
Formal Methods in Computer-Aided Design 2024

Extending DRAT to SMT
S Hitarth ∗¶, Cayden Codel †, Hanna Lachnitt ‡, and Bruno Dutertre §

∗Hong Kong University of Science and Technology, Hong Kong
¶IMDEA Software Institute, Madrid, Spain

Email: hitarth.singh@connect.ust.hk
†Carnegie Mellon University, Pittsburgh, PA, USA

Email: ccodel@cs.cmu.edu
‡Stanford University, Stanford, CA, USA

Email: lachnitt@stanford.edu
§Amazon Web Services, Santa Clara, CA, USA

Email: dutebrun@amazon.com

Abstract—The soundness of Satisfiability Modulo Theories
(SMT) solvers is critical in many applications. One way to
ensure soundness is to have solvers generate proofs that can
be independently verified. Unfortunately, generating proofs can
have a significant overhead. We propose a new proof format
(eDRAT) that extends the well-known DRAT format from SAT to
SMT. eDRAT proofs can be generated with little overhead and can
be verified by combining existing tools for propositional reasoning
with specialized theory checkers. We instrument the CVC5 solver
to generate eDRAT proofs and we develop checkers for two SMT
theories. Our checkers include an untrusted elaborator written
in Rust and a formally verified component written in Lean that
validates results from the elaborator. Empirical evaluation shows
that eDRAT has a much lower proof generation overhead than
other formats supported by CVC5, and it has comparable or
better proof checking times.

I. INTRODUCTION

Satisfiability Modulo Theories (SMT) solvers are used as
back-ends in a variety of applications including software
verification and testing [24], [18], [19], the verification of
distributed systems [26], model checking [20], [9], [8], and
security policy analysis [2], [29]. The soundness of SMT
solvers is critical for these applications, especially because
SMT solvers have become increasingly complex over the years
and are therefore subject to bugs.

When an input formula is satisfiable, solvers can produce a
model that can generally be checked, but this approach is not
applicable when the SMT solver says that the input formula
is unsatisfiable. To increase trust in the unsat case, the SMT
community has developed solvers that generate a proof that can
be independently validated by a trusted checker. Solvers such
as CVC5 [3], OpenSMT [23], SMTInterpol [10], veriT [7] and
Z3 [12] can produce proofs, for at least some of the logical
theories they support. Some have had proof support for many
years.

Several proof formats have been proposed for SMT [33],
[30], [22], but none has emerged as a standard. One limitation
of these formats is that they require fine-grained proofs with
small inference steps. While this simplifies proof checking,
generating such detailed proofs is expensive and slows down
solvers, and the resulting proofs can be very large and slow to
validate.

To address these concerns, we propose extended DRAT
(eDRAT), a new SMT proof format that extends DRAT [21],
a standard proof format for Boolean satisfiability. Proofs in
eDRAT are coarse-grained and clausal. They include Boolean
resolution steps (as in DRAT and its predecessor DRUP) and
SMT-specific clauses called theory lemmas.

Along with eDRAT, we present VALIDO, a modular and
extensible toolchain for checking eDRAT proofs. Proof check-
ing with VALIDO is a two-step process. First, we validate the
propositional part of the proof with DRAT-trim [34] to extract
an unsat core. Second, we check that all the theory lemmas
in the unsat core are valid using theory-specific checkers.
Currently, VALIDO supports two SMT theories: QF_LRA and
QF_UF. The VALIDO theory checkers for these two theories
have two components:

• An elaborator does most of the heavy lifting. It validates
theory lemmas using theory-specific decision procedures
and generates an unsatisfiability certificate for the negation
of each lemma.

• A certificate validator checks the unsatisfiability certifi-
cates produced by the elaborator.

The validator is the only trusted component, as the validity
of a certificate is enough to ensure that a lemma is valid,
irrespective of how the certificate was generated. To achieve a
high degree of confidence in the correctness of our toolchain,
we use the Lean theorem prover [14] to develop and prove the
soundness of our validators.

Because theory lemmas are individually validated, we can
precisely identify incorrect lemmas when proof validation fails.
This can aid debugging and guide the search for a minimal
counterexample.

We have instrumented the CVC5 solver to generate eDRAT
proofs, and we have evaluated VALIDO on SMT-LIB bench-
marks. Empirical results show that eDRAT proof generation has
low overhead (less than 10%), as opposed to between 2x and
17x for two other formats supported by CVC5. eDRAT proofs
are generally smaller, and proof checking time is comparable
to or better than with the alternative proof formats.

Our toolchain can generate eDRAT proofs for any theory that
cvc5 supports, including theories with quantifiers and theory

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_8 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0000-0001-7419-3560
https://orcid.org/0000-0003-3588-4873
https://orcid.org/0000-0003-3355-7828
https://orcid.org/0000-0002-6284-380X
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_8
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_8
https://creativecommons.org/licenses/by/4.0/

combinations. Our current proof-checking pipeline, VALIDO,
is only implemented for QF_UF and QF_LRA. However,
validating a theory lemma boils down to solving a (small)
SMT problem. For instance, we could leverage CVC5 itself (or
some other proof-producing solver) as an elaborator and the
associated ALF/LFSC proof checker as the validator. Therefore,
our approach is quite general and not limited to simple theories.

A limitation of eDRAT is that it requires problem instances
to be in conjunctive normal form (CNF), while SMT problems
can be arbitrary formulas. The preprocessing, simplification,
and rewriting steps that SMT solvers perform to convert
formulas to CNF are not expressible in eDRAT. Complementary
proof techniques are required for checking that the conversion
steps the SMT solver used were sound. We discuss possible
approaches to bridge this gap.

II. BACKGROUND

SMT is the problem of deciding the satisfiability of formulas
in some (typically first-order) logical theory [13], [6]. The
mainstream method employed by SMT solvers is conflict-driven
clause learning modulo theories (CDCL(T)). This combines the
CDCL algorithm from SAT [25] with theory-specific reasoning
implemented by theory solvers. Given a formula ϕ in a theory
T , the SMT solver first creates a Boolean abstraction ϕabs of
this formula. The abstraction process replaces atoms in the
background theory T with Boolean variables. The CDCL(T)
algorithm then alternates between Boolean search and theory
reasoning. The CDCL solver enumerates (possibly partial)
models σ of ϕabs that are interpreted as conjunctions of literals
in theory T . The theory solver checks whether this conjunction
is satisfiable in T . If it is, Boolean search can continue and try to
extend the assignment to a full model of ϕabs. If the conjunction
of literals is not satisfiable, the theory solver produces a theory
lemma that is added to the sets of clauses in the CDCL solver.
This clause must be inconsistent with σ and will cause the
CDCL solver to backtrack.

Modern SMT solvers extend this basic scheme in many
ways—for example, with the dynamic creation of new variables
and atoms on the fly and with mechanisms such as theory
propagation—but the general principle remains. In one direc-
tion, the CDCL solver sends candidate Boolean assignments to
the theory solver. In the other direction, the theory solver sends
new clauses—that is, theory lemmas—to the CDCL solver. As
in SAT, an SMT formula is unsatisfiable if the empty clause
is derived by this process.

