
Formal Methods in Computer-Aided Design 2024

SMT-D: New Strategies for Portfolio-Based SMT
Solving

Clark Barrett1, 5, Pei-Wei Chen3,∗, Byron Cook1, Bruno Dutertre1, Robert B. Jones1,
Nham Le1,2,∗, Andrew Reynolds1,6, Kunal Sheth4,∗, Christopher Stephens1, and Michael W. Whalen1

1Amazon Web Services, Seattle, USA, {byron, dutebrun, rbtjones, chrisss, mww}@amazon.com
2University of Waterloo, Warterloo, Canada, nham.van.le@uwaterloo.ca

3University of California, Berkeley, USA, pwchen@berkeley.edu
4University of Illinois, Urbana-Champaign, USA, kunal@kunalsheth.info

5Stanford University, Stanford, USA, barrett@cs.stanford.edu
6University of Iowa, Iowa City, USA, andrew-reynolds@uiowa.edu

Abstract—We introduce SMT-D, a tool for portfolio-based
distributed SMT solving. We propose a general architecture
consisting of two main components: (i) solvers extended with the
capability of sharing and importing information on the fly while
solving; and (ii) a central manager that orchestrates and monitors
solvers while also deciding which information to share with which
solvers. We introduce new information-sharing strategies based
on the idea of maximizing the amount of useful diversity in the
system. We show that on hard benchmarks from recent related
work, SMT-D instantiated with the cvc5 SMT solver achieves
significant speed-up over sequential performance, is competitive
with existing portfolio approaches, and contributes a number of
unique solutions.

I. INTRODUCTION

Solvers for satisfiability modulo theories (SMT) are used
as general-purpose constraint solvers in a wide variety of
applications, including those arising in computer science [6],
[10], mathematics [12], [21], operations research [20], and
more. Unsurprisingly, as users push SMT solvers to solve
more diverse and challenging problems, solver performance
becomes the limiting factor in many applications.

Today, state-of-the-art SMT solvers like cvc5 [2], Yices [8],
and Z3 [7] do not benefit from additional cores, and if the
solving job times out or crashes, any work done during the
solving attempt is lost. An effective strategy for distributed
SMT solving could address both issues: it can help scale SMT
solving across multiple threads and machines, and by sharing
information among solver instances, any progress made can
be retained and used by others, even if one of the instances
crashes or fails.

Two main approaches to distributed SMT solving have been
explored: portfolio solving and divide-and-conquer. Portfolio
solving is essentially a race between multiple independent
SMT solver instances. Each solver is different in some way:
either it is a completely different solver, or it is configured
differently, or it is provided with a different (but logically

*These authors did much of the work on this project and did so during
internships at Amazon Web Services.

equivalent) input. Portfolio solving aims to leverage the well-
known high variance that often exists when solving equivalent
SMT problems: the hope is that one of the solvers in the
portfolio finishes quickly. Portfolio solving can be enhanced by
sharing information among the solver instances. Typically, this
information consists of formulas that the SMT solvers have
learned that can be used to prune the search space. In divide-
and-conquer solving, a single problem is partitioned in such
a way that if each partition is solved, this provides a solution
to the original problem. The main challenge is finding a way
to divide the problem that actually improves performance.

In this paper, we introduce SMT-D, a new tool for portfolio-
based distributed SMT solving. SMT-D’s architecture consists
of two main components: (i) solvers extended with the capa-
bility to share and import information on the fly while solving;
and (ii) a central manager that orchestrates and monitors
solvers while also deciding which information to share with
which solvers. We also introduce a new information-sharing
strategy based on the idea of maximizing the amount of
“good” diversity in the system. On hard benchmarks from
recent work [22], SMT-D instantiated with the cvc5 SMT solver
achieves significant speed-ups over sequential performance, is
competitive with existing portfolio approaches, and contributes
a number of unique solutions.

In summary, our contributions include:

• a flexible and general architecture for portfolio-based
SMT solving with information sharing;

• new portfolio strategies including delayed sharing and
guided randomization;

• an implementation in SMT-D; and
• an evaluation of SMT-D and existing systems on several

sets of challenging benchmarks.

The rest of the paper is organized as follows. Section II
covers background and related work. Section III describes the
architecture of SMT-D. Section IV explains our novel portfolio
strategies, and Section V provides additional implementation
details. Experimental results are reported in Section VI, and

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_10 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_10
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_10
https://creativecommons.org/licenses/by/4.0/

Algorithm 1: The CDCL(T) loop
Input : an SMT formula F
Output: SAT or UNSAT

1 clauseDB ← toCNF (F);
2 while True do
3 do
4 conflict ← BooleanPropagate(clauseDB);
5 changed ← False;
6 if conflict = ∅ then
7 conflict , changed ← theoryCheck() ;
8 while changed ∧ conflict = ∅;
9 if conflict ̸= ∅ then

10 level , lemma ← resolveConflict(conflict);
11 clauseDB ← clauseDB ∪ lemma;
12 if level < 0 then
13 return UNSAT;
14 backtrack(level) ;
15 else
16 if nextLiteral() = NULL then
17 return SAT ;

Section VII concludes.

II. PRELIMINARIES

We assume the standard logical setting for SMT with the
usual notions of terms, interpretations, and theories (see, e.g.,
[5]). We assume a fixed background theory T (which could
be a composition of one or more individual theories). A T -
interpretation is an interpretation that interprets symbols in T
as expected. An atom is a term of sort BOOL that does not
contain any proper sub-terms of sort BOOL. A literal is either
an atom or the negation of an atom. A clause is a disjunction
of literals, and a cube is a conjunction of literals. A formula is
a term of sort BOOL and is satisfiable (resp., unsatisfiable) if
it is satisfied by some (resp., no) T -interpretation. A formula
whose negation is unsatisfiable is valid.

