4) > 15.

To implement this, only one adjustment needs to be made
to the conditions in Section IV-B. Instead of requiring P74
to have the same components as m’54, we simply require
cost(PT54) > cost(m!%4), i.e., for rules matching the other
conditions, if the ISA program has a cost equal to or greater
than cost of the ISA program in the current rule, it is
excluded. These conditions are encapsulated by the call to
AllComposites . (line 10).

VI. EVALUATION

Our evaluation strategy is threefold. We first show that our
algorithm is capable of producing a variety of many-to-many
rules. A good set of rewrite rules involves both many-to-
one and one-to-many rules. We also show that by removing
duplicate, composite, and high-cost rules, we produce a much
smaller set of rewrite rules. Second, we analyze the effect on
performance of the optimizations described above. We show
that they all significantly reduce the time spent in synthesis.
Finally, we show that by using different cost metrics, we can
generate different sets of lowest-cost rewrite rules.

A. Implementation

All instructions are formally specified using the hwtypes
Python library [11], which leverages pySMT [18] to construct
(quantifier-free) SMT queries in the theory of bit-vectors.
We also use annotations indicating which instructions are
commutative. We use Boolector [28] as the SMT solver and
set a timeout of 12 seconds for each CEGIS invocation. Every
synthesized rewrite rule is independently verified to be valid.



B. Instruction Specifications

To evaluate our algorithms, we selected small but non-trivial
sets of IR and ISA instructions operating on 4-bit bit-vectors.

IR We define the IR instruction set to be constants (0, 1),
bitwise operations (not, and, or, xor), arithmetic operations
(neg, add, sub), multiplication (mul), unsigned comparison
operations (ult, ule, ugt, uge), equality (eq), and dis-equality
(neq).

ISA 1 This is a minimal RISC-like ISA containing only 6
instructions: nand, sub, three comparison instructions (cmpZ,
cmpN, empC) which compute the zero (Z), sign (N), and
carry (C) flags respectively for a subtraction, and a flag
inverting instruction (inv).

ISA 2 This is an ISA specialized for linear algebra. It supports
the 5 instructions: neg, add, add3 (addition of 3 values), mul,
and mac (multiply-accumulate).

C. Rewrite Rule Synthesis

For each ISA we run three experiments. The first experiment
(All Rules) is the baseline that generates all many-to-many
rules, including duplicate, composite, and high cost rules. This
is an implementation of Buchwald et al.’s IterativeCEGIS al-
gorithm extended to use GCBPS for many-to-many rules (no-
tated as IterativeCEGISccpps)- The second (Only Unique)
generates only unique rules by excluding all duplicates and
composites using the genAll algorithm. The third (Only
Lowest-Cost) generates only the lowest-cost rules using the
genAll; ~ algorithm in Figure 3. A code-size cost metric is
used, i.e., cost(K) is just the number of components in K.

For ISA 1, we split the rule generation into two parts.
The first part (ISA 1a) synthesizes rules composed of bitwise
and arithmetic IR instructions using the ISA’s nand and
sub instructions. The second part (ISA 1b) synthesizes rules
composed of constants and comparison instructions using the
four instructions cmpZ, cmpN, ecmpC, and inwv.

For la and 1b, we synthesize rewrite rules up to an IR
program size of 2 and an ISA program size of 3 (written 2-to-
3). For (Only Lowest-Cost), we increase the ISA program size
to 5 and 4 respectively. For ISA 2, we synthesize all rewrite
rules composed of constant, and arithmetic (including mul)
IR instructions up to size 3-to-2.

The number of rewrite rules produced for each configuration
for ISA 1a, 1b, and 2 is shown in Tables I, II, and III,
respectively. Each table entry is the number of rewrite rules
synthesized for a particular IR and ISA program size. For all
ISAs, the extra synthesized rules in (All Rules) were compared
against the duplicate and composite rules excluded by (Only
Unique). Entries in (All Rules) marked with a ‘(-n)’ represent
‘n’ rules that (Only Unique) synthesized, but (All Rules)
missed due to CEGIS timeouts. The (All Rules) experiment
for the entry marked with an asterisk could not complete in 70
hours, so the number calculated from (Only Unique) is shown.

For both ISAs we were able to synthesize 1-to-many
and many-to-1 rules for both IR and ISA instructions.

genAll produced a more complete set of rules than
IterativeCEGIS zcBps.-

Table IV shows the percentage of rules that are duplicates
or composites in the first column, and the percentage of rules
that are high cost in the second column. Most rules in (All
Rules) are duplicates, composites, or high cost. Out of the
349179 rules up to size 3-to-2 for ISA 2 (i.e., the sum of the
(All Rules)), 99.5% are duplicates or composites. Similarly,
most rules are high cost. In ISA 1a, 59672 out of 59822 rules
(99.7%) up to size 2-to-3 are high cost.

D. Synthesis Time Improvement with genAll

In this section we showcase the synthesis time im-
provements of genAll. The first experiment is the baseline
Tterative CEGISgcpps- The second excludes duplicate rules
(i.e., with line 8 of Figure 2). The third, genAll, excludes both
duplicates and composites (i.e. with line 8 of both Figure 2
and Figure 1).

For each GCBPS query, we note the time required (¢s4¢)
to run CEGISAIl. Next, we measure the number of unique
rules (Nynigue) found by CEGISAIll. We then add the pair
(Nunique tsat) to our dataset. We plot the cumulative synthesis
time versus the number of unique rules found by doing the fol-
lowing. Each data point is sorted by its slope (tsa1/Nunigue)-
Then, the increase in both ¢,4; and Nyp;que is plotted for each
sorted point. Some data points have N4 = 0 indicating
that every synthesized rule was redundant and is shown using
a vertical slope.

The synthesis time plot for unique rewrite rules for ISA
Ib up to size 2-to-3 is shown in Figure 4a. Excluding all
duplicates shows a 5.3x speedup. Excluding both duplicates
and composites shows a 6.2x speedup. Both optimizations
find an additional 5 unique rules.

E. Synthesis Time Improvement with genAll; o

We also showcase the synthesis time improvements of
genAll; ~ using a similar setup. The first experiment is the
baseline IterativeCEGISccpps. The second excludes IR du-
plicate rules. The third, genAll; ., excludes both IR duplicates
and IR composites.

We use the same experimental setup as before, except when
computing Nypique, all higher-cost rules are filtered instead.
The synthesis time plot for lowest-cost rewrite rules for ISA
1b up to size 2-to-3 is shown in Figure 4b.

Excluding rules with duplicate IR programs provides a 41x
speed-up. Also excluding high-cost composites provides a
1254 x speed-up over the baseline (All Rules) configuration.

F. Total Speed-up

We summarize the speed-ups of genAll and genAll; -
compared to the IterativeCEGISccpps baseline for all con-
figurations in Table V. We compare the synthesis time in the
“Synth” column. We compare the total algorithm runtime in
the “Total” column (including time for iterating, solving, rule
filtering, etc.). The last row’s baseline did not complete in 70
hours, so we provide lower bounds for speed-up.



ISA Program Size

All Rules Only Unique Only Lowest-Cost
1 2 3 1 2 3 1 2 3 4 5
IR Prog 1|5 32 1096 3 10 96 3 4 2 1 0
Size 2 |76 1719 56894 || 40 189 1940 || 40 67 34 12 6

TABLE I: Number of synthesized rewrite rules for ISA 1la.

ISA Program Size

All Rules Only Unique Only Lowest-Cost

1 2 3 1 2 3 1 2 3 4

IR Program 1 | 17 71 3662 9 51 873 7 30 0
Size 2 | 89 3942 (-5) 199572 78 717 21511 52 64 9 0

TABLE II: Number of synthesized rewrite rules for ISA 1b.

IR Program Size
All Rules Only Unique Only Lowest-Cost
1 2 3 1 2 3 1 2 3
ISA Program 1| 11 287 3998 314 315 3 14 315
Size 2 | 10 3115 341758* 3 69 1337 1 32 760

TABLE III: Number of synthesized rewrite rules for ISA 2.
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Fig. 4: Cumulative synthesis time comparison for ISA 1b up to size 2-to-3.
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ISA  Rule Size up % Duplicate % High-cost
to (IR, ISA) or Composite
la 2, 3) 96.2% 99.7%
1b 2,3) 88.8% 99.9%
2 3,2 99.5% 99.7%

TABLE IV: Percent of rewrite rules up to (IR, ISA) size that
are a duplicate or a composite, and percent that are high-cost.

The speed-ups depend on many parameters including the
maximum size of the rewrite rules, the number of possible
instructions, the commutativity of the instructions, and the
semantics of the instructions. The optimizations discussed
produce several orders of magnitude speed-ups. Further op-
timizing the non-solver portions (e.g., re-coding in C) would
drastically increase the “Total” speed-ups to be closer to the
“Synth” ones. Clearly, the combination of all optimizations
discussed in this paper can produce speed-ups of several orders
of magnitude.

G. Cost Metric Comparisons

Our final experiment explores how the choice of cost metric
influences the rules. We have implemented two cost metrics:
a code size metric (CS) and an estimated energy metric (E).

ISA  Rule Size up genAll Speed-up genAll; - Speed-up
to (IR, ISA) Synth Total Synth Total

la 2,2) 3.5x% 1.3x 11x 2.8%

1b 2,2) 3.1x% 1.7x 26 2.8%

2 2,2 11x 2% 53x 2.5%

la 2,3) 12x 6.8% 601 x 57x

1b 2, 3) 6.2% 2.7x 1254 x 63

2 3,2 > 768x > 81x > 4004x > 171x

TABLE V: Speed-ups compared to lterativeCEGISgcpps-

ISA" Rule Size up | Unique Unique Common
to (IR, ISA) (CS) (E)
la 2,5) 121 161 48
1b 2,4) 99 198 36
2 (3,2) 134 137 991

TABLE VI: Number of unique and common rewrite rules
synthesized for code size (CS) and energy (E) cost metrics.

The energy metric was created to correspond to real hardware
energy data. For example the cost ratio for mul and add is
1:1 for code size, but is 2.5 : 1 for energy. The number of
common and unique lowest-cost rewrite rules for each ISA is
shown in Table VI.
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While there is some overlap in common rules, each cost
metric produces a differing set of unique lowest-cost rules.

VII. CONCLUSION AND FUTURE WORK

We showed that many-to-many instruction selection rewrite
rules can be synthesized for various ISAs using program
synthesis. This supports two major trends in computer archi-
tecture. The first is the trend towards simple or reduced instruc-
tion architectures where multiple instructions are needed for
simple operations. It also supports the trend to introduce more
complex domain-specific instructions for energy efficiency.
In this case, a single instruction can implement complex
operations.

We showed that our algorithms are efficient. Removing
duplicates, composites, and higher-cost rules results in mul-
tiple orders of magnitude speed-ups. Synthesizing many-to-
many rewrite rules for modern IRs and ISAs may require
further optimizations. Many of our synthesized rules contain
program fragments that a compiler would optimize during IR
optimization or peephole optimization. A modified version of
GCBPS could be used to directly synthesize and exclude such
program fragments.

Buchwald et al. [6] presented generalizations for multi-
sorted instructions, multiple outputs, preconditions, and inter-
nal attributes, enabling the modeling of memory and control
flow instructions. Our synthesis query and algorithms are
orthogonal and could incorporate these features, allowing for
a broader range of possible instruction sets.

As is the case in prior work, we limit synthesis to loop free
patterns. Relaxing this constraint and using other instruction
selection algorithms would be an interesting research avenue.

Another promising research direction involves exploring the
trade-offs between synthesis time, compile time, and code
quality. This could be done by varying the maximum size
of rewrite rules, changing the instruction selection algorithms,
relaxing the completeness guarantee, or incorporating IR or
peephole optimizations.

We believe this research area is fertile ground and hope our
work inspires and enables future research endeavors towards
the goal of automatically generating compilers for emerging
domain-specific architectures.
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Abstract—The soundness of Satisfiability Modulo Theories
(SMT) solvers is critical in many applications. One way to
ensure soundness is to have solvers generate proofs that can
be independently verified. Unfortunately, generating proofs can
have a significant overhead. We propose a new proof format
(eDRAT) that extends the well-known DRAT format from SAT to
SMT. eDRAT proofs can be generated with little overhead and can
be verified by combining existing tools for propositional reasoning
with specialized theory checkers. We instrument the CvC5 solver
to generate ¢eDRAT proofs and we develop checkers for two SMT
theories. Our checkers include an untrusted elaborator written
in Rust and a formally verified component written in Lean that
validates results from the elaborator. Empirical evaluation shows
that eDRAT has a much lower proof generation overhead than
other formats supported by CcvcCS5, and it has comparable or
better proof checking times.

I. INTRODUCTION

Satisfiability Modulo Theories (SMT) solvers are used as
back-ends in a variety of applications including software
verification and testing [24], [18], [19], the verification of
distributed systems [26], model checking [20], [9], [8], and
security policy analysis [2], [29]. The soundness of SMT
solvers 1is critical for these applications, especially because
SMT solvers have become increasingly complex over the years
and are therefore subject to bugs.

When an input formula is satisfiable, solvers can produce a
model that can generally be checked, but this approach is not
applicable when the SMT solver says that the input formula
is unsatisfiable. To increase trust in the unsat case, the SMT
community has developed solvers that generate a proof that can
be independently validated by a trusted checker. Solvers such
as CvCS5 [3], OpenSMT [23], SMTInterpol [10], veriT [7] and
Z3 [12] can produce proofs, for at least some of the logical
theories they support. Some have had proof support for many
years.

Several proof formats have been proposed for SMT [33],
[30], [22], but none has emerged as a standard. One limitation
of these formats is that they require fine-grained proofs with
small inference steps. While this simplifies proof checking,
generating such detailed proofs is expensive and slows down
solvers, and the resulting proofs can be very large and slow to
validate.

d https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_8

To address these concerns, we propose extended DRAT
(eDRAT), a new SMT proof format that extends DRAT [21],
a standard proof format for Boolean satisfiability. Proofs in
eDRAT are coarse-grained and clausal. They include Boolean
resolution steps (as in DRAT and its predecessor DRUP) and
SMT-specific clauses called theory lemmas.

Along with ¢eDRAT, we present VALIDO, a modular and
extensible toolchain for checking eDRAT proofs. Proof check-
ing with VALIDO is a two-step process. First, we validate the
propositional part of the proof with DRAT—t rim [34] to extract
an unsat core. Second, we check that all the theory lemmas
in the unsat core are valid using theory-specific checkers.
Currently, VALIDO supports two SMT theories: QF_LRA and
QF_UF. The VALIDO theory checkers for these two theories
have two components:

¢ An elaborator does most of the heavy lifting. It validates

theory lemmas using theory-specific decision procedures
and generates an unsatisfiability certificate for the negation
of each lemma.

e A certificate validator checks the unsatisfiability certifi-

cates produced by the elaborator.
The validator is the only trusted component, as the validity
of a certificate is enough to ensure that a lemma is valid,
irrespective of how the certificate was generated. To achieve a
high degree of confidence in the correctness of our toolchain,
we use the Lean theorem prover [14] to develop and prove the
soundness of our validators.

Because theory lemmas are individually validated, we can
precisely identify incorrect lemmas when proof validation fails.
This can aid debugging and guide the search for a minimal
counterexample.

We have instrumented the CVC5 solver to generate eDRAT
proofs, and we have evaluated VALIDO on SMT-LIB bench-
marks. Empirical results show that eDRAT proof generation has
low overhead (less than 10%), as opposed to between 2x and
17x for two other formats supported by cvc5. eDRAT proofs
are generally smaller, and proof checking time is comparable
to or better than with the alternative proof formats.

Our toolchain can generate eDRAT proofs for any theory that
cvceS supports, including theories with quantifiers and theory
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combinations. Our current proof-checking pipeline, VALIDO,
is only implemented for QF_UF and QF_LRA. However,
validating a theory lemma boils down to solving a (small)
SMT problem. For instance, we could leverage CvC5 itself (or
some other proof-producing solver) as an elaborator and the
associated ALF/LFSC proof checker as the validator. Therefore,
our approach is quite general and not limited to simple theories.

A limitation of eDRAT is that it requires problem instances
to be in conjunctive normal form (CNF), while SMT problems
can be arbitrary formulas. The preprocessing, simplification,
and rewriting steps that SMT solvers perform to convert
formulas to CNF are not expressible in eDRAT. Complementary
proof techniques are required for checking that the conversion
steps the SMT solver used were sound. We discuss possible
approaches to bridge this gap.

II. BACKGROUND

SMT is the problem of deciding the satisfiability of formulas
in some (typically first-order) logical theory [13], [6]. The
mainstream method employed by SMT solvers is conflict-driven
clause learning modulo theories (CDCL(T)). This combines the
CDCL algorithm from SAT [25] with theory-specific reasoning
implemented by theory solvers. Given a formula ¢ in a theory
T, the SMT solver first creates a Boolean abstraction ¢ps of
this formula. The abstraction process replaces atoms in the
background theory 7' with Boolean variables. The CDCL(T)
algorithm then alternates between Boolean search and theory
reasoning. The CDCL solver enumerates (possibly partial)
models o of ¢ps that are interpreted as conjunctions of literals
in theory T'. The theory solver checks whether this conjunction
is satisfiable in 7". If it is, Boolean search can continue and try to
extend the assignment to a full model of ¢,s. If the conjunction
of literals is not satisfiable, the theory solver produces a theory
lemma that is added to the sets of clauses in the CDCL solver.
This clause must be inconsistent with ¢ and will cause the
CDCL solver to backtrack.

Modern SMT solvers extend this basic scheme in many
ways—for example, with the dynamic creation of new variables
and atoms on the fly and with mechanisms such as theory
propagation—but the general principle remains. In one direc-
tion, the CDCL solver sends candidate Boolean assignments to
the theory solver. In the other direction, the theory solver sends
new clauses—that is, theory lemmas—to the CDCL solver. As
in SAT, an SMT formula is unsatisfiable if the empty clause
is derived by this process.

Generating proofs for CDCL(T) solvers is an active area of
research, and several proof formats have been proposed. Proofs
may include reasoning steps used during preprocessing and
simplification of the original formula, conversion to clauses,
Boolean resolution in CDCL, and theory-specific reasoning
for justifying theory lemmas. Notable proof formats include
Alethe [30] (supported by VeriT [7] and cvcS [3]) and
LFSC [33] (supported by cvcC5 and ts predecessors CVC4 and
CVC(C3). Both Alethe and LFSC have dedicated checkers [1],
[32]. Other proof-producing SMT solvers [12], [10], [23] use

solver-specific proof formats [11], [22], [27] and do not use
independent checkers.

Most of these formats represent proofs as terms in a proof
calculus. Such terms describe a traditional proof tree (or DAG)
with the empty clause at the root. Each node in the tree
represents a step that derives a conclusion (stored in the
node) from the child nodes using a rule of proof calculus.
Leaves represent axioms or assumptions (e.g., assertions from
the original formula). One can distinguish generic logical
frameworks such as LFSC that encode a particular proof
calculus, and formats such as Alethe that come with a fixed
calculus for a fixed set of theories. Logical frameworks are
more flexible, since proof rules can be added to cover new
theories and reasoning steps, but not all rules employed by
SMT solvers can be compactly encoded in a logical framework.
Most solvers use a fixed proof calculus and a dedicated proof
format, which is similar to what Alethe provides. The recently
introduced AletheLF format (ALF) is a logical framework that
relies on an SMT-like syntax (similar to Alethe) in which SMT
constructs can be more easily represented. ALF is supported
by cvc5-1.1.0 and newer releases.

Coverage and proof granularity vary across solvers. Some
solvers, such as CVCS5, can generate low-level, high-detail
proofs for almost all of the theories they support.! Other solvers,
such as Z3, support proofs for a subset of theories and use more
coarse-grained proofs. Detailed proofs with small inference
steps are easier to verify, but generating such proofs can be
costly and can introduce significant overhead both in runtime
and memory usage.

We propose a coarse proof format that records the clauses
produced (and deleted) during execution of the CDCL(T)
algorithm. This extends the DRAT format used by Boolean
SAT solvers, which is known to have low overhead.

III. DRAT EXTENSIONS FOR SMT

Our new proof format, eDRAT records the reasoning steps
performed during the execution of the CDCL(T) algorithm.
We do not attempt to express preprocessing, simplification,
or conversion of a formula to CNF. Instead, ¢eDRAT focuses
on capturing the theory reasoning (the theory lemmas) and
Boolean reasoning steps (the resolution clauses) that the SMT
solver generates. We extend DRAT with syntax for defining
theory terms and atoms, describing how these atoms map to
Boolean variables, and distinguishing between the different
types of clauses involved in SMT. We distinguish between
three types of clauses: assertions, which are clauses from the
CNF representation of the original formula; theory lemmas
generated by the theory solver; and regular clauses generated
by the CDCL solver.

An eDRAT proof consists of four components:

o The definitions of literals and terms used in the problem.

e The input problem converted to CNF.

o The theory lemmas that were emitted by the theory solver

during the course of solving.

IAs far as we know, CVCS5 can generate proofs for all theories that do not
involve floating points.



o The DRAT proof of the unsatisfiability of the formula as
produced by the underlying SAT solver.

A. Syntax of eDRAT

SMT-LIB [5] is the standard input format for SMT solvers.

The eDRAT syntax for term and atom definition is similar to
SMT-LIB with a few extensions. Sort and term declarations in
eDRAT use the following SMT-LIB syntax:

1 (declare-sort <name> <arity>)

2 (declare—-fun <name> ( <sort>* ) <sort> )

The eDRAT syntax for datatypes and terms is also the same as
in SMT-LIB. We introduce two new commands to give names
to terms and to map DIMACS variables to literals:

1 (define-let <term-name> <smt-term>)
2 (define-literal <varid> <atom—-name>)

The define-let command assigns a name to a term. It
is a variant of the SMT-LIB define-fun command that
omits the type of the term. The define-literal command
states that a Boolean variable is mapped to a given atom. As
in DIMACS, boolean variables are represented by positive
integers. To simplify processing, the atom is specified by its
name, which must appear either as a declaration or in a previous
define-let command.

As in DRAT, a clause is represented by a list of non-zero
literals terminated by 0. A positive integer denotes a positive
literal, and a negative integer denotes its negation. The syntax
for clausal reasoning is as follows:

1 a <list-of-integers> 0
2 t <list-of-integers> 0
3 <list-of-integers> 0

4 d <list-of-integers> 0

eDRAT adds then two new prefixes to the DRAT syntax: one
for assertions, and one for theory lemmas.

Example IILI.1. The following small example illustrates the
eDRAT syntax.

1 (declare-sort T 0)
2 (declare-sort S 0)
3 (declare-fun f (T) S)
4 (declare-fun y () T)
5 (declare-fun x () T)
6 (define-let aux!312 )
7 (define-let aux!338 f
8 (define-let aux!339 (= x y
9 )
)

(£ y))

(= (£ x) (aux!312)))

))
(define-literal 1 aux!338

10 (define-literal 2 aux!339

nma2ao0
2a-10
3t 1 -20
14 0

This proof tells us that literals 1 and 2 are mapped to the atoms
f(x) = f(y) and © =y, respectively, where f : T — S is an
uninterpreted function. Lines 11 and 12 state two assertions
x =y and ~f(x) = f(y), respectively, that come from the

input problem. Line 13 is a theory lemma: f(z) = f(y)Vx # y.

The final step is the empty clause, which is derived by Boolean
resolution of the three preceding clauses. This shows that the
formula x = y A f(x) # f(y) is unsatisfiable.

B. Valido: A Toolchain for Checking eDRAT Proofs

eDRAT proof checking consists of two separate tasks:
checking that the Boolean reasoning steps derive the empty
clause, assuming that the theory lemmas are valid; and checking
the validity of the theory lemmas. VALIDO is our toolchain
for performing these two tasks.

To check the propositional part of the proof, VALIDO
constructs a CNF formula ¢ with the input clauses (those with
prefix a) and the theory lemmas (those with prefix t). It then
extracts the DRAT proof 7 from the eDRAT file. This proof
includes all the clauses corresponding to Boolean resolutions
and all the clause deletions, keeping them in the same order
as they occur in eDRAT. We then use a restricted version of
the DRAT-trim tool to check that 7 is valid for ¢. In this
step, we treat all the theory lemmas as axioms and add them
to the input clauses.

We restrict DRAT-trim to allow only clause additions that
satisfy the reverse-unit-propagation (RUP) property and not the
more general resolution-asymmetric-tautology (RAT) property,
because accepting RAT clauses is not sound for SMT. It is
possible for a formula ¢ to be satisfiable in the background
theory 7" and for a clause C' to be RAT with respect to ¢, but
for ¢ A C' to be unsatisfiable in 7T'. This occurs because the
addition of RAT clauses may eliminate some of the Boolean
models for ¢. RUP is sound for SMT as adding a RUP clause
preserves all the satisfying models of the original formula.

Example IIL.2. Consider the formula ¢ := (-pV ¢q) A (p V
r) A (g V —r) where the propositional variables represent real
arithmetic theory terms defined as follows: p:=x <0, ¢ :=
x > 1, and r := x > 2. It follows from the definition that the
unit clause p is RAT with respect to ¢.

We can hence conclude that in propositional logic, ¢ is
equisatisfiable to ¢ A p. However, in SMT, it can be readily
checked that while the original formula ¢ is satisfiable with a
model x — 2, ¢ A p is unsatisfiable.

When DRAT-t rim successfully validates a DRAT proof, it
also returns a set of clauses U C ¢ that forms the unsat core
of the DRAT proof. To check the rest of the eDRAT proof, we
only need to check the validity of the core theory lemmas that
appear in the unsat core U.

One way of validating a theory lemma ¢ is to employ existing
SMT technology to generate a proof of the unsatisfiability
of —t in another proof format, and then to check it with a
corresponding proof checker. This works, but we pursue a
different approach to provide a higher degree of assurance:
relying on purpose-built checkers that are provably sound.

In VALIDO, the theory lemmas are checked by two comple-
mentary tools that we call the elaborator and the validator.
These tools are instantiated for each background theory T'
separately.
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o An elaborator checks the unsatisfiability of a conjunctive
formula in theory T and generates a proof certificate.

« A validator is a provably correct tool that takes a proof
certificate and a theory lemma as input, and checks that
the proof certificate validates the theory lemma.

Algorithm 1 gives an overview of this method. The architecture
allows us to write an efficient but untrusted elaborator that
generates a proof certificate for every theory lemma in the
core. The validator is a simpler component that we develop
and prove correct within the Lean 4 theorem prover [14].

Algorithm 1 General Method for Checking eDRAT Proofs

Input: An eDRAT Proof
Output: Result of eDRAT proof validation

1: (input, > Input problem in DIMACS format
t_lemmas, > Theory Lemmas in DIMACS format
drat_proof, > Boolean Reasoning as DRAT Proof
definitions) <— Decompose(eDRAT Proof) > Term and Literal
Definitions

2: (e_res, unsat_core) <— DRAT-Trim(input, t_lemmas, drat_proof)

3: if e_res = then

4: core_lemmas < t_lemmas N unsat_core

5: proof_cert < Elaborator(core_theory_lemmas, definitions)

6: val_res < Validator(proof _cert, core_lemmas, definitions)

7: if val_res = then

8: return

9: else

10: return Theory Lemma Validation Failed

11: end if

12: else

13: return DRAT Proof Check Failed
14: end if

The key benefit of this approach is that it reduces the trusted
code base. If the validator says that a proof certificate is valid,
then we can trust that the corresponding lemma is also valid,
independent of how the certificate was generated. In other
words, we do not need to trust the elaborator, only the validator.

We have implemented elaborators and validators for
two SMT-LIB theories: quantifier-free linear real arithmetic
(QF_LRA) and quantifier-free uninterpreted functions with
equality (QF_UF).

IV. ELABORATOR AND VALIDATOR FOR QF_LRA

Let V be a set of variables. A theory lemma in QF_LRA is
of the form ¢ := \/ie[n] (F; 1 0), where each Fj is a linear
expression over the variables V and ;€ {<, <, =,>, >, #}.
For example, the law of trichotomy vy := = > 0V z
0V z < 0 is a theory lemma. Validating such a lemma is
equivalent to proving that its negation—a conjunction of linear
inequalities—is not satisfiable.

Example IV.1. The negation of g is ~¢ == x < 0Ax #
0 Az > 0, which can be rewritten as —¢ := (—x > 0 Az >
OANz >0V (-2 >0A—-2z > 0Az > 0), where the
inequalities in each disjunct only have either > or > as the
relational operator.

As shown in Example IV.1, our goal is to create a proof
of unsatisfiability for a disjunction of conjunctions of linear

inequalities that only involve > or > as the relational operators.
For a single conjunctive QF_LRA formula, we use Farkas’
Lemma to produce the unsatisfiability certificate.

Lemma 1. [16, Farkas’ Lemma] A set S of linear inequalities
of the form F; {>,>} 0 is unsatisfiable if and only if there
exists a non-negative linear combination of the inequalities in
S U{1 > 0} deriving either —1 > 0 or 0 > 0.

Example IV.2. The formula - from Example IV.1 is unsat-
isfiable if both the disjuncts are unsatisfiable. The expression
1 (—=2>0)+1-(x>0+0-(x>0)=0>0isa
witness to the unsatisfiability of —z > 0Axz > 0A 2 >0, and
0-(—z>0)+1-(x>0)+1-(x>0)=0 >0 witnesses the
unsatisfiability of —x > 0A —z > 0Az > 0.

The set of non-negative multipliers for the linear inequalities
that derive a trivially false inequality such as —1 >0 or 0 > 0
is called the Farkas certificate of unsatisfiability. We reduce
the problem of finding the Farkas certificate to solving a linear
program. For this purpose, we rely on the following variant of
Farkas’ Lemma:

Theorem 2. A conjunction of linear inequalities of the form
Y= N, Fi > 0A /\;n=1 G; > 0 is unsatisfiable if and
only if there exist non-negative constants \i,...,\, and
Koy 15 2y -+ -5 o such that Ho +Z?:1 )‘ZFZ—'_ZT:() H’jGj =
0 with Z]m:o pj = 1 (where = means that the expressions on
both sides are identical).

Proof. Farkas’ Lemma guarantees that 1 is unsatisfiable if and
only if one can derive either —1 > 0 or 0 > 0 as non-negative
linear combination of inequalities in ¢ U {1 > 0}.

Let the non-negative linear combination be D := pg(1 >
0) + > Mi(Fi > 0) + X7 1i(Gy > 0). WLOG, we
assume that D = 0 > 0 because if D = —1 > 0, then we set
o < po + 1 to derive O > 0. Finally, we scale all A\;s and p;s

by a factor of 1/(3°7" p;) to ensure that 37" pu; = 1. O

The VALIDO elaborator for QF_LRA produces the Farkas
certificate for each core theory lemma by searching for
coefficients A; and p; that satisfy the conditions of Theorem 2.
This amounts to solving a system of linear inequalities, which
we do using the Simplex algorithm. The generated certificates
are stored in a single file for all the core theory lemmas.

Example IV.3. Consider the following ¢eDRAT proof fragment.

1 (declare-fun x () Real)

2 (define-let aux!0 (x x 1/2))

3 (define-let aux!l (>= aux!0 0))
4 (define-let aux!2 (< x 0))

5 (define-let aux!3 (> x 0))

6 (define-literal 1 aux!1l)

7 (define-literal 2 aux!2)

8 (define-literal 3 aux!3)

9t 1 20

ot 230

21

The theory lemma at line 9 is g := x/2 >0V —-xz>0
(which is valid), and that at line 10is ¥y =2 >0V ax <0




(which is not valid). On this example input, the elaborator will
produce the following output:

| LINE 9,
2 LINE 10,

(0, 1>0), (2,
INVALID LEMMA

1, (1, 2)

The first line is the Farkas certificate for g (which is at
line 9 in the original eDRAT proof). The certificate is a list
of pairs (farkas_coefficient,literal id) with an
optional term of the form (farkas_coefficient,1>0)
for the Farkas coefficient of 1 > 0. Thus, the certificate for 1
is0-(1>0)+2-(z/2>0)+1-(—x>0)=0>0.

The second line states that the lemma at line 10 of the
eDRAT proof is invalid.

We have implemented a QF_LRA validator in Lean 4, in
around 1300 lines of code. A few important data structures
and functions are as follows:

1) A LinearExpression is a map lexpr
Variable — Rat that maps a variable to its rational
coefficient in the expression. A LinearConstraint
is a pair that consists of a LinearExpression and
a relational operator, which is either > or >.

2) A Model is a mapping from variables to rationals.
3) Function evaluate (lexpr Linear
Expression) (m Model) computes the

value of a LinearExpression in a Model
4) We define a proposition isUnsat as

1 def isUnsat (lemma : List LinearConstraint) (
m: Model): Prop :=
2 match lemma with
3 | [] => False
4 | (cnstr, lemma’) => (evaluate cnstr m) — (
isUnsat lemma’ m)

Given a negated lemma S = {C1,...,C,} as a set of
linear constraints, isUnsat S is equivalent to
V(m: Model), evaluate Ci m —...—
evaluate (C, m — False
This proposition says that for every (m:Model) at least
one of evaluate C; m must evaluate to false.

5) Given a negated lemma and its Farkas certificate of
unsatisfiability, the following function checks whether
the certificate is valid.

1 def check_farkas_certificate
2 (farkas_coefficients: List Rat)
3 (negated_lemma: List LinearConstraint)
Bool :=
6) Finally, we proved the following theorem, which

shows that function check_farkas_certificate
is sound:

I theorem check_farkas_cert_implies_isUnsat (
check_farkas_certificate
farkas_coefficients negated_lemma)

— isUnsat negated_lemma :

true

The validator first parses the original ¢eDRAT proof to
collect the definition of each literal and theory lemma. It

22

then parses the certificate file produced by the elaborator
and checks every theory Farkas certificate with the function
check_farkas_certificate. The check is successful if
all theory lemmas in the certificate are valid.

V. ELABORATOR AND VALIDATOR FOR QF_UF

QF_UF is one of the simplest theories defined in SMT-LIB.
Formulas in QF_UF can include uninterpreted functions, predi-
cates, and equality. A theory lemma in QF_UF is a disjunction
of equalities and inequalities between uninterpreted terms. For
example, ¢ :=z # f(y) Vy # g(z) V f(z) = f(f(g9(z)) is a
valid theory lemma in QF_UF.

A set of literals F' in QF_UF must contain at least one
inequality to be inconsistent. The traditional approach to show
the inconsistency of F' is based on congruence closure, as
shown in Algorithm 2. This algorithm builds the smallest
congruence relation Fq over the terms of F' that includes all
input equalities, and then checks whether a negated equality
of F' is inconsistent with Ejq.

Algorithm 2 Congruence Closure Algorithm

1: Input: E: a finite set of equalities, D: a finite set of inequalities
: Output: Unsat if A D is not satisfiable, Sat otherwise
: T < All terms occuring in £ U D (including all the sub-terms)
> Initialization
: Eq < Each t € T' in a singleton class
: for Each t = u in E with Eq(t,u) = False do
input equalities
FEq < Merge classes of t and u in Fq
: end for
: while 3 Cl,CQ S E‘q,f(h7 - ,tn) & Cl, f(ul, - ,Un) € Cy
such that C1 # C2 and Eq(ti,u1) A ... A Eq(tn,un) do
FEq < Merge classes C; and C in Eq
: end while
: for each inequality ¢ # u in D do
if Eq(t,u) holds then
return Unsat
end if
: end for
: return Sat

> Process

> Check for inconsistency

To check the results of Algorithm 2, it is sufficient to prove
that we start with the right initial Eq and that every Merge
Class operation is sound: that is, when we merge C; and C at
line 9 of Algorithm 2, the terms in those classes are congruent
with respect to the current equivalence relation Eq.

The QF_UF elaborator in VALIDO generates unsatisfiability
certificate based on this idea. Each certificate contains a
description of the set of terms 7', the initial equalities F,
a series of equalities derived from E through congruence, and
the inequality from D that led to unsatisfiability. The certificate
format is kept simple to simplify parsing. An example is shown
in Figure 1.

The certificate consists of the following three parts.

1) Definitions: The certificate starts with the definition of
seven terms: four atomic terms including the two Boolean
constants true and false and two uninterpreted con-
stants ¢4 and cg, and three terms built by the application
of function f. Each term is identified by its index in this
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.ok ()):
:= by

10

Fig. 1: Example QF_UF certificate

list. For example, the line £ 3 defines a term of index
4 obtained by applying the uninterpreted function f to
the term of index 3. In other words, the term of index 4
is f(co).

Equalities: After the term definitions, we list equalities
from E. Each input equality is written as a line E(i,7)
where ¢ and j are two term indices. For example, the
line E (3, 5) is the equality ¢y = f(c4). An equality
derived by congruence is written similarly but with the
letter C. In the example C (6, 4) represents the equality
F(F(ea)) = f(co).

Inequality: Finally, the last line of the certificate is an
inequality, indicated with the letter D, between the terms
at indices 2 and 4, that is, ¢4 # f(co)

The Boolean constants are predefined and included in all
certificates (as the first two terms). This enables us to treat
uninterpreted predicates as functions from some domain type to
the Boolean. For example, a literal of the form P(x) occurring
in a theory lemma is treated as P(z) = true in our certificates,
and if —P(z) occurs, it is converted to P(x) = false. This
simple trick allows an unmodified congruence closure algorithm
to handle uninterpreted predicates (provided we add the built-in
inequality true # false).

The QF_UF validator parses the certificates produced by
Valido and checks that they are valid. The central part in the
validation process is a union-find data structure implemented
in Lean 4 that is used to check that all equalities of the form
C(3,7) listed in a certificate are correct, that is, that the two
indices ¢ and j denote existing terms and that these two terms
are congruent. The validator also checks a similar property for
the inequality D(i, j): the two indices ¢ and j must represent
existing terms, and the certificate is valid if ¢ and j are in the
same equivalence class in the union-find data structure. These
checks are implemented in a function check_certificate,
and the main correctness result follows:

2)

3)

def true_certificate (m: Model a f3)

(c: Certificate a B): Prop :
m.list_eqg _holds c.wft c.base —

m.diseqg_holds c.wft c.conflict

1

2

3

4

5

6 theorem check_certificate_is_sound {a [: Type} [
BEq f]
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This states that the function check_certificate is sound.
If this function succeeds (i.e., it returns .ok ()) then the
certificate is true in any model m. In this theorem, a certificate is
parameterized by two types « and (3 that represent the constants
and function symbols in QF_UF terms. The certificate data
structure includes a term table, a list of base equalities, a list
of derived equalities, and a conflict of the form D(i,j). A
model is defined by three components: a domain 7 (which is
an arbitrary Lean type), a mapping from « to 7 that defines the
interpretation of constants, and a mapping from /3 to functions
on 7 that defines the interpretation of function symbols.

VI. EXPERIMENTS

We have instrumented CvVC5-1.1.1 to produce eDRAT proofs.
The modifications consist of a new module that prints the
eDRAT proof and changes to several existing CVCS modules
involved in the creation of input and theory clauses. Most
changes were in the CDCL solver employed by cvc5, which
is a heavily modified variant of MiniSat.

We have compared the eDRAT and Valido toolchain with
two other proof formats currently supported by cvc5-1.1.1
on the QF_UF and QF_LRA benchmarks of the SMT-LIB
repository [31]. All the experiments were run on a server with
384 GB RAM and 96 cores (48 Intel Xeon Platinum 8259CL
CPUs), with a 2.50 GHz CPU frequency. The server runs
Amazon Linux 2.

We ran cvc5 with a timeout of 300 seconds with four
different proof-generation options: no proofs, proofs in the
Alethe-LF (ALF) format, proofs in the LFSC format, and
proofs in the eDRAT format. Some older versions of CvC5
also support the Alethe format, but this does not appear to be
supported anymore in CvVC5-1.1.1 and did not work on our
benchmarks.

A summary of our experimental results is shown in Table I.
The table includes the number of solved problems, the number
of proofs successfully produced, and the average runtime on
the satisfiable and unsatisfiable problems. A more detailed view
of the experimental results is given in Tables II and III.

A. Proof Production Cost

As the table shows, generating proofs in the ¢eDRAT format
has low overhead. The difference in runtime between baseline
CvCS5 and cvC5-eDRAT on the QF_LRA problems is about
1%. On the QF_UF benchmarks, the average overhead of
eDRAT proofs is about 16% on satisfiable instances and 27%
on unsatisfiable instances. However, the QF_UF benchmark
contains many easy problems that are solved in milliseconds
(63% of the problems are solved by cvC5 in less than 0.1 s).
If we remove these easy problems, the runtime difference
between CvCS5 and cvC5-eDRAT is less than 10%. In total,
CvCS5 and cvc5-eDRAT solve the same number of problems
in all categories, apart from the class of satisfiable QF_LRA



TABLE I: Summary of Experiments

QF_LRA QF_UF
Solved Problems Avg. Runtime (s) Solved Problems Avg. Runtime (s)
Proof Mode Unsat  Proofs Sat  Unsolved Sat Unsat Unsat  Proofs Sat  Unsolved Sat Unsat
None 639 902 212 22.046  31.890 4353 3142 0.245 0.723
eDRAT 639 639 899 215 22267  31.481 4353 4353 3142 8 0.286 0.924
ALF 621 591 876 256 32.185  56.267 4345 4335 3142 16 0.361 5.543
LFSC 623 503 876 254 32412 85.825 4344 4283 3142 17 0.353 12.786

TABLE II: Experiment results on QF_LRA benchmark. All sizes are in MBs and times are in seconds. The averages are taken
over the benchmark where the corresponding proof was successfully checked. The column v represents the number of proofs

that were successfully checked.

