
Formal Methods in Computer-Aided Design 2024

Modernizing SMT-Based Type Error Localization
Max Kopinsky
McGill University
Montréal, Quebec

max.kopinsky@mail.mcgill.ca

Brigitte Pientka
McGill University
Montréal, Quebec

bpientka@cs.mcgill.ca

Xujie Si
University of Toronto

Toronto, Ontario
CIFAR AI Research Chair

six@cs.toronto.edu

Abstract—Traditional implementations of strongly-typed func-
tional programming languages often miss the root cause of
type errors. As a consequence, type error messages are often
misleading and confusing - particularly for students learning
such a language. We describe Tyro, a type error localization tool
which determines the optimal source of an error for ill-typed
programs following fundamental ideas by Pavlinovic et al. : we
first translate typing constraints into SMT (Satisfiability Modulo
Theories) using an intermediate representation which is more
readable than the actual SMT encoding; during this phase we
apply a new encoding for polymorphic types. Second, we translate
our intermediate representation into an actual SMT encoding
and take advantage of recent advancements in off-the-shelf SMT
solvers to effectively find optimal error sources for ill-typed
programs. Our design maintains the separation of heuristic and
search also present in prior and similar work. In addition, our
architecture design increases modularity, re-usability, and trust
in the overall architecture using an intermediate representation
to facilitate the safe generation of the SMT encoding. We believe
this design principle will apply to many other tools that leverage
SMT solvers.

Our experimental evaluation reinforces that the SMT ap-
proach finds accurate error sources using both expert-labeled
programs and an automated method for larger-scale analysis.
Compared to prior work, Tyro lays the basis for large-scale eval-
uation of error localization techniques, which can be integrated
into programming environments and enable us to understand the
impact of precise error messages for students in practice.

I. INTRODUCTION

Many strongly typed programming languages, such as
OCaml [1], allow programmers to omit type annotations from
their code; despite these omissions, type inference automati-
cally reconstructs the types of all expressions in the program
based on the contexts in which they appear. For well-typed
programs, type inference saves the programmer much time
and effort. However, for ill-typed programs, the situation can
be exactly the opposite [2]. Type errors are discovered when
the compiler finds inconsistencies during type inference, but
figuring out root causes is much harder. The location where
compiler fails is usually not the place to fix the reported type
errors. As a result, type errors are often misleading or confus-
ing. Such errors increase debugging time for programmers. In
the case of novices, such errors discourage them from learning
the language at all [3]. Even tools designed to assist novices,
such as Helium [4], frequently produce such misleading errors.

The importance, and difficulty, of finding accurate causes
of type errors (“localization”) has a long-studied history. A
system for recording “reasons” that may explain type mis-
matches was implemented in Wand’s SPS [5] in 1986 [6].

Improvements to Wand’s method include the recent HMℓ,
which turns the problem of explaining the “reasons” into a
data flow problem [7]. Other recent approaches use machine
learning techniques to localize errors [8], [9] but without any
formal guarantees.

There is also a class of techniques based on heuristic
search. Type inference is naturally expressed as a constraint-
solving problem [10], [11], [12], even for more complex
type systems, e.g. [13]. By heuristically attributing weights to
each constraint, techniques for constrained optimization can
be applied. Such techniques can involve custom frameworks
and solvers, as in Mycroft [14]; or more generalized tools such
as SMT solvers.

Our work builds on prior work using SMT solvers. Cutting-
edge SMT solvers, such as Z3 [15], are being actively devel-
oped and steadily improved. These improvements cut down on
memory usage and runtime, enabling SMT solvers to handle
increasingly large problem instances. Localization approaches
that leverage such tools therefore benefit from continuous
improvements to SMT solvers.

Pavlinovic et al. developed MinErrLoc [16], the state-of-
the-art type error localization tool based on a variant of SMT
called MaxSMT. In the case of an ill-typed program, there
is no satisfying assignment for the typechecking constraint
problem. from type inference. Instead, MinErrLoc seeks a
minimum-weight set of constraints explaining why no solution
exists. Although effective at the time of its publication, Min-
ErrLoc depends on a customized version of CVC4 [17], rather
than off-the-shelf MaxSMT solvers, and was not maintained
after its original publication in 2014. Thus, MinErrLoc suffers
from package rot and requires significant effort to run. Our
objectives were to bring the MinErrLoc approach up to modern
standards, and make it possible to leverage modern off-the-
shelf MaxSMT solvers as originally intended.

Our main contribution is a new type error localization tool,
Tyro,1 inspired by the fundamental work of Pavlinovic et al.
Tyro incorporates a new encoding for constraints resulting
from polymorphic types, and is implemented with a two-stage
design. The first stage generates a human readable intermediate
representation of the typechecking constraint problem. Sepa-
rate aspects of the problem are kept apart, increasing readabil-
ity. The second stage processes the intermediate representation
into an SMT-LIB encoding [18], bringing together separate

1https://github.com/JKTKops/tyro

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_11 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0009-0005-6835-511X
https://orcid.org/0000-0002-2549-4276
https://orcid.org/0000-0002-3739-2269
https://github.com/JKTKops/tyro
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_11
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_11
https://creativecommons.org/licenses/by/4.0/

aspects of the problem to form the encoded constraint system.
We also found that this architecture made the individual stages
easier to debug, and therefore increases trust in the overall
system. Though the intermediate representation is specific to
our system, we anticipate that the same ideas could be applied
to a wide range of systems that leverage SMT.

Our experimental evaluation expands the evaluation of the
MinErrLoc approach to a much larger dataset, Validating the
accuracy of Pavlinovic et al.’s approach, but also highlights the
need for better heuristics on some classes of programs. We
performed accuracy evaluations with a small expert-labeled
dataset, and both accuracy and performance evaluations with
a large dataset automatically extracted from student code in a
large, introductory OCaml course.