A. CDCL(T)-Based SMT Solvers

Most modern SMT solvers are based on the CDCL(T)
framework [17], in which a SAT solver and one or more theory
solvers cooperate. The SAT solver incrementally builds a truth
assignment for the Boolean skeleton of the formula, obtained
by replacing each unique atom by a Boolean variable. It does
this using a standard CDCL loop that is modified to also
take into account theory reasoning. The modified CDCL(T)
approach is shown in Algorithm 1. Initially, an input formula
F is converted to conjunctive normal form (CNF), and each
clause is stored in a clause database. The main loop first calls
Boolean propagation, which may assign some atoms to true
or false. If Boolean propagation produces no conflicts, then
the theory solvers are called to check for theory conflicts.
These two steps repeat until a fixed point is reached. If there
is a conflict, it is resolved by learning a conflict lemma and
backtracking to an earlier level in which there is no conflict.

Otherwise, the nextLiteral function is used to make a case
split on a new literal. More details can be found in [5].

B. Portfolio Solving with Lemma Sharing

SMT solvers are highly sensitive. Small changes to the input
formula or solver heuristics can result in orders of magnitude
difference in solving time [11]. While a cause of frustration for
users, this phenomenon can be leveraged to create an effective
portfolio solving strategy: multiple solvers (each configured
differently or with permuted, but logically equivalent, inputs)
are run in a “racing” mode and the result of the fastest one
is returned. This approach has been explored extensively for
both SAT and SMT solving [1], [15], [16], [24] and produces
reliable speed-ups [23]. Still, portfolio solving is limited by the
performance of the best and luckiest individual solver, leading
to diminishing returns with increasing parallelism. Additional
performance can be obtained with information sharing. Each
solver in the portfolio shares its learned conflict lemmas with
the others, with the hope that this exchange of information
will help find the solution faster.

Implementing a lemma-sharing portfolio in practice is
highly non-trivial. System-wise, one must provide scalability,
fault tolerance, and low overhead; algorithmic-wise, one must
find a good balance between sharing useful information and
overloading the system with too many lemmas. Moreover,
a well-designed distributed solver should be modular and
general, leaving room for future extensions. Ideally, it should
also accommodate a wide range of different solvers, support
new sharing strategies, and be compatible with other parallel
strategies such as partitioning. After a review of related work,
we discuss our design and implementation, including design
decisions that aim to meet the criteria mentioned above.

C. Related Work

Parallel strategies for SAT solving have been explored
extensively [1], [13], [14], [24]. SMT solvers must take into
account the more sophisticated CDCL(T) architecture and the
different performance profiles of SMT applications. However,
the two main approaches for parallel SAT solving are also
found in the existing research literature on parallel SMT
solving, namely portfolio solving and partitioning.

Portfolio solving for SMT. Z3 was the first SMT solver
to implement portfolio solving with information sharing [23].
The Z3 implementation focuses on a shared-memory imple-
mentation and achieves a speed-up of 3.5x on average for
moderately difficult integer difference logic benchmarks using
a portfolio of four copies of Z3. The sharing strategy used is
simple: lemmas with eight literals or fewer are shared, and
others are not. Shared lemmas are put into a queue, and each
solver in the portfolio checks its queue whenever it backtracks
to decision level 0. Unfortunately, portfolio solving is no
longer supported in recent versions of Z3.

SMTS [15] is another system implementing portfolio solv-
ing with information sharing. As with the Z3 approach,
lemmas to be shared are loaded into queues that are accessed
when the solvers backtrack to decision level 0. SMTS uses a

40

central database to store shared lemmas. A filtering heuristic
is used to decide which lemmas to add to the database, and a
selection heuristic is used to decide which lemmas to share
from the database. SMTS obtains its best results using a
filter that discards lemmas with more than four literals and
a selection heuristic that randomly samples from the database.
The SMTS authors specifically flag the need for better filtering
and selection techniques in their discussion of future work.
Our work builds on and extends these previous approaches in
several ways, as we discuss in the next section.

Partitioning in SMT. SMTS [15] implements several par-
titioning strategies that outperform sequential solving. Relat-
edly, Wilson et al. [22] implement a partitioning-based parallel
solver using cvc5 (which we will refer to as CVC5-P going
forward) and show that it outperforms traditional portfolio
solving on a set of challenging benchmarks. CVC5-P does
not use any information sharing, leaving the integration of
sharing to future work. SMTS does explore a limited form of
sharing mixed with partitioning: each partition can be solved
using a portfolio with lemma sharing, which yields even better
performance. The focus of this paper is on portfolio solving
with sharing but without partitioning. We aim to build a
robust and high-performance solution that could be expanded
to include partitioning strategies in future work.

III. AN ARCHITECTURE FOR PORTFOLIO-BASED SMT
SOLVING

In this section, we describe a general architecture for
portfolio-based SMT solving and contrast it with prior ap-
proaches. Figure 1 depicts our architecture. It is designed to
run on either a cluster of computing nodes or a multicore
machine. Multiple solver instances (called workers) work on
the same problem and share information through a central
broker. The workers are SMT solvers instrumented to be able
to export and import learned lemmas on the fly. Workers
also track local statistics about lemma imports, exports, and
filtering.

