
Formal Methods in Computer-Aided Design 2024

Easter Egg: Equality Reasoning Based on E-Graphs
with Multiple Assumptions

Eytan Singher and Shachar Itzhaky
Technion - Israel Institute of Technology, Haifa, Israel

{eytan.s,shachari}@cs.technion.ac.il

Abstract—E-graphs are a prominent data structure that has
been increasing in popularity in recent years due to their ex-
panding range of applications in various formal reasoning tasks.
E-graphs allow systematic and efficient treatment of equality,
which is pervasive in automated reasoning based on proofs.

E-graphs handle equality well, but are severely limited in their
handling of case splitting and other aspects of propositional
reasoning, such as resolution, which introduce branching in
provers and solvers. As a consequence, most tools resort to
using e-graphs locally, recreating them ad-hoc when they are
needed, and then discarding them. In exploratory scenarios,
where it is necessary to retain multiple branches simultaneously,
this limitation proves to be prohibitive. In particular, in theory
exploration—a process where lemmas are discovered and then
proven—this poses a significant challenge. Theory exploration
must enumerate a space of possible assumptions, and must retain
all of them to make progress. This poses a severe limitation on
the ability to harness e-graphs for the task.

Our key observation is that in exploratory reasoning tasks,
branching represents versions of the same e-graph each with an
added assumption, such as “x > y” or “is sorted l”. Essentially,
each e-graph represents an equality relation, and each branch
corresponds to a matching coarsened equality relation. Based
on this observation, we present an extension to e-graphs, called
Colored E-Graphs, as a way to efficiently represent all of the
coarsened equality relations in a single structure. A colored e-
graph is a memory-efficient equivalent of multiple copies of an e-
graph, with a much lower overhead. This is attained by sharing as
much as possible between different cases, while carefully tracking
which conclusion is true under which assumption. It can be
viewed as adding multiple “color-coded” layers on top of the
original e-graph structure, representing different assumptions.

We run experiments and demonstrate that our colored e-
graphs can support large numbers of assumptions and terms
with space requirements that are about 10× lower, and with
slightly improved performance.

I. INTRODUCTION

E-graphs are a versatile data structure that is used for various
tasks of automated reasoning, including theorem proving and
synthesis. E-graphs have been popularized in compiler opti-
mizations thanks to their ability to support efficient rewrites
over a large set of terms, while keeping a compact represen-
tation of all possible rewrite outcomes. This mechanism is
known as equality saturation. It provides a powerful engine
that allows a reasoner to generate all equality consequences
of a set of known, universally quantified, equalities. Possible
uses include selecting the best equivalent of an expression
according to some desired metric, such as run-time effi-
ciency [29], size [10], [22], or precision [23] (when used as
a compilation phase) and a generalized form of unification,

called e-unification, for application of inference steps (when
used for proof search).

In this work we focus on a stepping stone for what we
address as exploratory reasoning: a range of tasks including
all the above optimization procedures, as well as theory explo-
ration [26], rewrite rule inference [20], and proof search [16],
[5], [14]. Exploratory reasoning, in general, can be thought
of as any reasoning task navigating a large space of potential
goals or sub-goals that need to be selected based on some
criteria. Our motivating example comes from TheSy and Ruler,
both of which are theory exploration systems based on e-
graphs. A theory exploration system attempts to both discover
and prove mathematical properties from a set of definitions and
known lemmas. Most of the difficulty in theory exploration
comes from the generation and filtering of candidates, rather
then from the proof procedure itself. TheSy does so by
efficiently filtering a large set of potential conjectures using e-
graphs for equality reasoning, and evaluating which should be
potentially proved. While e-graphs are effective for equality
reasoning [30], handling branching, such as case splitting
during proof search, do not have a common solution, and
are treated ad-hoc. For example, a special type of node is
introduced in [29] to deal with loop conditions, while in [7] a
special operator is introduced to reason on expressions under
certain contexts, and [26] creates full copies of the e-graph for
each branch being explored.

To illustrate this difficulty, we zoom in on an example from
theory exploration. As an example scenario, consider trying to
discover and prove lemmas on sorted lists: a library containing
functions find, is sorted, and bin search. We expect to discover
lemmas involving these functions; one such lemma might be
the property: is sorted l → bin search l v = find l v. State-of-
the-art theory exploration systems [12], [20], [26] have some
enumeration strategy over expressions in order to discover
candidates. A challenge presents itself when some lemmas
in the space require an assumption, in this case is sorted l.
When dealing with e-graphs, adding an assumption would
globally affect all terms involved in the enumeration, making it
impossible to separate conclusions stemming from different as-
sumptions. Because the system cannot know in advance which
assumptions will become relevant for discovering equalities,
it is required that it also generate and test multiple candidate
assumptions. An immediate solution is to create one copy
of the graph per assumption, but doing so can significantly
increase the memory usage. Moreover, lemmas may depend on

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 13 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0009-0008-4020-9040
https://orcid.org/0000-0002-7276-7644
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_13
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_13
https://creativecommons.org/licenses/by/4.0/

one another; for example, is sorted l→ bin search l v = find l v
depends on transitivity of ≤ (x ≤ y ∧ y ≤ z → x ≤ z).
Therefore, just trying the candidates one at a time would
mean that the system would prematurely discard candidates
depending on the order in which they are tested; alternatively,
for each candidate that is validated and becomes a lemma, it
would be forced to re-try all the previously failed attempts,
which is highly costly.

To overcome this difficulty, we propose an extension of
the e-graph data structure. An e-graph naturally represents
a congruence relation ∼=, which is an equality relation over
terms (with function applications), which maintains x ∼= y ⊢
f(x) ∼= f(y). The congruence relation is maintained in the
e-graph as a set of equivalence classes (e-classes), which can
be merged as part of updating the underlying relation. We
extend the e-graph data structure into a Colored E-Graph to
maintain multiple congruence relations at once, where each
relation is associated with a color. Our key observation is that
each added assumption, can be treated as a new congruence
relation, but is only a coarsening of the original relation. The
coarsening, then, can be represented as a set of additional
merges of e-classes on top of the original e-graph. The main
benefit is reducing memory consumption by re-using and
sharing most of the e-classes between colors. Going back
to the sorted list example, in the colored e-graph there will
be a red relation for assuming x ≤ y ∧ y ≤ z, and a blue
relation for assuming is sorted l. Thanks to the size reduction,
multiple relations can exist at once, and thus the lemma
is sorted l → bin search l v = find l v can be discovered after
transitivity of ≤ is proven, but without dependency on the
order of exploration. Colored e-graphs also support having a
hierarchy between different colors, which can benefit from
additional sharing of e-classes. For example, the red color
representing x ≤ y ∧ y ≤ z is itself a coarsening of some
green color representing just the assumption x ≤ y.

While the memory footprint for each color is smaller,
maintaining the congruence relation and the data structure
invariants becomes more challenging. To address this we
present specialized data-structure modifications and evaluate
them. First, we set up a multi-level union-find where the
lowest level corresponds to the root congruence. Second, we
change how congruence closure is applied to the individual
congruence relations while taking advantage of the sharing
between each such relation and the root. Lastly, we present
a technique for efficient e-matching over all the relations at
once.

Our contributions are:
1) The observation that assumptions induce coarsened e-

graphs that share much of the original structure.
2) Algorithms for colored e-graphs operations.
3) Optimizations on top of the basic algorithms to significantly

improve resource usage.
4) A colored e-graph implementation, Easter Egg1 and an

evaluation that shows an improvement factor in memory

1https://github.com/eytans/egg/tree/features/color splits

∼=b

(a)

∼=r

(b) (c)

Fig. 1. Example e-graph with two colored layers; (a) is blue, (b) is red, (c)
shows them combined.

usage over the existing baseline, while maintaining similar
run-time performance.

II. OVERVIEW

From this point we assume familiarity with the basic e-
graph structure which includes a union-find, hashcons, and an
e-class map, as well as the basic operations of add, merge,
rebuild, and e-matching (and consequently rewriting). For
readers unfamiliar with e-graphs, or with deferred rebuilding,
which was introduced in [30], additional background is given
in Appendix A.

