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Abstract—The paper presents a conceptual approach to ab-
stract interpretation of string-manipulating programs, based on
the existential theory of strings.

We propose the word equation language as a base for lattices
forming abstract domains of the string data. We construct a
quantifier-free layer of the lattices, capturing the uniqueness
properties of join and meet operations. The resulting finite-height
lattice WL0 utilizes useful properties of primitive roots of words
and can be used as a base for future developments of word-
equation-based abstract domains.

We describe a tokenization procedure as a monotone lattice
mapping, in order to enhance expressiveness of word equation
language by means of string morphisms and special cases of other
finite-state-machine transformations.

Index Terms—program analysis, abstract interpretation, word
equations, lattice mappings

I. INTRODUCTION

The problem of static analysis of string manipulating pro-
grams, especially in dynamically typed languages, is known
to be hard. For instance, even the theory with the replace-
all and concatenation functions is undecidable [1], as well
as the theory with the concatenation and letter counting
operations [2].

Moreover, most of linear orders on the set of strings depend
on the alphabet numeration. This fact makes construction of
partition of the set of strings to polyhedra or intervals non-
trivial and problem-specific ones.

In order to make the problem tractable, appropriate over-
approximations and restrictions are used in static analysis [3]–
[5]. In abstract interpretation, if a decidable set of predicates
is taken as an abstract domain, the main two problems arise:

• how to over-approximate the wide variety of string op-
erations in the string domain by the operations in the
abstract domain;

• how to over-approximate the infinite chains of the predi-
cates in the abstract domain by finite chains, in order to
make the static analysis terminating.

The more precise are mappings into the abstract domain, the
longer chains can occur; on the other hand, too small lattice
height guarantees very fast convergence of the analysis, but
may have drastically low preciseness of the analysis, compared
with the methods admitting finite chains of non-uniformly
bounded length.
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Thus, the main two approaches to construct the abstract
domains exist. The first one considers some decidable frag-
ment of string theory, and defines the appropriate general-
izations (widening operations [6]) in order to collapse the
infinite chains [6]–[9]. This approach is language-independent,
allowing high flexibility of the tracked program properties,
by varying the widening operation. The second one takes
concrete practical properties of interest as the abstract domain,
and solves concrete verification tasks in terms of the chosen
programming language [10], [11]. The lattices used in this
analysis are of small fixed height making the analysis fast.

For example, in ECMASCRIPT language [12], the set of
numbers is defined over a wider alphabet than {[0− 9], .,−}.
The constants infinity and NaN are also considered as
numerical data. Thus, if the property “can represent numerical
data” is tracked, then the approach making use of a string
theory is forced to make the widening operator more precise,
risking to make the whole analysis potentially slower.

In order to combine these two approaches, one can use
an abstract domain in a decidable string theory, together
with taking a quotient [13] wrt a partition of the string data
set, taking into account language-specific properties of its
elements. The partition can be defined as a preprocessing
tokenization procedure, thus changing the underlying alphabet
in the same string theory. Hence, the string manipulating
operations are to be interpreted both by tokenization algorithm
and the computations over the abstract domain. Under certain
conditions, the tokenized strings and predicates on the tokens
can happen to be fixed points of the lattice on the input string
data, thus forming a proper finite sub-lattice [14]. Thus, a
decidable string theory may be chosen in such a way that the
tokenization procedure becomes in some sense “orthogonal” to
predicates of the theory. It is known that the existential theory
of words (the theory of word equations) is decidable [15],
and the set of word equation languages neither contains nor is
contained in the set of regular languages [16]. The set of word
equation languages is not closed under morphic images and
inverse morphic images [16]. Hence, the tokenization is able
to significantly improve expressiveness of the given theory.

In order to address the widening problem, we advocate to
use a natural string property known as the primitive root fac-
torization, which is expressible in the word equation language.
A root of a word ω is a ξ s.t. ξn = ω. A word ξ is primitive iff
∀τ, n

(︁
ξ = τn ⇒ n = 1

)︁
. Word equations may encapsulate a
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wide variety of properties including some of statements about
primitive roots. E.g. the equation XY = Y X represents the
predicate “if the strings X and Y are non-empty, then they
have the same primitive root”.

Let us show an example of how the notion of the primitive
root helps to solve the widening problem. The set of the
regular expressions, which is known to be closed under both
intersection and union, forms a distributive lattice [6], [8].
However, the regular expressions admit infinite ascending
chains, e.g. L(a) ⊆ L(a|a2) ⊆ L(a|a2|a3) ⊆ . . . , where L(r)
denotes the language recognised by expression r. The most
obvious widening is to define the widened value as the Kleene
iteration a∗. Under this definition, the values a∗ and (a2)∗ are
still distinct, and the latter implies the former. Thus, we can
define an infinite descending chain of the predicates, i.e. a∗,
(a2)∗, . . . , (a2

n

)∗, . . . , which violates the lattice finiteness
condition. Now let us define the widened value Itera as a
predicate satisfied by all words X satisfying the word equation
aX = Xa. The definition for Itera using the word equations
makes it possible to collapse the predicates to a single layer
of the lattice. Since ∀τ, n(n > 0 ⇒ τan = anτ ⇔ τa = aτ),
any predicate Iteran is equivalent to the predicate Itera, thus
the chains collapse to single elements.

The contributions of the paper are as follows.
First, we suggest a word equation language as a base

for a lattice forming an abstract domain of string data. We
construct a first (quantifier-free) layer of the lattice, capturing
the uniqueness properties of joins and meets (Section III). The
resulting finite-height lattice WL0 utilizes useful properties
of primitive roots and can be used as a base for future
developments of word-equation-based abstract domains.

Second, we suggest a tokenization procedure as a monotone
lattice mapping, in order to enhance expressiveness of the word
equation language by means of string morphisms and special
cases of other finite-state-machine transformations, based on
inverse mappings of the string morphisms (Section V). More-
over, given a string morphism onto the string set of the initial
abstract domain, the set of its fixpoints forms a complete
sublattice of the lattice WL0, and no additional construction
is required to track additional program properties captured by
the morphism.

The paper is organized as follows. In Section II, the
main notions of lattice theory and word equation theory are
given. In Section III, the experimental lattice based on the
word equations is presented, and Section IV presents abstract
domain semantics of the standard string operations used in
ECMAScript programs. Section V considers the tokenization
transformations, Section VI discusses related works, and Sec-
tion VII concludes the paper.

II. PRELIMINARIES

Small Greek letters (maybe with indices) stand for finite
constant words (strings); domains and sets are denoted with
Greek capitals. Small Latin letters a, b, c, d are considered
to be elements of Σ. Capital Latin letters X , Y , Z stand for
elements of the variable alphabet. The notation τn stands for

n-concatenation of τ with itself, i.e. ττ . . . τ⏞ ⏟⏟ ⏞
n

. The empty word

is denoted by ε. Given a word τ , |τ | stands for its length.
A word τ is said to be primitive (denoted with prm(τ)),

if ∀ξ, n
(︁
τ = ξn ⇒ n = 1

)︁
. Thus ε is not a primitive word,

since ∀n(εn = ε). Every non-empty word τ has a unique
primitive root ξ, i.e. ∀n,m, ξ, ξ′

(︁
ξn = τ = (ξ′)m & |τ | >

0 & prm(ξ) & prm(ξ′) ⇒ ξ = ξ′
)︁
. We denote the primitive

root of τ with ρ(τ).