The central broker plays two roles. First, in the control
plane (Fig. 1a), it manages the system by starting, config-
uring, monitoring, and terminating workers, and by monitor-
ing the overall system and network health (through period-
ically transmitted ping/pong messages). Second, in the data
plane (Fig. 1b), it controls system data flow by managing
lemma exchange between workers and by tracking and mon-
itoring solver and system-level lemma statistics. In particular,
the data-plane broker (i) tracks which lemmas arrive from
which individual workers and (ii) decides which lemmas
to forward to which workers. This already enables a finer
level of control than in previous approaches, where lemma
sources are not tracked and static selection criteria are used to
decide which lemmas to share. The broker tracks both control
and data, including statistics such as the number of lemmas
exported or imported so far, time spent in various phases of
processing those lemmas, whether a worker has solved its copy
of the problem, and so forth.

We advocate a simple hub-and-spoke architecture, similar
to that used in SMTS [16]. Using a central broker simplifies
coordination and does not require workers to synchronize with
each other. We have also observed empirically that in our
implementation, the broker is not a communication bottleneck
(see Sec. VI). Our hub-and-spoke architecture tolerates worker
failure and communication lag or failure. The design makes
progress as long as the central broker and some workers are
active. The broker is a single point of failure, but can be
engineered to be robust.

A. Workers

As mentioned above, the workers are SMT solvers modified
to support importing and exporting of learned lemmas during
search. This allows for more fine-grained information sharing
than prior approaches, where lemmas are only imported at
decision level 0, and requires modifying the CDCL loop
as shown in Algorithm 2. The loop now calls an export
procedure whenever a new lemma is learned as a result of
conflict analysis (Line 14). Additionally, during the propaga-
tion phase, the worker adds lemmas received from the broker
to its database by invoking an import procedure (Line 7).
While these changes to CDCL are non-trivial, we can often
leverage extensions already present in CDCL SAT solvers to
support SMT functionality such as theory propagation. These
mechanisms can typically be repurposed for lemma sharing.

The worker sends telemetry to the broker whenever lemmas
are exported or imported (Line 9 and Line 15). Each solver
has a mechanism for locally filtering lemmas. The goal is to
import and export only useful lemmas. We discuss various
considerations for local filtering in Section V.

B. Central Broker

The central broker configures both the workers and network
communication channels and manages both the control and
data planes. During solving, it coordinates the exchange of
information between workers and detects termination.

A major role of the central broker is to distribute lemmas
learned by one worker to the other workers, while discarding
duplicates and managing additional filters. Because multiple
workers can learn and export identical lemmas, the broker
ensures that each unique lemma is only forwarded (at most)
once to each worker. Again, this offers a more fine-grained
control mechanism than prior work, in which all lemmas up
to a certain size are always shared (Z3) or lemmas are sampled
randomly (SMTS) from the database of all shared lemmas.

The core broker algorithm is shown in Algorithm 3. The
broker maintains two global variables: archivedLemmas is
the set of all lemmas it has received; and lemmaSolverMap
is a map from lemmas to worker ids that keeps track of the
origin(s) of each lemma. When the broker receives a lemma,
the lemma is canonicalized by sorting the set of its literals
(Line 5). This ensures that one source of lemma redundancy is
eliminated. The broker then uses this canonical form to detect
whether the lemma is new (i.e., not in archivedLemmas) and
to update lemmaSolverMap. Function shouldSend controls

41

Broker

System Monitor/Dashboard

Solver

Solver
telemetry

Ping/
Pong

Solver

Solver
telemetry

Ping/
Pong

Solver

Solver
telemetry

Ping/
Pong

...

...

C++

gRPC

Python

(a) Control Plane

Broker

LemmaSolverMap

Solver

Lemma
import
queue

...

...Solver

Lemma
import
queue

Solver

Lemma
import
queue

C++

gRPC

Python

(b) Data Plane

Figure 1: Architecture of SMT-D

Algorithm 2: Modified CDCL(T) loop with sharing
Input : an SMT formula F
Output: SAT or UNSAT

1 clauseDB ← toCNF (F);
2 while True do
3 do
4 conflict ← BooleanPropagate(clauseDB);
5 changed ← False;
6 if conflict = ∅ then
7 newLemmas ← importLemmas();
8 clauseDB ← clauseDB ∪ newLemmas;
9 sendtelemetry();

10 conflict , changed ← theoryCheck();
11 while (newLemmas ̸=∅ ∨changed) ∧ conflict=∅;
12 if conflict ̸= ∅ then
13 level , lemma ← resolveConflict(conflict);
14 exportLemma(lemma);
15 sendtelemetry();
16 clauseDB ← clauseDB ∪ lemma;
17 if level < 0 then
18 return UNSAT;
19 backtrack(level);
20 else
21 if nextLiteral() = NULL then
22 return SAT;

the timing of when lemmas are transmitted to the workers.
When shouldSend is true, the broker sends each lemma l
stored in lemmaSolverMap to the workers that did not export
it. We discuss implementation choices for shouldSend in
Section V.

Algorithm 3: The broker’s core lemma exchange
routine

1 archivedLemmas ← ∅;
2 lemmaSolverMap ← ∅;
3 while True do
4 ℓ, w ← readMessage();
5 ℓ← canonicalize(ℓ);
6 if ℓ ∈ archivedLemmas then
7 continue;
8 lemmaSolverMap[ℓ].add(w);

9 if shouldSend() then
10 for ℓ ∈ lemmaSolverMap do
11 send(ℓ, allWorkers \ lemmaSolverMap[ℓ]);
12 lemmaSolverMap.pop(ℓ);
13 archivedLemmas.add(ℓ);

IV. PORTFOLIO STRATEGIES

Constructing effective strategies for portfolio solving with
information sharing requires balancing trade-offs from a num-
ber of different goals:

• Maximize diversity: workers should work on different
parts of the search space to avoid redundant work.