Colored E-graphs are an extension of e-graphs devised to
add a generic approach for supporting conditional reasoning
to e-graphs. Existing exploratory reasoning systems such as
TheSy [26] and Ruler [20] utilize equality saturation with e-
graphs for discovering new rewrite rules, but are limited in
the presence of conditionals. For example, let t := max(x, y),
then reasoning about the cases x < y and x ≥ y separately
is desirable: in the first case t ∼= x, and in the second t ∼= y.
Without any assumptions, we can say neither and rewriting
of t is blocked. The approach in [26] involves a prover that
creates an e-graph clone for each case in case splitting, such
as for x < y and x ≥ y. This process, however, incurs high
runtime and memory costs. Non-relevant terms in the e-graph
are unnecessarily duplicated, and rewrites are redundantly
applied to these copies. Further case splits compound this
issue, leading to an exponential increase in the number of
clones with additional nested splits.

Colored e-graphs are designed to avoid duplication via
sharing of the common terms, thus storing them only once
when possible. The e-graph structure becomes layered: the
lowermost layer represents a congruence relation over terms
that is true in all cases (represented, normally, as e-classes
containing e-nodes). On top of it are layered additional con-
gruence relations that arise from various assumptions.

Going back to our example, the corresponding e-graph is
shown in Figure 1, containing the terms max(x, y), x < y,
true and false. Layers corresponding to assumptions x < y
and x ≥ y are shown in 1(a) and 1(b). To evoke intuition,
we associate with each layer a unique color, and paint their
e-classes (dotted outlines, in depicted e-graphs) accordingly.
Conventionally, the lowermost layer is associated with the
color black. In the subsequent example we will use blue for
x < y and red for x ≥ y when referring to the example.
In the blue layer, (x < y) ∼=b true and max(x, y) ∼=b y; in
the red layer, (x < y) ∼=r false and max(x, y) ∼=r x. This

71

https://github.com/eytans/egg/tree/features/color_splits

is shown via the corresponding blue and red dotted borders.
Figure 1(c) shows a depiction where both colors are overlain
on the same graph, which is a more faithful representation of
the concept of colored e-graphs, although this visualization is
clearly not scalable to larger graphs. In Figure 2, a larger graph
can be seen that includes the terms max(x, y)−min(x, y) and
|x− y|. An overlain graph will be quite incomprehensible in
this case, so the layers are shown separately; it can be easily
discerned that max(x, y) − min(x, y) ∼=b |x − y| as well as
max(x, y)− min(x, y) ∼=r |x− y|.

Both additional layers, blue and red, use existing (black)
e-nodes, with each color represented by further unions of e-
classes in the black congruence relation. Each color’s con-
gruence ∼=c is a coarsening of the black congruence, ∼=,
as ∼= ⊆ ∼=c. In complex cases like the generalization of
max(x, y)−min(x, y) ∼= |x−y| to max(x, y, z)−min(x, y, z) ∼=
max(|x − y|, |x − z|, |y − z|), the colored e-graphs have an
important layered structure. This scenario requires reasoning
about additional assumptions, building additional layers, such
as x < y ∧ y < z on top of x < y (and respectively
x ≥ y ∧ y < z on top of x ≥ y). These additional layers
will reuse the blue and red ones, as they are a coarsening of
the respective ∼=b and ∼=r .

Before diving into the design of colored e-graphs, it is better
to start with their expected semantics. One way to understand
the semantics of colored e-graphs is by analogy to a set of
clones, i.e. separate e-graphs E . One e-graph represents the
base congruence ∼=, and one e-graph per color c represents
∼=c. All e-graphs in E conceptually represent the same terms
partitioned differently into e-classes. Thus, they have the same
e-nodes, except that the choice of e-class id (the representative)
may be different according to the composition of the e-
classes. We will call the e-classes of the color congruences
colored e-classes. A union in any layer, black or colored, is
in effect a union applied to the respective e-graph and all its
descendants. Thus, a union in the black layer (i.e. the original
e-graph) is analogous to a union in all of the e-graphs of the
corresponding e-classes; this maintains the invariant that every
colored e-class is a union of (one or more) black e-classes. The
colored e-graph semantics of the other operations—insertion,
congruence closure, and e-matching—are the same as if they
were performed across all clones.

A guiding observation in the design is that in equality
saturation based exploratory reasoning tasks, where the e-
graphs are extensive, each assumption leads to modest increase
in congruences. Colored e-graphs are adapted to this scenario.
The basic presupposition is that most colored layers, like the
blue layer in Figure 2, do not involve an excessive amount
of additional unions. In these cases, the space savings from
not duplicating black e-nodes more than compensate for the
added complexity in managing colored e-classes. With careful
tweaks and a few optimizations, we show that we improve
upon a clone-based approach. Importantly, if the assumption
leads to an inordinate increase in additional unions, the clone-
based approach could be more appropriate, and it is possible
to use a clone for that specific assumption.

For presentation purposes, we start with a basic implementa-
tion that is not very efficient but is effective for understanding
the concepts and data structures; then, we indicate some pain
points, and move on to describe optimization steps that can
alleviate them.

In the basic implementation, all e-nodes reside in the
“black” layer, represented by a “vanilla” e-graph implemented
in egg, with normal operations. The colored congruences do
not have designated e-graphs of their own, and instead, the
operations of merge, rebuild, and e-matching have colored
variants, parameterized by an additional color c, that are
semantically analogous to the same operations having been
applied, in clone semantics, to the e-graph associated with
color c in E . (Insertion is deferred to later.)

Colored merge. In colored e-graphs, the union-find structure
used for merging, which traditionally holds all e-class ids, is
optimized. A master copy retains black unions, while each
color layer has a smaller union-find for merged representative
e-classes of the parent layer. This approach avoids replication
of data across layers.

Colored e-matching. The e-class map is only saved for the
black layer. This is sufficient, because an e-class in color c
is always going to be a union of black e-classes, and all that
is required for e-matching is finding e-nodes with a particular
root (operator) in the course of the top-down traversal. So the
union can be searched on demand by collecting all the “c-color
siblings” of the e-class and searching them as well.

Colored congruence closure. In egg, the e-graph maintains
congruence by cycling through a work list of altered classes,
re-canonizing their parents, and identifying unions to complete
congruence through duplicate detection. In colored e-graphs
the root will behave the same, but for colored layers there
is no single e-class, as the colored e-classes are a equality
class of concrete e-classes. For each color, we maintain an
additional work list and collect concrete parents from e-classes
on demand. This results in a rebuild algorithm similar to egg’s,
but without updating the hashcons in colored layers, as they
are not present.

For a more concrete example, we give a detailed walk-
through of equality saturation in a colored e-graph of the red
case from Figure 2(b), and show the steps taken to construct
this colored layer in Appendix C.

When using the above operations in the context of equality
saturation, e-matching is applied for all colors to discover
matches for the left-hand sides of rules. For each match, the
right-hand side of the rule needs to be inserted into the e-
graph and merged or color-merged with the left-hand side.
Inserting the e-nodes to the e-graphs makes them available to
all layers. This aspect is sound, since we assume that the mere
existence of a term in an e-graph does not in itself have the
semantics of a judgement—it is only the placing e-nodes in the
same e-class that asserts an equality. However, in the presence
of many colors, and thus many colored matches, the result
would be a large volume of e-nodes that are in black e-classes
of size 1, as they were created to serve a single color. As

72

∼= ∼=b
∼=r

(a) (b) (c)

Fig. 2. Proof of max(x, y)− min(x, y) = |x− y|. The e-nodes corresponding to the two terms are in the same e-class both in the blue layer (b) and in the
red (c). It is important to note that the layers are overlain, and that the black nodes are shared; they are separated here for ease of perception.

opposed to a, standard, single e-graph where merging e-classes
shrinks the space of e-nodes (because non-equal e-nodes may
become equal as a result of canonization), in colored unions
it is required that the e-graph maintain both original e-classes,
thus losing this advantage. This can put a growing pressure
on subsequent e-matching and rebuild operations in all colors.
Optimizations to improve colored e-graphs, and to address this
issue, are presented in section IV.

