
Formal Methods in Computer-Aided Design 2024

Translating Natural Language to Temporal Logics
with Large Language Models and Model Checkers

Daniel Mendoza
Stanford University
Stanford, CA, USA

dmendo@stanford.edu

Christopher Hahn†
X, the moonshot factory

Mountain View, CA, USA
chrishahn@google.com

Caroline Trippel
Stanford University
Stanford, CA, USA
trippel@stanford.edu

Abstract—Automating translation from natural language (NL)
to temporal logic (TL) specifications offers to democratize verifi-
cation of hardware systems. However, this vision is challenged by
(i) inherent ambiguity in NL, which can create multiple plausible
translation possibilities, and (ii) the need to validate translation
output, when the translator can make mistakes. To address these
challenges, we propose SYNTHTL, an interactive approach and
tool, which uses large language models (LLMs), model checkers,
and oracle (human) guidance, to translate an NL specification
of a hardware design’s intended behavior into a TL specification
that reflects the NL and holds (formally) on the design.

SYNTHTL performs structured translation, whereby it first de-
composes a complex unstructured NL specification into a logical
combination of simple NL sub-specifications. Then, it produces
TL translations of the simple NL sub-specifications, called sub-
translations, and mechanically combines these sub-translations
to yield a TL translation of the complex NL specification.
This approach significantly reduces the oracle effort required
to validate the translation output, since only sub-translations
and the logical relationships between them need to be inspected.
Plus, it enables the design of automated model checker utilities,
which efficiently guide the search for a translation that holds
on the design, despite inherent NL ambiguity. With SYNTHTL,
we conduct the largest LLM-assisted NL to TL specification
translation case study to date, producing a correct formalization
of the Arm AMBA AHB bus protocol.

I. INTRODUCTION

Hardware verification involves checking that a Design Un-
der Test (DUT) upholds desired properties through simula-
tion, formal model checking, and/or runtime verification [1].
These properties, or specifications, are typically expressed as
Temporal Logic (TL) formulas (e.g., using Linear Temporal
Logic (LTL) [2], SystemVerilog Assertions (SVAs) [3], or
Property Specification Language (PSL) [4] syntax), which
formally define sets of allowed execution traces on the DUT.
Today, verification experts manually derive TL specifications
for a DUT from (hardware designer-friendly) natural language
(NL) specifications. Consequently, the time and resources
required to produce thorough design-specific TL specifications
limits the application of verification in practice [5].

The NL to TL specification translation bottleneck is a nat-
ural target for natural language processing (NLP) approaches
(e.g., Large Language Models, or LLMs), which have recently
been deployed to resolve it [6], [7], [8], [9], [10], [11],

†Work done while at Stanford University.

Fig. 1: Sub-translation tree that mechanically composes to pro-
duce LTL specification: G((HREADY∧!HWRITE ∧ (HTRANS SEQ

∨HTRANS NONSEQ)) →X(OUT DATA ↔ HRDATA)). Nodes
(sub-translations) consist of an NL sub-specification and a
corresponding TL sub-specification. Directed edges from a
parent node to its children denote a decomposition.

[12], [13]. Yet, NLP is not a panacea. First, producing TL
specifications that capture the intent of NL is challenged by
its inherent ambiguity; a single NL phrase may represent
many plausible TL formulae. Second, NLP approaches are
susceptible to producing blatantly incorrect outputs.

For these reasons, NLP-based NL to TL specification
translation can produce an abundance of candidate outputs,
especially when specifications are complex. For instance,
GPT4 [14] generates over 100K unique TL specification
possibilities when translating an NL specification of the arbiter
component of the Arm AMBA AHB bus protocol [15], [16] to
TL in our case study (§V). Existing NLP-based TL formaliza-
tion approaches thus rely on a human user to manually validate
final generated outputs, i.e., full TL specifications [6], [7], [8],
[9], [10], [11], [12], [13]. Unfortunately though, validating full
output specifications can be just as difficult as writing them
from scratch.

A. This Paper

We propose SYNTHTL, an approach and tool that uses
LLMs, model checkers, and oracle (human) guidance, to
translate an NL specification of some DUT’s desired behavior
into a TL specification that reflects the NL and holds (for-
mally) on the DUT. SYNTHTL leverages LLMs to perform
structured translation of unstructured NL, whereby it first
decomposes a complex unstructured input NL specification
(i.e., an NL specification that does not conform to a predefined

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 17 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_17
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_17
https://creativecommons.org/licenses/by/4.0/

grammar) into a logical combination of simple NL sub-
specifications. Then, it translates each NL sub-specification
to a TL sub-specification and mechanically combines all TL
sub-specifications according to their logical structure to yield
a complete output TL specification.

SYNTHTL’s structured translation procedure can be visu-
alized as a sub-translation tree (Figure 1). Nodes represent
sub-translations, consisting of an NL sub-specification and
a TL sub-specification, and labeled directed edges denote
a decomposition of a parent sub-translation into a logical
combination of simpler child sub-translations. The NL sub-
specification of a sub-translation tree’s root node is the (full)
NL specification input to SYNTHTL, from which the tree
is recursively generated using LLMs (with optional oracle
input) as follows. First, SYNTHTL introduces zero or more
fresh symbols to represent (serve as “placeholders” for) unique
strict substrings in a parent node’s NL sub-specification. Then,
it generates the parent node’s TL sub-specification as a TL
formula over these symbols. Finally, for each symbol, it
instantiates a child node, whose incoming edge is labeled with
the symbol and whose NL sub-specification is the substring
that the symbol represents.