• Share useful lemmas: ideally, workers should export lem-
mas that are useful to all instances. A common heuristic
for evaluating the value of a lemma is its size (i.e.,
number of literals in the clause). Smaller clauses are more
likely to be useful, as they prune a larger portion of the
search space.

• Avoid overwhelming solvers: each solver maintains a
database containing both locally-learned lemmas and
lemmas imported from the broker. Core solver perfor-

42

mance degrades as the size of the database grows. Sharing
too many lemmas can thus be detrimental to overall
system performance.

• Manage communication overhead: we do not want to
overload the communication network with too much data,
as this also slows down the system.

Our proposed architecture supports a wide variety of strat-
egy options. We mention two general strategies here, and then
discuss specific parameter settings used in our implementation
in Section V. The first strategy is delayed sharing, which
avoids sharing a large set of lemmas that all solvers discover
locally. The second strategy is a novel approach to diversity
that we call guided randomization.

A. Delayed Sharing

In initial experiments with an early prototype, we observed
that for some large problems, workers initially export a large
number of lemmas and delay calling the importLemmas
procedure. Later, when they do try to import the lemmas,
the system stalls due to the large amount of communication
traffic. Telemetry revealed that this was caused by the initial
preprocessing and theory reasoning performed by the solvers.

Before entering the CDCL loop proper, SMT solvers per-
form formula simplification, conversion to clausal form, and
some eager theory reasoning. It is possible for solvers to
produce many lemmas during this phase; if each worker is an
instance of the same SMT solver, such lemmas are likely to be
learned by all solvers working on the problem.To address this
issue, we added a delayed sharing mechanism, which ensures
that only lemmas learned after the preprocessing phase are
exported. Enabling this mechanism boosts performance on all
of our benchmarks.

B. Guided Randomization

Baseline mechanisms for diversifying solver behavior in-
clude selecting different random seeds and modifying solver
configurations to ensure that different instances use different
search parameters. However, these basic mechanisms have
diminishing benefit as we increase portfolio size, as we show
in Section VI-B. Using the telemetry collected by the broker,
we can observe the number of uniquely learned lemmas (i.e.,
those learned by a single worker). This metric is a reasonable
proxy for system diversity, and indeed, in early experiments,
we observed that this number plateaus as we scale the number
of workers.

We address this problem by dividing the pool of workers
into two clusters, a standard cluster and a noisy cluster. Each
cluster uses different levels of randomness and different scor-
ing and filtering heuristics. Scoring and filtering can also treat
lemmas local to the cluster differently than clauses from other
clusters. The noisy cluster uses a high degree of randomness.
Intuitively, we expect that solvers in this cluster will learn
mostly useless clauses, because they are using heuristics that
are far away from the default configurations which have been
tuned to be effective. They are also likely to end up exploring
parts of the search space that low-randomness solvers ignore.

But once in a while, noisy solvers may get lucky and learn
clauses that can be useful to solvers in the other cluster.

To maintain diversity in the noisy cluster, we keep the
clause databases for solvers in the cluster somewhat isolated.
We do this by configuring solvers in noisy clusters to ignore
each other and only import lemmas that the central manager
determines are highly likely to be useful, (e.g., unit clauses).
We discuss a concrete instantiation of this strategy in the next
section.

V. IMPLEMENTATION

SMT-D is a distributed SMT solver that implements our
proposed architecture and strategies.For the worker instances,
we use a version of cvc5 with the main loop modified
to support importing and exporting clauses, as discussed in
Section III-A. Workers run in separate processes, and each
worker process has a separate wrapper thread that manages
the control plane interface and networking details.

The central broker is written in Python. Communication
between broker and workers is implemented with gRPC [9].
We chose gRPC instead of lower-level mechanisms like sock-
ets, because gRPC’s high-level API provides better monitoring
capabilities and has sufficient performance for (at least) 64
solvers. gRPC also allows us to abstract the parallel and
distributed aspects of the system. Thus, SMT-D can be de-
ployed either on a single multicore machine or on a cluster of
machines in the cloud.

To export lemmas, we serialize them as strings in the SMT-
LIB format [4]. Correspondingly, lemma import requires pars-
ing SMT-LIB strings. This adds some overhead1 but provides
a significant interoperability advantage, as all SMT solvers
can parse and print terms in SMT-LIB format. More compact
formats could be used at the cost of increased implementation
effort and reduced interoperability. For example, SMTS uses
a dedicated binary format, but this limits the choice of solvers
to those that support this format. Choosing SMT-LIB reduces
the cost of adding additional solvers beyond cvc5 to SMT-D.

As explained previously, SMT-D implements comprehensive
telemetry for both the control and data planes. We found this
real-time information about the solving process at both the lo-
cal and global levels to be crucial when debugging the system,
evaluating different portfolio configurations, and evaluating
lemma scoring and filtering strategies. The implementation is
heavily parameterized, so that whenever possible, users can
choose configuration options at runtime, rather than having to
change hard-coded configuration settings.

A. Local Filtering

Several considerations must be taken into account at the
worker level. SMT solvers can dynamically create new atoms
and new symbols during search. This poses a soundness
problem in a distributed setting as one must ensure that
new symbols created by a solver instance are interpreted

1So far, this has not been a performance limiter, as analysis shows that
individual cvc5 workers can import at least 1,000 lemmas/second with <5%
parsing overhead. None of the benchmarks reach that level.