Definition II.1. Given a letter alphabet Σ and a variable
alphabet Ξ, a word equation is an equation U = V , where
U ,V ∈ (Σ ∪ Ξ)∗.

A solution to an equation U = V is a morphism σ which
is identity on Σ and maps elements of Ξ into Σ∗, s.t. σ(U) =
σ(V) [15], [16].

We also call the set of possible tuples of variable images
determined by solutions of U = V the solution set of U = V .
Given a variable set Q, the solution set of U = V wrt Q is
the projection of the solution set of U = V on the coordinates
corresponding to the elements of Q.

The following examples are classical [17], [18].

Example II.1. Given an equation aX = Xa, where X ∈ Ξ
and a ∈ Σ, its solution set is

{︁
an | n ∈ N

}︁
.

Given an equation ZX = XY , where X,Y, Z ∈ Ξ, its
solution set for (X,Y, Z) is

{︁
((ξ1ξ2)

nξ1, ξ2ξ1, ξ1ξ2) | n ∈
N & ξ1, ξ2 ∈ Σ∗}︁. The solution set of ZX = XY wrt the
variable X is

{︁
(ξ1ξ2)

nξ1 | ξ1, ξ2 ∈ Σ∗}︁. It implies that, given
an equation τ1X = Xτ2, its solution set is non-empty iff
∃η1, η2

(︁
τ1 = η1η2 & τ2 = η2η1

)︁
.

Given an equation ξ1ξ2X = Xξ2ξ1, where ξ1, ξ2 ∈ Σ∗,
prm(ξ1ξ2) and |ξ2| > 0, and X ∈ Ξ, its solution set is{︁
(ξ1ξ2)

nξ1 | n ∈ N
}︁

. If |ξ1| = 0, then the equation is reduced
to ξ2X = Xξ2, and its solution set is

{︁
ξn2 | n ∈ N

}︁
.

Let us denote the predicate “τ satisfies the equation ξ1ξ2τ =
τξ2ξ1” with Cnjξ1,ξ2(τ). We assume that the representation of
Cnjξ1,ξ2 is reduced by default to the shortest possible value
of ξ1ξ2, i.e. the word ξ1ξ2 is primitive in Cnjξ1,ξ2 . Moreover,
since Cnjτ,ε = Cnjε,τ , we always choose Cnjε,τ as a default.

We recall the following classical Fine–Wilf theorem [18].

Theorem II.1. Let ξ1, ξ2 ∈ Σ+. Suppose ξm1 and ξn2 , for
some m,n ∈ N, have a common prefix of length |ξ1| +
|ξ2| − gcd(|ξ1|, |ξ2|). Then there exists τ ∈ Σ∗ of length
gcd(|ξ1|, |ξ2|) such that τ = ρ(ξ1) = ρ(ξ2), i.e. τ is the
primitive root both of ξ1 and ξ2.

Definition II.2. A triple ⟨L,∨,∧⟩, where L is a set, ∨ and
∧ are binary operations over L (also called join and meet
respectively), is said to be a lattice if it satisfies the following
axioms [19] for all x, y, z ∈ L:

•
(︁
x ∨ (x∧ y) = x

)︁
&

(︁
x∧(x ∨ y) = x

)︁
;

•
(︁
x ∨ y = y ∨ x

)︁
&

(︁
x∧ y = y ∧x

)︁
;

•
(︁
x ∨ (y ∨ z) = (x ∨ y) ∨ z

)︁
&

(︁
x∧(y ∧ z) =

(x∧ y)∧ z
)︁
.

85



An order induced on a lattice E with the lattice operations
is defined as follows: x ≤ y ≡ (x ∨ y = y).

Given lattices E, F , a mapping ϕ : E → F is said to be
consistent with the order (isotonic) iff ∀x, y

(︁
x ≤ y ⇒ ϕ(x) ≤

ϕ(y)
)︁

[14]. A mapping ϕ is said to be a lattice morphism iff
it respects both joins and meets [14].

The following lemma demonstrates a useful property of
the equations ξ1ξ2X = Xξ2ξ1 (assuming by definition that
prm(ξ1ξ2)). Henceforth we call such equations elementary.

Lemma II.1. If the words ξ1, ξ2, ξ3, ξ4 satisfy prm(ξ1ξ2) and
prm(ξ3ξ4), and ξ1 ̸= ξ3 or ξ2 ̸= ξ4, then there exists at most
one word τ ∈ Σ∗ satisfying both Cnjξ1,ξ2(τ) and Cnjξ3,ξ4(τ).

Proof. Let τ = (ξ1ξ2)
nξ1 = (ξ3ξ4)

mξ3. Without loss of
generality, we assume that |ξ1ξ2| ≥ |ξ3ξ4|; the opposite case
is symmetric.

If n > 1 (and hence m > 1), then the word τξ2 =
(ξ1ξ2)

n+1 and the word τξ4 = (ξ3ξ4)
m+1 share a common

prefix of the length |τ |, which is at least |ξ1|+|ξ2|+|ξ3|+|ξ4|.
Hence, by the Fine–Wilf theorem [20], ξ1ξ2 and ξ3ξ4 share
a common primitive root, i.e. are equal, because they are
primitive. Hence, n = m and ξ1 = ξ3, which contradicts the
choice of ξi.

Thus, if there are such distinct τ0, τ1 ∈ Σ∗, both belonging
to the solution sets of ξ1ξ2X = Xξ2ξ1 and ξ3ξ4X =
Xξ4ξ3, then τi = (ξ1ξ2)

iξ1. I.e. ∃k1 ≥ 0, k2 > 0 s.t.
τ0 = ξ1 = (ξ3ξ4)

k1ξ3, τ1 = ξ1ξ2ξ1 = (ξ3ξ4)
k1+k2ξ3 =

(ξ3ξ4)
k2(ξ3ξ4)

k1ξ3 = (ξ3ξ4)
k2ξ1. That implies ξ1ξ2 =

(ξ3ξ4)
k2 , hence, k2 = 1 and ξ1 = ξ3, since ξ1ξ2 is primitive,

which contradicts the choice of ξi.

The proof above immediately implies the following Corol-
lary. If Lemma’s II.1 premise is true, then the only one of the
following three cases can hold.

• No word satisfies the predicate Cnjξ1,ξ2 & Cnjξ3,ξ4 .
• ∃k

(︁
ξ1 = (ξ3ξ4)

kξ3
)︁
.

• ∃k
(︁
ξ1ξ2ξ1 = (ξ3ξ4)

kξ3
)︁
.

We denote the word satisfying both Cnjξ1,ξ2 and Cnjξ3,ξ4
by conjr(ξ1, ξ2, ξ3, ξ4). Lemma II.1 shows that the predi-
cates Cnjξ1,ξ2 and Cnjξ3,ξ4 are “orthogonal” wrt the sets
of words satisfying them. For example, if ξ2 ̸= ξ4 then
conjr(ε, ξ2, ε, ξ4) = ε.

III. THE LATTICE CONSTRUCTION

Let us introduce a relation ∝ between elements of the
concrete string domain S# and an abstract domain ∆. A word
τ satisfies a predicate P , where τ ∈ S# and P ∈ ∆, iff τ ∝ P .

The antimonotonous Galois connection defined by the rela-
tion ∝ determines the abstraction and concretisation operations
wrt the abstract domain ∆.

As usual, the values ⊤ and ⊥ represent the greatest and the
least element of the lattice. The first level higher than ⊥ (i.e.
layer 1) captures the trivial word equations X = ξ, denoted
by Eqξ, which is standard for the string abstract domains [9],

[10]. As for the next lattice levels (layers whose numbers start
with 2), we require them to satisfy the following properties.