CVCS5 + Proof Generation Time LFSC Proof ALF Proof eDRAT Proof
Family # No Proof LFSC ALF EDRAT v Size Time v Size Time v Size Time
Heizmann 29 87.725 196.195  159.793 85.504 15 61.251 55.099 19 40.978  105.052 29 14491  10.066
LassoRanker 91 77.518 178.089  126.096 77.762 61 72.289 29.124 87 20.665 68.470 91 10.216 4.437
sc 35 44.889  194.576 81.503 42.856 20  225.166  104.933 32 23.178  129.505 35 5.735 1.339
uart 34 32989 224.543  126.002 31.094 11 206.111 87.419 26 44383  558.786 34 6.753 3.508
clock 36 20.454 81.828 28.276 19.925 29 70.890 20.705 36 6.158 25.426 36 0.938 1.027
latendresse 1 18.494 36.977 29.516 17.963 NA NA 1 3.236 1.702 1 0.460  28.339
miplib 11 14988 111.516 59.597 14.979 7 72.550 31.241 10 25.839  175.199 11 10.351 78223
tta_startup 45 8.353 60.505 33.536 8.206 34 29.170 15.290 43 12.041  158.288 45 3.314 0.990
blending 9 3.886  300.212  114.993 4.301 0 NA NA 9 129.184 119.071 9 15932 49.526
™ 1 0.525 2.305 1.827 0.923 0 NA NA 1.147 1.665 0.680 0.274
sal 96 0.094 1.731 0.655 0.120 96 2222 1.354 96 0.680 0.941 96 0.162 0.178
spider 42 0.061 1.351 0.357 0.085 42 2.876 0.818 42 0.295 0.110 42 0.082 0.148
robotics 12 0.011 0.037 0.041 0.010 12 0.065 0.047 12 0.048 0.013 12 0.000 0.127
check 1 0.009 0.108 0.055 0.011 1 0.144 0.038 1 0.109 0.045 1 0.009 0.132
meti-tarski 150 0.007 0.013 0.011 0.007 150 0.008 0.011 150 0.007 0.011 150 0.001 0.128
keymaera 21 0.006 0.010 0.009 0.006 21 0.003 0.010 21 0.003 0.010 21 0.000 0.128

TABLE III: Experiment results on QF_UF benchmark. All sizes are in MBs and times are in seconds. The averages are taken
over the benchmark where the corresponding proof was successfully checked. The column v represents the number proofs that

were successfully checked.

CVCS5 + Proof Generation Time LFSC Proof ALF Proof eDRAT Proof
Family # No Proof LESC ALF EDRAT v Size Time v Size Time v Size Time
Rodin 20 0.006 0.008 0.007 0.006 20 0.002 0.010 20 0.002 0.010 20 <0.001 0.079
Goel 229 0.209 9.406 8.549 0.232 217 0.413 1.660 226 0.311 0.220 229 0.092  0.091
CLEARSY 11 0.013 0.135 0.084 0.015 11 0.101 0.064 11 0.086 0.028 11 0.008 0.078
eq_diamond 100 0.022 0.342 0.340 0.043 100 0.051 0.067 100 0.044 0.031 100 0.055 0.086
NEQ 45 3.589 141322 27.222 3.934 24 83.305  26.559 45  39.562  139.976 45 4217  1.022
PEQ 38 7.394  171.559 61.164 8.418 20  136.427 46.852 34 51902 129.771 38 20.327 3919
SEQ 39 1.150 85.259  12.251 1.392 34 135.283  72.992 39 20.125 65.002 39 3.398  0.729
QG-class 3859 0.315 8.956 3.993 0.390 3854 10.486  23.253 3857 6.349 31.858 3859 0495 0.224
TypeSafe 3 0.006 0.009 0.008 0.006 3 0.001 0.011 3 0.002 0.010 3 <0001 0.078

problems. In this class, four problems are solved by CcvC5
but not by cvC5-eDRAT and one problem is solved by CvVC5-
eDRAT but not by cvcS5. This difference is most likely due
to random variation caused by the operating system as all four
take a runtime close to the timeout, rather than caused by the
eDRAT proof generation.

The LFSC and ALF formats are more expensive, and the
overhead depends on the theory. On QF_LRA, cvCS5 fails to
solve about 40 problems when using either format. On QF_UF
producing either LFSC or ALF proofs doubles the number

of timeouts. The runtime overhead is around 45% for both
LFSC and ALF on satisfiable problems (on both QF_LRA
and QF_UF). For the unsatisfiable problems, the overhead
varies depending on proof-format and theory: on QF_LRA,
LFSC incurs an overhead of 2.7x, and ALF is close to 2x
slower than baseline cvcS. On QF_UF, the overhead is 7x
for ALF and 17x for LFSC. The larger overhead on QF_UF is
due to the fact that LFSC and ALF are not compatible with a
symmetry-breaking procedure that baseline CvC5 employs [15].
Symmetry breaking is effective on the QF_UF benchmarks, but
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Fig. 2: Runtime on hardest problems

it must be disabled when cvc5 produces LFSC or ALF proofs.
The eDRAT format is compatible with symmetry breaking and
does not suffer from this disadvantage. We also see that both
CVC5-LFSC and cvc5-ALF can solve a problem (i.e., print
“unsat”) but fail to generate a proof within the timeout. This
happens because LFSC and ALF proofs are generated after
CVC5 finds a problem to be unsat. After the problem is solved,
CcvCS performs backward dependency analysis to construct
a proof and export it to the LFSC or ALF format [4]. Both
backward analysis and conversion to the external format can
be expensive and cause a timeout.

Both the QF_UF and QF_LRA benchmarks contain a large
number of easy problems that are solved in milliseconds.
Figure 2 compares the runtime of our four CVC5 variants
on the 200 problems that take the longest for baseline CvC5
to solve. The plots show that cvc5 and cvc5-DRAT have
similar performance. CvC5-ALF and cvc5-LFSC are slower
and timeout on several problems, but CVC5-ALF is more
efficient than cvc5-LFSC.

B. Proof Size and Proof Checking Time

Figure 3 compares the proof sizes for different problem fam-
ilies in the QF_LRA and QF_UF benchmarks. The differences
between the three formats vary with the theory and the problem
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family. Overall, eDRAT is more compact, except for a few
problems. In QF_UF, ALF proofs are 2x larger than eDRAT
proofs, and LFSC proofs are 11x larger than ALF proofs on
average. In QF_LRA, ALF proofs are 4x larger than eDRAT
proofs, and LFSC proofs are 11x larger than ALF proofs. Some
of the size difference is due to the fact that ALF and LFSC
include preprocessing steps, but this is significant mostly on
easy problems. On hard problems, preprocessing represents
a small part of the solver work, and proof steps related to
resolution and theory lemmas dominate.

We validated the proofs with the appropriate checker. For
LFSC, we used LESCC?; for ALF, we use alfc?; and for
eDRAT, we used Valido. All proofs were valid. Figure 4 shows
the average proof checking time per benchmark family. For
eDRAT, the graphs include the runtime of Valido (in Rust)
and the certificate checkers (in Lean). On a few QF_LRA
proofs, Valido is slower than the ALF checker (e.g., in the
Latendresse family). This happens when theory lemmas are
large (several hundreds of atoms per lemma) and our Simplex
implementation is slow at computing Farkas certificates. Most
proofs do not have such large lemmas. The ALF and LFSC
checkers are also faster than Valido in some families of QF_UF
problems, but the proofs in these families are small, and all
checkers validate them in less than 0.1 s. On such small proofs,
the cost of a call to DRAT-trim is a limiting factor for
Valido. But overall, eDRAT proof checking is 3x and 15x
faster than LFSC and ALF proof checking, respectively, in
QF_LRA benchmarks, and 80x and 120x faster than LFSC
and ALF, respectively, in QF_UF benchmarks. As one would
expect, checking unsatisfiability certificates is cheaper than
constructing unsat cores and certificates in the first place. The
runtime of the certificate checker in Lean is smaller than the
cost of the elaborator and DRAT—-t rim in all problem families.
We also note that only a small fraction of all the theory lemmas
included in the proof are part of the unsat core. Figure 5 shows
the number of theory lemmas in the core compared with the
total number of theory lemmas in the eDRAT file. Only lemmas
in the core must be checked by Valido. On average, 1/8 of the
QF_LRA theory lemmas and 1/2 of the QF_UF theory lemmas
are in the core.

VII. RELATED AND FUTURE WORK

Our results show that the DRAT proof format can be extended
from SAT to SMT while preserving its efficiency. Compared
with other proof formats currently supported by cvcS, eDRAT
is the cheapest to generate. Although the ¢eDRAT proofs are
not detailed, it is still possible to efficiently check them by
combining unsat core construction and specialized checkers
for theory lemmas.

Otoni, et al. [27] present a proof system for OpenSMT
that also combines DRAT with theory-specific checkers. A
difference with our approach is that OpenSMT is modified to
produce unsatisfiability certificates for each theory lemma,

Zhttps://github.com/cve5/LFSC
3https://github.com/cve5/alfc
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whereas we use an external elaborator to construct these
certificates. Because we do not modify the CvC5 theory
reasoning engines, we can efficiently produce eDRAT proofs
for any theory supported by cvc5 (even though we cannot
yet validate all of them). Another difference is that Otoni,
et al. can the check conversion from SMT to CNF using a
two-phase algorithm. The first phase checks a conversion from
SMT to a DAG format (not defined in the paper), and the
second phase checks Tseitin-style CNF conversion. This is
more than what we can do with eDRAT, but it does not seem
to be sufficient for the rewriting steps employed by CVCS.
It is not clear from [27] how the simplifications that cvc5
heavily uses (such as the elimination of if-then-else, variable
elimination, normalization of terms, and many other rewriting
steps) could be handled. Finally, [27, Table II] shows that the
overhead of their proof-production method is significant (e.g.,
25% fewer solved instances in QF_LRA), while the main goal
of eDRAT is to make proof generation as cheap as possible.

Another DRAT extension to SMT is presented by Feng, et
al. [17]. This approach is specialized for satisfiability modulo
monotonic theories. In this setting, predicates are monotonic
relations over Boolean variables, and Feng, et al. use this
property to build propositional DRAT proofs of theory lemmas.
Like VALIDO, these extensions of DRAT for SMT offer proofs
at low cost. The numbers reported in Otoni, et al. and Feng, et
al. show that their proof generation techniques are efficient.

Currently, the main limitation of our approach is that it starts
from a CNF formula. eDRAT is not adequate for representing
proofs of preprocessing and conversion of formulas to clauses.
We are considering three options to bridge this gap:

e Modify cvC5 to produce proofs of only its preprocessing
steps in, say, the ALF format. This is probably the easiest
approach but it has limitations. For example, as discussed
in Sec. VI, some useful preprocessing steps must be
disabled, and scalability remains to be evaluated.

Use translation validation [28]. One can see preprocessing
and conversion to CNF as a compilation process. Correct-
ness amounts to showing that this compilation preserves
satisfiability, and translation validation can be adapted to
this problem. An issue is that this may require the solver
to produce hints to enable this approach.

Implement a provably correct preprocessor, say, in Lean.
This may require the most effort, but it could provide the
most benefit. One issue with this option is the cost of
maintaining and updating the preprocessor as new theories
and possibly new simplification techniques are discovered.

VIII. CONCLUSION

eDRAT extends the well-known DRAT format of SAT
to SMT. Our experiments show that eDRAT proofs can be
produced efficiently and can be efficiently validated, which
makes routine use of proof-producing SMT solvers more
practical. In future work, we will extend the VALIDO tool
chain to cover more theories, and we will extend the approach
to include proofs of preprocessing.
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Abstract—We present a decision procedure for solving
quantifier-free first-order formulas over the theory of strings,
involving equality, regular constraints, and concatenation of
string terms. Our approach uses an eager reduction to the
Boolean satisfiability problem and extends the NFA2SAT string
solver. We describe a novel SAT encoding for word equations that
iteratively expands the search space and leverages incremental
SAT solving. For unsatisfiable formulas, we estimate the bounds
on the smallest solution from arithmetic constraints derived
from word equations. An experimental evaluation shows that
our approach is competitive with state-of-the-art string solvers
and complements existing methods in string solving.

I. INTRODUCTION

Reasoning on string manipulation is a crucial aspect of en-
suring software correctness. In recent years, a variety of tools,
known as string solvers, have been developed to automate
decision procedures for various logical theories over strings.
Advancements in string solving have been driven by web-
application security [16], [27], [29] and model checking [11].
These fields rely on automated reasoning on strings to identify
critical security vulnerabilities. More recently, string solving
has been used to verify security properties of cloud access
policies [1], [26].

The theory of strings draws upon combinatorics on
words [25], [12], [4], [22]. Central to this theory are word
equations, which are expressions that equate two strings
constructed by concatenating variables and constant words.
Solving word equations amounts to finding substitutions for
the variables that make the two sides of the equation identical.
For example, we find a solution for a-x = y-a by substituting
both variables x and y with a. Solving word equations is
decidable [22], [8], [28], but the decision procedures resulting
from the theoretical results are too expensive to be practical.
To overcome this limitation, string solvers employ heuristic
approaches and impose restrictions on the constraint languages
to achieve scalability in practical use cases.

Most modern string solvers [23], [2], [14], [5], [6], [21] are
built upon the CDCL(T) paradigm, also called lazy solving.
This framework operates in two steps: first, a SAT solver
searches for a model of the propositional structure of a
formula, and second, a theory solver decides whether this
model is consistent in a background theory 7'. An alternative
approach is eager solving, which encodes the input problem
into a single propositional formula. In the context of string

d https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_9

solving, eager approaches were first explored by the WOOR-
PJE [7] solver for word equations and its extension to regular
constraints [18].

In previous work [20], we presented the eager string solver
NFA2SAT that decides the satisfiability of formulas within a
restricted logical fragment, which includes regular constraints
and equality between strings but excludes concatenation of
string terms. The solver is complete on this fragment, but
it supports a less expressive logic compared to other string
solvers. Here, we bridge this gap by extending NFA2SAT’s
decision procedure to support word equations.

The NFA2SAT procedure sets bounds on the lengths of all
string variables occurring in a formula, encodes the bounded
problem into a propositional formula, and tests its satisfiability.
If the formula is unsatisfiable, the procedure iterates by
incrementally increasing these bounds until either a solution
is found, or the bounds exceed the theoretical length of the
minimal solution to the formula, at which point the formula
is declared unsatisfiable.

To enable support for word equations, we introduce a
new method to encode the satisfiability problem of bounded
word equations into propositional logic. We also prove an
alphabet-reduction result, which we use to obtain a small
alphabet that is sufficiently large to preserve satisfiability.
This reduction is critical to ensure the practicality of the
encoding because it reduces the size of the propositional
formula, thereby allowing for more efficient SAT solving. We
then propose an incomplete but practical approach to detecting
unsatisfiability, by analyzing linear integer equations over the
lengths of the string variables that occur in word equations. An
experimental evaluation on a large set of benchmarks shows
that our approach is competitive with state-of-the-art string
solvers and works well as a complement to lazy solvers.

II. PRELIMINARIES

A word is a finite sequence w = w; - - - w, where each w;
is a symbol in a finite alphabet A. We denote by |w| = n the
length of word w. The set of all words over A is denoted by
A*. We denote by w - w’ the concatenation of two words w
and w’, and we denote the empty word by €. A word u is
called a factor of w if w can be written v - u - v'. It is called
a prefix (suffix) if v = ¢ (v = €). We use |w|, to denote
the number of occurrences of symbol a in word w. We fix
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an alphabet ¥ = {a,b,c,...} of constants and an alphabet
' = {x,y,z,...} of variables. A word w € ¥* is called a
constant word and a word o € (X UT)* is called a partern.

A word equation o = [ is a pair of patterns «, B. A regular
constraint o € R consists of a pattern o € (X UT)* and a
regular expression R over the alphabet X. Let h : (XUT)* —
3* be a morphism that is constant for all ¢ € 3, i.e., h(c) = c.
Then h is a solution of « = [ (written h = a = j) if
h(a) = h(p), and a solution of « #  (written h = « # ()
if h(a) # h(B3). Similarly, h is a solution of a € R (written
h = a € R)if h(a) € L(R), and a solution of o ¢ R (written
h = a¢ R)if h(a) € L(R), where £(R) denotes the regular
language defined by R. Any substitution of the variables & :
I" — X* can be canonically extended to a morphism, and vice
versa. We therefore use the terms substitution and morphism
interchangeably.

A function I : T' — N that assigns a length I(x) to
each variable x € T' is called a length assignment. Given
a length assignment [, we use xl to refer to the sequence
x[1] - - - x[I(x)] over the alphabet T = {x[k] |xeT,keN}
In this sequence, the x[i] can be interpreted as variables
ranging over X, that is, each x[i] denotes a s1ngle character
of ¥. We lift this definition to patterns with wa! = w - @'
and x-a = X' @ for all w € ¥*. For a word equation
a = 3, a length assignment [ with \al\ =n= |B | induces
an equivalence relation of the positions 1, ..., n. Two positions
i,j are equivalent under I, written as i ~; j, if d[i] = d[j],
Bli] = Blj], or d[i] = 5[ jJ. If ¢ ~; j, then characters at
position ¢ and j must be equal in any solution that is consistent
with the length assignment. We call & an [-substitution if
|h(x)| = I(x) for all x € T". If h is an [-substitution, then & is a
solution if and only if h(«)[i] = h(a)[j] for all i, j with i ~; j.
In that case, we call h an [-solution. Solving word equations
by assigning a constant from ¥ to every x[1] - - - x[I(x)] for all
x € I' to find a morphism that satisfies the above condition is
also known as filling the positions [15], [25].

We consider quantifier-free first-order formulas in which all
atoms are word equations or regular constraints, or can be
reduced to them. For such a formula v, we use atoms(1)) to
denote the set of atoms that occur in 1, vars(¢) to denote the
set of variables in 1, and ¥ (¢) to denote the set of constants
occurring in 1. A substitution h : I' — ¥* is called a model
of v, written h |= ¢, if ¢ evaluates to true under h using
the standard semantics of Boolean connectives. We assume
throughout the paper that v is in negative normal form (NNF),
that is, negations occur only in front of atoms. The literals of v
can be of the form a = 3, =(a = ), @ € R, or =(a € R). We
use o # B and a ¢ R as short-hand notation for =(a = 3)
and —(a € R), respectively. We call 1 conjunctive if it is
a conjunction of literals. We say v is in normal form if all
literals have the form o = 3, x € R, x € R, or x # y. For
every formula 1/ there exists an equisatisfiable formula v’ in
normal form. We construct it by rewriting literals of the form
a# B tooa=ty NS =1ts Aty # ts, and literals of the form
aER(@ZR) o=ty Aty € R (0 =ty Aty € R), where
to and tg are fresh variables. We have 3(¢)) = X(¢') and
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Fig. 1: Overview of the decision procedure.

F:=FVF|FAF|-F|Atom
Atom := ty, € RE |ty = ty
RE:=REURE|RE-RE|RE* | RENRE |? | w

Lo == X | w | Lsir -+ Lstr

Fig. 2: Syntax: x denotes a variables, w denotes a word of ¥*,
and RE denotes a regular expression, where 7 is the wildcard
character.

vars(yp) C vars(y)'). If h = ¢/, then h = 4, and if h = 9,
then A’ |= ', where I’ extends h by setting h'(t,) = h(a).

III. THE DECISION PROCEDURE

Our decision procedure accepts formulas in the syntax given
in Figure 2. The procedure is based on an eager reduction
to the Boolean satisfiability problem. This reduction assumes
fixed upper bounds on the lengths of variables and translates
the input problem into a propositional formula that is equi-
satisfiable for these bounds. It builds upon the string solver
NFA2SAT, which we will review first.

The NFA2SAT procedure is depicted in Figure 1. It begins
by assigning an initially small upper bound b(x) on the length
of all string variables x. Subsequently, the solver constrains
the search space for substitutions to a small alphabet X
that preserves satisfiability. If the problem is satisfiable in
any superset of X, it remains satisfiable in X. Therefore,
the procedure only needs to consider substitutions that map
variables to words in the reduced alphabet ¥*.

For the given bounds and alphabet, NFA2SAT encodes the
first-order formula ¢ into a propositional formula [¢]. If
[¢] is satisfiable, NFA2SAT declares 1 satisfiable. If [¢] is
unsatisfiable, then there are no solutions that satisfy ¢ within
the given upper bounds. In this case, NFA2SAT increases the
bounds on the variable lengths and incrementally encodes the
problem for these new bounds. This incremental encoding pro-
duces new clauses without discarding those from the previous
SAT solver invocation, leveraging the benefits of incremental
SAT solving under assumptions [10].

This process repeats until either the bounds are sufficiently
large for [¢] to be satisfiable, or unsatisfiability can be con-
cluded based on the small model property stating that if v is
satisfiable, then there exists a smallest model. We can compute
bounds on the variable lengths in the smallest model and
compare them to the bounds that resulted in the unsatisfiable



encoding. If the bounds of the unsatisfiable encoding exceed
those of the smallest model, then no solution exists.

To improve efficiency, NFA2SAT utilizes the unsat core from
the last SAT solver call to refine variable bounds and handle
unsatisfiability. It first computes the powerset of the (typically
small) set of literals encoded in the unsat core. For each
subset in the powerset, the solver calculates the small model
bounds of the conjunction of the literals in that subset. Finally,
take the maximum among all these computed bounds. The
iteration over the powerset is necessary because the core is
not necessarily minimal. If the bounds used for the last call
to the SAT solver exceed the maximum, then increasing the
bounds will not eliminate the unsat core and we can then
conclude that 1) is not satisfiable. Otherwise, only the bounds
of the variables occurring in a literal encoded in the unsat core
are increased.

We extend the existing NFA2SAT procedure to support arbi-
trary concatenation, which amounts to solving word equations
after conversion to normal form. Our new procedure includes
three new components:

1) Alphabet Reduction: NFA2SAT narrows the search space
by determining a small alphabet in which the formula is
satisfiable if it is in any larger alphabet. In Section IV
we show that adding one character to Y (¢) for each #
atom is sufficient to preserve satisfiability.

Encoding of Word Equations: In Section V, we in-
troduce a new encoding that translates word equations
into propositional logic in a way that is compatible with
NFA2SAT’s incremental framework.

Handling Unsatisfiability: For cases where no solution
exists, we propose a simple but incomplete technique
to compute the bounds of the small model if the unsat
core contains (encoded) word equations. This approach
is detailed in Section VI.

2)

3)

IV. ALPHABET REDUCTION

A model for a string formula is a mapping from variables
to constant words in an alphabet X, which can depend on
the context. For example, in the SMT-LIB standard [3],
is a subset of the Unicode alphabet that contains 196,607
symbols. In most cases, a model for satisfiable formulas can
be constructed using only a small subset of X.. Restricting the
search space to such a subset is essential for our propositional
encoding to be practical. Let X(¢/) be the set of all constants
occurring in . If 1) does not contain string concatenation, it
is satisfiable if and only if it is satisfiable in the alphabet 3 (1))
augmented with one additional character per variable [20].
When string concatenation is allowed, we instead need one
additional character per negated equation. We show this result
by fixing a solution A : I' — 3* over any alphabet > and
constructing a new solution h’' : ' — (X(¢) U A)*, where
A is disjoint from (1)) and has a cardinality equal to the
number of inequalities in 1. The construction is based on the
method of filling the positions.

Given a word equation o = [ and a length assignment
I, we lift the equivalence relation ~; to the elements of
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T UY. Two elements r,s € YU T are equivalent (under
), written as r ~; s, if thelg:> are i,j with)z’ ~; j and
alli] rAdl] = sor gi] = rA B = s, or
@'[i] = r A B'[j] = 5. This defines an equivalence relation on
YUT. We use [r]., to refer to the transitive reflexive closure
of r € XUT under [. If [ is clear from the context, we simply
write r ~ s and [r].. An [-solution h maps every class [r]..
to exactly one constant ¢ in the sense that h(x)[j] = ¢ for
all x[j] € [r]~. If [r]~ contains a constant character then c
is that character. For example, let x - a = a -y be a word
equation. The length assignment I(x) = 3 and I(y) = 3 yields
x[1]-x[2]-x[3]-a = a-y[1]-y[2]-y[3]. It induces the three equiv-
alence classes {x[1],y[3],a}, {x[2],y[1]}, and {x[3],y[2] }.
Every [-substitution h that satisfies h(x)[1] = h(y)[3] = a,
h(x)[2] = h(y)[1], and h(x)[3] = h(y)[2] is a solution.

It’s a well-known result that any satisfiable word equation
has a solution in the alphabet X(a = ) [15]. A similar
result holds for regular constraints [20] and both results can
be combined to show that a word equation with regular
constraints on the variables is satisfiable if and only if it
has a solution that uses only the constants occurring in the
problem (if there is at least one). This no longer holds when
negations are allowed. For example, consider the formula
x-a = a-y Ax # y. Any solution i must satisfy |h(x)| = |h(y)]|
but constructing an h with h(x) # h(y) is not possible if we
use only a, the sole constant.

We first generalize the result to formulas of the form
Y= a = B Az Npe, where 1) and )¢ are conjunctions
of inequalities between variables x # vy, and regular con-
straints x € R, respectively. This restriction implicitly includes
negated regular constraints, as x ¢ R can be equivalently
formulated as x € R, where R is the regular complement of
R. For an [-solution h, we define the graph G, (h) = (V, E)
where V' is the set of equivalence classes induced by [ on
a = (. The set E includes an edge { [x[k]]~,[y[k]]~ } iff
s contains x Z y, [A(x)| = [h(y)l, h(x)[k] # h(y)[k] and
h(x)[k'] = h(y)[K'] for all ¥ < k, meaning k is the smallest
index where h(x) and h(y) disagree.

If Gy (h) can be colored with n colors, then a new model b’
can be constructed using no more than n constants in addition
to X(1)). Here, a color acts as a new constant, with 4’ mapping
each equivalence class to the vertex color if the original model
h mapped its members to a symbol that is not in X (v).

Lemma 1. Let ¢ := o = B A2 Ape and h be a solution.
If Gy (h) is n-colorable, then v has a solution over ¥(¢) U A
where A is an alphabet disjoint from X(1¢) with |A| = n.

Thus, the minimal number of characters required in addition
to 3(¢)) is the chromatic number of G, (h). The next lemma
gives an upper bound on this number. This follows from the
fact that the graph has at most |atoms().)| edges.

Lemma 2. Let ¢ := o = S AN+ A1pe be a formula and h
be a solution. Then Gy (h) is |atoms(¢)| + 1 colorable.

Combining the above results gives our main theorem.



Theorem 3. Let ) be a formula over word equations and
regular constraints with n inequalities. Then ) has a solution
if and only if it has a solution in X(1)UA where ANYX () = (
and |Al =n+ 1.

The theorem can be shown by assuming ¥ is in disjunctive
normal form and equivalently rewriting each disjunct to match
the form o = B A« A 1. Then, each disjunct can have at
most n inequalities, and we can apply Lemma 1 and Lemma 2
to obtain the bound.

The bound on |A| is not always tight because Lemma 2
gives only a coarse bound on the chromatic number. For
instance, by applying results from [9], it can be lowered to
O(4/n) for a formula with n inequalities. However, it is small
enough to be practical. Additionally, since formulas often
contain fewer inequalities than variables, this result improves
our previously known bound of |vars(¢)| for formulas v that
do not include concatenation.

V. ENCODING WORD EQUATIONS

For a first-order formula ), our decision procedure fixes
some bounds b and translates v into a propositional formula
[]°, which is satisfiable if and only if ¥ has a solution
within bounds b. The formula is constructed by encoding
all literals of ¢ individually. We present the encoding for
literals that are word equations o = £, denoted [or = 3]°.
Intuitively, Joo = ﬂ]]b asks the SAT solver to “guess” a word
w for which there exists a substitution A such that h(a) = w
and h(B) = w, making w a solution word. It is the conjunction
of four formulas [w]’ A [1h]" A [m(e)]” A [m(8)]", modeling
the set of all potential solution words, the set of all possible
[-substitutions, and the constraint that the encoded substitution
must map both patterns to the same word, respectively. The
encoding is sound in the following sense.

Theorem 4. Let o = (8 be a word equation and b be a function
assigning an upper bound to every variable in the equation.
Then o = B is satisfiable under b if and only if [ = B]]b is
satisfiable.

If %, containing o = (3 as a literal, is not satisfiable with
bounds b, then NFA2SAT proceeds to check the satisfiability
for larger bounds &'. This results in n calls to the SAT solver,
with bounds bq,...,b,. To make this procedure efficient,
the encoding is incremental. That is, the encoding [[wﬂb"‘
is constructed by only adding more clauses to the formula
[]%~". In the following, we present the encoding [a = ,Bﬂb’“
assuming that [o = 8]”" was already encoded. To avoid
treating edge cases, we assume bg(x) = 0 for all x € T.
Additionally, we assume « # € and (8 # ¢.

A. Encoding Words

We encode the set of all words that are possible solutions
to the equation in [w]"*. This includes all words over ¥ with
length no longer than Uy, = min(|@%*|, | 5%]), i.e., the length
of the smaller of the longest words that either side of the
equation can be mapped to under bounds b. No substitution

h with |h(a)| > Uy, or |h(B)| > Uy can be a solution w.r.t. to
by, because at least one side of the equation cannot be mapped
to a word of length greater than Uy under by.

We first pick a new symbol A that is not in ¥ and set
¥ = XU{A}. The symbol X denotes an unused position, i.e.,
a position that is to be mapped to the empty word. Setting
an appropriate set of positions to A allows us to encode all
possible words over ¥ with length at most U,. We encode
the set {w € X* | jw| < U} by introducing the Boolean
variables wy for each position 1 < ¢ < Uy and character
¢ € ¥. Boolean variable wy is true if ¢ occurs at position ¢
in w. We enforce that exactly one of the w{ is true using the
following formula

Uk Up—1
[w]” = /\ EO{w§ | ce Zx} A /\ w} — Wi
’i:Uk_l i:Uk—l

This takes into account that words of length up to Up_;
have been encoded in a previous call. In this formula, FO
is an encoding of the exactly-one constraint on the variables
(see [17]). Because concatenation with \ is neutral, we use
the second conjunct of the encoding to break symmetry. This
ensures that every Boolean assignment ¢ with o = [w]”
encodes exactly one word and for every word no longer than
Uy there is exactly one o with o = [w]%.

B. Encoding [-Substitutions

For all length assignments [ bounded by by, i.e., for all [
with I(x) < bg(x) for all x € T, we encode the set of all
possible [-substitutions. This is achieved by initially encoding
all substitutions [A]"* and all length assignments in [I]** (both
limited by by), and then ensuring that the length of a variable
substitution coincides with the length assignment.

The encoding of substitutions is constructed using a set
of Boolean variables { hy; | a € ¥ }. We ensure that every

satisfying assignment to [[h]}b" encodes exactly one constant
word for every variable X, i.e., the substitution of x, by
employing an exactly-one constraint exactly as done for the
encoding of words.

To encode all possible length assignments, we introduce a
set of Boolean variables { L | 0 <14 < by(x) } for all x € T
We encode that L is true iff /(x) = i, taking into account that
the length assignments for bounds b;_; are already encoded.
This makes standard exactly-one encodings unsuitable and we
instead use the following formula

by (x)
eI = (aex— \/  Livaw—1) (D)
i=bp_1(x)+1
b —1(x) b (x)
AN N Li—-L )
i=0  j=bj_1(x)+1
() bi(x)
A N\ Li—-L] (3)

i=b_1(x)+1j=i+1



B: |y[l]

(a) We first assume an upper bound of 1 for
both variables, i.e. b1 (x) = b1(y) = 1. In that
case, [w]®* encodes all words up to length
6. When assigning length 1 to all variables,
[th]"* and [m(B)]"* are conflicting: [Ih]
requires that y[1] is not A, but since the last
segment of 3 ends at position 5, [m(3)] re-
quires that the 6™ position, which aligns with
y[1], is A. Any other length assignment under
b1 will result in a similar situation. Both, the
equation and the encoding are unsatisfiable

a [x[1)x[1]] b

o [a i< b o b [yl o [a (@[ a b [yl vi2l
w: | a i ! I ! i b i ‘ w: | a i b L a I b L a b i a ! b
B: [yl a [x11) x(21 (1] x(2]] b g [yl1) yi2)] a [x(1] x21]x1 x2] b |

(b) When assuming an upper bound of 2 for
both variables, ba(x) = ba(y) = 2, [w]"?
encodes all words up to length 8. Assigning
length 2 to x and y maps both patterns to the
same length. However, this length assignment
still results in a conflict: The first segment
of a (a) and the first segment of B (y)
both start at position 1, so [m(a)]” and
[m(B)]"? entail w[1] = y[1] = a. At the
same time, [m(a)]’? and [m(B)]** entail
w[1] = y[1] = b because the respective last

(c) When instead assigning length 2 to x
y, the encoding, and therefore the equation,
becomes satisfiable and we find a solution h
with h(x) = ba and h(y) = ab, resulting in
the solution word abababab.

under b;.

segments, b and y, start at position 7.

Fig. 3: Demonstrates of the encoding for the example equation a-x-bab-y =y -axx-b. The figures illustrate how the encoding
operates by fixing length assignments for the variables. This is analogous to the SAT solver assigning truth values to the L}

variables during the search procedure.

The Boolean variable ay ;, is an assumption in the kM call to
the SAT solver. Part (1) states that if ay 1, is true, then at least
one of {L! | bp_1(x) <i < bg(x)} needs to be true, unless
ay k—1 1s true (defining ax o = L). If ay 1 is true, then one
Li with 0 < i < by_1(x) must be true, establishing that there
is at least one i < by(x) such that L! is true. The conjunction
(2) and (3) guarantees that at most one L with i < by(x)
is true. Thus, the encoding ensures that exactly one of the
variables L with 0 < < by(x) is true.

Finally, [[2]" combines [2]"* and [I]" to ensure that the
length of each substitution matches the assigned length. This
is expressed by ensuring h(x)[i] - - - h(x)[bx(x)] = ¢ if and only
if L! is true, using

bre(x)—1

EA)™ = A AT A N AN Wiy © LY.

x€D i=by, (x)

Assigning true to h;\[i +1) encodes that the suffix of the substi-
tution of x starting at i + 1 is empty. Because exactly one L
is true, this asserts that the length of the substitution of x is
exactly i if L is true.

C. Matching Patterns To Words

We constrain that any assignment satisfying [h]"* A [w]"*
encodes an [-substitution h and a word w such that h(«)
w = h(fB), asserting that h is a solution. This is achieved
through the formulas [ (c)]" and [[nl(ﬁ)}]b’“, which encode
that & maps the i position of @' and ' to the i™ position of
w, for any encode length assignment [. Since the encoding is
the same for both sides of the equation, we describe it using
a generic pattern -y.

The idea of [m(+)]" is to split y into consecutive factors of
variables and constant words and assert that if a factor starts at
position p in 7 and has length %, then its substitution must be
equal to the factor of the solution word w from p to p+k—1.

33

An example of how this idea is reflected in the encoding is
shown in Figure 3.

Formally, we define the segmentation of +, denoted seg(7),
as the unique factorization (7(1),...,V(n)) of v with vy € T
or y;) € Xt for all i < n, and if ;) € YT then either
Yi+1) € I or i = n. For example, the pattern x-abc-y-x-de f
is factorized into five segments (x,abc,y,x,def). Given a
length assignment [, the start position of v(; is given by
Z;;i |7yl + 1, the sum of the lengths of all preceding
segments plus one, where |7y(;| is I(x) if ;) = x and |v]
if vy =v € ¥ T. The start position of the first segment is
thus always 1.

To ensure the matching between the patterns and the solu-
tion word, we first encode set set of all possible start positions
for each segment of seg(y) w.r.t. by and condition them on
the lengths assigned to the variables using the L variables.
The encoding then ensures if a segment starts at position p
and has length k, the factor of the solution word from p to
p+k — 1 must be equal to h((;)), the constant word that the
encoded morphism h maps ;) to. The idea is illustrated in
Figure 4.

segments i i+ 1 i+ 2 i+ 3
e e [ e A @ b a |yl v [ e
iy h(x) 'a b a | h(y) i h(x) ...

T v B +2» B

.1k i

Fig. 4: Matching a pattern ~ to a word w. If the i segment
of ~, x, starts at position p, then the factor of w from p to
p+ Kk — 1 must be equal to h(x), and the i + 1" segment must
start at position p + k.

To encode the start positions, we introduce a set of Boolean
variables { S(7)? |0 <p < Uy } forall 1 <i < [seg(y)| + 1,
modeling that S() is true if ~(;) starts at position p, where



S(v)fs eg(7)[+1 marks the end of the pattern. The matching is
then encoded using the formula

1

[n(]™ == S (1)
Uy
AN SO~ @
p=Uk—1
[seg(v)[-1
A /\ match(vy, 7). 3)

i=1
Here, (1) encodes that the first segment starts at the first
position. The second part, (2), ensures that the length of the
solution word w equals the length of v under I, by encoding
that the first position of w following the last segment is
mapped to A. The last part, (3), establishes the matching
between each segment 7y(;y and the corresponding factor of the
solution word, and determines the start position of ~y(;;1). The
encoding depends on whether ~(;) is a constant or a variable.

If ;) = v for some v € ¥F, then match(y, ) is given by

T Aol o
, o

SM); — /\ wyii 1 ASTL
p=max(Ug_1—|v[,0)+1 j=1
The formula states that if ~y(;) starts at position p, then the
factor of w from p to p + |v| — 1 must be equal to v and
Y(i+1) starts at p + [v|. The latest position at which the ~(;
can start is Uy — |v|, as otherwise, it would exceed Uy.

If 7(;) = x for some variable x € T, then match(y,1) is
instead given by

A

(p,l) e M\ My _1

Here, M), = {(p,)) | p<Upg Al <b(x)Ap+1<Uy} is
the set of all pairs of positions and length assignments w.r.t
by, such that p + I(x) < Uy. The formula ensures that if ;)
starts at position p and has length [, then the factor of w from
p to p+ 1 — 1 must be equal to h(x), and that ;1) starts at
position p + [.

To guide the SAT solver, we impose an at-most-one con-
straint on { S(7)Y |0 <p < Uy } forall 1 <i < |seg(y)|+1.
Additionally, we disable all infeasible start positions relative
to Uj, with assumptions. For segments v(;) = v € XF, we
add —S(v)? as an assumption for all p with p > Uy, — |v|. For
segments 7(;) = x € I', we add the clauses a — —(LLAS(7)?),
with fresh variable a, for all I,p with | < b(x), p < Uy, and
l+p > Ug, and add a as an assumption.

-1

S()F A L — /\ /\ (hi[j] < wpy )
j=0cex

p+l
A Sz‘+1 :

VI. FINDING AND REFINING BOUNDS

Whenever the SAT solver determines that the formula is
unsatisfiable under bounds b, our procedure continues with
larger bounds b’. This terminates once the bounds are either
large enough to construct a solution or exceed the bounds of
the smallest model, as explained in Section III.

Theoretical bounds on the minimal solution to a word
equation can be computed, but these bounds can be doubly
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Algorithm 1 Iterative Bound Refinement

Input: Conjunctive formula )
Output: Bounds for 1) or UNSAT if ) is unsatisfiable
b, ub < init(¢))
repeat
for a = 8 € atoms(1) do
1b’, ub’ < refinement_step(jae = ], 1b, ub)
if conflict(Ib’, ub’) then
return UNSAT
end if
end for
until Ib’ = 1bAub’ =ub
return lb, ub

exponential [24]. Given this complexity, using exact minimal
bounds is impractical. Instead, we employ a heuristic to iden-
tify tighter bounds by extracting linear constraints on variable
lengths from the word equations. We use a known method for
bounding the solutions of the resulting linear integer problem.
This approach is sound but not complete as it may fail to find
finite bounds on the variables.

For a word equation @ = 3 we define the linear integer
equation [Oé = B]L = ExGF('a‘x - |ﬁ|x) : |X| = ZaGE ‘Bla -
|a|,,. The equation is satisfied by every substitution i with
|[h(a)| = |h(B)|. Especially, if h is a solution for a@ = f3,
then it also satisfies [« = (];. Conversely, if a h does not
satisfy [aw = f3], it is not a solution for o = 3. For instance,
consider the word equation z-b-z-x = ba-y-a-y-bb which has
the corresponding integer equation 2-|z| + |x| + 1 = 2:|y| + 5.
The substitution h = {x < a,y + a,z < baaaa } is not a
solution because 2|h(z)| + |h(x)|+1 =12 # 9 = 2|h(y)| + 5.

We treat [« = (] as an equation over variables I'f,
{|x| | x€T'}. For a conjunction of word equations 1, we
lift [¢]; to the conjunction of the corresponding integer
equations. Our procedure computes lower and upper bounds
Ib,ub : I', = N U oo such that Ib(]x|) < g(]x|) < ub(|x]) for
all g : Ty, — N satisfying [¢)]1,. The algorithm is sketched in
Algorithm 1 and an example is shown in Figure 5.

Iterative Bound Refinement: For a conjunctive formula
1 in normal form, we derive bounds on the variables of v
using an incremental refinement procedure. If variable x is
constrained to belong to a regular expression R and R is
recognized by a cycle-free n-state automaton then we set the
initial bounds on x to lIbg(x) = 0 and ubg(x) = n. Otherwise,
we initialize the bounds to Ibg(x) = 0 and ubg(x) = oo. Thus,
Ibo(x]) < g(|x]) < ubg(|x|) holds initially. The algorithm then
iteratively refines the bounds until a conflict is detected or a
fixed point is reached. A conflict occurs if 1b(|x|) > ub(|x|),
ub(|x]) < 0 or Ib(|x|) = oo for some variable x, in which
case [, and therefore v, are unsatisfiable. If no conflict is
found, then the functions lb and ub provide bounds on the
lengths of the variables for the solutions to . Specifically, if
ub(|x|) # oo for all x, then ub are bounds on the smallest
model for 1. Algorithm 1 may not terminate in general (see
[13]). In our implementation, we enforce an upper limit on the
number of iterations and we return the best bounds available
when this limit is reached.




. ub(x) =co  ub(y) =oco ub(z) =0
Bounds: 1,0y Ib(y) = 0 b(z) = 0
1. Refine Equation |x| + 2-|y| = |y|-+ 2
x| =—=lyl+2 = x| Sub(=|y|+2) = X< —1Ib(ly]) +2 — |x] < 2
Iyl = =[xl +2 — |yl Sub(=|x| +2) = |y| < =Ib(]x]) +2 — |y| <2
Refined Bounds: ub’(x) = 2 ub’(y) = 2 ub’(z) = oo

Ib'(x) =0 b’ (y) =0 1b’(z) =0

2. Refine Equation 2-|z| + x| + 1 = 2]y} + 5
|zl = (=Ixl +2lyl +4) - § — |z| < —1b(|x]) + (2 - ub(ly]) +4) - §

— |z] <4
S ub’(x)=2  ub'(y)=2 ub(z)=4
Refined Bounds: b (x) = 0 Ib’(y) =0, Ib’(z) =0

Fig. 5: Bound refinement for the system of word equations
x-y-y = a-y-a A z:b-zx = ba-y-a-y-bb. Only upper bounds are
shown. The initial bounds on |x|, |y|, and |z| are [0, c0). After
processing the two equations, the bounds are refined to 0 <
x| <2,0<]y|] <2, and 0 < |z| < 4.