43

consistently by other instances. We currently avoid this issue at
the export stage by filtering out lemmas that contain symbols
not present in the original formula.2 New theory atoms are
fine as long as they do not introduce new symbols. More
sophisticated approaches are possible, but require a mechanism
for exporting the definitions of new symbols in a canonical
way. Implementing such a mechanism requires extending the
baseline SMT solver in a non-trivial way, and we leave it for
future work.

As mentioned, our primary goal when filtering is to only
export useful lemmas. As in prior work, we use the number
of literals in the lemma as our main export filter.

Importing lemmas has a cost. The central broker aims to
limit redundancy by only sending a given lemma once to each
worker. It is still possible for a worker to produce a lemma
internally before learning that another worker has produced the
same lemma. Thus, we check in the import procedure whether
an imported lemma has already been discovered locally. If
so, we drop it. This can be implemented efficiently using
mechanisms such as hashing and Bloom filters.

B. Sending Lemmas from the Broker

Our broker uses two indicators to determine when to send
lemmas. The first is the wall clock time elapsed since the
last lemma transmission. The other is the number of unsent
lemmas for a particular worker in the lemmaSolverMap map.
Function shouldSend returns true if the elapsed time is greater
than a parameter delay or if the number of unsent lemmas is
larger than a threshold maxQueueSize. By setting these two
parameters, the broker can implement different communication
policies. It can send lemmas in size-driven batches (like
SMTS [15]), in time-driven epochs (like Mallob [19]), or
both. We found empirically that so far, the best results come
from sharing lemmas individually as soon as they are received.
The current sharing limiter is cvc5 parser performance, which
supports importing at least 1,000 lemmas per worker per
second. With clause sharing filtered by size ≤ 8, only one of
the benchmarks approaches that limit, even with 64 workers. If
we encounter network bandwidth limitations at some point, we
expect that time-driven epochs will provide the best efficiency.

C. Monitoring

SMT-D monitors the number of lemmas imported and ex-
ported by each worker. Information from solver wrappers is
used to monitor message latency and broker/solver roundtrip
times. The lemmaSolverMap map also tracks how many
solvers independently learned each lemma, that is, the number
of lemmas learned by exactly one solver, two solvers, and so
forth. This helps dynamically measure diversity in the system,
including the amount of redundant work being performed by
different solvers. The broker also maintains its own counts of
the number of exported and imported lemmas for each worker.
Mismatches between the numbers stored in the broker and
the numbers reported by the workers mean that the system is

2This problem does not occur in the problems in our evaluation, as problems
in these logics do not introduce new symbols.

Figure 2: Scalability of SMT-D.

Figure 3: Guided Randomization (CS-GR) vs naive Clause
Sharing (CS). Dots on the upper and right-most edges are
problems that time out with CS and CS-GR, respectively.

overloaded (thus messages are late or dropped) or that there is
a bug. During the development of SMT-D, the monitor helped
detect multiple bugs and helped inform the design of our
lemma-sharing heuristics.

VI. EVALUATION

We measure SMT-D performance on the set of benchmarks
used in [22], which consists of 214 challenging benchmarks
taken from the Cloud track of SMTCOMP22 [18] and other
problems from the SMT-LIB benchmark library [3]. The
benchmarks come from five SMT-LIB logics: QF_LRA (139),
QF_IDL(48), QF_LIA (16), QF_UF (7), and QF_RDL (4).

44

Benchmarks SMT-D baseline SMT-D 64x CS SMT-D 64x CS-GR SMTS baseline SMTS 64x CS CVC5-P 64x
Category Count Solved PAR-2 Solved PAR-2 Solved PAR-2 Solved PAR-2 Solved PAR-2 Solved PAR-2

QF_LRA 139 90 154 121 61 (↓60%) 120 60 (↓61%) 117 69 127 41 (↓41%) 99 130 (↓16%)
QF_IDL 48 1 114 20 72 (↓37%) 21 70 (↓39%) 8 99 15 82 (↓17%) 5 107 (↓6%)
QF_LIA 16 0 38 8 22 (↓42%) 9 20 (↓47%) 11 13 14 11 (↓15%) 1 36 (↓5%)
QF_UF 7 2 14 3 11 (↓21%) 7 2 (↓86%) 6 5 6 3 (↓40%) 4 9 (↓36%)

QF_RDL 4 0 10 2 6 (↓40%) 2 6 (↓40%) 0 10 0 10 (0%) 0 10 (0%)

SAT 115 52 172 86 83 (↓52%) 86 82 (↓52%) 83 87 99 44 (↓49%) 59 151 (↓12%)
UNSAT 85 41 124 68 55 (↓56%) 73 43 (↓65%) 59 75 63 63 (↓16%) 50 106 (↓15%)

UNKNOWN 14 0 34 0 34 (0%) 0 34 (0%) 0 34 0 34 (0%) 0 34 (0%)

ALL 214 93 330 154 171 (↓48%) 159 159 (↓52%) 142 196 162 141 (↓28%) 109 291 (↓12%)

Table I: Results comparing SMT-D with other distributed solving tools. PAR-2 scores in thousands.

The goal of our evaluation is to understand the value
and potential of our clause-sharing mechanism. Our first set
of experiments evaluates different options and configurations
of SMT-D (see Section VI-B). This experiment shows the
effectiveness of clause sharing over no sharing and the value
of guided randomization. Our second set of experiments
compares SMT-D with other tools.

A. Configuration

We use a competition build of cvc5 with the elective
CLN and GLPK build options enabled. For each logic, we
configure cvc5 workers with different sets of options to
enhance diversity. These option sets are listed in Table II
and are based on the authors’ knowledge of the tool and
the configurations typically used in the SMT competition. We
populate the portfolio by first instantiating a cvc5 instance
for each set of options. If we have more workers available
in the portfolio, we cycle through the different option sets
again, but this time using a different decision engine from the
default one for that logic (--decision=justification if the default
is --decision=internal and --decision=internal otherwise). After
this, we continue to cycle through the different sets of options,
this time using only --decision=internal and using a different
random seed for each instance. When using noisy solvers,
only solvers with --decision=internal are used for the noisy
partition.