III. FUNCTIONAL DESCRIPTION

We now introduce some notations and definitions that
formalize the description of the e-graph presented in section II.
We assume a term language L where terms are constructed
using function symbols, each with its designated arity. We use
f (r) ∈ Σ[L] to say that f is in the signature of L and has
arity r. A term is then a tree whose nodes are labeled by
function symbols and a node labeled by f has r children. (In
particular, the leaves of a term have nullary function symbols.)
Additionally we use the following definitions:

e-class ids E

e-nodes N = {f(e1, .., er) | fr ∈ Σ, ei ∈ E}
union-find ≡id ⊆ E × E, ≡id is an equivalence relation
e-class map M : E → P(N)

parent map P = {e ↦→ {(n, e′) | e′ ∈ E ∧
n ∈M(e′) ∧ n = f(. . . , e, . . .)} | e ∈ E}

hashcons H = {n ↦→ e | n ∈M(e)}

Semantically, every e-class represents a set of terms over
Σ. We will use the notation [t] to refer to e-class id of the
equality class that represents (among other terms), the term t.

The union-find structure offers an operation, find(e), that
returns a unique representative id of the equivalence class (of
≡id) that contains e. That is, find(e) ≡id e and for all e1 ≡id

e2, find(e1) = find(e2).
On top of these basic structures, we introduce a set of colors.

As explained in section II, colors are organized in a tree whose

root is the initial color (“black”). We mark the root color ∅
and assign to every non-root color c a parent color p(c).

colors C = {∅, . . .}
parent colors p : C \ {∅} → C

The colored e-graph will now hold multiple union-find
structures, one per color. They define a family of equivalence
relations ≡c by induction on the path from ∅ to c.
▷ ≡∅ = ≡id ; find∅(e) = find(e)
▷ ≡c ⊆ Ep(c)×Ep(c), where Ep(c) = {findp(c)(e) | e ∈ E}

is the set of all representatives from ≡p(c). findc(e) for
e ∈ Ep(c) returns a unique identifier in the normal manner
of union-find, i.e., findc(e) ≡c e and for all e1 ≡c e2,
findc(e1) = findc(e2).

The definitions over Ep(c) are naturally extended to
E by (recursive) application of find ; i.e., findc(e) =
findc(findp(c)(e)) and e1 ≡c e2 ⇔ findp(c)(e1) ≡c

findp(c)(e2). Thus it holds, by construction, that ≡c ⊇ ≡p(c).
The colored e-graph also supports a mergec(e1, e2) opera-

tion for each color c where e1, e2 ∈ Ec. The merge operation
may break the congruence relation invariants for c and all its
descendants, and thus needs to be fixed. The merged classes
are added to worklist(c′) for all c′ where c′ is c or one of its
descendant. In egg [30], the invariants are restored periodically
by performing a REBUILD pass. To accommodate the colors,
we adjust the REBUILD logic to a multi-congruence-relation
setting, so that it restores a congruence closure for each color
during REBUILD. The main difference is that for a colored
congruence relation, the procedure will collect the parents of
a colored e-class by combining the sets of parents of all the
(root) e-classes contained therein.

Another important colored e-graph operation is e-matching.
Colored e-matching is a modification of the e-matching ab-
stract machine presented in [19]. E-matching is performed
by an abstract machine M which consists of a program
counter, array of registers reg, and backtracking stack bs, in
combination with a sequence of instructions that represents a
pattern p. The machine will run instructions by order, where
each may either fail if its assertion is not met, or produce a set

73

of continuation states. If a continuation state is produced, the
machine selects the first one and adds the current instruction
to the stack. If no continuation state is produced, the machine
backtracks, retrieving the most recent state from the stack and
attempting the next available continuation.

To better present our modifications in colored egg, we first
shortly introduce some of the original instruction types:

▷ bind(in, f, out) — Matches any e-node of the form
f(x1, . . . , xn) that resides in the e-class saved in reg[in],
storing its children x1..n in reg[out..out+ n− 1].

▷ compare(i, j) — Asserts reg [i] == reg [j].
▷ check(i, term) — Asserts that the e-class reg [i] represents
term .

▷ continue(f, out) — Match any e-node f(x1, . . . , xn) (in
any e-class), storing its children x1..n in reg [out ..out +
n− 1].

▷ join(in, reverse path, out) — Match any e-node
f(x1, . . . , xn) that is reachable through reverse path
from the e-class reg [in], storing its children x1..n in
reg [out ..out + n− 1].

To facilitate matching across various congruence relations,
we adjust the machine M to include the, currently being e-
matched, colored assumption color in its state. Adapting to
color involves changes in compilation and instructions. The
two primary scenarios impacted are: during compare(i, j),
ensuring reg [i] ≡color reg [j], and in function application
matching represented by a bind instruction. Before each
‘bind’ instruction, the modified compilation will insert a new
‘colored jump’ instruction to try matching the full colored
equality class, one “root” e-class at a time. This is achieved
by having ‘colored jump(i)’ yield all the “colored siblings”
of reg [i] in the current color , replacing reg [i] with the result.
The instruction ‘check’ can be likewise adjusted, but we point
out that, in fact, it can be implemented as a sequence of ‘bind’s
(with respective interleaved ‘colored jump’s).

Multipatterns, supported by the abstract machine, enable
e-matching against patterns with shared variables, useful for
matching the precondition in conditional rewrite rules. This
is achieved using the ‘continue’ instruction, which selects a
new root for subsequent sub-patterns. In the colored setting,
while ‘continue’ remains as is, for performance, it’s sometimes
substituted with ‘join’. This alternative instruction also picks
a new root, but restricts selection to e-nodes that can reach a
specified e-class, linked to a previously matched hole, through
child edges in the e-graph. A reverse path is provided to
further restrict the upward search needed to find such e-
nodes. We do not go too deep into the details, but its colored
variant will invoke a colored jump at every level. We point
out that egg does not currently implement ‘join’, and our
colored egg supports a special (though frequent) case in which
reverse path is empty.

The algorithms described here are presented in more depth
in Appendix B.

IV. OPTIMIZATIONS

Both rebuilding and e-matching in colored e-graph, as
discussed in section II, can be significantly slower compared
to a separate, minimized e-graph.

In the rebuilding aspect, two main burdens are that the
colored e-graph contains additional e-nodes compared to each
of the separate ones, and that building a colored hash-cons
(which will be presented shortly) requires going over all the
e-classes.

In the e-matching aspect, colored e-matching may produce
duplicate results due to the e-graph not being minimized
according to the color’s congruence relation; that is, colored-
congruent terms are not always merged under a single e-class
id. To illustrate this, consider a simple e-graph representing
the terms 1 · 1, 1 · x, 1 · y, and x · y. Introduce a color, blue,
where x ∼=b y. A simple pattern such as 1·?v would have three
matches, with assignments ?v ↦→ 1, ?v ↦→ x, ?v ↦→ y. If the
blue layer were a separate e-graph, x and y would have been
in the same e-class, so one of the matches here is redundant
(as far as the blue layer is concerned). Of course, in the black
layer they are different matches; the point is, that many terms
are added to the graph only as a result of a colored match,
so matching them in the black e-graph is mostly useless to
the reasoner. On the other hand, their presence in the black
layer means they cannot ever be merged, leading to duplicate
matches, as seen above, even in the respective colored layer(s).