SYNTHTL expects the oracle to inspect each node of a
complete sub-translation tree to validate that its TL sub-
specification is a reasonable translation of its NL sub-
specification and that its child nodes exhibit a reasonable de-
composition. Inaccuracies are corrected by the oracle, possibly
with the help of LLMs or other external tooling. Upon oracle
sign-off, SYNTHTL uses model checkers to evaluate whether
the full tree’s corresponding (mechanically generated) TL
specification holds on the DUT. If it does, the NL specification,
TL specification, and DUT are all deemed correct, since oracle
sign-off (earlier) confirms the TL specification is consistent
with the NL specification. If it does not, there is a bug in the
(consistent) NL/TL specifications and/or the DUT, warranting
further oracle investigation.

Our primary insight is that SYNTHTL’s structured trans-
lation approach drastically reduces overall oracle effort. First,
when validating a sub-translation tree, an oracle need only
inspect simple sub-translations (nodes) and their immediate
decompositions (children) and never the end-to-end translation
(i.e., full TL specification). Second, model checkers can lever-
age this tree structure to guide the oracle towards an NL/TL
specification or DUT fix when oracle tree validation or model
checker TL specification evaluation fails.

SYNTHTL offers two such model checker-guided utili-
ties: culprit identification and translation search. When an
output TL specification does not hold on the DUT, culprit
identification uses model checkers to find sub-translations
(from its sub-translation tree) that logically contribute to the
failing output specification. The oracle can prioritize fixing
these sub-translations (i.e., NL/TL sub-specifications), their
decompositions, or the DUT, as appropriate. To account for
inherent ambiguity in NL and/or inaccurate sub-translations,
translation search enables the oracle to provide (manually or
using an LLM) multiple decomposition options and/or TL sub-

specification options per tree node, yielding set of possible
sub-translation trees (syntactically unique TL specifications)
to be systematically checked against the DUT.

Unsurprisingly, SYNTHTL’s translation search utility often
produces a set of unique sub-translation trees that is too large
to model check exhaustively. However, our secondary insight
is that SYNTHTL’s structured translation can be exploited
to make this analysis practical. First, SYNTHTL’s translation
search utility is designed to detect inconsistent sub-trees,
which cannot be extended to a full TL specification that holds
on the DUT; its sub-tree pruning optimization discards all sub-
translations trees that contain these sub-trees to avoid redun-
dantly checking them on the DUT. Second, translation search
uses a batch model checking optimization, which identifies all
unique conjunctive clauses among the remaining (not pruned)
full translations that must be checked on the DUT and queries
a model checker at most once for each.

Overall, this paper significantly eases the burden of NL to
TL specification translation via the following contributions:

• SYNTHTL Approach & Tool: We propose SYNTHTL
to translate NL to TL specifications that both represent
the intent of the NL and hold on some target DUT, using
LLMs, model checkers, and oracle guidance.

• Structured Translation: SYNTHTL decomposes a (com-
plex) NL to TL translation problem into a set of simpler,
mechanically-composable sub-problems, organized as a
sub-translation tree, that are easier to solve and validate.

• Model Checker-Guided Translation: SYNTHTL uses
model checkers to guide an oracle towards a correct
NL to TL translation by flagging potential culprit sub-
translations when an output TL specification does not
hold on the DUT and efficiently uncovering a correct
translation out of a large space of possible options.

• Case Study: We use SYNTHTL to translate three real-
world NL specifications—comprising the Arm AMBA
AHB bus protocol [15], [16]—to LTL. Our evalu-
ation features much larger NL specifications (maxi-
mum/average of 643/449 words) and TL specifications
(maximum/average of 490/434 symbols, i.e., LTL oper-
ators and variables) than prior work, which focuses on
individual NL properties within a larger specification.
For comparison, each NL specification in the recent
nl2spec dataset [6] contains a maximum/average 21/10
words; TL specifications contain a maximum/average of
37/10 symbols. Among 7.26e16 LLM-generated candi-
date TL specifications for an NL specification of the
controller component of the AMBA AHB protocol, SYN-
THTL converges to a correct one, consisting of 56 sub-
translations. In doing so, SYNTHTL queries an oracle
to validate 96 sub-translations and to fix 18/11 TL sub-
specification/decompositions, where the average TL for-
mula fixed by the oracle is 3% the size of the full correct
TL specification.

120

Fig. 2: Existing NL to TL specification translation approaches
(left) rely on manual validation of full TL specifications.
SYNTHTL (right) reduces manual effort using sub-translation
trees and model checker guidance.

II. RELATED WORK AND MOTIVATION

In this section, we give an overview of prior work on
translating structured (§II-A) and unstructured (§II-B) NL to
TL specifications in order to motivate SYNTHTL (§II-C),
which translates unstructured NL to TL.