Generating proofs for CDCL(T) solvers is an active area of
research, and several proof formats have been proposed. Proofs
may include reasoning steps used during preprocessing and
simplification of the original formula, conversion to clauses,
Boolean resolution in CDCL, and theory-specific reasoning
for justifying theory lemmas. Notable proof formats include
Alethe [30] (supported by VeriT [7] and CVC5 [3]) and
LFSC [33] (supported by CVC5 and ts predecessors CVC4 and
CVC3). Both Alethe and LFSC have dedicated checkers [1],
[32]. Other proof-producing SMT solvers [12], [10], [23] use

solver-specific proof formats [11], [22], [27] and do not use
independent checkers.

Most of these formats represent proofs as terms in a proof
calculus. Such terms describe a traditional proof tree (or DAG)
with the empty clause at the root. Each node in the tree
represents a step that derives a conclusion (stored in the
node) from the child nodes using a rule of proof calculus.
Leaves represent axioms or assumptions (e.g., assertions from
the original formula). One can distinguish generic logical
frameworks such as LFSC that encode a particular proof
calculus, and formats such as Alethe that come with a fixed
calculus for a fixed set of theories. Logical frameworks are
more flexible, since proof rules can be added to cover new
theories and reasoning steps, but not all rules employed by
SMT solvers can be compactly encoded in a logical framework.
Most solvers use a fixed proof calculus and a dedicated proof
format, which is similar to what Alethe provides. The recently
introduced AletheLF format (ALF) is a logical framework that
relies on an SMT-like syntax (similar to Alethe) in which SMT
constructs can be more easily represented. ALF is supported
by CVC5-1.1.0 and newer releases.

Coverage and proof granularity vary across solvers. Some
solvers, such as CVC5, can generate low-level, high-detail
proofs for almost all of the theories they support.1 Other solvers,
such as Z3, support proofs for a subset of theories and use more
coarse-grained proofs. Detailed proofs with small inference
steps are easier to verify, but generating such proofs can be
costly and can introduce significant overhead both in runtime
and memory usage.

We propose a coarse proof format that records the clauses
produced (and deleted) during execution of the CDCL(T)
algorithm. This extends the DRAT format used by Boolean
SAT solvers, which is known to have low overhead.

III. DRAT EXTENSIONS FOR SMT
Our new proof format, eDRAT records the reasoning steps

performed during the execution of the CDCL(T) algorithm.
We do not attempt to express preprocessing, simplification,
or conversion of a formula to CNF. Instead, eDRAT focuses
on capturing the theory reasoning (the theory lemmas) and
Boolean reasoning steps (the resolution clauses) that the SMT
solver generates. We extend DRAT with syntax for defining
theory terms and atoms, describing how these atoms map to
Boolean variables, and distinguishing between the different
types of clauses involved in SMT. We distinguish between
three types of clauses: assertions, which are clauses from the
CNF representation of the original formula; theory lemmas
generated by the theory solver; and regular clauses generated
by the CDCL solver.

An eDRAT proof consists of four components:
• The definitions of literals and terms used in the problem.
• The input problem converted to CNF.
• The theory lemmas that were emitted by the theory solver

during the course of solving.

1As far as we know, CVC5 can generate proofs for all theories that do not
involve floating points.

19

• The DRAT proof of the unsatisfiability of the formula as
produced by the underlying SAT solver.

A. Syntax of eDRAT

SMT-LIB [5] is the standard input format for SMT solvers.
The eDRAT syntax for term and atom definition is similar to
SMT-LIB with a few extensions. Sort and term declarations in
eDRAT use the following SMT-LIB syntax:

1 (declare-sort <name> <arity>)
2 (declare-fun <name> (<sort>*) <sort>)

The eDRAT syntax for datatypes and terms is also the same as
in SMT-LIB. We introduce two new commands to give names
to terms and to map DIMACS variables to literals:

1 (define-let <term-name> <smt-term>)
2 (define-literal <varid> <atom-name>)

The define-let command assigns a name to a term. It
is a variant of the SMT-LIB define-fun command that
omits the type of the term. The define-literal command
states that a Boolean variable is mapped to a given atom. As
in DIMACS, boolean variables are represented by positive
integers. To simplify processing, the atom is specified by its
name, which must appear either as a declaration or in a previous
define-let command.

As in DRAT, a clause is represented by a list of non-zero
literals terminated by 0. A positive integer denotes a positive
literal, and a negative integer denotes its negation. The syntax
for clausal reasoning is as follows:

1 a <list-of-integers> 0 Input problem clause
2 t <list-of-integers> 0 Theory reasoning clause
3 <list-of-integers> 0 Boolean reasoning clause
4 d <list-of-integers> 0 Clause deletion

eDRAT adds then two new prefixes to the DRAT syntax: one
for assertions, and one for theory lemmas.

Example III.1. The following small example illustrates the
eDRAT syntax.

1 (declare-sort T 0)
2 (declare-sort S 0)
3 (declare-fun f (T) S)
4 (declare-fun y () T)
5 (declare-fun x () T)
6 (define-let aux!312 (f y))
7 (define-let aux!338 (= (f x) (aux!312)))
8 (define-let aux!339 (= x y))
9 (define-literal 1 aux!338)

10 (define-literal 2 aux!339)
11 a 2 0
12 a -1 0
13 t 1 -2 0
14 0

This proof tells us that literals 1 and 2 are mapped to the atoms
f(x) = f(y) and x = y, respectively, where f : T → S is an
uninterpreted function. Lines 11 and 12 state two assertions
x = y and ¬f(x) = f(y), respectively, that come from the
input problem. Line 13 is a theory lemma: f(x) = f(y)∨x ̸= y.

The final step is the empty clause, which is derived by Boolean
resolution of the three preceding clauses. This shows that the
formula x = y ∧ f(x) ̸= f(y) is unsatisfiable.

B. Valido: A Toolchain for Checking eDRAT Proofs

eDRAT proof checking consists of two separate tasks:
checking that the Boolean reasoning steps derive the empty
clause, assuming that the theory lemmas are valid; and checking
the validity of the theory lemmas. VALIDO is our toolchain
for performing these two tasks.

To check the propositional part of the proof, VALIDO
constructs a CNF formula ϕ with the input clauses (those with
prefix a) and the theory lemmas (those with prefix t). It then
extracts the DRAT proof π from the eDRAT file. This proof
includes all the clauses corresponding to Boolean resolutions
and all the clause deletions, keeping them in the same order
as they occur in eDRAT. We then use a restricted version of
the DRAT-trim tool to check that π is valid for ϕ. In this
step, we treat all the theory lemmas as axioms and add them
to the input clauses.

We restrict DRAT-trim to allow only clause additions that
satisfy the reverse-unit-propagation (RUP) property and not the
more general resolution-asymmetric-tautology (RAT) property,
because accepting RAT clauses is not sound for SMT. It is
possible for a formula ϕ to be satisfiable in the background
theory T and for a clause C to be RAT with respect to ϕ, but
for ϕ ∧ C to be unsatisfiable in T . This occurs because the
addition of RAT clauses may eliminate some of the Boolean
models for ϕ. RUP is sound for SMT as adding a RUP clause
preserves all the satisfying models of the original formula.

Example III.2. Consider the formula ϕ := (¬p ∨ q) ∧ (p ∨
r) ∧ (q ∨ ¬r) where the propositional variables represent real
arithmetic theory terms defined as follows: p := x < 0, q :=
x ≥ 1, and r := x ≥ 2. It follows from the definition that the
unit clause p is RAT with respect to ϕ.