Moreover, when inserting e-nodes to the e-graph, the hash-
cons is used to prevent duplication, relying on it being canon-
ized. Adding an e-node from a colored conclusion (following
a match modulo ∼=b) does not benefit from canonization.
In fact, each e-node f(x1, . . . , xn) has a multitude of black
representatives that are ∼=b-equivalent. Each child xi in the e-
node can be presented by any black id such that e ∈ [xi]b, so
there are

∏︁
i |[xi]b| representations. These variants are distinct

in the root color, so they cannot be de-duplicated as usual.
To address these issues, we present a series of optimizations

to the colored e-graph data-structure and the procedures.
These optimizations aim to reuse the “root” and ancestor
layers as much as possible, both in terms of memory usage
and compute. Thus, we can achieve a memory efficient, but
effective colored e-graph.

A. Data-structure optimizations

Colored e-nodes. In the basic implementation outlined in
section II, adding e-nodes from colored e-matches to the root
e-graph may make it very large and increase the cost of all
subsequent actions. The optimized version addresses this by
introducing colored e-nodes, where e-nodes resulting from
colored matches are tagged with their inducing colors. Each
colored layer has its own colored hash-cons and e-class map,
designed to store only the differences from the parent layer,
thereby maximizing reuse. The new mappings added are:

e-class color EC : E → C

colored parent Pc = {(n, e) | (n, e) ∈ P ∧ EC(e) = c}
colored hashcons Hc = {n ↦→ e | n ∈M(e) ∧ EC(e) = c}

74

Note that base parents and hashcons from the non-optimized
version are incorporated as P∅ and H∅ in colored mappings.

This optimization applies the hierarchy in all operations. For
example, while inserting an e-node to a color c, it is looked
up in the colored hashcons for c and all its ancestors, p∗(c),
and finally, if no match is found, it is inserted into a new
e-class e, setting EC(e) = c. The colored hashcons Hc is
canonized to color c, ensuring that new e-nodes are unique to
this layer and avoiding colored duplicates. (Some duplication
related to c may still occur in ancestor layers, as their e-nodes
are not canonized to c.) The optimization significantly impacts
e-matching: previously when matching a function application
f , all f -e-nodes in N were considered; now, only those e-
nodes n in the colors hierarchy, that is, those satisfying ∃e. n ∈
M(e) ∧ EC(e) ∈ p∗(c), are examined.

Pruning. Recall that having a coarsening relation between
the colors in the hierarchy means that any result found in
an ancestor color is also true for the descendant(s). And so,
following merges, some of the colored e-nodes could become
subsumed by e-nodes that already exist in an ancestor layer.
We present an efficient deferred pruning method to remove
the redundant e-nodes.

Normal e-graph minimization relies on having all e-nodes
canonized. A colored e-graph usually does not canonize all e-
nodes to a specific color c (except for ∅). Rather, Hc contains
only the difference from previous layers. To find redundant e-
nodes, the colored e-graph builds a transient hashcons during
rebuild from all relevant e-nodes that are not c-colored. The
new hashcons, H ′

c, is created as follows:

H ′
c = {canonizec(n) ↦→ findc(e) |

n ∈M(e), EC(e) ∈ p+(c)}

A c-colored class e can be reduced by removing all e-nodes
that already exist in H ′

c. While pruning is promising, one must
take care that pruned e-nodes are not immediately re-added.

Colored minimization. Another improvement is having
multiple colored e-nodes (of the same color) in a single (black)
e-class. As mentioned previously, any e-node that resulted
from a colored insert had to be in their own e-classes, as
no black unions would be performed on them. But, given that
e ≡c e

′ ∧EC(e) = EC(e′) = c, then the two black e-classes
e, e′ can be merged as both contain colored e-nodes of the
same color and are in the same colored e-class (of the same
color). Thus an invariant is kept that each colored equality
class has at most one black e-class containing colored e-nodes.

B. Procedure optimizations

Rebuild. When rebuilding, we first reconstruct the congruence
relation of the “root” layer. Even though a color, for example
blue, will need to rebuild its own congruence, it still holds
that ∼= ⊆ ∼=b . So, any union induced by ∼= can be applied
to the blue relation. To understand the implications, consider
the e-graph representing the terms x, y, f(x), f(y), f(f(x)),
and f(g(y)) where the blue color contains the additional
assumption that g(y) ∼=b f(y). If we union x and y, the

black congruence will include f(x) ∼= f(y) which also
holds in the blue relation. But, the rebuilding of the blue
congruence invariant will include an additional, deeper (in
terms of rebuilding rounds), conclusion f(f(x)) ∼=b f(g(y)).
This demonstrates how reusing parent relations is useful; the
rebuild depth can be reduced by first rebuilding finer relations.

E-match. In e-matching, we implement an optimization
where findings on the root layer are also valid for higher
layers. To avoid redundant pattern matching, e-matching be-
gins only from ∅, adding colored assumptions as needed.
There are two scenarios for introducing a colored assumption:
The first during compare(i, j), if reg [i] ̸≡color reg [j], we
explore descendant colors c where reg [i] ≡c reg [j], adding
states with color ← c to the backtracking stack bs. The
second is on-demand coloring in colored jump, where jumps
to any color c are enabled if M.color ∈ p+(c) and the
target e-class is otherwise unreachable. We minimize the set
of new assumptions to prevent redundant colors. During the
updated compare, compare’, if a color c is sufficient, its
descendants are not added to bs. For to updated colored jump,
colored jump’, e-classes are matched only with their topmost
(closest to root) congruent descendants. By taking the topmost
descendants, we ensure that all additional matching paths are
unique, as at least one (different) e-class is chosen at each fork.
Despite eliminating duplicate paths, some duplicate colored
matches persist due to incomplete minimization of the e-
graph. The modified instructions are described in more detail
in Appendix B.

V. EVALUATION

Support for colored e-graphs is implemented in a modified
version of egg, called Easter Egg. In this section, we evaluate
the performance and effectiveness of Easter Egg and the
different optimizations we presented. For this purpose we
implemented two versions of colored e-graphs containing
different improvements described in section IV. The simple
version only uses procedural improvements, while the opti-
mized version uses all optimizations.

A. Objectives and Evaluation Method

Our evaluation aims to test colored e-graphs’ efficacy in
equality saturation for exploratory reasoning tasks with mul-
tiple simultaneous assumptions. We evaluate the effectiveness
using e-graph size and equality saturation time. To the best
of our knowledge, a purely e-graph-based automated theorem
prover does not exist, and theory exploration tools have limited
support for conditions. Thus, for the evaluation, we created an
equality saturation-based prover (based on code from [26])
that incorporates an automatic case-splitting mechanism.

The case-splitting mechanism is only used when it will
potentially contribute to progress of the equality saturation
process—that is, when it enables additional rewrite rules that
were previously blocked. When this is detected, the prover
yields appropriate assumptions, one for each case. We compare
two settings: a baseline setting with separate e-graphs created
by cloning, and Easter Egg’s colored e-graph implementation.

75

We measure the total running times and the total size of all
the e-graphs.

We evaluated our implementation on inductive proof suites
from [24], also used in [26]. Since the instances are relatively
small, we introduced a slight variation: for each goal, we com-
bined benchmarks (i.e. proof goals) within the suite sharing
similar goals and vocabulary. This approach generates larger
benchmarks, and thus larger e-graphs, for more significant
exploration, with the prover continuing until saturation or
resource limit, regardless of early goal achievement. All the
experiments were conducted on 64 core AMD EPYC 7742
processor with 512 GB RAM.

B. Experimental Setup

Using the enhanced prover, we evaluated each test case
by measuring e-graph sizes and run times. E-graph size was
determined by counting e-nodes; in colored layers, we tracked
additional colored e-nodes, whereas for separate e-graphs,
we measured the e-nodes in both the original and coarsened
graphs. The experiments utilize the Cap library to cap memory
usage at 32 GB and limit run-time to 1 hour per case.

Our experiments involved a basic colored e-graph imple-
mentation (as per section II which we dub monochrome
colored e-graph, as it does not contain colored e-nodes) and a
fully optimized version, comparing both against the baseline
of separate e-graphs. The pruning optimization has almost
identical results to the fully optimized version, and hence, for
brevity, it is not shown. It is expected, due to pruning being
ineffective in cases where the same rewrite rules are applied
repeatedly, adding the removed e-nodes right back.