Table II lists the different sets of options used for each logic.
The first set of options listed for each logic is the one used
when running a single instance of cvc5 for that logic.

In all experiments, we set the timeout for solving each query
to be 1200 seconds, the same timeout used in the parallel
and cloud tracks of the SMT competition (in both 2022 and
2023) [18]. Experiments were performed on Amazon EC2
c6a.48xlarge instances, with 96 physical cores and 384 GB
of RAM.

Our main metric used for comparison is the PAR-2 score
used in [22] and the annual SAT competition. PAR-2 is the sum
of run times for all instances, but where unsolved instances
receive a score of twice the timeout value (1200× 2 = 2400).
This provides a single metric that takes into account both
runtime and number of benchmarks solved. The lower the
PAR-2 score, the better. We also use cactus plots to show
the number of solved instances (y-axis) within a limit of
s seconds per instance (x-axis). We are primarily interested

Logic Options
QF_LRA, QF_RDL --miplib-trick true
(option set 1) --miplib-trick-subs 4

--use-approx true
--lemmas-on-replay-failure true
--replay-early-close-depth 4
--replay-lemma-reject-cut 128
--replay-reject-cut 512
--unconstrained-simp true
--use-soi true

(option set 2) --restrict-pivots false
--use-soi true
--new-prop true
--unconstrained-simp true

(option set 3) (defaults only)
QF_LIA, QF_IDL --miplib-trick true
(option set 1) --miplib-trick-subs 4

--use-approx true
--lemmas-on-replay-failure true
--replay-early-close-depth 4
--replay-lemma-reject-cut 128
--replay-reject-cut 512
--unconstrained-simp true
--pb-rewrites true
--ite-simp true
--simp-ite-compress true
--use-soi false

(option set 2) --miplib-trick true
--miplib-trick-subs 16
--use-approx true
--lemmas-on-replay-failure true
--replay-early-close-depth 4
--replay-lemma-reject-cut 16
--replay-reject-cut 64
--unconstrained-simp true
--pb-rewrites true
--ite-simp true
--simp-ite-compress true
--use-soi true

(option set 3) (defaults only)
QF_UF (defaults only)

Table II: Options used in cvc5 portfolios

in the effectiveness of different parallelization strategies and
implementations.

B. Scalability and Effectiveness of Guided Randomization

We first report on scalability experiments of SMT-D, both
with and without sharing. We also show the effect of adding
guided randomization. When using guided randomization, we
divide the portfolio into two clusters: a standard cluster, which
uses default cvc5 randomness settings, and a noisy cluster,
which assigns the cvc5 rnd_freq option to 75%. This option

45

controls how often the SAT decision tries to pick a random
variable instead of a heuristically-driven choice. We assign
25% of the workers to the noisy cluster and 75% to the
standard cluster.3 Solvers in the standard cluster import and
export clauses of length ≤ 8. In the noisy cluster, clauses of
length ≤ 4 are exported, but only unit clauses are imported.

To distinguish the different configurations of SMT-D, we
use CS for configurations with clause sharing and CS-GR for
configurations with clause sharing and guided randomization.
Fig. 2 shows how different configurations of SMT-D scale with
the number of workers. The figure includes results for baseline
cvc5, portfolios of 4, 16, and 64 workers, with and without
sharing, and a run of 64 workers with guided randomization.
Specific numbers for three of the configurations (baseline, 64x
CS, and 64x CS-GR) can be found in Table I.

We observe that SMT-D scales nicely when going from 1
to 64 solvers. In addition, clause sharing improves perfor-
mance for all portfolio sizes greater than four, and guided
randomization provides an additional boost. Our experiments
showed that guided randomization does not help much until we
reach portfolio sizes of more than 32. We suspect additional
portfolio members add diversity until a point of diminishing
returns where the guided randomization helps. This is why
we only include results for CS-GR for a portfolio of 64. A
comparison of the 64x CS configuration with and without
guided randomization is shown in Fig. 3. While there is
orthogonality, overall CS-GR improves performance, including
by more than 2x for a significant number of problems (dots to
the left of the top “2x” line). As a whole, among all instances
solved by both CS and CS-GR, there are 24 instances where
CS-GR is more than 2x faster than CS, and only 5 instances
where CS-GR is 2x slower. CS-GR solves 5 more problems,
and improves the PAR-2 score by 12k (7%) over CS.

Though we did not measure it precisely, total memory con-
sumption per solver is relatively stable, which is good news for
the distributed case where cores do not share memory. Broker
memory was not a significant issue in these experiments.
Detailed studies of memory usage will be an important part
of ongoing development of the tool.

C. Comparison with State-Of-The-Art Tools

We next compare SMT-D with SMTS [16],4 the strongest
solver in quantifier-free divisions of SMTCOMP22’s cloud
track,5 and CVC5-P, the partitioning solver from [22].

We use SMTS with sharing on and partitioning off. The
reason for not enabling the partitioning capability is simple
and deliberate: our goal is to understand and compare only
the clause-sharing capabilities of the two frameworks. Results
of SMTS with both sharing and partitioning enabled would
be inconclusive, as it would be difficult to figure out which

3These percentages were chosen based on an empirical analysis of a small
sample of possible values. We plan to do a more extensive evaluation of these
parameters in the future.

