
Formal Methods in Computer-Aided Design 2024

Solving String Constraints with Concatenation
Using SAT

Kevin Lotz ∗, Amit Goel†, Bruno Dutertre ‡, Benjamin Kiesl-Reiter §, Soonho Kong ‡, and Dirk Nowotka ∗
∗Department of Computer Science, Kiel University, Kiel, Germany, {kel, dn}@informatik.uni-kiel.de

†Amazon Web Services, Portland, OR, USA, amgoel@amazon.com
‡Amazon Web Services, Santa Clara, CA, USA, {dutebrun, soonho}@amazon.com

§Amazon Web Services, Munich, Germany, benkiesl@amazon.com

Abstract—We present a decision procedure for solving
quantifier-free first-order formulas over the theory of strings,
involving equality, regular constraints, and concatenation of
string terms. Our approach uses an eager reduction to the
Boolean satisfiability problem and extends the NFA2SAT string
solver. We describe a novel SAT encoding for word equations that
iteratively expands the search space and leverages incremental
SAT solving. For unsatisfiable formulas, we estimate the bounds
on the smallest solution from arithmetic constraints derived
from word equations. An experimental evaluation shows that
our approach is competitive with state-of-the-art string solvers
and complements existing methods in string solving.

I. INTRODUCTION

Reasoning on string manipulation is a crucial aspect of en-
suring software correctness. In recent years, a variety of tools,
known as string solvers, have been developed to automate
decision procedures for various logical theories over strings.
Advancements in string solving have been driven by web-
application security [16], [27], [29] and model checking [11].
These fields rely on automated reasoning on strings to identify
critical security vulnerabilities. More recently, string solving
has been used to verify security properties of cloud access
policies [1], [26].

The theory of strings draws upon combinatorics on
words [25], [12], [4], [22]. Central to this theory are word
equations, which are expressions that equate two strings
constructed by concatenating variables and constant words.
Solving word equations amounts to finding substitutions for
the variables that make the two sides of the equation identical.
For example, we find a solution for a ·x .

= y ·a by substituting
both variables x and y with a. Solving word equations is
decidable [22], [8], [28], but the decision procedures resulting
from the theoretical results are too expensive to be practical.
To overcome this limitation, string solvers employ heuristic
approaches and impose restrictions on the constraint languages
to achieve scalability in practical use cases.

Most modern string solvers [23], [2], [14], [5], [6], [21] are
built upon the CDCL(T) paradigm, also called lazy solving.
This framework operates in two steps: first, a SAT solver
searches for a model of the propositional structure of a
formula, and second, a theory solver decides whether this
model is consistent in a background theory T . An alternative
approach is eager solving, which encodes the input problem
into a single propositional formula. In the context of string

solving, eager approaches were first explored by the WOOR-
PJE [7] solver for word equations and its extension to regular
constraints [18].

In previous work [20], we presented the eager string solver
NFA2SAT that decides the satisfiability of formulas within a
restricted logical fragment, which includes regular constraints
and equality between strings but excludes concatenation of
string terms. The solver is complete on this fragment, but
it supports a less expressive logic compared to other string
solvers. Here, we bridge this gap by extending NFA2SAT’s
decision procedure to support word equations.

The NFA2SAT procedure sets bounds on the lengths of all
string variables occurring in a formula, encodes the bounded
problem into a propositional formula, and tests its satisfiability.
If the formula is unsatisfiable, the procedure iterates by
incrementally increasing these bounds until either a solution
is found, or the bounds exceed the theoretical length of the
minimal solution to the formula, at which point the formula
is declared unsatisfiable.

To enable support for word equations, we introduce a
new method to encode the satisfiability problem of bounded
word equations into propositional logic. We also prove an
alphabet-reduction result, which we use to obtain a small
alphabet that is sufficiently large to preserve satisfiability.
This reduction is critical to ensure the practicality of the
encoding because it reduces the size of the propositional
formula, thereby allowing for more efficient SAT solving. We
then propose an incomplete but practical approach to detecting
unsatisfiability, by analyzing linear integer equations over the
lengths of the string variables that occur in word equations. An
experimental evaluation on a large set of benchmarks shows
that our approach is competitive with state-of-the-art string
solvers and works well as a complement to lazy solvers.

II. PRELIMINARIES

A word is a finite sequence w = w1 · · ·wn where each wi
is a symbol in a finite alphabet A. We denote by |w| = n the
length of word w. The set of all words over A is denoted by
A∗. We denote by w · w′ the concatenation of two words w
and w′, and we denote the empty word by ε. A word u is
called a factor of w if w can be written v · u · v′. It is called
a prefix (suffix) if v = ε (v′ = ε). We use |w|a to denote
the number of occurrences of symbol a in word w. We fix

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_9 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0000-0001-6759-3304
https://orcid.org/0000-0002-6284-380X
https://orcid.org/0000-0003-3522-3653
https://orcid.org/0000-0003-0984-8078
https://orcid.org/0000-0002-5422-2229
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_9
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_9
https://creativecommons.org/licenses/by/4.0/

an alphabet Σ = { a, b, c, . . . } of constants and an alphabet
Γ = { x, y, z, . . . } of variables. A word w ∈ Σ∗ is called a
constant word and a word α ∈ (Σ ∪ Γ)∗ is called a pattern.

A word equation α .
= β is a pair of patterns α, β. A regular

constraint α
.
∈ R consists of a pattern α

.
∈ (Σ ∪ Γ)∗ and a

regular expression R over the alphabet Σ. Let h : (Σ∪Γ)∗ →
Σ∗ be a morphism that is constant for all c ∈ Σ, i.e., h(c) = c.
Then h is a solution of α .

= β (written h |= α
.
= β) if

h(α) = h(β), and a solution of α ̸ .= β (written h |= α ̸ .= β)
if h(α) ̸= h(β). Similarly, h is a solution of α

.
∈ R (written

h |= α
.
∈ R) if h(α) ∈ L(R), and a solution of α ̸

.
∈ R (written

h |= α ̸
.
∈ R) if h(α) ̸∈ L(R), where L(R) denotes the regular

language defined by R. Any substitution of the variables h :
Γ→ Σ∗ can be canonically extended to a morphism, and vice
versa. We therefore use the terms substitution and morphism
interchangeably.

A function l : Γ → N that assigns a length l(x) to
each variable x ∈ Γ is called a length assignment. Given
a length assignment l, we use #»x l to refer to the sequence
x[1] · · · x[l(x)] over the alphabet

#»

Γ = { x[k] | x ∈ Γ, k ∈ N }.
In this sequence, the x[i] can be interpreted as variables
ranging over Σ, that is, each x[i] denotes a single character
of Σ. We lift this definition to patterns with # »wαl = w · #»α l

and # »x · αl = #»x l · #»α l for all w ∈ Σ∗. For a word equation
α
.
= β, a length assignment l with | #»α l| = n = | #»β l| induces

an equivalence relation of the positions 1, . . . , n. Two positions
i, j are equivalent under l, written as i ∼l j, if #»α [i] = #»α [j],
#»

β [i] =
#»

β [j], or #»α [i] =
#»

β [j]. If i ∼l j, then characters at
position i and j must be equal in any solution that is consistent
with the length assignment. We call h an l-substitution if
|h(x)| = l(x) for all x ∈ Γ. If h is an l-substitution, then h is a
solution if and only if h(α)[i] = h(α)[j] for all i, j with i ∼l j.
In that case, we call h an l-solution. Solving word equations
by assigning a constant from Σ to every x[1] · · · x[l(x)] for all
x ∈ Γ to find a morphism that satisfies the above condition is
also known as filling the positions [15], [25].