C. Results

In our setup, all assumptions emerge from case splits done
by the prover. We filter out cases where no case splits were
applied, since these have no assumptions introduced and thus
colored e-graphs have no impact.

For each benchmark instance, we measure the relative e-
node overhead as the number of additional e-nodes that are
required, normalized by the number of different assump-
tions. That is, (|total e-nodes|−|base e-nodes|)/|assumptions|.
“Base e-nodes” represent the contents of the graph before
case splits. (For the monochrome colored e-graph we use the
base e-nodes present in the separate e-graphs case.) Figure 3
summarizes the results, pitting colored e-graphs (with and
without colored e-nodes) against the baseline of separate
clones. In some cases one configuration times out or runs
out of memory, while the other does not; we only compare
cases where both configurations finished the run successfully.
In both comparisons, we see roughly around 10× lower
overhead, where in the monochromatic case samples are more
dispersed around the y axis, and the optimized case shows
clear advantage to the colored e-graph implementation.

Run-time is measured as the the total run-time for completed
test cases, and 1 hour for cases that timed out. We do
not include runs that did not finish due to out-of-memory
exceptions (we report the latter separately). As can be seen

TABLE I
RUN-TIME AND EXCEPTIONS. M = OUT OF MEMORY, T = TIMEOUT (3600)

Separate Monochrome Optimized

Test Suite Time M/T Time M/T Time M/T

clam 70.1 0/0 277.8 0/5 23.6 0/0
hipspec-rev-equiv 34.1 0/0 139.0 0/17 57.0 0/0
hipspec-rotate 3880.3 1/1 1871.4 0/6 17.4 0/3
isaplanner 8454.4 0/60 6068.4 0/70 20486.3 3/28
leon-amortize-queue 187356.4 52/0 14.8 0/57 10854.3 3/49
leon-heap 1735.9 0/0 1201.8 0/25 4949.2 0/13

in Figure 4, the monochrome colored e-graph lead to many
timeouts, whereas the optimized case exhibits running times
similar to separate clones. This is in line with our expectation:
colors provide lower memory sizes at the expense of run-time.

Finally, in Table I we present the number of out-of-memory
exceptions, the number of timeout exceptions, and total run-
time for each configurations and test suite. The monochrome
colored e-graph, as expected, exhibits many timeouts. Even
though it has more errors than the other e-graph versions, it
still has much longer run-times.

The optimized e-graphs demonstrate enhancements over
separate e-graphs in both run-time and success rate, as detailed
in Table I. Notably, the optimized configuration completed
more tests (99 failures compared to 114). A key shift observed
is the replacement of out-of-memory errors with timeouts,
particularly in the leon-amortize-queue suite. However, leon-
heap posed challenges for colored e-graphs, incurring 13
extra timeouts even in the optimized version. Conversely, the
isaplanner suite showed a notable improvement, halving the
failure rate in the optimized version compared to the baseline.

VI. RELATED WORK

Theory exploration and its applications. Interest in ex-
ploratory reasoning in the context of functional calculi started
with IsaCoSy [13], a system for lemma discovery based in part
on CEGIS [28]. In a seminal paper, QuickSpec [27] propelled
applicability of such reasoning for inferring specifications
from implementations based on random testing, with deductive
reasoning to verify generated conjectures [6], [12]. TheSy [26]
and Ruler [20] have both incorporated e-graphs to some
extent in the exploration process: they are used to speed
up equivalence reduction of the space of generated terms,
and, in [26], also the filtering and qualification phases using
symbolic examples. The evaluation of the latter shows quite
clearly that case splitting is a major obstacle to symbolic
exploratory reasoning, due to the large number of different
cases and derived assumptions.

In the area of conditional rewrite discovery, Speculate [4]
naturally builds on the techniques from QuickSpec and de-
pends on property-based testing techniques to generate inputs
that satisfy some conditions. SWAPPER [25] is a relatively
early example of exploring using SyGuS with a data-driven
inductive-synthesis approach with emphasis on finding rules

76

separate e-graphs

m
on

oc
hr

om
e

co
lo

re
d

e-
gr

ap
hs

separate e-graphs

op
tim

iz
ed

co
lo

re
d

e-
gr

ap
hs

×1

×10

Fig. 3. Size comparison: relative e-node overhead in clones vs. color e-graph variants.

separate e-graphs

m
on

oc
hr

om
e

co
lo

re
d

e-
gr

ap
hs

separate e-graphs

op
tim

iz
ed

co
lo

re
d

e-
gr

ap
hs

Fig. 4. Run-time comparison: run-time of clones vs. color e-graphs

that are most efficient for different problem domains. It
requires a large corpus of similar SMT problems to operate.
Other e-graph extensions. E-graphs were originally brought
into use for automated theorem proving [9], and were later
popularized as a mechanism for implementing low-level com-
piler optimizations [29], by extending them with “φ-nodes”
to express loops. Relational e-matching [32] makes use of
Datalog seminaı̈ve evaluation to harness the power of query
planning in database systems. Subsequently, Datalog-powered
e-matching has been recently fused with core Datalog seman-
tics to allow richer logic programming by exposing equal-
ity saturation as a building block in a framework called
egglog [31]. Since Datalog is based on Horn clauses, this
meshes very well with conditional rewriting. It should be
noted, though, that it is still a monotone framework, and
does not allow backtracking or simultaneous exploration of
alternative assumptions.

ECTAs [15], [11] are another, related compact data structure
that extends e-graphs, Version-Space Algebras [17], [18], and
Finite Tree Automata [1], with the concept of “entanglement”;
that is, some choices of terms from e-classes may depend on

choices done in other e-classes. Since the backbone of ECTAs
is quite similar to an e-graph, the colors extension is applicable
to this domain as well.
Uses of e-graphs in SMT. E-graphs are a core component
for equality reasoning in SMT solvers [8], [2], in most theory
solvers such as QF UF, linear algebra, and bit-vectors. E-
matching is also used for quantifier instantiation [21], which is,
in its essence, an exploratory task and requires efficient meth-
ods [19]. In these contexts, implications and other Boolean
structures are treated by the SAT core (in CDCL(T)), and the
theory solver only handles conjunctions of literals.

VII. CONCLUSION

We presented colored e-graphs as an approach to efficiently
handle multiple congruence relations in a single e-graph. They
provide a memory-efficient method for equality saturation
with additional assumptions, crucial for efficient exploratory
reasoning of multiple assumptions simultaneously. Our opti-
mizations, developed using the egg library, have shown notable
improvements in memory usage and moderate enhancements
in run-time performance over the baseline.

77

REFERENCES

[1] Adams, M.D., Might, M.: Restricting grammars with tree au-
tomata. Proc. ACM Program. Lang. 1(OOPSLA), 82:1–82:25 (2017).
https://doi.org/10.1145/3133906, https://doi.org/10.1145/3133906

[2] Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann,
M., Mohamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir,
A., Preiner, M., Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvc5:
A versatile and industrial-strength SMT solver. In: Fisman, D., Rosu,
G. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems - 28th International Conference, TACAS 2022, Held as Part
of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings,
Part I. Lecture Notes in Computer Science, vol. 13243, pp. 415–442.
Springer (2022). https://doi.org/10.1007/978-3-030-99524-9 24, https:
//doi.org/10.1007/978-3-030-99524-9 24

[3] Bergstra, J., Klop, J.: Conditional rewrite rules: Confluence and ter-
mination. Journal of Computer and System Sciences 32(3), 323–
362 (1986). https://doi.org/https://doi.org/10.1016/0022-0000(86)90033-
4, https://www.sciencedirect.com/science/article/pii/0022000086900334

[4] Braquehais, R., Runciman, C.: Speculate: discovering conditional
equations and inequalities about black-box functions by reasoning
from test results. In: Diatchki, I.S. (ed.) Proceedings of the
10th ACM SIGPLAN International Symposium on Haskell,
Oxford, United Kingdom, September 7-8, 2017. pp. 40–
51. ACM (2017). https://doi.org/10.1145/3122955.3122961,
https://doi.org/10.1145/3122955.3122961