• For any element P of a layer higher than the layer 1 (i.e.,
the layer of the trivial word equations), there is an infinite
string set for which P holds (expressiveness).

• Given any two distinct elements P1 and P2 of the layer
N , there is at most one predicate P of the layer N + 1
s.t. P1 ⇒ P and P2 ⇒ P hold (unique join).

• Given any two distinct predicates P1 and P2 of the layer
N + 1, there is at most one predicate P of the layer N
s.t. P ⇒ P1 and P ⇒ P2 hold (unique meet).

The first property guarantees that all the elements of the
layer are expressible enough; the second property is required
to define unique join elements, and the third is used to define
unique meet elements. Obviously, the top element ⊤ satisfies
all the three conditions.

A natural question arises: how can one introduce a partial
word equation order that is able to distinguish the equations
belonging to various levels? Given equations U1 = V1 and
U2 = V2 in alphabet Σ s.t. |Σ| ≥ 1, an equation whose solution
set wrt the variables occurring in U1, U2, V1, V2 is a union
of the solution sets of the given equations can be constructed
with introducing 2 additional (fresh) variables (see [16], in the
earlier work [21] a construction with 4 additional variables is
given). On the other hand, an equation with the solution set
representing the intersection of the two solution sets above
can be constructed without any additional variable, provided
that |Σ| > 1. Hence, the number of distinct variables in a
given equation can be treated as a measure for its “generality”,
provided that the solution set of the equation is considered wrt
a single variable X . With respect to this measure, the simplest
equations depend only on X itself, i.e. are of the form P :
ξ1Xξ2X . . . ξnX = Xξ′1X...Xξ′m, where |ξ1| > 0. If m ̸= n,
then P has finitely many solutions; thus, the expressiveness
requirement is satisfied1 only if m = n. The lemma below
shows that any equation P with infinitely many solutions is
equivalent to an equation of the form Cnjξ1,ξ2 .

Lemma III.1. The set of predicates of the form Cnjξ1,ξ2 ,
where the word ξ1ξ2 is primitive, satisfies all the three
conditions given above. Any other quantifier-free predicate
satisfying the conditions is equivalent to a predicate Cnjξ1,ξ2
in the given set.

Proof. Given an equation P of the form ξ1Xξ2X . . . ξnX =
Xξ′1X...Xξ′n, let us assume that there exists its solution ω s.t.
|ω| ≥ |ξ1|. Then ω = ξ1ω

′, and ω′ is a solution of the equation
which arises from P in virtue of the substitution X ↦→ ξ1X

′.
I.e., removing the ξ1-prefixes on both sides of P [X ↦→ ξ1X

′],
we obtain the equation P ′ : ξ1X

′ξ2ξ1X
′ . . . ξnξ1X

′ =
X ′ξ′1ξ1X

′ . . . X ′ξ′n that is to be satisfied by ω′. As well as
the initial equation P , equation P ′ has prefixes ξ1X

′ and X ′

in its left- and right-hand sides, hence, the reasoning above
can be repeated until |ω′| < |ξ1|.

1As shown in the paper [22], such equations have either at most 3 solutions
or infinitely many solutions.
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⊥

a ε baa ab aba

aX = XaabX = Xab bX = Xb abX = Xba

⊤

Fig. 1: Lattice built over constants ε, a, a2, ab, aba. The values Eqξ are represented as ξ; the values Cnjξ1,ξ2 are represented
as the equations ξ1ξ2X = Xξ2ξ1.

Therefore, any solution to the equation P , where |ξ1| > 0,
is of the form (ξ1,pξ1,s)

kξ1,p, where ξ1,pξ1,s = ξ1.
Let us take such a number k0 that

max(max1≤i≤n |ξi|,max1≤i≤n |ξ′i|) · n < |ξ1| · k0, and
separate the solution set of P into the following two sets.

• The words of the length less than |ξ1| · k0.
• All the other words from the solution set of P . These

words start with the prefix ξk0
1 ; they can be seen as the

solutions to equation σ(P ), where σ : X ↦→ ξk0
1 X .

Due to the choice of k0, the equation
ξ1Xξ2ξ

k0
1 X . . . ξnξ

k0
1 X = Xξ′1ξ

k0
1 X...ξk0

1 Xξ′n resulting
from the mapping X ↦→ ξk0

1 X can be split into n equations
of the form τi,1X = Xτi,2 (possibly, after reducing common
prefixes and suffixes of the equation parts). Some of these
equations are equivalent (if for some i, j and k ∈ {1, 2} the
primitive roots of τi,k and τj,k coincide), so we take only the
subset of non-equivalent equations.

If this subset is a singleton, then the resulting equation is
equal to the first equation ξ1X = Xτ , where |τ | = |ξ1|, and τ
may be either a prefix of ξ′1 (if |ξ1| < |ξ′1|) or of the form ξ′1τ

′.
In both cases, the solution set of this equation also includes
any solution to P of the length less than |ξ1| · k0.

If the set of the non-equivalent equations is not a singleton,
then by Lemma II.1 the equation P has finitely many solutions
and does not satisfy the expressiveness condition. Lemma II.1
guarantees that the unique meet condition holds.

Let us show that the unique join condition also holds. Given
two distinct τ1, τ2 ∈ Σ∗ satisfying some elementary equation
ξ1ξ2X = Xξ2ξ1 with ξ1 and ξ2 unknown, let |τ1| > |τ2|. Then
∃τ3(τ3 ̸= ε & τ1 = τ3τ2), and the primitive root of τ3 is equal
to ξ1ξ2, while the suffix of τ2 after the maximal prefix of the
form ρ(τ3)

k coincides with ξ1. Hence, the values ξ1 and ξ2 in
equation ξ1ξ2X = Xξ2ξ1 are determined by any two distinct
words τ1 and τ2 satisfying this equation.

Lemma III.1 determines elements of the third level of
lattice WL0, namely the set of predicates Cnjξ1,ξ2 defining
infinite solution sets of one-variable equations. A simple word-
equation-based lattice can consist of the three given layers,
and the top layer above them. Other possible extensions of
the lattice are discussed in Section VII.

Based on the reasoning above, now we formally introduce
the lattice elements and operations. The abstract domain ∆
of the simplest lattice WL0 proposed in this paper consists
of the following elements. As usual, we always assume that
given a predicate Cnjξ1,ξ2 , the word ξ1ξ2 is primitive.

• Predicates Eqξ. Eqξ(τ) iff τ = ξ.
• Predicates “conjugates ξ1ξ2 and ξ2ξ1”, denoted with

Cnjξ1,ξ2 , where |ξ1ξ2| > 0. Cnjξ1,ξ2(τ) iff ξ1ξ2τ =
τξ2ξ1.

• The top element ⊤ representing all possible strings, and
the bottom element ⊥.

A simple example of such a lattice constructed over con-
stants ε, a, a2, ab, aba is presented in Fig. 1.

A. Operations of Lattice WL0

Let us define the join operation over the given domain. The
right-hand sides of the definitions below are ordered to be
applied from top to bottom.