II. OVERVIEW OF THE MINERRLOC APPROACH

Since our work builds on MinErrLoc [16], a brief overview
of its key ideas is warranted.2 Primarily, we review the local-
ization problem, the meaning of Pavlinovic et al.’s “minimum
error source” heuristic, and its reduction to MaxSMT.

Type errors result from (often minor) mistakes on the part
of a programmer. Correcting these mistakes will resolve the
type error. The program region containing the mistakes(s) is
called the “root cause” of the type error.

The localization problem that we aim to solve is, given
a program P that exhibits a type error, to identify the root
cause. This is an inherently ambiguous problem, because we
cannot be certain exactly what the programmer intended. The
MinErrLoc approach follows Occam’s Razor – the simplest
explanation is probably the correct one.

A. Minimum Error Sources

An “error source” is a set of program locations which
resolve the type error if removed from the program.3 The root
cause of the type error must be at a subset of an error source.

Not all error sources are equally likely to contain the true
root cause, however. The MinErrLoc framework provides an
opportunity to specify a weight for every program location.
A “minimum error source” is an error source whose total
weight is minimum. The framework allows these weights to
be assigned independently of constraint generation. Locations
can also be set as “hard constraints” to tell the solver that they
should not be considered in potential error sources.

Consider this recursive OCaml program for finding the
length of a list, which contains a bug:

1 let rec len = function
2 | [] -> 0.
3 | _ :: xs -> 1 + len xs

This program is ill-typed, because the first arm produces
a float, but the second arm’s use of + means it produces
an int. There is more than one way to explain this error.
One possible error source is 0., the float-valued first arm.

2Overviews of OCaml’s polymorphic types and of classical type inference
for the system can be found in the Appendix.

3“Remove” here means to replace by failwith "removed". Liter-
ally deleting the location would almost always result in syntax errors.

Replacing this with an int-valued expression would resolve the
error. Another possible error source is the use of +. Replacing
+ with a float-valued function could also resolve the error.

If we use a trivial weighting heuristic, which simply assigns
a weight of 1 to every location, then both error sources will
be minimal. However, domain knowledge might suggest that
0. is far more likely to be the true error source. A weighting
heuristic which considers the complexity of a program loca-
tion, or which penalizes function calls, might result in 0. as
the unique minimum error source.

The MinErrLoc framework ensures that the constraint gen-
eration algorithm is independent of weight assignments. This
allows the framework to be re-used with different weighting
heuristics.

B. Reduction to MaxSMT

MaxSMT is a variation of the SMT problem. Recall that
SMT may be defined as the decision problem asking whether
a set C of propositional clauses is satisfiable. MaxSMT instead
seeks a maximum subset C′ ⊆ C such that C′ is satisfiable.
Note that maximizing the size of C′ corresponds to minimizing
the size of C\C′, which will correspond to an error source. We
may take this generalization of SMT two steps further. First,
we may include a weighting heuristic, a function w : C → N.
Rather than seeking a subset C′ of maximum size, we seek a
subset which maximizes

∑
c∈C′ w(c). This corresponds to the

weighting heuristic for program locations mentioned above.
Finally, we may allow some clauses to be “hard constraints,”
which must be satisfied by the assignment. The resulting
problem is known as Partial Weighted MaxSMT, but we will
call it MaxSMT for brevity.

It would be easy to translate the typing constraints directly
into MaxSMT constraints. Constraints in OCaml programs
are equality constraints between types. Equalities between
(mono)types, and the types themselves, can be encoded using
the Theory of Inductive Datatypes [19], which has been added
to the SMT standard and is supported by SMT solvers such
as Z3 [15], [18]. A datatype (“sort”) is created in SMT which
represents OCaml types. The OCaml types are then encoded
as values of this SMT datatype.

However, this encoding would not produce error sources - it
would produce sets of typing constraints. If several constraints
arise from the same program point, the solver would be
allowed to independently decide whether or not to satisfy
them. Instead, we must force the solver to decide on a location-
by-location basis. This is further complicated by the fact that
the locations are not disjoint – The location corresponding
to an expression contains all of the locations corresponding to
its subexpressions. This tree structure is known as the abstract
syntax tree, or AST, of the program.

To accomplish this, weights are associated with program lo-
cations, rather than constraints. The encoding of the constraints
into MaxSMT incorporates information about the shape of
the AST. The encoding of the shape is such that removing a
location also implicitly removes all of its children. Otherwise
we could be left with constraints to satisfy which are no longer

50

in the program. Our variation of the encoding is discussed in
detail below.

III. TYRO ARCHITECTURE

Tyro uses a modular, two-stage software architecture. The
stages are implemented as separate “frontend” and “encoder”
tools. The input to the frontend is an OCaml program, and the
output is an Intermediate Representation of the constraints.
The encoder accepts this IR, and outputs an SMT-LIB script,
which is then be passed to an off-the-shelf MaxSMT solver.

A. Frontend

The frontend’s job is to extract a set of typing constraints
from an OCaml program. We implemented it by modifying
EasyOCaml [20]. EasyOCaml is a tool with improved error
message quality for OCaml, and has also been modified for
constraint generation in other work [16].

First, a set of constraints are generated, including our repre-
sentation of polymorphic types. Then, the collected constraints
are encoded into the intermediate representation.

The constraint generation is a modification of existing
constraint-generation approaches [10], [13], [16]. As a re-
minder, we focus on an idealized fragment of OCaml, shown
in Figure 2.

The fragment supports variables, lambda abstraction, func-
tion application, conditionals, and local variable bindings. The
types g are the “ground types”, such as int, float, or
string. Types α represent globally unique type variables.
These variables are monomorphic - they represent a single
as-yet unknown type. Polytypes, on the other hand, may
universally quantify some or all of the variables in a monotype,
resulting in a template that can be re-used with multiple
different types.