We can hence conclude that in propositional logic, ϕ is
equisatisfiable to ϕ ∧ p. However, in SMT, it can be readily
checked that while the original formula ϕ is satisfiable with a
model x→ 2, ϕ ∧ p is unsatisfiable.

When DRAT-trim successfully validates a DRAT proof, it
also returns a set of clauses U ⊆ ϕ that forms the unsat core
of the DRAT proof. To check the rest of the eDRAT proof, we
only need to check the validity of the core theory lemmas that
appear in the unsat core U .

One way of validating a theory lemma t is to employ existing
SMT technology to generate a proof of the unsatisfiability
of ¬t in another proof format, and then to check it with a
corresponding proof checker. This works, but we pursue a
different approach to provide a higher degree of assurance:
relying on purpose-built checkers that are provably sound.

In VALIDO, the theory lemmas are checked by two comple-
mentary tools that we call the elaborator and the validator.
These tools are instantiated for each background theory T
separately.

20

• An elaborator checks the unsatisfiability of a conjunctive
formula in theory T and generates a proof certificate.

• A validator is a provably correct tool that takes a proof
certificate and a theory lemma as input, and checks that
the proof certificate validates the theory lemma.

Algorithm 1 gives an overview of this method. The architecture
allows us to write an efficient but untrusted elaborator that
generates a proof certificate for every theory lemma in the
core. The validator is a simpler component that we develop
and prove correct within the Lean 4 theorem prover [14].

Algorithm 1 General Method for Checking eDRAT Proofs
Input: An eDRAT Proof
Output: Result of eDRAT proof validation

1: (input, ▷ Input problem in DIMACS format
t_lemmas, ▷ Theory Lemmas in DIMACS format
drat_proof, ▷ Boolean Reasoning as DRAT Proof
definitions) ← Decompose(eDRAT Proof) ▷ Term and Literal
Definitions

2: (e_res, unsat_core) ← DRAT-Trim(input, t_lemmas, drat_proof)
3: if e_res = Success then
4: core_lemmas ← t_lemmas ∩ unsat_core
5: proof_cert ← Elaborator(core_theory_lemmas, definitions)
6: val_res ← Validator(proof_cert, core_lemmas, definitions)
7: if val_res = Success then
8: return Proof Validation Successful
9: else

10: return Theory Lemma Validation Failed
11: end if
12: else
13: return DRAT Proof Check Failed
14: end if

The key benefit of this approach is that it reduces the trusted
code base. If the validator says that a proof certificate is valid,
then we can trust that the corresponding lemma is also valid,
independent of how the certificate was generated. In other
words, we do not need to trust the elaborator, only the validator.

We have implemented elaborators and validators for
two SMT-LIB theories: quantifier-free linear real arithmetic
(QF_LRA) and quantifier-free uninterpreted functions with
equality (QF_UF).

IV. ELABORATOR AND VALIDATOR FOR QF_LRA

Let V be a set of variables. A theory lemma in QF_LRA is
of the form ψ :=

⋁︁
i∈[n](Fi ▷◁1 0), where each Fi is a linear

expression over the variables V and ▷◁i∈ {<,≤,=, >,≥, ̸=}.
For example, the law of trichotomy ψ0 := x > 0 ∨ x =
0 ∨ x < 0 is a theory lemma. Validating such a lemma is
equivalent to proving that its negation—a conjunction of linear
inequalities—is not satisfiable.

Example IV.1. The negation of ψ0 is ¬ψ := x ≤ 0 ∧ x ̸=
0 ∧ x ≥ 0, which can be rewritten as ¬ψ := (−x ≥ 0 ∧ x >
0 ∧ x ≥ 0) ∨ (−x ≥ 0 ∧ −x > 0 ∧ x ≥ 0), where the
inequalities in each disjunct only have either ≥ or > as the
relational operator.

As shown in Example IV.1, our goal is to create a proof
of unsatisfiability for a disjunction of conjunctions of linear

inequalities that only involve ≥ or > as the relational operators.
For a single conjunctive QF_LRA formula, we use Farkas’
Lemma to produce the unsatisfiability certificate.

Lemma 1. [16, Farkas’ Lemma] A set S of linear inequalities
of the form Fi {≥, >} 0 is unsatisfiable if and only if there
exists a non-negative linear combination of the inequalities in
S ∪ {1 > 0} deriving either −1 ≥ 0 or 0 > 0.

Example IV.2. The formula ¬ψ from Example IV.1 is unsat-
isfiable if both the disjuncts are unsatisfiable. The expression
1 · (−x ≥ 0) + 1 · (x > 0) + 0 · (x ≥ 0) ≡ 0 > 0 is a
witness to the unsatisfiability of −x ≥ 0∧ x > 0∧ x ≥ 0, and
0 · (−x ≥ 0)+ 1 · (x > 0)+ 1 · (x ≥ 0) ≡ 0 > 0 witnesses the
unsatisfiability of −x ≥ 0 ∧ −x > 0 ∧ x ≥ 0.

The set of non-negative multipliers for the linear inequalities
that derive a trivially false inequality such as −1 ≥ 0 or 0 > 0
is called the Farkas certificate of unsatisfiability. We reduce
the problem of finding the Farkas certificate to solving a linear
program. For this purpose, we rely on the following variant of
Farkas’ Lemma:

Theorem 2. A conjunction of linear inequalities of the form
ψ :=

⋀︁n
i=1 Fi ≥ 0 ∧

⋀︁m
j=1Gj > 0 is unsatisfiable if and

only if there exist non-negative constants λ1, . . . , λn and
µ0, µ1, µ2, . . . , µm such that µ0+

∑︁n
i=1 λiFi+

∑︁m
j=0 µjGj ≡

0 with
∑︁m

j=0 µj = 1 (where ≡ means that the expressions on
both sides are identical).

Proof. Farkas’ Lemma guarantees that ψ is unsatisfiable if and
only if one can derive either −1 ≥ 0 or 0 > 0 as non-negative
linear combination of inequalities in ψ ∪ {1 > 0}.

Let the non-negative linear combination be D :≡ µ0(1 >
0) +

∑︁n
i=1 λi(Fi ≥ 0) +

∑︁m
j=0 µj(Gj > 0). WLOG, we

assume that D ≡ 0 > 0 because if D ≡ −1 ≥ 0, then we set
µ0 ← µ0+1 to derive 0 > 0. Finally, we scale all λis and µjs
by a factor of 1/(

∑︁m
j=0 µj) to ensure that

∑︁m
j=0 µj = 1.

The VALIDO elaborator for QF_LRA produces the Farkas
certificate for each core theory lemma by searching for
coefficients λi and µj that satisfy the conditions of Theorem 2.
This amounts to solving a system of linear inequalities, which
we do using the Simplex algorithm. The generated certificates
are stored in a single file for all the core theory lemmas.

Example IV.3. Consider the following eDRAT proof fragment.