• Cnjτ1,τ2 ∨ Cnjξ1,ξ2 =

{︄
Cnjτ1,τ2 , if ∀i(ξi = τi);

⊤, otherwise;

• Cnjτ1,τ2 ∨ Eqξ =

{︄
Cnjτ1,τ2 , if ξτ2τ1 = τ1τ2ξ;

⊤, otherwise;
• Eqξ ∨ Cnjτ1,τ2 = Cnjτ1,τ2 ∨ Eqξ;

• Eqτ1 ∨ Eqτ2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Eqτ1 , if τ1 = τ2;

Cnjξ1,ξ2 , if ∃ξ1, ξ2, k1, k2(k1, k2 ∈ N
& τ1 = (ξ1ξ2)

k1ξ1 & τ2 = (ξ1ξ2)
k2ξ1);

⊤, otherwise.

.

The case returning Cnjξ1,ξ2 as a value of Eqτ1 ∨ Eqτ2
reproduces the construction given in the proof of Lemma III.1,
when the unique join property is checked.

E.g., Eqε ∨ Eqa = Cnjε,a, as well as Eqε ∨ Eqaa =
Cnjε,a. Eqaba ∨ Cnja,b = Cnja,b, since (aba)ba = ab(aba).

The commutativity axiom for the join operation holds by
definition.

If some of elements x, y, z of WL0 are equal, or any two
of them are distinct equations, then the associativity x ∨ (y ∨
z) = (x ∨ y) ∨ z also holds by definition. Let us consider
the subtle case of the associativity: x = Eqτ1 , y = Eqτ2 ,
z = Eqτ3 , x ∨ y = Cnjξ1,ξ2 , y ∨ z = Cnjξ3,ξ4 , ξ1 ̸= ξ3 or
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ξ2 ̸= ξ4. Then by Lemma II.1 τ2 is the only word satisfying
the predicates Cnjξ1,ξ2 and Cnjξ3,ξ4 (i.e. y =⇒ Cnjξ1,ξ2 &
y =⇒ Cnjξ3,ξ4 ), thus, x ∨ Cnjξ3,ξ4 = ⊤ and Cnjξ1,ξ2 ∨ z =
⊤ hold.

Now we define the meet operation.

• Cnjτ1,τ2 ∧Cnjξ1,ξ2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Cnjτ1,τ2 , if ∀i(ξi = τi);

Eqconjr(τ1,τ2,ξ1,ξ2),

if conjr(τ1, τ2, ξ1, ξ2) exists;
⊥, otherwise.

• Cnjτ1,τ2 ∧Eqξ =

{︄
Eqξ, if τ1τ2ξ = ξτ2τ1;

⊥, otherwise;
• Eqτ ∧Cnjξ1,ξ2 = Cnjξ1,ξ2 ∧Eqτ ;

• Eqτ1 ∧Eqτ2 =

{︄
Eqτ1 , if τ1 = τ2;

⊥, otherwise.
There in the first case we refer to the property of elementary

equations guaranteed by Lemma II.1. E.g., Cnja,b ∧Cnjε,a =
Eqa, since a satisfies both equations abX = Xba and aX =
Xa, hence, a = conjr(a, b, ε, a) (see Fig. 1).

By a similar reasoning, the ∧ operation is associative.

Now we consider the last lattice condition to be checked.
• Since ∀x, y

(︁
x∧ y ⇒ x

)︁
, and ∀q

(︁
(q ⇒ x) ⇒ (x ∨ q =

x)
)︁
, the law x ∨ (x∧ y) = x also holds.

• x∧(x ∨ y) is x iff x ∨ y ⇒ x. The condition x ∨ y ⇒ x
is guaranteed by the construction of the operations.

Hence the lattice definition is consistent. This lattice is not
distributive. E.g. Cnjε,a ∧(Cnjε,b ∨ Cnjε,c) = Cnjε,a, but
(Cnjε,a ∧Cnjε,b) ∨ (Cnjε,a ∧Cnjε,c) = Eqε.

IV. OPERATIONS ON LATTICE ELEMENTS

A. A Model Program

In order to demonstrate the computations in the abstract
domain given above, let us consider the following example,
given in a pseudocode (Fig. 2).

The x + y concatenates x and y; x − y deletes a prefix y
from x; prefix(x, y) checks whether a string x is a prefix of
a string y.

1 z = ξ
2 x,y = ε
3 while (cond1(i,j)) { (depends only on i, j)
4 i = i + 1
5 x = x + z }
6 while (cond2(i,j)) { (depends only on i, j)
7 j = j + 1
8 y = y + z }
9 while (true) {

10 if (prefix(x,y))
11 y = y − x
12 elif (prefix(y,x))
13 x = x − y
14 else break }

Fig. 2: A fragment of a string-manipulating program incor-
rectly checking that a quotient of strings x and y is ε.

The program lines 9–14 aim at computing a “quotient”
of the two strings, i.e. the word witnessing that the strings
have different primitive roots. For example, if x = abba,
y = abbaab, then the loop 9–14 breaks at the state x = ba,
y = ab after the two iterations. If the roots coincide, then the
loop 9–14 is assumed to return ε, however if x is assigned
to ε, the loop does not terminate. The reason of the non-
termination is that ε is a prefix of any string, hence τ − ε = τ
for any τ ∈ Σ∗. Moreover, the program given in Fig. 2 never
terminates, because after executing lines 1–8 the values of x
and y always have equal primitive roots.

Let us see how the corresponding operations are computed
over the lattice WL0, and how the problem with the infinite
loop can be revealed.

B. Computations in WL0

The following operations are chosen in order to demonstrate
computations in WL0. The operations are analogous to oper-
ations included in standard string operating libraries, e.g. for
ECMASCRIPT [12]. Such a library includes at least concate-
nation operation, denoted with x+ y; string replacement and
truncation operations. In JavaScript, there exist the function
replacing the first occurrence of a given string ξ in a string τ ,
and the function replacing all occurrences of ξ in τ . We denote
the operation replacing the first occurrence of z1 in y with z2
with replace(y, z1, z2). The string truncation usually depends
on a given input — start and end positions of a substring
that is to be deleted or extracted as an infix. We consider the
following instance of the truncation: the string minus operation
of the form x− y, where the prefix y is deleted from x.

We consider the versions of the operations with the nu-
merical parameters unknown to the interpreter; if these pa-
rameters are known, the more precise over-approximations
can be constructed. We assume that the right-hand sides
of the interpretation rules in the interpretations given below
are ordered from top to bottom to be applied. Some of the
interpretations are straightforward; we comment only on the
non-obvious ones. The order ≤ is induced by the join operation
(see Section II). As usual, ξ1ξ2 in Cnjξ1,ξ2 is assumed to be
primitive.

Below the abstract version of the string concatenation is
given.

x+ y =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Eqξ1ξ2
, if x = Eqξ1

, y = Eqξ2
;

Cnjξ5,ξ6 , if x ≤ Cnjξ1,ξ2 & y ≤ Cnjξ3,ξ4
and ξ2ξ1 = ξ3ξ4 and ξ5ξ6 = ξ1ξ2

and ∃n
(︁
ξ1ξ3 = (ξ1ξ2)

nξ5
)︁
;

⊤, otherwise.