B. Polymorphic Types

Polymorphic types are a fundamental challenge for
constraint-based type inference [10], [12]. When inferring a
type for a polymorphic binding, a set of constraints will
be generated. Some of these constraints will refer to the
polymorphic variables in the type of the binding. Whenever
the binding is used, copies of these variables are created in
a process called instantiation. Every copy of these variables
must be independent from the others. But every copy is also
subject to the same constraints as the original. The solution
taken by MinErrLoc is to also copy all of the constraints.
Our approach instead encodes these constraints as abstractions,
allowing the MaxSMT solver decide when, or indeed if, the
copies should be created.

Since constraints associated with polytypes need to be
recorded, a constraint set is attached to every polytype. “Type
schemes” are a common approach to this in constraint-based
systems [11], [13], [16]. After inferring the type for a binding
let x = e1 in e2, the variable x will be added to the typing
environment. Its type will have the form:

∀α⃗.(Cx ⇒ αx)

where C is the associated set of constraints, and αx is the type
variable created for e1. We write simply x : αx if α⃗ and Cx
are both empty.

When x is later used, rather than create copies of the
constraints in Cx, we emit an “instantiation constraint.” These
constraints are of the form x(β̄), and have appeared previously
in other Hindley-Milner-style systems [11]. The constraint
x(β̄) represents the entire constraint set Cx[β⃗/α⃗]. That is,
the capture-avoiding substitution of the variables β⃗ for the
variables α⃗ in a copy of Cx. Since instantiation constraints
represent a set of regular typing constraints, they can appear
wherever a set of typing constraints can appear.

C. Constraint Generation

A typing constraint in Tyro takes the form τ1 =ℓ τ2. This
is a simple equality between two types, annotated with the
program location ℓ where it was created. Since we need these
locations to create the constraints, we ensure that the AST
nodes are annotated with locations as well.

Unlike MinErrLoc, our frontend does not encode the struc-
ture of the AST into the typing constraints. To improve
modularity and reusability, and to facilitate debugging, we
keep this information separate for as long as possible. This,
along with instantiation constraints, simplifies the typing rules
significantly. The rules are formulated with a similar constraint
typing relation, of the form:

C; Γ ⊢ e : α

C is the set of constraints which have been emitted by
inference for e. Γ is the typing environment in which inference
for e should occur; Γ maps variable names to type schemes.
e is a program expression, and α is its inferred type.

Note that the relation always relates an expression to a type
variable. This means that we cannot infer the type int for
the expression 0 - we must instead assign a new type variable
α0 and emit a constraint α0 = int. This prevents a loss of
information. If we could infer the type int directly, and the
expression 0 were the root cause of the type error, there would
be no link back to this source location in the constraint set [16].
The typing rules are shown in Figure 1.

Look in particular at the rules VAR and LET, which are
the main distinction from other constraint-based systems. In
the case of variables, we look up the type scheme from the
environment. Then we create new type variables to instantiate
all variables in α⃗. However, we do not then copy Cx. Instead,
we emit an instantiation constraint (with a location annotation).
For let bindings, the difference is similar. Systems such as
MinErrLoc emit the entire constraint set C1[β⃗/α⃗] where we
emit the instantiation constraint x(β⃗). This instantiation con-
straint is necessary to ensure the consistency of C1 - otherwise,
if all uses of x were removed from the program, all constraints
in C1 would be lost [10], [16].

The constraint generator is implemented as a modification
of EasyOCaml [20]. EasyOCaml is implemented as a fork of
ocamlc, the OCaml compiler. This unfortunately pins it to a
particular version of OCaml, which is not recent. In order to

51

α new INT
{α =ℓ int}; Γ ⊢ nℓ : α

α new BOOL
{α =ℓ bool}; Γ ⊢ bℓ : α

x : ∀α⃗.(Cx ⇒ αx) ∈ Γ γ, β⃗ new
VAR

{γ =ℓ αx, x
ℓ(β⃗)}; Γ ⊢ xℓ : γ

C1; Γ ⊢ e1 : α C2; Γ ⊢ e2 : β γ new
APP

({α =ℓ fun(β, γ)} ∪ C1 ∪ C2); Γ ⊢ (e1 e2)
ℓ : γ

C; Γ, x : αx ⊢ e : β γ new
ABS

({γ =ℓ fun(αx, β)} ∪ C); Γ ⊢ (λx.e)ℓ : γ

C1; Γ ⊢ e1 : α C2; Γ ⊢ e2 : β C3; Γ ⊢ e3 : δ γ new
COND

({α =ℓ1 bool, β =ℓ2 γ, δ =ℓ3 γ} ∪ C1 ∪ C2 ∪ C3); Γ ⊢ if eℓ11 then eℓ22 else eℓ33 : γ

C1; Γ ⊢ e1 : α1 C2; Γ, x : ∀α⃗.(C1 ⇒ α1) ⊢ e2 : α2 α⃗ = fv(α1) \ fv(Γ) β⃗, γ new
LET

({γ =ℓ α2, x
ℓ(β⃗)} ∪ C2); Γ ⊢ (let x = e1 in e2)

ℓ : γ

Fig. 1: Typing rules for the OCaml fragment

Expressions e :: = x variable
| v value
| e e application
| if e then e else e conditional
| let x = e in e let binding

Values v :: = n integer
| b boolean
| λx.e abstraction

Monotypes τ :: = g | α | fun(τ, τ)
Polytypes σ :: = τ | ∀α.σ

Fig. 2: Idealized OCaml Fragment

support future work on newer versions of OCaml, we ported
just the EasyOCaml constraint generation framework to be a
stand-alone OCaml project depending on the ocaml-base-

compiler package [21]. Since this package does not include
other features of EasyOCaml, it is significantly easier to port
it to new versions of OCaml.

D. Intermediate Representation (IR)

The IR consists of three sets: a set of program source
ranges, a set of type schemes, and a set of constraints.
Program locations may optionally be annotated by weights.
Weights of zero correspond to hard constraints. Whitespace
is completely ignored. The complete expression grammar is
shown in Figure 3. In constraints, τ refers to a monotype from
Figure 2.