A. Structured Translation of Structured NL

Early work on NL to TL specification translation requires
structured NL as input, i.e., NL that conforms to a pre-defined
grammar [17], [18], [19], [20]. By mechanically deriving an
output TL specification from a structured NL input, these
approaches conduct structured translation, similar to SYN-
THTL once it has produced a sub-translation tree. The output
TL specification is guaranteed to be correct if the input NL
specification is. However, supplying structured NL inputs can
be burdensome.

B. Unstructured Translation of Unstructured NL

Recent NLP advances have inspired numerous efforts to
translate unstructured NL (i.e., no grammar restrictions) to
TL specifications, e.g., using LLMs [6], [8], [9], [11], [12],
[10] and other NLP methods [7], [13]. Unlike SYNTHTL,
these approaches conduct unstructured translation, meaning
that an LLM or NLP algorithm ultimately constructs the final
TL specification output in one shot (Figure 2, left).

Translating unstructured NL is challenged by its inherent
ambiguity, e.g., the phrase “signal READY holds” can be
formulated in various plausible ways, like the following in
LTL: READY, XREADY, GREADY, READY ↔ XREADY. Plus,
NLP is prone to making translation mistakes. To resolve both
issues, prior work [6], [7], [8], [9], [10], [11], [12], [13]
expects a user to manually validate the final formalization
output, confirming that it captures the intent of the NL input.

Unfortunately, this validation step can be just as difficult
as manually performing the entire NL to TL specification
translation task. Moreover, when a translated TL specification
is deemed inconsistent with the DUT (e.g., by a model
checker), localizing bugs in the input NL specification, output
TL specification, and/or DUT is difficult, as is fixing them.

We categorize prior work on unstructured translation of NL
to TL specifications based on whether translation is conducted
end-to-end (§II-B1) or interactively (§II-B2).

1) End-to-end Translation: End-to-end approaches [10],
[11], [8], [12], [13], [9] deploy specialized prompting or
training schemes to elicit accurate NL to TL specification
translations from an NLP model without soliciting user input
beyond the NL specification itself.

2) Interactive Translation: Interactive approaches, like
LTLtalk [7] and nl2spec [6], query the user to validate/fix
candidate translations before the final output is produced.C

LTLtalk [7] queries a user to accept or reject sample traces
from full candidate TL specifications. But, manually analyzing
traces of a complex TL specification is challenging.

Similar to SYNTHTL, nl2spec [6] decomposes the trans-
lation task into easier sub-translations and queries a human
oracle to fix sub-translations. However, since no structure is
enforced among sub-translations, nl2spec requires an LLM
to compose them into a full TL specification in one shot. Plus,
this lack of structure means that formal model checking cannot
be applied to automatically localize errors or fix particular sub-
translations.

C. Our Approach: Structured Translation of Unstructured NL

We propose structured translation of unstructured NL to TL
specifications with SYNTHTL (Figure 2, right).

Without loss of generality, we focus our discussion on
translating NL to LTL [2], which extends propositional logic
with temporal operators including U (until), X (next), F
(eventually), and G (globally). Figure 1 illustrates a property
from the AMBA AHB bus protocol specification [15], [16]
formalized in LTL. Operators can be nested (e.g., GFϕ means
ϕ occurs infinitely often).

SYNTHTL uses LLMs, model checkers, and oracle guidance
to iteratively transform an input unstructured NL specification
into a logical combination of sub-translations, which are
mechanically combined to yield an output TL specification.
Thus, the oracle (user) need only manually validate (sim-
pler) sub-translations and their logical organization, but never
full TL specifications. Plus, this logical organization enables
SYNTHTL to localize inconsistencies between an output TL
specification and the DUT to sub-translations and efficiently
guide the translation procedure towards bug fixes.

III. SYNTHTL APPROACH AND TOOL: STRUCTURED
TRANSLATION OF UNSTRUCTURED NATURAL LANGUAGE

TO TEMPORAL LOGICS

We present the SYNTHTL approach and tool in this section
and detail its model checker utilities in §IV. Figure 3 illustrates
how SYNTHTL translates NL phrases from the AMBA AHB
bus protocol specification [15], [16] into an LTL specification.

A. Interactive TL Specification Generation

Given an input NL specification, SYNTHTL performs auto-
mated sub-translation tree generation using LLMs and queries
an oracle to validate the resulting tree(s). A sub-translation

121

Fig. 3: For each NL sub-specification, SYNTHTL generates
multiple possible decompositions and TL sub-specifications.
An oracle may accept/reject (thumbs up/down) any of them.
To determine if a sub-translation tree’s TL specification holds
on the DUT, SYNTHTL checks if each of its TL specification
holds or not (checks or “x”s). If no tree holds, SYNTHTL flags
sub-translations as potential root causes (red nodes).

tree (e.g., Figure 1) represents a single complete translation
from an input NL specification to an output TL specification.
Each node is a sub-translation, which consists of an NL sub-
specification and a corresponding TL sub-specification. La-
beled edges denote a decomposition of a parent sub-translation
into a logical combination of simpler child sub-translations.

1) Sub-Translation Tree Generation and Validation: In
sub-translation tree generation, SYNTHTL first instantiates a
sub-translation tree root node whose NL sub-specification is
populated with the input NL specification. It then uses LLMs
(with optional user guidance) to generate a complete tree by
recursively decomposing and translating nodes, starting with
the root.