Refinement Steps: The key part in the procedure is the
implied bound refinement of [13]. This procedure extends the
functions 1lb, ub to arithmetic terms. For constants c, set
Ib(¢) = ub(¢) = c. For terms of the form c|x|, the value
depends on whether the constant c is positive. If ¢ > 0, then
Ib(c|x]) = ¢~ Ib(|x|) and ub(c|x|) = ¢ - ub(|x|). If ¢ < 0, then
Ib(c|x|) = e-ub(|x]) and ub(c|x|) = ¢-1b(|x|) instead. For sums
of the form T} + T3, we just use Ib(Ty +T5) = Ib(T7) +1b(T3)
and ub(Ty + T») = ub(T}) + ub(7%). Then, for any term T,
Ib(T) and ub(7T') are the smallest and largest value 7' can
assume when respecting the bounds that 1b and ub impose on
the variables:

Lemma 5. Let |x| =T be [ = (], solved for x, and 1b and
ub be bounds for [« = B]r. If g is a solution for [a = ]y,
then 1b(T) < g(|x|) < ub(T") holds.

If 1b and ub are lower and upper bounds on the solutions
for [ = ], and the linear constraints imply an equation of
the form |x| = T" where T" does not contain |x|, then 1b(7") and
ub(T") are lower and upper bounds for |x| in [« = ] .. If these
bounds improve on lb(|x|) and ub(|x|) then the procedure
updates both and iterates.

VII. EXPERIMENTAL EVALUATION

The NFA2SAT solver is written in Rust and uses the SAT
solver CADICAL-1.5.2. The source code consists of about 18k
lines of Rust. Compared with the earlier version described
in a previous paper [20], we have made several extensions
to support word equations. First, the input formula ¢ is
rewritten into an equivalent formula in normal form in which
all literals are either word equations, inequalities between
variables, or (negated) regular constraints (see Section II). The
propositional encoding of regular constraints and inequalities
between variables is explained in [20] and has not changed.
Word equations are encoded as explained in Section V and the
alphabet reduction is implemented as explained in Section IV.
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The bound refinement technique explained in Section VI is
used between SAT solver invocations to obtain small model
bounds and handle unsatisfiable instances, if the UNSAT core
contains (encoded) word equations.

Some types of negated constraints cannot be encoded di-
rectly because they implicitly introduce universal quantifiers.
For example, the literal - contains(a-x-b,y) with variables x
and y, and constants a and b, is equivalent to Vzyzs. z1-y-zo #
a-x-b. We handle such constraints lazily using a CEGAR-style
approach: NFA2SAT tries to find a solution that ignores these
types of constraints. If a solution is found, the solver checks
whether it satisfies the negated constraints that were ignored. If
so, the original formula is satisfiable. If some of the unhandled
negated constraints are not true, then we restart NFA2SAT with
a constraint that forces it to search for another solution.

We compare NFA2SAT with cvc5 (version 1.1.1), Z3 (ver-
sion 4.13.0), NOODLER (commit #ele46068) and OS-
TRICH (commit #f7f0aa8c). We also include results from
NFA2SAT when the bound refinement is disabled. We run the
experiments on an Amazon EC2 M5.24xlarge instance running
Amazon Linux 2, equipped with 384 GB RAM and 96 Intel
Xeon CPUs running at 2.50 GHz. We ran 48 solvers in parallel,
with a 300 second timeout and a 16 GB memory limit per
problem.

We have evaluated our approach on the ZaligVinder [19]
benchmark set!. The set contains 82,632 problems from differ-
ent sources and includes all string problems from SMT-LIB.
Out of these problems, 33,091 are in the logical fragment sup-
ported by NFA2SAT. The others include constraints currently
unsupported by NFA2SAT, e.g., constraints on string lengths.

Table I summarizes the results. The table shows the number
of satisfiable and unsatisfiable problems solved by each solver.
It also includes the total runtime of each solver on the prob-
lems it successfully solves. On these benchmarks, NFA2SAT
is competitive with cvcS, Z3, and OSTRICH. NOODLER is
faster overall than the other solvers by a significant margin.
The baseline version of NFA2SAT solves more problems in
total than cvC5, but fewer than Z3, OSTRICH, and NOODLER.
NOODLER solves the most problems overall. The table also
shows that the bound refinement heuristic helps performance
on both satisfiable and unsatisfiable instances. It increases the
number of solved problems by 39 and reduces the total runtime
by 6,138 seconds. The table shows that the solvers have dif-
ferent characteristics. CVC5 is faster than the other solvers on
satisfiable problems but it is slower on unsatisfiable instances.
Conversely, Z3, OSTRICH, and both versions of NFA2SAT are
slower overall on satisfiable instances. NOODLER is the fastest
solver on unsatisfiable problems. NFA2SAT comes second
on unsatisfiable problems, but solves fewer problems than
NOODLER. OSTRICH is close to NOODLER in terms of the
number of solved unsatisfiable problems but it is slower. The
table also shows that NFA2SAT is faster on average than Z3,
OSTRICH, and CVC5 on the problems that it can solve, only
NOODLER is faster.

! Available at https:/github.com/zaligvinder/zaligvinder


https://github.com/zaligvinder/zaligvinder

TABLE I: Results on the ZaligVinder Benchmarks. NFA2SAT is our baseline solver. NFA2SAT (no ref) is the same solver with

bound refinement disabled.

Solved Problems

Runtimes Total (s)

Runtimes Average (s)

Solver Sat Unsat  Total Sat Unsat Total Sat  Unsat Total
cves-1.1.1 25,443 7,058 32,501 1,250.40 34,285.09 35,535.49 0.05 4.86 1.09
73-4.13.0 25480 7,164 32,644 43,177.51 3,083.34 46,260.85 1.69 0.43 1.42
ostrich 25,439 7,388 32,827 107,786.97 62,183.89 169,970.86 4.24 8.42 5.18
noodler 25,536 7,539 33,075 1,276.80 407.51 1,684.31 0.05 0.05 0.05
NFA2SAT 25406 7,118 32,524 15,276.99 1,389.70 17,666.69 0.6 0.2 0.54
NFA2SAT (no ref) 25,384 7,101 32,485 21,624.50 2,180.07 23,804.57 0.85 0.31 0.73
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Fig. 6: Scatter plots comparing NFA2SAT (x-axis) with cvC5, Z3, NOODLER, and OSTRICH (y-axis). The first row contains
only satisfiable, the second row only unsatisfiable, and the last row all problems. The axes are on a logarithmic scale. The
diagonal line represents equal runtime. Points above the diagonal are problems where NFA2SAT is faster. The first dashed line
represents timeouts. The second dashed line represents failures (crashes, out-of-memory).

The scatter plots in Figure 6 show that the techniques em-
ployed by NFA2SAT and the other solvers are complementary.
Every column compares NFA2SAT with a different solver.
The leftmost plots show that CvcCS5 is generally faster on
satisfiable examples (points below the diagonal), but not on
all problems. The converse happens on unsatisfiable problems
(second row). One can also see that CVC5 and NFA2SAT
are good on different sets of unsatisfiable benchmarks: the
plot for unsatisfiable problems does not have many points
close to the diagonal. This behavior is even more pronounced
when we compare NFA2SAT and Z3 (second column). The
plots show a pattern where some benchmarks are easier for

36

NFA2SAT and others are easier for Z3, with not many points
along the diagonal. Many problems solved by NFA2SAT in
less than 1 second are harder for Z3, and conversely, many
problems solved by Z3 in less than 0.1 seconds are hard
for NFA2SAT. We can also see that Z3 has a higher startup
cost than NFA2SAT and CVC5 on these problems. The plots
comparing NFA2SAT with NOODLER show a pattern similar to
the comparison with CVC5, but NOODLER is faster overall. For
satisfiable problems, there are many cases along the diagonal,
indicating that the solvers perform equally well on these
benchmarks. However, there is also a large set of problems
where NOODLER is faster, as shown by the concentration
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Fig. 7: NFA2SAT with and without bound refinement on SAT
and UNSAT instances, respectively.

of points below the diagonal. Despite this, NFA2SAT still
outperforms NOODLER on a subset of problems, both satis-
fiable and unsatisfiable. NOODLER is based on Z3, and thus
shares the same startup cost. The plots comparing NFA2SAT
with OSTRICH indicate that NFA2SAT is overall faster on
most problems, both satisfiable and unsatisfiable, as shown
by the majority of points above the diagonal. For many of
these problems, NFA2SAT’s advantage can be attributed to
OSTRICH’s high startup time, which is about 2 seconds. There
is a significant number of both satisfiable and unsatisfiable
problems where OSTRICH is faster, or which OSTRICHsolved
but NFA2SAT could not solve. On unsatisfiable problems,
OSTRICH solves more problems than NFA2SAT. Only a few
instances are close to the diagonal, emphasizing that NFA2SAT
and OSTRICH complement each other.

The scatter plots in Figure 7 show the impact of the bound-
refinement heuristics. The plot shows many points close to
the diagonal, which are problems where bound refinement
does not help or hurt. But most of the other points are above
the diagonal. These are problems where bound refinement
improves runtime.

VIII. CONCLUSION

We have added support for word equations to the NFA2SAT
string solver. Our approach relies on a novel SAT encoding of
word equations that is based on enumerating constant words
and matching both sides of a word equation to the same
constant word. The encoding makes use of incremental SAT
solving. To detect unsatisfiable instances, we propose an in-
complete but practical technique that derives linear constraints
on the length of variables occurring in word equations and
uses a bound-refinement algorithm. An empirical evaluation
on a large set of benchmarks demonstrates that our approach
is competitive with the state-of-the-art solvers CvC5 and
Z3. More important, the techniques employed by NFA2SAT
are complementary which brings benefits to portfolio-solving
strategies. In future work, we plan to support atoms that
constrain the lengths of strings. Additionally, we want to
explore a more diverse array of approaches to determine
unsatisfiability and optimize the SAT encoding in order to
improve the solver’s efficiency.
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Abstract—We introduce SMT-D, a tool for portfolio-based
distributed SMT solving. We propose a general architecture
consisting of two main components: (i) solvers extended with the
capability of sharing and importing information on the fly while
solving; and (ii) a central manager that orchestrates and monitors
solvers while also deciding which information to share with which
solvers. We introduce new information-sharing strategies based
on the idea of maximizing the amount of useful diversity in the
system. We show that on hard benchmarks from recent related
work, SMT-D instantiated with the cve5 SMT solver achieves
significant speed-up over sequential performance, is competitive
with existing portfolio approaches, and contributes a number of
unique solutions.

I. INTRODUCTION

Solvers for satisfiability modulo theories (SMT) are used
as general-purpose constraint solvers in a wide variety of
applications, including those arising in computer science [6],
[10], mathematics [12], [21], operations research [20], and
more. Unsurprisingly, as users push SMT solvers to solve
more diverse and challenging problems, solver performance
becomes the limiting factor in many applications.

Today, state-of-the-art SMT solvers like cve5 [2], Yices [8],
and Z3 [7] do not benefit from additional cores, and if the
solving job times out or crashes, any work done during the
solving attempt is lost. An effective strategy for distributed
SMT solving could address both issues: it can help scale SMT
solving across multiple threads and machines, and by sharing
information among solver instances, any progress made can
be retained and used by others, even if one of the instances
crashes or fails.

Two main approaches to distributed SMT solving have been
explored: portfolio solving and divide-and-conquer. Portfolio
solving is essentially a race between multiple independent
SMT solver instances. Each solver is different in some way:
either it is a completely different solver, or it is configured
differently, or it is provided with a different (but logically

*These authors did much of the work on this project and did so during
internships at Amazon Web Services.
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equivalent) input. Portfolio solving aims to leverage the well-
known high variance that often exists when solving equivalent
SMT problems: the hope is that one of the solvers in the
portfolio finishes quickly. Portfolio solving can be enhanced by
sharing information among the solver instances. Typically, this
information consists of formulas that the SMT solvers have
learned that can be used to prune the search space. In divide-
and-conquer solving, a single problem is partitioned in such
a way that if each partition is solved, this provides a solution
to the original problem. The main challenge is finding a way
to divide the problem that actually improves performance.

In this paper, we introduce SMT-D, a new tool for portfolio-
based distributed SMT solving. SMT-D’s architecture consists
of two main components: (i) solvers extended with the capa-
bility to share and import information on the fly while solving;
and (i) a central manager that orchestrates and monitors
solvers while also deciding which information to share with
which solvers. We also introduce a new information-sharing
strategy based on the idea of maximizing the amount of
“good” diversity in the system. On hard benchmarks from
recent work [22], SMT-D instantiated with the cve5 SMT solver
achieves significant speed-ups over sequential performance, is
competitive with existing portfolio approaches, and contributes
a number of unique solutions.

In summary, our contributions include:

o a flexible and general architecture for portfolio-based
SMT solving with information sharing;

« new portfolio strategies including delayed sharing and
guided randomization;

¢ an implementation in SMT-D; and

o an evaluation of SMT-D and existing systems on several
sets of challenging benchmarks.

The rest of the paper is organized as follows. Section II
covers background and related work. Section III describes the
architecture of SMT-D. Section IV explains our novel portfolio
strategies, and Section V provides additional implementation
details. Experimental results are reported in Section VI, and

This article is licensed under a Creative
BY Commons Attribution 4.0 International License
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Algorithm 1: The CDCL(T) loop
Input : an SMT formula F'
Output: SAT or UNSAT

1 clauseDB + toCNF(F);
2 while True do

3 do

4 conflict < BooleanPropagate(clauseDB);
5 changed < False;

6 if conflict = () then

7 ‘ conflict, changed < theoryCheck() ;
8 | while changed A conflict = 0;

9 | if conflict # () then

10 level, lemma + resolveConflict(conflict);
11 clauseDB <+ clauseDB U lemma;

12 if level < O then

13 | return UNSAT;

14 backtrack(level) ;

15 else

16 if nextLiteral() = NULL then

17 | return SAT ;

Section VII concludes.

II. PRELIMINARIES

We assume the standard logical setting for SMT with the
usual notions of terms, interpretations, and theories (see, e.g.,
[5]). We assume a fixed background theory 7 (which could
be a composition of one or more individual theories). A T -
interpretation is an interpretation that interprets symbols in 7~
as expected. An afom is a term of sort BOOL that does not
contain any proper sub-terms of sort BOOL. A literal is either
an atom or the negation of an atom. A clause is a disjunction
of literals, and a cube is a conjunction of literals. A formula is
a term of sort BOOL and is satisfiable (resp., unsatisfiable) if
it is satisfied by some (resp., no) 7T -interpretation. A formula
whose negation is unsatisfiable is valid.

A. CDCL(T)-Based SMT Solvers

Most modern SMT solvers are based on the CDCL(T)
framework [17], in which a SAT solver and one or more theory
solvers cooperate. The SAT solver incrementally builds a truth
assignment for the Boolean skeleton of the formula, obtained
by replacing each unique atom by a Boolean variable. It does
this using a standard CDCL loop that is modified to also
take into account theory reasoning. The modified CDCL(T")
approach is shown in Algorithm 1. Initially, an input formula
F' is converted to conjunctive normal form (CNF), and each
clause is stored in a clause database. The main loop first calls
Boolean propagation, which may assign some atoms to true
or false. If Boolean propagation produces no conflicts, then
the theory solvers are called to check for theory conflicts.
These two steps repeat until a fixed point is reached. If there
is a conflict, it is resolved by learning a conflict lemma and
backtracking to an earlier level in which there is no conflict.
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Otherwise, the nextLiteral function is used to make a case
split on a new literal. More details can be found in [5].

B. Portfolio Solving with Lemma Sharing

SMT solvers are highly sensitive. Small changes to the input
formula or solver heuristics can result in orders of magnitude
difference in solving time [11]. While a cause of frustration for
users, this phenomenon can be leveraged to create an effective
portfolio solving strategy: multiple solvers (each configured
differently or with permuted, but logically equivalent, inputs)
are run in a “racing” mode and the result of the fastest one
is returned. This approach has been explored extensively for
both SAT and SMT solving [1], [15], [16], [24] and produces
reliable speed-ups [23]. Still, portfolio solving is limited by the
performance of the best and luckiest individual solver, leading
to diminishing returns with increasing parallelism. Additional
performance can be obtained with information sharing. Each
solver in the portfolio shares its learned conflict lemmas with
the others, with the hope that this exchange of information
will help find the solution faster.

Implementing a lemma-sharing portfolio in practice is
highly non-trivial. System-wise, one must provide scalability,
fault tolerance, and low overhead; algorithmic-wise, one must
find a good balance between sharing useful information and
overloading the system with too many lemmas. Moreover,
a well-designed distributed solver should be modular and
general, leaving room for future extensions. Ideally, it should
also accommodate a wide range of different solvers, support
new sharing strategies, and be compatible with other parallel
strategies such as partitioning. After a review of related work,
we discuss our design and implementation, including design
decisions that aim to meet the criteria mentioned above.

C. Related Work

Parallel strategies for SAT solving have been explored
extensively [1], [13], [14], [24]. SMT solvers must take into
account the more sophisticated CDCL(T") architecture and the
different performance profiles of SMT applications. However,
the two main approaches for parallel SAT solving are also
found in the existing research literature on parallel SMT
solving, namely portfolio solving and partitioning.

Portfolio solving for SMT. Z3 was the first SMT solver
to implement portfolio solving with information sharing [23].
The Z3 implementation focuses on a shared-memory imple-
mentation and achieves a speed-up of 3.5x on average for
moderately difficult integer difference logic benchmarks using
a portfolio of four copies of Z3. The sharing strategy used is
simple: lemmas with eight literals or fewer are shared, and
others are not. Shared lemmas are put into a queue, and each
solver in the portfolio checks its queue whenever it backtracks
to decision level 0. Unfortunately, portfolio solving is no
longer supported in recent versions of Z3.

SMTS [15] is another system implementing portfolio solv-
ing with information sharing. As with the Z3 approach,
lemmas to be shared are loaded into queues that are accessed
when the solvers backtrack to decision level 0. SMTS uses a



central database to store shared lemmas. A filtering heuristic
is used to decide which lemmas to add to the database, and a
selection heuristic is used to decide which lemmas to share
from the database. SMTS obtains its best results using a
filter that discards lemmas with more than four literals and
a selection heuristic that randomly samples from the database.
The SMTS authors specifically flag the need for better filtering
and selection techniques in their discussion of future work.
Our work builds on and extends these previous approaches in
several ways, as we discuss in the next section.

Partitioning in SMT. SMTS [15] implements several par-
titioning strategies that outperform sequential solving. Relat-
edly, Wilson et al. [22] implement a partitioning-based parallel
solver using cvc5 (which we will refer to as CVC5-P going
forward) and show that it outperforms traditional portfolio
solving on a set of challenging benchmarks. cvc5-P does
not use any information sharing, leaving the integration of
sharing to future work. SMTS does explore a limited form of
sharing mixed with partitioning: each partition can be solved
using a portfolio with lemma sharing, which yields even better
performance. The focus of this paper is on portfolio solving
with sharing but without partitioning. We aim to build a
robust and high-performance solution that could be expanded
to include partitioning strategies in future work.

III. AN ARCHITECTURE FOR PORTFOLIO-BASED SMT
SOLVING

In this section, we describe a general architecture for
portfolio-based SMT solving and contrast it with prior ap-
proaches. Figure 1 depicts our architecture. It is designed to
run on either a cluster of computing nodes or a multicore
machine. Multiple solver instances (called workers) work on
the same problem and share information through a central
broker. The workers are SMT solvers instrumented to be able
to export and import learned lemmas on the fly. Workers
also track local statistics about lemma imports, exports, and
filtering.

The central broker plays two roles. First, in the control
plane (Fig. la), it manages the system by starting, config-
uring, monitoring, and terminating workers, and by monitor-
ing the overall system and network health (through period-
ically transmitted ping/pong messages). Second, in the data
plane (Fig. 1b), it controls system data flow by managing
lemma exchange between workers and by tracking and mon-
itoring solver and system-level lemma statistics. In particular,
the data-plane broker (i) tracks which lemmas arrive from
which individual workers and (ii) decides which lemmas
to forward to which workers. This already enables a finer
level of control than in previous approaches, where lemma
sources are not tracked and static selection criteria are used to
decide which lemmas to share. The broker tracks both control
and data, including statistics such as the number of lemmas
exported or imported so far, time spent in various phases of
processing those lemmas, whether a worker has solved its copy
of the problem, and so forth.
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We advocate a simple hub-and-spoke architecture, similar
to that used in SMTS [16]. Using a central broker simplifies
coordination and does not require workers to synchronize with
each other. We have also observed empirically that in our
implementation, the broker is not a communication bottleneck
(see Sec. VI). Our hub-and-spoke architecture tolerates worker
failure and communication lag or failure. The design makes
progress as long as the central broker and some workers are
active. The broker is a single point of failure, but can be
engineered to be robust.

A. Workers

As mentioned above, the workers are SMT solvers modified
to support importing and exporting of learned lemmas during
search. This allows for more fine-grained information sharing
than prior approaches, where lemmas are only imported at
decision level 0, and requires modifying the CDCL loop
as shown in Algorithm 2. The loop now calls an export
procedure whenever a new lemma is learned as a result of
conflict analysis (Line 14). Additionally, during the propaga-
tion phase, the worker adds lemmas received from the broker
to its database by invoking an import procedure (Line 7).
While these changes to CDCL are non-trivial, we can often
leverage extensions already present in CDCL SAT solvers to
support SMT functionality such as theory propagation. These
mechanisms can typically be repurposed for lemma sharing.

The worker sends telemetry to the broker whenever lemmas
are exported or imported (Line 9 and Line 15). Each solver
has a mechanism for locally filtering lemmas. The goal is to
import and export only useful lemmas. We discuss various
considerations for local filtering in Section V.

B. Central Broker

The central broker configures both the workers and network
communication channels and manages both the control and
data planes. During solving, it coordinates the exchange of
information between workers and detects termination.

A major role of the central broker is to distribute lemmas
learned by one worker to the other workers, while discarding
duplicates and managing additional filters. Because multiple
workers can learn and export identical lemmas, the broker
ensures that each unique lemma is only forwarded (at most)
once to each worker. Again, this offers a more fine-grained
control mechanism than prior work, in which all lemmas up
to a certain size are always shared (Z3) or lemmas are sampled
randomly (SMTS) from the database of all shared lemmas.

The core broker algorithm is shown in Algorithm 3. The
broker maintains two global variables: archivedLemmas is
the set of all lemmas it has received; and lemmaSolverMap
is a map from lemmas to worker ids that keeps track of the
origin(s) of each lemma. When the broker receives a lemma,
the lemma is canonicalized by sorting the set of its literals
(Line 5). This ensures that one source of lemma redundancy is
eliminated. The broker then uses this canonical form to detect
whether the lemma is new (i.e., not in archivedLemmas) and
to update lemmaSolverMap. Function shouldSend controls
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Figure 1: Architecture of SMT-D

Algorithm 2: Modified CDCL(T) loop with sharing
Input : an SMT formula F'
Output: SAT or UNSAT

1 clauseDB + toCNF(F);

2 while True do

3 do

conflict < BooleanPropagate(clauseDB);

changed < False;

if conflict = () then
newLemmas < importLemmas();
clauseDB <+ clauseDB U newLemmoas;
sendtelemetry();

10 conflict, changed < theoryCheck();

1 while (newLemmas 0\ changed) A conflict =0,

12 if conflict # () then

N-T-- RN S LY B Y

13 level, lemma < resolveConflict(con flict);
14 exportLemma(lemma);

15 sendtelemetry();

16 clauseDB < clauseDB U lemma;

17 if level < O then

18 | return UNSAT;

19 backtrack(level);

20 else

21 if nextLiteral() = NULL then

2 | return SAT;

the timing of when lemmas are transmitted to the workers.
When shouldSend is true, the broker sends each lemma [
stored in lemmaSolverMap to the workers that did not export
it. We discuss implementation choices for shouldSend in
Section V.
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Algorithm 3: The broker’s core lemma exchange
routine

1 archivedLemmas < (;
2 lemmaSolverMap < 0;
3 while True do

4 L, w < readMessage();
5 £« canonicalize(?);
6 if ¢ € archivedLemmas then
7 ‘ continue;

8 lemmaSolverMap[{].add(w);

9 if shouldSend() then

10 for ¢ € lemmaSolverMap do
1 send (¢, allWorkers \ lemmaSolverMap|f]);
12 lemmaSolver Map.pop(¢);
13 archivedLemmas.add({);

IV. PORTFOLIO STRATEGIES

Constructing effective strategies for portfolio solving with
information sharing requires balancing trade-offs from a num-
ber of different goals:

e Maximize diversity: workers should work on different

parts of the search space to avoid redundant work.

o Share useful lemmas: ideally, workers should export lem-

mas that are useful to all instances. A common heuristic
for evaluating the value of a lemma is its size (i.e.,
number of literals in the clause). Smaller clauses are more
likely to be useful, as they prune a larger portion of the
search space.

o Avoid overwhelming solvers: each solver maintains a

database containing both locally-learned lemmas and
lemmas imported from the broker. Core solver perfor-



mance degrades as the size of the database grows. Sharing
too many lemmas can thus be detrimental to overall
system performance.

e Manage communication overhead: we do not want to
overload the communication network with too much data,
as this also slows down the system.

Our proposed architecture supports a wide variety of strat-
egy options. We mention two general strategies here, and then
discuss specific parameter settings used in our implementation
in Section V. The first strategy is delayed sharing, which
avoids sharing a large set of lemmas that all solvers discover
locally. The second strategy is a novel approach to diversity
that we call guided randomization.

A. Delayed Sharing

In initial experiments with an early prototype, we observed
that for some large problems, workers initially export a large
number of lemmas and delay calling the importLemmas
procedure. Later, when they do try to import the lemmas,
the system stalls due to the large amount of communication
traffic. Telemetry revealed that this was caused by the initial
preprocessing and theory reasoning performed by the solvers.

Before entering the CDCL loop proper, SMT solvers per-
form formula simplification, conversion to clausal form, and
some eager theory reasoning. It is possible for solvers to
produce many lemmas during this phase; if each worker is an
instance of the same SMT solver, such lemmas are likely to be
learned by all solvers working on the problem.To address this
issue, we added a delayed sharing mechanism, which ensures
that only lemmas learned after the preprocessing phase are
exported. Enabling this mechanism boosts performance on all
of our benchmarks.

B. Guided Randomization

Baseline mechanisms for diversifying solver behavior in-
clude selecting different random seeds and modifying solver
configurations to ensure that different instances use different
search parameters. However, these basic mechanisms have
diminishing benefit as we increase portfolio size, as we show
in Section VI-B. Using the telemetry collected by the broker,
we can observe the number of uniquely learned lemmas (i.e.,
those learned by a single worker). This metric is a reasonable
proxy for system diversity, and indeed, in early experiments,
we observed that this number plateaus as we scale the number
of workers.

We address this problem by dividing the pool of workers
into two clusters, a standard cluster and a noisy cluster. Each
cluster uses different levels of randomness and different scor-
ing and filtering heuristics. Scoring and filtering can also treat
lemmas local to the cluster differently than clauses from other
clusters. The noisy cluster uses a high degree of randomness.
Intuitively, we expect that solvers in this cluster will learn
mostly useless clauses, because they are using heuristics that
are far away from the default configurations which have been
tuned to be effective. They are also likely to end up exploring
parts of the search space that low-randomness solvers ignore.
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But once in a while, noisy solvers may get lucky and learn
clauses that can be useful to solvers in the other cluster.

To maintain diversity in the noisy cluster, we keep the
clause databases for solvers in the cluster somewhat isolated.
We do this by configuring solvers in noisy clusters to ignore
each other and only import lemmas that the central manager
determines are highly likely to be useful, (e.g., unit clauses).
We discuss a concrete instantiation of this strategy in the next
section.

V. IMPLEMENTATION

SMT-D is a distributed SMT solver that implements our
proposed architecture and strategies.For the worker instances,
we use a version of cvc5 with the main loop modified
to support importing and exporting clauses, as discussed in
Section III-A. Workers run in separate processes, and each
worker process has a separate wrapper thread that manages
the control plane interface and networking details.

The central broker is written in Python. Communication
between broker and workers is implemented with gRPC [9].
We chose gRPC instead of lower-level mechanisms like sock-
ets, because gRPC’s high-level API provides better monitoring
capabilities and has sufficient performance for (at least) 64
solvers. gRPC also allows us to abstract the parallel and
distributed aspects of the system. Thus, SMT-D can be de-
ployed either on a single multicore machine or on a cluster of
machines in the cloud.

To export lemmas, we serialize them as strings in the SMT-
LIB format [4]. Correspondingly, lemma import requires pars-
ing SMT-LIB strings. This adds some overhead' but provides
a significant interoperability advantage, as all SMT solvers
can parse and print terms in SMT-LIB format. More compact
formats could be used at the cost of increased implementation
effort and reduced interoperability. For example, SMTS uses
a dedicated binary format, but this limits the choice of solvers
to those that support this format. Choosing SMT-LIB reduces
the cost of adding additional solvers beyond cvcS5 to SMT-D.

As explained previously, SMT-D implements comprehensive
telemetry for both the control and data planes. We found this
real-time information about the solving process at both the lo-
cal and global levels to be crucial when debugging the system,
evaluating different portfolio configurations, and evaluating
lemma scoring and filtering strategies. The implementation is
heavily parameterized, so that whenever possible, users can
choose configuration options at runtime, rather than having to
change hard-coded configuration settings.

A. Local Filtering

Several considerations must be taken into account at the
worker level. SMT solvers can dynamically create new atoms
and new symbols during search. This poses a soundness
problem in a distributed setting as one must ensure that
new symbols created by a solver instance are interpreted

ISo far, this has not been a performance limiter, as analysis shows that
individual cve5 workers can import at least 1,000 lemmas/second with <5%
parsing overhead. None of the benchmarks reach that level.



consistently by other instances. We currently avoid this issue at
the export stage by filtering out lemmas that contain symbols
not present in the original formula.> New theory atoms are
fine as long as they do not introduce new symbols. More
sophisticated approaches are possible, but require a mechanism
for exporting the definitions of new symbols in a canonical
way. Implementing such a mechanism requires extending the
baseline SMT solver in a non-trivial way, and we leave it for
future work.

As mentioned, our primary goal when filtering is to only
export useful lemmas. As in prior work, we use the number
of literals in the lemma as our main export filter.

Importing lemmas has a cost. The central broker aims to
limit redundancy by only sending a given lemma once to each
worker. It is still possible for a worker to produce a lemma
internally before learning that another worker has produced the
same lemma. Thus, we check in the import procedure whether
an imported lemma has already been discovered locally. If
so, we drop it. This can be implemented efficiently using
mechanisms such as hashing and Bloom filters.

B. Sending Lemmas from the Broker

Our broker uses two indicators to determine when to send
lemmas. The first is the wall clock time elapsed since the
last lemma transmission. The other is the number of unsent
lemmas for a particular worker in the lemmaSolverMap map.
Function shouldSend returns true if the elapsed time is greater
than a parameter delay or if the number of unsent lemmas is
larger than a threshold maxQueueSize. By setting these two
parameters, the broker can implement different communication
policies. It can send lemmas in size-driven batches (like
SMTS [15]), in time-driven epochs (like Mallob [19]), or
both. We found empirically that so far, the best results come
from sharing lemmas individually as soon as they are received.
The current sharing limiter is cve5 parser performance, which
supports importing at least 1,000 lemmas per worker per
second. With clause sharing filtered by size < 8, only one of
the benchmarks approaches that limit, even with 64 workers. If
we encounter network bandwidth limitations at some point, we
expect that time-driven epochs will provide the best efficiency.

C. Monitoring

SMT-D monitors the number of lemmas imported and ex-
ported by each worker. Information from solver wrappers is
used to monitor message latency and broker/solver roundtrip
times. The lemmaSolverMap map also tracks how many
solvers independently learned each lemma, that is, the number
of lemmas learned by exactly one solver, two solvers, and so
forth. This helps dynamically measure diversity in the system,
including the amount of redundant work being performed by
different solvers. The broker also maintains its own counts of
the number of exported and imported lemmas for each worker.
Mismatches between the numbers stored in the broker and
the numbers reported by the workers mean that the system is

2This problem does not occur in the problems in our evaluation, as problems
in these logics do not introduce new symbols.
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overloaded (thus messages are late or dropped) or that there is
a bug. During the development of SMT-D, the monitor helped
detect multiple bugs and helped inform the design of our
lemma-sharing heuristics.

VI. EVALUATION

We measure SMT-D performance on the set of benchmarks
used in [22], which consists of 214 challenging benchmarks
taken from the Cloud track of SMTCOMP22 [18] and other
problems from the SMT-LIB benchmark library [3]. The
benchmarks come from five SMT-LIB logics: QF_LRA (139),
QF_IDL(48), QF_LIA (16), QF_UF (7), and QF_RDL (4).



[ Benchmarks SMT-D baseline SMT-D 64x CS SMT-D 64x CS-GR SMTS baseline SMTs 64x CS CVCS5-P 64x |

[ Category | Count | Solved | PAR-2 | Solved | PAR-2 | Solved | PAR-2 | Solved | PAR-2 | Solved | PAR-2 | Solved | PAR-2 |
QF_LRA 139 90 154 121 61 (160%) 120 | 60 (161%) 117 69 127 | 41 (141%) 99 | 130 (J16%)
QF_IDL 43 1 114 20 | 72 (J37%) 21 | 70 (J39%) 8 99 15 | 82 (17%) 5 107 (16%)
QF_LIA 16 0 38 8 | 22 (J42%) 9 | 20 (J47%) 11 13 4 | 11 (15%) 1 36 (15%)
QF_UF 7 2 14 3 11 (J21%) 7 2 (186%) 6 5 6 3 (J40%) 4 9 (136%)
QF_RDL 4 0 10 2 6 (J40%) 2 6 (140%) 0 10 0 10 ( 0%) 0 10 ( 0%)
SAT 115 52 172 86 [ 83 (52%) 86 | 82 (52%) 83 87 99 | 44 (J49%) 59 | 151 (J12%)
UNSAT 85 41 124 68 | 55 (156%) 73 | 43 (165%) 59 75 63 | 63 (116%) 50 | 106 (J15%)
UNKNOWN 14 0 34 0 | 34( 0%) 0 34 ( 0%) 0 34 0 | 34(C 0%) 0 | 34( 0%)

[ ALL [ 214 | 93 [ 330 [ 154 [ 171 (J48%) [ 159 | 159 (J52%) | 142 | 196 [ 162 [ 141 (I28%) [ 109 | 291 (J12%) |

Table I: Results comparing SMT-D with other distributed solving tools. PAR-2 scores in thousands.

The goal of our evaluation is to understand the value
and potential of our clause-sharing mechanism. Our first set
of experiments evaluates different options and configurations
of SMT-D (see Section VI-B). This experiment shows the
effectiveness of clause sharing over no sharing and the value
of guided randomization. Our second set of experiments
compares SMT-D with other tools.

A. Configuration

We use a competition build of cve5 with the elective
CLN and GLPK build options enabled. For each logic, we
configure cvcS workers with different sets of options to
enhance diversity. These option sets are listed in Table II
and are based on the authors’ knowledge of the tool and
the configurations typically used in the SMT competition. We
populate the portfolio by first instantiating a cvc5 instance
for each set of options. If we have more workers available
in the portfolio, we cycle through the different option sets
again, but this time using a different decision engine from the
default one for that logic (--decision=justification if the default
is --decision=internal and --decision=internal otherwise). After
this, we continue to cycle through the different sets of options,
this time using only --decision=internal and using a different
random seed for each instance. When using noisy solvers,
only solvers with --decision=internal are used for the noisy
partition.

Table II lists the different sets of options used for each logic.
The first set of options listed for each logic is the one used
when running a single instance of cvc5 for that logic.

In all experiments, we set the timeout for solving each query
to be 1200 seconds, the same timeout used in the parallel
and cloud tracks of the SMT competition (in both 2022 and
2023) [18]. Experiments were performed on Amazon EC2
c6a.48xlarge instances, with 96 physical cores and 384 GB
of RAM.

Our main metric used for comparison is the PAR-2 score
used in [22] and the annual SAT competition. PAR-2 is the sum
of run times for all instances, but where unsolved instances
receive a score of twice the timeout value (1200 x 2 = 2400).
This provides a single metric that takes into account both
runtime and number of benchmarks solved. The lower the
PAR-2 score, the better. We also use cactus plots to show
the number of solved instances (y-axis) within a limit of
s seconds per instance (x-axis). We are primarily interested

[ Logic [
QF_LRA, QF_RDL
(option set 1)

Options

--miplib-trick true
--miplib-trick-subs 4
--use-approx true
--lemmas-on-replay-failure true
--replay-early-close-depth 4
--replay-lemma-reject-cut 128
--replay-reject-cut 512
--unconstrained-simp true
--use-soi true

| —restrict-pivots false |
--use-soi true
--new-prop true
--unconstrained-simp true

(defaults only)

(option set 3)

QF_LIA, QF_IDL
(option set 1)

--miplib-trick true
--miplib-trick-subs 4
--use-approx true
--lemmas-on-replay-failure true
--replay-early-close-depth 4
--replay-lemma-reject-cut 128
--replay-reject-cut 512
--unconstrained-simp true
--pb-rewrites true
--ite-simp true
--simp-ite-compress true
--use-soi false

| —-miplib-trick true ~ ~ ~ ~ ]
--miplib-trick-subs 16
--use-approx true
--lemmas-on-replay-failure true
--replay-early-close-depth 4
--replay-lemma-reject-cut 16
--replay-reject-cut 64
--unconstrained-simp true
--pb-rewrites true
--ite-simp true
--simp-ite-compress true
--use-soi true

(defaults only)

(option set 2)

(option set 3)
[ QF_UF

(defaults only) l

Table II: Options used in cvc5 portfolios

in the effectiveness of different parallelization strategies and
implementations.

B. Scalability and Effectiveness of Guided Randomization

We first report on scalability experiments of SMT-D, both
with and without sharing. We also show the effect of adding
guided randomization. When using guided randomization, we
divide the portfolio into two clusters: a standard cluster, which
uses default cvcS randomness settings, and a noisy cluster,
which assigns the cve5 rnd_freq option to 75%. This option
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controls how often the SAT decision tries to pick a random
variable instead of a heuristically-driven choice. We assign
25% of the workers to the noisy cluster and 75% to the
standard cluster.®> Solvers in the standard cluster import and
export clauses of length < 8. In the noisy cluster, clauses of
length < 4 are exported, but only unit clauses are imported.

To distinguish the different configurations of SMT-D, we
use CS for configurations with clause sharing and CS-GR for
configurations with clause sharing and guided randomization.
Fig. 2 shows how different configurations of SMT-D scale with
the number of workers. The figure includes results for baseline
cveS, portfolios of 4, 16, and 64 workers, with and without
sharing, and a run of 64 workers with guided randomization.
Specific numbers for three of the configurations (baseline, 64x
CS, and 64x CS-GR) can be found in Table I.

We observe that SMT-D scales nicely when going from 1
to 64 solvers. In addition, clause sharing improves perfor-
mance for all portfolio sizes greater than four, and guided
randomization provides an additional boost. Our experiments
showed that guided randomization does not help much until we
reach portfolio sizes of more than 32. We suspect additional
portfolio members add diversity until a point of diminishing
returns where the guided randomization helps. This is why
we only include results for CS-GR for a portfolio of 64. A
comparison of the 64x CS configuration with and without
guided randomization is shown in Fig. 3. While there is
orthogonality, overall CS-GR improves performance, including
by more than 2x for a significant number of problems (dots to
the left of the top ‘“2x” line). As a whole, among all instances
solved by both CS and CS-GR, there are 24 instances where
CS-GR is more than 2x faster than CS, and only 5 instances
where CS-GR is 2x slower. CS-GR solves 5 more problems,
and improves the PAR-2 score by 12k (7%) over CS.

Though we did not measure it precisely, total memory con-
sumption per solver is relatively stable, which is good news for
the distributed case where cores do not share memory. Broker
memory was not a significant issue in these experiments.
Detailed studies of memory usage will be an important part
of ongoing development of the tool.

C. Comparison with State-Of-The-Art Tools

We next compare SMT-D with SMTS [16],* the strongest
solver in quantifier-free divisions of SMTCOMP22’s cloud
track,’ and cvc5-p, the partitioning solver from [22].

We use SMTS with sharing on and partitioning off. The
reason for not enabling the partitioning capability is simple
and deliberate: our goal is to understand and compare only
the clause-sharing capabilities of the two frameworks. Results
of SMTS with both sharing and partitioning enabled would
be inconclusive, as it would be difficult to figure out which

3These percentages were chosen based on an empirical analysis of a small
sample of possible values. We plan to do a more extensive evaluation of these
parameters in the future.

4We used commit 29d51340 from the cube-and-conquer branch, as recom-
mended to us by the SMTS authors.

SSMT-COMP 2023’s cloud track omitted all quantifer-free divisions.
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Figure 4: Comparing SMT-D’s and SMTS’ improvement over
a single base solver.

technique contributed what. And it would not be an apples-
to-apples comparison, as our approach does not yet integrate
partitioning. We anticipate integrating clause-sharing with par-
titioning in future work. In contrast, in our comparison with
CVC5-P, we do use the partitioning capabilities of CVC5-P.
But this is again deliberate as our goal with that comparison
is different, namely to explore how clause sharing compares
to partitioning when using the same underlying solver (SMTS
uses a different underlying solver, namely OPENSMT2).

a) Comparison to SMTS: It is important to note that
on this benchmark set, OPENSMT?2, the baseline solver for
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SMTS, is stronger than cvc5.% However, the best configuration
of SMT-D (64 CS-GR) improves this situation significantly,
as can be seen by the relatively larger gap between the best
configuration and the “single worker” configuration in Fig. 4.
Table I shows that overall, in terms of benchmarks solved, the
best configuration of SMT-D (64 CS-GR) solves almost the
same number of problems as the best configuration of SMTS,
despite the large difference in their base solvers. Compared
to the baseline, the best configuration of SMT-D improves the
overall PAR-2 score by 52% (for SMTS, this number is 28%)
and solves 66 more problems (compared to 20 more problems
solved by SMTS). Moreover, for the 48 QF_IDL benchmarks
and for the UNSAT benchmarks as a whole, cvc5 goes from
performing worse than SMTS when comparing baselines to
performing better when comparing the best version of each.

Although one might hope for even better scaling as the level
of parallelism increases, it is important to keep in mind that
SMT is a hard problem and is not easily parallelizable. Thus,
we don’t expect to be able to achieve linear speed-up. Rather,
we hope to solve problems beyond the scope of standalone
solvers, and indeed, we see that this is the case. In many
applications, the number of problems solved in a fixed time
matters. We can also see (Figure 5) that SMTS and SMT-D
solve a different subset of the benchmarks, so we know further
improvement is still possible.

b) Comparison to partitioning cvc5: CVCS5-P, the state-
of-the-art parallel/distributed implementation of cvc5, uses
a combination of portfolios and partitioning strategies. We
implemented and ran the hybrid multijob approach of [22]
and compared it with SMT-D. Fig. 6 and Table I show that
SMT-D is significantly more effective at utilizing 64 copies of

%0ne reason for this is that the benchmarks we are using, from [22], were
selected specifically because they are challenging for cvcS5.
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Table III: Comparison between SMT-D and Z3 on 129 bench-
marks. Entries show PAR-2 scores in thousands.

cvc5, resulting in a 52% improvement in PAR-2 score (vs 12%
improvement by CvC5-P), and in 50 more problems being
solved (159 vs 109).