The “Loc Indices” i must be distinct and essentially name
the source ranges. Throughout the constraint (resp. schemes)
portion of the IR, the indices are used to encode the source
range where the constraint (resp. schemes) was created. Later,
the encoder will use the locations to embed the shape of the
AST into the encoding.

Loc Index i ::= n

Weight ω ::= n

Source Range ℓ ::= line; col − line; col

Location L ::= i ℓ no weight given
| i ℓ ω weight given

Constraint C ::= i τ1 = τ2 equality

| i x(β⃗) instantiation

Scheme S ::= i x(α⃗) C⃗

IR R ::= L⃗ S⃗ C⃗

Fig. 3: IR Grammar

Each constraint scheme S corresponds to a variable x and
its associated type scheme ∀ᾱ.(Cx ⇒ τx). In particular, the
scheme relates the name x, the quantified variables ᾱ, and
the constraint set Cx. There is no special mention of αx. The
relationship between the scheme and αx is encoded in how αx

(and its instantiations) appear in the constraints. Regardless,
for human readability, Tyro always places αx at the end of ᾱ.

Every constraint is either an equality of OCaml monotypes
(which can be type variables), or an instantiation constraint.
Instantiation constraints can appear inside schemes, which
occurs whenever a polymorphic function is used within a
polymorphic definition.

Tyro generates the constraint portion of the IR from the
constraint set C of the top-level invocation of the constraint
generation routine. Schemes are accumulated on the side, and
always emitted. Location annotations are treated similarly.

The use of an intermediate representation is not necessary
to the functionality of the system. However, it offers several
advantages. Primarily, unlike the SMT encoding, the IR is
human-writable and indeed human-readable given a bit of
time. The final encoding, in contrast, is deeply nested and
littered with information about the AST structure, making it

52

quite difficult to read or write. Inspecting these intermediate
files was invaluable for debugging constraint generation, and
writing them by hand was further valuable for debugging the
SMT encoder. This separation makes it easier to trust the
correctness of the constraint generation and encoding steps.

Additionally, the use of an IR promoted modularity and
reusability between the components. While working on Tyro,
we were able to mix-and-match different methods of encoding
the IR, without making any changes at all to the constraint
generator. Similarly, we were able to redesign a significant
portion of the constraint generator without any fear of breaking
the encoder.

E. SMT Encoder

The SMT encoding step translates the intermediate repre-
sentation to SMT-LIB [18] code. The only extension required
to SMT-LIB 2.6 is vZ, for MaxSMT [22]. A Tyro run on the
example from Section 2.2 of [16] can be seen in Figure 4. In
particular, our SMT encoding is in Figure 4d.

Type schemes become SMT interpreted functions for the
solver to instantiate on-demand. Equality constraints on types
are encoded directly as equality constraints in the theory of
inductive datatypes, using a Type sort to represent OCaml
types. The Type sort is as described for MinErrLoc [16].

Type variables are encoded with a “-” in front of their name,
to avoid conflicts with scheme names. This serves the same
purpose as the single quote (“tick”) in OCaml source code, but
ticks are not allowed at the start of an SMT variable name.

The SMT encoding of constraints incorporates information
about the AST structure. The enumeration of source locations
is examined to recover an “AST forest.” Each interval in
the enumeration becomes a (possibly indirect) child of every
interval that contains it. The result is a forest of program
locations. In practice, this forest contains one tree for every
top-level expression or let binding or in the program.

Consider the program fragment:

let x = "hi" in not x (Ex.)

There are 5 source ranges in this fragment, shown in
Figure 4b. If the MaxSMT solver decides to remove the entire
fragment (location ℓ0, the root of the tree), then all four of
the other subfragments are necessarily removed as well. The
weight of this decision must be determined only by the weight
of location ℓ0, even though all of its children are also being
removed.

Therefore, for the fragment above, we encode a constraint
C at location ℓ3 as

ℓ0 ⇒ (ℓ4 ⇒ (ℓ3 ⇒ C))

The location variables ℓi are (softly) asserted directly with
their weight. For example, with this fragment, we have

(assert-soft ℓ0 :weight 5)
(assert-soft ℓ3 :weight 1)
(assert-soft ℓ4 :weight 3)

The decision to remove location ℓ0 (by setting the SMT
variable ℓ0 to false) now carries a cost of 5. The constraint

C would no longer be active, even if ℓ3 and ℓ4 were still set
to true.

All constraints are encoded in this way, starting at the root of
an AST. Paths are combined, such that all of the constraints
associated with a particular top-level statement are encoded
into a single assert form. For example, two constraints
C1, C2 at location ℓ4 would be represented by only one
copy of the above constraint encoding, with C = C1 ∧ C2.
We apply this in a nested fashion, so each assertion consists
of many nested implications and constraints. The constraints
contained in a type scheme are also encoded this way, but
are placed into an SMT “defined function” rather than using
an assert form. The assertion tree for a scheme is rooted
at the AST node which defined the scheme. In the case of
a distant reference to a let-bound variable, this ensures that
the instantiation constraint’s implied constraints are disabled
if (any parent of) the let binding is removed.4

The encoder provides MinErrLoc’s weighting heuristic as
a default if weights are not provided. Each node in the AST
forest is assigned a weight equal to the size of the sub-AST
rooted at that node. In example (Ex.) above, location 4 is
assigned weight 3, ensuring that removing location 4 is more
costly than removing both location 2 and 3 (which have a
cumulative weight of 2). In its current configuration, Tyro uses
the default weight for almost all locations.

Inspecting Figure 4c, the IR illustrates the change from
MinErrLoc’s encoding to Tyro’s: the constraint 'x = string

came from a let binding, and is now part of a scheme. When
the script in Figure 4d is run through Z3 [15], location ℓ1 is
identified as the error source.5

Taking advantage of the modularity offered by our design,
we also implemented another SMT encoding which avoids
deeply-nested implications. The shallower encoding appears
to help the SMT solver in some cases. When the minimal cost
is high, the shallower encoding can result in error sources
that are not actually minimal. Empirically, however, almost
all error sources for programs in our dataset had low costs.
The MinErrLoc artifact employs the same alternate encoding,
so we used it while evaluating Tyro.