Decomposing a parent node involves first introducing zero
or more fresh symbols, each of which serves as a represen-
tative for a unique strict substring in the parent’s NL sub-
specification. For each symbol, a child node is instantiated,
with the symbol labeling the directed edge from parent to
child. For example, in Figure 1, A labels the edge from the
root node to its left child and represents the substring “read
transaction is in progress and HREADY is high.” The parent
node’s TL sub-specification is then produced by translating
its NL sub-specification under the mapping of its substrings
to their representative symbols.

In practice, when supplied with an input NL specification,
SYNTHTL generates from it a set of sub-translation trees. In
particular, for each parent node, it generates up to D unique
decomposition options and K unique TL sub-specification
options per decomposition; K and D are hyperparameters,
which specify the number of LLM queries. While SYNTHTL
deploys LLMs to conduct this step, it discards decompo-
sitions either where the symbols do not represent unique
strict substrings within the parent’s NL sub-specification or
where one symbol represents a substring of another symbol
(i.e., redundant symbols). SYNTHTL also discards TL sub-
specifications that: are not well-formed, are trivial (i.e., ⊤
or ⊥), do not use all symbols that label edges to its node’s
children, or use symbols beyond those that represent its node’s
children and variables defined in the DUT.

Following each node decomposition and TL sub-
specification generation step during sub-translation tree
generation, SYNTHTL queries the oracle to accept/reject
each decomposition and TL sub-specification option
(thumbs up/down in Figure 3). If ever the oracle rejects
all decompositions or TL sub-specifications for a node,
SYNTHTL asks the oracle to provide acceptable ones.
For each accepted decomposition, fresh decomposition,
translation, and validation steps are initiated for its newly-
instantiated children.

Recursion terminates when encountering a node with no
decomposition (i.e., zero symbols/child nodes). A node can-
not be decomposed if the only strict substring that can be
derived from its NL sub-specification is the empty string. In
practice, LLM-based decomposition may terminate before this
condition is reached. For example, in the sub-translation tree
in Figure 1, the NL sub-specification “HREADY is high” has
no decomposition.

2) Structured Translation of Sub-Translation Trees to TL
Specifications: Sub-translation tree generation and valida-
tion produces a set of candidate sub-translation trees, which
can be obtained by performing a cross product among all
validated decomposition and TL sub-specification options
per node. The TL specifications implied by these candidate
sub-translation trees can be derived recursively as follows.
Starting at their root nodes, replace placeholder symbols in
each parent node’s TL sub-specification with the TL sub-
specifications of the symbols’ corresponding children. For ex-
ample, in Figure 1, C ∧ D will be transformed into HREADY ∧
(!HWRITE ∧ (HTRANS SEQ ∨ HTRANS NONSEQ)).

Note that given a sub-translation tree with N nodes, D
decomposition options per node, K TL sub-specification op-
tions per node, the number of candidate sub-translation trees
is O((KD)N). However, validating all generated trees only
requires the oracle to validate decompositions and TL sub-
specifications for each node, and thus the number of times
the oracle validates a decomposition or TL sub-specification
is O(KDN) (significantly lower than all possible trees).

3) LLM Prompts for Sub-Translation Tree Generation:
SYNTHTL queries an LLM during sub-translation tree gen-
eration to decompose NL sub-specifications and to perform
NL to TL sub-specification translation. Our prototype imple-
mentation of SYNTHTL relies on in-context learning [21] with
distinct prompting strategies for each task.

For NL sub-specification decomposition, an LLM is
prompted to output a JSON dictionary, which maps variables
to substrings of the input NL sub-specification. The prompt
includes a description of the decomposition task and examples
of correct decompositions.

For NL to TL sub-specification translation (i.e., to produce
a sub-translation), SYNTHTL prompts an LLM to generate
a TL sub-specification that uses the variables introduced in
the decomposition of its corresponding NL sub-specification.
The prompt presents examples of correct sub-translations
to the LLM. To encourage the LLM to generate TL sub-
specifications that use variables in the DUT, SYNTHTL in-

122

cludes a list of all DUT variable names in the prompt. We
also observe that NL context required to correctly translate an
individual NL sub-specification is often scattered across the
large input NL specification that contains it (as a substring).
To handle such situations, SYNTHTL uses retrieval augmented
generation (RAG) [22] to extract relevant context for an NL
sub-specification within an input NL specification using a
retrieval model. This context is prepended to the TL sub-
specification generation prompt.

4) Sub-Translation Tree Expressiveness: Note that SYN-
THTL extracts structure from unstructured NL to make transla-
tion easier, but it retains full expressiveness of the unstructured
input NL and structured output TL. A sub-translation tree
can be understood as overlaying the inductive structure of a
well-formed TL formula on top of an NL specification. If no
structure can be extracted from the input NL specification, the
result is a tree with just the root node (i.e., no decomposition),
where the node’s corresponding TL sub-specification is the
full TL specification. However, we did not encounter such a
non-decomposable NL specification in our evaluation (§V).
Since TL sub-specifications are TL sub-formulae, and sub-
translation trees recursively define a top-level TL formula
as logical combination of TL sub-specifications using TL
operators, SYNTHTL retains the full expressiveness of the TL.