We consider quantifier-free first-order formulas in which all
atoms are word equations or regular constraints, or can be
reduced to them. For such a formula ψ, we use atoms(ψ) to
denote the set of atoms that occur in ψ, vars(ψ) to denote the
set of variables in ψ, and Σ(ψ) to denote the set of constants
occurring in ψ. A substitution h : Γ → Σ∗ is called a model
of ψ, written h |= ψ, if ψ evaluates to true under h using
the standard semantics of Boolean connectives. We assume
throughout the paper that ψ is in negative normal form (NNF),
that is, negations occur only in front of atoms. The literals of ψ
can be of the form α

.
= β, ¬(α .

= β), α
.
∈ R, or ¬(α

.
∈ R). We

use α ̸ .= β and α ̸
.
∈ R as short-hand notation for ¬(α .

= β)
and ¬(α

.
∈ R), respectively. We call ψ conjunctive if it is

a conjunction of literals. We say ψ is in normal form if all
literals have the form α

.
= β, x ∈ R, x ̸∈ R, or x ̸ .= y. For

every formula ψ there exists an equisatisfiable formula ψ′ in
normal form. We construct it by rewriting literals of the form
α ̸ .= β to α = tα ∧ β = tβ ∧ tα ̸

.
= tβ , and literals of the form

α
.
∈ R (α ̸

.
∈ R) to α = tα∧ tα

.
∈ R (α = tα∧ tα ̸

.
∈ R), where

tα and tβ are fresh variables. We have Σ(ψ) = Σ(ψ′) and

ψ

Bound
Lengths

Infer
Alphabet

Encoding

SAT
Solving SAT

Bound
Refinement UNSAT

Bounds

Σ

JψK

UNSAT

Increase
bounds

SAT

Fig. 1: Overview of the decision procedure.

F := F ∨ F | F ∧ F | ¬F | Atom

Atom := tstr
.
∈ RE | tstr

.
= tstr

RE := RE ∪RE | RE ·RE | RE∗ | RE ∩RE | ? | w
tstr := x | w | tstr · tstr

Fig. 2: Syntax: x denotes a variables, w denotes a word of Σ∗,
and RE denotes a regular expression, where ? is the wildcard
character.

vars(ψ) ⊆ vars(ψ′). If h |= ψ′, then h |= ψ, and if h |= ψ,
then h′ |= ψ′, where h′ extends h by setting h′(tα) = h(α).

III. THE DECISION PROCEDURE

Our decision procedure accepts formulas in the syntax given
in Figure 2. The procedure is based on an eager reduction
to the Boolean satisfiability problem. This reduction assumes
fixed upper bounds on the lengths of variables and translates
the input problem into a propositional formula that is equi-
satisfiable for these bounds. It builds upon the string solver
NFA2SAT, which we will review first.

The NFA2SAT procedure is depicted in Figure 1. It begins
by assigning an initially small upper bound b(x) on the length
of all string variables x. Subsequently, the solver constrains
the search space for substitutions to a small alphabet Σ
that preserves satisfiability. If the problem is satisfiable in
any superset of Σ, it remains satisfiable in Σ. Therefore,
the procedure only needs to consider substitutions that map
variables to words in the reduced alphabet Σ∗.

For the given bounds and alphabet, NFA2SAT encodes the
first-order formula ψ into a propositional formula JψK. If
JψK is satisfiable, NFA2SAT declares ψ satisfiable. If JψK is
unsatisfiable, then there are no solutions that satisfy ψ within
the given upper bounds. In this case, NFA2SAT increases the
bounds on the variable lengths and incrementally encodes the
problem for these new bounds. This incremental encoding pro-
duces new clauses without discarding those from the previous
SAT solver invocation, leveraging the benefits of incremental
SAT solving under assumptions [10].

This process repeats until either the bounds are sufficiently
large for JψK to be satisfiable, or unsatisfiability can be con-
cluded based on the small model property stating that if ψ is
satisfiable, then there exists a smallest model. We can compute
bounds on the variable lengths in the smallest model and
compare them to the bounds that resulted in the unsatisfiable

30

encoding. If the bounds of the unsatisfiable encoding exceed
those of the smallest model, then no solution exists.

To improve efficiency, NFA2SAT utilizes the unsat core from
the last SAT solver call to refine variable bounds and handle
unsatisfiability. It first computes the powerset of the (typically
small) set of literals encoded in the unsat core. For each
subset in the powerset, the solver calculates the small model
bounds of the conjunction of the literals in that subset. Finally,
take the maximum among all these computed bounds. The
iteration over the powerset is necessary because the core is
not necessarily minimal. If the bounds used for the last call
to the SAT solver exceed the maximum, then increasing the
bounds will not eliminate the unsat core and we can then
conclude that ψ is not satisfiable. Otherwise, only the bounds
of the variables occurring in a literal encoded in the unsat core
are increased.

We extend the existing NFA2SAT procedure to support arbi-
trary concatenation, which amounts to solving word equations
after conversion to normal form. Our new procedure includes
three new components:

1) Alphabet Reduction: NFA2SAT narrows the search space
by determining a small alphabet in which the formula is
satisfiable if it is in any larger alphabet. In Section IV
we show that adding one character to Σ(ψ) for each ̸ .=
atom is sufficient to preserve satisfiability.

2) Encoding of Word Equations: In Section V, we in-
troduce a new encoding that translates word equations
into propositional logic in a way that is compatible with
NFA2SAT’s incremental framework.

3) Handling Unsatisfiability: For cases where no solution
exists, we propose a simple but incomplete technique
to compute the bounds of the small model if the unsat
core contains (encoded) word equations. This approach
is detailed in Section VI.

IV. ALPHABET REDUCTION

A model for a string formula is a mapping from variables
to constant words in an alphabet Σ, which can depend on
the context. For example, in the SMT-LIB standard [3], Σ
is a subset of the Unicode alphabet that contains 196, 607
symbols. In most cases, a model for satisfiable formulas can
be constructed using only a small subset of Σ. Restricting the
search space to such a subset is essential for our propositional
encoding to be practical. Let Σ(ψ) be the set of all constants
occurring in ψ. If ψ does not contain string concatenation, it
is satisfiable if and only if it is satisfiable in the alphabet Σ(ψ)
augmented with one additional character per variable [20].
When string concatenation is allowed, we instead need one
additional character per negated equation. We show this result
by fixing a solution h : Γ → Σ∗ over any alphabet Σ and
constructing a new solution h′ : Γ → (Σ(ψ) ∪ A)∗, where
A is disjoint from Σ(ψ) and has a cardinality equal to the
number of inequalities in ψ. The construction is based on the
method of filling the positions.