1 (declare-fun x () Real)
2 (define-let aux!0 (* x 1/2))
3 (define-let aux!1 (>= aux!0 0))
4 (define-let aux!2 (< x 0))
5 (define-let aux!3 (> x 0))
6 (define-literal 1 aux!1)
7 (define-literal 2 aux!2)
8 (define-literal 3 aux!3)
9 t 1 2 0

10 t 2 3 0

The theory lemma at line 9 is ψ6 := x/2 ≥ 0 ∨ −x > 0
(which is valid), and that at line 10 is ψ7 = x > 0 ∨ x < 0

21

(which is not valid). On this example input, the elaborator will
produce the following output:

1 LINE 9, (0, 1>0), (2, 1), (1, 2)
2 LINE 10, INVALID LEMMA

The first line is the Farkas certificate for ψ6 (which is at
line 9 in the original eDRAT proof). The certificate is a list
of pairs (farkas_coefficient,literal id) with an
optional term of the form (farkas_coefficient,1>0)
for the Farkas coefficient of 1 > 0. Thus, the certificate for ψ6

is 0 · (1 > 0) + 2 · (x/2 ≥ 0) + 1 · (−x > 0) ≡ 0 > 0.
The second line states that the lemma at line 10 of the

eDRAT proof is invalid.

We have implemented a QF_LRA validator in Lean 4, in
around 1300 lines of code. A few important data structures
and functions are as follows:

1) A LinearExpression is a map lexpr :
Variable→ Rat that maps a variable to its rational
coefficient in the expression. A LinearConstraint
is a pair that consists of a LinearExpression and
a relational operator, which is either ≥ or >.

2) A Model is a mapping from variables to rationals.
3) Function evaluate (lexpr : Linear

Expression) (m : Model) computes the
value of a LinearExpression in a Model

4) We define a proposition isUnsat as

1 def isUnsat (lemma : List LinearConstraint) (
m: Model): Prop :=

2 match lemma with
3 | [] => False
4 | (cnstr, lemma′) => (evaluate cnstr m) → (

isUnsat lemma′ m)

Given a negated lemma S = {C1, . . . , Cn} as a set of
linear constraints, isUnsat S is equivalent to
∀(m: Model), evaluate C1 m → . . .→

evaluate Cn m → False

This proposition says that for every (m:Model) at least
one of evaluate Ci m must evaluate to false.

5) Given a negated lemma and its Farkas certificate of
unsatisfiability, the following function checks whether
the certificate is valid.

1 def check_farkas_certificate
2 (farkas_coefficients: List Rat)
3 (negated_lemma: List LinearConstraint) :

Bool := . . .

6) Finally, we proved the following theorem, which
shows that function check_farkas_certificate
is sound:

1 theorem check_farkas_cert_implies_isUnsat (
check_farkas_certificate
farkas_coefficients negated_lemma) = true
→ isUnsat negated_lemma := . . .

The validator first parses the original eDRAT proof to
collect the definition of each literal and theory lemma. It

then parses the certificate file produced by the elaborator
and checks every theory Farkas certificate with the function
check_farkas_certificate. The check is successful if
all theory lemmas in the certificate are valid.

V. ELABORATOR AND VALIDATOR FOR QF_UF

QF_UF is one of the simplest theories defined in SMT-LIB.
Formulas in QF_UF can include uninterpreted functions, predi-
cates, and equality. A theory lemma in QF_UF is a disjunction
of equalities and inequalities between uninterpreted terms. For
example, ψ := x ̸= f(y) ∨ y ̸= g(z) ∨ f(x) = f(f(g(z)) is a
valid theory lemma in QF_UF.

A set of literals F in QF_UF must contain at least one
inequality to be inconsistent. The traditional approach to show
the inconsistency of F is based on congruence closure, as
shown in Algorithm 2. This algorithm builds the smallest
congruence relation Eq over the terms of F that includes all
input equalities, and then checks whether a negated equality
of F is inconsistent with Eq.

Algorithm 2 Congruence Closure Algorithm
1: Input: E: a finite set of equalities, D: a finite set of inequalities
2: Output: Unsat if E ∧D is not satisfiable, Sat otherwise
3: T ← All terms occuring in E ∪D (including all the sub-terms)

▷ Initialization
4: Eq ← Each t ∈ T in a singleton class
5: for Each t = u in E with Eq(t, u) = False do ▷ Process

input equalities
6: Eq ← Merge classes of t and u in Eq
7: end for
8: while ∃ C1, C2 ∈ Eq, f(t1, . . . , tn) ∈ C1, f(u1, . . . , un) ∈ C2

such that C1 ̸= C2 and Eq(t1, u1) ∧ . . . ∧ Eq(tn, un) do
9: Eq ← Merge classes C1 and C2 in Eq

10: end while
11: for each inequality t ̸= u in D do ▷ Check for inconsistency
12: if Eq(t, u) holds then
13: return Unsat
14: end if
15: end for
16: return Sat

To check the results of Algorithm 2, it is sufficient to prove
that we start with the right initial Eq and that every Merge
Class operation is sound: that is, when we merge C1 and C2 at
line 9 of Algorithm 2, the terms in those classes are congruent
with respect to the current equivalence relation Eq.

The QF_UF elaborator in VALIDO generates unsatisfiability
certificate based on this idea. Each certificate contains a
description of the set of terms T , the initial equalities E,
a series of equalities derived from E through congruence, and
the inequality from D that led to unsatisfiability. The certificate
format is kept simple to simplify parsing. An example is shown
in Figure 1.

The certificate consists of the following three parts.
1) Definitions: The certificate starts with the definition of

seven terms: four atomic terms including the two Boolean
constants true and false and two uninterpreted con-
stants c4 and c0, and three terms built by the application
of function f . Each term is identified by its index in this

22

1 LINE: 16648, CERT
2 true
3 false
4 c_4
5 c_0
6 f 3
7 f 2
8 f 5
9 E(3, 5)

10 E(2, 6)
11 C(6, 4)
12 D(2, 4)

Fig. 1: Example QF_UF certificate

list. For example, the line f 3 defines a term of index
4 obtained by applying the uninterpreted function f to
the term of index 3. In other words, the term of index 4
is f(c0).

2) Equalities: After the term definitions, we list equalities
from E. Each input equality is written as a line E(i, j)
where i and j are two term indices. For example, the
line E(3, 5) is the equality c0 = f(c4). An equality
derived by congruence is written similarly but with the
letter C. In the example C(6,4) represents the equality
f(f(c4)) = f(c0).

3) Inequality: Finally, the last line of the certificate is an
inequality, indicated with the letter D, between the terms
at indices 2 and 4, that is, c4 ̸= f(c0)

The Boolean constants are predefined and included in all
certificates (as the first two terms). This enables us to treat
uninterpreted predicates as functions from some domain type to
the Boolean. For example, a literal of the form P (x) occurring
in a theory lemma is treated as P (x) = true in our certificates,
and if ¬P (x) occurs, it is converted to P (x) = false. This
simple trick allows an unmodified congruence closure algorithm
to handle uninterpreted predicates (provided we add the built-in
inequality true ̸= false).