4We used commit 29d51340 from the cube-and-conquer branch, as recom-
mended to us by the SMTS authors.

5SMT-COMP 2023’s cloud track omitted all quantifer-free divisions.

(a) SMT-D

(b) SMTS

Figure 4: Comparing SMT-D’s and SMTS’ improvement over
a single base solver.

technique contributed what. And it would not be an apples-
to-apples comparison, as our approach does not yet integrate
partitioning. We anticipate integrating clause-sharing with par-
titioning in future work. In contrast, in our comparison with
CVC5-P, we do use the partitioning capabilities of CVC5-P.
But this is again deliberate as our goal with that comparison
is different, namely to explore how clause sharing compares
to partitioning when using the same underlying solver (SMTS
uses a different underlying solver, namely OPENSMT2).

a) Comparison to SMTS: It is important to note that
on this benchmark set, OPENSMT2, the baseline solver for

46

Figure 5: SMT-D 64x CS-GR vs SMTS 64x. Dots on the upper
and right-most edges are problems that time out for SMTS and
SMT-D, respectively.

SMTS, is stronger than cvc5.6 However, the best configuration
of SMT-D (64 CS-GR) improves this situation significantly,
as can be seen by the relatively larger gap between the best
configuration and the “single worker” configuration in Fig. 4.
Table I shows that overall, in terms of benchmarks solved, the
best configuration of SMT-D (64 CS-GR) solves almost the
same number of problems as the best configuration of SMTS,
despite the large difference in their base solvers. Compared
to the baseline, the best configuration of SMT-D improves the
overall PAR-2 score by 52% (for SMTS, this number is 28%)
and solves 66 more problems (compared to 20 more problems
solved by SMTS). Moreover, for the 48 QF_IDL benchmarks
and for the UNSAT benchmarks as a whole, cvc5 goes from
performing worse than SMTS when comparing baselines to
performing better when comparing the best version of each.

Although one might hope for even better scaling as the level
of parallelism increases, it is important to keep in mind that
SMT is a hard problem and is not easily parallelizable. Thus,
we don’t expect to be able to achieve linear speed-up. Rather,
we hope to solve problems beyond the scope of standalone
solvers, and indeed, we see that this is the case. In many
applications, the number of problems solved in a fixed time
matters. We can also see (Figure 5) that SMTS and SMT-D
solve a different subset of the benchmarks, so we know further
improvement is still possible.

b) Comparison to partitioning cvc5: CVC5-P, the state-
of-the-art parallel/distributed implementation of cvc5, uses
a combination of portfolios and partitioning strategies. We
implemented and ran the hybrid multijob approach of [22]
and compared it with SMT-D. Fig. 6 and Table I show that
SMT-D is significantly more effective at utilizing 64 copies of

6One reason for this is that the benchmarks we are using, from [22], were
selected specifically because they are challenging for cvc5.

Figure 6: SMT-D and CVC5-P, 64 workers vs 1 worker.

single worker 8x portfolio + CS
Z3 190 205

SMT-D 219 174

Table III: Comparison between SMT-D and Z3 on 129 bench-
marks. Entries show PAR-2 scores in thousands.

cvc5, resulting in a 52% improvement in PAR-2 score (vs 12%
improvement by CVC5-P), and in 50 more problems being
solved (159 vs 109).

D. Comparison to a Legacy Version of Z3

Z3 was the first SMT solver to implement a portfolio
approach with clause sharing. However, this functionality is
no longer supported in modern versions of Z3, and the latest
release that we could find with this functionality is version 2.15
(Windows-only, from 2009). We attempted a comparison, for
completeness, but are only able to draw limited conclusions,
for various reasons, including: (i) Z3 2.15 runs on a different
operating system than our other solvers; (ii) it crashes on any
configuration with more than eight solvers; and (iii) it fails
(parsing or execution) on 85 problems in our modern set of
214 benchmarks. When run on the remaining 129 SMT bench-
marks, we obtain the results shown in Table III. However, even
these results must be taken with a grain of salt, as they show
that Z3 performs worse when enabling clause sharing, perhaps
because of instability of the 2.15 implementation on modern
benchmarks. Thus, while this early work in Z3 was important
pioneering work, we believe that a fair comparison can only
be achieved if the sharing functionality is restored in a modern
version of Z3.

VII. CONCLUSION

SMT-D is a promising advancement in the realm of parallel,
portfolio-based SMT solving. Leveraging a hub-and-spoke

47

architecture with a tight CDCL(T) integration, lemma sharing,
and guided randomization, SMT-D demonstrates significant
improvements in scalability, outperforming not just sequential
cvc5, but also pure portfolio (with sharing), and CVC5-P
(portfolio with partitioning). In addition, SMT-D demonstrates
more improvement from clause sharing than SMTS and an
early version of Z3 and has performance that is overall
comparable with and complementary to the state of the art.

While SMT-D demonstrates solid progress in distributed
SMT solving, many opportunities for future work remain.
These include further parameter tuning, deeper integration
with the underlying SAT solver, handling internally-introduced
symbols, exploring additional sources of diversity (including
using different solvers in the portfolio, such as OPENSMT2
or Z3), exploring additional filtering and redundancy-detection
heuristics, and combining our approach with partitioning-
based parallelism. In addition, we plan to extend the imple-
mentation and evaluation of SMT-D to the full set of logics
and benchmarks in SMT-LIB.

REFERENCES

[1] Tomás Balyo, Peter Sanders, and Carsten Sinz. HordeSat: A massively
parallel portfolio SAT solver. CoRR, abs/1505.03340, 2015.