F. Backend

The output of the encoder is an SMT-LIB script. The scripts
are compatible with any SMT solver that supports at least
SMT-LIB 2.6 [18] and the vZ extension for MaxSMT [22].
Tyro uses Z3 by default. The output of the SMT solver is
processed to extract the minimum error source.

IV. EVALUATION

The MinErrLoc approach was evaluated for performance
on a dataset of 356 programs collected from a programming
course [16]. We collected several thousand programs from a
programming course [23] and took a random sample of 500

4Instantiation constraints for a scheme can arise in only two cases: the
binding is local, and the reference is a child of the binding in the AST; or the
binding is top-level, and therefore the scheme’s root is also the AST root.

5There are 3 minimal error sources for this program: {ℓ1}, {ℓ2}, and {ℓ3}.

53

letℓ0 x = "hi"ℓ1 in (notℓ2 xℓ3)ℓ4

(a)

(let x = "hi" in not x)ℓ0

"hi"ℓ1 (not x)ℓ4

notℓ2 xℓ3

(b)

<locations omitted>

0 x(’x) {

1 ’x = string
}

0 x(’x0)
2 ’l2 = bool -> bool
3 x(’x1)
4 ’l2 = ’x1 -> ’l4

(c)

(declare-datatype Type
((string) (bool) (-> (->.1 Type) (->.2 Type))))

(declare-const ℓ0 Bool)(assert-soft ℓ0 :weight 5)
(declare-const ℓ1 Bool)(assert-soft ℓ1 :weight 1)
...
(declare-const -x0 Type)(declare-const -l2 Type) ...
(define-fun x ((-x Type)) Bool

(=> ℓ0 (=> ℓ1 (= -x string))))
(assert

(=> ℓ0 (and (x -x0)
(=> ℓ4 (and (= -l2 (-> -x1 -l4))
(=> ℓ2 (= -l2 (-> bool bool)))
(=> ℓ3 (x -x1)))))))

(check-sat)(get-objectives)(get-value (ℓ0 ℓ1 ℓ2 ℓ3 ℓ4))

(d)

Fig. 4: A sample run of Tyro.
(a) an ill-typed program from [16] with locations annotated; (b) labeled program AST;

(c) simplified intermediate representation; (d) SMT encoding.

programs each from three different assignments for a total of
1500 programs. Programs were only selected if they could be
parsed, but did not compile. Of the 1500 programs selected,
approximately 70 contained localized errors other than type
mismatches and were discarded. As Tyro is an experiment in
delayed instantiation, we focused our evaluation on delayed
instantiation. Though constraint slicing and preemptive cutting
are shown to be both effective and simple to implement by
MinErrLoc, our evaluation of Tyro did not use them.

A. Timing

Our statistics for timing Tyro are shown in Figure 5.
Experiments were conducted on an Intel(R) Core(TM) i7-
8550U CPU with four 1.80 GHz cores. Our experiments only
used a single core for each instance of Tyro, but ran Tyro
on several programs simultaneously. Tyro was run with a 100
second timeout, which excluded a further 40 programs, all
from the same homework assignment. The statistics shown are
for the remaining 1388 programs, in a format easily compared
with MinErrLoc’s evaluation in Figure 11 of Pavlinovic et
al. [16].

We split our dataset into groups based on program length
in lines of code. The number in parentheses is the number of
programs in that group. The number of equality constraints, the
minimum error source weight, and the time to run Tyro were
recorded for each program. Note that the number of equal-
ity constraints cannot indicate how many times instantiation
constraints will cause those equality constraints to be copied;
therefore it is only a lower bound on the complexity of the
MaxSMT problem.

In all groups, the constraint counts generated for our pro-
grams are significantly higher than those for MinErrLoc’s
evaluation. This suggests a difference in the typical structure
of the programs which makes the evaluations hard to compare.
Despite the slower processor used in our experiments and
the generally higher constraint counts, we exhibit remarkably
similar minimum and median execution times. Approximately
2.9% of programs evaluated timed out, and our maximum
execution times are similar, though again slower, to those
of MinErrLoc’s evaluation for groups with similar constraint
counts.

Our results are therefore promising. Our evaluation largely
affirms that of MinErrLoc, on a significantly larger dataset.

One potential explanation for the lack of significant im-
provement is to consider how the SMT solver proceeds with
instantiation constraints. As noted by MinErrLoc, the time
spent copying constraint sets for instantiation during constraint
generation is significant [16]. By delaying this work to the
SMT solver, we create opportunities for the solver to recognize
that an instantiation is not necessary at all. But we also risk
that the SMT solver may perform a single instantiation many
times. Given the cost of instantiations, the risks may outweigh
the benefits for the version of Z3 used. This may improve
in the future as solvers improve. We posit that SMT scripts
generated by Tyro may make good benchmarks for MaxSMT
solvers.

B. Localization Accuracy

We first took a random sample of 50 programs from our
data set and labeled the true error source by hand. 8 of the
programs were discarded because we could not decide which

54

Group Constraints Weight Time (s)
min med max min med max min med max

0-50 (5) 44 63 72 1 1 3 0.02 0.11 0.16
50-100 (57) 96 276 990 1 2 35 0.08 0.68 2.93
100-150 (659) 111 532 1741 1 2 33 0.09 2.62 85.18
150-200 (449) 399 976 2341 1 3 23 0.84 17.80 87.86
200-250 (55) 696 1463 2702 1 2 18 1.53 10.50 89.43
250-300 (13) 633 1514 3039 1 1 6 2.94 7.58 86.31
300-350 (5) 1073 1516 2690 1 2 3 8.52 14.10 50.44

Fig. 5: Statistics for Tyro execution on whole programs

Tyro OCaml # of outcomes
hit hit 5
hit close 6
hit miss 3

close hit 3
close close 20
close miss 1
miss hit 3
miss close 0
miss miss 1

Fig. 6: Accuracy on expert-labeled programs

Tyro OCaml # of outcomes
hit hit 430
hit close 9
hit miss 15

close hit 39
close close 11
close miss 2
miss hit 113
miss close 3
miss miss 25

Fig. 7: Accuracy on automatically labeled programs

of several error sources were most likely. The comparison of
Tyro’s accuracy versus ocamlc’s on these programs is shown
in Figure 6. They are formatted for easy comparison to Figure
8 of the MinErrLoc analysis [16]. Regions were marked as
“hit” if they exactly matched the true error source. If the
region was close enough for a (novice) programmer to easily
understand the true problem, the region was marked as “close.”
Otherwise, it is marked “miss.”