B. Searching for Translations that Hold on DUT

After sub-translation tree generation and validation
(§III-A1), SYNTHTL deploys a translation search procedure
to find a translation, or more concretely an output TL specifi-
cation, that holds on the DUT out of an exponential number
of candidates (§III-A2). If some TL specification holds on the
DUT, the DUT upholds the NL specification’s requirements,
since the oracle previously confirmed that the TL specification
was a reasonable interpretation of the NL specification (by
validating all sub-translations and decompositions, §III-A1).
If some TL specification does not hold on the DUT, one of
two things could be true: the NL and TL specifications are
consistent (due to oracle sign-off), and there is a bug in the
DUT; or the NL and TL specifications are inconsistent (due to
ambiguity that lead to an errant oracle sign-off). In the latter
case, there may or may not be a bug DUT as well.

Given a set of candidate sub-translation trees and their TL
specifications, one could query a model checker to determine
which hold on the DUT. However, exhaustively checking
O((KD)N) TL specifications (§III-A2) is computationally
expensive (and likely infeasible). SYNTHTL’s model checker-
assisted translation search utility (§IV-A) addresses this issue
in two ways. First, it leverages sub-tree pruning (§IV-A1) to
discard many candidate sub-translation trees, which cannot
hold on the DUT due to inconsistent sub-trees. Second, when
checking DUT adherence to the TL specifications that are
not pruned, translation search leverages batch model checking
(§IV-A2) to ensure that common conjunctive clauses among
these specifications are checked at most once. Note that
if multiple TL specifications hold on the DUT, SYNTHTL
returns only the most constrained (i.e., most restrictive) ones

Fig. 4: Example of how SYNTHTL’s users may fix a culprit
node’s decompositions (left), NL sub-specification (middle), or
TL sub-specifications (right). After editing a decomposition or
NL sub-specification, SYNTHTL returns to its sub-translation
generation and validation (§III-A1) step to generate new
decompositions and TL sub-specifications for the modified
node. This is followed by translation search (and culprit
identification if needed) (§III-B). After editing a TL sub-
specification or the DUT, SYNTHTL returns to its translation
search step.

by default; however, it can be configured to return all TL
specifications that hold.

If no candidate sub-translation tree produces a TL speci-
fication that holds on the DUT, SYNTHTL’s model checker-
assisted culprit identification utility (§IV-B) outputs a set of the
least constrained trees/specifications among them. Rather than
require the user to manually analyze each failing specification,
culprit identification flags a subset of the nodes in their
corresponding sub-translation trees, which may be relevant for
the inconsistency (red nodes in Figure 3).

C. Fixing Culprit Sub-Translations or the DUT

Once culprit nodes have been identified (§III-B), the oracle
can elect to fix the DUT, the NL/TL sub-specifications within
culprit nodes, and/or decompositions of culprit nodes. After
applying a fix, the SYNTHTL procedure returns back to and
repeats an earlier analysis phase as follows. If the oracle
modifies an NL sub-specification or decomposition of a culprit
node, SYNTHTL goes back to its sub-translation and validation
step (§III-A1) to interactively (with the oracle) propagate
the these changes by re-generating TL sub-specifications and
decompositions for edited nodes. Figure 4 demonstrates ex-
amples for which a decomposition is modified (left) and NL
sub-specification is modified (middle). If the oracle modifies
the DUT or a TL sub-specification, SYNTHTL returns back
to its translation search step (§III-B) to check if the edits
give rise to a full TL specification that holds on the DUT.
Figure 4 illustrates an example in which a TL sub-specification
is modified (right).

123

Algorithm 1 Translation Search Algorithm
1: function TSEARCH(n, SIN ,mode)
2: res = {}
3: for decomposition in getNodeDcmps(n, SIN) do
4: n.setChildren(decomposition)
5: if mode = LC then ▷ get TL sub-specifications for n
6: subTLSet = getLCNodeSubTL(n, SIN) ▷ get LC TL for n
7: else
8: subTLSet = getAllNodeSubTL(n, SIN) ▷ get all TL for n
9: for subTLSpec in subTLSet do

10: n.setSubTL(subTLSpec)
11: if mode ̸= LC then ▷ Check least constrained trees first
12: Cn = {T | T ∈ SIN ∧ tn ∈ T} ▷ trees that contain tn
13: C = TSEARCH(Root(tn), Cn, LC) ▷ get LC trees
14: CDUT = {T | T ∈ C ∧ T |= DUT} ▷ check LC trees
15: if mode = LC ∨ CDUT ̸= ∅ then ▷ Recurse to children of n
16: cList = [TSEARCH(child, SIN ,mode) for child in n]
17: for c1, c2, . . . in crossProduct(cList) do
18: n′ = copy(n).setChildren(c1, c2, . . .)
19: res.add(n′)

20: return res

IV. SYNTHTL UTILITIES: MODEL CHECKER-GUIDED
TRANSLATION SEARCH AND CULPRIT IDENTIFICATION

We now provide more details on SYNTHTL’s model
checker-guided utilities: translation search (§IV-A), which
features sub-tree pruning (§IV-A1) and batch model checking
(§IV-A2), and culprit identification (§IV-B).