Given a word equation α
.
= β and a length assignment

l, we lift the equivalence relation ∼l to the elements of

#»

Γ ∪ Σ. Two elements r, s ∈ Σ ∪ #»

Γ are equivalent (under
l), written as r ∼l s, if there are i, j with i ∼l j and
#»α l[i] = r ∧ #»α l[j] = s or

#»

β l[i] = r ∧ #»

β l[j] = s, or
#»α l[i] = r∧ #»

β l[j] = s. This defines an equivalence relation on
Σ∪ #»

Γ . We use [r]∼l
to refer to the transitive reflexive closure

of r ∈ Σ∪ #»

Γ under l. If l is clear from the context, we simply
write r ∼ s and [r]∼ . An l-solution h maps every class [r]∼
to exactly one constant c in the sense that h(x)[j] = c for
all x[j] ∈ [r]∼ . If [r]∼ contains a constant character then c
is that character. For example, let x · a .

= a · y be a word
equation. The length assignment l(x) = 3 and l(y) = 3 yields
x[1]·x[2]·x[3]·a .

= a·y[1]·y[2]·y[3]. It induces the three equiv-
alence classes { x[1], y[3], a }, { x[2], y[1] }, and { x[3], y[2] }.
Every l-substitution h that satisfies h(x)[1] = h(y)[3] = a,
h(x)[2] = h(y)[1], and h(x)[3] = h(y)[2] is a solution.

It’s a well-known result that any satisfiable word equation
has a solution in the alphabet Σ(α

.
= β) [15]. A similar

result holds for regular constraints [20] and both results can
be combined to show that a word equation with regular
constraints on the variables is satisfiable if and only if it
has a solution that uses only the constants occurring in the
problem (if there is at least one). This no longer holds when
negations are allowed. For example, consider the formula
x·a .

= a·y∧x ̸ .= y. Any solution h must satisfy |h(x)| = |h(y)|
but constructing an h with h(x) ̸= h(y) is not possible if we
use only a, the sole constant.

We first generalize the result to formulas of the form
ψ := α

.
= β ∧ ψ ̸= ∧ ψ∈, where ψ ̸= and ψ∈ are conjunctions

of inequalities between variables x ̸ .= y, and regular con-
straints x

.
∈ R, respectively. This restriction implicitly includes

negated regular constraints, as x ̸
.
∈ R can be equivalently

formulated as x
.
∈ R̄, where R̄ is the regular complement of

R. For an l-solution h, we define the graph Gψ(h) = (V,E)
where V is the set of equivalence classes induced by l on
α

.
= β. The set E includes an edge { [x[k]]∼ , [y[k]]∼ } iff

ψ̸= contains x ̸ .= y, |h(x)| = |h(y)|, h(x)[k] ̸= h(y)[k], and
h(x)[k′] = h(y)[k′] for all k′ < k, meaning k is the smallest
index where h(x) and h(y) disagree.

If Gψ(h) can be colored with n colors, then a new model h′

can be constructed using no more than n constants in addition
to Σ(ψ). Here, a color acts as a new constant, with h′ mapping
each equivalence class to the vertex color if the original model
h mapped its members to a symbol that is not in Σ(ψ).

Lemma 1. Let ψ := α
.
= β ∧ ψ ̸= ∧ ψ∈ and h be a solution.

If Gψ(h) is n-colorable, then ψ has a solution over Σ(ψ)∪A
where A is an alphabet disjoint from Σ(ψ) with |A| = n.

Thus, the minimal number of characters required in addition
to Σ(ψ) is the chromatic number of Gψ(h). The next lemma
gives an upper bound on this number. This follows from the
fact that the graph has at most |atoms(ψ ̸=)| edges.

Lemma 2. Let ψ := α
.
= β ∧ ψ ̸= ∧ ψ∈ be a formula and h

be a solution. Then Gψ(h) is |atoms(ψ ̸=)|+ 1 colorable.

Combining the above results gives our main theorem.

31

Theorem 3. Let ψ be a formula over word equations and
regular constraints with n inequalities. Then ψ has a solution
if and only if it has a solution in Σ(ψ)∪A where A∩Σ(ψ) = ∅
and |A| = n+ 1.

The theorem can be shown by assuming ψ is in disjunctive
normal form and equivalently rewriting each disjunct to match
the form α

.
= β ∧ ψ ̸= ∧ ψ∈. Then, each disjunct can have at

most n inequalities, and we can apply Lemma 1 and Lemma 2
to obtain the bound.

The bound on |A| is not always tight because Lemma 2
gives only a coarse bound on the chromatic number. For
instance, by applying results from [9], it can be lowered to
O(
√
n) for a formula with n inequalities. However, it is small

enough to be practical. Additionally, since formulas often
contain fewer inequalities than variables, this result improves
our previously known bound of |vars(ψ)| for formulas ψ that
do not include concatenation.

V. ENCODING WORD EQUATIONS

For a first-order formula ψ, our decision procedure fixes
some bounds b and translates ψ into a propositional formula
JψKb, which is satisfiable if and only if ψ has a solution
within bounds b. The formula is constructed by encoding
all literals of ψ individually. We present the encoding for
literals that are word equations α .

= β, denoted Jα .
= βKb.

Intuitively, Jα .
= βKb asks the SAT solver to “guess” a word

w for which there exists a substitution h such that h(α) = w
and h(β) = w, making w a solution word. It is the conjunction
of four formulas JwKb∧ JlhKb∧ Jm(α)Kb∧ Jm(β)Kb, modeling
the set of all potential solution words, the set of all possible
l-substitutions, and the constraint that the encoded substitution
must map both patterns to the same word, respectively. The
encoding is sound in the following sense.

Theorem 4. Let α .
= β be a word equation and b be a function

assigning an upper bound to every variable in the equation.
Then α

.
= β is satisfiable under b if and only if Jα .

= βKb is
satisfiable.

If ψ, containing α
.
= β as a literal, is not satisfiable with

bounds b, then NFA2SAT proceeds to check the satisfiability
for larger bounds b′. This results in n calls to the SAT solver,
with bounds b1, . . . , bn. To make this procedure efficient,
the encoding is incremental. That is, the encoding JψKbk

is constructed by only adding more clauses to the formula
JψKbk−1 . In the following, we present the encoding Jα .

= βKbk

assuming that Jα .
= βKbk−1 was already encoded. To avoid

treating edge cases, we assume b0(x) = 0 for all x ∈ Γ.
Additionally, we assume α ̸= ε and β ̸= ε.

A. Encoding Words

We encode the set of all words that are possible solutions
to the equation in JwKbk . This includes all words over Σ with
length no longer than Uk = min(| #»αbk |, | #»β bk |), i.e., the length
of the smaller of the longest words that either side of the
equation can be mapped to under bounds bk. No substitution

h with |h(α)| > Uk or |h(β)| > Uk can be a solution w.r.t. to
bk because at least one side of the equation cannot be mapped
to a word of length greater than Uk under bk.