Given words τ1 and τ2 in the concrete string domain, if
τ1+τ2 = (ξ5ξ6)

kξ5, where k is large enough, then either τ1 =
(ξ5ξ6)

k1τ5 and τ2 = τ6(ξ5ξ6)
k2ξ5, where τ5τ6 = ξ5ξ6, or τ1 =

(ξ5ξ6)
kτ5 and τ2 = τ6, where τ5τ6 = ξ5. The case returning

Cnjξ5,ξ6 above includes both these instances. The parameter
n above equals 0 if |ξ3| < |ξ2|, and equals 1 otherwise.
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Below the abstract version of the string subtraction is given.

x− y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eqτ , if x = Eqξτ & y = Eqξ;

error, if x = Eqτ & y = Eqξ & ∀τ ′(τ ̸= ξτ ′);

error, if x = Cnjτ1,τ2 & y = Eqξ

& ¬(y ≤ Cnjξ1,ξ2), where τ1τ2 = ξ1ξ2;

x, if y = Cnjε,ξ and
either x = Eqτ and ∀τ ′(︁τ ̸= ξτ ′)︁,

or x = Cnjτ1,τ2 and ∀τ ′, k
(︁
(τ1τ2)

kτ1 ̸= ξτ ′)︁;
⊤, if y = Cnjξ1,ξ2 and x− y can satisfy at least

two different predicates of the formCnjω1,ω2
;

Cnjτ1,2,τ2τ1,1 , if x ≤ Cnjτ1,τ2 and y ≤ Cnjξ1,ξ2
and ∃k, k′, τ1,1, τ1,2(︁

(τ1τ2)
kτ1,1 = (ξ1ξ2)

k′
ξ1 & τ1 = τ1,1τ1,2

)︁
;

Cnjτ2,2τ1,τ2,1 , if x ≤ Cnjτ1,τ2 and y ≤ Cnjξ1,ξ2
and ∃k, k′, τ2,1, τ2,2(︁

(τ1τ2)
kτ1τ2,1 = (ξ1ξ2)

k′
ξ1 & τ2 = τ2,1τ2,2

)︁
;

⊤, otherwise.
The x case above corresponds to the case when the prefix

subtraction from x should succeed on the only possible con-
crete string value satisfying the predicate y. The intermediate
case returning ⊤ corresponds to the case when a predicate
of the form Cnjτ1,τ2 capturing concrete values of x − y is
undetermined, given arbitrary values satisfying the predicates
– abstract values x and y. The remaining cases (besides the
trivial one) consider the computations when such a predicate
is unique. The detailed comments on the case with the unde-
termined value of x − y and the cases returning conjugation
predicates are given in Appendix (see Subsect. VII).

Now we consider the abstract version of the string replace-
ment operation.

replace(y, z1, z2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

error, if z1 = Eqε;

Eqreplace(τ,ξ1,ξ2)
,

if y = Eqτ , z1 = Eqξ1
, z2 = Eqξ2

;

Cnjτ1,τ2 , if y ≤ Cnjτ1,τ2
and z1, z2 ≤ Cnjε,ξ1ξ2 s.t. ξ2ξ1 = τ1τ2;

Cnjτ1,τ2 , if y = Cnjτ1,τ2
and z1 ≤ Cnjξ1,ξ2 and ∀n, k, τ3, τ4(︃(︁

ξ1 ̸= ε ⇒ (τ1τ2)
n ̸= τ3ξ1τ4

)︁
&

(︁
k > 0 ⇒ (τ1τ2)

n ̸= τ3(ξ1ξ2)
kξ1τ4

)︁)︃
;

⊤, otherwise.

There the satisfiability of y to the predicate Cnjτ1,τ2 is
preserved in the following two cases. First, the result of the
replacement satisfies Cnjτ1,τ2 if a power of a primitive word
ξ1ξ2 conjugating with τ1τ2 (i.e. s.t. ξ2ξ1 = τ1τ2) is replaced
with (ξ1ξ2)

k. Second, the value of y is unchanged if no
occurrence of a string satisfying z1 can appear in a string
satisfying the predicate given by y.

C. Predicates

The predicates defined on the string domain, under certain
conditions, may be equivalent to the predicates defined on
some other domain, e.g. integers. For example, if ∃z

(︁
y = xz

)︁
,

then we may deduce that |x| ≤ |y|. If additionally x and y

are known to belong to the language a∗, then the predicate
|x| ≤ |y| becomes equivalent to ∃z

(︁
y = xz

)︁
. Thus, if the

latter is replaced by the former, sometimes a dead code can
be eliminated by a simple static analyser. On the other hand,
if ∃z

(︁
y = xz

)︁
and y is known to be ε, then the predicate

∃z
(︁
y = xz

)︁
can be replaced by the equivalent condition

(︁
y =

ε
)︁
&

(︁
x = ε

)︁
, which can also simplify tracking some of

unreachable computation branches.
In fact, the predicate processing searches for invariants of

the conditionals or loops, that can be derived from the values
of the variables involved in the predicates over the abstract
domain. This technique is close to one used in the paper [23],
in order to prune unreachable computation branches in string
manipulating programs.

The following simple interpretation of the predicate
prefix(x, y) ⇔ ∃z(y = xz) helps a static analysis tool
to detect the non-terminating loop shown in the program
in Fig. 2. We denote a value of the concretisation function on
the abstract value x with a(x). There the line prefix(x, y) =
f
(︁
a(x), a(y)

)︁
is interpreted as “if intersection of the x-

concretisation set and Pref(y) is non-empty, where Pref(y)
is the set of prefixes of all elements of the y-concretisation
set, then the predicate prefix(x, y) can be replaced with
f
(︁
a(x), a(y)

)︁
”. The capitalized OR notation stands for the

logical operation in the target program language.

prefix(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︁
a(x) = ξ1 OR . . . OR a(x) = (ξ1ξ2)

nξ1
)︁
,

if x = Cnjξ1,ξ2
and ∃ξ3, n

(︁
n ∈ N & y = Eq(ξ1ξ2)nξ1ξ3

)︁
;

|a(x)| ≤ |a(y)|, if x = Cnjξ1,ξ2
and y = Cnjξ3,ξ4 and ξ1ξ2 = ξ3ξ4;

a(x) = ε, if y = Eqε;

true, if ∃ξ
(︁
y = Eqξ1ξ

& x = Eqξ1

)︁
;

false, if x = Eqξ1
, y = Eqξ2

, otherwise;(︁
a(x) = ξ1 OR . . . OR a(x) = (ξ1ξ2)

nξ1
)︁
,

if x = Cnjξ1,ξ2 , y = Cnjξ3,ξ4 , ∃τ,m, n(︁
m,n ∈ N & (ξ3ξ4)

mξ3 = (ξ1ξ2)
nξ1τ

)︁
;

prefix
(︁
a(x), a(y)

)︁
, otherwise.

The 1-st and the 6-th cases of the definition above contain
a disjunction of n possible equalities for a(x), which can be
derived from the corresponding abstract values of x and y.
The value of n is also determined by these abstract values. In
the 6-th case n is bounded because ξ1ξ2 ̸= ξ3ξ4 holds, since
the case ξ1ξ2 = ξ3ξ4 is completely handled by the previous
cases. In the 1-st case n is trivially bounded. Hence, the n-
disjunction can be constructed without a loop.