A. Translation Search Utility

SYNTHTL’s translation search procedure takes as input a
set of sub-translation trees. Let SIN = {T1, T2, ...} denote the
input set of trees, each of which represents a TL specification
(i.e., a TL formula). Given SIN , translation search outputs
the set SOUT ⊆ SIN . If one or more input TL specifications
hold on the DUT, SOUT contains the most constrained TL
specifications that hold on the DUT. If none hold (i.e., SOUT

is empty), SYNTHTL employs culprit identification (§IV-B).
Note that there can be multiple most/least constrained TL
specifications, because in general, TL specifications may not
be strict supersets or subsets of one another.

Concretely, translation search returns:
SOUT = {T | T ∈ SIN ∧ T |= DUT ∧ ∀i, Ti ∈ SIN ∧ (T ̸=

Ti → T ̸|= Ti)}
1) Sub-Tree Pruning in Translation Search: SYNTHTL’s

translation search coordinates the instantiation of candidate
sub-translation trees that result from sub-translation tree gen-
eration and validation (§III-A1). To obtain the set of all
candidate sub-translation trees, one could naively take the
cross product of all possible decompositions and TL sub-
specifications (§III-A2). However, translation search avoids
exhaustively constructing and checking all TL specifications
by incrementally constructing these candidate trees (i.e., incre-
mentally constructing the cross product) node by node starting
at the root and preemptively pruning candidate trees before
they are fully generated. The pseudocode for this procedure,
called TSEARCH, is shown in Algorithm 1 and detailed below.
Translation search uses TSEARCH to obtain a pruned set of

Algorithm 2 Batch Model Checking Algorithm
1: function BATCHMC(tSet,DUT)
2: Hclause = hashTable() ▷ Initialize hash table, mapping clause to trees
3: for T in tSet do
4: for clause in getCNF(T) do
5: Hclause[clause].add(T) ▷ Add all CNF clauses to hash table
6: while |Hclause| > 0 do ▷ Loop while clauses left to check
7: Dclause = {} ▷ Clauses checked in current iteration
8: DT = {} ▷ Trees that do not hold on DUT in current iteration
9: for clause in Hclause do

10: Dclause.add(clause)
11: if clause ̸|= DUT then ▷ Check if clause holds on DUT
12: DT = Hclause[clause] ▷ found inconsistent clause
13: break
14: for clause in Hclause do ▷ Update trees in hash table
15: Hclause[clause] = Hclause[clause]−DT

16: if |Hclause[clause]| == 0 then
17: Dclause.add(clause) ▷ Remove clause if all trees not hold
18: tSet = tSet−DT ▷ Remove trees inconsistent with DUT
19: Hclause = Hclause −Dclause ▷ Remove clauses already checked
20: return tSet

possible TL specifications, and then checks them against the
DUT to obtain SOUT.

TSEARCH starts from a root node n, input tree set SIN , and
mode ̸= LC; the mode variable indicates whether TSEARCH
should output all sub-translation trees that may hold on the
DUT (mode ̸= LC), or the least constrained (LC) set of trees
among all possible (mode = LC). TSEARCH constructs all
decompositions (line 3) and all TL sub-specifications (line 9)
of node n and conditionally recurses to each of its child nodes
(line 15). Given the recursion condition is true, the set of all
possible trees that contain node n is obtained through a cross
product of each possible child sub-tree of node n (§III-A2,
line 16 - 19).

Suppose node n has just been instantiated, and let tn
denote a partially constructed sub-tree up to and including n.
TSEARCH only recurses to n’s child nodes along a particular
decomposition if it is possible to extend sub-tree tn to a TL
specification that holds on the DUT (lines 11 - 14). TSEARCH
determines the recursion condition by constructing all of the
least constrained (mode = LC) TL specifications that extend
sub-tree tn (lines 12 - 13), and model checking them against
the DUT (line 14). If none of these least constrained TL
specifications hold on the DUT, then no other trees that extend
sub-tree tn can hold, so TSEARCH can prune them from
consideration (and avoid explicitly checking them against the
DUT) by terminating recursion.

Note that constructing the set of least constrained TL
specifications with sub-tree tn (lines 12 - 13) does not require
exhaustively constructing all trees with sub-tree tn since
TSEARCH with mode = LC (line 13) incrementally constructs
least constrained trees through only considering the least
constrained TL sub-specifications for each node (line 6). Also,
our implementation of Algorithm 1 makes use of memoizing
results to avoid redundant recursive calls (not shown).

2) Batch Model Checking: After obtaining the pruned set of
sub-translation trees, SYNTHTL deploys a novel batch model
checking utility to improve performance of identifying TL

124

Algorithm 3 Conjunctive Clause Extraction Algorithm
1: function EXTRACTCLAUSES(T, n)
2: n.setChildren({})
3: n.setSubTL(id)
4: ΦT = GetTLSpec(T)
5: conjSet = getCNF(ΦT)
6: return {c | c ∈ conjSet if id ∈ c}

specifications that hold on the DUT. Batch model checking,
as shown in Algorithm 2, takes as input a DUT, and a set of
sub-translation trees tSet, and efficiently obtains the subset of
these sub-translation trees that hold on the DUT. Batch model
checking exploits common conjunctive clauses among the set
of TL specifications, so that each conjunctive clause is checked
at most once across all trees.