[5] Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic the-
orem prover. In: Jhala, R., Igarashi, A. (eds.) Programming Languages
and Systems - 10th Asian Symposium, APLAS 2012, Kyoto, Japan, De-
cember 11-13, 2012. Proceedings. Lecture Notes in Computer Science,
vol. 7705, pp. 350–367. Springer (2012). https://doi.org/10.1007/978-3-
642-35182-2 25, https://doi.org/10.1007/978-3-642-35182-2 25

[6] Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Automating
inductive proofs using theory exploration. In: International Conference
on Automated Deduction. pp. 392–406. Springer (2013)

[7] Coward, S., Constantinides, G.A., Drane, T.: Automating constraint-
aware datapath optimization using e-graphs. In: 2023 60th ACM/IEEE
Design Automation Conference (DAC). pp. 1–6. IEEE (2023)

[8] De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: International
conference on Tools and Algorithms for the Construction and Analysis
of Systems. pp. 337–340. Springer (2008)

[9] Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover
for program checking. J. ACM 52(3), 365–473 (May 2005).
https://doi.org/10.1145/1066100.1066102, https://doi.org/10.1145/
1066100.1066102

[10] Flatt, O., Coward, S., Willsey, M., Tatlock, Z., Panchekha, P.:
Small proofs from congruence closure. In: Griggio, A., Rungta,
N. (eds.) 22nd Formal Methods in Computer-Aided Design,
FMCAD 2022, Trento, Italy, October 17-21, 2022. pp. 75–
83. IEEE (2022). https://doi.org/10.34727/2022/isbn.978-3-85448-053-
2 13, https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 13

[11] Gissurarson, M.P., Roque, D., Koppel, J.: Spectacular: Finding laws
from 25 trillion programs. In: ICST. vol. 6. Association for Computing
Machinery, New York, NY, USA (2023)

[12] Johansson, M.: Automated theory exploration for interactive theo-
rem proving: - an introduction to the hipster system. In: Inter-
active Theorem Proving - 8th International Conference, ITP 2017,
Brası́lia, Brazil, September 26-29, 2017, Proceedings. pp. 1–11
(2017). https://doi.org/10.1007/978-3-319-66107-0 1, https://doi.org/10.
1007/978-3-319-66107-0 1

[13] Johansson, M., Dixon, L., Bundy, A.: Conjecture synthesis for inductive
theories. Journal of Automated Reasoning 47, 251–289 (2010)

[14] Jones, E., Ong, C.H.L., Ramsay, S.: Cycleq: an efficient basis for
cyclic equational reasoning. In: Proceedings of the 43rd ACM SIG-
PLAN International Conference on Programming Language Design and
Implementation. pp. 395–409 (2022)

[15] Koppel, J., Guo, Z., de Vries, E., Solar-Lezama, A., Polikarpova,
N.: Searching entangled program spaces. Proc. ACM Program. Lang.
6(ICFP) (aug 2022). https://doi.org/10.1145/3547622, https://doi.org/10.
1145/3547622

[16] Kovács, L., Voronkov, A.: First-order theorem proving and vampire.
In: International Conference on Computer Aided Verification. pp. 1–35.
Springer (2013)

[17] Lau, T.A., Domingos, P.M., Weld, D.S.: Version space algebra and
its application to programming by demonstration. In: Langley, P. (ed.)
Proceedings of the Seventeenth International Conference on Machine
Learning (ICML 2000), Stanford University, Stanford, CA, USA, June
29 - July 2, 2000. pp. 527–534. Morgan Kaufmann (2000)

[18] Lau, T.A., Wolfman, S.A., Domingos, P.M., Weld, D.S.: Programming
by demonstration using version space algebra. Mach. Learn. 53(1-2),
111–156 (2003). https://doi.org/10.1023/A:1025671410623, https://doi.
org/10.1023/A:1025671410623

[19] de Moura, L.M., Bjørner, N.S.: Efficient e-matching for SMT solvers. In:
Pfenning, F. (ed.) Automated Deduction - CADE-21, 21st International
Conference on Automated Deduction, Bremen, Germany, July 17-20,
2007, Proceedings. Lecture Notes in Computer Science, vol. 4603,
pp. 183–198. Springer (2007). https://doi.org/10.1007/978-3-540-73595-
3 13, https://doi.org/10.1007/978-3-540-73595-3 13

[20] Nandi, C., Willsey, M., Zhu, A., Wang, Y.R., Saiki, B., Anderson,
A., Schulz, A., Grossman, D., Tatlock, Z.: Rewrite rule inference
using equality saturation. Proc. ACM Program. Lang. 5(OOPSLA),
1–28 (2021). https://doi.org/10.1145/3485496, https://doi.org/10.1145/
3485496

[21] Niemetz, A., Preiner, M., Reynolds, A., Barrett, C.W., Tinelli, C.:
Syntax-guided quantifier instantiation. In: Groote, J.F., Larsen, K.G.
(eds.) Tools and Algorithms for the Construction and Analysis of
Systems - 27th International Conference, TACAS 2021, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 12652,
pp. 145–163. Springer (2021). https://doi.org/10.1007/978-3-030-72013-
1 8, https://doi.org/10.1007/978-3-030-72013-1 8

[22] Nötzli, A., Barbosa, H., Niemetz, A., Preiner, M., Reynolds,
A., Barrett, C.W., Tinelli, C.: Reconstructing fine-grained proofs
of rewrites using a domain-specific language. In: Griggio, A.,
Rungta, N. (eds.) 22nd Formal Methods in Computer-Aided De-
sign, FMCAD 2022, Trento, Italy, October 17-21, 2022. pp. 65–
74. IEEE (2022). https://doi.org/10.34727/2022/isbn.978-3-85448-053-
2 12, https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 12

[23] Panchekha, P., Sanchez-Stern, A., Wilcox, J.R., Tatlock, Z.: Automati-
cally improving accuracy for floating point expressions. ACM SIGPLAN
Notices 50(6), 1–11 (2015)

[24] Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: D’Souza, D.,
Lal, A., Larsen, K.G. (eds.) Verification, Model Checking, and Abstract
Interpretation. pp. 80–98. Springer Berlin Heidelberg, Berlin, Heidelberg
(2015)

[25] Singh, R., Solar-Lezama, A.: SWAPPER: A framework for au-
tomatic generation of formula simplifiers based on conditional
rewrite rules. In: Piskac, R., Talupur, M. (eds.) 2016 Formal
Methods in Computer-Aided Design, FMCAD 2016, Mountain
View, CA, USA, October 3-6, 2016. pp. 185–192. IEEE (2016).
https://doi.org/10.1109/FMCAD.2016.7886678, https://doi.org/10.1109/
FMCAD.2016.7886678

[26] Singher, E., Itzhaky, S.: Theory exploration powered by deductive syn-
thesis. In: Computer Aided Verification: 33rd International Conference,
CAV 2021, Virtual Event, July 20–23, 2021, Proceedings, Part II 33.
pp. 125–148. Springer (2021)

[27] Smallbone, N., Johansson, M., Claessen, K., Algehed, M.: Quick
specifications for the busy programmer. J. Funct. Program. 27, e18
(2017). https://doi.org/10.1017/S0956796817000090, https://doi.org/10.
1017/S0956796817000090

[28] Solar-Lezama, A., Tancau, L., Bodı́k, R., Seshia, S.A., Saraswat,
V.A.: Combinatorial sketching for finite programs. In: Proceedings
of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2006,
San Jose, CA, USA, October 21-25, 2006. pp. 404–415 (2006).
https://doi.org/10.1145/1168857.1168907

[29] Tate, R., Stepp, M., Tatlock, Z., Lerner, S.: Equality saturation: A new
approach to optimization. In: Proceedings of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. p. 264–276. POPL ’09, Association for Computing Machinery,
New York, NY, USA (2009). https://doi.org/10.1145/1480881.1480915,
https://doi.org/10.1145/1480881.1480915