A trace of the abstract interpretation using the interpreta-
tions given above is presented in Fig. 3. The notation x ↦→ w
states that the abstract value of x is w; x ↦→∗ w states that
the abstract value of x converges to w. In lines 5, 8, 11,
13, the fixed points of the computations are constructed. The
join of Eqε and Eqξ, which is a value both of x and y, is
Cnjε,ρ(ξ), and then Cnjε,ρ(ξ) is concatenated with Eqξ using
the 2-nd rule for concatenation (Subsect. IV-B). The results of
string subtraction stabilize in the same way. When the abstract
interpretation converges, the predicates can be replaced in
the concrete domain. After the replacement, a simple static
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1 z = ξ z ↦→ Eqξ
2 x,y = ε x ↦→ Eqε, y ↦→ Eqε
3 while (cond1(i,j)) { (cond1(i,j) is outside the string domain)
4 i = i + 1 (ignored)
5 x = x + z } Eqε ∨ Eqξ = Cnjε,ρ(ξ); Cnjε,ρ(ξ) ∨ Cnjε,ρ(ξ) = Cnjε,ρ(ξ), x ↦→∗ Cnjε,ρ(ξ)
6 while (cond2(i,j)) { (cond2(i,j) is outside the string domain)
7 j = j + 1 (ignored)
8 y = y + z } Eqε ∨ Eqξ = Cnjε,ρ(ξ); Cnjε,ρ(ξ) ∨ Cnjε,ρ(ξ) = Cnjε,ρ(ξ), y ↦→∗ Cnjε,ρ(ξ)
9 while (true) {

10 if (prefix(x,y)) (equivalent to |x| ≤ |y| after the interpretation)
11 y = y − x Cnjε,ρ(ξ) ∨ Cnjε,ρ(ξ) = Cnjε,ρ(ξ); y ↦→∗ Cnjε,ρ(ξ)
12 elif (prefix(y,x)) (equivalent to |y| ≤ |x| after the interpretation)
13 x = x − y Cnjε,ρ(ξ) ∨ Cnjε,ρ(ξ) = Cnjε,ρ(ξ); x ↦→∗ Cnjε,ρ(ξ)
14 else break } (unreachable after the interpretation)

(a) Tracking the abstract values of the program variables.

⊥

Eqε Eqξ

Cnjε,ρ(ξ)

⊤

(b) The lattice on the abstract
values used in the interpreta-
tion. Eqξ corresponds to the
equation X = ξ; Cnjξ1,ξ2
corresponds to the equation
ξ1ξ2X = Xξ2ξ1.

Fig. 3: Static analysis of the program that incorrectly checks that a quotient of strings x and y is ε.

analysis tool can determine that the line 14 is unreachable
because the disjunction |x| ≤ |y| OR |y| ≤ |x| always holds,
and the loop given in the lines 9–14 never terminates.

V. TOKENIZATION

In order to construct a sound mapping from the string set
into a set of token sequences, in general we have to describe
WL0-induced extensions of any finite state machine function.
We postpone this problem to a future work, and now suggest
a simple subclass of the finite-state-machine functions whose
extensions are monotone lattice mappings.

Definition V.1. Given alphabets Σ and Σ′, let h be a string
morphism being defined by the mapping h′ : Σ → Σ′∗. We
use the same name h for the following extension of h over the
lattice elements.
• h

(︁
Eqξ

)︁
= Eqh(ξ)

• h
(︁
Cnjτ1, τ2

)︁
= Cnj

ρ
(︁
h(τ1)

)︁
, ρ
(︁
h(τ1τ2)−ρ(h(τ1))

)︁
We recall the following classical lemma [20], which ensures

that h is monotonic wrt the lattice order.

Lemma V.1. If σ is a solution to equation U = V , and h is
a morphism, then h ◦ σ is a solution to h

(︁
U
)︁
= h

(︁
V
)︁
.

Given any values x, y ∈ WL0 and a string morphism h, we
can now show that (h(x) ∨ h(y)) ≤ h(x ∨ y). Moreover, in
case x ∨ y ̸= ⊤, h(x ∨ y) = h(x) ∨ h(y), due to Lemma V.1.

Let ⪯ be a linear order on Σ, and ⪯∗ be the length-
lexicographical2 order on Σ∗ induced by ⪯. Given a string
morphism h : Σ → Σ′∗ s.t. ∀a ∈ Σ

(︁
h(a) ̸= ε

)︁
, we define its

minimal inverse mapping h−1
min : Σ′∗ → Σ∗ as follows.

h−1
min(ξ) = τ s.t. h(τ) = ξ & ∀τ ′

(︁
h(τ ′) = ξ ⇒ τ ⪯∗ τ ′

)︁
In general, the inverse image h−1

min does not respect the
lattice order. For example, given distinct a ≻ b ≻ c, if

2If |ω1| < |ω2|, then ω1 ⪯∗ ω2; if |ω1| = |ω2|, then the order ⪯ is used
lexicographically.

h(c) = aba, h(a) = a, h(b) = b, then h−1
min(abab) = cb,

and h−1
min

(︁
Eqabab

)︁
∨ h−1

min

(︁
Eqab

)︁
= ⊤, while h−1

min

(︁
Eqabab ∨

Eqab
)︁
= h−1

min

(︁
Cnjε,ab

)︁
.

In order to address the monotonicity issue, we choose a
special subset of string morphisms whose inverse mappings
extensions can be used as lattice morphisms. After the pa-
per [16], we say that an infix ξ of a word a1 . . . an contains
a border between subwords a1 . . . ak and ak+1 . . . an, if the
word ξ includes an infix ak−j1 . . . ak+j2 , where j1 ≥ 0 and
j2 > 0. Given any predicate Cnjξ1,ξ2 in lattice L, the inverse
mappings we consider preserve the borders between ξ1 and
ξ2, as well as between ξ2 and ξ1.

Formally, given a lattice L, the inverse mapping of a
morphism h is border-preserving wrt L, if for any lattice
element of the form Cnja1...ak,ak+1...an

and for any b ∈ Σ′,
the morphism h(b) is equal neither to ξ2(a1 . . . an)

mξ1 nor to
ξ3, for any m ∈ N, ξ1, ξ2, ξ3 ∈ Σ∗ satisfying the following
conditions:

• ξ1 is a prefix of a1 . . . an; ξ2 is a suffix of a1 . . . an;
|ξ1ξ2| > 0, |ξi| < n, and either (|ξ1| > 0) & (|ξ2| > 0),
or m > 0,

• ξ3 is ak−j1 . . . ak+j2 , where k > j1 ≥ 0 and n − k ≥
j2 > 0, and |ξ3| < n.

Hence, there are the two possibilities to violate the border-
preserving condition: h(b) equals to an infix of a1 . . . an
containing the border between a1 . . . ak and ak+1 . . . an, or
to a subword of (a1 . . . an)

m containing at least one border
between the occurrences of a1 . . . an. The border-preserving
condition does not depend on the order induced on Σ in the
definition of h−1

min, because the condition holds for images of
all elements of Σ′.

Example V.1. Given a lattice including the element Cnjε,ab
and c ̸= a, c ̸= b, the inverse of any morphism h s.t. ∃c ∈
Σ′(︁h(c) = aba

)︁
is not border-preserving: h(c) includes the

border between two occurrences of ab.
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⊥

a ε baa ab
aba
aaa

aX = XaabX = Xab bX = Xb abX = Xba

⊤

Fig. 4: Isotonic lattice mapping using the string morphism hΣ→a of the lattice given in Fig. 1. The sublattice of the fixed
points of hΣ→a is given in framed nodes and thick edges. Dashed arcs point to the morphic images of the elements.

Given a lattice including the element Cnjaba,ba, neither of
the inverses of morphisms h1, h2 s.t. ∃c1, c2 ∈ Σ′(h1(c1) =
bab & h2(c2) = aa) is border-preserving. The bab value of
h1(c1) includes the border between aba and ba, given ξ3 =
bab, k = 3, j1 = 1, j2 = 1; the aa value of h2(c2) contains
the border between ba and aba.