First, conjunctive clauses for each sub-translation tree are
discovered by transforming its corresponding TL specification
into a conjunctive form (line 4). Second, to identify common
conjunctive clauses among the trees in tSet, a hash table is
used to map clauses to the sub-translation trees that contain
them (lines 2 to 5). Third, as long as the hash table is non-
empty, the algorithm iteratively selects clauses to check against
the DUT with a model checker (lines 6 to 19). Whenever a
clause is found to not hold on the DUT (line 11), all of its
associated sub-translation trees and clauses are pruned from
the hash table (line 14 to 19).

B. Culprit Identification Utility

Suppose that translation search (§III-B) determines that
no TL specifications—from all those produced during sub-
translation tree generation and validation (§III-A1)—hold on
the DUT. At this point, SYNTHTL deploys culprit identi-
fication to identify nodes within the least constrained TL
specifications (among all generated TL specifications) that
are possible culprits for (i.e., possibly contributing to) their
inconsistencies with the DUT. Culprit identification obtains
the set of least constrained TL specification using TSEARCH
(Algorithm 1, §IV-A) with mode = LC starting from the
root node, given the input set of all possible trees from sub-
translation tree generation and validation. A node is a possible
culprit if it contributes to at least one conjunctive clause in a
full TL specification that does not hold on the DUT.

To identify all possible culprit nodes, within a sub-
translation tree T that does not hold on the DUT, SYNTHTL
first extracts for each node n of T the set of conjunctive
clauses in the full TL specification that it contributes to using
Algorithm 3. First, the decomposition of node n is set to
empty (line 2) and its TL sub-specification is set to a special
identifier id (line 3). Then, from this new variant of T , a full
TL specification is constructed (line 4) and transformed into
a conjunctive form (line 5). Finally, the clauses which contain
id are returned (line 6). SYNTHTL then checks if each of the
clauses returned by Algorithm 3 hold on the DUT.

This approach ensures that all nodes that are responsible
for a TL specification’s inconsistency with the DUT are
flagged as possible culprits. However, not all nodes flagged

as possible culprits are true positives, since non-culprits can
contribute to failing clauses. To reduce false positives in culprit
identification, SYNTHTL applies a heuristic filter to prioritize
nodes which are more likely to be true culprits. Instead of
flagging a node as a culprit if it contributes to at least one
failing clause, the heuristic filter only marks a node as a culprit
if all clauses it contributes to fail. Our evaluation demonstrates
this heuristic significantly improves the precision of culprit
identification (fewer false positives) and identifies true culprits
while retaining high accuracy (few false negatives, §V-D).

V. CASE STUDY: TRANSLATING AN INDUSTRIAL NL
SPECIFICATION TO TL WITH SYNTHTL

As a case study, we use SYNTHTL to translate three real-
world NL specifications comprising the Arm AMBA AHB
bus protocol [15], [16] to TL. In doing so, we evaluate
SYNTHTL’s sub-translation tree generation and validation
(§III-A1), translation search (§IV-A), and culprit identification
(§IV-B) components. Moreover, we answer the following ques-
tions: How successful are LLMs in generating sub-translation
trees and to what degree do sub-translation trees reduce
manual effort in validating TL specifications compared to
existing methods (§V-A)? How efficient is translation search
compared to exhaustive search (§V-B)? To what degree does
culprit identification localize inconsistencies with the DUT to
particular sub-translations (§V-D)?

Prototype Implementation Our SYNTHTL prototype con-
sists of ∼3K lines of Python code and queries the open-
source LTL model checker, Spot [23]. Although our prototype
implementation of SYNTHTL deals with LTL, the SYNTHTL
approach can be used to generate formulas in other TLs (e.g.,
SVA [3], PSL [4], STL [24], and so on). We have published our
code (including LLM prompts), the AMBA AHB benchmarks
(taken from prior work [16]), and example generated outputs
in a public repository.1

Benchmarks We evaluate SYNTHTL on three real-world
NL hardware specifications, taken from the AMBA AHB bus
protocol [15], [16], corresponding to its arbiter, controller,
and worker modules. We select these NL specifications for
our experiments for two reasons. First, AMBA AHB is an
industrial protocol that is widely deployed in modern SoCs,
including Arm Cortex-M based designs [25], [26]. Second, it
has already been manually formalized in prior work [16], giv-
ing us “ground truth” TL specifications to use in qualitatively
assessing SYNTHTL’s outputs. The original TL specification
is written in PSL [16], and we manually rewrite it in LTL
since our prototype implementation of SYNTHTL uses LTL
model checking.

For each of the three AMBA AHB hardware modules we
consider, Table I gives the sizes of their published NL specifi-
cations and corresponding ground truth TL specifications [16].
These TL specifications serve the role of “golden” DUTs in
our evaluation.

Large Language Models We conduct our evaluation with
two state-of-the-art LLMs: GPT3.5 and GPT4 [14].

1https://github.com/dmmendo/SynthTL

125

Module Controller Worker Arbiter
NL Size (words) 436 268 643
TL Size (symbols) 460 351 490

TABLE I: Specification sizes used in SYNTHTL’s evaluation.

A. Evaluation of TL Generation and Validation

We compare SYNTHTL’s sub-translation tree generation
and validation (§III-A1) to nl2spec [6], the existing state-of-
the-art approach, in terms of manual effort required to produce
the correct TL specification.