Our expert-labeled evaluation uses a larger dataset than
MinErrLoc’s expert-labeled evaluation (40 programs versus
20) and displays almost identical proportions of outcomes.
This reaffirms the small-scale evaluation results of MinErrLoc.

We reviewed the one program where both Tyro and OCaml
missed. It is an especially tricky case where the true error
source contains two program locations, and their relationship
is partially obscured by the programmer’s mistake. Tyro and

OCaml report adjacent program locations (both of weight 1),
neither of which are members of the true error source.6 In
the other 41 programs, either Tyro or OCaml identify the true
error source.

We experimented with automatic methods for evaluating
localization accuracy, using a similar approach to [24]. We
compare the region(s) reported by localization to the region(s)
that students actually modified to fix a type error. For each of
the 1388 programs in our random sample, we determined if
the successive code sample from the same student compiled
successfully. We recover the regions that the student modified
using Difftastic [25], a structural differencing tool, and then
removed programs where Difftastic reported a high portion
of the file had been rewritten. In this manner, we collected
647 data points. We then classified the identified regions in
an automated manner similar to the expert-labeled evaluation.
Exact matches were marked as “hit”, other forms of (possibly
partial) overlap or shared endpoints were marked as “close”,
and anything else was marked as a “miss.” Notably, consider
an application such as f x. If the student modified x, but the
identified region was f, these intervals are considered to share
an endpoint and are marked “close.” This situation appears to
be quite common, as does the reverse.

Unfortunately, this approach suffers from a major source of
bias: because the students fixing the program only had access
to error messages from OCaml, they were far more likely
to modify the region of code indicated by OCaml (which is
always a member of some error source). This bias is clearly
seen in the results in Figure 7.

As part of typical homework assignments in our course,
students write their own test cases. These test cases are
formatted as lists of input-output pairs. One test case was part
of the given code. For some problems, the given test case was
correct. For other problems, students were supposed to fix an
incorrect test case. We inspected a random sample of the 113
programs where Tyro missed but OCaml hit. In approximately
70% of the sampled programs, the type error was due to
malformed test cases. The students wrote several test cases
containing ints where floats were expected, or vice versa.
Because the students wrote several cases after the one given
case, the minimum error source is always the given test case.

6However, if both OCaml and Tyro’s reported locations are made hard
constraints, the true error source becomes a minimum error source.

55

But the given test case comes first, so OCaml reports the
mismatch on the cases written by the student. Tyro “misses”
for these programs because the students followed OCaml’s
advice – even when that advice was incorrect.

This demonstrates the subjectivity of the type error local-
ization problem, and provides evidence that type annotations
should be used judiciously to guide students. If a top-level
type annotation had been included for the test cases and set
as a hard location, Tyro and OCaml would both identify the
incorrect test cases.7

Considering this bias, Tyro appears remarkably accurate
despite the fact that we are using the “relatively simplistic”
weighting heuristic of AST size. This again reaffirms the
potential of the MaxSMT localization approach.

Out of the 647 programs evaluated, either Tyro or OCaml
identify the true error source in over 96% of cases. This is
similar to our observation from the expert-labeled evaluation.
Therefore, we conclude that reporting localizations from Tyro
alongside OCaml’s error report would be an effective, accurate
diagnostic for programmers.

V. RELATED WORK

MinErrLoc [16] first demonstrated that type error localiza-
tion problems can be efficiently expressed as Partial Weighted
MaxSMT problems. They recognize the issues associated with
polymorphic types, but do not simplify them. They propose
two algorithms to improve the situation: Lazy Quantifier-
Based Instantiation, and Lazy Unification-Based Instantiation.
Tyro implements Lazy Quantifier-Based Instantiation.

Other tools have also begun using (Max)SMT solvers for
type inference problems. Typpete [26] uses a MaxSMT solver
to infer type annotations to be added to Python programs.
Typpete additionally had to solve the challenge of encoding
subtyping constraints. Similar ideas were discussed in the
presentation of MinErrLoc. We believe our architecture could
be leveraged to tie these ideas together and create localization
tools for languages like Java or Haskell.

Mycroft [14] takes a different approach to localization by
heuristic minimization. Rather than reducing localization to
MaxSMT, Mycroft is a solver dedicated to minimizing error
sources in type inference problems. It is generalized over the
type system being used and requires an inference engine for
that system. The Mycroft algorithm is very similar to MaxSMT
algorithms based on “Unsatisfiable Cores” [27]. Mycroft’s
ability to use a dedicated typechecking engine means it can
avoid issues like the polymorphic constraint blowup seen in
MinErrLoc and Tyro. Unfortunately, Mycroft does not benefit
from frequent improvements to the MaxSMT state-of-the art.

Zhang and Myers have previously reduced localization
problems to finding certain types of paths in a graph [28].
They apply Bayesian methods to guess which source loca-
tion to blame for the faulty paths. This work was further
developed to support advanced type system features like type

7Such annotations are recommended by Pavlinovic et al. [16], but unfortu-
nately we did not have control over the content of the assignments.

classes in Haskell [29] and an implementation, SHErrLoc,
is available [30]. Their graphs did not encode the “flow”
of typing information during the inference process. A recent
approach, HMℓ, takes inspiration from subtyping systems to
express the way that typing information flows through the
inference process [7]. Rather than heuristically producing a
localization guess, HMℓ error messages contain a detailed flow
diagram containing all of the source locations participating
in the error. They report that this can lead to “information
overload,” however, it is a promising new view on the problem.