We first pick a new symbol λ that is not in Σ and set
Σλ = Σ∪{λ}. The symbol λ denotes an unused position, i.e.,
a position that is to be mapped to the empty word. Setting
an appropriate set of positions to λ allows us to encode all
possible words over Σ with length at most Uk. We encode
the set {w ∈ Σ∗ | |w| ≤ Uk } by introducing the Boolean
variables wci for each position 1 ≤ i ≤ Uk and character
c ∈ Σλ. Boolean variable wci is true if c occurs at position i
in w. We enforce that exactly one of the wci is true using the
following formula

JwKbk =

Uk⋀︂
i=Uk−1

EO{wci | c ∈ Σλ} ∧
Uk−1⋀︂
i=Uk−1

wλi → wλi+1.

This takes into account that words of length up to Uk−1

have been encoded in a previous call. In this formula, EO
is an encoding of the exactly-one constraint on the variables
(see [17]). Because concatenation with λ is neutral, we use
the second conjunct of the encoding to break symmetry. This
ensures that every Boolean assignment σ with σ |= JwKbk

encodes exactly one word and for every word no longer than
Uk there is exactly one σ with σ |= JwKbk .

B. Encoding l-Substitutions

For all length assignments l bounded by bk, i.e., for all l
with l(x) ≤ bk(x) for all x ∈ Γ, we encode the set of all
possible l-substitutions. This is achieved by initially encoding
all substitutions JhKbk and all length assignments in JlKbk (both
limited by bk), and then ensuring that the length of a variable
substitution coincides with the length assignment.

The encoding of substitutions is constructed using a set
of Boolean variables {hax[i] | a ∈ Σλ }. We ensure that every
satisfying assignment to JhKbk encodes exactly one constant
word for every variable x, i.e., the substitution of x, by
employing an exactly-one constraint exactly as done for the
encoding of words.

To encode all possible length assignments, we introduce a
set of Boolean variables {Lix | 0 ≤ i ≤ bk(x) } for all x ∈ Γ.
We encode that Lix is true iff l(x) = i, taking into account that
the length assignments for bounds bk−1 are already encoded.
This makes standard exactly-one encodings unsuitable and we
instead use the following formula

Jl(x)Kbk := (ax,k →
bk(x)⋁︂

i=bk−1(x)+1

Lix ∨ ax,k−1) (1)

∧
bk−1(x)⋀︂
i=0

bk(x)⋀︂
j=bk−1(x)+1

Lix → ¬Ljx (2)

∧
bk(x)⋀︂

i=bk−1(x)+1

bk(x)⋀︂
j=i+1

Lix → ¬Ljx (3)

32

λw:

a x[1] b a b y[1]α:

y[1] a x[1] x[1] bβ:

(a) We first assume an upper bound of 1 for
both variables, i.e. b1(x) = b1(y) = 1. In that
case, JwKb1 encodes all words up to length
6. When assigning length 1 to all variables,
JlhKb1 and Jm(β)Kb1 are conflicting: JlhK
requires that y[1] is not λ, but since the last
segment of β ends at position 5, Jm(β)K re-
quires that the 6th position, which aligns with
y[1], is λ. Any other length assignment under
b1 will result in a similar situation. Both, the
equation and the encoding are unsatisfiable
under b1.

a b λw:

a x[1] x[2] b a b y[1]α:

y[1] a x[1] x[2] x[1] x[2] bβ:

(b) When assuming an upper bound of 2 for
both variables, b2(x) = b2(y) = 2, JwKb2
encodes all words up to length 8. Assigning
length 2 to x and y maps both patterns to the
same length. However, this length assignment
still results in a conflict: The first segment
of α (a) and the first segment of β (y)
both start at position 1, so Jm(α)Kb2 and
Jm(β)Kb2 entail w[1] = y[1] = a. At the
same time, Jm(α)Kb2 and Jm(β)Kb2 entail
w[1] = y[1] = b because the respective last
segments, b and y, start at position 7.

a b a b a b a bw:

a x[1] x[2] b a b y[1] y[2]α:

y[1] y[2] a x[1] x[2] x[1] x[2] bβ:

(c) When instead assigning length 2 to x
y, the encoding, and therefore the equation,
becomes satisfiable and we find a solution h
with h(x) = ba and h(y) = ab, resulting in
the solution word abababab.

Fig. 3: Demonstrates of the encoding for the example equation a · x · bab · y .
= y ·axx · b. The figures illustrate how the encoding

operates by fixing length assignments for the variables. This is analogous to the SAT solver assigning truth values to the Lix
variables during the search procedure.

The Boolean variable ax,k is an assumption in the kth call to
the SAT solver. Part (1) states that if ax,k is true, then at least
one of {Lix | bk−1(x) < i ≤ bk(x) } needs to be true, unless
ax,k−1 is true (defining ax,0 = ⊥). If ax,k−1 is true, then one
Lix with 0 ≤ i ≤ bk−1(x) must be true, establishing that there
is at least one i ≤ bk(x) such that Lix is true. The conjunction
(2) and (3) guarantees that at most one Lix with i ≤ bk(x)
is true. Thus, the encoding ensures that exactly one of the
variables Lix with 0 ≤ i ≤ bk(x) is true.

Finally, JlhKbk combines JhKbk and JlKbk to ensure that the
length of each substitution matches the assigned length. This
is expressed by ensuring h(x)[i] · · ·h(x)[bk(x)] = ε if and only
if Lix is true, using

JlhKbk = JhKbk ∧ JlKbk ∧
⋀︂
x∈Γ

bk(x)−1⋀︂
i=bk(x)

(hλx[i+1] ↔ Lix).

Assigning true to hλx[i+1] encodes that the suffix of the substi-
tution of x starting at i+ 1 is empty. Because exactly one Lix
is true, this asserts that the length of the substitution of x is
exactly i if Lix is true.

C. Matching Patterns To Words

We constrain that any assignment satisfying JlhKbk ∧ JwKbk

encodes an l-substitution h and a word w such that h(α) =
w = h(β), asserting that h is a solution. This is achieved
through the formulas Jm(α)Kbk and Jm(β)Kbk , which encode
that h maps the ith position of #»α l and

#»

β l to the ith position of
w, for any encode length assignment l. Since the encoding is
the same for both sides of the equation, we describe it using
a generic pattern γ.

The idea of Jm(γ)Kbk is to split γ into consecutive factors of
variables and constant words and assert that if a factor starts at
position p in #»γ l and has length k, then its substitution must be
equal to the factor of the solution word w from p to p+k−1.

An example of how this idea is reflected in the encoding is
shown in Figure 3.

Formally, we define the segmentation of γ, denoted seg(γ),
as the unique factorization (γ(1), . . . , γ(n)) of γ with γ(i) ∈ Γ
or γ(i) ∈ Σ+ for all i ≤ n, and if γ(i) ∈ Σ+ then either
γ(i+1) ∈ Γ or i = n. For example, the pattern x·abc·y·x·def
is factorized into five segments (x, abc, y, x, def). Given a
length assignment l, the start position of γ(i) is given by∑︁i−1
j=1 |γ(j)| + 1, the sum of the lengths of all preceding

segments plus one, where |γ(i)| is l(x) if γ(i) = x and |v|
if γ(i) = v ∈ Σ+. The start position of the first segment is
thus always 1.