[30] Willsey, M., Nandi, C., Wang, Y.R., Flatt, O., Tatlock, Z., Panchekha,
P.: Egg: Fast and extensible equality saturation. Proc. ACM Program.
Lang. 5(POPL) (jan 2021). https://doi.org/10.1145/3434304, https://doi.
org/10.1145/3434304

78

https://doi.org/10.1145/3133906
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://www.sciencedirect.com/science/article/pii/0022000086900334
https://doi.org/10.1145/3122955.3122961
https://doi.org/10.1007/978-3-642-35182-2_25
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_13
https://doi.org/10.1007/978-3-319-66107-0_1
https://doi.org/10.1007/978-3-319-66107-0_1
https://doi.org/10.1145/3547622
https://doi.org/10.1145/3547622
https://doi.org/10.1023/A:1025671410623
https://doi.org/10.1023/A:1025671410623
https://doi.org/10.1007/978-3-540-73595-3_13
https://doi.org/10.1145/3485496
https://doi.org/10.1145/3485496
https://doi.org/10.1007/978-3-030-72013-1_8
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_12
https://doi.org/10.1109/FMCAD.2016.7886678
https://doi.org/10.1109/FMCAD.2016.7886678
https://doi.org/10.1017/S0956796817000090
https://doi.org/10.1017/S0956796817000090
https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3434304

[31] Zhang, Y., Wang, Y.R., Flatt, O., Cao, D., Zucker, P., Rosenthal,
E., Tatlock, Z., Willsey, M.: Better together: Unifying datalog and
equality saturation. In: PLDI ’23: 44rd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implemen-
tation (2023). https://doi.org/10.48550/arXiv.2304.04332, https://doi.org/
10.48550/arXiv.2304.04332

[32] Zhang, Y., Wang, Y.R., Willsey, M., Tatlock, Z.: Relational e-
matching. Proc. ACM Program. Lang. 6(POPL), 1–22 (2022).
https://doi.org/10.1145/3498696, https://doi.org/10.1145/3498696

79

https://doi.org/10.48550/arXiv.2304.04332
https://doi.org/10.48550/arXiv.2304.04332
https://doi.org/10.1145/3498696

APPENDIX A
BACKGROUND ON E-GRAPHS

We will now present some general background on e-graphs.
Same as in section II, we assume a term language L where
terms are constructed using function symbols, each with its
designated arity. We use f (r) ∈ Σ[L] to say that f is in the
signature of L and has arity r.

An e-graph G serves as a compact data structure repre-
senting a set S ⊆ L of terms and a congruence relation
∼= ⊆ L × L. This congruence relation, in addition to being
reflexive, symmetric, and transitive, is also closed under the
function symbols of Σ[L]. That is, for every fr ∈ Σ[L], and
given two lists of terms t1..r ∈ L and s1..r, each of length
r, if ti ∼= si (i = 1..r), then it follows that f(t1, . . . , tr) ∼=
f(s1, . . . , sr). This property, known as congruence closure, is
a key attribute of the data structure. The maintenance of this
attribute as an invariant significantly influences the design and
implementation of e-graph actions.

The egg library [30] revolutionizes the application of e-
graphs by explicitly supporting the equality saturation work-
flow. It enables the periodic maintenance of congruence clo-
sure, via deferred rebuild, allowing for the amortization of
associated rebuilding costs.

In egg, the authors present the e-graph as a union-find-like
data structure, augmented to support operations on expres-
sions. This implementation is primarily achieved through the
utilization of three key structures: a hash-cons table, a union-
find structure, and an e-class map. These structures collectively
underpin the functionalities integral to the operation of the e-
graph.

(a) The union-find component is responsible for keeping
track of merged e-classes and maps each e-class id to
a single representative for all (transitively) merged e-
classes. This information is later used to canonicalize the
keys and values of the hash-cons.

(b) The e-class map stores the structure of the e-graph. For
each e-class id, the map keeps all the e-nodes that are
contained therein. E-nodes are similar to AST nodes
except that their children point to e-class ids instead of
containing a single sub-term each.

(c) The hash-cons table maps e-nodes to their containing e-
class id. An important aspect of the hash-cons is that
after rebuilding, its keys and values are expected to be
canonical. That is, whenever e-classes are merged one of
their ids becomes “the” representative.

An e-class with id e represents a set of terms defined
recursively as:

L(e) = {f(t1, .., tk) |
f(e1, .., ek) ∈M(e), ti ∈ L(ei) for i = 1..k}

We will use the notation [t] to refer to e-class id where t ∈
L([t]).

Example A.1. The terms max(x, y) and x − y are both
represented in the e-graph in Figure 1(a) using e-classes ⟨5⟩
and ⟨6⟩, respectively, with the following e-nodes:

M = ⟨1⟩ ↦→ {true} ⟨2⟩ ↦→ {false}
⟨3⟩ ↦→ {x} ⟨4⟩ ↦→ {y}
⟨5⟩ ↦→ {max(⟨3⟩, ⟨4⟩)} ⟨6⟩ ↦→ {⟨3⟩ − ⟨4⟩}

An e-graph where every e-class is a singleton, like this one,
is just a forest of expression trees with sharing. The situation
becomes more interesting once we start mutating the graph
via its dedicated operations.

1) Insert - Adds a term t to the e-graph, one e-class per AST
node, reusing e-classes where possible by searching the
hash-cons.

2) Merge - Merging two e-classes by applying a union
operation of the union-find and merging the classes in
the e-class map. This, however, temporarily invalidates
the invariant of the hash-cons and e-class map that all
e-class ids and e-nodes must be canonical.

3) Rebuilding (Congruence closure) - As explained before,
a union of [x] into [y] necessitates replacing any e-
node f([x], [z]) by f([y], [z]). Moreover, if f([x], [z]) ∈
[w1], f([y], [z]) ∈ [w2], then, following this replacement,
both [w1] and [w2] now contain f([y], [z]), meaning
that [w1] = [w2] and evoking a cascading union of
[w1], [w2]. A significant contribution by egg is the concept
of deferred (and thus periodic) rebuilding. This periodic
rebuilding is highly efficient and well-suited for equality
saturation.

4) E-matching - Looking up a pattern in the set of terms
represented by the e-graph in a top-down manner, travers-
ing the e-nodes downward via the e-class map. A pat-
tern is a term with (zero or more) holes represented
by metavariables ?v1..k. For example, (?v1 + 1)·?v2 is
a pattern. Pattern lookup is important for rewriting in
equality saturation.

Rewriting. We assume a background set of symbolic rewrite
rules (r.r.), each of the form t

.→ s, where t and s are patterns
as explained in item (4) above. A match θ of pattern t on the e-
graph, is an assignment mapping metavariables to e-class ids.
tθ represents an e-node, and we will denote its equality class
as [tθ]. Applying the r.r. is done by merging the e-classes [sθ]
and [tθ]. Because the e-node sθ might be new, it needs to also
be inserted, resulting in union([tθ], insert(sθ)). Repetitively
applying such rewrite rules to a set of terms can be used to
generate growing sets of terms that are equivalent, according
to rewrite semantics, to ones in the starting set. Ideally, the set
eventually saturates, in which case the e-graph now describes
all the terms that are rewrite-equivalent. We point out that
in many situations, the e-graph keeps growing as a result of
rewrites and never gets saturated—so the number of successive
rewrite iterations, or “rewrite depth”, has to be bounded.

A conditional rewrite rule (c.r.r.) [3] is a natural extension
of a r.r. that has the following form: φ ⇒ t

.→ s where
φ is a precondition for rewriting t to s. For example, the

80

rules for max are: ?x > ?y ⇒ max(?x, ?y)
.→ ?x and

?x ≤ ?y ⇒ max(?x, ?y)
.→ ?y. The semantics of a precondi-

tion φ is defined such that a term matching the pattern of φ
must be unified with Boolean true in order for the rewrite to
be applied.