D. Comparison to a Legacy Version of 73

z3 was the first SMT solver to implement a portfolio
approach with clause sharing. However, this functionality is
no longer supported in modern versions of zZ3, and the latest
release that we could find with this functionality is version 2.15
(Windows-only, from 2009). We attempted a comparison, for
completeness, but are only able to draw limited conclusions,
for various reasons, including: (¢) z3 2.15 runs on a different
operating system than our other solvers; (¢7) it crashes on any
configuration with more than eight solvers; and (¢:7) it fails
(parsing or execution) on 85 problems in our modern set of
214 benchmarks. When run on the remaining 129 SMT bench-
marks, we obtain the results shown in Table III. However, even
these results must be taken with a grain of salt, as they show
that z3 performs worse when enabling clause sharing, perhaps
because of instability of the 2.15 implementation on modern
benchmarks. Thus, while this early work in z3 was important
pioneering work, we believe that a fair comparison can only
be achieved if the sharing functionality is restored in a modern
version of Z3.

VII. CONCLUSION

SMT-D is a promising advancement in the realm of parallel,
portfolio-based SMT solving. Leveraging a hub-and-spoke



architecture with a tight CDCL(T') integration, lemma sharing,
and guided randomization, SMT-D demonstrates significant
improvements in scalability, outperforming not just sequential
cveS, but also pure portfolio (with sharing), and cvc5-p
(portfolio with partitioning). In addition, SMT-D demonstrates
more improvement from clause sharing than SMTS and an
early version of z3 and has performance that is overall
comparable with and complementary to the state of the art.

While SMT-D demonstrates solid progress in distributed
SMT solving, many opportunities for future work remain.
These include further parameter tuning, deeper integration
with the underlying SAT solver, handling internally-introduced
symbols, exploring additional sources of diversity (including
using different solvers in the portfolio, such as OPENSMT?2
or 73), exploring additional filtering and redundancy-detection
heuristics, and combining our approach with partitioning-
based parallelism. In addition, we plan to extend the imple-
mentation and evaluation of SMT-D to the full set of logics
and benchmarks in SMT-LIB.
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Abstract—Traditional implementations of strongly-typed func-
tional programming languages often miss the root cause of
type errors. As a consequence, type error messages are often
misleading and confusing - particularly for students learning
such a language. We describe Tyro, a type error localization tool
which determines the optimal source of an error for ill-typed
programs following fundamental ideas by Pavlinovic et al. : we
first translate typing constraints into SMT (Satisfiability Modulo
Theories) using an intermediate representation which is more
readable than the actual SMT encoding; during this phase we
apply a new encoding for polymorphic types. Second, we translate
our intermediate representation into an actual SMT encoding
and take advantage of recent advancements in off-the-shelf SMT
solvers to effectively find optimal error sources for ill-typed
programs. Our design maintains the separation of heuristic and
search also present in prior and similar work. In addition, our
architecture design increases modularity, re-usability, and trust
in the overall architecture using an intermediate representation
to facilitate the safe generation of the SMT encoding. We believe
this design principle will apply to many other tools that leverage
SMT solvers.

Our experimental evaluation reinforces that the SMT ap-
proach finds accurate error sources using both expert-labeled
programs and an automated method for larger-scale analysis.
Compared to prior work, Tyro lays the basis for large-scale eval-
uation of error localization techniques, which can be integrated
into programming environments and enable us to understand the
impact of precise error messages for students in practice.

I. INTRODUCTION

Many strongly typed programming languages, such as
OCaml [1], allow programmers to omit type annotations from
their code; despite these omissions, type inference automati-
cally reconstructs the types of all expressions in the program
based on the contexts in which they appear. For well-typed
programs, type inference saves the programmer much time
and effort. However, for ill-typed programs, the situation can
be exactly the opposite [2]. Type errors are discovered when
the compiler finds inconsistencies during type inference, but
figuring out root causes is much harder. The location where
compiler fails is usually not the place to fix the reported type
errors. As a result, type errors are often misleading or confus-
ing. Such errors increase debugging time for programmers. In
the case of novices, such errors discourage them from learning
the language at all [3]. Even tools designed to assist novices,
such as Helium [4], frequently produce such misleading errors.

The importance, and difficulty, of finding accurate causes
of type errors (“localization”) has a long-studied history. A
system for recording “reasons” that may explain type mis-
matches was implemented in Wand’s SPS [5] in 1986 [6].
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Improvements to Wand’s method include the recent HMY,
which turns the problem of explaining the “reasons” into a
data flow problem [7]. Other recent approaches use machine
learning techniques to localize errors [8], [9] but without any
formal guarantees.

There is also a class of techniques based on heuristic
search. Type inference is naturally expressed as a constraint-
solving problem [10], [11], [12], even for more complex
type systems, e.g. [13]. By heuristically attributing weights to
each constraint, techniques for constrained optimization can
be applied. Such techniques can involve custom frameworks
and solvers, as in Mycroft [14]; or more generalized tools such
as SMT solvers.

Our work builds on prior work using SMT solvers. Cutting-
edge SMT solvers, such as Z3 [15], are being actively devel-
oped and steadily improved. These improvements cut down on
memory usage and runtime, enabling SMT solvers to handle
increasingly large problem instances. Localization approaches
that leverage such tools therefore benefit from continuous
improvements to SMT solvers.

Pavlinovic et al. developed MinErrLoc [16], the state-of-
the-art type error localization tool based on a variant of SMT
called MaxSMT. In the case of an ill-typed program, there
is no satisfying assignment for the typechecking constraint
problem. from type inference. Instead, MinErrLoc seeks a
minimum-weight set of constraints explaining why no solution
exists. Although effective at the time of its publication, Min-
ErrLoc depends on a customized version of CVC4 [17], rather
than off-the-shelf MaxSMT solvers, and was not maintained
after its original publication in 2014. Thus, MinErrLoc suffers
from package rot and requires significant effort to run. Our
objectives were to bring the MinErrLoc approach up to modern
standards, and make it possible to leverage modern off-the-
shelf MaxSMT solvers as originally intended.

Our main contribution is a new type error localization tool,
Tyro,' inspired by the fundamental work of Pavlinovic et al.
Tyro incorporates a new encoding for constraints resulting
from polymorphic types, and is implemented with a two-stage
design. The first stage generates a human readable intermediate
representation of the typechecking constraint problem. Sepa-
rate aspects of the problem are kept apart, increasing readabil-
ity. The second stage processes the intermediate representation
into an SMT-LIB encoding [18], bringing together separate

Thttps://github.com/JK TKops/tyro
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aspects of the problem to form the encoded constraint system.
We also found that this architecture made the individual stages
easier to debug, and therefore increases trust in the overall
system. Though the intermediate representation is specific to
our system, we anticipate that the same ideas could be applied
to a wide range of systems that leverage SMT.

Our experimental evaluation expands the evaluation of the
MinErrLoc approach to a much larger dataset, Validating the
accuracy of Pavlinovic et al.’s approach, but also highlights the
need for better heuristics on some classes of programs. We
performed accuracy evaluations with a small expert-labeled
dataset, and both accuracy and performance evaluations with
a large dataset automatically extracted from student code in a
large, introductory OCaml course.

II. OVERVIEW OF THE MINERRLOC APPROACH

Since our work builds on MinErrLoc [16], a brief overview
of its key ideas is warranted.” Primarily, we review the local-
ization problem, the meaning of Pavlinovic et al.’s “minimum
error source” heuristic, and its reduction to MaxSMT.

Type errors result from (often minor) mistakes on the part
of a programmer. Correcting these mistakes will resolve the
type error. The program region containing the mistakes(s) is
called the “root cause” of the type error.

The localization problem that we aim to solve is, given
a program P that exhibits a type error, to identify the root
cause. This is an inherently ambiguous problem, because we
cannot be certain exactly what the programmer intended. The
MinErrLoc approach follows Occam’s Razor — the simplest
explanation is probably the correct one.

A. Minimum Error Sources

An “error source” is a set of program locations which
resolve the type error if removed from the program.® The root
cause of the type error must be at a subset of an error source.

Not all error sources are equally likely to contain the true
root cause, however. The MinErrLoc framework provides an
opportunity to specify a weight for every program location.
A “minimum error source” is an error source whose total
weight is minimum. The framework allows these weights to
be assigned independently of constraint generation. Locations
can also be set as “hard constraints” to tell the solver that they
should not be considered in potential error sources.

Consider this recursive OCaml program for finding the
length of a list, which contains a bug:

let rec len = function

| [1 —> 0.
| _ :: xs —> 1 + len xs

This program is ill-typed, because the first arm produces
a float, but the second arm’s use of + means it produces
an int. There is more than one way to explain this error.
One possible error source is 0., the float-valued first arm.

20verviews of OCaml’s polymorphic types and of classical type inference
for the system can be found in the Appendix.

3“Remove” here means to replace by failwith "removed". Liter-
ally deleting the location would almost always result in syntax errors.
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Replacing this with an int-valued expression would resolve the
error. Another possible error source is the use of +. Replacing
+ with a float-valued function could also resolve the error.

If we use a trivial weighting heuristic, which simply assigns
a weight of 1 to every location, then both error sources will
be minimal. However, domain knowledge might suggest that
0. is far more likely to be the true error source. A weighting
heuristic which considers the complexity of a program loca-
tion, or which penalizes function calls, might result in 0. as
the unique minimum error source.

The MinErrLoc framework ensures that the constraint gen-
eration algorithm is independent of weight assignments. This
allows the framework to be re-used with different weighting
heuristics.

B. Reduction to MaxSMT

MaxSMT is a variation of the SMT problem. Recall that
SMT may be defined as the decision problem asking whether
a set C of propositional clauses is satisfiable. MaxSMT instead
seeks a maximum subset C’ C C such that C’ is satisfiable.
Note that maximizing the size of C’ corresponds to minimizing
the size of C\ C’, which will correspond to an error source. We
may take this generalization of SMT two steps further. First,
we may include a weighting heuristic, a function w : C — N.
Rather than seeking a subset C’ of maximum size, we seek a
subset which maximizes ) __., w(c). This corresponds to the
weighting heuristic for program locations mentioned above.
Finally, we may allow some clauses to be “hard constraints,”
which must be satisfied by the assignment. The resulting
problem is known as Partial Weighted MaxSMT, but we will
call it MaxSMT for brevity.

It would be easy to translate the typing constraints directly
into MaxSMT constraints. Constraints in OCaml programs
are equality constraints between types. Equalities between
(mono)types, and the types themselves, can be encoded using
the Theory of Inductive Datatypes [19], which has been added
to the SMT standard and is supported by SMT solvers such
as Z3 [15], [18]. A datatype (“sort”) is created in SMT which
represents OCaml types. The OCaml types are then encoded
as values of this SMT datatype.

However, this encoding would not produce error sources - it
would produce sets of typing constraints. If several constraints
arise from the same program point, the solver would be
allowed to independently decide whether or not to satisfy
them. Instead, we must force the solver to decide on a location-
by-location basis. This is further complicated by the fact that
the locations are not disjoint — The location corresponding
to an expression contains all of the locations corresponding to
its subexpressions. This tree structure is known as the abstract
syntax tree, or AST, of the program.

To accomplish this, weights are associated with program lo-
cations, rather than constraints. The encoding of the constraints
into MaxSMT incorporates information about the shape of
the AST. The encoding of the shape is such that removing a
location also implicitly removes all of its children. Otherwise
we could be left with constraints to satisfy which are no longer



in the program. Our variation of the encoding is discussed in
detail below.

III. TYRO ARCHITECTURE

Tyro uses a modular, two-stage software architecture. The
stages are implemented as separate “frontend” and “encoder”
tools. The input to the frontend is an OCaml program, and the
output is an Intermediate Representation of the constraints.
The encoder accepts this IR, and outputs an SMT-LIB script,
which is then be passed to an off-the-shelf MaxSMT solver.

A. Frontend

The frontend’s job is to extract a set of typing constraints
from an OCaml program. We implemented it by modifying
EasyOCaml [20]. EasyOCaml is a tool with improved error
message quality for OCaml, and has also been modified for
constraint generation in other work [16].

First, a set of constraints are generated, including our repre-
sentation of polymorphic types. Then, the collected constraints
are encoded into the intermediate representation.

The constraint generation is a modification of existing
constraint-generation approaches [10], [13], [16]. As a re-
minder, we focus on an idealized fragment of OCaml, shown
in Figure 2.

The fragment supports variables, lambda abstraction, func-
tion application, conditionals, and local variable bindings. The
types g are the “ground types”, such as int, float, or
string. Types « represent globally unique type variables.
These variables are monomorphic - they represent a single
as-yet unknown type. Polytypes, on the other hand, may
universally quantify some or all of the variables in a monotype,
resulting in a template that can be re-used with multiple
different types.

B. Polymorphic Types

Polymorphic types are a fundamental challenge for
constraint-based type inference [10], [12]. When inferring a
type for a polymorphic binding, a set of constraints will
be generated. Some of these constraints will refer to the
polymorphic variables in the type of the binding. Whenever
the binding is used, copies of these variables are created in
a process called instantiation. Every copy of these variables
must be independent from the others. But every copy is also
subject to the same constraints as the original. The solution
taken by MinErrLoc is to also copy all of the constraints.
Our approach instead encodes these constraints as abstractions,
allowing the MaxSMT solver decide when, or indeed if, the
copies should be created.

Since constraints associated with polytypes need to be
recorded, a constraint set is attached to every polytype. “Type
schemes” are a common approach to this in constraint-based
systems [11], [13], [16]. After inferring the type for a binding
let = = e; in ey, the variable  will be added to the typing
environment. Its type will have the form:

Va.(Co = o)
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where C is the associated set of constraints, and «, is the type
variable created for e;. We write simply = : a, if & and C,
are both empty.

When z is later used, rather than create copies of the
constraints in C,, we emit an “instantiation constraint.” These

constraints are of the form x(/3), and have appeared previously
in other Hindley-Milner-style systems [11]. The constraint

() represents the entire constraint set C,[3/d]. That is,
the capture-avoiding substitution of the variables E for the
variables @ in a copy of (. Since instantiation constraints
represent a set of regular typing constraints, they can appear

wherever a set of typing constraints can appear.

C. Constraint Generation

A typing constraint in Tyro takes the form 7; =* 7. This
is a simple equality between two types, annotated with the
program location ¢ where it was created. Since we need these
locations to create the constraints, we ensure that the AST
nodes are annotated with locations as well.

Unlike MinErrLoc, our frontend does not encode the struc-
ture of the AST into the typing constraints. To improve
modularity and reusability, and to facilitate debugging, we
keep this information separate for as long as possible. This,
along with instantiation constraints, simplifies the typing rules
significantly. The rules are formulated with a similar constraint
typing relation, of the form:

Cil'te:a

C is the set of constraints which have been emitted by
inference for e. I is the typing environment in which inference
for e should occur; I" maps variable names to type schemes.
e is a program expression, and « is its inferred type.

Note that the relation always relates an expression to a type
variable. This means that we cannot infer the type int for
the expression 0 - we must instead assign a new type variable
ap and emit a constraint cog = int. This prevents a loss of
information. If we could infer the type int directly, and the
expression 0 were the root cause of the type error, there would
be no link back to this source location in the constraint set [16].
The typing rules are shown in Figure 1.

Look in particular at the rules VAR and LET, which are
the main distinction from other constraint-based systems. In
the case of variables, we look up the type scheme from the
environment. Then we create new type variables to instantiate
all variables in &. However, we do not then copy C,. Instead,
we emit an instantiation constraint (with a location annotation).
For let bindings, the difference is similar. Systems such as
MinErrLoc emit the entire constraint set C[3/@] where we
emit the instantiation constraint x(ﬁ) This instantiation con-
straint is necessary to ensure the consistency of C; - otherwise,
if all uses of x were removed from the program, all constraints
in C; would be lost [10], [16].

The constraint generator is implemented as a modification
of EasyOCaml [20]. EasyOCaml is implemented as a fork of
ocamlc, the OCaml compiler. This unfortunately pins it to a
particular version of OCaml, which is not recent. In order to
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Fig. 1: Typing rules for the OCaml fragment
Expressions ¢ : =z variable Loc Index i:=n
| v value Weight w:=n
.. Source Range ( ::= line; col — line; col
|ee application . ) ) )
. Location L :=1i/ no weight given
| if e then e else e conditional . . .
|10 w weight given
| let z=eine let binding
Constraint C ::=i71 =72 equality
Values ©v:=n integer | i z(B) instantiation
| b boolean
| \z.e abstraction Scheme S :=i x(d@) C
IR R:=LSC
Monotypes 7: =g | « | fun(r,7)
Polytypes o :: =7 | Va.o

Fig. 2: Idealized OCaml Fragment

support future work on newer versions of OCaml, we ported
just the EasyOCaml constraint generation framework to be a
stand-alone OCaml project depending on the ocaml-base-
compiler package [21]. Since this package does not include
other features of EasyOCaml, it is significantly easier to port
it to new versions of OCaml.

D. Intermediate Representation (IR)

The IR consists of three sets: a set of program source
ranges, a set of type schemes, and a set of constraints.
Program locations may optionally be annotated by weights.
Weights of zero correspond to hard constraints. Whitespace
is completely ignored. The complete expression grammar is
shown in Figure 3. In constraints, 7 refers to a monotype from
Figure 2.

The “Loc Indices” ¢ must be distinct and essentially name
the source ranges. Throughout the constraint (resp. schemes)
portion of the IR, the indices are used to encode the source
range where the constraint (resp. schemes) was created. Later,
the encoder will use the locations to embed the shape of the
AST into the encoding.
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Fig. 3: IR Grammar

Each constraint scheme S corresponds to a variable x and
its associated type scheme Va.(C, = 7). In particular, the
scheme relates the name z, the quantified variables &, and
the constraint set C,,. There is no special mention of . The
relationship between the scheme and o, is encoded in how «,
(and its instantiations) appear in the constraints. Regardless,
for human readability, Tyro always places «, at the end of a.

Every constraint is either an equality of OCaml monotypes
(which can be type variables), or an instantiation constraint.
Instantiation constraints can appear inside schemes, which
occurs whenever a polymorphic function is used within a
polymorphic definition.

Tyro generates the constraint portion of the IR from the
constraint set C of the top-level invocation of the constraint
generation routine. Schemes are accumulated on the side, and
always emitted. Location annotations are treated similarly.

The use of an intermediate representation is not necessary
to the functionality of the system. However, it offers several
advantages. Primarily, unlike the SMT encoding, the IR is
human-writable and indeed human-readable given a bit of
time. The final encoding, in contrast, is deeply nested and
littered with information about the AST structure, making it



quite difficult to read or write. Inspecting these intermediate
files was invaluable for debugging constraint generation, and
writing them by hand was further valuable for debugging the
SMT encoder. This separation makes it easier to trust the
correctness of the constraint generation and encoding steps.

Additionally, the use of an IR promoted modularity and
reusability between the components. While working on Tyro,
we were able to mix-and-match different methods of encoding
the IR, without making any changes at all to the constraint
generator. Similarly, we were able to redesign a significant
portion of the constraint generator without any fear of breaking
the encoder.

E. SMT Encoder

The SMT encoding step translates the intermediate repre-
sentation to SMT-LIB [18] code. The only extension required
to SMT-LIB 2.6 is vZ, for MaxSMT [22]. A Tyro run on the
example from Section 2.2 of [16] can be seen in Figure 4. In
particular, our SMT encoding is in Figure 4d.

Type schemes become SMT interpreted functions for the
solver to instantiate on-demand. Equality constraints on types
are encoded directly as equality constraints in the theory of
inductive datatypes, using a Type sort to represent OCaml
types. The Type sort is as described for MinErrLoc [16].

Type variables are encoded with a “-” in front of their name,
to avoid conflicts with scheme names. This serves the same
purpose as the single quote (“tick”) in OCaml source code, but
ticks are not allowed at the start of an SMT variable name.

The SMT encoding of constraints incorporates information
about the AST structure. The enumeration of source locations
is examined to recover an “AST forest.” Each interval in
the enumeration becomes a (possibly indirect) child of every
interval that contains it. The result is a forest of program
locations. In practice, this forest contains one tree for every
top-level expression or let binding or in the program.

Consider the program fragment:

let x "hi" in not x (Ex.)

There are 5 source ranges in this fragment, shown in
Figure 4b. If the MaxSMT solver decides to remove the entire
fragment (location £y, the root of the tree), then all four of
the other subfragments are necessarily removed as well. The
weight of this decision must be determined only by the weight
of location ¢y, even though all of its children are also being
removed.

Therefore, for the fragment above, we encode a constraint
C at location /3 as

by = (64 = (63 = O))

The location variables ¢; are (softly) asserted directly with
their weight. For example, with this fragment, we have

(assert-soft fy :weight 5)
(assert-soft f3 :weight 1)
(assert-soft #4 :weight 3)

The decision to remove location ¢y (by setting the SMT
variable fy to false) now carries a cost of 5. The constraint
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C would no longer be active, even if ¢35 and ¢4 were still set
to true.

All constraints are encoded in this way, starting at the root of
an AST. Paths are combined, such that all of the constraints
associated with a particular top-level statement are encoded
into a single assert form. For example, two constraints
C1, Co at location ¢4 would be represented by only one
copy of the above constraint encoding, with C' = C; A Ca.
We apply this in a nested fashion, so each assertion consists
of many nested implications and constraints. The constraints
contained in a type scheme are also encoded this way, but
are placed into an SMT “defined function” rather than using
an assert form. The assertion tree for a scheme is rooted
at the AST node which defined the scheme. In the case of
a distant reference to a let-bound variable, this ensures that
the instantiation constraint’s implied constraints are disabled
if (any parent of) the let binding is removed.*

The encoder provides MinErrLoc’s weighting heuristic as
a default if weights are not provided. Each node in the AST
forest is assigned a weight equal to the size of the sub-AST
rooted at that node. In example (Ex.) above, location 4 is
assigned weight 3, ensuring that removing location 4 is more
costly than removing both location 2 and 3 (which have a
cumulative weight of 2). In its current configuration, Tyro uses
the default weight for almost all locations.

Inspecting Figure 4c, the IR illustrates the change from
MinErrLoc’s encoding to Tyro’s: the constraint 'x
came from a let binding, and is now part of a scheme. When
the script in Figure 4d is run through Z3 [15], location ¢; is
identified as the error source.’

Taking advantage of the modularity offered by our design,
we also implemented another SMT encoding which avoids
deeply-nested implications. The shallower encoding appears
to help the SMT solver in some cases. When the minimal cost
is high, the shallower encoding can result in error sources
that are not actually minimal. Empirically, however, almost
all error sources for programs in our dataset had low costs.
The MinErrLoc artifact employs the same alternate encoding,
so we used it while evaluating Tyro.

string

F. Backend

The output of the encoder is an SMT-LIB script. The scripts
are compatible with any SMT solver that supports at least
SMT-LIB 2.6 [18] and the vZ extension for MaxSMT [22].
Tyro uses Z3 by default. The output of the SMT solver is
processed to extract the minimum error source.

1V. EVALUATION

The MinErrLoc approach was evaluated for performance
on a dataset of 356 programs collected from a programming
course [16]. We collected several thousand programs from a
programming course [23] and took a random sample of 500

“Instantiation constraints for a scheme can arise in only two cases: the
binding is local, and the reference is a child of the binding in the AST; or the
binding is top-level, and therefore the scheme’s root is also the AST root.

SThere are 3 minimal error sources for this program: {£1}, {¢2}, and {¢3}.



letf x = "nir@ in (note2 xei"’)é4

(let x = "hi" in not x)%

nhi"‘el (not X)EAL
(a) N
not2 xls
(b)
(declare-datatype Type
((string) (bool) (-> (->.1 Type) (->.2 Type))))
(declare—-const fy Bool) (assert-soft fy :weight 5)
<locations omitted> (declare-const {; Bool) (assert-soft ¢; :weight 1)
5_;(,}() { (declare-const -x0 Type) (declare-const —-12 Type)
, ) (define-fun x ((-x Type)) Bool
1 "x = string (=> Lo (=> €1 (= -x string))))
} (assert
S (=> ¢y (and (x -x0)
0 x(’x0) (=> 44 (and (= -12 (-> -x1 -14))
(=> ¥l (= =12 (-> bool bool)))
2 "12 = bool —-> bool
: o0 o0 (=> 5 (x -x1)))))))
3 x("x1) (check-sat) (get-objectives) (get-value (Lo €1 L2 l3 l4))
4 712 = 'x1l -> 14

(©

(d)

Fig. 4: A sample run of Tyro.
(a) an ill-typed program from [16] with locations annotated; (b) labeled program AST;
(c) simplified intermediate representation; (d) SMT encoding.

programs each from three different assignments for a total of
1500 programs. Programs were only selected if they could be
parsed, but did not compile. Of the 1500 programs selected,
approximately 70 contained localized errors other than type
mismatches and were discarded. As Tyro is an experiment in
delayed instantiation, we focused our evaluation on delayed
instantiation. Though constraint slicing and preemptive cutting
are shown to be both effective and simple to implement by
MinErrLoc, our evaluation of Tyro did not use them.

A. Timing

Our statistics for timing Tyro are shown in Figure 5.
Experiments were conducted on an Intel(R) Core(TM) i7-
8550U CPU with four 1.80 GHz cores. Our experiments only
used a single core for each instance of Tyro, but ran Tyro
on several programs simultaneously. Tyro was run with a 100
second timeout, which excluded a further 40 programs, all
from the same homework assignment. The statistics shown are
for the remaining 1388 programs, in a format easily compared
with MinErrLoc’s evaluation in Figure 11 of Pavlinovic et
al. [16].

We split our dataset into groups based on program length
in lines of code. The number in parentheses is the number of
programs in that group. The number of equality constraints, the
minimum error source weight, and the time to run Tyro were
recorded for each program. Note that the number of equal-
ity constraints cannot indicate how many times instantiation
constraints will cause those equality constraints to be copied;
therefore it is only a lower bound on the complexity of the
MaxSMT problem.
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In all groups, the constraint counts generated for our pro-
grams are significantly higher than those for MinErrLoc’s
evaluation. This suggests a difference in the typical structure
of the programs which makes the evaluations hard to compare.
Despite the slower processor used in our experiments and
the generally higher constraint counts, we exhibit remarkably
similar minimum and median execution times. Approximately
2.9% of programs evaluated timed out, and our maximum
execution times are similar, though again slower, to those
of MinErrLoc’s evaluation for groups with similar constraint
counts.

Our results are therefore promising. Our evaluation largely
affirms that of MinErrLoc, on a significantly larger dataset.

One potential explanation for the lack of significant im-
provement is to consider how the SMT solver proceeds with
instantiation constraints. As noted by MinErrLoc, the time
spent copying constraint sets for instantiation during constraint
generation is significant [16]. By delaying this work to the
SMT solver, we create opportunities for the solver to recognize
that an instantiation is not necessary at all. But we also risk
that the SMT solver may perform a single instantiation many
times. Given the cost of instantiations, the risks may outweigh
the benefits for the version of Z3 used. This may improve
in the future as solvers improve. We posit that SMT scripts
generated by Tyro may make good benchmarks for MaxSMT
solvers.

B. Localization Accuracy

We first took a random sample of 50 programs from our
data set and labeled the true error source by hand. 8 of the
programs were discarded because we could not decide which



Constraints Weight Time (s)
Group - . -

min | med | max | min | med | max | min | med | max

0-50 (5) | 44 63 72 1 1 3 0.02 | 0.11 | 0.16

50-100 57) | 96 276 | 990 1 2 35 | 0.08 | 0.68 | 2.93

100-150 (659) | 111 | 532 | 1741 1 2 33 | 0.09 | 2.62 | 85.18

150-200 (449) | 399 | 976 | 2341 1 3 23 | 0.84 | 17.80 | 87.86

200-250  (55) | 696 | 1463 | 2702 1 2 18 | 1.53 | 10.50 | 89.43

250-300  (13) | 633 | 1514 | 3039 1 1 6 294 | 7.58 | 86.31

300-350 (5) | 1073 | 1516 | 2690 1 2 3 8.52 | 14.10 | 50.44

Fig. 5: Statistics for Tyro execution on whole programs
Tyro | OCaml | # of outcomes OCaml report adjacent program locations (both of weight 1),
hit hit 5 neither of which are members of the true error source.® In
hit close 6 the other 41 programs, either Tyro or OCaml identify the true
hit miss 3 error source.

close hit 3 We experimented with automatic methods for evaluating
close | close 20 localization accuracy, using a similar approach to [24]. We
close | miss 1 compare the region(s) reported by localization to the region(s)
miss hit 3 that students actually modified to fix a type error. For each of
miss |_close 0 the 1388 programs in our random sample, we determined if
miss miss 1 the successive code sample from the same student compiled

Fig. 6: Accuracy on expert-labeled programs

Tyro | OCaml | # of outcomes
hit hit 430
hit close 9
hit miss 15

close hit 39

close | close 11

close miss 2

miss hit 113

miss close 3

miss miss 25

Fig. 7: Accuracy on automatically labeled programs

of several error sources were most likely. The comparison of
Tyro’s accuracy versus ocamlc’s on these programs is shown
in Figure 6. They are formatted for easy comparison to Figure
8 of the MinErrLoc analysis [16]. Regions were marked as
“hit” if they exactly matched the true error source. If the
region was close enough for a (novice) programmer to easily
understand the true problem, the region was marked as “close.”
Otherwise, it is marked “miss.”

Our expert-labeled evaluation uses a larger dataset than
MinErrLoc’s expert-labeled evaluation (40 programs versus
20) and displays almost identical proportions of outcomes.
This reaffirms the small-scale evaluation results of MinErrLoc.

We reviewed the one program where both Tyro and OCaml
missed. It is an especially tricky case where the true error
source contains two program locations, and their relationship
is partially obscured by the programmer’s mistake. Tyro and

55

successfully. We recover the regions that the student modified
using Difftastic [25], a structural differencing tool, and then
removed programs where Difftastic reported a high portion
of the file had been rewritten. In this manner, we collected
647 data points. We then classified the identified regions in
an automated manner similar to the expert-labeled evaluation.
Exact matches were marked as “hit”, other forms of (possibly
partial) overlap or shared endpoints were marked as “close”,
and anything else was marked as a “miss.” Notably, consider
an application such as £ x. If the student modified x, but the
identified region was f, these intervals are considered to share
an endpoint and are marked “close.” This situation appears to
be quite common, as does the reverse.

Unfortunately, this approach suffers from a major source of
bias: because the students fixing the program only had access
to error messages from OCaml, they were far more likely
to modify the region of code indicated by OCaml (which is
always a member of some error source). This bias is clearly
seen in the results in Figure 7.

As part of typical homework assignments in our course,
students write their own test cases. These test cases are
formatted as lists of input-output pairs. One test case was part
of the given code. For some problems, the given test case was
correct. For other problems, students were supposed to fix an
incorrect test case. We inspected a random sample of the 113
programs where Tyro missed but OCaml hit. In approximately
70% of the sampled programs, the type error was due to
malformed test cases. The students wrote several test cases
containing ints where floats were expected, or vice versa.
Because the students wrote several cases after the one given
case, the minimum error source is always the given test case.

SHowever, if both OCaml and Tyro’s reported locations are made hard
constraints, the true error source becomes a minimum error source.



But the given test case comes first, so OCaml reports the
mismatch on the cases written by the student. Tyro “misses”
for these programs because the students followed OCaml’s
advice — even when that advice was incorrect.

This demonstrates the subjectivity of the type error local-
ization problem, and provides evidence that type annotations
should be used judiciously to guide students. If a top-level
type annotation had been included for the test cases and set
as a hard location, Tyro and OCaml would both identify the
incorrect test cases.’

Considering this bias, Tyro appears remarkably accurate
despite the fact that we are using the “relatively simplistic”
weighting heuristic of AST size. This again reaffirms the
potential of the MaxSMT localization approach.

Out of the 647 programs evaluated, either Tyro or OCaml
identify the true error source in over 96% of cases. This is
similar to our observation from the expert-labeled evaluation.
Therefore, we conclude that reporting localizations from Tyro
alongside OCaml’s error report would be an effective, accurate
diagnostic for programmers.

V. RELATED WORK

MinErrLoc [16] first demonstrated that type error localiza-
tion problems can be efficiently expressed as Partial Weighted
MaxSMT problems. They recognize the issues associated with
polymorphic types, but do not simplify them. They propose
two algorithms to improve the situation: Lazy Quantifier-
Based Instantiation, and Lazy Unification-Based Instantiation.
Tyro implements Lazy Quantifier-Based Instantiation.

Other tools have also begun using (Max)SMT solvers for
type inference problems. Typpete [26] uses a MaxSMT solver
to infer type annotations to be added to Python programs.
Typpete additionally had to solve the challenge of encoding
subtyping constraints. Similar ideas were discussed in the
presentation of MinErrLoc. We believe our architecture could
be leveraged to tie these ideas together and create localization
tools for languages like Java or Haskell.

Mycroft [14] takes a different approach to localization by
heuristic minimization. Rather than reducing localization to
MaxSMT, Mycroft is a solver dedicated to minimizing error
sources in type inference problems. It is generalized over the
type system being used and requires an inference engine for
that system. The Mycroft algorithm is very similar to MaxSMT
algorithms based on “Unsatisfiable Cores” [27]. Mycroft’s
ability to use a dedicated typechecking engine means it can
avoid issues like the polymorphic constraint blowup seen in
MinErrLoc and Tyro. Unfortunately, Mycroft does not benefit
from frequent improvements to the MaxSMT state-of-the art.

Zhang and Myers have previously reduced localization
problems to finding certain types of paths in a graph [28].
They apply Bayesian methods to guess which source loca-
tion to blame for the faulty paths. This work was further
developed to support advanced type system features like type

7Such annotations are recommended by Pavlinovic et al. [16], but unfortu-
nately we did not have control over the content of the assignments.
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classes in Haskell [29] and an implementation, SHErrLoc,
is available [30]. Their graphs did not encode the “flow”
of typing information during the inference process. A recent
approach, HM!, takes inspiration from subtyping systems to
express the way that typing information flows through the
inference process [7]. Rather than heuristically producing a
localization guess, HM? error messages contain a detailed flow
diagram containing all of the source locations participating
in the error. They report that this can lead to “information
overload,” however, it is a promising new view on the problem.

VI. FUTURE WORK

We have observed several potential avenues for future work
on Tyro or other tools. The most obvious is perhaps to improve
the weighting heuristic.

While Tyro implements the Lazy Quantifier-Based Instan-
tiation proposal from [16], a unification-based algorithm was
also proposed. The proposed algorithm makes several calls
to the SMT solver, and requires changing the constraints
related to polymorphic variables on every call to the solver.
This would be a considerable challenge for the architecture
of MinErrLoc. However, because Tyro separates constraints
related to polymorphic variables from other constraints, it
seems the algorithm could be implemented on top of Tyro in a
relatively straightforward fashion, which we intend to explore
in future work.

For future work on MaxSMT solvers, we believe that
MaxSMT scripts generated by Tyro have potential as bench-
marks.

VII. CONCLUSION

Tyro is a modernization of the MinErrLoc MaxSMT ap-
proach to type error localization. Our evaluation reaffirms the
accuracy and performance potential of the approach using a
larger dataset. Our evaluation for accuracy indicates that a less
simplistic metric than AST size may perform better, at least
on student programs. Regardless, our evaluation shows that the
combination of Tyro and OCaml already exhibits an accuracy
above 96%.

Tyro’s modular design makes it easy to experiment with
modifications to various aspects of the system. Indeed, we
experimented with some variations on the AST size heuristic,
completely rewriting the constraint generation frontend, and
several SMT encodings. While incorporating lazy quantifier-
based instantiation did not immediately improve the perfor-
mance of the approach, we believe Tyro’s architecture will
allow it to serve as a testbed for future work on MaxSMT-
based localization.
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APPENDIX

A. Polymorphic Types

OCaml’s type system assigns types to all expressions, for
example an integer literal like 5 has type int. Function types
are written with an arrow, for example a fibonacci function
might have type int — int.

Consider an identity function, defined with

let id x X;;

What ought to be the type of this function? If we infer a type
like int — int (which is certainly sound), we won’t be able
to use the function with booleans, or vice versa. If we assign
it the type o« — «a, where « is a (monomorphic) type variable,
we still have a problem: we can use the function at int or at
bool, but not both. In fact, this function is frequently passed
as an argument to higher-order functions, and therefore it is
common to have it used at many different types throughout a
program.

The solution taken by “Hindley-Milner type systems” [31]
allows polymorphic types. We might express the true type of
of id as Va.a — «. Quantifying over the type variables in
a type is called generalization. Whenever the variable id is
referred by the program, a new monomorphic type variable
will be created to represent « for that specific instance, a
process called instantiation. Only values bound with a let
binding are generalized — notably, lambda abstractions are not
generalized (unless they are later bound by a let).

Polymorphic types are a major challenge for type error
localization [6], [16], in large part because the generalization
and instantiation processes make it difficult to tie a type
mismatch from outside of the definition of a let binding back
to a source in the body of the binding.
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B. Classical Type Inference

The goal of type inference is to assign a type to every
(sub)expression in the program, thereby ensuring that the
program is type-safe, but without requiring any annotations
from the programmer.

The classical type inference algorithm described in [31]
proceeds via structural recursion on the program AST. Each
node of the AST corresponds to a (sub)expression of the
program. We use the kind of each subexpression to infer
the “shape” of its type — lambda abstractions must have
a function type, boolean literals must have the bool type,
etc. Any unknown information in the inferred shape, such
as the input and output types of a function type, are filled
with (monomorphic) type variables. When these type variables
correspond to the type of a named program variable, this
relationship is stored in a context.

As we recurse through the AST, we may discover relation-
ships between some of the inferred shapes. For example, when
a lambda abstraction is applied to an expression e, we learn
that the abstraction’s input type must match the type of e. We
use this information to refine the type variables in both types
through a process called unification. Unification “solves for”
some or all of the type variables in both types.

A second approach to refining types is to store all of
the discovered relationships as typing constraints [10]. These
constraints can be generated for the whole program, and then
later fed into a constraint solver all at once. We must use such
a constraint-based algorithm; see Section II-A for why.
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Abstract—SMT solvers provide powerful proof automation for
program verification. However, relying on SMT solvers also leads
to proof instability, where a previously successful proof may fail
after the developer makes trivial modifications to the source
program. Such instability is a major headache for developers,
but the causes and potential mitigations for it have received
limited attention. In this study, we find that irrelevant query
context accounts for 78% of the instability in existing program-
verification query sets. As a result, we design SHAKE, a novel
technique that leverages the structure in program-verification
SMT queries in order to filter out irrelevant context from such
queries. SHAKE is the first SMT-level technique that targets
instability, and we implement it as a pre-processing step for SMT
solvers. We evaluate SHAKE on real-world, large-scale query sets,
and we find that it leads to large reduction in context and a 29%
and 41% improvement in query stability on Z3 and cvc5, with
minor performance overhead.

I. INTRODUCTION

Satisfiability Modulo Theories (SMT) solvers play a crucial
role in automated program verification, since verification-
oriented languages (e.g., Dafny [1] or F* [2]) often translate
program source code and specifications into verification condi-
tions [3], [4] that they encode as SMT queries [5]. Essentially,
each SMT query states that the code adheres to its specifications,
and the SMT solver (e.g., Z3 [6] or cvc5 [7]) checks if this
statement holds. The solvers obviate many manual proof steps,
simplifying the verification of large code bases [8]-[14].

Unfortunately, SMT-based program verification is not nec-
essarily robust. Notably, the approach is susceptible to proof
instability [15], where trivial changes to the program cause
spurious verification failures. For instance, the SMT solver may
reject a previously-verified program after the developer renames
a variable, even though the program’s semantics clearly did
not change. Faced with such a proof failure, the developer
may need to tediously provide manual proof steps to guide the
solver back on track [16], which arguably defeats the purpose
of automation. To the frustration of practitioners, instability has
been a long-standing problem [15], [17]-[23]. While instability
is pervasive in practice [15], its causes remain understudied, let
alone its mitigation. Existing literature has pointed at several
potential culprits [18]-[20], but these claims are anecdotal and
lack quantitative evidence.

In this work, we explore the problem quantitatively and find
that irrelevant query context is a major contributor to instability.
Our experiments on unsatisfiable cores from a large-scale
program-verification query set discover that typically 96%—99%
of the assertions in a query do not remain in the unsatisfiable

d https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_12

core—they are irrelevant to verification. More importantly,
irrelevant assertions account for 78% of the observed unstable
instances ($III).

Motivated by the findings, we propose a novel SMT context-
pruning technique, named SHAKE, to improve stability. We
base SHAKE on the insight that program-verification tasks
are typically automated theorem proving (ATP) [24] tasks,
meaning that the verification queries are each composed of a
goal assertion along with axiom assertions. SHAKE triages the
axioms with respect to the goal and prunes the less relevant
axioms.

While SMT solvers are built for constraint-solving, adopting
a theorem-proving perspective helps improve stability. We
implement SHAKE as a preprocessor, and evaluate it on
large-scale program-verification query sets from the Mariposa
study [15]. We find that SHAKE typically reduces the context
by 3-10x. Moreover, we show that SHAKE can mitigate
instability on Z3 by 29% and on cvc5 by 41%. SHAKE imposes
little runtime overhead, even improving the number of solved
instances on cvc5 by 73% in one benchmark and 8% overall.

In summary, we make the following contributions.

« We empirically show that irrelevant context is a major

source of instability in program-verification queries.

o We propose a novel pruning technique, SHAKE, based on

a theorem-proving view of program verification.

o We show that SHAKE reduces instability by 29%-41%

on existing query sets, with only minor overhead.

To facilitate research on context pruning and instability
mitigation, our source code and query sets are all available at
https://github.com/secure-foundations/mariposa.

II. BACKGROUND

Formal verification provides strong guarantees about program
properties such as security and functional correctness. In recent
years, academia has made notable progress in verifying large-
scale systems [8]-[14], [25]-[28]. Industry has also adopted
verification in certain mission-critical scenarios [29]-[31].
In particular, automated verification languages have gained
popularity, exemplified by Dafny and F*, which are maintained
by Amazon Web Services and Microsoft Research respectively.