VI. FUTURE WORK

We have observed several potential avenues for future work
on Tyro or other tools. The most obvious is perhaps to improve
the weighting heuristic.

While Tyro implements the Lazy Quantifier-Based Instan-
tiation proposal from [16], a unification-based algorithm was
also proposed. The proposed algorithm makes several calls
to the SMT solver, and requires changing the constraints
related to polymorphic variables on every call to the solver.
This would be a considerable challenge for the architecture
of MinErrLoc. However, because Tyro separates constraints
related to polymorphic variables from other constraints, it
seems the algorithm could be implemented on top of Tyro in a
relatively straightforward fashion, which we intend to explore
in future work.

For future work on MaxSMT solvers, we believe that
MaxSMT scripts generated by Tyro have potential as bench-
marks.

VII. CONCLUSION

Tyro is a modernization of the MinErrLoc MaxSMT ap-
proach to type error localization. Our evaluation reaffirms the
accuracy and performance potential of the approach using a
larger dataset. Our evaluation for accuracy indicates that a less
simplistic metric than AST size may perform better, at least
on student programs. Regardless, our evaluation shows that the
combination of Tyro and OCaml already exhibits an accuracy
above 96%.

Tyro’s modular design makes it easy to experiment with
modifications to various aspects of the system. Indeed, we
experimented with some variations on the AST size heuristic,8

completely rewriting the constraint generation frontend, and
several SMT encodings. While incorporating lazy quantifier-
based instantiation did not immediately improve the perfor-
mance of the approach, we believe Tyro’s architecture will
allow it to serve as a testbed for future work on MaxSMT-
based localization.

VIII. ACKNOWLEDGEMENTS

This work was supported by the Social Sciences and Hu-
manities Research Council (SSHRC), the OCaml Software
Foundation, and the Canada CIFAR AI Chair Program.

8MinErrLoc also incorporates at least one such variation.

56

REFERENCES

[1] OCaml Foundation, “OCaml.” [Online]. Available: https://ocaml.org/
[2] B. Wu and S. Chen, “How type errors were fixed and what students

did?” in Proceedings of the ACM on Programming Languages, vol. 1,
OOPSLA, Oct. 2017, pp. 105:1–27.

[3] B. S. Lerner, M. Flower, D. Grossman, and C. Chambers, “Searching
for type-error messages,” in Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation, Jun.
2007, p. 425–434.

[4] B. Heeren, D. Leijen, and A. van IJzendoorn, “Helium, for learning
Haskell,” in Proceedings of the 2003 ACM SIGPLAN workshop on
Haskell, Aug. 2003, pp. 62–71.

[5] M. Wand, “A semantic prototyping system,” in Proceedings of the 1984
SIGPLAN Symposium on Compiler Construction, Jun. 1984, p. 213–221.

[6] M. Wand, “Finding the source of type errors,” in Proceedings of the
13th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, Jan. 1986, pp. 38–43.

[7] I. Bhanuka, L. Parreaux, D. Binder, and J. I. Brachthäuser, “Getting
into the Flow: Towards Better Type Error Messages for Constraint-
Based Type Inference,” in Proceedings of the ACM on Programming
Languages, vol. 7, OOPSLA2, Oct. 2023, pp. 431–459.

[8] E. L. Seidel, H. Sibghat, K. Chaudhuri, W. Weimer, and R. Jhala,
“Learning to Blame: Localizing Novice Type Errors with Data-Driven
Diagnosis,” in Proceedings of the ACM on Programming Languages,
vol. 1, OOPSLA, Oct. 2017.

[9] C. Geng, H. Ye, Y. Li, T. Han, B. Pientka, and X. Si, “Novice Type Error
Diagnosis with Natural Language Models,” in Programming Languages
and Systems, Dec. 2022, pp. 196–214.

[10] M. Sulzmann, M. Muller, and C. Zenger, “Hindley/Milner style type
systems in constraint form,” Tech. Rep., Oct. 1999.

[11] F. Pottier and D. Rémy, “The Essence of ML Type Inference,” in
Advanced Topics in Types and Programming Languages, Jan. 2005, pp.
389–489.

[12] O. Kiselyov, “Efficient and Insightful Generalization.” [Online].
Available: https://okmij.org/ftp/ML/generalization.html

[13] M. Odersky, M. Sulzmann, and M. Wehr, “Type inference with con-
strained types,” Theory and Practice of Object Systems, vol. 5, no. 1,
pp. 35–55, Jan. 1999.

[14] C. Loncaric, S. Chandra, C. Schlesinger, and M. Sridharan, “A Practical
Framework for Type Inference Error Explanation,” in Proceedings of
the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, vol. 51, no. 10,
Oct. 2016, p. 781–799.

[15] L. De Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, Mar. 2008, p. 337–340.

[16] Z. Pavlinovic, T. King, and T. Wies, “Finding minimum type error
sources,” in Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages & Applications,
Oct. 2014, pp. 525–542.

[17] C. W. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic,
T. King, A. Reynolds, and C. Tinelli, “CVC4,” in Proceedings of
Computer Aided Verification - 23rd International Conference, vol. 6806,
Jul. 2011, pp. 171–177.

[18] C. Barrett, P. Fontaine, and C. Tinelli, “The SMT-LIB Standard:
Version 2.6,” Department of Computer Science, The University of
Iowa, Tech. Rep., 2017. [Online]. Available: www.SMT-LIB.org/papers/
smt-lib-reference-v2.6-r2021-05-12.pdf

[19] C. Barrett, I. Shikanian, and C. Tinelli, “An Abstract Decision Procedure
for a Theory of Inductive Data Types,” Journal on Satisfiability, Boolean
Modeling, and Computation (JSAT), vol. 3, pp. 21–46, Jul. 2007.