The QF_UF validator parses the certificates produced by
Valido and checks that they are valid. The central part in the
validation process is a union-find data structure implemented
in Lean 4 that is used to check that all equalities of the form
C(i, j) listed in a certificate are correct, that is, that the two
indices i and j denote existing terms and that these two terms
are congruent. The validator also checks a similar property for
the inequality D(i, j): the two indices i and j must represent
existing terms, and the certificate is valid if i and j are in the
same equivalence class in the union-find data structure. These
checks are implemented in a function check_certificate,
and the main correctness result follows:

1 def true_certificate (m: Model α β)
2 (c: Certificate α β): Prop :=
3 m.list_eq_holds c.wft c.base →
4 m.diseq_holds c.wft c.conflict
5

6 theorem check_certificate_is_sound {α β: Type} [
BEq β]

7 [LawfulBEq β}] (c: Certificate α β})
8 (h: Checker.check_certificate c = .ok ()):
9 ∀ m, true_certificate m c := by

10 ...

This states that the function check_certificate is sound.
If this function succeeds (i.e., it returns .ok ()) then the
certificate is true in any model m. In this theorem, a certificate is
parameterized by two types α and β that represent the constants
and function symbols in QF_UF terms. The certificate data
structure includes a term table, a list of base equalities, a list
of derived equalities, and a conflict of the form D(i, j). A
model is defined by three components: a domain τ (which is
an arbitrary Lean type), a mapping from α to τ that defines the
interpretation of constants, and a mapping from β to functions
on τ that defines the interpretation of function symbols.

VI. EXPERIMENTS

We have instrumented CVC5-1.1.1 to produce eDRAT proofs.
The modifications consist of a new module that prints the
eDRAT proof and changes to several existing CVC5 modules
involved in the creation of input and theory clauses. Most
changes were in the CDCL solver employed by CVC5, which
is a heavily modified variant of MiniSat.

We have compared the eDRAT and Valido toolchain with
two other proof formats currently supported by CVC5-1.1.1
on the QF_UF and QF_LRA benchmarks of the SMT-LIB
repository [31]. All the experiments were run on a server with
384 GB RAM and 96 cores (48 Intel Xeon Platinum 8259CL
CPUs), with a 2.50 GHz CPU frequency. The server runs
Amazon Linux 2.

We ran CVC5 with a timeout of 300 seconds with four
different proof-generation options: no proofs, proofs in the
Alethe-LF (ALF) format, proofs in the LFSC format, and
proofs in the eDRAT format. Some older versions of CVC5
also support the Alethe format, but this does not appear to be
supported anymore in CVC5-1.1.1 and did not work on our
benchmarks.

A summary of our experimental results is shown in Table I.
The table includes the number of solved problems, the number
of proofs successfully produced, and the average runtime on
the satisfiable and unsatisfiable problems. A more detailed view
of the experimental results is given in Tables II and III.

A. Proof Production Cost

As the table shows, generating proofs in the eDRAT format
has low overhead. The difference in runtime between baseline
CVC5 and CVC5-eDRAT on the QF_LRA problems is about
1%. On the QF_UF benchmarks, the average overhead of
eDRAT proofs is about 16% on satisfiable instances and 27%
on unsatisfiable instances. However, the QF_UF benchmark
contains many easy problems that are solved in milliseconds
(63% of the problems are solved by CVC5 in less than 0.1 s).
If we remove these easy problems, the runtime difference
between CVC5 and CVC5-eDRAT is less than 10%. In total,
CVC5 and CVC5-eDRAT solve the same number of problems
in all categories, apart from the class of satisfiable QF_LRA

23

TABLE I: Summary of Experiments

QF_LRA QF_UF

Solved Problems Avg. Runtime (s) Solved Problems Avg. Runtime (s)
Proof Mode Unsat Proofs Sat Unsolved Sat Unsat Unsat Proofs Sat Unsolved Sat Unsat

None 639 902 212 22.046 31.890 4353 3142 8 0.245 0.723
eDRAT 639 639 899 215 22.267 31.481 4353 4353 3142 8 0.286 0.924
ALF 621 591 876 256 32.185 56.267 4345 4335 3142 16 0.361 5.543
LFSC 623 503 876 254 32.412 85.825 4344 4283 3142 17 0.353 12.786

TABLE II: Experiment results on QF_LRA benchmark. All sizes are in MBs and times are in seconds. The averages are taken
over the benchmark where the corresponding proof was successfully checked. The column ✓ represents the number of proofs
that were successfully checked.

CVC5 + Proof Generation Time LFSC Proof ALF Proof eDRAT Proof

Family # No Proof LFSC ALF EDRAT ✓ Size Time ✓ Size Time ✓ Size Time
Heizmann 29 87.725 196.195 159.793 85.504 15 61.251 55.099 19 40.978 105.052 29 14.491 10.066
LassoRanker 91 77.518 178.089 126.096 77.762 61 72.289 29.124 87 20.665 68.470 91 10.216 4.437
sc 35 44.889 194.576 81.503 42.856 20 225.166 104.933 32 23.178 129.505 35 5.735 1.339
uart 34 32.989 224.543 126.002 31.094 11 206.111 87.419 26 44.383 558.786 34 6.753 3.508
clock 36 20.454 81.828 28.276 19.925 29 70.890 20.705 36 6.158 25.426 36 0.938 1.027
latendresse 1 18.494 36.977 29.516 17.963 0 NA NA 1 3.236 1.702 1 0.460 28.339
miplib 11 14.988 111.516 59.597 14.979 7 72.550 31.241 10 25.839 175.199 11 10.351 78.223
tta_startup 45 8.353 60.505 33.536 8.206 34 29.170 15.290 43 12.041 158.288 45 3.314 0.990
blending 9 3.886 300.212 114.993 4.301 0 NA NA 9 129.184 119.071 9 15.932 49.526
TM 1 0.525 2.305 1.827 0.923 0 NA NA 1 1.147 1.665 1 0.680 0.274
sal 96 0.094 1.731 0.655 0.120 96 2.222 1.354 96 0.680 0.941 96 0.162 0.178
spider 42 0.061 1.351 0.357 0.085 42 2.876 0.818 42 0.295 0.110 42 0.082 0.148
robotics 12 0.011 0.037 0.041 0.010 12 0.065 0.047 12 0.048 0.013 12 0.000 0.127
check 1 0.009 0.108 0.055 0.011 1 0.144 0.038 1 0.109 0.045 1 0.009 0.132
meti-tarski 150 0.007 0.013 0.011 0.007 150 0.008 0.011 150 0.007 0.011 150 0.001 0.128
keymaera 21 0.006 0.010 0.009 0.006 21 0.003 0.010 21 0.003 0.010 21 0.000 0.128

TABLE III: Experiment results on QF_UF benchmark. All sizes are in MBs and times are in seconds. The averages are taken
over the benchmark where the corresponding proof was successfully checked. The column ✓ represents the number proofs that
were successfully checked.