These automated verification languages are powered by SMT
solvers. Typically, a language’s verification condition generator
(VCG) encodes the source program into a logical formula,
which states that the program’s specification holds; i.e., the
program is correct. If the SMT solver reports the negation of

This article is licensed under a Creative
BY Commons Attribution 4.0 International License
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the formula to be unsatisfiable, the program’s specification is
never violated, and thus the program verifies. However, since
program properties are generally undecidable, the solver cannot
guarantee that it will verify every correct program.

This incompleteness then leads to the phenomenon of proof
instability, where a previously successful verification spuriously
fails after trivial modifications to the source program. This
happens because source-level changes obligate the VCG to
create a new query for the SMT solver. Due to incompleteness,
the solver may succeed on an old version of the query but
may fail on the new one, even if the queries are semantically
equivalent.

Instability is a major headache for developers. For indi-
viduals, it disrupts their incremental development process by
diverting them from their main development tasks. For teams,
instability is even more problematic, as instability may only
appear when concurrent changes to the source code are merged.

In light of this problem, the Mariposa project [15] aims to
quantify instability in SMT-based program verification. For a
given SMT query-solver pair (g, s), the Mariposa tool outputs
a stability category: stable, unstable, or unsolvable.
In some cases the status may be inconclusive, which
indicates that Mariposa does not have sufficient statistical power
to confidently assign a category.

The Mariposa tool derives the stability status from the
performance of s on ¢’s mutants, which are semantically
equivalent to g. Specifically, Mariposa creates the mutants
by shuffling the assertions or renaming the symbols in g, as
well as by reseeding the random number generator in s.

The Mariposa project experimented with large-scale program
verification query sets. For this study, we use the Mariposa
methodology to measure instability, and we also conduct our
experiments on the Mariposa query sets. We exclude one query
set, Komodog, from our study, which we discuss in §VIL

III. QUERY CONTEXT

In this section, we study the connection between query
context and stability. We abstract an SMT query’s context as a
set of assertions, each introducing a constraint to the query. We
then analyze each query’s unsatisfiable core. Upon reaching an
unsat result, the solver produces a core, which is a subset of
the original assertions that the solver used to derive the unsat
result. Thus, the solver-produced core serves as an oracle of
relevant assertions, and what is excluded from the core can be
considered irrelevant.

In §III-A, we describe our method to obtain unsat cores.
In §III-B, we show that often only a tiny fraction of the
assertions are relevant to verification success. In $III-C, we
show that irrelevant context can be a major source of proof
instability. In §III-D, we present a simple theorem-proving
view of the query context and discuss how that view can help
cut down on irrelevant assertions to improve stability.

A. Export the Unsatisfiable Core

In theory, we can export an unsat core by enabling an
SMT solver’s produce-unsat-cores option. In reality,
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obtaining an unsat core can sometimes be non-trivial, especially
on unstable queries. Though uncommon, two types of problems
may occur, so we document our workarounds here.

Unsuccessful Export. The solver might not be able to
produce a core. There can be several reasons. First, the solver
behaves differently depending on whether the core is requested
or not. We have observed cases in which the solver returns
unsat on a query, but returns unknown when core production
is enabled. Second, the query itself might be unstable, meaning
that the original query may fail, but some mutants of it
may succeed. Third, a query might be completely unsolvable
(regardless of mutations) with a particular solver version, but
solvable with another.

In these cases, we perform Mariposa-style mutations to the
query, attempting to obtain a core from any of the mutants.
We then map the core from a successful mutant back to a core
of the original query. If necessary, we also try the core export
using different versions of the solver.

Incomplete Core. The solver might also produce a core
query that is incomplete. Specifically, the solver might return
unsat on the original query and successfully produce a core
query; however, when given the core query, the solver fails
to produce unsat, even with mutations applied to the core.
This could be due to certain assertions that are necessary to
the proof but missing in the core. Note that incompleteness
here is not a strictly formal notion, since we do not have a
ground truth for necessity.

When this happens, we apply a best-effort search to repair
the core by adding assertions back to the core query, performing
a bisection search to find a small addition of assertions that
make the solver return unsat on the core. In practice, we
find the incompleteness problem to occur more often with F*
queries (~ 8%), and the core is typically only “missing” a
small number (< 5) of assertions.

In summary, if the two issues above occur, we make a best-
effort attempt to find a core query such that: its assertions form
a subset of the original’s, and it is sufficient for the solver
to show unsat. We are successful in these attempts for all
but a small fraction of the original queries. In that remaining
fraction, we use the original query as the core query.

B. Most of the Context is Irrelevant

After acquiring an unsat core, we compare its context to
the original. As shown in Figure 1, the original query context
typically contains thousands of assertions. Using the assertion
count as a proxy for the “size” of the context, we examine the
relevance ratio:

# core assertions
x 100%

# original assertions

Since an unsat core is a subset of the original query, the lower
this ratio is, the less context is retained, and the more irrelevant
context the original query has.

Figure 2 shows the CDFs of the relevance ratios for different
projects. For example, on the left side lies the line for DICE%.
The median relevance ratio (MRR) is 0.06%, meaning that
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Fig. 1. Original Query Assertion Count. More to the right means larger
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Fig. 2. Original Query Context Relevance. More to the left means more
irrelevant contexts. Typically, the vast majority of an original query context is
irrelevant.

for a typical query in the project, only 0.06% of the context
is relevant. In vWasmp, the MRR is 3.76%, which is almost
an of order of magnitude higher than the other projects. We
attribute this to the manual context tuning by the authors of
vWasmp, who explicitly documented the tedious effort [14],
[15]. Nevertheless, if we consider the complement of the
relevance ratio, typically 96.23-99.94% of the context is
irrelevant, even considering vWasmp.

C. Irrelevant Context Harms Stability

Given the significant amount of irrelevant context, we
further analyze how that impacts stability. Here we compare
and contrast the stability of the original queries and their
cores. Recall the Mariposa stability status for a query-solver
pair can be one of unsolvable, unstable, stable, or
inconclusive. Given an original query ¢ and its core q.,
we introduce the following two metrics:

« Preservation: given that ¢ is stable, the probability
that g. remains stable.

« Mitigation: given that ¢ is unstable, the probability
that ¢. becomes stable.

We use the Mariposa tool [32] with Z3 version 4.12.5 in this
experiment. In Figure 3, we list the number of original queries
and the scores for solver-produced core. As an example, in
the original Komodop queries, 1,914 are stable and 93 are
unstable. In its core counterpart, 99.4% of the stable queries
remain stable, while 90.3% of the unstable ones become stable.
vWasmp is the only case where the core has no mitigation
effect. However, its original queries are rarely unstable. As
we noted previously, vWasmp also starts with more relevant
original context. Therefore, the stability of vWasmp can be
explained by the manual tuning done by the original developers.

Project Original Solver-Produced Core
Stable  Unstable Preservation Mitigation
Komodop 1,914 93 99.4% 90.3%
VeriBetrKV p 4,983 172 99.5% 64.5%
VeriBetrKV 4,999 256 99.6% 83.6%
DICE} 1,483 20 99.6% 90.0%
vWasmpg 1,731 4 99.7% 0.0%
Overall 15,110 545 99.5% 78.3%

Fig. 3. Stability of Core Queries. Typically an unsat core preserves the
stability of the original query, and it mitigates instability in 78.3% of the
unstable queries.

Generally, the solver-produced unsat core is highly likely to
preserve query stability. Moreover, across all projects, 78.3%
of the unstable instances can be mitigated by using the core.
In other words, irrelevant context is a major contributor to
instability. This result suggests a promising mitigation strategy
of pruning irrelevant assertions. In the next section, we discuss
the composition of query context and how it can inform context
pruning.

D. Context Pruning is Axiom Selection

In §II, we offered an overview of the verification condition
generator (VCG) in automated verification languages. Here we
give a more formal treatment on how a VCG constructs the
query context, along with an intuitive view of the query as a
theorem-proving task and context pruning as axiom selection.

The VCG typically creates an SMT query per procedure’
under verification. Given a procedure P, the VCG encodes
a verification goal v, which is a formula stating that P is
correct. = is then placed into the query as an assertion. In
practice, the goal ) is rarely self-contained, since P usually
refers to other procedures or relies on language-level axioms.
The VCG also includes these dependencies in the query. As a
result, the query context is a constraint set I' = {—} UT 4,
where I'y = {1, ..., o, } is a set of axioms.

The standard semantics of an SMT query is the satisfiability
of the constraint set I'. We can interpret the query as checking
the validity of I' - false, which is equivalent to I'4 F 1.

'We generically refer to a function-like construct with pre/post-conditions
as a procedure. It can be a function, method, lemma, etc.
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Intuitively, this is a theorem-proving task, where the axioms
in "4 are given to prove the verification goal .

Through this view, the context pruning problem becomes
an axiom selection problem, in which we choose a subset
of axioms I'r C T'4 s.t. I'r - 9. The SMT solver usually
takes the constraint-solving view of the query, where the
relevance of an assertion is determined by its contribution to
the unsatisfiability. As it turns out, the solver can also benefit
from this theorem-proving perspective, where we define the
relevance of the axiom assertions with respect to the goal.

IV. SHAKE

In this section, we introduce SHAKE, a pruning technique
for SMT queries produced during program verification. At a
high level, SHAKE takes a query as input and computes the
distance from each axiom to the goal, indicating the relevance.
More formally, the input to SHAKE is a set of constraints
' = {po, ..., pn}. For convenience, let ¢q = —), where 1)
is the verification goal, while 1, ..., ¢, are the axioms. The
output of SHAKE is thus a map of distances:

dists = {(¢0 : 0), ..., (pn : dn)}

where the goal is at 0. SHAKE then prunes the axioms based
on their distances. We first introduce a naive version of SHAKE,
then progressively improve upon the design.

A. The Naive SHAKE Algorithm

In this version of SHAKE, we abstract a formula ¢ via the set
of query-defined symbols it contains, denoted as SYMBOLS(¢).
More precisely, the symbols are the functions, constants, and
datatypes introduced by the query, excluding sorts, local vari-
ables, and built-in SMT-LIB functions: intuitively, ubiquitous
functions like < or not do not convey much information.

Alg. 1 shows the naive SHAKE algorithm. We first initialize
a context symbol set S, from the goal. We then select all
axioms ¢; such that SYMBOLS((p;) intersects with S, on
the theory that intersection conveys relevance. After scanning
through all axioms in this round, we augment S.;, with the
symbols from the selected axioms. The update is delayed until
the end of the round, so S, remains the same during this
scan. Otherwise, the scan order would affect the content of
Sz, introducing a form of instability.

Applying this process repeatedly scores the distance of an
axiom ¢; based on the round in which SymBoLs((p;) first
intersects with S.;,. The outer iteration continues until we
reach a fixed point. When there are unreachable axioms at the
end, they are assigned a distance of round count plus one.

In practice, we find that naive SHAKE typically terminates
after very few iterations, giving little differentiation between
axioms. The problem arises because naive SHAKE is too eager
in its expansion. Since we use symbol sets to abstract away
formulas, a single complex axiom with a large symbol set
can easily saturate S, ending the process quickly. In light
of this problem, we refine the formula abstraction to handle
quantifiers, which SHAKE expands lazily.
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Algorithm 1 Naive SHAKE

procedure NAIVESHAKE(I' = {po, ..., pn})
# assuming g is the goal
Sctz < SYMBOLS(¢0)
dists, round < {(¢o : 0)},1
repeat
acc <
for ¢; € I' do
if Sz N SYMBOLS(ip;) # 0 then
# check if ¢; has been assigned a distance
if ¢; € UNREACHED(dists, ") then
dists < dists U {(p; : round)}
acc < acc U SYMBOLS(;)
# update the symbol set after considering all ¢;
Scte < acc U Seig
round < round + 1
until ISFIXEDPOINT(dists)
max_dist < round + 1
for ¢; € UNREACHED(dists,I") do
# assign maximum distance to unreachable axioms
dists < dists U {(p; : maz_dist)}

return dists

(declare-fun foo (Int) Int)
(declare-fun bar (Int) Int)
(declare—-fun qux (Int) Int)
(assert (forall ((x Int))
(! (< (foo x) (bar (qux x)))
:pattern ((foo x))
:pattern ((bar x)))))

Fig. 4. Example SMT Assertion with Pattern. The patterns are hints to
the solver on when to instantiate the quantifier. In this example, either the
pattern (foo x) or the pattern (bar x) should be matched.

B. SHAKE with Quantifiers

In the queries we study, quantifiers often come with pat-
terns [33], [34]. Patterns are syntactic hints to the solver as to
when a quantifier should be instantiated; if the patterns are not
matched, the quantified body remains hidden. In this version
of SHAKE, we use the available patterns to refine the notion
of relevance for formulas.

In this version, we construct a formula state for a given
formula ¢. We denote this via INITFSTATE(¢), which augments
¢ with two fields:

o @.Syisible: the set of symbols in ¢ not under any quantifier.

e ¢.gstates: a list of quantifier states, constructed only
from the outermost quantifiers in ¢. The construction via
INITQSTATE is lazy, meaning that any nested quantifiers
are hidden under the outermost quantifier states.

Given a quantified formula w, INITQSTATE(w) creates a quan-
tifier state containing w and two additional fields:

e w.patterns: a list of symbol sets from the patterns.

o W.Ohidden: the quantified body, which remains uninitial-
ized until expanded, including any nested quantifiers it
may contain.

For example, in Figure 4, the list of pattern symbol sets is
[{bar}, {foo}], and the hidden body is the formula (< (foo

x) (bar (qux x))).



SHAKE is lazy when determining the relevance of a quantifier
state, reflected in the TRYEXPAND procedure. Given a symbol
set S, if none of the w.patterns is a subset of S, the quantifier
is irrelevant, and ¢p;g4en remains unexpanded (i.e., SHAKE
ignores the symbols it contains). The subset condition is
necessary because for an actual instantiation, all the symbols
in a specific pattern must be present in S. Upon a match,
TRYEXPAND creates a new formula state from its hidden body
Ohidden- We note that the quantifier is only expanded by one
level of nesting via INITFSTATE.

procedure TRYEXPAND(w, Sctz)
relevant < false
# subset check needed to check for pattern match
for S € w.patterns do
if S C S, then
relevant < true
if relevant then
# create a new formula state from the hidden body
INITFSTATE(wW. Pridden )
return SOME (w.@hidden)

return NONE

SHAKE checks the relevance of a formula state ¢ as
follows. Given a symbol set S, ¢ is relevant if ¢.Sy;sbie
intersects with S, or if any of the ¢.¢states is considered
relevant. When SHAKE expands a quantifier state, the resultant
formula state is merged into ¢. This process is reflected in the
FORMULARELEVANT procedure below.

procedure FORMULARELEVANT(, Sctz)
gstates’ <+ []
relevant < Seciz N . Syisivie 7 0
for w € p.qstates do
r < TRYEXPAND(w, Sctz)

# expansion may create a new formula state @nidden
if SOME(qb}“'dden) = r then
# a trigger matches; merge @nigden With

gstates’ < qstates’ + Pnidden.qstates
§0~Svisible — L,D‘Sm’sible U ¢hidden~5visible
relevant < true
else
# no match; no new formula state created
gstates’ < gstates’ + [w] # keep the quantifier state
@.qstates < gstates’
return relevant

The main procedure for this version of SHAKE is shown in
Alg. 2. Its structure is almost identical to the naive version,
but it uses FORMULARELEVANT to determine the relevance of
each axiom in the context. A more subtle detail is that SHAKE
must revisit all of the axioms in each round, as an axiom’s
nested quantifiers may be expanded in later rounds. Moreover,

the formula state from the goal ¢ is also part of the main loop.

This way the quantifiers in the goal are also lazily expanded.

C. SHAKE with Frequent Symbols

Thus far we have used the symbol set abstraction introduced
in §IV-A, where we exclude certain basic symbols, such as
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Algorithm 2 Refined SHAKE with Quantifiers

procedure QUANTIFIERSHAKE(I' = {poq, ..., n})
for p; €I do
# create the formula state
INITFSTATE(QDZ')
# assuming g is the goal
Sctz’ — @OASvisible
dists, round < {(¢o : 0)},1
repeat
acc <
for p; €I do
Sprev — S0i~Sviszble
# possibly expand quantifiers
if FORMULARELEVANT(;, S¢t;) then
if ¢; € UNREACHED(dists, ") then
dists < dists U {(p; : round)}
# update with previous symbols in ¢;
acc < acc U Sprey
Sctz + acc U Sci
round < round + 1
until ISFIXEDPOINT(dists)
maz_dist < round + 1
for p; € UNREACHED(dists,I") do
dists + dists U {(p; : maz_dist)}

return dists

the built-in SMT-LIB functions, based on the intuition that
such prevalent symbols provide little indication of relevance.
We now further refine the symbol-set abstraction to reflect this
intuition.

In some verification languages, the SMT encoding uses
certain symbols pervasively. For example, the function symbol
ApplyTT is ubiquitous in F* queries. This is expected, as
F* is based on dependent types, where terms are proofs, and
ApplyTT represents term application. However, symbols like
ApplyTT cause SHAKE to quickly saturate, absorbing many
axioms when added to the reached symbol set.

To address this issue, we propose a simple heuristic. We
define the frequency of a symbol z to be the ratio of formulas
in ' = {¢o, ..., n } containing x in their symbol set:

~ Hei | pi €T A€ SYMBOLS(;) }|
B IT|

freq(z)

Given a threshold 6, SHAKE excludes all symbols x such that
freq(x) > 6, treating them as if they were built-in functions. As
a side note, this idea is related to inverse document frequency
in information retrieval [35]. This simple approach improves
pruning on certain F* queries, as we show in the evaluation.

D. SHAKE with Distance Limit

SHAKE is similar to iterative deepening [36] in spirit.
However, SHAKE does not explicitly or implicitly construct a
graph. Instead, SHAKE creates “layers” of axioms at different
distances. By default, SHAKE runs until a fixed point, dropping
axioms that are unreachable at the last layer.

SHAKE’s complexity is therefore O(DN), where D is the
maximum distance and NV is the number of axioms. In practice,
our evaluation shows that D is almost always a constant <



20, while N can be in the thousands, as shown in Figure 1.
SHAKE’s approach improves efficiency, since a graph-based
approach would take O(N?) time just to construct the graph.

Stopping SHAKE early can also be useful: by setting a
distance limit, SHAKE potentially prunes even more irrelevant
axioms. However, the other side of the coin is that a shallow
distance limit may miss out on relevant axioms that are
necessary to the goal.

The choice of distance limit thus appears to present a
dilemma. However, we argue that SHAKE can leverage an unsat
core as an oracle for nearly-optimal distance: since our main
goal is to improve stability, we assume that an initial version
of procedure P verifies, and a subsequent version P’ may fail
due to minor changes. Therefore, we can use the distance limit
from the unsat core of P to inform the subsequent runs of P’.

In practice, we envision saving SHAKE’s distance limit
with source-level annotations. For example, in Dafny, a
commonly used attribute is { :timeLimit N}, which allows
the user to provide a procedure-specific time limit, overriding
the default. Related attributes include {:rlimit N} and
{:timeLimitMultiplier X}, which are also solver con-
figurations. Similar annotations also exist in languages like F*
and Verus [37].

SHAKE can be configured in a similar way, where the
distance value is a procedure attribute. With a fresh procedure
(query), the attribute is not present yet, and the solver runs as
normal. If verification succeeds, we store the maximum core
distance as an attribute. The next time the same procedure
is verified, SHAKE uses the stored distance limit and prunes
the context accordingly. Small changes in the procedure (e.g.,
renaming a variable) will have no impact on SHAKE’s layering,
and the stored limit should still work.

V. EVALUATION

In this section, we evaluate the effectiveness of SHAKE.
We describe the experimental setup in §V-A. We show the
distribution of distance values produced by SHAKE in §V-B.
We then evaluate SHAKE’s improvement of context relevance
in §V-C and stability in §V-D. We further assess the impact
of ignoring frequent symbols in §V-E. Lastly, in §V-F, we
evaluate SHAKE’s impact on solving performance in terms of
run time and number of queries solved.

A. Experimental Setup

In the evaluation, we run SHAKE in two different modes.

o Default Mode: SHAKE computes the distances and then
prunes the unreachable axioms, i.e., axioms in the last
layer discussed in §IV-A.

o Oracle Mode: We obtain an “ideal” distance by employ-
ing the unsat core as an oracle. We then use SHAKE to
prune axioms beyond the oracle distance.

To evaluate stability, we use SHAKE’s oracle mode. As
discussed in §IV-D, to counter instability, we assume a prior
working version of the query that produces a core, from which
we obtain the oracle distance.
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To evaluate standard solving performance overhead, i.e.,
without any query mutation, we use the oracle mode along
with the default mode. This provides a best-case and worst-case
comparison for SHAKE’s performance impact as a preprocessor.

By default, SHAKE does not ignore any query-defined sym-
bols based on their frequencies (§IV-C). We only experiment
with frequency configuration in §V-E.

We use the default settings for Mariposa [32], including a
time limit of 60 seconds for each query. We experiment with
recent versions of two SMT solvers, Z3 version 4.12.5 and
cveS version 1.1.1. We conduct our experiments on machines
with an Intel Core 19-9900K (max 5.00 GHz) CPU, 128 GB
of RAM, and the Ubuntu 20.04.3 LTS operating system.

B. Distribution of SHAKE Distances

First, we evaluate how well SHAKE distances reflect the
relevance of axioms. Recall that for an original query I' =
{©0, ---son}, SHAKE computes the distances:

dists = {(@O : d0>7 sy (‘pn : dn)}

Let I'. C T be the core provided by the solver. We can then
determine the maximum distances for the original query and
the core:

dom‘g = max(di | ((Pi : dl) S F)
deore = max(di | (QDZ : dz) € FC)

Intuitively, if dorig > dcore, then SHAKE is able to
differentiate between core and non-core axioms: the more
significant the difference is, the more we can safely prune
layers in between with no loss of core axioms.

As shown in Figure 5-Figure 9, the maximum distances are
upper-bounded by 20 for all queries from the five projects
in this study. Moreover, there is usually a clear difference
between d,rig and deor.. As an example, Figure 5 shows
the distributions from Komodop. Note the strong separation
between the two: the median d.,,. is 2, while the median
dorig 1s 8. Moreover, the distribution of the dcor. is light-
tailed, where a distance of 3 covers almost the entirety of the
query set.
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Fig. 5. Maximum SHAKE Distances for Komodop. There is a clear
separation between the distance values of core axioms versus original axioms.

However, in Figure 9, we observe that vWasmp is a bit of
an outlier (again). As we discussed in §III-C, the vWasmp



query set starts off with much higher context relevance; thus
we do not expect much room for differentiation using SHAKE’s

distance.
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Fig. 6. Maximum SHAKE Distances for VeriBetrKV, .
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Fig. 7. Maximum SHAKE Distances for VeriBetrKV .

100
90 1
80 1
70
60
50 1
40 A
30 1
20 1
10 1

0

Core
Original

CDF (%)

6 78 91011121314151617181920
Maximum Shake Distance

012345

Fig. 8. Maximum SHAKE Distances for DICE7..

100

Core

—— Original

CDF (%)

6 7 8 910111213141516171819
Maximum Shake Distance

o A
[
-
ot

Fig. 9. Maximum SHAKE Distances for vWasmpr.

C. Context Relevance Ratio

Now that we have demonstrated that SHAKE differentiates
core and non-core axioms, we evaluate how much context
pruning SHAKE enables. Since our main goal is to mitigate

instability, we run SHAKE in oracle mode. As in §III-B, we
compute the relevance ratio of the pruned query:

# i 1
core axioms + « 100%

# axioms after pruning + 1

In Figure 10, we present the relevance ratios that SHAKE
achieves. We see significant improvements over the original
queries as shown in Figure 2. For example, in VeriBetrKV,
the median relevance ratio (MRR) is 0.32% in the original
queries, while the MRR increases to 3.46% with oracle SHAKE.
Overall, SHAKE improves the MRR by 3-10x. We note the
intersection on the right side of the plot, where the relevance
ratio is 100%. In those cases, SHAKE matches the unsat core
when only given the oracle distance.
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Fig. 10. Oracle SHAKE Query Context Relevance. Oracle SHAKE shows
improvement of context relevance over Figure 2 by 3—-10X.

D. Stability Improvement

Next, we evaluate if the improved context relevance translates
into improved stability. We assess stability in the same way as in
the unsat core experiments in §1II-C, both from a preservation
and mitigation perspective.

In Figure 11, we report the stability scores for oracle SHAKE
on Z3 version 4.12.5. We include all of the unstable queries
found in the original Mariposa query set (just as we did
in Figure 3), and then we sample roughly the same number of
stable queries (110 from each project). We observe that SHAKE
generally preserves stability, and achieves reasonable success
mitigating instability, with an overall mitigation score of 29.7%.
We also see that the naive SHAKE from §IV-A performs much
worse, achieving an overall mitigation score of only 11%.

We observe that DICE% sees much less mitigation. We
attribute this to F*’s pervasive use of certain function symbols
(such as ApplyTT) in its query encoding. In §V-E, we evaluate
the effectiveness of suppressing such symbols based on their
frequency. We also observe that SHAKE does not help with
the unstable queries in vWasmp. Since the unsat core is not
effective on vWasmp, this is unsurprising.

To further validate the stability improvement, we also
evaluate SHAKE with cvc5 version 1.1.1. However, cvcS
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Project Original Count Oracle Naive SHAKE Oracle SHAKE
Stable Unstable Preservation Mitigation Preservation Mitigation
Komodop 110 93 99.1% 7.5% 100.0% 25.8%
VeriBetrKV p 110 172 100.0% 12.2% 98.2% 23.3%
VeriBetrKV, 110 256 100.0% 11.7% 100.0% 37.9%
DICE%: 110 20 100.0% 10.0% 100.0% 5.0%
vWasmp 110 4 100.0% 0.0% 96.4% 0.0%
Overall 550 545 99.8% 11.0% 98.9% 29.7%

Fig. 11. Oracle SHAKE Query Stability on Z3 4.12.5. We include oracle naive SHAKE (middle column) from §IV-A for comparison. Oracle SHAKE, which
employs the quantifier handling strategy from §IV-B, shows similar preservation, but stronger mitigation results.

is known to not work well with queries from Dafny and
F*, as acknowledged by cvc5’s developers [15]. In fact, to
make this evaluation possible, we had to first syntactically
transform the queries into a format cvcS could parse. Even
then, cvcS times out on many of the original queries (whereas
73 succeeds for nearly all of them). Hence, we only evaluate
the stability of original queries that do not timeout with cvc5.
This necessarily introduces bias in the resulting query sample,
so the stabilization results from Z3 and cvc5 should not be
directly compared.

With that caveat in mind, we present the stability scores for
oracle SHAKE on cvc5 in Figure 12. Generally, the preservation
scores are quite strong. The overall mitigation score of 41.3%
is promising as well.

Project Original Count Oracle SHAKE
Stable Unstable Preservation Mitigation
Komodop 110 36 100.0% 41.7%
VeriBetrKV p 110 143 94.5% 48.3%
VeriBetrKV 110 210 100.0% 37.1%
DICE} 110 17 100.0% 100.0%
vWasmp 110 27 99.1% 0.0%
Overall 550 433 98.7% 41.3%

Fig. 12. Oracle SHAKE Query Stability on cve5 1.1.1.

E. Frequency Configuration

As discussed in §IV-C, SHAKE can optionally take in a
threshold 6 and ignore any symbol z such that freg(xz) > 6.
We now evaluate if this configuration can help with stability.
Intuitively, if 6 is set properly, SHAKE can ignore trivial
matches due to pervasively used symbols. However, if 8 is too
low, SHAKE may not reach axioms that are actually relevant,
e.g., the ones in the core.

We continue to use the oracle mode for this experiment.
Recall that SHAKE assigns the unreachable axioms to the max-
imum distance. When core axioms end up being unreachable,
oracle SHAKE cannot safely prune any axioms, since this could
introduce incompleteness. Therefore, in addition to the mean
relevance ratio (MRR), we also report the fallback rate (FR),
which is the percentage of queries where oracle SHAKE cannot
prune any axioms.

First, we discuss the choice of 6 with an experiment on
query relevance. # = 1.00 means no symbols are pruned based

on frequency. In Figure 13, we observe that there is a trade-off
between the relevance ratio and the fallback rate. For example,
in Komodop, 6 = 0.15 achieves the highest MRR, but also has
the highest FR. In vWasmp, since the context starts with high
MRR, lower 6 values only increase FR. In general, § = 1.00
(no frequency pruning) tends to balance the two metrics.

Orig. 0—100 0—=030 0=0.15

Komod MRR 057 1.74 1.74 2.40
omodon FR - 0.39 6.08 13.14
. MRR 033 3.8 3.35 251
VeriBetrKV p FR - 1.45 5.74 28.49
. MRR 032 3.46 3.59 3.03
VeriBetrKV, FR - 1.42 5.45 15.91
R MRR  0.06 021 032 0.88
DICEF FR - 4.44 5.90 7.10
W MRR  3.76 15.74 16.0 16.22
vwasme FR - 5.99 6.11 12.51

Fig. 13. Oracle SHAKE Context Relevance with Frequency Configuration.
Higher MRR means more relevant context. Higher FR means more queries
for which oracle SHAKE does not prune any axioms.

However, for DICE*., the results indicate that 6 = 0.15 is
a promising setting, since the MRR is increased by 4x with
respect to § = 1.00, while sacrificing three percentage points
of FR. We test the stability of using § = 0.15 on DICE}, with
73 and find that it improves stability by 6 x compared to oracle
SHAKE with 6 = 1.00.

F. Solving Performance Impact

Proof instability is a pernicious problem in program ver-
ification, so it might be reasonable to expect developers to
be willing to trade worse solving performance for greater
stability. Fortunately, our results show that such a trade is
largely unnecessary: SHAKE adds relatively little overhead and
even improves performance in some cases.

To evaluate solving performance, for each solver (Z3 and
cveS), we compare the following three scenarios.

o Baseline. The original queries are directly given to the

solver.

o Default SHAKE. The queries are preprocessed by SHAKE

in default mode and then given to the solver.

e Oracle SHAKE. The queries are preprocessed by SHAKE

in oracle mode and then given to the solver.
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Since SHAKE is a preprocessor, its runtime includes the
time spent on computing the distances and the time spent in
I0. When reporting the runtime, we exclude the latter, since
we expect SHAKE to eventually be incorporated directly into
solvers, where parsing is already being done. Therefore, the
runtime for the SHAKE modes is the time spent on computing
the distances plus the time spent by the solver on the pruned
queries. Each query is given a 60 second timeout, so if SHAKE
distance computation and solver together takes more than that,
the query is not considered solved.

First we present the number of queries solved in each
scenario in Figure 14. Generally SHAKE adds a minor overhead
to Z3, but sometimes solves a few more in oracle mode.
However, if we consider cvcS, SHAKE usually improves the
number of queries solved, even in default mode. Notably,
in DICE%, cve5 solves 259 queries in the baseline; even
with default SHAKE, it solves 190 more (+79%); with oracle
SHAKE, it solves 424 more (+163%).

Solver Baseline Default Oracle

Komodo 73 1,983  -0.10% +0.30%
b cves 342 +1.75%  +21.64%

. 73 5103 -0.78% 20.61%
VeriBeKVp (s 2571 +9.14%  +20.77%
. 73 5167 -041% -0.04%
VeriBetrKVy (05 3158 +8.90%  +13.01%
DICE® 73 1,493 -0.07% +0.33%
F ceves 259  +7336% +163.71%
Wasm 73 1,733 -0.29% 10.35%
v F cves 1,630 -0.12% 20.12%
Overall 73 15479  -0.45% 0.18%
cves 7,960  +8.92%  +18.10%

Fig. 14. Queries Solved with SHAKE as a Preprocessor.

To present the runtime performance, we use survival plots;
Brain et al. [38] provide a detailed explanation, but in short, a
survival plot shows the cumulative number of queries solved
within a total time budget. Therefore, a curve that is higher
and to the left indicates better performance.

In each plot, we show six curves, based on the three scenarios
for each of the two solvers. Generally, SHAKE adds a minor
overhead to Z3, but often improves the solving speed on cvc5.
For example, in Figure 16, we show the survival plot for
VeriBetrKV 5. SHAKE’s impact on Z3 is almost negligible,
whether in default or oracle mode. However, for cvc5, SHAKE
does improve on the solving speed, as well as the number of
queries solved, not only in oracle mode, but also in default
mode. In Figure 17, VeriBetrKV shows a similar trend as in
VeriBetrKV p.

In Figure 18, we show the results for DICE}.. We observe
that default SHAKE adds a minor overhead to Z3, but oracle
SHAKE has little impact. On cvc5, as we discussed earlier,
SHAKE significantly improves the number of queries solved
and improves the runtime as well.
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VI. RELATED WORK

The problem of proof instability in the context of program
verification has been a long standing issue. For example,
Hawblitzel et al. bemoan the instability of certain SMT
queries [19], and the Komodo authors describe proof instability
as “the most frustrating recurring problem” [18].

The Mariposa project [15] is the first effort to quantify in a
statistically rigorous way the instability of SMT queries with
respect to a solver. The authors measure instability in six large-
scale verification projects across eight SMT solver versions.
However, their focus is on quantifying instability, rather than
understanding or mitigating it.

Our SHAKE technique resembles an algorithm first imple-
mented in the Sumo INference Engine [39]. The Sine algorithm
selects relevant axioms in automated theorem proving (ATP)
problems [24]. As in SHAKE, Sine uses overlapping symbols
to iteratively determine relevance. A similar strategy was later
employed by the lightweight relevance filtering algorithm [40].
However, these algorithms target ATP problems, e.g., those
from TPTP [41], which usually covers domains outside those in
the SMT queries produced by program verification. Moreover,

a major difference between SHAKE and these algorithms is
the strategy SHAKE employs to handle quantified expressions.
In SHAKE, we make use of quantifier patterns and perform
lazy quantifier expansion, which is not present in the earlier
algorithms.

VII. LIMITATIONS

This work has several limitations. First, we have only studied
verification projects written in Dafny and F*, which do not
necessarily represent the entire spectrum of automated pro-
gram verification. For example, we have excluded Mariposa’s
Komodog, since it is restricted to the decidable fragments
of SMT and does not fit our description of VCG in §III-D.
Second, unsatisfiable cores have guided much of our analysis
and experiments, but the solver-produced core is not a perfect
oracle of relevant assertions. For example, the solver makes
no guarantee about the minimality (necessity) of the core
assertions. Third, our proposed technique, SHAKE, needs to
assume an oracle distance limit and/or a frequency threshold to
be effective. While the assumption of oracle configurations can
be met when dealing with unstable queries, ideally we would
like to remove this dependency, possibly by integrating SHAKE
into the SMT solver in future work. Lastly, SHAKE works at
the SMT level, and thus may have less precision compared
to VCG-level pruning. Nevertheless, SHAKE demonstrates the
general applicability of context pruning to improve stability,
and we leave language-specific adaptations to future work.

VIII. CONCLUSION

In this work, we empirically study the problem of proof
instability in SMT-based program verification. We find that
irrelevant context is a major source of instability. We then pro-
pose SHAKE, a novel SMT-level context pruning algorithm as a
mitigation technique. We demonstrate that SHAKE can improve
the stability of automated program verification using queries
from real-world projects. Furthermore, we show that SHAKE
can potentially improve standard SMT-solving performance on
these queries as well. We hope our work offers useful insights
into the phenomenon of instability and the connection between
automated program verification and theorem proving.
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Abstract—E-graphs are a prominent data structure that has
been increasing in popularity in recent years due to their ex-
panding range of applications in various formal reasoning tasks.
E-graphs allow systematic and efficient treatment of equality,
which is pervasive in automated reasoning based on proofs.

E-graphs handle equality well, but are severely limited in their
handling of case splitting and other aspects of propositional
reasoning, such as resolution, which introduce branching in
provers and solvers. As a consequence, most tools resort to
using e-graphs locally, recreating them ad-hoc when they are
needed, and then discarding them. In exploratory scenarios,
where it is necessary to retain multiple branches simultaneously,
this limitation proves to be prohibitive. In particular, in theory
exploration—a process where lemmas are discovered and then
proven—this poses a significant challenge. Theory exploration
must enumerate a space of possible assumptions, and must retain
all of them to make progress. This poses a severe limitation on
the ability to harness e-graphs for the task.

Our key observation is that in exploratory reasoning tasks,
branching represents versions of the same e-graph each with an
added assumption, such as “x > y” or “is_sorted [”. Essentially,
each e-graph represents an equality relation, and each branch
corresponds to a matching coarsened equality relation. Based
on this observation, we present an extension to e-graphs, called
Colored E-Graphs, as a way to efficiently represent all of the
coarsened equality relations in a single structure. A colored e-
graph is a memory-efficient equivalent of multiple copies of an e-
graph, with a much lower overhead. This is attained by sharing as
much as possible between different cases, while carefully tracking
which conclusion is true under which assumption. It can be
viewed as adding multiple ‘“color-coded” layers on top of the
original e-graph structure, representing different assumptions.

We run experiments and demonstrate that our colored e-
graphs can support large numbers of assumptions and terms
with space requirements that are about 10x lower, and with
slightly improved performance.

I. INTRODUCTION

E-graphs are a versatile data structure that is used for various
tasks of automated reasoning, including theorem proving and
synthesis. E-graphs have been popularized in compiler opti-
mizations thanks to their ability to support efficient rewrites
over a large set of terms, while keeping a compact represen-
tation of all possible rewrite outcomes. This mechanism is
known as equality saturation. It provides a powerful engine
that allows a reasoner to generate all equality consequences
of a set of known, universally quantified, equalities. Possible
uses include selecting the best equivalent of an expression
according to some desired metric, such as run-time effi-
ciency [29], size [10], [22], or precision [23] (when used as
a compilation phase) and a generalized form of unification,

d https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_13

called e-unification, for application of inference steps (when
used for proof search).

In this work we focus on a stepping stone for what we
address as exploratory reasoning: a range of tasks including
all the above optimization procedures, as well as theory explo-
ration [26], rewrite rule inference [20], and proof search [16],
[5], [14]. Exploratory reasoning, in general, can be thought
of as any reasoning task navigating a large space of potential
goals or sub-goals that need to be selected based on some
criteria. Our motivating example comes from TheSy and Ruler,
both of which are theory exploration systems based on e-
graphs. A theory exploration system attempts to both discover
and prove mathematical properties from a set of definitions and
known lemmas. Most of the difficulty in theory exploration
comes from the generation and filtering of candidates, rather
then from the proof procedure itself. TheSy does so by
efficiently filtering a large set of potential conjectures using e-
graphs for equality reasoning, and evaluating which should be
potentially proved. While e-graphs are effective for equality
reasoning [30], handling branching, such as case splitting
during proof search, do not have a common solution, and
are treated ad-hoc. For example, a special type of node is
introduced in [29] to deal with loop conditions, while in [7] a
special operator is introduced to reason on expressions under
certain contexts, and [26] creates full copies of the e-graph for
each branch being explored.

To illustrate this difficulty, we zoom in on an example from
theory exploration. As an example scenario, consider trying to
discover and prove lemmas on sorted lists: a library containing
functions find, is_sorted, and bin_search. We expect to discover
lemmas involving these functions; one such lemma might be
the property: is_sorted! — bin_searchlv = find [ v. State-of-
the-art theory exploration systems [12], [20], [26] have some
enumeration strategy over expressions in order to discover
candidates. A challenge presents itself when some lemmas
in the space require an assumption, in this case is_sorted!.
When dealing with e-graphs, adding an assumption would
globally affect all terms involved in the enumeration, making it
impossible to separate conclusions stemming from different as-
sumptions. Because the system cannot know in advance which
assumptions will become relevant for discovering equalities,
it is required that it also generate and test multiple candidate
assumptions. An immediate solution is to create one copy
of the graph per assumption, but doing so can significantly
increase the memory usage. Moreover, lemmas may depend on
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one another; for example, is_sorted [ — bin_search! v = find [ v
depends on transitivity of < (z < y Ay < z - z < 2).
Therefore, just trying the candidates one at a time would
mean that the system would prematurely discard candidates
depending on the order in which they are tested; alternatively,
for each candidate that is validated and becomes a lemma, it
would be forced to re-try all the previously failed attempts,
which is highly costly.

To overcome this difficulty, we propose an extension of
the e-graph data structure. An e-graph naturally represents
a congruence relation =, which is an equality relation over
terms (with function applications), which maintains z = y +
f(x) = f(y). The congruence relation is maintained in the
e-graph as a set of equivalence classes (e-classes), which can
be merged as part of updating the underlying relation. We
extend the e-graph data structure into a Colored E-Graph to
maintain multiple congruence relations at once, where each
relation is associated with a color. Our key observation is that
each added assumption, can be treated as a new congruence
relation, but is only a coarsening of the original relation. The
coarsening, then, can be represented as a set of additional
merges of e-classes on top of the original e-graph. The main
benefit is reducing memory consumption by re-using and
sharing most of the e-classes between colors. Going back
to the sorted list example, in the colored e-graph there will
be a red relation for assuming z < y Ay < z, and a blue
relation for assuming is_sorted [. Thanks to the size reduction,
multiple relations can exist at once, and thus the lemma
is_sorted! — bin_searchlv = findl v can be discovered after
transitivity of < is proven, but without dependency on the
order of exploration. Colored e-graphs also support having a
hierarchy between different colors, which can benefit from
additional sharing of e-classes. For example, the red color
representing * < y Ay < z is itself a coarsening of some
green color representing just the assumption z < y.

While the memory footprint for each color is smaller,
maintaining the congruence relation and the data structure
invariants becomes more challenging. To address this we
present specialized data-structure modifications and evaluate
them. First, we set up a multi-level union-find where the
lowest level corresponds to the root congruence. Second, we
change how congruence closure is applied to the individual
congruence relations while taking advantage of the sharing
between each such relation and the root. Lastly, we present
a technique for efficient e-matching over all the relations at
once.

Our contributions are:

1) The observation that assumptions induce coarsened e-
graphs that share much of the original structure.

2) Algorithms for colored e-graphs operations.

3) Optimizations on top of the basic algorithms to significantly
improve resource usage.

4) A colored e-graph implementation, Easter Egg' and an
evaluation that shows an improvement factor in memory

Thttps://github.com/eytans/egg/tree/features/color_splits
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Fig. 1. Example e-graph with two colored layers; (a) is blue, (b) is red, (c)
shows them combined.

usage over the existing baseline, while maintaining similar
run-time performance.

II. OVERVIEW

From this point we assume familiarity with the basic e-
graph structure which includes a union-find, hashcons, and an
e-class map, as well as the basic operations of add, merge,
rebuild, and e-matching (and consequently rewriting). For
readers unfamiliar with e-graphs, or with deferred rebuilding,
which was introduced in [30], additional background is given
in Appendix A.