APPENDIX B
ALGORITHMS PSEUDO CODE

Colored e-graphs introduce a few algorithmic changes to
the operations of a normal e-graph. Here we present pseudo
code for the important changes presented in the paper. Algo-
rithm 1 presents the changes being made to the e-matching
abstract machine to support unoptimized colored e-matching
as presented in section III.

Algorithm 1 Instructions: compare and colored jump
1: function COMPARE(i, j)
2: if find(color , reg [i]) ̸= find(color , reg [j]) then
3: backtrack
4: end if
5: end function
6:
7: function COLORED JUMP(i)
8: siblings← {e|e ∈ E ∧ e ≡color eclass}
9: for sibling in siblings do

10: reg [i] = sibling
11: bs.push(current state)
12: end for
13: backtrack
14: end function

The rebuilding algorithm is also updated to accommo-
date for colored e-graphs in section III, and the pseudo
code in addition to some explanations is presented here.
We update the auxiliary function REPAIR to work on col-
ored e-classes, and introduce two new helper functions:
COLLECT PARENTS and UPDATE HASHCONS, as presented
in Algorithm 2. COLLECT PARENTS extract the parents of a
colored e-class by combining the sets of parents of all the
(root) e-classes contained therein. UPDATE HASHCONS is used
to make sure that the hashcons entries are in canonical forms.
It was already a part of REPAIR in egg; it is only repeated
here to point out that it only updates the hashcons for the root
color, since no canonization is required for colored layers.

The pseudo code for the optimized e-matching instructions
that were presented in section IV are presented in Algorithm 4.

APPENDIX C
WALKTHROUGH FOR EXAMPLE 2

This is the full walkthrough of the example in Figure 1 from
the overview.

We walk through the steps needed to carry out the case split-
ting shown in Figure 2. The system contains the conditional
rewrite rules shown on the right of Figure 5, which constitute
the definitions of max and min, plus some prior knowledge
about | · | and −.

Algorithm 2 Colored Rebuilding
1: function REBUILD
2: for color in self .colors do
3: while self .worklist(color).len() > 0 do

▷ empty the worklist into a local variable
4: todo← TAKE(self.worklist(color))

▷ canonicalize and deduplicate the eclass refs
to save calls to repair

5: todo ← {self.find(color, eclass) | eclass ∈
todo}

6: for each eclass in todo do
7: SELF.REPAIR(color, eclass)
8: end for
9: end while

10: end for
11: end function
12:
13: function REPAIR(color, eclass)
14: parents← COLLECT PARENTS(color, eclass)
15: UPDATE HASHCONS(color, parents)

▷ deduplicate the parents; note that equal parents get
merged and put on the worklist

16: new parents← {}
17: for each (p node, p eclass) in parents do
18: p node← self.canonicalize(color, p node)
19: if p node is in new parents then
20: self.merge(color, p eclass, new parents[p node])
21: new parents[p node] ←

self.find(color, p eclass)
22: end if
23: end for
24: if color = ∅ then
25: eclass.parents← new parents
26: end if
27: end function

The semantics of a conditional rewrite rule in the domain of
an e-graph is that the condition pattern should be matched and
its root must be in the same e-class as true, and, additionally,
the left-hand side should be matched as normal. For simplicity
of presentation, we pretend that ¬ is a special case were the
negated condition is e-matched and the e-class should contain
false.

Starting with the base graph, Figure 2(a), we describe the
operation of Easter Egg on the red color, corresponding to the
case ¬x < y. The complement blue case (x < y) is analogous.

1) The value of x < y is declared as false via a colored merge.
This yields a new red e-class.

2) Colored e-matching is performed against the premise of
the c.r.r. ¬?x < ?y ⇒ max(?x, ?y)

.→ ?x. The condition
of the rule, ?x < ?y, matches against the class [x < y],
which is indeed in the same red e-class as false.
Similar e-matches are carried out for the rules ¬?x <
?y ⇒ min(?x, ?y)

.→ ?y and ¬?x < ?y ⇒ |?x − ?y| .→

81

(1)
merge r ([x < y], [false])

08

1 2

43

5

6

7

falsex < y

x y

minmax

-

-

abs

(2)
merge r ([max(x, y)], [x])
merge r ([min(x, y)], [y])
merge r ([|x− y|],
[x− y])

08

1

3

2

4 6

75

falsex < y

x

max

y

min -

abs-

(3)
rebuild r ()
↓

merge r ([x− y],

max(x)− min(y))

08

1

3

2

4

5

6

7

falsex < y

x

max

y

min

-

-

abs

rewrite rules
?x < ?y ⇒ min(?x, ?y)

.→ ?x
¬?x < ?y ⇒ min(?x, ?y)

.→ ?y
?x < ?y ⇒ max(?x, ?y)

.→ ?y
¬?x < ?y ⇒ max(?x, ?y)

.→ ?x
?x < ?y ⇒ |?x− ?y| .→ ?y − ?x
¬?x < ?y ⇒ |?x− ?y| .→ ?x− ?y

Fig. 5. Rewriting with case-split in a colored e-graph.

Algorithm 3 Colored Rebuilding (auxiliary methods)
1: function UPDATE HASHCONS(color, parents)
2: if color = ∅ then
3: for each (p node, p eclass) in parents do
4: self.hashcons.remove(p node)
5: p node← self.canonicalize(color, p node)
6: self.hashcons[p node] ←

self.find(color, p eclass)
7: end for
8: end if
9: end function

10:
11: function COLLECT PARENTS(color, eclass)
12: all parents← ∅ ▷ Initialize an empty set for parents
13: relevant eclasses← {e | e ∈ E ∧ e ≡color eclass}
14: for e in relevant eclasses do
15: all parents← all parents ∪ e.parents ▷ Add

parents of e to the set
16: end for
17: return all parents
18: end function

?x− ?y.
3) The children of ⟨3⟩ − ⟨4⟩ (∈ M(⟨5⟩)) are red-equivalent

to those of ⟨1⟩ − ⟨2⟩ (∈M(⟨6⟩)), and, as a consequence,
red congruence closure kicks in and performs a red union
there.

The process for blue is analogous. The case-split semantics
is defined such that it records the fact that blue and red

are complements, and as such extends ≡ with the common
equivalences, ∼=b ∩ ∼=r =

{︁⟨︁
⟨5⟩, ⟨7⟩

⟩︁
, . . .

}︁
.

82

Algorithm 4 Instructions: optimized compare and col-
ored jump

1: function COMPARE’(i, j)
2: if find(color, reg[i]) ̸= find(color, reg[j]) then
3: descendants ← {c | color ∈ p+(c) ∧ reg[i] ≡c

reg[j]}
4: minimal ← {c | c ∈ descendants ∧ ¬∃c′ ∈

descendants. c′ ∈ p+(c)}
5: for c in minimal do
6: color = c
7: bs.push(current state)
8: end for
9: backtrack

10: end if
11: end function
12:
13: function COLORED JUMP’(i)
14: siblings← {e | e ∈ E ∧ e ≡color eclass}
15: for sibling in siblings do
16: reg [i] = sibling
17: bs.push(current state)
18: end for
19: descendants ← {(c, e) | color ∈ p+(c) ∧ reg[i] ≡c

e ∧ e /∈ siblings}
20: minimal ← {(c, e) | (c, e) ∈ descendants ∧
¬∃(c′, e′) ∈ descendants.(c′ ∈ p+(c) ∧ e′ ≡′

c e)}
21: for (c, e) in minimal do
22: color = c
23: reg [i] = e
24: bs.push(current state)
25: end for
26: backtrack
27: end function

83

	Introduction
	Overview
	Functional Description
	Optimizations
	Data-structure optimizations
	Procedure optimizations

	Evaluation
	Objectives and Evaluation Method
	Experimental Setup
	Results

	Related Work
	Conclusion
	References
	Appendix A: Background on E-graphs
	Appendix B: Algorithms Pseudo Code
	Appendix C: Walkthrough for Example 2