CVC5 + Proof Generation Time LFSC Proof ALF Proof eDRAT Proof

Family # No Proof LFSC ALF EDRAT ✓ Size Time ✓ Size Time ✓ Size Time
Rodin 20 0.006 0.008 0.007 0.006 20 0.002 0.010 20 0.002 0.010 20 ≤ 0.001 0.079
Goel 229 0.209 9.406 8.549 0.232 217 0.413 1.660 226 0.311 0.220 229 0.092 0.091
CLEARSY 11 0.013 0.135 0.084 0.015 11 0.101 0.064 11 0.086 0.028 11 0.008 0.078
eq_diamond 100 0.022 0.342 0.340 0.043 100 0.051 0.067 100 0.044 0.031 100 0.055 0.086
NEQ 45 3.589 141.322 27.222 3.934 24 83.305 26.559 45 39.562 139.976 45 4.217 1.022
PEQ 38 7.394 171.559 61.164 8.418 20 136.427 46.852 34 51.902 129.771 38 20.327 3.919
SEQ 39 1.150 85.259 12.251 1.392 34 135.283 72.992 39 20.125 65.002 39 3.398 0.729
QG-class 3859 0.315 8.956 3.993 0.390 3854 10.486 23.253 3857 6.349 31.858 3859 0.495 0.224
TypeSafe 3 0.006 0.009 0.008 0.006 3 0.001 0.011 3 0.002 0.010 3 ≤ 0.001 0.078

problems. In this class, four problems are solved by CVC5
but not by CVC5-eDRAT and one problem is solved by CVC5-
eDRAT but not by CVC5. This difference is most likely due
to random variation caused by the operating system as all four
take a runtime close to the timeout, rather than caused by the
eDRAT proof generation.

The LFSC and ALF formats are more expensive, and the
overhead depends on the theory. On QF_LRA, CVC5 fails to
solve about 40 problems when using either format. On QF_UF
producing either LFSC or ALF proofs doubles the number

of timeouts. The runtime overhead is around 45% for both
LFSC and ALF on satisfiable problems (on both QF_LRA
and QF_UF). For the unsatisfiable problems, the overhead
varies depending on proof-format and theory: on QF_LRA,
LFSC incurs an overhead of 2.7x, and ALF is close to 2x
slower than baseline CVC5. On QF_UF, the overhead is 7x
for ALF and 17x for LFSC. The larger overhead on QF_UF is
due to the fact that LFSC and ALF are not compatible with a
symmetry-breaking procedure that baseline CVC5 employs [15].
Symmetry breaking is effective on the QF_UF benchmarks, but

24

(a) QF_LRA

50 100 150 200 250 300
CPU time (s)

0

25

50

75

100

125

150

175

200

So
lve

d
ins

ta
nc

es

eDRAT
no-proof
ALF
LFSC

(b) QF_UF

0 50 100 150 200 250 300
CPU time (s)

0

25

50

75

100

125

150

175

200

So
lve

d
ins

ta
nc

es

no-proof
eDRAT
ALF
LFSC

Fig. 2: Runtime on hardest problems

it must be disabled when CVC5 produces LFSC or ALF proofs.
The eDRAT format is compatible with symmetry breaking and
does not suffer from this disadvantage. We also see that both
CVC5-LFSC and CVC5-ALF can solve a problem (i.e., print
“unsat”) but fail to generate a proof within the timeout. This
happens because LFSC and ALF proofs are generated after
CVC5 finds a problem to be unsat. After the problem is solved,
CVC5 performs backward dependency analysis to construct
a proof and export it to the LFSC or ALF format [4]. Both
backward analysis and conversion to the external format can
be expensive and cause a timeout.

Both the QF_UF and QF_LRA benchmarks contain a large
number of easy problems that are solved in milliseconds.
Figure 2 compares the runtime of our four CVC5 variants
on the 200 problems that take the longest for baseline CVC5
to solve. The plots show that CVC5 and CVC5-DRAT have
similar performance. CVC5-ALF and CVC5-LFSC are slower
and timeout on several problems, but CVC5-ALF is more
efficient than CVC5-LFSC.

B. Proof Size and Proof Checking Time

Figure 3 compares the proof sizes for different problem fam-
ilies in the QF_LRA and QF_UF benchmarks. The differences
between the three formats vary with the theory and the problem

family. Overall, eDRAT is more compact, except for a few
problems. In QF_UF, ALF proofs are 2x larger than eDRAT
proofs, and LFSC proofs are 11x larger than ALF proofs on
average. In QF_LRA, ALF proofs are 4x larger than eDRAT
proofs, and LFSC proofs are 11x larger than ALF proofs. Some
of the size difference is due to the fact that ALF and LFSC
include preprocessing steps, but this is significant mostly on
easy problems. On hard problems, preprocessing represents
a small part of the solver work, and proof steps related to
resolution and theory lemmas dominate.

We validated the proofs with the appropriate checker. For
LFSC, we used LFSCC2; for ALF, we use alfc3; and for
eDRAT, we used Valido. All proofs were valid. Figure 4 shows
the average proof checking time per benchmark family. For
eDRAT, the graphs include the runtime of Valido (in Rust)
and the certificate checkers (in Lean). On a few QF_LRA
proofs, Valido is slower than the ALF checker (e.g., in the
Latendresse family). This happens when theory lemmas are
large (several hundreds of atoms per lemma) and our Simplex
implementation is slow at computing Farkas certificates. Most
proofs do not have such large lemmas. The ALF and LFSC
checkers are also faster than Valido in some families of QF_UF
problems, but the proofs in these families are small, and all
checkers validate them in less than 0.1 s. On such small proofs,
the cost of a call to DRAT-trim is a limiting factor for
Valido. But overall, eDRAT proof checking is 3x and 15x
faster than LFSC and ALF proof checking, respectively, in
QF_LRA benchmarks, and 80x and 120x faster than LFSC
and ALF, respectively, in QF_UF benchmarks. As one would
expect, checking unsatisfiability certificates is cheaper than
constructing unsat cores and certificates in the first place. The
runtime of the certificate checker in Lean is smaller than the
cost of the elaborator and DRAT-trim in all problem families.
We also note that only a small fraction of all the theory lemmas
included in the proof are part of the unsat core. Figure 5 shows
the number of theory lemmas in the core compared with the
total number of theory lemmas in the eDRAT file. Only lemmas
in the core must be checked by Valido. On average, 1/8 of the
QF_LRA theory lemmas and 1/2 of the QF_UF theory lemmas
are in the core.

VII. RELATED AND FUTURE WORK

Our results show that the DRAT proof format can be extended
from SAT to SMT while preserving its efficiency. Compared
with other proof formats currently supported by CVC5, eDRAT
is the cheapest to generate. Although the eDRAT proofs are
not detailed, it is still possible to efficiently check them by
combining unsat core construction and specialized checkers
for theory lemmas.

Otoni, et al. [27] present a proof system for OpenSMT
that also combines DRAT with theory-specific checkers. A
difference with our approach is that OpenSMT is modified to
produce unsatisfiability certificates for each theory lemma,

2https://github.com/cvc5/LFSC
3https://github.com/cvc5/alfc

25

https://github.com/cvc5/LFSC
https://github.com/cvc5/alfc

He
izm

an
n

La
ss

oR
an

ke
r sc

ua
rt

clo
ck

lat
en

dr
es

se

m
ip

lib

tta
_s

ta
rtu

p

ez
m

t

10 1

100

101

102
Pr

oo
f S

ize
 (M

B)

LF
SC

 Fa
ile

d

QF_LRA: Proof Size
LFSC
ALF
eDRAT Proof.
eDRAT Cert..

PE
Q

NE
Q

SE
Q

QG
-c

las
s

Go
el

eq
_d

iam
on

d

CL
EA

RS
Y

Ty
pe

Sa
fe

Ro
di

n

10 3

10 2

10 1

100

101

102

Pr
oo

f S
ize

 (M
B)

QF_UF: Proof Size
LFSC
ALF
eDRAT Proof.
eDRAT Cert..