To ensure the matching between the patterns and the solu-
tion word, we first encode set set of all possible start positions
for each segment of seg(γ) w.r.t. bk and condition them on
the lengths assigned to the variables using the Lix variables.
The encoding then ensures if a segment starts at position p
and has length k, the factor of the solution word from p to
p+ k− 1 must be equal to h(γ(i)), the constant word that the
encoded morphism h maps γ(i) to. The idea is illustrated in
Figure 4.

w: · · · h(x) a b a h(y) h(x) · · ·

γ: · · · x[1] · · · x[k] a b a y[1] y[2] x[1] · · · x[k] · · ·

i i + 1 i + 2 i + 3segments

p

+k +3 +2 +n

Fig. 4: Matching a pattern γ to a word w. If the ith segment
of γ, x, starts at position p, then the factor of w from p to
p+k− 1 must be equal to h(x), and the i+1th segment must
start at position p+ k.

To encode the start positions, we introduce a set of Boolean
variables {S(γ)pi | 0 ≤ p ≤ Uk } for all 1 ≤ i ≤ |seg(γ)|+1,
modeling that S(γ)pi is true if γ(i) starts at position p, where

33

S(γ)p|seg(γ)|+1 marks the end of the pattern. The matching is
then encoded using the formula

Jm(γ)Kbk := S(γ)11 (1)

∧
Uk⋀︂

p=Uk−1

S (γ)p|seg(γ)|+1 → wλp (2)

∧
|seg(γ)|−1⋀︂

i=1

match(γ, i). (3)

Here, (1) encodes that the first segment starts at the first
position. The second part, (2), ensures that the length of the
solution word w equals the length of γ under l, by encoding
that the first position of w following the last segment is
mapped to λ. The last part, (3), establishes the matching
between each segment γ(i) and the corresponding factor of the
solution word, and determines the start position of γ(i+1). The
encoding depends on whether γ(i) is a constant or a variable.

If γ(i) = v for some v ∈ Σ+, then match(γ, i) is given by

Uk−|v|⋀︂
p=max(Uk−1−|v|,0)+1

S (γ)pi →
|v|⋀︂
j=1

w
v[j]
p+j−1 ∧ S

p+|v|
i+1 .

The formula states that if γ(i) starts at position p, then the
factor of w from p to p + |v| − 1 must be equal to v and
γ(i+1) starts at p + |v|. The latest position at which the γ(i)
can start is Uk − |v|, as otherwise, it would exceed Uk.

If γ(i) = x for some variable x ∈ Γ, then match(γ, i) is
instead given by⋀︂
(p,l)∈Mk\Mk−1

S (γ)pi ∧ L
l
x →

l−1⋀︂
j=0

⋀︂
c∈Σ

(hcx[j] ↔ wcp+j) ∧ Sp+li+1 .

Here, Mk = { (p, l) | p < Uk ∧ l ≤ bk(x) ∧ p+ l ≤ Uk } is
the set of all pairs of positions and length assignments w.r.t
bk, such that p+ l(x) ≤ Uk. The formula ensures that if γ(i)
starts at position p and has length l, then the factor of w from
p to p+ l− 1 must be equal to h(x), and that γ(i+1) starts at
position p+ l.

To guide the SAT solver, we impose an at-most-one con-
straint on {S(γ)pi | 0 ≤ p ≤ Uk } for all 1 ≤ i ≤ |seg(γ)|+1.
Additionally, we disable all infeasible start positions relative
to Uk with assumptions. For segments γ(i) = v ∈ Σ+, we
add ¬S(γ)pi as an assumption for all p with p > Uk−|v|. For
segments γ(i) = x ∈ Γ, we add the clauses a→ ¬(Llx∧S(γ)

p
i),

with fresh variable a, for all l, p with l < b(x), p < Uk, and
l + p > Uk, and add a as an assumption.

VI. FINDING AND REFINING BOUNDS

Whenever the SAT solver determines that the formula is
unsatisfiable under bounds b, our procedure continues with
larger bounds b′. This terminates once the bounds are either
large enough to construct a solution or exceed the bounds of
the smallest model, as explained in Section III.

Theoretical bounds on the minimal solution to a word
equation can be computed, but these bounds can be doubly

Algorithm 1 Iterative Bound Refinement
Input: Conjunctive formula ψ
Output: Bounds for ψ or UNSAT if ψ is unsatisfiable

lb,ub← init(ψ)
repeat

for α .
= β ∈ atoms(ψ) do

lb′, ub′ ← refinement_step([α .
= β]L, lb, ub)

if conflict(lb′, ub′) then
return UNSAT

end if
end for

until lb′ = lb∧ ub′ = ub
return lb, ub

exponential [24]. Given this complexity, using exact minimal
bounds is impractical. Instead, we employ a heuristic to iden-
tify tighter bounds by extracting linear constraints on variable
lengths from the word equations. We use a known method for
bounding the solutions of the resulting linear integer problem.
This approach is sound but not complete as it may fail to find
finite bounds on the variables.

For a word equation α
.
= β we define the linear integer

equation [α
.
= β]L :=

∑︁
x∈Γ(|α|x − |β|x) · |x| =

∑︁
a∈Σ |β|a −

|α|a. The equation is satisfied by every substitution h with
|h(α)| = |h(β)|. Especially, if h is a solution for α .

= β,
then it also satisfies [α

.
= β]L. Conversely, if a h does not

satisfy [α
.
= β]L, it is not a solution for α .

= β. For instance,
consider the word equation z·b·z·x .

= ba·y·a·y·bb which has
the corresponding integer equation 2·|z|+ |x|+ 1 = 2·|y|+ 5.
The substitution h = { x← a, y← a, z← baaaa } is not a
solution because 2|h(z)|+ |h(x)|+1 = 12 ̸= 9 = 2|h(y)|+5.

We treat [α
.
= β]L as an equation over variables ΓL =

{ |x| | x ∈ Γ }. For a conjunction of word equations ψ, we
lift [ψ]L to the conjunction of the corresponding integer
equations. Our procedure computes lower and upper bounds
lb,ub : ΓL → N ∪∞ such that lb(|x|) ≤ g(|x|) ≤ ub(|x|) for
all g : ΓL → N satisfying [ψ]L. The algorithm is sketched in
Algorithm 1 and an example is shown in Figure 5.