Lemma V.2. Given lattice WL0 and a string morphism h
satisfying the conditions above, for any order induced on Σ,
h−1
min is a lattice morphism.

Proof. Given x, y ∈ L, let us show that h−1
min(x ∨ y) and

h−1
min(x) ∨ h−1

min(y) are equal.
If x and y are both of the form Cnjτi,τj , then their join is

non-trivial iff x = y; and the equality is trivially preserved.
Given x = Eqξ1 and y = Eqξ2 , if they are equal or their join

is ⊤, the morphism property holds trivially. Let us consider
the case when x ∨ y is Cnjτ1,τ2 , then for any b ∈ Σ′, ξ′ s.t.
h(b) = ξ′ and ξi = ξi,pξ

′ξi,s = (τ1τ2)
kiτ1, the occurrence

of ξ′ can appear strictly inside the subwords τ1 and τ2 of ξ1
and ξ2. Thus h−1

min

(︁
Eqξ1 ∨ Eqξ2

)︁
= Cnjh−1

min(τ1),h
−1
min(τ2)

=

h−1
min

(︁
Eqξ1

)︁
∨ h−1

min

(︁
Eqξ2

)︁
.

Given x = Eqξ and y = Cnjτ1,τ2 , let us compute h−1
min

(︁
x ∨

y
)︁

when the join is non-trivial. In this case ξ = (τ1τ2)
kτ1,

and again all the subwords ξ′ s.t. ∃b ∈ Σ′(h(b) = ξ′)
can occur only inside τ1 or τ2, thus the resulting join is
Cnjh−1

min(τ1),h
−1
min(τ2)

.
The meet case is symmetric to the join case. Note that both

by the definition of h−1
min and choice of h, h−1

min(ε) = ε.

Therefore, compositions of the border-preserving mappings
with the string morphisms result in monotonic lattice map-
pings. Hence, the image lattices can be analysed with the same
algorithms as the lattice described in Section III.

Moreover, if a string morphism maps elements of Σ into
elements of Σ∗ (i.e. acts in the same alphabet), then by the
Knaster–Tarski theorem [14] the set of its fixpoints forms a
complete sublattice of the lattice WL0, and no additional
construction is required to track the properties captured by
the morphism. Such a sublattice is shown in Fig. 4 in framed
nodes and thick edges.

Tracing both the properties given in the lattice WL0 and
in its sublattices wrt the string morphisms can be useful, for
example, in the following analyses.

First, we can obtain a simple length analysis of strings,
tracking constant values of string lengths. Indeed, the mor-
phism hΣ→a defined as ∀c ∈ Σ

(︁
hΣ→a(c) = a

)︁
maps any

given string to the unary Peano number representing its length.
Second, we can obtain a symbol occurrence analysis. Oc-

currences of forbidden symbols (i.e. all symbols from a set
Σ′ ⊂ Σ) can be traced in the sublattice produced by the mor-
phism hΣ\Σ′→ε defined as follows: ∀c ∈ Σ′(︁hΣ\Σ′→ε(c) =
a
)︁
& ∀c ∈ Σ \ Σ′(︁hΣ\Σ′→ε(c) = ε

)︁
.

Third, simple string classification wrt the letter sets that are
contained in the strings may be done. Namely, given Σ =
Σ1 ∪ Σ2 ∪ . . .Σk, where ∀i, j(i ̸= j ⇒ Σi ∩ Σj = ∅), the
morphism hΣ1,...,Σk

mapping any symbol from Σi to a single
letter ai produces a sublattice capturing abstract properties “to
contain only the letters belonging to the set Σi”.

VI. RELATED WORKS AND DISCUSSION

Practical string analysis tools [4], [8], [10], [23] tend to
apply combinations of string domains. A natural abstraction of
string sets may be expressed in terms of the regular language
RL [6], [7], [9]. The RL-based abstract domains are easily
defined given the union and intersection operations, however,
the set of all regular languages cannot be directly used as an
abstract domain. The main two problems to be solved when
using the RL-based domains are listed below.

First, the lattice based on RL abstract domain admits
infinite ascending chains. Thus, the straightforward usage of
the regular expressions as elements of the lattice results in
non-termination of the abstract interpretation.

Second, when the first problem is addressed via widening,
infinite descending chains can still remain. The termination
issue of the abstract interpretation relies only on the upper
semi-lattice completeness. But the existence of such descend-
ing chains may indicate that the convergence speed is not
uniformly bounded wrt the program to be analysed. For
example, if the two strings start with the same common prefix
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ξ, and ξ is long enough, then their widening to ξ.∗, where .∗
defines an arbitrary string, (as defined in the paper [6]) may
result in |ξ| iterations computing the upper bound, if the loop
dropping the first letter of a word is analysed. The widening
defined in the book [7] shares this feature as well.

The paper [9] discussed the following four abstract string
domains often used in practical string analysis.

The first is an abstract domain with values Eqξ. This domain
is included in WL0 presented in this paper.

The second is an abstract domain with values tracking
the string lengths. Its simplest version can be modelled in a
sublattice of WL0 by means of the morphism hΣ→a. Versions
of the string length domain involving more complex length
properties are independent from WL0 and can be used in the
direct product with WL0 in order to improve preciseness of
the analysis [24].

The third is an abstract domain with values representing
predicates “string X contains a letter a”. If the known set of
the values Σ′ ⊂ Σ is tracked, then this domain is embedded
in WL0 as a set of sublattices, by means of providing the set
of string morphisms hΣ\{c}→ε mapping a chosen c ∈ Σ′ into
itself, and all the other letters from Σ to ε.

The fourth is an abstract domain with values representing
prefix predicates “string X starts with ξ”, and the correspond-
ing domain of suffix predicates. This domain contains infinite
descending chains, since if ξ1ξ2 is a prefix of X , then ξ1
(including ξ1 = ε) is also a prefix of X .

The authors of the paper [10] use an abstract string domain
separating unknown strings into numeric, non-numeric and
special strings reflecting key words of JS syntax. Although
the string domain is hard-coded, the JSAI tool makes use of
configurable sensitivity in the trace analysis, thus allowing
a user to redefine the tracked breakpoints. Thus, the idea
presented in this paper to make the string analysis configurable
by constructing the tokenizer mapping can be considered as
an attempt to make the string-specified domain more config-
urable.

The works combining expressiveness of the word equa-
tion languages and regular languages emerged in program
verification for finding loop invariants and pruning unreach-
able computation branches, see e.g. the paper [23]. There
the straight-line fragment of the word equation language is
considered, i.e. the variables in an equation cannot occur more
than once. Nevertheless, such a fragment can still express some
of language properties that are non-expressible by means of
the multi-track finite automata [7].

The fresh work [25] reasons on so-called chain-free word
equations, in which the variable dependences are bounded. The
decision procedures for the existential theory of the chain-free
equations together with regular constraints are given.

A. Complexity of operations in WL0

Several operations presented in this paper depend on finding
either a primitive root of a string or its maximal suffix and
prefix being a power of the same primitive word, given
concatenation, string subtraction, and replacement operators.

This task can be efficiently solved, e.g. by means of suffix
arrays and LSP arrays, hence, the resulting complexity of
the operations over abstract values x and y can be estimated
as O

(︁
(|x| + |y|) log(|x| + |y|)

)︁
, where |Eqω | = |ω|, and

|Cnjξ1,ξ2 | = |ξ1|+ |ξ2|.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a first attempt to use
the word equations as a basic language for constructing a
string abstract domain. We have introduced the first, quantifier-
free, layer of the resulting lattice WL0, together with the
interpretation of the usual string processing operations in the
domain based on the lattice WL0.