Fig. 3: Proof Sizes

He
izm

an
n

La
ss

oR
an

ke
r sc

ua
rt

clo
ck

lat
en

dr
es

se

m
ip

lib

tta
_s

ta
rtu

p

ez
m

t

10 1

100

101

102

Pr
oo

f C
he

ck
in

g
Ti

m
e

(s
)

LF
SC

 Fa
ile

d

QF_LRA: Proof Checking Time
LFSC
ALF
eDRAT Elab.
eDRAT Val.

PE
Q

NE
Q

SE
Q

QG
-c

las
s

Go
el

eq
_d

iam
on

d

CL
EA

RS
Y

Ty
pe

Sa
fe

Ro
di

n

10 2

10 1

100

101

102

Pr
oo

f C
he

ck
in

g
Ti

m
e

(s
)

QF_UF: Proof Checking Time
LFSC
ALF
eDRAT Elab.
eDRAT Val.

Fig. 4: Proof Checking Time

He
izm

an
n

La
ss

oR
an

ke
r sc

ua
rt

clo
ck

lat
en

dr
es

se

m
ip

lib

tta
_s

ta
rtu

p

ez
m

t

101

102

103

104

Nu
m

be
r o

f L
em

m
a

70
06

14
47

11
65

47
94

44
0

11

27
40

12
50

52
73

38
79

8

29
77

2

92
95 16

99
9

21
20

96
1

71
20 10

27
1

74
30

QF_LRA: Number of Core Theory Lemma vs Total Theory Lemma
Core Lemmas
Total Lemmas

PE
Q

NE
Q

SE
Q

QG
-c

las
s

Go
el

eq
_d

iam
on

d

CL
EA

RS
Y

Ty
pe

Sa
fe

Ro
di

n

100

101

102

103

104

Nu
m

be
r o

f L
em

m
a

84
72

24
89

16
93

83
9

18

1 1 1 1

16
49

2

64
97

34
89

14
81

46

3 2 2 2

QF_UF: Number of Core Theory Lemma vs Total Theory Lemma
Core Lemmas
Total Lemmas

Fig. 5: Core Theory Lemmas

26

whereas we use an external elaborator to construct these
certificates. Because we do not modify the CVC5 theory
reasoning engines, we can efficiently produce eDRAT proofs
for any theory supported by CVC5 (even though we cannot
yet validate all of them). Another difference is that Otoni,
et al. can the check conversion from SMT to CNF using a
two-phase algorithm. The first phase checks a conversion from
SMT to a DAG format (not defined in the paper), and the
second phase checks Tseitin-style CNF conversion. This is
more than what we can do with eDRAT, but it does not seem
to be sufficient for the rewriting steps employed by CVC5.
It is not clear from [27] how the simplifications that cvc5
heavily uses (such as the elimination of if-then-else, variable
elimination, normalization of terms, and many other rewriting
steps) could be handled. Finally, [27, Table II] shows that the
overhead of their proof-production method is significant (e.g.,
25% fewer solved instances in QF_LRA), while the main goal
of eDRAT is to make proof generation as cheap as possible.

Another DRAT extension to SMT is presented by Feng, et
al. [17]. This approach is specialized for satisfiability modulo
monotonic theories. In this setting, predicates are monotonic
relations over Boolean variables, and Feng, et al. use this
property to build propositional DRAT proofs of theory lemmas.
Like VALIDO, these extensions of DRAT for SMT offer proofs
at low cost. The numbers reported in Otoni, et al. and Feng, et
al. show that their proof generation techniques are efficient.

Currently, the main limitation of our approach is that it starts
from a CNF formula. eDRAT is not adequate for representing
proofs of preprocessing and conversion of formulas to clauses.
We are considering three options to bridge this gap:

• Modify CVC5 to produce proofs of only its preprocessing
steps in, say, the ALF format. This is probably the easiest
approach but it has limitations. For example, as discussed
in Sec. VI, some useful preprocessing steps must be
disabled, and scalability remains to be evaluated.

• Use translation validation [28]. One can see preprocessing
and conversion to CNF as a compilation process. Correct-
ness amounts to showing that this compilation preserves
satisfiability, and translation validation can be adapted to
this problem. An issue is that this may require the solver
to produce hints to enable this approach.

• Implement a provably correct preprocessor, say, in Lean.
This may require the most effort, but it could provide the
most benefit. One issue with this option is the cost of
maintaining and updating the preprocessor as new theories
and possibly new simplification techniques are discovered.

VIII. CONCLUSION

eDRAT extends the well-known DRAT format of SAT
to SMT. Our experiments show that eDRAT proofs can be
produced efficiently and can be efficiently validated, which
makes routine use of proof-producing SMT solvers more
practical. In future work, we will extend the VALIDO tool
chain to cover more theories, and we will extend the approach
to include proofs of preprocessing.

ACKNOWLEDGMENT

S Hitarth was partially supported by the Madrid Regional
Government (César Nombela grant 2023-T1/COM-29001),
MCIN/AEI/10.13039/501100011033/FEDER, and EU (grant
PID2022-138072OB-I00).

REFERENCES

[1] B. Andreotti, H. Lachnitt, and H. Barbosa. Carcara: An Efficient Proof
Checker and Elaborator for SMT Proofs in the Alethe Format. In
S. Sankaranarayanan and N. Sharygina, editors, Tools and Algorithms for
the Construction and Analysis of Systems, volume 13993, pages 367–386.
Springer Nature Switzerland, 2023.

[2] J. Backes, P. Bolignano, B. Cook, C. Dodge, A. Gacek, K. Luckow,
N. Rungta, O. Tkachuk, and C. Varming. Semantic-based automated
reasoning for AWS access policies using SMT. In 2018 Formal Methods
in Computer Aided Design (FMCAD), pages 1–9, 2018.

[3] H. Barbosa, C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann,
A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli, A. Ozdemir,
M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, and Y. Zohar. CVC5: A
versatile and industrial-strength SMT solver. In D. Fisman and G. Rosu,
editors, Tools and Algorithms for the Construction and Analysis of
Systems - 28th International Conference, TACAS 2022, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part I,
volume 13243 of Lecture Notes in Computer Science, pages 415–442.
Springer, 2022.

[4] H. Barbosa, A. Reynolds, G. Kremer, H. Lachnitt, A. Niemetz, A. Nötzli,
A. Ozdemir, M. Preiner, A. Viswanathan, S. Viteri, Y. Zohar, C. Tinelli,
and C. Barrett. Flexible proof production in an industrial-strength SMT
solver. In J. Blanchette, L. Kovács, and D. Pattinson, editors, Automated
Reasoning, pages 15–35, Cham, 2022. Springer International Publishing.

[5] C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard: Version
2.6. Technical report, Department of Computer Science, The University
of Iowa, 2017. Available at https://smt-lib.org.

[6] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Chapter 33.
Satifiability Modulo Theories. In A. Biere, M. Heule, H. Van Maaren,
and T. Walsh, editors, Handbook of Satisfiability. IOS Press, 2021.