Colored E-graphs are an extension of e-graphs devised to
add a generic approach for supporting conditional reasoning
to e-graphs. Existing exploratory reasoning systems such as
TheSy [26] and Ruler [20] utilize equality saturation with e-
graphs for discovering new rewrite rules, but are limited in
the presence of conditionals. For example, let ¢ := max(z,y),
then reasoning about the cases © < y and x > y separately
is desirable: in the first case ¢ = x, and in the second ¢ =2 y.
Without any assumptions, we can say neither and rewriting
of t is blocked. The approach in [26] involves a prover that
creates an e-graph clone for each case in case splitting, such
as for x < y and = > y. This process, however, incurs high
runtime and memory costs. Non-relevant terms in the e-graph
are unnecessarily duplicated, and rewrites are redundantly
applied to these copies. Further case splits compound this
issue, leading to an exponential increase in the number of
clones with additional nested splits.

Colored e-graphs are designed to avoid duplication via
sharing of the common terms, thus storing them only once
when possible. The e-graph structure becomes layered: the
lowermost layer represents a congruence relation over terms
that is true in all cases (represented, normally, as e-classes
containing e-nodes). On top of it are layered additional con-
gruence relations that arise from various assumptions.

Going back to our example, the corresponding e-graph is
shown in Figure 1, containing the terms max(z,y), * < y,
true and false. Layers corresponding to assumptions z < y
and x > y are shown in 1(a) and 1(b). To evoke intuition,
we associate with each layer a unique color, and paint their
e-classes (dotted outlines, in depicted e-graphs) accordingly.
Conventionally, the lowermost layer is associated with the
color black. In the subsequent example we will use blue for
x < y and red for x > y when referring to the example.
In the blue layer, (x < y) =%, true and max(x,y) = y; in
the red layer, (z < y) =, false and max(z,y) =, x. This


https://github.com/eytans/egg/tree/features/color_splits

is shown via the corresponding blue and red dotted borders.
Figure 1(c) shows a depiction where both colors are overlain
on the same graph, which is a more faithful representation of
the concept of colored e-graphs, although this visualization is
clearly not scalable to larger graphs. In Figure 2, a larger graph
can be seen that includes the terms max(x,y) — min(z, y) and
|z — y|. An overlain graph will be quite incomprehensible in
this case, so the layers are shown separately; it can be easily
discerned that max(z,y) — min(z,y) =, | — y| as well as
max(z,y) — min(z,y) =, |z — y|.

Both additional layers, blue and red, use existing (black)
e-nodes, with each color represented by further unions of e-
classes in the black congruence relation. Each color’s con-
gruence =, is a coarsening of the black congruence, =,
as = .. In complex cases like the generalization of
max(z,y)—min(z,y) = |z—y| to max(z,y, z) —min(z,y, z) =
max(|z — y|, |x — z|,|y — z|), the colored e-graphs have an
important layered structure. This scenario requires reasoning
about additional assumptions, building additional layers, such
as x < y ANy < zon top of z < y (and respectively
x > yAy < zon top of x > y). These additional layers
will reuse the blue and red ones, as they are a coarsening of
the respective =%, and =, .

Before diving into the design of colored e-graphs, it is better
to start with their expected semantics. One way to understand
the semantics of colored e-graphs is by analogy to a set of
clones, i.e. separate e-graphs £. One e-graph represents the
base congruence =, and one e-graph per color c represents
.. All e-graphs in £ conceptually represent the same terms
partitioned differently into e-classes. Thus, they have the same
e-nodes, except that the choice of e-class id (the representative)
may be different according to the composition of the e-
classes. We will call the e-classes of the color congruences
colored e-classes. A union in any layer, black or colored, is
in effect a union applied to the respective e-graph and all its
descendants. Thus, a union in the black layer (i.e. the original
e-graph) is analogous to a union in all of the e-graphs of the
corresponding e-classes; this maintains the invariant that every
colored e-class is a union of (one or more) black e-classes. The
colored e-graph semantics of the other operations—insertion,
congruence closure, and e-matching—are the same as if they
were performed across all clones.

A guiding observation in the design is that in equality
saturation based exploratory reasoning tasks, where the e-
graphs are extensive, each assumption leads to modest increase
in congruences. Colored e-graphs are adapted to this scenario.
The basic presupposition is that most colored layers, like the
blue layer in Figure 2, do not involve an excessive amount
of additional unions. In these cases, the space savings from
not duplicating black e-nodes more than compensate for the
added complexity in managing colored e-classes. With careful
tweaks and a few optimizations, we show that we improve
upon a clone-based approach. Importantly, if the assumption
leads to an inordinate increase in additional unions, the clone-
based approach could be more appropriate, and it is possible
to use a clone for that specific assumption.
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For presentation purposes, we start with a basic implementa-
tion that is not very efficient but is effective for understanding
the concepts and data structures; then, we indicate some pain
points, and move on to describe optimization steps that can
alleviate them.

In the basic implementation, all e-nodes reside in the
“black” layer, represented by a “vanilla” e-graph implemented
in egg, with normal operations. The colored congruences do
not have designated e-graphs of their own, and instead, the
operations of merge, rebuild, and e-matching have colored
variants, parameterized by an additional color ¢, that are
semantically analogous to the same operations having been
applied, in clone semantics, to the e-graph associated with
color ¢ in &. (Insertion is deferred to later.)

Colored merge. In colored e-graphs, the union-find structure
used for merging, which traditionally holds all e-class ids, is
optimized. A master copy retains black unions, while each
color layer has a smaller union-find for merged representative
e-classes of the parent layer. This approach avoids replication
of data across layers.

Colored e-matching. The e-class map is only saved for the
black layer. This is sufficient, because an e-class in color ¢
is always going to be a union of black e-classes, and all that
is required for e-matching is finding e-nodes with a particular
root (operator) in the course of the top-down traversal. So the
union can be searched on demand by collecting all the “c-color
siblings” of the e-class and searching them as well.

Colored congruence closure. In egg, the e-graph maintains
congruence by cycling through a work list of altered classes,
re-canonizing their parents, and identifying unions to complete
congruence through duplicate detection. In colored e-graphs
the root will behave the same, but for colored layers there
is no single e-class, as the colored e-classes are a equality
class of concrete e-classes. For each color, we maintain an
additional work list and collect concrete parents from e-classes
on demand. This results in a rebuild algorithm similar to egg’s,
but without updating the hashcons in colored layers, as they
are not present.

For a more concrete example, we give a detailed walk-
through of equality saturation in a colored e-graph of the red
case from Figure 2(b), and show the steps taken to construct
this colored layer in Appendix C.

When using the above operations in the context of equality
saturation, e-matching is applied for all colors to discover
matches for the left-hand sides of rules. For each match, the
right-hand side of the rule needs to be inserted into the e-
graph and merged or color-merged with the left-hand side.
Inserting the e-nodes to the e-graphs makes them available to
all layers. This aspect is sound, since we assume that the mere
existence of a term in an e-graph does not in itself have the
semantics of a judgement—it is only the placing e-nodes in the
same e-class that asserts an equality. However, in the presence
of many colors, and thus many colored matches, the result
would be a large volume of e-nodes that are in black e-classes
of size 1, as they were created to serve a single color. As
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Fig. 2. Proof of max(z,y) — min(z,y) =

opposed to a, standard, single e-graph where merging e-classes
shrinks the space of e-nodes (because non-equal e-nodes may
become equal as a result of canonization), in colored unions
it is required that the e-graph maintain both original e-classes,
thus losing this advantage. This can put a growing pressure
on subsequent e-matching and rebuild operations in all colors.
Optimizations to improve colored e-graphs, and to address this
issue, are presented in section IV.

III. FUNCTIONAL DESCRIPTION

We now introduce some notations and definitions that
formalize the description of the e-graph presented in section II.
We assume a term language L where terms are constructed
using function symbols, each with its designated arity. We use
f) € Y[L] to say that f is in the signature of L and has
arity . A term is then a tree whose nodes are labeled by
function symbols and a node labeled by f has r children. (In
particular, the leaves of a term have nullary function symbols.)
Additionally we use the following definitions:

(b)
| — y|. The e-nodes corresponding to the two terms are in the same e-class both in the blue layer (b) and in the
red (c). It is important to note that the layers are overlain, and that the black nodes are shared; they are separated here for ease of perception.

e-classids E

e-nodes N ={f(e1,..,er) | [r€X,e; € E}

union-find =i € E x E, =4 is an equivalence relation

e-class map M : E — P(N)

parent map P ={e— {(n,¢') | € E A
neME)An=f(...,e,..)} |e€ E}

hashcons H={n—e|neMe}

Semantically, every e-class represents a set of terms over
3. We will use the notation [¢] to refer to e-class id of the
equality class that represents (among other terms), the term ¢.

The union-find structure offers an operation, find(e), that
returns a unique representative id of the equivalence class (of
=;q) that contains e. That is, find(e) =iq e and for all e; =4
€2, find(er) = find(es).

On top of these basic structures, we introduce a set of colors.
As explained in section II, colors are organized in a tree whose
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root is the initial color (“black’). We mark the root color &
and assign to every non-root color ¢ a parent color p(c).
C={g,...}

p:C\ {9} = C

colors

parent colors

The colored e-graph will now hold multiple union-find
structures, one per color. They define a family of equivalence
relations =, by induction on the path from & to c.
=g ==iq; findy(e) = find(e)
=c C Ep(c) X Ep(c), where Ey ) = {find,(e) | e € E}
is the set of all representatives from = ). find(e) for
e € By returns a unique identifier in the normal manner
of union-find, i.e., find.(e) =. e and for all e; =, ea,
find(e1) = find (e2).

The definitions over FE,,) are naturally extended to
E by (recursive) application of find; i.e., find.(e)
find,(find,y(e)) and e; =. e & find,,(e1) =
ﬁndp(c)(eg). Thus it holds, by construction, that =. 2 =,,).

The colored e-graph also supports a merge_(e1, es) opera-
tion for each color ¢ where e;,es € E.. The merge operation
may break the congruence relation invariants for ¢ and all its
descendants, and thus needs to be fixed. The merged classes
are added to worklist(c') for all ¢’ where ¢ is ¢ or one of its
descendant. In egg [30], the invariants are restored periodically
by performing a REBUILD pass. To accommodate the colors,
we adjust the REBUILD logic to a multi-congruence-relation
setting, so that it restores a congruence closure for each color
during REBUILD. The main difference is that for a colored
congruence relation, the procedure will collect the parents of
a colored e-class by combining the sets of parents of all the
(root) e-classes contained therein.

Another important colored e-graph operation is e-matching.
Colored e-matching is a modification of the e-matching ab-
stract machine presented in [19]. E-matching is performed
by an abstract machine M which consists of a program
counter, array of registers reg, and backtracking stack bs, in
combination with a sequence of instructions that represents a
pattern p. The machine will run instructions by order, where
each may either fail if its assertion is not met, or produce a set

>
>



of continuation states. If a continuation state is produced, the
machine selects the first one and adds the current instruction
to the stack. If no continuation state is produced, the machine
backtracks, retrieving the most recent state from the stack and
attempting the next available continuation.

To better present our modifications in colored egg, we first
shortly introduce some of the original instruction types:

> bind(in, f, out) — Matches any e-node of the form
f(z1,...,x,) that resides in the e-class saved in reg[in],
storing its children x;_,, in reg[out..out + n — 1].

> compare(i, j) — Asserts reg[i] == regl[j].

> check(i, term) — Asserts that the e-class reg[i] represents
term.

> continue(f, out) — Match any e-node f(z1,...,2zy) (in
any e-class), storing its children z;_, in reg[out..out +
n—1].

> join(in, reverse_path,out) — Match any e-node

f(z1,...,z,) that is reachable through reverse_path
from the e-class reg[in], storing its children z; , in
reglout..out + n — 1].

To facilitate matching across various congruence relations,
we adjust the machine M to include the, currently being e-
matched, colored assumption color in its state. Adapting to
color involves changes in compilation and instructions. The
two primary scenarios impacted are: during compare(i,j),
ensuring regli] =coior Teg[j], and in function application
matching represented by a bind instruction. Before each
‘bind’ instruction, the modified compilation will insert a new
‘colored_jump’ instruction to try matching the full colored
equality class, one “root” e-class at a time. This is achieved
by having ‘colored_jump(i)” yield all the “colored siblings”
of reg[i] in the current color, replacing reg[i] with the result.
The instruction ‘check’ can be likewise adjusted, but we point
out that, in fact, it can be implemented as a sequence of ‘bind’s
(with respective interleaved ‘colored_jump’s).

Multipatterns, supported by the abstract machine, enable
e-matching against patterns with shared variables, useful for
matching the precondition in conditional rewrite rules. This
is achieved using the ‘continue’ instruction, which selects a
new root for subsequent sub-patterns. In the colored setting,
while ‘continue’ remains as is, for performance, it’s sometimes
substituted with ‘join’. This alternative instruction also picks
a new root, but restricts selection to e-nodes that can reach a
specified e-class, linked to a previously matched hole, through
child edges in the e-graph. A reverse path is provided to
further restrict the upward search needed to find such e-
nodes. We do not go too deep into the details, but its colored
variant will invoke a colored_jump at every level. We point
out that egg does not currently implement ‘join’, and our
colored egg supports a special (though frequent) case in which
reverse_path is empty.

The algorithms described here are presented in more depth
in Appendix B.
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IV. OPTIMIZATIONS

Both rebuilding and e-matching in colored e-graph, as
discussed in section II, can be significantly slower compared
to a separate, minimized e-graph.

In the rebuilding aspect, two main burdens are that the
colored e-graph contains additional e-nodes compared to each
of the separate ones, and that building a colored hash-cons
(which will be presented shortly) requires going over all the
e-classes.

In the e-matching aspect, colored e-matching may produce
duplicate results due to the e-graph not being minimized
according to the color’s congruence relation; that is, colored-
congruent terms are not always merged under a single e-class
id. To illustrate this, consider a simple e-graph representing
the terms 1-1, 1-x, 1-y, and « - y. Introduce a color, blue,
where © =, y. A simple pattern such as 1-7v would have three
matches, with assignments 7v — 1,70 — z,7v — y. If the
blue layer were a separate e-graph, = and y would have been
in the same e-class, so one of the matches here is redundant
(as far as the blue layer is concerned). Of course, in the black
layer they are different matches; the point is, that many terms
are added to the graph only as a result of a colored match,
so matching them in the black e-graph is mostly useless to
the reasoner. On the other hand, their presence in the black
layer means they cannot ever be merged, leading to duplicate
matches, as seen above, even in the respective colored layer(s).

Moreover, when inserting e-nodes to the e-graph, the hash-
cons is used to prevent duplication, relying on it being canon-
ized. Adding an e-node from a colored conclusion (following
a match modulo =) does not benefit from canonization.
In fact, each e-node f(z1,...,2,) has a multitude of black
representatives that are ~,-equivalent. Each child x; in the e-
node can be presented by any black id such that e € [z;]5, so
there are [ [, |[;]s| representations. These variants are distinct
in the root color, so they cannot be de-duplicated as usual.

To address these issues, we present a series of optimizations
to the colored e-graph data-structure and the procedures.
These optimizations aim to reuse the “root” and ancestor
layers as much as possible, both in terms of memory usage
and compute. Thus, we can achieve a memory efficient, but
effective colored e-graph.

A. Data-structure optimizations

Colored e-nodes. In the basic implementation outlined in
section II, adding e-nodes from colored e-matches to the root
e-graph may make it very large and increase the cost of all
subsequent actions. The optimized version addresses this by
introducing colored e-nodes, where e-nodes resulting from
colored matches are tagged with their inducing colors. Each
colored layer has its own colored hash-cons and e-class map,
designed to store only the differences from the parent layer,
thereby maximizing reuse. The new mappings added are:

EC:E—-C
colored parent P, = {(n,e) | (n,e) € PAEC(e) =c}
colored hashcons H.={n—e|n e M(e) N EC(e) = c}

e-class color



Note that base parents and hashcons from the non-optimized
version are incorporated as Py and Hg in colored mappings.

This optimization applies the hierarchy in all operations. For
example, while inserting an e-node to a color ¢, it is looked
up in the colored hashcons for ¢ and all its ancestors, p*(c),
and finally, if no match is found, it is inserted into a new
e-class e, setting EC(e) = c. The colored hashcons H. is
canonized to color ¢, ensuring that new e-nodes are unique to
this layer and avoiding colored duplicates. (Some duplication
related to ¢ may still occur in ancestor layers, as their e-nodes
are not canonized to c¢.) The optimization significantly impacts
e-matching: previously when matching a function application
f, all f-e-nodes in N were considered; now, only those e-
nodes n in the colors hierarchy, that is, those satisfying Je. n €
M(e) AN EC(e) € p*(c), are examined.

Pruning. Recall that having a coarsening relation between
the colors in the hierarchy means that any result found in
an ancestor color is also true for the descendant(s). And so,
following merges, some of the colored e-nodes could become
subsumed by e-nodes that already exist in an ancestor layer.
We present an efficient deferred pruning method to remove
the redundant e-nodes.

Normal e-graph minimization relies on having all e-nodes
canonized. A colored e-graph usually does not canonize all e-
nodes to a specific color ¢ (except for @). Rather, H. contains
only the difference from previous layers. To find redundant e-
nodes, the colored e-graph builds a transient hashcons during
rebuild from all relevant e-nodes that are not c-colored. The
new hashcons, H/, is created as follows:

H! = {canonize.(n) — find_(e) |
n € M(e), EC(e) € pt(c)}

A c-colored class e can be reduced by removing all e-nodes
that already exist in H.. While pruning is promising, one must
take care that pruned e-nodes are not immediately re-added.

Colored minimization. Another improvement is having
multiple colored e-nodes (of the same color) in a single (black)
e-class. As mentioned previously, any e-node that resulted
from a colored insert had to be in their own e-classes, as
no black unions would be performed on them. But, given that
e=.¢ NEC(e) = EC(¢) = ¢, then the two black e-classes
e, € can be merged as both contain colored e-nodes of the
same color and are in the same colored e-class (of the same
color). Thus an invariant is kept that each colored equality
class has at most one black e-class containing colored e-nodes.

B. Procedure optimizations

Rebuild. When rebuilding, we first reconstruct the congruence
relation of the “root” layer. Even though a color, for example
blue, will need to rebuild its own congruence, it still holds
that = C =%, . So, any union induced by = can be applied
to the blue relation. To understand the implications, consider
the e-graph representing the terms z, y, f(x), f(y), f(f(x)),
and f(g(y)) where the blue color contains the additional
assumption that g(y) =, f(y). If we union x and y, the

75

~

black congruence will include f(x) f(y) which also
holds in the blue relation. But, the rebuilding of the blue
congruence invariant will include an additional, deeper (in
terms of rebuilding rounds), conclusion f(f(z)) =, f(g(y)).
This demonstrates how reusing parent relations is useful; the
rebuild depth can be reduced by first rebuilding finer relations.

E-match. In e-matching, we implement an optimization
where findings on the root layer are also valid for higher
layers. To avoid redundant pattern matching, e-matching be-
gins only from &, adding colored assumptions as needed.
There are two scenarios for introducing a colored assumption:
The first during compare(i, j), if reg[i] Zcotor Teglj], we
explore descendant colors ¢ where reg[i] =. reg[j], adding
states with color < ¢ to the backtracking stack bs. The
second is on-demand coloring in colored_jump, where jumps
to any color ¢ are enabled if M.color € pT™(c) and the
target e-class is otherwise unreachable. We minimize the set
of new assumptions to prevent redundant colors. During the
updated compare, compare’, if a color c¢ is sufficient, its
descendants are not added to bs. For to updated colored_jump,
colored_jump’, e-classes are matched only with their topmost
(closest to root) congruent descendants. By taking the topmost
descendants, we ensure that all additional matching paths are
unique, as at least one (different) e-class is chosen at each fork.
Despite eliminating duplicate paths, some duplicate colored
matches persist due to incomplete minimization of the e-
graph. The modified instructions are described in more detail
in Appendix B.

V. EVALUATION

Support for colored e-graphs is implemented in a modified
version of egg, called Easter Egg. In this section, we evaluate
the performance and effectiveness of Easter Egg and the
different optimizations we presented. For this purpose we
implemented two versions of colored e-graphs containing
different improvements described in section IV. The simple
version only uses procedural improvements, while the opti-
mized version uses all optimizations.

A. Objectives and Evaluation Method

Our evaluation aims to test colored e-graphs’ efficacy in
equality saturation for exploratory reasoning tasks with mul-
tiple simultaneous assumptions. We evaluate the effectiveness
using e-graph size and equality saturation time. To the best
of our knowledge, a purely e-graph-based automated theorem
prover does not exist, and theory exploration tools have limited
support for conditions. Thus, for the evaluation, we created an
equality saturation-based prover (based on code from [26])
that incorporates an automatic case-splitting mechanism.

The case-splitting mechanism is only used when it will
potentially contribute to progress of the equality saturation
process—that is, when it enables additional rewrite rules that
were previously blocked. When this is detected, the prover
yields appropriate assumptions, one for each case. We compare
two settings: a baseline setting with separate e-graphs created
by cloning, and Easter Egg’s colored e-graph implementation.



We measure the total running times and the total size of all
the e-graphs.

We evaluated our implementation on inductive proof suites
from [24], also used in [26]. Since the instances are relatively
small, we introduced a slight variation: for each goal, we com-
bined benchmarks (i.e. proof goals) within the suite sharing
similar goals and vocabulary. This approach generates larger
benchmarks, and thus larger e-graphs, for more significant
exploration, with the prover continuing until saturation or
resource limit, regardless of early goal achievement. All the
experiments were conducted on 64 core AMD EPYC 7742
processor with 512 GB RAM.

B. Experimental Setup

Using the enhanced prover, we evaluated each test case
by measuring e-graph sizes and run times. E-graph size was
determined by counting e-nodes; in colored layers, we tracked
additional colored e-nodes, whereas for separate e-graphs,
we measured the e-nodes in both the original and coarsened
graphs. The experiments utilize the Cap library to cap memory
usage at 32 GB and limit run-time to 1 hour per case.

Our experiments involved a basic colored e-graph imple-
mentation (as per section II which we dub monochrome
colored e-graph, as it does not contain colored e-nodes) and a
fully optimized version, comparing both against the baseline
of separate e-graphs. The pruning optimization has almost
identical results to the fully optimized version, and hence, for
brevity, it is not shown. It is expected, due to pruning being
ineffective in cases where the same rewrite rules are applied
repeatedly, adding the removed e-nodes right back.

C. Results

In our setup, all assumptions emerge from case splits done
by the prover. We filter out cases where no case splits were
applied, since these have no assumptions introduced and thus
colored e-graphs have no impact.

For each benchmark instance, we measure the relative e-
node overhead as the number of additional e-nodes that are
required, normalized by the number of different assump-
tions. That is, (|total e-nodes|— |base e-nodes|)/|assumptions|.
“Base e-nodes” represent the contents of the graph before
case splits. (For the monochrome colored e-graph we use the
base e-nodes present in the separate e-graphs case.) Figure 3
summarizes the results, pitting colored e-graphs (with and
without colored e-nodes) against the baseline of separate
clones. In some cases one configuration times out or runs
out of memory, while the other does not; we only compare
cases where both configurations finished the run successfully.
In both comparisons, we see roughly around 10x lower
overhead, where in the monochromatic case samples are more
dispersed around the y axis, and the optimized case shows
clear advantage to the colored e-graph implementation.

Run-time is measured as the the total run-time for completed
test cases, and 1 hour for cases that timed out. We do
not include runs that did not finish due to out-of-memory
exceptions (we report the latter separately). As can be seen
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TABLE I
RUN-TIME AND EXCEPTIONS. M = OUT OF MEMORY, T = TIMEOUT (3600)

Separate Monochrome Optimized
Test Suite Time M/T Time M/T Time M/T
clam 70.1  0/0 277.8 0/5 23.6 0/0
hipspec-rev-equiv 34.1 0/0 139.0 0/17 57.0 0/0
hipspec-rotate 38803 1/1 1871.4 0/6 174 0/3
isaplanner 84544 0/60 6068.4 0/70 20486.3 3/28
leon-amortize-queue 187356.4 52/0 14.8 0/57 10854.3 3/49
leon-heap 17359 0/0 1201.8 0/25  4949.2 0/13

in Figure 4, the monochrome colored e-graph lead to many
timeouts, whereas the optimized case exhibits running times
similar to separate clones. This is in line with our expectation:
colors provide lower memory sizes at the expense of run-time.

Finally, in Table I we present the number of out-of-memory
exceptions, the number of timeout exceptions, and total run-
time for each configurations and test suite. The monochrome
colored e-graph, as expected, exhibits many timeouts. Even
though it has more errors than the other e-graph versions, it
still has much longer run-times.

The optimized e-graphs demonstrate enhancements over
separate e-graphs in both run-time and success rate, as detailed
in Table I. Notably, the optimized configuration completed
more tests (99 failures compared to 114). A key shift observed
is the replacement of out-of-memory errors with timeouts,
particularly in the leon-amortize-queue suite. However, leon-
heap posed challenges for colored e-graphs, incurring 13
extra timeouts even in the optimized version. Conversely, the
isaplanner suite showed a notable improvement, halving the
failure rate in the optimized version compared to the baseline.

VI. RELATED WORK

Theory exploration and its applications. Interest in ex-
ploratory reasoning in the context of functional calculi started
with IsaCoSy [13], a system for lemma discovery based in part
on CEGIS [28]. In a seminal paper, QuickSpec [27] propelled
applicability of such reasoning for inferring specifications
from implementations based on random testing, with deductive
reasoning to verify generated conjectures [6], [12]. TheSy [26]
and Ruler [20] have both incorporated e-graphs to some
extent in the exploration process: they are used to speed
up equivalence reduction of the space of generated terms,
and, in [26], also the filtering and qualification phases using
symbolic examples. The evaluation of the latter shows quite
clearly that case splitting is a major obstacle to symbolic
exploratory reasoning, due to the large number of different
cases and derived assumptions.

In the area of conditional rewrite discovery, Speculate [4]
naturally builds on the techniques from QuickSpec and de-
pends on property-based testing techniques to generate inputs
that satisfy some conditions. SWAPPER [25] is a relatively
early example of exploring using SyGuS with a data-driven
inductive-synthesis approach with emphasis on finding rules
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that are most efficient for different problem domains. It
requires a large corpus of similar SMT problems to operate.

Other e-graph extensions. E-graphs were originally brought
into use for automated theorem proving [9], and were later
popularized as a mechanism for implementing low-level com-
piler optimizations [29], by extending them with “@-nodes”
to express loops. Relational e-matching [32] makes use of
Datalog seminaive evaluation to harness the power of query
planning in database systems. Subsequently, Datalog-powered
e-matching has been recently fused with core Datalog seman-
tics to allow richer logic programming by exposing equal-
ity saturation as a building block in a framework called
egglog [31]. Since Datalog is based on Horn clauses, this
meshes very well with conditional rewriting. It should be
noted, though, that it is still a monotone framework, and
does not allow backtracking or simultaneous exploration of
alternative assumptions.

ECTAs [15], [11] are another, related compact data structure
that extends e-graphs, Version-Space Algebras [17], [18], and
Finite Tree Automata [1], with the concept of “entanglement”;
that is, some choices of terms from e-classes may depend on

77

choices done in other e-classes. Since the backbone of ECTAs
is quite similar to an e-graph, the colors extension is applicable
to this domain as well.

Uses of e-graphs in SMT. E-graphs are a core component
for equality reasoning in SMT solvers [8], [2], in most theory
solvers such as QF_UF, linear algebra, and bit-vectors. E-
matching is also used for quantifier instantiation [21], which is,
in its essence, an exploratory task and requires efficient meth-
ods [19]. In these contexts, implications and other Boolean
structures are treated by the SAT core (in CDCL(T)), and the
theory solver only handles conjunctions of literals.

VII. CONCLUSION

We presented colored e-graphs as an approach to efficiently
handle multiple congruence relations in a single e-graph. They
provide a memory-efficient method for equality saturation
with additional assumptions, crucial for efficient exploratory
reasoning of multiple assumptions simultaneously. Our opti-
mizations, developed using the egg library, have shown notable
improvements in memory usage and moderate enhancements
in run-time performance over the baseline.
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APPENDIX A
BACKGROUND ON E-GRAPHS

We will now present some general background on e-graphs.
Same as in section II, we assume a term language L where
terms are constructed using function symbols, each with its
designated arity. We use f(") € X[L] to say that f is in the
signature of L and has arity 7.

An e-graph G serves as a compact data structure repre-
senting a set S C L of terms and a congruence relation
= C L x L. This congruence relation, in addition to being
reflexive, symmetric, and transitive, is also closed under the
function symbols of X[L]. That is, for every f" € X[L], and
given two lists of terms ¢;. , € L and s;. ,, each of length
r, if t; 2 s; (i = 1..r), then it follows that f(¢1,...,¢,)
f(s1,...,s,). This property, known as congruence closure, is
a key attribute of the data structure. The maintenance of this
attribute as an invariant significantly influences the design and
implementation of e-graph actions.

~

The egg library [30] revolutionizes the application of e-
graphs by explicitly supporting the equality saturation work-
flow. It enables the periodic maintenance of congruence clo-
sure, via deferred rebuild, allowing for the amortization of
associated rebuilding costs.

In egg, the authors present the e-graph as a union-find-like
data structure, augmented to support operations on expres-
sions. This implementation is primarily achieved through the
utilization of three key structures: a hash-cons table, a union-
find structure, and an e-class map. These structures collectively
underpin the functionalities integral to the operation of the e-
graph.

(a) The union-find component is responsible for keeping
track of merged e-classes and maps each e-class id to
a single representative for all (transitively) merged e-
classes. This information is later used to canonicalize the
keys and values of the hash-cons.

The e-class map stores the structure of the e-graph. For
each e-class id, the map keeps all the e-nodes that are
contained therein. E-nodes are similar to AST nodes
except that their children point to e-class ids instead of
containing a single sub-term each.

The hash-cons table maps e-nodes to their containing e-
class id. An important aspect of the hash-cons is that
after rebuilding, its keys and values are expected to be
canonical. That is, whenever e-classes are merged one of
their ids becomes “the” representative.

(b)

©

An e-class with id e represents a set of terms defined
recursively as:

L(e) = {f(tla "7tk) |
fler,...,ex) € M(e),t; € L(e;) for i = 1.k}

We will use the notation [¢t] to refer to e-class id where ¢ €

L([t])-
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Example A.l. The terms max(z,y) and = — y are both
represented in the e-graph in Figure 1(a) using e-classes (5)
and (6), respectively, with the following e-nodes:

M

(1) — {true}
(3) = {z} (4) = {y}
(5) = {max((3),(4))} (6) — {(3) — (4)}

An e-graph where every e-class is a singleton, like this one,
is just a forest of expression trees with sharing. The situation
becomes more interesting once we start mutating the graph
via its dedicated operations.

(2) — {false}

1) Insert - Adds a term ¢ to the e-graph, one e-class per AST
node, reusing e-classes where possible by searching the
hash-cons.

Merge - Merging two e-classes by applying a union
operation of the union-find and merging the classes in
the e-class map. This, however, temporarily invalidates
the invariant of the hash-cons and e-class map that all
e-class ids and e-nodes must be canonical.

Rebuilding (Congruence closure) - As explained before,
a union of [z] into [y] necessitates replacing any e-
node f([z], [2]) by f([y]. []). Moreover, if f([z], [2]) €
[wi], f([y], [#]) € [we], then, following this replacement,
both [w;] and [ws] now contain f([y],[z]), meaning
that [wy] = [ws] and evoking a cascading union of
[w1], [we]. A significant contribution by egg is the concept
of deferred (and thus periodic) rebuilding. This periodic
rebuilding is highly efficient and well-suited for equality
saturation.

E-matching - Looking up a pattern in the set of terms
represented by the e-graph in a top-down manner, travers-
ing the e-nodes downward via the e-class map. A pat-
tern is a term with (zero or more) holes represented
by metavariables ?v;_j. For example, (?vq + 1)-7vg is
a pattern. Pattern lookup is important for rewriting in
equality saturation.

2)

3)

4)

Rewriting. We assume a background set of symbolic rewrite
rules (r.r.), each of the form ¢ — s, where ¢ and s are patterns
as explained in item (4) above. A match 0 of pattern ¢ on the e-
graph, is an assignment mapping metavariables to e-class ids.
t0 represents an e-node, and we will denote its equality class
as [t0]. Applying the r.r. is done by merging the e-classes [s6]
and [t0]. Because the e-node sf might be new, it needs to also
be inserted, resulting in union([t6], insert(sf)). Repetitively
applying such rewrite rules to a set of terms can be used to
generate growing sets of terms that are equivalent, according
to rewrite semantics, to ones in the starting set. Ideally, the set
eventually saturates, in which case the e-graph now describes
all the terms that are rewrite-equivalent. We point out that
in many situations, the e-graph keeps growing as a result of
rewrites and never gets saturated—so the number of successive
rewrite iterations, or “rewrite depth”, has to be bounded.

A conditional rewrite rule (c.r.r.) [3] is a natural extension
of a rr. that has the following form: ¢ = ¢t — s where
@ is a precondition for rewriting ¢ to s. For example, the



rules for max are: 7z > 7y = max(Yz,?y) — 7z and
?x < 7y = max(?x, ?y) — ?y. The semantics of a precondi-
tion ¢ is defined such that a term matching the pattern of
must be unified with Boolean true in order for the rewrite to
be applied.

APPENDIX B
ALGORITHMS PSEUDO CODE

Colored e-graphs introduce a few algorithmic changes to
the operations of a normal e-graph. Here we present pseudo
code for the important changes presented in the paper. Algo-
rithm 1 presents the changes being made to the e-matching
abstract machine to support unoptimized colored e-matching
as presented in section III.

Algorithm 1 Instructions: compare and colored_jump
1: function COMPARE(%, j)

2: if find(color, reg[i]) # find(color, reg[j]) then
3: backtrack

4: end if

5: end function

6:

7: function COLORED_JUMP(%)

8: siblings <+ {ele € E N e =coior eclass}

9: for sibling in siblings do

10: regli] = sibling

11: bs.push(current_state)
12: end for

13: backtrack

14: end function

The rebuilding algorithm is also updated to accommo-
date for colored e-graphs in section III, and the pseudo
code in addition to some explanations is presented here.
We update the auxiliary function REPAIR to work on col-
ored e-classes, and introduce two new helper functions:
COLLECT_PARENTS and UPDATE_HASHCONS, as presented
in Algorithm 2. COLLECT_PARENTS extract the parents of a
colored e-class by combining the sets of parents of all the
(root) e-classes contained therein. UPDATE_HASHCONS is used
to make sure that the hashcons entries are in canonical forms.
It was already a part of REPAIR in egg; it is only repeated
here to point out that it only updates the hashcons for the root
color, since no canonization is required for colored layers.

The pseudo code for the optimized e-matching instructions
that were presented in section IV are presented in Algorithm 4.

APPENDIX C
WALKTHROUGH FOR EXAMPLE 2

This is the full walkthrough of the example in Figure 1 from
the overview.

We walk through the steps needed to carry out the case split-
ting shown in Figure 2. The system contains the conditional
rewrite rules shown on the right of Figure 5, which constitute
the definitions of max and min, plus some prior knowledge
about |- | and —.
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Algorithm 2 Colored Rebuilding
1: function REBUILD

2: for color in self .colors do
3: while self .worklist(color).len() > 0 do

> empty the worklist into a local variable
4: todo < TAKE(sel f.worklist(color))

> canonicalize and deduplicate the eclass refs
to save calls to repair

5: todo < {self.find(color,eclass) | eclass €
todo}

6: for each eclass in todo do

7: SELF.REPAIR(color, eclass)

8: end for

9: end while

10: end for

: end function

: function REPAIR(color, eclass)
parents <— COLLECT_PARENTS(color, eclass)
UPDATE_HASHCONS(color, parents)
> deduplicate the parents; note that equal parents get
merged and put on the worklist

16: new_parents < {}

17: for each (p_node, p_eclass) in parents do

18: p_node + sel f.canonicalize(color, p_node)

19: if p_node is in new_parents then

20: sel f.merge(color, p_eclass, new_parents[p_node])

21 new_parents[p_node] —
sel f.find(color, p_eclass)

22: end if

23: end for

24: if color = @ then

25: eclass.parents < new_parents

26: end if

27: end function

The semantics of a conditional rewrite rule in the domain of
an e-graph is that the condition pattern should be matched and
its root must be in the same e-class as true, and, additionally,
the left-hand side should be matched as normal. For simplicity
of presentation, we pretend that — is a special case were the
negated condition is e-matched and the e-class should contain
false.

Starting with the base graph, Figure 2(a), we describe the
operation of Easter Egg on the red color, corresponding to the
case ~x < y. The complement blue case (x < y) is analogous.

1) The value of x < y is declared as false via a colored merge.
This yields a new red e-class.

Colored e-matching is performed against the premise of
the c.rr. =72 < ?y = max(?z,?y) = ?z. The condition
of the rule, 7z < 7y, matches against the class [z < y],
which is indeed in the same red e-class as false.

Similar e-matches are carried out for the rules =7z <
7y = min(?z,7y) = 7y and 72 < Tty = |Tx — Ty| >

2)
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merge . ([z < y], [false]) o
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@) G G x < 7y = min(?z, Ty) = Tz
mergergm_ax((x, y))]} [[x}])) Q ? 2z < 7y = min(?z, y) < Ty
merge . (|min(x,y)], |y : ° e < Ty = max(?z,7y) = Ty
merge, ([[z — y], EQ =7z < 7y = max(?z, 7y) >
[z —y) " / e <y= |tz -yl >y — Tz

oo

“tr<ly=|tx—Ty| > -7y
€)] - -
rebuild . () ) O ©,
I ,M\
merge, ([ — y], Q -
max(z) — min(y)) @2 -@
Fig. 5. Rewriting with case-split in a colored e-graph.

Algorithm 3 Colored Rebuilding (auxiliary methods) are complements, and as such extends = with the common
1: function UPDATE_HASHCONS(color, parents) equivalences, =, N =, = {((5),(7)),... }.
2: if color = @ then
3: for each (p_node, p_eclass) in parents do
4: sel f.hashcons.remove(p_node)

5: p_node « sel f.canonicalize(color, p_node)

6: sel f.hashcons|[p_node] —
sel f.find(color, p_eclass)

7: end for

8: end if

9: end function

10:

11: function COLLECT_PARENTS(color, eclass)

12: all_parents < () > Initialize an empty set for parents

13: relevant_eclasses <+ {e | e € E A e =coor eclass}

14: for e in relevant_eclasses do

15: all_parents < all_parents U e.parents > Add
parents of e to the set

16: end for

17: return all_parents

18: end function

Tx — 7y.

3) The children of (3) — (4) (€ M((5))) are red-equivalent
to those of (1) — (2) (€ M((6))), and, as a consequence,
red congruence closure kicks in and performs a red union
there.

The process for blue is analogous. The case-split semantics
is defined such that it records the fact that blue and red
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Algorithm 4 Instructions: optimized compare and col-
ored_jump

1

2:

20:

21:
22:
23:
24:
25:
26:
27:

function COMPARE’ (%, j)
if find(color,regli]) # find(color,reg[j]) then
descendants <+ {c | color € p*(c) A regli] =,
regljl}
minimal < {c | ¢ € descendants N -3¢ €
descendants. ¢’ € p*(c)}
for c in minimal do
color =c
bs.push(current_state)
end for
backtrack
end if
end function

: function COLORED_JUMP’(7)

siblings <+ {e | e € E N e =co10r eclass}
for sibling in siblings do
reg[i] = sibling
bs.push(current_state)
end for
descendants < {(c,e) | color € p*(c) A regli] =,
e Ne ¢ siblings}
minimal <+ {(c,e) | (c,e) € descendants A
—-3(c,¢’) € descendants.(c € pt(c) Ne =, e)}
for (c,e) in minimal do
color = ¢
regli] = e
bs.push(current_state)
end for
backtrack
end function
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Abstract—The paper presents a conceptual approach to ab-
stract interpretation of string-manipulating programs, based on
the existential theory of strings.

We propose the word equation language as a base for lattices
forming abstract domains of the string data. We construct a
quantifier-free layer of the lattices, capturing the uniqueness
properties of join and meet operations. The resulting finite-height
lattice WL, utilizes useful properties of primitive roots of words
and can be used as a base for future developments of word-
equation-based abstract domains.

We describe a tokenization procedure as a monotone lattice
mapping, in order to enhance expressiveness of word equation
language by means of string morphisms and special cases of other
finite-state-machine transformations.

Index Terms—program analysis, abstract interpretation, word
equations, lattice mappings

I. INTRODUCTION

The problem of static analysis of string manipulating pro-
grams, especially in dynamically typed languages, is known
to be hard. For instance, even the theory with the replace-
all and concatenation functions is undecidable [1], as well
as the theory with the concatenation and letter counting
operations [2].

Moreover, most of linear orders on the set of strings depend
on the alphabet numeration. This fact makes construction of
partition of the set of strings to polyhedra or intervals non-
trivial and problem-specific ones.

In order to make the problem tractable, appropriate over-
approximations and restrictions are used in static analysis [3]-
[5]. In abstract interpretation, if a decidable set of predicates
is taken as an abstract domain, the main two problems arise:

« how to over-approximate the wide variety of string op-
erations in the string domain by the operations in the
abstract domain;

o how to over-approximate the infinite chains of the predi-
cates in the abstract domain by finite chains, in order to
make the static analysis terminating.

The more precise are mappings into the abstract domain, the
longer chains can occur; on the other hand, too small lattice
height guarantees very fast convergence of the analysis, but
may have drastically low preciseness of the analysis, compared
with the methods admitting finite chains of non-uniformly
bounded length.

The research was partially supported by Huawei Technologies Co. Ltd.,
and by Russian Academy of Sciences, research project Ne122012700089-0.
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Thus, the main two approaches to construct the abstract
domains exist. The first one considers some decidable frag-
ment of string theory, and defines the appropriate general-
izations (widening operations [6]) in order to collapse the
infinite chains [6]-[9]. This approach is language-independent,
allowing high flexibility of the tracked program properties,
by varying the widening operation. The second one takes
concrete practical properties of interest as the abstract domain,
and solves concrete verification tasks in terms of the chosen
programming language [10], [11]. The lattices used in this
analysis are of small fixed height making the analysis fast.

For example, in ECMASCRIPT language [12], the set of
numbers is defined over a wider alphabet than {[0 — 9],., —}.
The constants infinity and NaN are also considered as
numerical data. Thus, if the property “can represent numerical
data” is tracked, then the approach making use of a string
theory is forced to make the widening operator more precise,
risking to make the whole analysis potentially slower.