[2] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna
Lachnitt, Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed,
Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew
Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A versatile
and industrial-strength SMT solver. In Dana Fisman and Grigore
Rosu, editors, TACAS ’22, volume 13243 of Lecture Notes in Computer
Science, pages 415–442. Springer, 2022.

[3] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability
Modulo Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

[4] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Stan-
dard: Version 2.6. Technical report, Department of Computer Science,
The University of Iowa, 2017. Available at www.SMT-LIB.org.

[5] Clark Barrett, Roberto Sebastiani, Sanjit Seshia, and Cesare Tinelli.
Satisfiability modulo theories. In Armin Biere, Marijn J. H. Heule,
Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,
Second Edition, volume 336 of Frontiers in Artificial Intelligence and
Applications, chapter 33, pages 825–885. IOS Press, February 2021.

[6] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu.
Symbolic model checking without BDDs. In W. Rance Cleaveland,
editor, Tools and Algorithms for the Construction and Analysis of
Systems, pages 193–207, 1999. Springer Berlin Heidelberg.

[7] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.
In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms
for the Construction and Analysis of Systems, pages 337–340, 2008.
Springer Berlin Heidelberg.

[8] Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors,
Computer-Aided Verification (CAV’2014), volume 8559 of Lecture Notes
in Computer Science, pages 737–744. Springer, July 2014.

[9] Google. grpc.io. https://grpc.io/. [Accessed 15-Mar-2023].
[10] A. Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A.

Navas. The SeaHorn verification framework. In International Confer-
ence on Computer Aided Verification, 2015.

[11] Youssef Hamadi and Lakhdar Sais, editors. Handbook of Parallel
Constraint Reasoning. Springer, 2018.

[12] Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving
and verifying the Boolean Pythagorean triples problem via cube-and-
conquer. In International Conference on Theory and Applications of
Satisfiability Testing, 2016.

[13] Marijn J. H. Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere.
Cube and conquer: Guiding CDCL SAT solvers by lookaheads. In
Proceedings of the 7th International Haifa Verification Conference on
Hardware and Software: Verification and Testing, HVC’11, page 50–65,
Berlin, Heidelberg, 2011. Springer-Verlag.

[14] Antti E. J. Hyvärinen, Tommi Junttila, and Ilkka Niemelä. A distribution
method for solving SAT in grids. In Armin Biere and Carla P. Gomes,
editors, Theory and Applications of Satisfiability Testing - SAT 2006,
pages 430–435, 2006. Springer Berlin Heidelberg.

[15] Matteo Marescotti, Antti E. J. Hyvärinen, and Natasha Sharygina. Clause
sharing and partitioning for cloud-based SMT solving. In Cyrille
Artho, Axel Legay, and Doron Peled, editors, Automated Technology
for Verification and Analysis, pages 428–443, Cham, 2016. Springer
International Publishing.

[16] Matteo Marescotti, Antti E. J. Hyvärinen, and Natasha Sharygina.
SMTS: distributed, visualized constraint solving. In Gilles Barthe, Geoff
Sutcliffe, and Margus Veanes, editors, LPAR-22. 22nd International Con-
ference on Logic for Programming, Artificial Intelligence and Reasoning,
Awassa, Ethiopia, 16-21 November 2018, volume 57 of EPiC Series in
Computing, pages 534–542. EasyChair, 2018.

[17] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT
and SAT modulo theories: From an abstract Davis–Putnam–Logemann–
Loveland procedure to DPLL(T). J. ACM, 53(6):937–977, nov 2006.

[18] SMT-COMP Organizers. SMT-COMP. https://smt-comp.github.io/,
2023.

[19] Dominik Schreiber and Peter Sanders. Scalable SAT solving in the
cloud. In Chu-Min Li and Felip Manyà, editors, Theory and Applications
of Satisfiability Testing – SAT 2021, pages 518–534, Cham, 2021.
Springer International Publishing.

[20] Roberto Sebastiani and Silvia Tomasi. Optimization modulo theories
with linear rational costs. ACM Transactions on Computational Logic,
16, 10 2014.

[21] Bernardo Subercaseaux and Marijn J. H. Heule. The packing chromatic
number of the infinite square grid is at least 14. In International
Conference on Theory and Applications of Satisfiability Testing, 2022.

[22] Amalee Wilson, Andres Nötzli, Andrew Reynolds, Byron Cook, Cesare
Tinelli, and Clark W. Barrett. Partitioning strategies for distributed SMT
solving. In Alexander Nadel and Kristin Yvonne Rozier, editors, Formal
Methods in Computer-Aided Design, FMCAD 2023, Ames, IA, USA,
October 24-27, 2023, pages 199–208. IEEE, 2023.

[23] Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo de Moura.
A concurrent portfolio approach to SMT solving. In Ahmed Bouajjani
and Oded Maler, editors, Computer Aided Verification, pages 715–720,
2009. Springer Berlin Heidelberg.

[24] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
SATzilla: Portfolio-based algorithm selection for SAT. J. Artif. Intell.
Res., 32:565–606, 2008.

48

https://grpc.io/
https://smt-comp.github.io/

	Introduction
	Preliminaries
	CDCL(T)-Based SMT Solvers
	Portfolio Solving with Lemma Sharing
	Related Work

	An Architecture for Portfolio-Based SMT Solving
	Workers
	Central Broker

	Portfolio Strategies
	Delayed Sharing
	Guided Randomization

	Implementation
	Local Filtering
	Sending Lemmas from the Broker
	Monitoring

	Evaluation
	Configuration
	Scalability and Effectiveness of Guided Randomization
	Comparison with State-Of-The-Art Tools
	Comparison to a Legacy Version of z3

	Conclusion
	References
	References