Iterative Bound Refinement: For a conjunctive formula
ψ in normal form, we derive bounds on the variables of ψ
using an incremental refinement procedure. If variable x is
constrained to belong to a regular expression R and R is
recognized by a cycle-free n-state automaton then we set the
initial bounds on x to lb0(x) = 0 and ub0(x) = n. Otherwise,
we initialize the bounds to lb0(x) = 0 and ub0(x) =∞. Thus,
lb0(|x|) ≤ g(|x|) ≤ ub0(|x|) holds initially. The algorithm then
iteratively refines the bounds until a conflict is detected or a
fixed point is reached. A conflict occurs if lb(|x|) > ub(|x|),
ub(|x|) < 0 or lb(|x|) = ∞ for some variable x, in which
case [ψ]L, and therefore ψ, are unsatisfiable. If no conflict is
found, then the functions lb and ub provide bounds on the
lengths of the variables for the solutions to ψ. Specifically, if
ub(|x|) ̸= ∞ for all x, then ub are bounds on the smallest
model for ψ. Algorithm 1 may not terminate in general (see
[13]). In our implementation, we enforce an upper limit on the
number of iterations and we return the best bounds available
when this limit is reached.

34

Bounds:
ub(x) = ∞
lb(x) = 0

ub(y) = ∞
lb(y) = 0

ub(z) = ∞
lb(z) = 0

1. Refine Equation |x| + 2·|y| = |y| + 2

|x| = −|y| + 2

|y| = −|x| + 2

|x| ≤ ub(−|y| + 2)

|y| ≤ ub(−|x| + 2)

|x| ≤ − lb(|y|) + 2

|y| ≤ − lb(|x|) + 2

|x| ≤ 2

|y| ≤ 2

Refined Bounds: ub′(x) = 2
lb′(x) = 0

ub′(y) = 2
lb′(y) = 0

ub′(z) = ∞
lb′(z) = 0

2. Refine Equation 2·|z| + |x| + 1 = 2·|y| + 5

|z| = (−|x| + 2|y| + 4) · 1
2 |z| ≤ − lb(|x|) + (2 · ub(|y|) + 4) · 1

2
|z| ≤ 4

Refined Bounds:
ub′(x) = 2
lb′(x) = 0

ub′(y) = 2
lb′(y) = 0,

ub′(z) = 4
lb′(z) = 0

Fig. 5: Bound refinement for the system of word equations
x·y·y .

= a·y·a ∧ z·b·z·x .
= ba·y·a·y·bb. Only upper bounds are

shown. The initial bounds on |x|, |y|, and |z| are [0,∞). After
processing the two equations, the bounds are refined to 0 ≤
|x| ≤ 2, 0 ≤ |y| ≤ 2, and 0 ≤ |z| ≤ 4.

Refinement Steps: The key part in the procedure is the
implied bound refinement of [13]. This procedure extends the
functions lb, ub to arithmetic terms. For constants c, set
lb(c) = ub(c) = c. For terms of the form c|x|, the value
depends on whether the constant c is positive. If c ≥ 0, then
lb(c|x|) = c · lb(|x|) and ub(c|x|) = c · ub(|x|). If c < 0, then
lb(c|x|) = c·ub(|x|) and ub(c|x|) = c·lb(|x|) instead. For sums
of the form T1+T2, we just use lb(T1+T2) = lb(T1)+lb(T2)
and ub(T1 + T2) = ub(T1) + ub(T2). Then, for any term T ,
lb(T) and ub(T) are the smallest and largest value T can
assume when respecting the bounds that lb and ub impose on
the variables:

Lemma 5. Let |x| = T be [α
.
= β]L solved for x, and lb and

ub be bounds for [α
.
= β]L. If g is a solution for [α

.
= β]L,

then lb(T) ≤ g(|x|) ≤ ub(T) holds.

If lb and ub are lower and upper bounds on the solutions
for [α .

= β]L, and the linear constraints imply an equation of
the form |x| = T where T does not contain |x|, then lb(T) and
ub(T) are lower and upper bounds for |x| in [α

.
= β]L. If these

bounds improve on lb(|x|) and ub(|x|) then the procedure
updates both and iterates.

VII. EXPERIMENTAL EVALUATION

The NFA2SAT solver is written in Rust and uses the SAT
solver CADICAL-1.5.2. The source code consists of about 18k
lines of Rust. Compared with the earlier version described
in a previous paper [20], we have made several extensions
to support word equations. First, the input formula φ is
rewritten into an equivalent formula in normal form in which
all literals are either word equations, inequalities between
variables, or (negated) regular constraints (see Section II). The
propositional encoding of regular constraints and inequalities
between variables is explained in [20] and has not changed.
Word equations are encoded as explained in Section V and the
alphabet reduction is implemented as explained in Section IV.

The bound refinement technique explained in Section VI is
used between SAT solver invocations to obtain small model
bounds and handle unsatisfiable instances, if the UNSAT core
contains (encoded) word equations.

Some types of negated constraints cannot be encoded di-
rectly because they implicitly introduce universal quantifiers.
For example, the literal ¬ contains(a·x·b, y) with variables x
and y, and constants a and b, is equivalent to ∀z1z2. z1·y·z2 ̸=
a·x·b. We handle such constraints lazily using a CEGAR-style
approach: NFA2SAT tries to find a solution that ignores these
types of constraints. If a solution is found, the solver checks
whether it satisfies the negated constraints that were ignored. If
so, the original formula is satisfiable. If some of the unhandled
negated constraints are not true, then we restart NFA2SAT with
a constraint that forces it to search for another solution.

We compare NFA2SAT with CVC5 (version 1.1.1), Z3 (ver-
sion 4.13.0), NOODLER (commit #e1e46068) and OS-
TRICH (commit #f7f0aa8c). We also include results from
NFA2SAT when the bound refinement is disabled. We run the
experiments on an Amazon EC2 M5.24xlarge instance running
Amazon Linux 2, equipped with 384 GB RAM and 96 Intel
Xeon CPUs running at 2.50 GHz. We ran 48 solvers in parallel,
with a 300 second timeout and a 16 GB memory limit per
problem.
We have evaluated our approach on the ZaligVinder [19]
benchmark set1. The set contains 82,632 problems from differ-
ent sources and includes all string problems from SMT-LIB.
Out of these problems, 33,091 are in the logical fragment sup-
ported by NFA2SAT. The others include constraints currently
unsupported by NFA2SAT, e.g., constraints on string lengths.

Table I summarizes the results. The table shows the number
of satisfiable and unsatisfiable problems solved by each solver.
It also includes the total runtime of each solver on the prob-
lems it successfully solves. On these benchmarks, NFA2SAT
is competitive with CVC5, Z3, and OSTRICH. NOODLER is
faster overall than the other solvers by a significant margin.
The baseline version of NFA2SAT solves more problems in
total than CVC5, but fewer than Z3, OSTRICH, and NOODLER.
NOODLER solves the most problems overall. The table also
shows that the bound refinement heuristic helps performance
on both satisfiable and unsatisfiable instances. It increases the
number of solved problems by 39 and reduces the total runtime
by 6,138 seconds. The table shows that the solvers have dif-
ferent characteristics. CVC5 is faster than the other solvers on
satisfiable problems but it is slower on unsatisfiable instances.
Conversely, Z3, OSTRICH, and both versions of NFA2SAT are
slower overall on satisfiable instances. NOODLER is the fastest
solver on unsatisfiable problems. NFA2SAT comes second
on unsatisfiable problems, but solves fewer problems than
NOODLER. OSTRICH is close to NOODLER in terms of the
number of solved unsatisfiable problems but it is slower. The
table also shows that NFA2SAT is faster on average than Z3,
OSTRICH, and CVC5 on the problems that it can solve, only
NOODLER is faster.