In order to combine these two approaches, one can use
an abstract domain in a decidable string theory, together
with taking a quotient [13] wrt a partition of the string data
set, taking into account language-specific properties of its
elements. The partition can be defined as a preprocessing
tokenization procedure, thus changing the underlying alphabet
in the same string theory. Hence, the string manipulating
operations are to be interpreted both by tokenization algorithm
and the computations over the abstract domain. Under certain
conditions, the tokenized strings and predicates on the tokens
can happen to be fixed points of the lattice on the input string
data, thus forming a proper finite sub-lattice [14]. Thus, a
decidable string theory may be chosen in such a way that the
tokenization procedure becomes in some sense “orthogonal” to
predicates of the theory. It is known that the existential theory
of words (the theory of word equations) is decidable [15],
and the set of word equation languages neither contains nor is
contained in the set of regular languages [16]. The set of word
equation languages is not closed under morphic images and
inverse morphic images [16]. Hence, the tokenization is able
to significantly improve expressiveness of the given theory.

In order to address the widening problem, we advocate to
use a natural string property known as the primitive root fac-
torization, which is expressible in the word equation language.
A root of a word wis a ¢ s.t. £" = w. A word £ is primitive iff
vr,n(€ = 7" = n = 1). Word equations may encapsulate a
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wide variety of properties including some of statements about
primitive roots. E.g. the equation XY = Y X represents the
predicate “if the strings X and Y are non-empty, then they
have the same primitive root”.

Let us show an example of how the notion of the primitive
root helps to solve the widening problem. The set of the
regular expressions, which is known to be closed under both
intersection and union, forms a distributive lattice [6], [8].
However, the regular expressions admit infinite ascending
chains, e.g. L(a) C L(ala?) C L(ala?|a®) C ..., where L(r)
denotes the language recognised by expression r. The most
obvious widening is to define the widened value as the Kleene
iteration a*. Under this definition, the values a* and (a?)* are
still distinct, and the latter implies the former. Thus, we can
define an infinite descending chain of the predicates, i.e. a*,
(a®)*, ..., (@*")*, ..., which violates the lattice finiteness
condition. Now let us define the widened value Iter, as a
predicate satisfied by all words X satisfying the word equation
aX = Xa. The definition for Iter, using the word equations
makes it possible to collapse the predicates to a single layer
of the lattice. Since V7, n(n > 0 = Ta™ = a7 < Ta = a7),
any predicate Iter,~» is equivalent to the predicate Iter,, thus
the chains collapse to single elements.

The contributions of the paper are as follows.

First, we suggest a word equation language as a base
for a lattice forming an abstract domain of string data. We
construct a first (quantifier-free) layer of the lattice, capturing
the uniqueness properties of joins and meets (Section III). The
resulting finite-height lattice WLy utilizes useful properties
of primitive roots and can be used as a base for future
developments of word-equation-based abstract domains.

Second, we suggest a tokenization procedure as a monotone
lattice mapping, in order to enhance expressiveness of the word
equation language by means of string morphisms and special
cases of other finite-state-machine transformations, based on
inverse mappings of the string morphisms (Section V). More-
over, given a string morphism onto the string set of the initial
abstract domain, the set of its fixpoints forms a complete
sublattice of the lattice WLg, and no additional construction
is required to track additional program properties captured by
the morphism.

The paper is organized as follows. In Section II, the
main notions of lattice theory and word equation theory are
given. In Section III, the experimental lattice based on the
word equations is presented, and Section IV presents abstract
domain semantics of the standard string operations used in
ECMAScript programs. Section V considers the tokenization
transformations, Section VI discusses related works, and Sec-
tion VII concludes the paper.

II. PRELIMINARIES

Small Greek letters (maybe with indices) stand for finite
constant words (strings); domains and sets are denoted with
Greek capitals. Small Latin letters a, b, ¢, d are considered
to be elements of X. Capital Latin letters X, Y, Z stand for
elements of the variable alphabet. The notation 7" stands for
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n-concatenation of 7 with itself, i.e. 77 ... 7. The empty word
——

is denoted by e. Given a word T, |7| stgnds for its length.

A word 7 is said to be primitive (denoted with prm(7)),
if V{,n(T =& =>n= 1). Thus ¢ is not a primitive word,
since Vn(e™ = ¢). Every non-empty word 7 has a unique
primitive root &, i.e. Vn,m,&,&' (€7 =7 = (&)™ & |7| >
0 & prm(€) & prm(¢) = £ = ¢’). We denote the primitive
root of 7 with p(7).

Definition I1.1. Given a letter alphabet Y. and a variable
alphabet =, a word equation is an equation U = V, where
Uu,ve (U™

A solution to an equation U =V is a morphism o which
is identity on X3 and maps elements of Z into ¥*, s.t. o(U)
o(V) [15], [16].

We also call the set of possible tuples of variable images
determined by solutions of U =V the solution set of U = V).
Given a variable set Q, the solution set of U =V wrt Q is
the projection of the solution set of U =V on the coordinates
corresponding to the elements of Q.

The following examples are classical [17], [18].

Example II.1. Given an equation a X = Xa, where X € =
and a € %, its solution set is {a” |ne N}.

Given an equation ZX = XY, where X,Y,Z € Z, its
solution set for (X,Y,Z) is {((£1€2)"&1,&61,61&) | n €
N & &,& € Z*}. The solution set of ZX = XY wrt the
variable X is {(£1&2)"& | &1,& € ¥*}. It implies that, given
an equation X = Xy, its solution set is non-empty iff
e, n2 (T = mne & T2 = nam).

Given an equation £165X = X&3&1, where £1,&, € ¥F,
prm(&1&2) and |&| > 0, and X € ZE, its solution set is
{(&&)"& | n € N} If |&1| = 0, then the equation is reduced
to £, X = X &, and its solution set is {55‘ |n e N}.

Let us denote the predicate “7 satisfies the equation £1&57 =
762617 with Cnjg, ¢, (7). We assume that the representation of
Cnjg, ¢, is reduced by default to the shortest possible value
of 1§, i.e. the word ;&2 is primitive in Cnjg, ¢, . Moreover,
since Cnj, . = Cnj, ., we always choose Cnj, , as a default.

We recall the following classical Fine—Wilf theorem [18].

Theorem IL1. Let &1,& € Y. Suppose & and &, for
some m,n € N, have a common prefix of length || +
|&2] — ged(|€1], |&2]). Then there exists T € X* of length
ged(|&1),|&2|) such that T = p(&1) = P(&2), Le. T is the
primitive root both of &1 and &,.

Definition IL2. A friple (L,V, ), where L is a set, \V and
A are binary operations over L (also called join and meet
respectively), is said to be a lattice if it satisfies the following
axioms [19] for all z,y,z € L:

o (zV(xnAy)=2)& (zA(zVy) =1);

. x\/y:y\/x) & (x/\y:y/\x);

e (zV(yVvae=(VyVz&(@Ayrz)

(xAy)Az).



An order induced on a lattice E with the lattice operations
is defined as follows: x <y = (x Vy=y).

Given lattices F, F, a mapping ¢ : E — F is said to be
consistent with the order (isotonic) iff Vz, y(m <y=d(z) <
qS(y)) [14]. A mapping ¢ is said to be a lattice morphism iff
it respects both joins and meets [14].

The following lemma demonstrates a useful property of
the equations £1&3X = X &3¢ (assuming by definition that
prm(&;€2)). Henceforth we call such equations elementary.

Lemma IL1. If the words &1, &2, &3, &4 satisfy prm(&1&2) and
prm(&3€s), and & # &3 or o # &4, then there exists at most
one word T € ¥* satisfying both Cnj, ¢, (7) and Cnjg, ¢, (7).

Proof. Let 7 = (£1&2)"6 = (£3€4)™&3. Without loss of
generality, we assume that |£1&2| > |€3€4]; the opposite case
is symmetric.

If n > 1 (and hence m > 1), then the word 7& =
(£1&2)™ L and the word 7&, = (£3¢4)™*! share a common
prefix of the length |7|, which is at least |1 |+ |&2| + |€3|+ |4l
Hence, by the Fine—Wilf theorem [20], £1&2 and £3&4 share
a common primitive root, i.e. are equal, because they are
primitive. Hence, n = m and &; = &3, which contradicts the
choice of &;.

Thus, if there are such distinct 7y, 7y € ¥, both belonging
to the solution sets of &1&X = X&¢ and &6, X =
X§4£3, then 7, = (flgz)igl. Le. 3k > 0,ky > 0 s.t.
10 = & = (B8 o= L6866 = (L) TRE =
(E3€4)™ (€360)1 63 (E3€4)™&1. That implies &6 =
(€3€4)%2 , hence, ko = 1 and &; = &, since £;&5 is primitive,
which contradicts the choice of &;.

O

The proof above immediately implies the following Corol-
lary. If Lemma’s II.1 premise is true, then the only one of the
following three cases can hold.

 No word satisfies the predicate Cnjg, ¢, & Cnjg, ¢,

o Fk(& = (&380)7E3).

o Jk(&1681 = (€384)7Es).

We denote the word satisfying both Cnjg, ., and Cnjg, ¢,
by conjr(&1,&2,£3,€4). Lemma IL.1 shows that the predi-
cates Cnjg, o, and Cnjg, o, are “orthogonal” wrt the sets
of words satisfying them. For example, if & # &4 then
conjr(e, &2,€,84) = €.

III. THE LATTICE CONSTRUCTION

Let us introduce a relation o< between elements of the
concrete string domain S# and an abstract domain A. A word
T satisfies a predicate P, where 7 € S#and P € A, iff r < P.

The antimonotonous Galois connection defined by the rela-
tion ox determines the abstraction and concretisation operations
wrt the abstract domain A.

As usual, the values T and L represent the greatest and the
least element of the lattice. The first level higher than L (i.e.
layer 1) captures the trivial word equations X = &, denoted
by qu, which is standard for the string abstract domains [9],
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[10]. As for the next lattice levels (layers whose numbers start
with 2), we require them to satisfy the following properties.

o For any element P of a layer higher than the layer 1 (i.e.,
the layer of the trivial word equations), there is an infinite
string set for which P holds (expressiveness).
Given any two distinct elements P; and P, of the layer
N, there is at most one predicate P of the layer N + 1
s.t. P, = P and P> = P hold (unique join).
Given any two distinct predicates P; and P, of the layer
N + 1, there is at most one predicate P of the layer N
s.t. P = P, and P = P, hold (unique meet).

The first property guarantees that all the elements of the
layer are expressible enough; the second property is required
to define unique join elements, and the third is used to define
unique meet elements. Obviously, the top element T satisfies
all the three conditions.

A natural question arises: how can one introduce a partial
word equation order that is able to distinguish the equations
belonging to various levels? Given equations /; = V; and
Uz = Vs in alphabet ¥ s.t. |3| > 1, an equation whose solution
set wrt the variables occurring in U, Us, V1, Vo is a union
of the solution sets of the given equations can be constructed
with introducing 2 additional (fresh) variables (see [16], in the
earlier work [21] a construction with 4 additional variables is
given). On the other hand, an equation with the solution set
representing the intersection of the two solution sets above
can be constructed without any additional variable, provided
that |X| > 1. Hence, the number of distinct variables in a
given equation can be treated as a measure for its “generality”,
provided that the solution set of the equation is considered wrt
a single variable X. With respect to this measure, the simplest
equations depend only on X itself, i.e. are of the form P :
S XEX ... 6X =X X..XE, where & > 0. If m #n,
then P has finitely many solutions; thus, the expressiveness
requirement is satisfied! only if m = n. The lemma below
shows that any equation P with infinitely many solutions is
equivalent to an equation of the form Cnjg, ¢, .

Lemma IIL1. The set of predicates of the form Cnjg, .,
where the word &€ is primitive, satisfies all the three
conditions given above. Any other quantifier-free predicate
satisfying the conditions is equivalent to a predicate Cnjg, ¢,
in the given set.

Proof. Given an equation P of the form & X&X ..., X =
X&X...XE, let us assume that there exists its solution w s.t.
|w| > [€1]. Then w = & w’, and W’ is a solution of the equation
which arises from P in virtue of the substitution X — & X'.
Le., removing the & -prefixes on both sides of P[X — & X'],
we obtain the equation P’ X666 X .66 X
X'€16 X ... X', that is to be satisfied by w’. As well as
the initial equation P, equation P’ has prefixes £&; X’ and X’
in its left- and right-hand sides, hence, the reasoning above
can be repeated until |w’'| < |&1].

! As shown in the paper [22], such equations have either at most 3 solutions
or infinitely many solutions.
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abX = Xab aX =Xa bX =Xb
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abX = Xba

Fig. 1: Lattice built over constants ¢, a, a, ab, aba. The values Eq, are represented as ; the values Cnj,, ., are represented

as the equations &1, X = X&¢;.

Therefore, any solution to the equation P, where |£1]| > 0,
is of the form (fl,pgl,s)kgl,pa where gl,pfl,s = 51-

Let us take such a number ko that
max(maxi<i<n [§i], maxi<i<n [§]) - n < [&1] - ko, and
separate the solution set of P into the following two sets.

o The words of the length less than |£;] - ko.

o All the other words from the solution set of P. These
words start with the prefix §f°; they can be seen as the
solutions to equation o(P), where o : X — §f°X .

Due to the choice of ko, the equation
G X&EENX g x Xgex. e Xe! resulting
from the mapping X — {f“X can be split into n equations
of the form 7; 1 X = X, 5 (possibly, after reducing common
prefixes and suffixes of the equation parts). Some of these
equations are equivalent (if for some ¢, and k € {1,2} the
primitive roots of 7; 3 and 7 coincide), so we take only the
subset of non-equivalent equations.

If this subset is a singleton, then the resulting equation is
equal to the first equation £&; X = X7, where |7]| = |£1], and 7
may be either a prefix of & (if |&1] < |€}]) or of the form &] 7.
In both cases, the solution set of this equation also includes
any solution to P of the length less than |£;] - ko.

If the set of the non-equivalent equations is not a singleton,
then by Lemma II.1 the equation P has finitely many solutions
and does not satisfy the expressiveness condition. Lemma II.1
guarantees that the unique meet condition holds.

Let us show that the unique join condition also holds. Given
two distinct 71, 72 € X* satisfying some elementary equation
16X = X &€ with & and & unknown, let |71| > |72|. Then
I73(13 # € & 71 = T372), and the primitive root of 73 is equal
to £1&o, while the suffix of 75 after the maximal prefix of the
form p(73)* coincides with &;. Hence, the values &1 and & in
equation &1&2 X = X §&9&; are determined by any two distinct
words 7 and 7, satisfying this equation. O

Lemma III.1 determines elements of the third level of
lattice WLo, namely the set of predicates Cnj,, ., defining
infinite solution sets of one-variable equations. A simple word-
equation-based lattice can consist of the three given layers,
and the top layer above them. Other possible extensions of
the lattice are discussed in Section VII.
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Based on the reasoning above, now we formally introduce
the lattice elements and operations. The abstract domain A
of the simplest lattice WLg proposed in this paper consists
of the following elements. As usual, we always assume that
given a predicate Cnjg, ¢, the word £;&» is primitive.
Predicates Eq,. Eqg(7) iff 7= ¢&.

Predicates ‘““conjugates &1&> and £2&1”, denoted with
an£1;€2’ where ‘§1§2| > 0. an§1,52 (T) iff &&7 =
USISE

The top element T representing all possible strings, and
the bottom element L.

A simple example of such a lattice constructed over con-
stants €, a, a2, ab, aba is presented in Fig. 1.

A. Operations of Lattice WLg

Let us define the join operation over the given domain. The
right-hand sides of the definitions below are ordered to be
applied from top to bottom.
an71,7'27 if V/L(gz = Ti);

T, otherwise;

e Cnj, .V an§1,52 =

. Cnj,, ,,, if {Tom = T1T2&;5
Cnjr, , V B T oih;rwise'
) b

anl,TZ \/ qu;
Eqﬁ, if T1 = T9;
Cnje, ¢, if 361, &,k ko(ky, ko €N
b= (68%)"6G &= (68)"8);

T, otherwise.

The case returning Cnj, o, as a value of Eq, V Eq,
reproduces the construction given in the proof of Lemma III.1,
when the unique join property is checked.

E.g., Eq. V Eq, = Cnj_,, as well as Eq. V Eq,, =
Cnj, o Equ, V Cnj, , = Cnj, 4, since (aba)ba = ab(aba).

The commutativity axiom for the join operation holds by
definition.

If some of elements z, y, z of WLg are equal, or any two
of them are distinct equations, then the associativity = V (y V
z) = (x V y) V z also holds by definition. Let us consider
the subtle case of the associativity: = Eq,,, y = Eq,,,

z=FEq., 2 Vy=Cnj ¢, yVz=Cnj,e, & # & or

qu v anﬁ,Tz =

Eq,, V Eq,, =



& # &4. Then by Lemma II.1 7 is the only word satisfying
the predicates Cnj¢, ¢, and Cnjg, ¢, (i.e. y = Cnjg, ¢, &
Yy — an537£4), thuS, TV anfs,fz; = T and an£17£2 Vz=
T hold.

Now we define the meet operation.

Cnj,, ., if Vi(§ = 7);

chonjr(n 172,61,€2)7

Cnj A Cnj =
Jry 7o Jer,6n if COIle'(Tl, To, 51752) exists;

1, otherwise.
Eqg, if 71728 = 12715

1, otherwise;
Eq A Cnjg, ¢, = Cnjg, ¢, AEqy;

ann,fz A qu =

Eq,,, if 71 = 72;

Eq. AE =
ry A Hry 1L, otherwise.

There in the first case we refer to the property of elementary
equations guaranteed by Lemma IL1. E.g., Cnj, , A Cnj, , =
Eq,, since a satisfies both equations abX = Xba and a X =
Xa, hence, a = conjr(a, b, e, a) (see Fig. 1).

By a similar reasoning, the A operation is associative.

Now we consider the last lattice condition to be checked.

o Since Vz,y(z Ay = ), and Vg((¢ = 2) = (z V ¢ =

z)), the law 2 V (z Ay) = x also holds.

e xA(x Vy)isaziff £ Vy = x. The conditionz Vy = x

is guaranteed by the construction of the operations.

Hence the lattice definition is consistent. This lattice is not
distributive. E.g. Cnj, , A(Cnj.;, V Cnj..) = Cnj_,, but
(ana,a A ane,b) \ (ane,a A ans,c) = qu

IV. OPERATIONS ON LATTICE ELEMENTS
A. A Model Program

In order to demonstrate the computations in the abstract
domain given above, let us consider the following example,
given in a pseudocode (Fig. 2).

The = + y concatenates x and y; x — y deletes a prefix y
from x; prefiz(x,y) checks whether a string x is a prefix of
a string y.

1 z =¢

2 x,y = ¢

3 while (condy (i, 3)) { (depends only on i, 5)
4 i=1i+1

5 x=x+z}

6  while (conds (1, 3)) { (depends only on %, j)
7 J=3+ 1

8 y=y +z}

9  while (true) {

10 if (prefiz (x,vy))

11 y =y — X

12 elif (prefiz (y,x))

13 X =X — Yy

14 else break }

Fig. 2: A fragment of a string-manipulating program incor-
rectly checking that a quotient of strings = and y is €.
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The program lines 9-14 aim at computing a “quotient”
of the two strings, i.e. the word witnessing that the strings
have different primitive roots. For example, if x abba,
y = abbaab, then the loop 9—-14 breaks at the state © = ba,
y = ab after the two iterations. If the roots coincide, then the
loop 9-14 is assumed to return ¢, however if x is assigned
to €, the loop does not terminate. The reason of the non-
termination is that ¢ is a prefix of any string, hence 7T —e =7
for any 7 € ¥*. Moreover, the program given in Fig. 2 never
terminates, because after executing lines 1-8 the values of x
and y always have equal primitive roots.

Let us see how the corresponding operations are computed
over the lattice WLg, and how the problem with the infinite
loop can be revealed.

B. Computations in WLg

The following operations are chosen in order to demonstrate
computations in WLg. The operations are analogous to oper-
ations included in standard string operating libraries, e.g. for
ECMASCRIPT [12]. Such a library includes at least concate-
nation operation, denoted with x + y; string replacement and
truncation operations. In JavaScript, there exist the function
replacing the first occurrence of a given string £ in a string 7,
and the function replacing all occurrences of £ in 7. We denote
the operation replacing the first occurrence of z; in y with 2z
with replace(y, 21, 22). The string truncation usually depends
on a given input — start and end positions of a substring
that is to be deleted or extracted as an infix. We consider the
following instance of the truncation: the string minus operation
of the form x — y, where the prefix y is deleted from =x.

We consider the versions of the operations with the nu-
merical parameters unknown to the interpreter; if these pa-
rameters are known, the more precise over-approximations
can be constructed. We assume that the right-hand sides
of the interpretation rules in the interpretations given below
are ordered from top to bottom to be applied. Some of the
interpretations are straightforward; we comment only on the
non-obvious ones. The order < is induced by the join operation
(see Section II). As usual, £1&5 in an&,& is assumed to be
primitive.

Below the abstract version of the string concatenation is
given.

Eq&l&z’ ifz= Eq&l Y= Eq{z;
Cnjeg g0 If @ < Cnj, ¢, &y < Onje, g,
and £261 = §364 and &586 = 162
and In (6165 = (£162)"5);

T, otherwise.

r+y=

if

Given words 71 and 79 in the concrete string domain,
T1+72 = (£5€6)%E5, where k is large enough, then either 7
(&586)™ 75 and 75 = 76(£56)*2&5. where T576 = &5, or Ty
(5556)’“75 and 7o = 76, where 7576 = 5. The case returning
Cnjg, ¢, above includes both these instances. The parameter
n above equals 0 if |€3] < |€2], and equals 1 otherwise.



Below the abstract version of the string subtraction is given.
Eq,, if x = Eq,, & y = Eq;
error, if z = Eq, & y = Eq, & V7'(1 # £77);
error, if z = Cnj,, ., &y = Eq;
& ~(y < Cnjg, ¢,), where 1172 = £162;
x, if y = Cnj, . and
either r=Eq, and V7'(r#&7),
or x = Cnj,, ., and V7', k((mim2)"m # &7');
T, if y = Cnjg, ¢, and x —y can satisfy at least
rToy= two different predicates of the form Cnj,,, .3
anTmnTl,17 if z <Cnj,, ., and y < Cnjg, ¢,
and E”C, k‘/, T1,1,71,2
(mme)fria = (616)7 & &1 = 11,171,2);
anmwlnvl, if x < an_rl’T2 and y < angh52
and 3k57 k‘l, 72,1, 72,2
((7'17'2)le7'2,1 = (5152)’“/51 &= 7'2,17'2,2);
T, otherwise.

The x case above corresponds to the case when the prefix
subtraction from x should succeed on the only possible con-
crete string value satisfying the predicate y. The intermediate
case returning T corresponds to the case when a predicate
of the form Cnj,, . capturing concrete values of = — y is
undetermined, given arbitrary values satisfying the predicates
— abstract values = and y. The remaining cases (besides the
trivial one) consider the computations when such a predicate
is unique. The detailed comments on the case with the unde-
termined value of x — y and the cases returning conjugation
predicates are given in Appendix (see Subsect. VII).

Now we consider the abstract version of the string replace-
ment operation.

error, if z1 = Eq_;
Eqreplace(ﬂgl,gg)’
if y=Eq,,z1 = Eqg ,22 = Eq,;
Chj,, . if y < Cni,, .,
and z1,22 < anf,&&z S.t. 5251 = T17T2;
replace(y, z1,z2) = Cnj,, ., ify=Cnj,,
and z1 < Cnjg, ., and Vn, k, 73,74

((gl #e= (mm)" # m&i7)
& (k>0= (nm)" # 73(5152)k§174)>3

T, otherwise.

There the satisfiability of y to the predicate Cnj, . is
preserved in the following two cases. First, the result of the
replacement satisfies Cnj,., . if a power of a primitive word
&1&5 conjugating with 77 (i.e. s.t. €& = T 79) is replaced
with (£&)F. Second, the value of y is unchanged if no
occurrence of a string satisfying z; can appear in a string
satisfying the predicate given by y.

C. Predicates

The predicates defined on the string domain, under certain
conditions, may be equivalent to the predicates defined on
some other domain, e.g. integers. For example, if 3z (y = xz),
then we may deduce that |z| < |y|. If additionally = and y
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are known to belong to the language a*, then the predicate
|z| < |y| becomes equivalent to 3z(y = xz). Thus, if the
latter is replaced by the former, sometimes a dead code can
be eliminated by a simple static analyser. On the other hand,
if 3z (y xz) and y is known to be ¢, then the predicate
3z(y = xz) can be replaced by the equivalent condition (y =
e) & (z = ¢), which can also simplify tracking some of
unreachable computation branches.

In fact, the predicate processing searches for invariants of
the conditionals or loops, that can be derived from the values
of the variables involved in the predicates over the abstract
domain. This technique is close to one used in the paper [23],
in order to prune unreachable computation branches in string
manipulating programs.

The following simple interpretation of the predicate
prefixz(z,y) < Jz(y xz) helps a static analysis tool
to detect the non-terminating loop shown in the program
in Fig. 2. We denote a value of the concretisation function on
the abstract value « with a(x). There the line prefiz(z,y) =
f(a(z),a(y)) is interpreted as “if intersection of the a-
concretisation set and Pref(y) is non-empty, where Pref(y)
is the set of prefixes of all elements of the y-concretisation
set, then the predicate prefiz(z,y) can be replaced with
f(a(z),a(y))”. The capitalized OR notation stands for the
logical operation in the target program language.

(a(x) = & OR ... OR a(z) = (£26)"61).
if # = Cnjg, ¢,

and 3¢, n(n eN&y= Eq<§1§2)n51€3);
la(z)| < la(y)l, if © = Cnje, ¢,

and y = Cnjg, ., and 182 = 3843
a(z) = e, if y = Eq.:
true, if 3§(y =EBq &z = qul);
false, if z = Eq,,,y = Eqg, , otherwise;
(a(x) =& OR ... OR a(z) = (€162)"&1),
if z = Cnjg, ¢,y = Cnjg, ¢,, IT, My 10
(m,n € N & (£384)™ & = (£162)"&17);
prefix(a(x), a(y))7 otherwise.

The 1-st and the 6-th cases of the definition above contain
a disjunction of n possible equalities for a(x), which can be
derived from the corresponding abstract values of x and y.
The value of n is also determined by these abstract values. In
the 6-th case n is bounded because £1&> # £3&4 holds, since
the case £1&2 = £3&4 is completely handled by the previous
cases. In the 1-st case n is trivially bounded. Hence, the n-
disjunction can be constructed without a loop.

A trace of the abstract interpretation using the interpreta-
tions given above is presented in Fig. 3. The notation = — w
states that the abstract value of x is w; x —* w states that
the abstract value of = converges to w. In lines 5, 8§, 11,
13, the fixed points of the computations are constructed. The
join of Eq, and Eq,, which is a value both of = and y, is
Cnj p(¢). and then Cnj, ;) is concatenated with Eq, using
the 2-nd rule for concatenation (Subsect. IV-B). The results of
string subtraction stabilize in the same way. When the abstract
interpretation converges, the predicates can be replaced in
the concrete domain. After the replacement, a simple static

prefiz(z,y) =




(condy (1, 7j) is outside the string domain)

(conda (1, j) is outside the string domain)

(equivalent to |z| < |y| after the 1nterpretat1on)

Cnje p(e) V Cnje p(e) = Cnje p(e)s ¥ =" Cnje p¢)
(equivalent to |y| < |z| after the interpretation)

Cnje,p(e)

N
\/

(b) The lattice on the abstract
values used in the interpreta-
tion. Eq, corresponds to the

z — Eqg
z +— Eq., y — Eq,

(ignored)
= Cnjc p(e), =" Cnjc p(e)

(ignored)

= ans,/?(g); T —* ans,ﬂ(&)

1 z=¢

2 x,y =

3 while (C()ndl(l,j)){

4 i=1i+4+1

5 X =x + z } EqE \% EqE = anE,P(E); anE,P({) \Y anE,P(f)
6  while (condz (1, 3)) {

7 j=3+1

8 y =y + z } EqE Vv qu = an&p(&); an&p(&) V ana,ﬂ({) = Cl’lja’p(g), Yy —* ans,ﬂ(&)
9  while (true) {

10 if (prefiz (x,y))

11 y =y — X

12 elif (prefix (y, x))

13 X =X —Y ana,ﬂ({) \/ansyp@)
14 else break }

(a) Tracking the abstract values of the program variables.

equation X = & Cnjg ¢,
corresponds to the equation
162X = X &6

(unreachable after the interpretation)

Fig. 3: Static analysis of the program that incorrectly checks that a quotient of strings x and y is €.

analysis tool can determine that the line 14 is unreachable
because the disjunction |z| < |y| OR |y| < |z| always holds,
and the loop given in the lines 9-14 never terminates.

V. TOKENIZATION

In order to construct a sound mapping from the string set
into a set of token sequences, in general we have to describe
‘WLg-induced extensions of any finite state machine function.
We postpone this problem to a future work, and now suggest
a simple subclass of the finite-state-machine functions whose
extensions are monotone lattice mappings.

Definition V.1. Given alphabets 3 and Y./, let h be a string
morphism being defined by the mapping h' : ¥ — X'*. We
use the same name h for the following extension of h over the
lattice elements.

o h(Eag) =Eaye)
L4 h(anTl,Tz) = Cn‘]p(h(n)),p(h(Tng)—p(h(ﬁ)))

We recall the following classical lemma [20], which ensures
that h is monotonic wrt the lattice order.

Lemma V.1. If o is a solution to equation U =V, and h is
a morphism, then h o o is a solution to h(Z/{) = h(V)

Given any values x,y € WLg and a string morphism h, we
can now show that (h(x) V h(y)) < h(z V y). Moreover, in
casex Vy# T, h(xVy)=h(z)V h(y), due to Lemma V.1.

Let < be a linear order on ¥, and =<, be the length-
lexicographical® order on ¥* induced by <. Given a string
morphism % : ¥ — ¥ s.t. Va € X(h(a) # €), we define its
minimal inverse mapping h_! : ¥* — ¥* as follows.

Bt (€) = 7 s.t. h(1) = € & V7' (h(7')

min
In general, the inverse image hmm does not respect the
lattice order. For example, given distinct a > b > ¢, if

={=>7=2,7)

B |wi] < |wa], then wi <y wa; if |wi| = |wa], then the order < is used
lexicographically.
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h(c) = aba, h(a) = a, h(b) = b, then h_! (abab) = cb,
and hr;nln (Eqabab> v h:nlln (Eqab> = T, while hr:qiln (Eqabab v
Eqab) = h’mlln (CHJE ab)

In order to address the monotonicity issue, we choose a
special subset of string morphisms whose inverse mappings
extensions can be used as lattice morphisms. After the pa-
per [16], we say that an infix & of a word a; . ..a, contains
a border between subwords a; ...ar and ag4g ... ay, if the
word & includes an infix ar_j, ... ax45,, where j; > 0 and
J2 > 0. Given any predicate Cnjg, ¢, in lattice £, the inverse
mappings we consider preserve the borders between &; and
&2, as well as between & and &;.

Formally, given a lattice £, the inverse mapping of a
morphism h is border-preserving wrt £, if for any lattice
element of the form Cnj,, 4, a,.,. 4, and for any b € 3,
the morphism h(b) is equal neither to £2(ay . . . a,,)"*&; nor to
&3, for any m € N, &;1,&2,&3 € X* satisfying the following
conditions:

n

an; & is a suffix of ay...ay;

(I&2] > 0),

e &1 is a prefix of ap ...
[€1&2] > 0, |&] < n, and either (|¢1] > 0) &
orm > 0,

o &3S Qj—j, ... Qkyj,, Where £ > j; > 0and n — k >
o > 0, and |§3| < n.

Hence, there are the two possibilities to violate the border-
preserving condition: h(b) equals to an infix of ay...a,
containing the border between a;...a; and ag41...a,, Or
to a subword of (ap...a,)™ containing at least one border
between the occurrences of a; ...a,. The border-preserving
condition does not depend on the order induced on X in the
definition of h_1 | because the condition holds for images of

min?

all elements of Y'.

Example V.1. Given a lattice including the element Cnj, 4,
and ¢ # a, ¢ # b, the inverse of any morphism h s.t. Ic €
¥/ (h(c) = aba) is not border-preserving: h(c) includes the
border between two occurrences of ab.



Fig. 4: Isotonic lattice mapping using the string morphism hy_,, of the lattice given in Fig. 1. The sublattice of the fixed
points of hy_,, is given in framed nodes and thick edges. Dashed arcs point to the morphic images of the elements.

Given a lattice including the element Cnj,p, po Neither of
the inverses of morphisms hi, ho s.t. 3cq, co 3 Y (hi(c1) =
bab & ha(ca) = aa) is border-preserving. The bab value of
hi(c1) includes the border between aba and ba, given &3 =
bab, k = 3, j1 = 1, jo = 1; the aa value of ha(ca) contains
the border between ba and aba.

Lemma V.2. Given lattice WLg and a string morphism h
satisfying the conditions above, for any order induced on ¥,

1
hoin 1 a lattice morphism.

Proof Given x,y € L, let us show that h_! (z V y) and
ok (2) V Bk (4) are equal,

If z and y are both of the form Cnj, ., then their join is
non-trivial iff x = y; and the equality is tr1v1ally preserved.

Given 2 = Eqg, and y = Eq,, if they are equal or their join
is T, the morphism property holds trivially. Let us consider
the case when z V y is Cnj,, ., then for any b € ¥/, ¢ s.t.
h(b) = & and & = & ,€'&.s = (Ti2)¥71, the occurrence
of ¢ can appear strictly inside the subwords 71 and 79 of 51
and &. Thus h_} (qu1 \% Eq&) = Cnj, (r1 )k

min min
h= 1

min (Eq& ) \ hmln (quz)
Given x = qu and y = Cnj,, ., let us compute hm“[1 (:v \Y

) when the join is non-trivial. In this case & = (7172)"71,
and again all the subwords & s.t. 3b € X'(h(b) &
can occur only inside 7; or 7o, thus the resulting join is

min(T2) T

Cnjj, -1 (1), hi (72)°

min

The meet case is symmetric to the join case. Note that both
by the definition of h_! and choice of h, h_i (¢) =¢. O

min

Therefore, compositions of the border-preserving mappings
with the string morphisms result in monotonic lattice map-
pings. Hence, the image lattices can be analysed with the same
algorithms as the lattice described in Section III.

Moreover, if a string morphism maps elements of X into
elements of X* (i.e. acts in the same alphabet), then by the
Knaster—Tarski theorem [14] the set of its fixpoints forms a
complete sublattice of the lattice WLg, and no additional
construction is required to track the properties captured by
the morphism. Such a sublattice is shown in Fig. 4 in framed
nodes and thick edges.
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Tracing both the properties given in the lattice WLg and
in its sublattices wrt the string morphisms can be useful, for
example, in the following analyses.

First, we can obtain a simple length analysis of strings,
tracking constant values of string lengths. Indeed, the mor-
phism hyx_,, defined as Vc € E(hg_m(c) = a) maps any
given string to the unary Peano number representing its length.

Second, we can obtain a symbol occurrence analysis. Oc-
currences of forbidden symbols (i.e. all symbols from a set
Y’ C X)) can be traced in the sublattice produced by the mor-
phism Ay s/, defined as follows: Vc € E/(hg\z/_w(C) =
a) & Ve € B\ Y (hs\srselc) =¢).

Third, simple string classification wrt the letter sets that are
contained in the strings may be done. Namely, given ¥ =
Y1 UXoU. .. 5, where Vi, j(i # j = L, NE; = ), the
morphism Ay, .. x, mapping any symbol from X; to a single
letter a; produces a sublattice capturing abstract properties “to
contain only the letters belonging to the set >;”.

VI. RELATED WORKS AND DISCUSSION

Practical string analysis tools [4], [8], [10], [23] tend to
apply combinations of string domains. A natural abstraction of
string sets may be expressed in terms of the regular language
RL [6], [7], [9]. The RL-based abstract domains are easily
defined given the union and intersection operations, however,
the set of all regular languages cannot be directly used as an
abstract domain. The main two problems to be solved when
using the RL-based domains are listed below.

First, the lattice based on RL abstract domain admits
infinite ascending chains. Thus, the straightforward usage of
the regular expressions as elements of the lattice results in
non-termination of the abstract interpretation.

Second, when the first problem is addressed via widening,
infinite descending chains can still remain. The termination
issue of the abstract interpretation relies only on the upper
semi-lattice completeness. But the existence of such descend-
ing chains may indicate that the convergence speed is not
uniformly bounded wrt the program to be analysed. For
example, if the two strings start with the same common prefix



&, and ¢ is long enough, then their widening to £.x, where .x
defines an arbitrary string, (as defined in the paper [6]) may
result in || iterations computing the upper bound, if the loop
dropping the first letter of a word is analysed. The widening
defined in the book [7] shares this feature as well.

The paper [9] discussed the following four abstract string
domains often used in practical string analysis.

The first is an abstract domain with values Eq,. This domain
is included in WLg presented in this paper.

The second is an abstract domain with values tracking
the string lengths. Its simplest version can be modelled in a
sublattice of WLg by means of the morphism hy_,,. Versions
of the string length domain involving more complex length
properties are independent from WLg and can be used in the
direct product with WLg in order to improve preciseness of
the analysis [24].

The third is an abstract domain with values representing
predicates “string X contains a letter a”. If the known set of
the values ¥’ C X is tracked, then this domain is embedded
in WLy as a set of sublattices, by means of providing the set
of string morphisms hx\ {.}—,. mapping a chosen ¢ € ¥’ into
itself, and all the other letters from X to e.

The fourth is an abstract domain with values representing
prefix predicates “string X starts with £, and the correspond-
ing domain of suffix predicates. This domain contains infinite
descending chains, since if &1&5 is a prefix of X, then &
(including &; = ¢) is also a prefix of X.

The authors of the paper [10] use an abstract string domain
separating unknown strings into numeric, non-numeric and
special strings reflecting key words of JS syntax. Although
the string domain is hard-coded, the JSAI tool makes use of
configurable sensitivity in the trace analysis, thus allowing
a user to redefine the tracked breakpoints. Thus, the idea
presented in this paper to make the string analysis configurable
by constructing the tokenizer mapping can be considered as
an attempt to make the string-specified domain more config-
urable.

The works combining expressiveness of the word equa-
tion languages and regular languages emerged in program
verification for finding loop invariants and pruning unreach-
able computation branches, see e.g. the paper [23]. There
the straight-line fragment of the word equation language is
considered, i.e. the variables in an equation cannot occur more
than once. Nevertheless, such a fragment can still express some
of language properties that are non-expressible by means of
the multi-track finite automata [7].

The fresh work [25] reasons on so-called chain-free word
equations, in which the variable dependences are bounded. The
decision procedures for the existential theory of the chain-free
equations together with regular constraints are given.

A. Complexity of operations in WLg

Several operations presented in this paper depend on finding
either a primitive root of a string or its maximal suffix and
prefix being a power of the same primitive word, given
concatenation, string subtraction, and replacement operators.
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This task can be efficiently solved, e.g. by means of suffix
arrays and LSP arrays, hence, the resulting complexity of
the operations over abstract values = and y can be estimated
as O((lz| + [y]) log(|z| + |y])), where |Eq, | = |w|. and
| Cnje, ¢, | = &1 + [&2]-

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a first attempt to use
the word equations as a basic language for constructing a
string abstract domain. We have introduced the first, quantifier-
free, layer of the resulting lattice WLg, together with the
interpretation of the usual string processing operations in the
domain based on the lattice WLg.

Extending the lattice with existential predicates (i.e. equa-
tions involving at least two variables) is an interesting and non-
trivial task. A simplest choice of the existential two-variable
predicates is to take one-variable patterns, i.e. equations of the
form X =& Y& ... YE,+1. However, if we consider arbitrary
one-variable patterns, the domain will include unbounded
descending chains, e.g. X ai...apY,. .., X a1y,
which can make abstract interpretation too slow. Moreover,
some predicates of this form can violate the upper semilattice
condition. E.g. given an abstract value of the form Cnjg, ., if
the predicate 3Y (X = YY) is also introduced as an abstract
value, then Eq,, V Eq, becomes undefined, because we can-
not choose the least element from Cnj, , and 3Y (X = YY)
unless we introduce additional lattice layers beyond the layer
consisting of elementary equations.

Nevertheless, the patterns are the interesting and expressible
language to be considered as a closest development of WLg.

Definitely there are other possibilities of the lattice enhanc-
ing, e.g. with the balanced two-variable equations. An equation
is called balanced if multisets of the terms in its left- and
right-sides coincide. For example, the predicates of the form
FY (Xwiwsw2Y = Ywowswi X), as well as the patterns, are
basic in languages of two-variable equations, as shown in
the paper [26]. L.e. an infinite language of any two-variable
equation wrt variable X either contains a pattern or words
satisfying the predicate JY (Xwiwsws2Y Y wowswi X),
maybe intersected with a language of Cnj,, (.. This approach
has several benefits. First, the balanced two-variable equations
as the abstract values can capture non-trivial properties of one-
variable solution set projections, e.g. the X-solution set of the
equation XaYYb = YaXbY is {(b"a)™b" | m,n € N},
describing a non-regular property of the X value. Second,
the two-variable equations are able to express relations be-
tween concrete values over that the given variables can range.
E.g., the solution set of the equation XaY YaX is
{((wa)*w, (wa)*w) | w € £*}, where w is a word parameter.
While both X- and Y-projections of the solution set are
trivial, the whole set indicates that X and Y values consist of
repetitions of the same substring, separated with the letter a.
In the case a solution-set description includes word parameters
a static analysis may track not only known but also unknown
repeated substrings in the data to be analysed.