Extending the lattice with existential predicates (i.e. equa-
tions involving at least two variables) is an interesting and non-
trivial task. A simplest choice of the existential two-variable
predicates is to take one-variable patterns, i.e. equations of the
form X = ξ1Y ξ2 . . . Y ξn+1. However, if we consider arbitrary
one-variable patterns, the domain will include unbounded
descending chains, e.g. X = a1 . . . anY ,. . . , X = a1Y ,
which can make abstract interpretation too slow. Moreover,
some predicates of this form can violate the upper semilattice
condition. E.g. given an abstract value of the form Cnjξ1,ξ2 if
the predicate ∃Y (X = Y Y ) is also introduced as an abstract
value, then Eqaa ∨ Eqε becomes undefined, because we can-
not choose the least element from Cnjε,a and ∃Y (X = Y Y )
unless we introduce additional lattice layers beyond the layer
consisting of elementary equations.

Nevertheless, the patterns are the interesting and expressible
language to be considered as a closest development of WL0.

Definitely there are other possibilities of the lattice enhanc-
ing, e.g. with the balanced two-variable equations. An equation
is called balanced if multisets of the terms in its left- and
right-sides coincide. For example, the predicates of the form
∃Y (Xω1ω3ω2Y = Y ω2ω3ω1X), as well as the patterns, are
basic in languages of two-variable equations, as shown in
the paper [26]. I.e. an infinite language of any two-variable
equation wrt variable X either contains a pattern or words
satisfying the predicate ∃Y (Xω1ω3ω2Y = Y ω2ω3ω1X),
maybe intersected with a language of Cnjξ1,ξ2 . This approach
has several benefits. First, the balanced two-variable equations
as the abstract values can capture non-trivial properties of one-
variable solution set projections, e.g. the X-solution set of the
equation XaY Y b = Y aXbY is

{︁
(bna)mbn | m,n ∈ N

}︁
,

describing a non-regular property of the X value. Second,
the two-variable equations are able to express relations be-
tween concrete values over that the given variables can range.
E.g., the solution set of the equation XaY = Y aX is{︁
((ωa)∗ω, (ωa)∗ω) | ω ∈ Σ∗}︁, where ω is a word parameter.

While both X- and Y -projections of the solution set are
trivial, the whole set indicates that X and Y values consist of
repetitions of the same substring, separated with the letter a.
In the case a solution-set description includes word parameters
a static analysis may track not only known but also unknown
repeated substrings in the data to be analysed.
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If we do not restrict the equations with k variables, then
construction of joins and meets becomes even harder, since,
e.g. the pattern language inclusion is undecidable [27].
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APPENDIX

Computation of x− y

A word ξ is said to be a fractional power of τ , if
∃ω1, ω2, k

(︁
k ∈ N & τ = ω1ω2 & ξ = τkω1

)︁
. The

fractional power of τ in ξ is computed as k + |ω1|
|τ | [18]. E.g.

abaabaa = (aba)2
1
3 . Hence, words satisfying any predicate

Cnjω1,ω2
are fractional powers of ω1ω2 with the non-integer

fractional part consisting of ω1 (the fractional part is non-
empty if |ω1| ̸= 0). We recall that the operation a(x) takes a
concrete value of a predicate x.

Below the definition of the prefix subtraction operation in
WL0 is repeated.

x− y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eqτ , if x = Eqξτ & y = Eqξ;

error, if x = Eqτ & y = Eqξ & ∀τ ′(τ ̸= ξτ ′);

error, if x = Cnjτ1,τ2 & y = Eqξ

& ¬(y ≤ Cnjξ1,ξ2), where τ1τ2 = ξ1ξ2;

x, if y = Cnjε,ξ and
either x = Eqτ and ∀τ ′(︁τ ̸= ξτ ′)︁,

or x = Cnjτ1,τ2 and ∀τ ′, k
(︁
(τ1τ2)

kτ1 ̸= ξτ ′)︁;
⊤, if y = Cnjξ1,ξ2 and x− y can satisfy at least

two different predicates of the formCnjω1,ω2
;

Cnjτ1,2,τ2τ1,1 , if x ≤ Cnjτ1,τ2 and y ≤ Cnjξ1,ξ2
and ∃k, k′, τ1,1, τ1,2(︁

(τ1τ2)
kτ1,1 = (ξ1ξ2)

k′
ξ1 & τ1 = τ1,1τ1,2

)︁
;

Cnjτ2,2τ1,τ2,1 , if x ≤ Cnjτ1,τ2 and y ≤ Cnjξ1,ξ2
and ∃k, k′, τ2,1, τ2,2(︁

(τ1τ2)
kτ1τ2,1 = (ξ1ξ2)

k′
ξ1 & τ2 = τ2,1τ2,2

)︁
;

⊤, otherwise.
The first three cases of the definition are self-explanatory;

now we consider the case returning x. Given y = Cnjε,ξ, if
any concrete value of a(x) does not start with ξ, the only value
of a(y) that can be subtracted from a(x) is ε, i.e. ξ0.

In the following cases, we treat the predicate x = Eqτ
uniformly with Cnjτ1,τ2 , making use of the fact that any τ
can be represented as (τ1τ2)

mτ1, where τ1 = ε, τ2 = ρ(τ).
Let x = Cnjτ1,τ2 or x = Eq(τ1τ2)mτ1 , y = Cnjξ1,ξ2 ,

and let a(x) start with a(y). Then ∃k1
(︁
a(x) = (τ1τ2)

k1τ1
)︁
;

∃k2
(︁
a(y) = (ξ1ξ2)

k2ξ1
)︁
; ∃τ ′

(︁
a(x) = a(y)τ ′

)︁
.

If both ξ1 and ξ1ξ2ξ1 are fractional powers of τ1τ2 and the
fractional parts of τ1τ2 in ξ1 and ξ1ξ2ξ1 do not coincide, then
the abstract value of a(x) − a(y) cannot be determined, and
the value ⊤ is returned by the computation of x − y (shown
in the fifth case of the definition).

In the remaining cases below the fifth (the one returning
⊤), we assume that either ξ1 and ξ1ξ2ξ1 are powers of τ1τ2
and the fractional parts of τ1τ2 in ξ1 and ξ1ξ2ξ1 coincide, or
that ξ1 is a power of τ1τ2, while ξ1ξ2ξ1 is not.

If the string a(y) ends inside the string τ1, then τ1 =
τ1,1τ1,2, and ∃k3

(︁
τ ′ = (τ1,2τ2τ1,1)

k3τ1,2
)︁
. Hence, τ ′ satisfies

the predicate Cnjτ1,2,τ2τ1,1 (the sixth case of the definition).
If the string a(y) ends inside the string τ2, then τ2 =

τ2,1τ2,2, and ∃k3
(︁
τ ′ = (τ2,2τ1τ2,1)

k3τ2,2τ1
)︁
. Hence, τ ′ sat-

isfies the predicate Cnjτ2,2τ1,τ2,1 (the seventh case of the
definition).

Note that the order of the right-hand sides of the interpreta-
tion rule for x−y guarantees that if a(y) satisfies the predicate
Cnjτ1,τ2 then the resulting abstract value is Cnjε,τ2τ1 , but not
Cnjτ2τ1,ε. These two predicates are equivalent, but only the
former is consistent with the definition of the abstract values
in WL0.
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