1Available at https://github.com/zaligvinder/zaligvinder

35

https://github.com/zaligvinder/zaligvinder

TABLE I: Results on the ZaligVinder Benchmarks. NFA2SAT is our baseline solver. NFA2SAT (no ref) is the same solver with
bound refinement disabled.

Solved Problems Runtimes Total (s) Runtimes Average (s)

Solver Sat Unsat Total Sat Unsat Total Sat Unsat Total

CVC5-1.1.1 25,443 7,058 32,501 1,250.40 34,285.09 35,535.49 0.05 4.86 1.09
Z3-4.13.0 25,480 7,164 32,644 43,177.51 3,083.34 46,260.85 1.69 0.43 1.42
ostrich 25,439 7,388 32,827 107,786.97 62,183.89 169,970.86 4.24 8.42 5.18
noodler 25,536 7,539 33,075 1,276.80 407.51 1,684.31 0.05 0.05 0.05
NFA2SAT 25,406 7,118 32,524 15,276.99 1,389.70 17,666.69 0.6 0.2 0.54
NFA2SAT (no ref) 25,384 7,101 32,485 21,624.50 2,180.07 23,804.57 0.85 0.31 0.73

CVC5 Z3 NOODLER OSTRICH

sa
t

un
sa

t
al

l

Fig. 6: Scatter plots comparing NFA2SAT (x-axis) with CVC5, Z3, NOODLER, and OSTRICH (y-axis). The first row contains
only satisfiable, the second row only unsatisfiable, and the last row all problems. The axes are on a logarithmic scale. The
diagonal line represents equal runtime. Points above the diagonal are problems where NFA2SAT is faster. The first dashed line
represents timeouts. The second dashed line represents failures (crashes, out-of-memory).

The scatter plots in Figure 6 show that the techniques em-
ployed by NFA2SAT and the other solvers are complementary.
Every column compares NFA2SAT with a different solver.
The leftmost plots show that CVC5 is generally faster on
satisfiable examples (points below the diagonal), but not on
all problems. The converse happens on unsatisfiable problems
(second row). One can also see that CVC5 and NFA2SAT
are good on different sets of unsatisfiable benchmarks: the
plot for unsatisfiable problems does not have many points
close to the diagonal. This behavior is even more pronounced
when we compare NFA2SAT and Z3 (second column). The
plots show a pattern where some benchmarks are easier for

NFA2SAT and others are easier for Z3, with not many points
along the diagonal. Many problems solved by NFA2SAT in
less than 1 second are harder for Z3, and conversely, many
problems solved by Z3 in less than 0.1 seconds are hard
for NFA2SAT. We can also see that Z3 has a higher startup
cost than NFA2SAT and CVC5 on these problems. The plots
comparing NFA2SAT with NOODLER show a pattern similar to
the comparison with CVC5, but NOODLER is faster overall. For
satisfiable problems, there are many cases along the diagonal,
indicating that the solvers perform equally well on these
benchmarks. However, there is also a large set of problems
where NOODLER is faster, as shown by the concentration

36

Fig. 7: NFA2SAT with and without bound refinement on SAT
and UNSAT instances, respectively.

of points below the diagonal. Despite this, NFA2SAT still
outperforms NOODLER on a subset of problems, both satis-
fiable and unsatisfiable. NOODLER is based on Z3, and thus
shares the same startup cost. The plots comparing NFA2SAT
with OSTRICH indicate that NFA2SAT is overall faster on
most problems, both satisfiable and unsatisfiable, as shown
by the majority of points above the diagonal. For many of
these problems, NFA2SAT’s advantage can be attributed to
OSTRICH’s high startup time, which is about 2 seconds. There
is a significant number of both satisfiable and unsatisfiable
problems where OSTRICH is faster, or which OSTRICHsolved
but NFA2SAT could not solve. On unsatisfiable problems,
OSTRICH solves more problems than NFA2SAT. Only a few
instances are close to the diagonal, emphasizing that NFA2SAT
and OSTRICH complement each other.

The scatter plots in Figure 7 show the impact of the bound-
refinement heuristics. The plot shows many points close to
the diagonal, which are problems where bound refinement
does not help or hurt. But most of the other points are above
the diagonal. These are problems where bound refinement
improves runtime.

VIII. CONCLUSION

We have added support for word equations to the NFA2SAT
string solver. Our approach relies on a novel SAT encoding of
word equations that is based on enumerating constant words
and matching both sides of a word equation to the same
constant word. The encoding makes use of incremental SAT
solving. To detect unsatisfiable instances, we propose an in-
complete but practical technique that derives linear constraints
on the length of variables occurring in word equations and
uses a bound-refinement algorithm. An empirical evaluation
on a large set of benchmarks demonstrates that our approach
is competitive with the state-of-the-art solvers CVC5 and
Z3. More important, the techniques employed by NFA2SAT
are complementary which brings benefits to portfolio-solving
strategies. In future work, we plan to support atoms that
constrain the lengths of strings. Additionally, we want to
explore a more diverse array of approaches to determine
unsatisfiability and optimize the SAT encoding in order to
improve the solver’s efficiency.

REFERENCES

[1] Backes, J., Bolignano, P., Cook, B., Dodge, C., Gacek, A., Luckow,
K., Rungta, N., Tkachuk, O., Varming, C.: Semantic-based automated
reasoning for AWS access policies using SMT. In: 2018 Formal
Methods in Computer Aided Design (FMCAD). pp. 1–9 (2018).
https://doi.org/10.23919/FMCAD.2018.8602994

[2] Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann,
M., Mohamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir,
A., Preiner, M., Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvc5:
A versatile and industrial-strength SMT solver. In: Fisman, D., Rosu,
G. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems - 28th International Conference, TACAS 2022, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part I.
Lecture Notes in Computer Science, vol. 13243, pp. 415–442. Springer
(2022). https://doi.org/10.1007/978-3-030-99524-9_24

[3] Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version
2.6. Tech. rep., Department of Computer Science, The University of
Iowa (2017), available at www.SMT-LIB.org

[4] Berzish, M., Day, J.D., Ganesh, V., Kulczynski, M., Manea, F., Mora, F.,
Nowotka, D.: String theories involving regular membership predicates:
From practice to theory and back. In: Lecroq, T., Puzynina, S. (eds.)
Combinatorics on Words. pp. 50–64. Springer International Publishing,
Cham (2021)

[5] Chen, T., Flores-Lamas, A., Hague, M., Han, Z., Hu, D., Kan,
S., Lin, A.W., Rümmer, P., Wu, Z.: Solving string constraints
with regex-dependent functions through transducers with priorities
and variables. Proc. ACM Program. Lang. 6(POPL) (jan 2022).
https://doi.org/10.1145/3498707, https://doi.org/10.1145/3498707