[20] B. Becker, C. Haack, and J. B. Wells, “EasyOCaml.” [Online].
Available: http://easyocaml.forge.ocamlcore.org/

[21] X. Leroy, “ocaml-base-compiler.” [Online]. Available: https://ocaml.
org/p/ocaml-base-compiler/

[22] N. Bjørner and P. Dung, “vZ - Maximal Satisfaction with Z3,” in Pro-
ceedings of the 6th International Symposium on Symbolic Computation
in Software Science, Dec. 2014.

[23] A. Ceci, H. C. A. Tavante, B. Pientka, and X. Si, “Data Collection
for the Learn-OCaml Programming Platform: Modelling How Students
Develop Typed Functional Programs,” in SIGCSE ’21: The 52nd ACM

Technical Symposium on Computer Science Education, Mar. 2021, p.
1341.

[24] E. L. Seidel, “Data-driven techniques for type error diagnosis,” Ph.D.
dissertation, University of California, San Diego, USA, 2017. [Online].
Available: http://www.escholarship.org/uc/item/59s4h4pv

[25] W. Hughes, “Difftastic,” 2021. [Online]. Available: https://github.com/
wilfred/difftastic

[26] M. Hassan, C. Urban, M. Eilers, and P. Müller, “MaxSMT-Based Type
Inference for Python 3,” Computer Aided Verification: 30th International
Conference, pp. 12–19, Jul. 2018.

[27] J. Marques-Silva and J. Planes, “Algorithms for Maximum Satisfiability
using Unsatisfiable Cores,” in 2008 Design, Automation and Test in
Europe, Mar. 2008, pp. 408–413.

[28] D. Zhang and A. C. Myers, “Toward General Diagnosis of Static Errors,”
in Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Jan. 2014, pp. 569–581.

[29] D. Zhang, A. C. Myers, D. Vytiniotis, and S. Peyton Jones, “Diagnosing
type errors with class,” in Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
vol. 50, Jun. 2015, pp. 12–21.

[30] D. Zhang, A. C. Myers, D. Vytiniotis, and S. Peyton-Jones, “SHErrLoc:
A Static Holistic Error Locator,” ACM Transactions on Programming
Languages and Systems, vol. 39, no. 4, Aug. 2017.

[31] R. Milner, “A Theory of Type Polymorphism in Programming,” Journal
of Computer and System Sciences, vol. 17, no. 3, pp. 348–375, Dec.
1978.

APPENDIX

A. Polymorphic Types

OCaml’s type system assigns types to all expressions, for
example an integer literal like 5 has type int. Function types
are written with an arrow, for example a fibonacci function
might have type int → int.

Consider an identity function, defined with

let id x = x;;

What ought to be the type of this function? If we infer a type
like int → int (which is certainly sound), we won’t be able
to use the function with booleans, or vice versa. If we assign
it the type α → α, where α is a (monomorphic) type variable,
we still have a problem: we can use the function at int or at
bool, but not both. In fact, this function is frequently passed
as an argument to higher-order functions, and therefore it is
common to have it used at many different types throughout a
program.

The solution taken by “Hindley-Milner type systems” [31]
allows polymorphic types. We might express the true type of
of id as ∀α.α → α. Quantifying over the type variables in
a type is called generalization. Whenever the variable id is
referred by the program, a new monomorphic type variable
will be created to represent α for that specific instance, a
process called instantiation. Only values bound with a let
binding are generalized – notably, lambda abstractions are not
generalized (unless they are later bound by a let).

Polymorphic types are a major challenge for type error
localization [6], [16], in large part because the generalization
and instantiation processes make it difficult to tie a type
mismatch from outside of the definition of a let binding back
to a source in the body of the binding.

57

https://ocaml.org/
https://okmij.org/ftp/ML/generalization.html
www.SMT-LIB.org/papers/smt-lib-reference-v2.6-r2021-05-12.pdf
www.SMT-LIB.org/papers/smt-lib-reference-v2.6-r2021-05-12.pdf
http://easyocaml.forge.ocamlcore.org/
https://ocaml.org/p/ocaml-base-compiler/
https://ocaml.org/p/ocaml-base-compiler/
http://www.escholarship.org/uc/item/59s4h4pv
https://github.com/wilfred/difftastic
https://github.com/wilfred/difftastic

B. Classical Type Inference

The goal of type inference is to assign a type to every
(sub)expression in the program, thereby ensuring that the
program is type-safe, but without requiring any annotations
from the programmer.

The classical type inference algorithm described in [31]
proceeds via structural recursion on the program AST. Each
node of the AST corresponds to a (sub)expression of the
program. We use the kind of each subexpression to infer
the “shape” of its type – lambda abstractions must have
a function type, boolean literals must have the bool type,
etc. Any unknown information in the inferred shape, such
as the input and output types of a function type, are filled
with (monomorphic) type variables. When these type variables
correspond to the type of a named program variable, this
relationship is stored in a context.

As we recurse through the AST, we may discover relation-
ships between some of the inferred shapes. For example, when
a lambda abstraction is applied to an expression e, we learn
that the abstraction’s input type must match the type of e. We
use this information to refine the type variables in both types
through a process called unification. Unification “solves for”
some or all of the type variables in both types.

A second approach to refining types is to store all of
the discovered relationships as typing constraints [10]. These
constraints can be generated for the whole program, and then
later fed into a constraint solver all at once. We must use such
a constraint-based algorithm; see Section II-A for why.

58

	Introduction
	Overview of the MinErrLoc Approach
	Minimum Error Sources
	Reduction to MaxSMT

	Tyro Architecture
	Frontend
	Polymorphic Types
	Constraint Generation
	Intermediate Representation (IR)
	SMT Encoder
	Backend

	Evaluation
	Timing
	Localization Accuracy

	Related Work
	Future Work
	Conclusion
	Acknowledgements
	References
	Appendix
	Polymorphic Types
	Classical Type Inference