[7] T. Bouton, D. Caminha B. de Oliveira, D. Déharbe, and P. Fontaine. veriT:
An open, trustable and efficient SMT solver. In R. A. Schmidt, editor,
Automated Deduction – CADE-22, pages 151–156, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

[8] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, and S. Tonetta. The nuXmv symbolic model
checker. In A. Biere and R. Bloem, editors, Computer Aided Verification,
pages 334–342, Cham, 2014. Springer International Publishing.

[9] A. Champion, A. Mebsout, C. Sticksel, and C. Tinelli. The Kind 2
model checker. In Computer Aided Verification, pages 510–517, Cham,
2016. Springer International Publishing.

[10] J. Christ, J. Hoenicke, and A. Nutz. SMTInterpol: An interpolating SMT
solver. In A. Donaldson and D. Parker, editors, Model Checking Software,
pages 248–254, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[11] L. de Moura and N. Bjørner. Proofs and refutations, and z3. In The
LPAR 2008 Workshops: KEAPPA and IWIL 2008, volume 418 of CEUR
Workshop Proceedings. CEUR-WS.org, November 2008.

[12] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Proceedings
of the Theory and Practice of Software, 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, page 337–340, Berlin, Heidelberg, 2008. Springer-
Verlag.

[13] L. De Moura and N. Bjørner. Satisfiability Modulo Theories: An
Appetizer. In M. V. M. Oliveira and J. Woodcock, editors, Formal
Methods: Foundations and Applications, volume 5902, pages 23–36.
Springer Berlin Heidelberg, 2009.

[14] L. de Moura and S. Ullrich. The Lean 4 theorem prover and programming
language. In A. Platzer and G. Sutcliffe, editors, Automated Deduction –
CADE 28, pages 625–635, Cham, 2021. Springer International Publishing.

[15] D. Déharbe, P. Fontaine, S. Merz, and B. Woltzenlogel Paleo. Exploiting
symmetry in SMT problems. In N. Bjørner and V. Sofronie-Stokkermans,
editors, Automated Deduction – CADE-23, pages 222–236, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[16] J. Farkas. Theory of simple inequalities. Journal for pure and applied
mathematics (Crelles Journal), 1902(124):1–27, 1902.

27

https://smt-lib.org

[17] N. Feng, A. J. Hu, S. Bayless, S. M. Iqbal, P. Trentin, M. Whalen,
L. Pike, and J. Backes. Drat proofs of unsatisfiability for sat modulo
monotonic theories. In B. Finkbeiner and L. Kovács, editors, Tools and
Algorithms for the Construction and Analysis of Systems, pages 3–23,
Cham, 2024. Springer Nature Switzerland.

[18] J.-C. Filliâtre and A. Paskevich. Why3 — where programs meet provers.
In M. Felleisen and P. Gardner, editors, Proceedings of the 22nd European
Symposium on Programming, volume 7792 of Lecture Notes in Computer
Science, pages 125–128. Springer, Mar. 2013.

[19] P. Godefroid, M. Y. Levin, and D. Molnar. Sage: whitebox fuzzing for
security testing. Communications of the ACM, 55(3):40–44, 2012.

[20] A. Goel and K. Sakallah. AVR: Abstractly verifying reachability.
In A. Biere and D. Parker, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 413–422, Cham, 2020.
Springer International Publishing.

[21] M. J. H. Heule. The DRAT format and DRAT-trim checker.
[22] J. Hoenicke and T. Schindler. A simple proof format for SMT. In

D. Déharbe and A. E. J. Hyvärinen, editors, Satisfiability Modulo Theories,
2022, volume 3185 of CEUR Workshop Proceedings, pages 54–70. CEUR-
WS.org, August 2022.

[23] A. E. J. Hyvärinen, M. Marescotti, L. Alt, and N. Sharygina. OpenSMT2:
An SMT solver for multi-core and cloud computing. In N. Creignou and
D. Le Berre, editors, Theory and Applications of Satisfiability Testing –
SAT 2016, pages 547–553, Cham, 2016. Springer International Publishing.

[24] K. R. M. Leino. Dafny: An automatic program verifier for functional
correctness. In E. M. Clarke and A. Voronkov, editors, Logic for
Programming, Artificial Intelligence, and Reasoning, pages 348–370,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[25] J. Marsuqes-Sliva. Chapter 4. Conflict-Driven Clause Learning. In
A. Biere, M. Heule, H. Van Maaren, and T. Walsh, editors, Handbook
of Satisfiability. IOS Press, 2021.

[26] K. L. McMillan and O. Padon. Ivy: A multi-modal verification tool for
distributed algorithms. In S. K. Lahiri and C. Wang, editors, Computer

Aided Verification, pages 190–202, Cham, 2020. Springer International
Publishing.

[27] R. Otoni, M. Blicha, P. Eugster, A. E. J. Hyvärinen, and N. Sharygina.
Theory-specific proof steps witnessing correctness of SMT executions.
In 2021 58th ACM/IEEE Design Automation Conference (DAC), pages
541–546, 2021.

[28] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In
B. Steffen, editor, Tools and Algorithms for the Construction and Analysis
of Systems, pages 151–166, Berlin, Heidelberg, 1998. Springer Berlin
Heidelberg.

[29] N. Rungta. A billion SMT queries a day (invited paper). In S. Shoham
and Y. Vizel, editors, Computer Aided Verification, pages 3–18, Cham,
2022. Springer International Publishing.

[30] H. Schurr, M. Fleury, H. Barbosa, and P. Fontaine. Alethe: Towards a
generic SMT proof format (extended abstract). In C. Keller and M. Fleury,
editors, Proceedings Seventh Workshop on Proof eXchange for Theorem
Proving, PxTP 2021, Pittsburg, PA, USA, July 11, 2021, volume 336 of
EPTCS, pages 49–54, 2021.

[31] SMT-LIB. The Satisfiability Modulo Theories Library. https://smtlib.cs.
uiowa.edu/. Accessed on March 15, 2024.

[32] A. Stump, D. Oe, A. Reynolds, L. Hadarean, and C. Tinelli. SMT proof
checking using a logical framework. Formal Methods in System Design,
42(1):91–118, 2013.

[33] A. Stump, A. Reynolds, C. Tinelli, A. Laugesen, H. E. III, C. Oliver, and
R. Zhang. LFSC for SMT proofs: Work in progress. In D. Pichardie and
T. Weber, editors, Proceedings of the Second International Workshop on
Proof Exchange for Theorem Proving, PxTP 2012, Manchester, UK, June
30, 2012, volume 878 of CEUR Workshop Proceedings, pages 21–27.
CEUR-WS.org, 2012.

[34] N. Wetzler, M. J. H. Heule, and W. A. Hunt. DRAT-trim: Efficient
checking and trimming using expressive clausal proofs. In C. Sinz and
U. Egly, editors, Theory and Applications of Satisfiability Testing - SAT
2014, volume 8561, pages 422–429. Springer International Publishing,
2014.

28

https://smtlib.cs.uiowa.edu/
https://smtlib.cs.uiowa.edu/

	Introduction
	Background
	DRAT Extensions for SMT
	Syntax of eDRAT
	Valido: A Toolchain for Checking eDRAT Proofs

	Elaborator and Validator for QF_LRA
	Elaborator and Validator for QF_UF
	Experiments
	Proof Production Cost
	Proof Size and Proof Checking Time

	Related and Future Work
	Conclusion
	References