[6] Chen, Y.F., Chocholatý, D., Havlena, V., Holík, L., Lengál, O., Síč, J.:
Z3-noodler: An automata-based string solver. In: Finkbeiner, B., Kovács,
L. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems. pp. 24–33. Springer Nature Switzerland, Cham (2024)

[7] Day, J.D., Ehlers, T., Kulczynski, M., Manea, F., Nowotka, D., Poulsen,
D.B.: On Solving Word Equations Using SAT, p. 93–106. Springer In-
ternational Publishing (2019). https://doi.org/10.1007/978-3-030-30806-
3_8

[8] Diekert, V.: Makanin’s algorithm for solving word equations with
regular constraints. Tech. Rep. 1998/02, University of Stuttgart (March
1998). https://doi.org/10.18419/opus-2419, https://elib.uni-stuttgart.de/
bitstream/11682/2436/1/420_1.pdf

[9] Diestel, R.: Graph Theory, Graduate Texts in Mathematics, vol. 173.
Springer (1997)

[10] Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving.
Electronic Notes in Theoretical Computer Science 89(4), 543–560
(2003). https://doi.org/10.1016/S1571-0661(05)82542-3, bMC’2003,
First International Workshop on Bounded Model Checking

[11] Hojjat, H., Rümmer, P., Shamakhi, A.: On strings in software model
checking. In: Lin, A.W. (ed.) Programming Languages and Systems.
pp. 19–30. Springer International Publishing, Cham (2019)

[12] Jez, A.: Word Equations in Nondeterministic Linear Space. In:
Chatzigiannakis, I., Indyk, P., Kuhn, F., Muscholl, A. (eds.)
44th International Colloquium on Automata, Languages, and
Programming (ICALP 2017). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 80, pp. 95:1–95:13. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2017).
https://doi.org/10.4230/LIPIcs.ICALP.2017.95

[13] Jovanović, D., de Moura, L.: Cutting to the Chase Solving Linear
Integer Arithmetic, pp. 338–353. Springer Berlin Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22438-6_26

[14] Kan, S., Lin, A.W., Rümmer, P., Schrader, M.: CertiStr: a certified
string solver. In: Popescu, A., Zdancewic, S. (eds.) CPP ’22: 11th ACM
SIGPLAN International Conference on Certified Programs and Proofs,
Philadelphia, PA, USA, January 17 - 18, 2022. pp. 210–224. ACM
(2022). https://doi.org/10.1145/3497775.3503691

[15] Karhumäki, J., Mignosi, F., Plandowski, W.: The expressibility of
languages and relations by word equations. J. ACM 47(3), 483–505
(may 2000). https://doi.org/10.1145/337244.337255

[16] Kiezun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: Hampi:
A solver for string constraints. In: Proceedings of the Eighteenth
International Symposium on Software Testing and Analysis. p. 105–116.
ISSTA ’09, Association for Computing Machinery, New York, NY, USA
(2009). https://doi.org/10.1145/1572272.1572286

37

https://doi.org/10.1145/3498707
https://elib.uni-stuttgart.de/bitstream/11682/2436/1/420_1.pdf
https://elib.uni-stuttgart.de/bitstream/11682/2436/1/420_1.pdf

[17] Klieber, W., Kwon, G.: Efficient CNF encoding for selecting 1 from
N objects. In: Fourth Workshop on Constraints in Formal Verification
(CFV) (2007)

[18] Kulczynski, M., Lotz, K., Nowotka, D., Poulsen, D.B.: Solving string
theories involving regular membership predicates using SAT. In: Le-
gunsen, O., Rosu, G. (eds.) Model Checking Software. pp. 134–151.
Springer International Publishing, Cham (2022)

[19] Kulczynski, M., Manea, F., Nowotka, D., Poulsen, D.B.: Za-
ligVinder: A generic test framework for string solvers. Jour-
nal of Software: Evolution and Process 35(4), e2400 (2023).
https://doi.org/https://doi.org/10.1002/smr.2400

[20] Lotz, K., Goel, A., Dutertre, B., Kiesl-Reiter, B., Kong, S., Majumdar,
R., Nowotka, D.: Solving string constraints using SAT. In: Computer
Aided Verification: 35th International Conference, CAV 2023, Paris,
France, July 17–22, 2023, Proceedings, Part II. pp. 187–208. Springer-
Verlag, Berlin, Heidelberg (2023). https://doi.org/10.1007/978-3-031-
37703-7_9

[21] Lu, Z., Siemer, S., Jha, P., Manea, F., Day, J., Ganesh, V.: Z3-
alpha: a reinforcement learning guided smt solver. System Descrip-
tion: SMT-COMP 2023 (July 2023), https://smt-comp.github.io/2023/
system-descriptions/z3-alpha.pdf

[22] Makanin, G.S.: The problem of solvability of equations in a free
semigroup. Mathematics of The Ussr-sbornik 32, 129–198 (1977),
https://api.semanticscholar.org/CorpusID:7073856

[23] de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proceedings
of the Theory and Practice of Software, 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems.
p. 337–340. TACAS’08/ETAPS’08, Springer-Verlag, Berlin, Heidelberg
(2008)

[24] Plandowski, W.: Satisfiability of word equations with constants is
in nexptime. In: Proceedings of the thirty-first annual ACM sym-
posium on Theory of Computing. STOC99, ACM (May 1999).
https://doi.org/10.1145/301250.301443

[25] Plandowski, W., Rytter, W.: Application of Lempel-Ziv encodings to
the solution of word equations, p. 731–742. Springer Berlin Heidelberg
(1998). https://doi.org/10.1007/bfb0055097

[26] Rungta, N.: A billion SMT queries a day (invited paper). In: Shoham,
S., Vizel, Y. (eds.) Computer Aided Verification. pp. 3–18. Springer
International Publishing, Cham (2022). https://doi.org/10.1007/978-3-
031-13185-1_1

[27] Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song,
D.: A symbolic execution framework for JavaScript. In: 2010
IEEE Symposium on Security and Privacy. pp. 513–528 (2010).
https://doi.org/10.1109/SP.2010.38

[28] Schulz, K.U.: Makanin’s algorithm for word equations-two improve-
ments and a generalization, pp. 85–150. Springer Berlin Heidelberg
(1992). https://doi.org/10.1007/3-540-55124-7_4

[29] Yu, F., Alkhalaf, M., Bultan, T., Ibarra, O.H.: Automata-based symbolic
string analysis for vulnerability detection. Formal Methods in System
Design 44(1), 44–70 (2014). https://doi.org/10.1007/s10703-013-0189-1

38

https://smt-comp.github.io/2023/system-descriptions/z3-alpha.pdf
https://smt-comp.github.io/2023/system-descriptions/z3-alpha.pdf
https://api.semanticscholar.org/CorpusID:7073856

	Introduction
	Preliminaries
	The Decision Procedure
	Alphabet Reduction
	Encoding Word Equations
	Encoding Words
	Encoding l-Substitutions
	Matching Patterns To Words

	Finding and Refining Bounds
	Experimental Evaluation
	Conclusion
	References