If we do not restrict the equations with k variables, then
construction of joins and meets becomes even harder, since,

e.g.

the pattern language inclusion is undecidable [27].
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APPENDIX
Computation of x —y

A word £ is said to be a fractional power of 7, if
Elwl,wg,k(k eN& 7™ = ww & & = Tkwl). The
fractional power of 7 in & is computed as k + ‘WT]" [18]. E.g.

abaabaa = (aba)?3. Hence, words satisfying any predicate
Cnj, «, are fractional powers of wiwy with the non-integer
fractional part consisting of w; (the fractional part is non-
empty if |wq| # 0). We recall that the operation a(x) takes a
concrete value of a predicate x.
Below the definition of the prefix subtraction operation in
WL, is repeated.
Eq,, if x = Eq,, & y = Eqg;
error, if z = Eq, & y = Eq, & V7'(1 # £77);
error, if x = Cnj,, . &y = Eq,
& =(y < Cnjg, ¢,), where 7172 = £12;
x, if y = Cnj, . and
either r=Eq, and V7'(r#¢&7),
or x = Cnj,, ., and V7', k((mim2)"m # &7');
T, if y = Cnjg, ¢, and  —y can satisfy at least
two different predicates of the form Cnj,,, ,,,;
Cn‘jTl,Qv

T—y=

rorye 2 < Cnj oand y < Cnjg g,
and 3k57 k‘l, 71,1, 71,2
((T1T2)k7'1,1 = (5152)’6/51 &= 7'1,17'1,2);
anTz’m’Tz,17 if z < Cnj,, ., and y < Cnjg, ¢,
and E”C, k/7 72,1, 72,2
(rim2)*mimon = (G&) 6 &= T2,172:2);

T, otherwise.

The first three cases of the definition are self-explanatory;
now we consider the case returning z. Given y = Cnj, ¢, if
any concrete value of a(z) does not start with &, the only value
of a(y) that can be subtracted from a(z) is ¢, i.e. £°.

In the following cases, we treat the predicate *+ = Eq,
uniformly with Cnj, . ., making use of the fact that any 7
can be represented as (7172)"' 7y, where 11 = €, T2 = P(T).

Let z Cnj. ., or © = Eqq ,ymr, ¥ = Cnje e,
and let a(x) start with a(y). Then 3k (a(z) = (1172)F71);
ks (aly) = (E162)"61); 3/ (a(x) = a(y)7’).

If both &; and &1£2&; are fractional powers of 775 and the
fractional parts of 7175 in &1 and &1£2&; do not coincide, then
the abstract value of a(z) — a(y) cannot be determined, and
the value T is returned by the computation of x — y (shown
in the fifth case of the definition).

In the remaining cases below the fifth (the one returning
T), we assume that either & and £;£2&; are powers of 7175
and the fractional parts of 775 in & and &£;£2&; coincide, or
that &; is a power of 7175, while &1£2&; is not.

If the string a(y) ends inside the string 71, then 7
T1,171,25 and dks (T/ = (7172T27171)k3T1,2). Hence, 7/ satisfies
the predicate Cnj,., , . ., (the sixth case of the definition).

If the string a(y) ends inside the string 7o, then 7
T2,172,2, and 3]63(7'/ (T2’2T1T2’1)k37'2$2’7'1). Hence, 7' sat-
isfies the predicate Cnj., . ., (the seventh case of the
definition).
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Note that the order of the right-hand sides of the interpreta-
tion rule for  —y guarantees that if a(y) satisfies the predicate
Cnj,, ,, then the resulting abstract value is Cnj, . , but not
Cnj,, ., .- These two predicates are equivalent, but only the
former is consistent with the definition of the abstract values
in WLg.
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Abstract—Deep reinforcement learning (DRL) is a powerful
machine learning paradigm for generating agents that control
autonomous systems. However, the ‘“black box” nature of DRL
agents limits their deployment in real-world safety-critical appli-
cations. A promising approach for providing strong guarantees
on an agent’s behavior is to use Neural Lyapunov Barrier (NLB)
certificates, which are learned functions over the system whose
properties indirectly imply that an agent behaves as desired.
However, NLB-based certificates are typically difficult to learn
and even more difficult to verify, especially for complex systems.
In this work, we present a novel method for training and verifying
NLB-based certificates for discrete-time systems. Specifically, we
introduce a technique for certificate composition, which simpli-
fies the verification of highly-complex systems by strategically
designing a sequence of certificates. When jointly verified with
neural network verification engines, these certificates provide a
formal guarantee that a DRL agent both achieves its goals and
avoids unsafe behavior. Furthermore, we introduce a technique
for certificate filtering, which significantly simplifies the process
of producing formally verified certificates. We demonstrate the
merits of our approach with a case study on providing safety
and liveness guarantees for a DRL-controlled spacecraft.

I. INTRODUCTION

In recent years, deep reinforcement learning (DRL) has
achieved unprecedented results in multiple domains, including
game playing, robotic control, protein folding, and many
more [22], [49], [65], [72]. However, such models have an
opaque decision-making process, making it highly challenging
to determine whether a DRL-based system will always be-
have correctly. This is especially concerning for safety-critical
domains (e.g., autonomous vehicles), in which even a single
mistake can have dire consequences and risk human lives. This
drawback limits the incorporation of DRL in real-world safety-
critical systems.

The formal methods community has responded to this
challenge by developing automated reasoning approaches for
proving that a DRL-based controller behaves correctly [62].
These efforts rely in part on specialized DNN verification
engines (a.k.a. DNN verifiers), which adapt techniques from
other domains such as satisfiability modulo theories, abstract
interpretation, mixed integer linear programming, and convex
optimization [55], [56], [67], [87]. DNN verifiers take as

d https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_15

input a DNN and a specification of the desired property and
produce either a proof that the property always holds, or a
counterexample demonstrating a case where the property does
not hold. While the scalability of DNN verifiers has improved
dramatically in the past decade [20], they struggle when
applied to reactive (e.g., DRL-based) systems with temporal
properties which require reasoning about interactions with the
environment over time. This is because a naive approach for
reasoning about time requires the involved DNN to be unrolled
(i.e., a copy made for each time step), greatly increasing the
complexity of the verification task.

On the other hand, for dynamical systems, a traditional
approach for guaranteeing temporal properties has been to use
control certificates such as Lyapunov Barrier functions [63].
Unfortunately, standard approaches for constructing these
functions are not easily applicable to DRL-based dynamical
systems. Recently, however, techniques have been developed
for learning control certificates. We call these Neural Lya-
punov Barrier (NLB) certificates [33]. Although NLB-based
approaches have been shown to work for simple, toy examples,
these certificates have been, thus far, difficult to learn and
verify for real-world systems, which often involve large state
spaces with complex dynamics.

In this work, we present a novel framework for training
and formally verifying NLB-based certificates. Our framework
can verify both liveness and safety properties of interest,
providing reach-while-avoid (RWA) guarantees. We use off-
the-shelf DNN verifiers and introduce a set of novel techniques
to improve scalability, including certificate filtering and com-
position.

We demonstrate our approach with a case study targeting
a specific challenge problem, in which the goal is to ver-
ify a DRL-based spacecraft controller [78]. We show that
our framework is able to generate verified NLB-based RWA
certificates for a range of complex properties. These include
liveness properties (e.g., will the spacecraft eventually reach
its destination?) and complex non-linear safety properties
(e.g., the spacecraft will never violate a non-linear velocity
constraint), both of which are challenging to verify using
existing techniques.

This article is licensed under a Creative
BY Commons Attribution 4.0 International License
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The rest of this paper is organized as follows: Sec. II
gives an overview of relevant background material on property
types, DNN verifiers, and NLB certificates. Related work is
covered in Sec. III. In Sec. IV and V, we present our approach,
and Sec. VI reports the results of our spacecraft case study.’
Finally, Sec. VII concludes.

Note. Proofs and additional details can be found in an extended
technical report [69].

II. PRELIMINARIES
A. Property Types

This work focuses on DRL controllers that are invoked

over discrete time steps. We consider both safety and liveness
properties [5].
Safety. A safety property indicates that a bad state is never
reached. More formally, let X be the set of system states,
and let 7 € X" be the set of possible system trajectories. The
system satisfies a safety property P if and only if every state
in every trajectory satisfies P:

Va:aer:(Vzea: z=P)

(D

A violation of a safety property is a finite trajectory ending in
a “bad” state (i.e., a state in which P does not hold).

Liveness. A liveness property concerns the eventual behavior
of a system (e.g., a good state is eventually reached). More
formally, we say a liveness property P holds if and only if
there exists a state x in every infinite trajectory where P holds.
Letting 7°° be the set of infinite trajectories, we can formalize
this as follows.

Va:aer™: (Jzea: x=P),

2

A violation of a liveness property is an infinite trajectory in
which each state violates the property P.

B. DNNs, DNN Verification, and Dynamical Systems.

Deep Learning. Deep neural networks (DNNs) [43] consist
of layers of neurons, each layer performing a (typically non-
linear) transformation of its input. This work focuses on deep
reinforcement learning (DRL), a popular paradigm in which a
DNN is trained to realize a policy, i.e., a mapping from states
(the DNN’s inputs) to actions (the DNN’s outputs), which is
used to control a reactive system. For more details on DRL,
we refer to [64].

DNN Verification. Given (i) a trained DNN (e.g., a DRL
agent) IV; (ii) a precondition P on the DNN’s inputs, limiting
the input assignments; and (iii) a postcondition ) on the
DNN’s output, the goal of DNN verification is to determine
whether the property P(x) - Q(N(z)) holds for any neural
network input z. In many DNN verifiers (a.k.a., verification
engines), this task is equivalently reduced to determining the
satisfiability of the formula P(z) A-Q(N(z)). If the formula
is satisfiable (SAT), then there is an input that satisfies the

'Code for reproducing the experiments is available at:

github.com/NeuralNetwork Verification/artifact-fmcad24-docking.
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pre-condition and violates the post-condition, which means
the property is violated. On the other hand, if the formula
is unsatisfiable (UNSAT), then the property holds. It has been
shown [55] that verification of piecewise-linear DNNs is NP-
complete.

Discrete Time-Step Dynamical Systems. We focus on
dynamical systems that operate in a discrete time-step setting.
More formally, these are systems whose trajectories satisfy the
equation:

3)

where f is a transition function that takes as inputs the current
state r; € X and a control input u; € U and produces the
next state x;.1. These systems are controlled using a feedback
control policy 7 : X — U which, given a state x € X produces
control input w = 7(z). In our setting, the controller = is
realized by a DNN trained using DRL. DRL-based controllers
are potentially useful in many real-world settings, due to
their expressivity and their ability to generalize to complex
environments [85].

Tie1 = f(iﬂmut)a

C. Control Lyapunov Barrier Functions

The problem of verifying a liveness or safety property
over a dynamical system with a given control policy can
be reduced to the task of identifying a certificate function
V : X » R, whose input-output relation satisfies a particular
set of constraints that imply the property. There are two
fundamental types of certificate functions.

Lyapunov Functions. A Lyapunov function (a.k.a. Control
Lyapunov function) represents the energy level at the current
state: as time progresses, energy is dissipated until the system
reaches the zero-energy equilibrium point [48]. Hence, such
functions are typically used to provide asymptotic stability,
i.e., adherence to a desired liveness property, or the eventual
convergence of the system to some goal state. Such guarantees
can be afforded by learning a function that (i) reaches a 0
value at equilibrium, (¢7) is strictly positive everywhere else;
and (4¢7) either monotonically decreases [25], [26] or decreases
by a particular constant [40] with each time step.

Barrier Functions. Barrier functions [8], a.k.a. Control
Barrier Functions, are also energy-based certificates. However,
these functions are typically used for verifying safety proper-
ties. Barrier functions enforce that a system will never enter
an unsafe region in the state space. This is done by assigning
unsafe states a function value above some threshold and then
verifying that barrier function never crosses this threshold [7],
[16], [90].

Control Lyapunov Barrier Functions. In many real-world
settings, it can be useful to verify both liveness properties and
safety properties. In such cases, a Control Lyapunov Barrier
Function (CLBF) can be used, which combines the properties
of both Control Barrier functions and Lyapunov functions.
CLBFs can provide rigorous guarantees w.r.t. a wide variety
of temporal properties, including the general setting of reach-
while-avoid tasks [37], which we describe next.
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Reach-while-Avoid Tasks. In a reach-while-avoid (RWA)
task, we must find a controller 7 for a dynamical system such
that all trajectories {x1,z5...} produced by this controller (i)
do not include unsafe (“bad”) states; and (i7) eventually reach
a goal state. More formally the problem can be defined as
follows:

Definition 1 (Reach-while-Avoid Task).
Input: A dynamical system with a set of initial states
X; € X, a set of goal states Xg € X, and a set of unsafe
states Xy € X, where Xin Xy =@ and Xgn Xy =&
Output: A controller 7 such that for every trajectory
7 ={x1,%9...} satisfying x1 € Xp:

1) Reach: 3t e N.x; € Xg

2) Avoid: VteN.x, ¢ Xy

ITI. RELATED WORK
A. Control Certificates

Control certificate-based approaches form a popular and
effective class of methods for providing guarantees about com-
plex dynamical systems in diverse application areas includ-
ing robotics [33], energy management [52], and biomedical
systems [35]. Control Lyapunov functions are certificates for
system stability, and the closely-related control Barrier func-
tions are certificates for safety. While such Lyapunov-based
certificates have been proposed over a century ago [66], their
main drawback lies in their computational intractability [42].
As a result, practitioners have mainly relied on unscalable
methods for constructing certificates, such as manual design
for domain-dependent certificate functions [24], [27], sum-of-
squares approaches restricted to polynomial systems [53], [68],
and quadratic programming [63].

1) Formal Verification of Neural Certificates: Recent meth-
ods have leveraged neural networks as verifiable models of
these control certificates, forming a class of neural certificate
approaches [33]. For a fixed controller, [80] distills the prob-
lem into solving binary classification with neural networks, but
the method is limited to polynomial systems and only obtains
a region of attraction, making it incompatible with most RWA
problems, which have a predefined goal region.

In [2], [4], SMT solvers are employed to check whether
a certificate for a specific controller satisfies the Lyapunov
conditions and, if not, to return counterexamples which can be
used to retrain the neural certificate. A similar approach can be
used for Barrier conditions [73]. In [1], [36], the Fossil tool
is introduced, which combines these methods. In [3], Fossil
is used to generate training examples for barrier certificates
which are used to construct overapproximations of safe reach
sets. However, these methods require verifying all constraints
in the certificate for the entirety of the relevant state space —
a task which can be computationally prohibitive (as we show
in Section VI).

In [26], a Neural Lyapunov Control (NLC) framework is
proposed, which jointly learns the Lyapunov certificate and
the controller. The algorithm iteratively calls the dReal SMT
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solver [41] to generate counterexamples and retrain both the
neural certificate and the control policy. Various extensions and
applications followed: [45] addresses algorithmic problems in
NLC; [46] automates the design of passive fault-tolerant con-
trol laws using NLC; [97] extends NLC to unknown nonlinear
systems; [88] extends NLC to discrete-time systems; [82]
verifies single hidden-layer ReLU neural certificates with
enumeration [77] and linear programming; and [96] develops
a framework for Barrier functions when there is an existing
nominal controller. However, these methods do not consider
the more general reach-avoid problem.

2) Data-driven Neural Certificates: To improve scalability,
a recent line of research proposes learning certificates and
controllers from online and/or offline data without additional
formal verification [33], following the intuition that, with
increasing data, the number of violations in the trained certifi-
cate will tend toward zero [19]. [25], [40] learn Lyapunov
certificates for stabilization control, and [75], [76], [86],
[95] synthesize neural Barrier functions in various settings
like multi-agent control, neural radiance field [71] imagery,
and pedestrian avoidance. These methods (by design) cannot
provide rigorous guarantees on the validity of their learned
certificates.

B. Reach-Avoid methods

Solutions for tasks requiring the simultaneous verification
of both liveness and safety properties, of which the RWA
task is a common example, have also relied on control
theoretic principles. [34] learns a combined Lyapunov and
Barrier certificate to construct controllers with stabilization
and safety guarantees. The Hamilton-Jacobi (HJ) reachability-
based method (a verification method for ensuring optimal
control performance and safety in dynamical systems [15])
has also been used to solve reach-avoid problems [38], [51],
[84]. Safe reinforcement learning is closely related to reach-
avoid: the goal is to maximize cumulative rewards while
minimizing costs along a trajectory [21], and it has been
solved with both Lyapunov/Barrier methods [28], [91] and HJ
reachability methods [39], [94]. As mentioned, scalability is
a crucial challenge in this context. The next section describes
our approach for addressing this challenge.

IV. REACH-WHILE-AVOID CERTIFICATES

In this section, we present our approach for scalably creating
verified NLB certificates. We first describe reach-while-avoid
(RWA) certificates, a popular class of existing NLB-based
certificates. We next present an extension called Filtered RWA
certificates, which significantly simplifies the learning task and
enables efficient training of certificates for complex properties.
We then present a compositional certification approach, which
independently trains a series of certificates that can be jointly
verified to handle even larger state spaces.



A. RWA certificates

A function V : X — R is an RWA certificate for the Reach-
Avoid task in Definition 1 if, for some o > 8 and € > 0, it
satisfies the following constraints.”

VaelX. V(z)<p “)
VeeX\Xg. V(z)<B->V(x)-V(f(z,m(x)))2€ (5)
VaeXy. V(z)2a (6)

Any tuple of values («, 3,¢) for which these conditions hold
is called a witness for the certificate. RWA certificates provide
the following guarantees.’

Lemma 1. If V is an RWA certificate for a dynamical system
with witness (a, 3,¢), and V has a lower bound,* then for
every infinite trajectory T starting from a state x € X \ Xg
such that V(x) < 8, 7 will eventually contain a state in Xg
without ever passing through a state in Xy.

Intuitively, V' partitions the state space into three regions:

« a safe region where the value of the certificate is at most
(. This region includes the initial states X and any states
reachable from A’;. Furthermore, starting from any non-
goal state in the safe region, the certificate function value
should decrease by at least € at each time step.

an unsafe region where the value of the certificate is at
least «v. This region must include the unsafe states Xy .
an intermediate region, where the value of the certificate
is strictly between 8 and «. States in this region are not
unsafe but are also not reachable from X7. This can also
be thought of as a “buffer” region that separates the safe
region from the unsafe region. These states play a role in
the compositional approach described below.

B. FRWA certificates

A neural RWA certificate is an RWA certificate realized
by a DNN. Such a DNN can be trained by following the
NLC approach [26], using the constraints (4)—(6) as training
objectives. Because we are also interested in formally verifying
these certificates, we would like to keep the DNNs (both the
controller and the certificate) small so that verification remains
tractable. We have observed that this can be challenging when
the system and properties are non-trivial. To help address this,
we introduce an improvement called Filtered Reach-while-
Avoid (FRWA) certificates.

The idea behind FRWA is straightforward. Often, we can
describe the goal and unsafe regions using simple predicates
(or filters) on the state space. We pick constants c;,cy such
that ¢; < 8 < a < ¢9 and then hard-code the implementation of
V sothat z € X5 —» V(x) = ¢ and x € Xy » V(x) = co. Note
that the latter ensures that condition (6) holds by construction.

2These constraints are similar to the ones defined in prior work [37] but
are specific to discrete time-step systems and instead place constraints on the
set of unsafe states instead of a compact safe set.

3See [69] for a proof.

4This is always the case if the output of V is implemented using a finite
representation such as floating-point arithmetic.
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Importantly, this not only makes the training task easier, but
also reduces the number of queries required to formally verify
the certificate. On the other hand, hard-coding the certificate
value for inputs in Xz makes it easier to learn constraint (5).
The reason for this is more nuanced. If we randomly initialize
the certificate neural network, the certificate value for some
states in X could start out larger than 3, making it more
difficult to satisfy constraint (5) for a point = where V(x) < 8
and f(xz,7(x)) € Xg. Fixing the certificate values for states
in Xg to at most 8 (ideally, significantly below () ensures
that, at least for such points, condition (5) is easier to satisfy.
In practice, FRWA certificates can be implemented by using a
wrapper around a DNN which checks the two filters and only
calls the DNN if they both fail. The practical effectiveness of
FRWA certificates is demonstrated in Sec. VI.

FRWA Training. FRWA simplifies the certificate learning
process, as now, only constraints 4 and 5 are relevant for
training. We custom design the reinforcement learning training
objective function as follows. Let x1,...,xny be the set of
training points, and let «; = f(x;, 7(x;)). We define:

RCLU((Sl + V(l’l) - 5)

Oy = cs (7
i|zieXr Zi\mlsxl 1
ReLU(d02 + €+ V(z) - V(x;))
Oq=cq
i e XN (X OXG),V (w:)<B i | 2ieXN(XyUXG),V ()< |
(3
O=0,+0y 9)

Eq. (7) penalizes deviations from constraint (4), and Eq. (8)
penalizes deviations from constraint (5). We incorporate pa-
rameters 6; > 0 and d > 0, which can be used to tune how
strongly the certificate over-approximates adherence to each
constraint. Similarly, constants cs and ¢4 can be used to tune
the relative weight of the two objectives. The final training
objective O in (9) is what the optimizer seeks to minimize, by
using stochastic gradient descent (SGD) or other optimization
techniques. We note that the FRWA certificates are trained in
a self-supervised, non-RL setting.

FRWA Data Sampling. From the formulation above, we
see that only data points in (X \ (Xy U Xg))u X affect the
objectives, and thus, only these data points need to be sampled.

FRWA Verification. We use DNN verification tools to
formally verify that conditions (4)-(6) hold for our certificates.
Filtering introduces a slight complication. Recall that a FRWA
certificate is implemented as a wrapper around a DNN, mean-
ing that the DNN itself can behave arbitrarily when either
x € Xg or x € Xy. Fortunately, we can adjust the verification
conditions for the DNN part of the certificate as follows.

Constraint (4) can be checked as is. The filtering does not
affect this property. And it is easy to see that checking the
property for the DNN does indeed ensure the property holds
for the full certificate.

Constraint (6) need not be checked at all, as the filtered
certificate ensures this condition by construction.
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Fig. 1: The CEGIS Loop used to iteratively train and verify
controller m and certificate V. Verification counterexamples
are used to augment the training dataset.
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Verification of constraint 5 is done by instead checking that:
VeeX N (XpulXg),r eX.

(@' = f(a,m(2)) AV (2) < B) -

(V(z)-V(z)zev(a e X)) A (2" ¢ Xy)  (10)

There are three main differences between (5) and (10). Since
the filter ensures that V(x) > 8 when x € Xy, we can safely
exclude states in Ay from the check. Similarly, if the system
ever transitions from a state  with V(z) < 3 to an unsafe
state, the filter ensures that condition (5) is violated, so it
suffices to check that ' ¢ Xy to cover this case.

The last difference is a bit more subtle. Observe that (10)
is trivially true if 2’ € Xg, meaning that if we transition to a
goal state, we do not enforce (5). However, it is easy to see
that Lemma 1 still holds with this relaxed condition: if every
transition either reduces V' by at least € or reaches a goal state,
then clearly, we must eventually reach a goal state.

C. CEGIS loop

We use a counterexample-guided inductive synthesis
(CEGIS) loop, shown in Fig. 1, to obtain a fully verified
controller and certificate. We first train an initial controller 7.
Then, at each CEGIS iteration, we jointly train V' and 7 until a
loss of 0 is obtained and then use a sound and complete DNN
verifier (we use Marabou [58] in our experiments) to identify
counterexamples. If the verifier identifies a counterexample
violating constraints (4) or (5) (recall that constraint (6) is
satisfied by construction), we sample points in the proximity of
the counterexample and use these to augment the training data.
By sampling multiple nearby points, we hope to influence the
training to learn smooth behavior for a localized neighborhood
instead of overfitting to a specific point. This process is
repeated iteratively until no counterexamples are found, at
which point we are guaranteed to have produced a fully
verified controller and certificate.

V. COMPOSITIONAL CERTIFICATES

While filtering does improve the efficiency of both training
and verification, the approach outlined above still suffers from
scalability challenges, especially as the system complexity or
state space covered by the controller increases. In this section,
we introduce compositional certificates, which aim to aid
scalability by training multiple controller-certificate pairs, each
covering different parts of the state space. The certificates are
compositional in the sense that a simple meta-controller can
be designed to determine which controller-certificate pair to

use when in a given state, and we can formally guarantee that
the meta-controller satisfies the requirements of definition 1.

CRWA. Formally, a compositional RWA certificate (CRWA)
for an RWA task is composed of n RWA certificates,” which
we denote Vy, ..., V,_1, with corresponding controllers, which
we denote mg,...,7Tp-1, With n > 2. Furthermore, each
pair (V;, ;) must be an RWA certificate with some witness
(e, Bi,€;) for an RWA task whose dynamics are that of the
main RWA task, but whose parameters are (X7, X%, X5).
These parameters must satisfy the following conditions:
(i) XP <X, X2 =X, and Xy € X)) c (XY uX2), where
S denotes the complement of the set S; L
(@) for 0 < i <, X7t c Xfc X, X, ={x e Xt
Vic(z) < Bim1 U X2, and Xy € X, € X

(ii) either X} # Xj' or X # Xf'; and
(iv) Xp~' =X and XJ7 = Ay
Intuitively, the idea is as follows. We start with an initial
controller capable of guiding the system from some subset
of the initial states A7 to the original goal states Xz while
avoiding some superset of the unsafe states A7;. Then, for each
subsequent controller, we ensure that it can guide the system
either from a larger subset of the initial states X; or while
avoiding a smaller superset of the unsafe states X7y, or both,
to a new goal region consisting of the states considered safe by
the previous controller, i.e., the states 2 for which V(z) < 3.
For the final controller (controller n — 1), the set of initial
and unsafe states should coincide with those of the original
RWA problem. Note that the algorithm does not say how to
choose of X} and X}, for i <n — 1 other than to specify that
these sets should be monotonically increasing and decreasing,
respectively. Finding good heuristics for choosing these sets
in the general case is a promising direction for future work.

The meta-controller behaves as follows. Given any starting
state © € X, we first check if x € X5. If so, we are done.
Otherwise, we determine the smallest 7 for which z € X}
and guide the system using 7; until a state in X, is reached,
which will occur in some finite number of steps because of
the guarantees provided by V;. At this point, we transition to
m;—1, and the process repeats until a state in X is reached.

The training and verification of a CRWA certificate is
described in Alg. 1 and visualized in Fig. 2.

The following lemma captures the correctness of our ap-
proach.®

Lemma 2. Given a CRWA certificate for an RWA task with
parameters X;, Xg, and Xy, all trajectories guided by the
meta-controller starting at any point in X will reach Xg in
a finite number of steps while avoiding Xy. In other words,
a CRWA certificate provides a correct solution for the RWA
task.

CRWA Data Sampling. When training certificate V;, it is
important that the training dataset contains sufficient states

SEach controller in a CRWA can make use of the FRWA technique described
above.

6See [69] for a proof.
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Algorithm 1: CRWA Training and Verification

Input : X;, Xq, Xy
Output: ng,...,m-1, Vo,..., Vy_1 for some n
Xg « Xo

Choose X}) € X7 and XO 2 Xy, with X ¢ (X020 X0)

Choose a” > 3% and € > 0

Train and verify controller 7y and certificate Vj; with
witness (a?, 39, €Y) for the RWA task corresponding
to X;ﬂXg, and X[(} using, e.g., the approach shown

BOW N -

in Fig. 1

59«0

¢ while X}CX[ OR X&DXU do

7 1< i+1

8 | Choose X}, X/, such that X} > Xi™! or X c x5!

9 /"(G<—{xe/"(z |V11(1')<51 1u X

10 Choose o > 3% and €' > 0

11 Train and verify controller 7; and certificate V;
with witness (o', 3%, €') for the RWA task
corresponding to X7, X}, and X}; using, e.g., the
approach shown in Fig. 1

Fig. 2: Visualization of how consecutive certificates relate
when building a CRWA certificate. Note that Xz need not
be a subset of X7. The dotted lines indicate that the unsafe
state region extends infinitely outside the solid line box. Wavy
lines indicate outer boundaries for initial or goal regions.

sampled from X} \ X/. Otherwise, V; might learn to assign
values greater than 3° as much as possible in order to meet
constraint (5), as opposed to appropriately assigning all states
in X} \ X, to have values less than 37, due to an insufficient
loss penalty for constraint (6). To ensure that states in the
region X} \ X/, are included in the training data, we can
identify states over constrained subspaces in X} \ Xé, and
then include in the data set those points as well as a random
subset of their neighbors which likely lie in the same region.

Tradeoffs in choosing Intermediate Goals for CRWA
certificates. It is possible to further reduce the state space
for individual certificates in a CRWA certificate by using a
more precise description of the goal states. In particular, we
could set the goal states as follows:

Via(z) < Bia}u X5

= {z e X1 | (11)

However, using 11 leads to a linear increase in the number
of DNNs that must be included during training and verification
at each iteration of Alg. 1. This quickly becomes prohibitively
expensive, especially for the verification step. We thus use the
simpler formulation described above.

VI. EVALUATION
A. Case Study

We evaluate our approach on the 2D docking task
from [78],” in which a spacecraft is trained using DRL to
navigate to a goal. More specifically, a DRL agent maneuvers a
deputy spacecraft, controlled with thrusters that provide forces
in the = and y directions. The deputy spacecraft attempts to
safely navigate until it reaches a state that is in close proximity
to a designated chief spacecraft, while obeying a distance-
dependent safety constraint. We focus on this benchmark
for several reasons: (i) it has been proposed and studied as
a challenge problem in the literature [78], (ii) there exist
natural safety and liveness properties for it; and (iii) existing
approaches have been been unable to formally verify these
properties.

System Dynamics. The system is modeled using the
Clohessy-Wiltshire relative orbital motion linear approxima-
tion in the non-inertial Hill’s reference frame, with the chief
spacecraft lying at the origin [29], [50]. The state of the
system, x = [x,y,%,9]7, includes the position in (z,y) and
the velocities in each direction, (&,%). The control input is
u = [Fy, F,], where F, and F), are the thrust forces applied
along the = and y directions, respetively. Each thrust force
component is allowed to range between —1 and +1 Newtons
(enforced with standard piecewise linear clipping). As in the
original scenario [78], the spacecraft’s mass, m, is 12kg. The
continuous time state dynamics of the system are determined
by the following ordinary differential equations (ODE), with
n = 0.001027 rad/s:

@ = [&,9,4,5]" (12)
. . o Iy
T=2ny+3n"x+ — (13)
m
Y =-2nr+— (14)
m

This, in turn, is converted to a discrete system (with a time-
step of T) by numerically integrating the continuous time
dynamics ODE:

t;+T
2t +T) = (1) + f
ti

The discrete-time version has a closed-form solution that we
use to generate successive states for the spacecraft.

x(7)dr (15)

Constraints and Terminal Conditions. To maintain safety,
a distance-dependent constraint is imposed on the deputy

7 Additional details on this case study are described in our recent related
paper [70] and in the extended version of the current paper [69].
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Fig. 3: A spiral trajectory: The DRL-controlled spacecraft
(starting from the red point) eventually reaches the destination
( ) point within the docking region.

spacecraft’s maximal velocity magnitude (while approaching

the chief):
V2 +9% <0.2+ 2ny/2z2 + 42

We construct a linear over-approximation of this safety con-
straints (with OVERT [83]). It can then be incorporated into
the description of the unsafe region.

The goal is for the deputy to successfully dock with the chief
without ever violating the velocity safety constraint. In the
original benchmark [78], the docking (goal) region is defined
as a circle of diameter d = 1m centered at the origin (0,0).
In our evaluation, we use this same goal region for the initial
training of the DRL controller. However, during the CEGIS
iteration (i.e., the “Train” and “Verify” steps in Fig. 1), we
use a conservative subset of this goal region, namely a square
centered at the origin whose sides have length [ = 0.7m. The
reason for this is so that the goal region can easily be described
using linear inequalities.

(16)

B. DNN architecture

We explored various architectures for the DNN used to
control the (deputy) spacecraft. During this exploration phase,
we trained each DNN architecture using the original Proximal
Policy Optimization RL algorithm implemented by Ray RLIib
as described in [78] (without any CEGIS iteration).

After training, we simulated each architecture on 4,000
random trajectories. Some selected results are shown in Ta-
ble I. There are two main observations to take away from
these results: (i) while a robust docking capability can be
achieved fairly easily, even for small architectures, safety is
more difficult and appears to not be robust, even for large
architectures; (47) in all cases, it takes an average of at least 50
steps to dock. The first observation suggests that verification
of the liveness (docking) property should be feasible and that
training a controller that verifiably achieves both safety and
liveness is challenging. The second observation suggests that
even state-of-the-art DNN verifiers are unlikely to be unable
to fully verify the liveness property using the naive unrolling
approach [9].

We also note that the spacecraft often exhibits highly non-
linear spiral trajectories (as depicted in Fig. 3), making DNN
verification based on induction difficult, as it is difficult to find

an inductive property over such irregular trajectories. These
results help motivate the use of NLB certificates for formal
verification of the desired properties. For the experiments
below, we settled on a DNN architecture of two hidden layers
with 20 neurons each, and a certificate architecture of two
hidden layers with 30 neurons each. Both DNNs use ReLU
activations for all hidden layers. The DNN sizes were chosen
based on experimentation and the rough criterion that we
wanted the smallest DNNs for which the CEGIS loop would
converge in a reasonable amount of time.

TABLE I: Performance of various DNN architectures. Statis-
tics are collected (per architecture) over 4,000 trials, with
a maximum trajectory length of 2,000, initialized arbitrarily
to set x,y € [-10,10], but outside the docking region, and
& = ¢ = 0. The first column indicates the number of neurons
per hidden layer.

DNN Architecture  Safety Success  Docking Success — Average Docking Steps

[4,4] 100 10 1,821

[8.,8] 11 100 389
[16,16] 30 100 50
[32,32] 5 100 59
[64,64] 100 100 55
[64,64,64,64] 100 99 58
[200,200] 92 100 51

C. Implementation and Setup

The training and verification of the DRL controllers and
certificates were carried out on a cluster of Intel Xeon E5-2637
machines, with eight cores of v4 CPUs, running the Ubuntu
20.04 operating system. Verification queries were dispatched
using the Marabou DNN verifier [58], [87] (used in previous
DNN safety research [10]-[14], [17], [23], [30], [61], [79]) as
well as its Gurobi back end.

For training and verification of RWA, FRWA, and CRWA
certificates, we use the following parameters: o = 1 + 1073,
B =1, €= 1077 (the same for all certificates); ¢; = —10,
¢ =1.2,6; =104 =1075, and 65 = 107* = 1077, These values
were determined to work well experimentally.

For weighting of the training objectives, we use c; = 1 and
cq = 10. The rationale for this is that constraint (4) is much
easier to satisfy than (5), so we use the weights to force the
training to focus on (5).

In the CEGIS loop, a learning rate of 5 x 1072 is used to
train the first network iteration in the CEGIS loop, and for
retraining, a learning rate of 107* is used, since we treat the
incorporation of counterexamples as a “fine-tuning” step and
do not want to overfit to the counterexamples. In the CEGIS
loop, we train until a loss of O is achieved and then use the
verification step to find counterexamples. We repeat this until
there are no more counterexamples or a timeout (12 hours) is
reached.

All of our experiments aim to solve RWA tasks, as defined
in Definition 1. The system dynamics are those of the 2D
spacecraft, as described in Section VI-A. RWA tasks are
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Fig. 4: The first 2 rows show average times and success rates
for creating verified certificates over 5 trials. The bottom 2
rows show specific times for each trial, separated into failed
(“F-") and verified (“V-") certificates. CFRWA-1, CFRWA-2,
and CFRWA-3 refer to the first (up to) three CRWA tasks for
the given starting region, corresponding, respectively to the
first (up to) three rows for that starting region in Table II.

parameterized by Xg, X7, and Xp. For these sets of states,
we typically use square regions centered at the origin. For
convenience, we refer to the set {(z,y) | =,y € [-a,a]}
with the abbreviation [-a,a]. For example, as outlined in
Section VI-A, we set X5 = [-0.35,0.35]. We use different
values for X7, depending on the experiment (indeed, this is the
primary variable we vary in our experiments), but whenever
X = [~a,a], we then set Xy = [~(a+1),a+1].

D. Experimental Results

RWA vs. FRWA. In our first set of experiments, we select a
set of RWA tasks and train both RWA and FRWA certificates
using our CEGIS loop.® We select five RWA tasks, where X
is set to [—i,4] for the ith task. For the RWA certificates, we
follow the approach of [37], whereas our FRWA certificates
are constructed as described in Sec. IV. In each case, we run
five independent trials for each task.

The results are summarized in Fig. 4. The first two rows
show, for each starting region, the number of successful runs
(a run is successful if the CEGIS loop produces a fully verified
controller/certificate pair within the 12 hour time limit) and the

8The Fossil 2.0 tool provides an implementation for computing the RWA
certificates used in [37]. However, our definition of RWA is slightly different,
and we use a different DNN verification tool, so we compare with our own
implementation of RWA certificates to have a more meaningful comparison
and to better isolate the contribution of the filtering technique.

average time required for the successful runs. Results for RWA
are shown as red circles and FRWA as blue squares (we explain
the diamonds later). For example, for starting region [-2,2],
all five trials are successful for FWRA, with an average time
of 2 hours, whereas all five trials are unsuccessful for RWA.
The bottom two rows show data from the same experiments,
but here we show the time taken for each of the five trials. An
unfilled circle or box represents a timeout.

The results suggest that FWRA has a clear advantage
over standard RWA. In fact, RWA only succeeded once in
producing any verified certificate, and only for the simplest
starting region. On the other hand, our FRWA approach is
able to produce certificates faster and for starting regions up
to [-3,3]. After that, both techniques time out.

Compositional Certificates. As demonstrated above, RWA
and FRWA certificates quickly run into scalability challenges
on our case study problem. For example, even with 5 tries and
a 12 hour timeout, neither approach could produce a verified
controller for the [-4,4] or [-5, 5] starting regions.

Our second set of experiments demonstrates that this scal-
ability challenge can be addressed with compositional cer-
tificates. We train a set of compositional certificates (each
composed of multiple FRWA certificates) and report the results
in Table II.

Each row of the table corresponds to a compositional
certificate. The first column shows the value of X} for this
certificate. The next columns indicate the number n of com-
posed certificates, the values of X} for 0 <i<n-1, and the
cumulative time required for all but the last certificate. The
next three columns give the minimum, mean, and maximum
time required to produce the controller and certificate for the
last stage of the compositional certificate (recall that we run
five independent trials for all CEGIS loops). The next three
columns show the minimum, mean, and maximum number
of CEGIS iterations used, and the last column indicates how
many of the trials succeeded. Note that when n = 1, the row
corresponds to a single FRWA certificate.

The results clearly indicate that compositional certificates
greatly improve scalability. Whereas the stand-alone certifi-
cates could not scale beyond [-3, 3] in 12 hours, we were able
to successfully produce a formally verified 5-stage certificate
for [-11,11] in a little over 5.7 hours. It is also worth noting
that we do get a significant benefit by running 5 independent
CEGIS loops, as both the time and the number of loops can
vary significantly from the minimum to the maximum. Nearly
all of the CEGIS loops eventually completed—only the initial
[3, 3] region failed to complete all of its trials—suggesting that
the compositional approach is also more stable and robust.
This can also be seen in Fig. 4: for each starting region
[-a,a], the diamond point labeled CFRWA-i corresponds to
the ith row containing [—a,a] in column 1. We can see that,
compared to the stand-alone RWA and FRWA certificates, the
compositional certificates can be trained faster and with fewer
failures.
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TABLE II: Compositional certificate results. The columns indicate: the initial set for the final certificate, the size of the
compositional certificate, the initial sets for all but the final certificate, the cumulative time for all but the final certificate,
the total time (min, mean, and max) for training all certificates, and statistics for training the final certificate. We note that
the cumulative time column is always equal to the corresponding value in the min column corresponding to the penultimate
certificate. The wall time is the total time including the final controller/certificate. The CEGIS iterations and success stats are

for the final controller/certificate only.

Compositional Certificate Wall Time (s) CEGIS Iterations
Xy n XIO .. Xf“z Cumulative Time (s) | min(t) mean(t) max(t) | min(i) mean(i) max(i) | success (%)
[-2,2] 1 N/A 0 4199 6890 8322 3 4.8 10 100
[-3,3] 1 N/A 0 3650 6644.5 9639 2 2.5 3 40
[-3,3] 2 [-2,2] 4199 8514 9421 10271 4 44 5 100
[-4,4] 2 [-3,3] 3650 5802 6374 6790 2 2.4 3 100
[-4,4] 2 [-2,2] 4199 8940 11026 13620 3 42 6 100
[-4,4] 3 [-2,2], [-3,3] 8514 10901 12829 17248 2 4.2 8 100
[-5,5] 2 [-3,3] 3650 6526 10716 19331 2 44 9 100
[-5,5] 3 [-3.3], [-4.,4] 5802 7171 9884 11945 1 34 5 100
[-5,5] 4 [-2,2],[-3,3],[-4.4] 10901 12130 13710 15353 1 2.4 4 100
[-6,6] 3 [-2,2],[-4.,4] 8940 13183 16384 20059 4 4.4 5 100
[-6,6] 4 [-3,31.[-4,4],[-5,5] 7171 9680 14027 32103 2 4.6 9 100
[-6,6] 5 [-2,21,[-3,3],[-4,41.[-5.5] 12130 18607 21768 24356 3 4.4 5 100
[-7,7] 3 [-3,31,[-5,5] 6526 9158 10171 10848 2 2.8 3 100
[-7,71 5  [-3,3],[-4.,4],[-5,5],[-6,6] 9680 11878 15967 23419 2 3.6 7 100
[-8,8] 4 [-2,2],[-4,4],[-6,6] 13183 16677 22623 33849 2 3.2 4 100
[-9,9] 4 [-3,31,[-5,51,[-7,7] 9158 12919 16013 18507 2 34 5 100
[-10,10] | 5 [-2,2],[-4.4],[-6,6],[-8,8] 16677 18137 23421 30872 1 34 6 100
[-11,111 | 5 [-3,31.[-5,51.[-7,71,[-9.9] 12919 20641 27860 32834 1 2.6 5 100

VII. CONCLUSION

In this work, we present a novel framework for formally
verifying DRL-based controllers. Our approach leverages Neu-
ral Lyapunov Barrier certificates and demonstrates how they
can be used to verify DNN-based controllers for complex
systems. We use a CEGIS loop for training and formally
verifying certificates, and we introduce filters for reach-while-
avoid certificates, which simplify the training and verification
process. We also introduce compositional certificates which
use a sequence of simpler certificates to scale to large state
spaces.

We demonstrate the merits of our approach on a 2D case
study involving a DRL-controlled spacecraft which is required
to dock in a predefined region, from any initialization point.
We demonstrate that for small subdomains, our FRWA ap-
proach is strictly better than competing RWA-based certificate
methods. Furthermore, we demonstrate that our compositional
approach unlocks significant additional scalability.

In the future, we plan to extend our approach to be
compatible with additional formal techniques (e.g., shielding
against safety violations [6], [18], [31], [60], [74], [81], [89],
and Scenario-Based Programming [32], [44], [47], [54], [57],
[59], [92], [93]). We also plan to apply our approach to more
challenging case studies with larger DRL controllers. We see
this work as an important step towards the safe and reliable
use of DRL in real-world systems.
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