Setup In this experiment, We query the LLM D = K = 3
times to generate decompositions and TL sub-specifications
for each node with SYNTHTL. The oracle selects one correct
TL sub-specification and one correct decomposition for each
sub-translation with SYNTHTL and provides a correct TL
sub-specification/decomposition if none of the LLM-generated
options are correct.

Baseline Given an input NL specification, nl2spec [6]
decomposes it into sub-translations and produces an output
TL specification from the sub-translations, all using an LLM.
The user can iteratively edit sub-translations and request that
nl2spec re-generate (with an LLM) the output TL specifi-
cation from them until the user decides the TL specification
is correct.

Unlike SYNTHTL, nl2spec’s sub-translations are un-
structured (i.e., they are not organized as a sub-translation
tree), and so they cannot be mechanically composed into a
full TL specification. Instead, nl2spec uses an LLM to
perform this composition in one shot. However, this approach
renders nl2spec susceptible to generating inaccurate TL
specifications, even if the user has decided that all sub-
translations are correct.

In terms of oracle effort, both nl2spec and SYNTHTL
require sub-translation validation. However, nl2spec addi-
tionally requires oracle validation of full output TL specifica-
tions, while SYNTHTL additionally asks the oracle to validate
(comparatively much simpler) sub-translation decompositions.

We consider an ideal nl2spec as our baseline, which
is initially (in its first iteration) given a correct set of sub-
translations taken from the leaf nodes of a correct “reference”
SYNTHTL sub-translation tree. Thus, nl2spec need only
compose these sub-translations to produce a correct full TL
specification using an LLM. If the full TL specification
generated by nl2spec in an iteration is incorrect, the or-
acle provides new sub-translations in the next iteration that
compose the current sub-translations by instantiating them
within the context of their parents’ TL sub-specifications in
the reference sub-translation tree. For example, consider a
reference sub-translation tree representing TL specification
(A ∧ B) → (C ∧ D) with two leaf nodes whose TL sub-
specifications are A∧B and C ∧D. The TL sub-specification
of the root node defines the implication (→) between the leaf
nodes. In the first iteration, nl2spec is given the leaf nodes.
If nl2spec does not output the correct TL specification in
the first iteration, the oracle provides (A ∧ B) → (C ∧ D)

in the second iteration. Thus, the sub-translations provided by
the oracle become fewer and more-complex/coarse-grained in
each iteration of nl2spec, approaching the full reference
TL specification. nl2spec continues iterating either until it
generates the correct full TL specification by composing sub-
translations with an LLM or until the oracle supplies the full
TL specification as input (by composing sub-translations from
the previous failed iteration). The LLM is given three tries
(i.e., is queried three times) in each iteration. Incorrect sub-
translations are discarded between iterations.

Metrics For both SYNTHTL and our ideal nl2spec base-
line, we record the following:

• Number of unique generated full TL specifications
(Space Size).

• Number of TL sub-specifications and decompositions
inspected by the oracle (Inspections)

• Number of TL sub-specifications and decompositions
edited by the oracle (Trns Edit and Dcmp Edit). For
each node, the oracle only edits a decomposition or TL
sub-specification if the LLM does not generate one that
is deemed valid by the oracle.

• Number of nodes in final sub-translation tree (Tree Size).
• Size of formulas inspected (Inspect Size) and edited

(Edit Size) by the oracle in number of symbols. A symbol
is an LTL operator or variable. We normalize this quantity
by the size of the ground truth TL specification (from the
handwritten TL specification in prior work [16]).

Results The results are shown in Table II. Across all six
SYNTHTL experiments (three AMBA AHB modules and two
LLM options), SYNTHTL generates up to 9.33e17 and as few
as 8.29e4 unique TL specifications. This result demonstrates
that the input NL specifications for modules of the Arm
AMBA AHB bus protocol are highly ambiguous, despite being
carefully crafted so as to be amenable to formalization [16].

SYNTHTL produces a correct TL specification, with the
oracle inspecting and editing TL sub-specifications that are
on average 2.43% (up to 20.9%) and 2.95% (up to 8.9%)
the size of the ground truth TL specification, respectively.
Further, the oracle edits on average 12.9% (up to 20.6%)
and 37.5% (up to 44.8%) the number of decompositions
and TL sub-specifications, respectively, that exist in the final
sub-translation tree. That is, most decompositions and sub-
translations in the final correct sub-translation tree are auto-
matically generates by the LLM. These results demonstrate
that SYNTHTL requires significantly less manual effort than
both manual end-to-end NL to TL translation and full TL
specification validation.

In all six nl2spec experiments, our ideal nl2spec base-
line fails to produce the correct TL specification. It incorrectly
composes TL specifications despite being given correct the
sub-translations in every iteration. In all cases, the size of
the inspected and edited sub-specifications is significantly
smaller with SYNTHTL compared to nl2spec. This result
demonstrates that SYNTHTL enables LLM-based NL to TL
translation to handle large and complex NL specifications
for the first time. The maximum, average, and total size of

126

Arm AMBA AHB Module Controller Worker Arbiter
Large Language Model GPT3.5 GPT4 GPT3.5 GPT4 GPT3.5 GPT4
Translation Approach SYNTHTL nl2spec SYNTHTL nl2spec SYNTHTL nl2spec SYNTHTL nl2spec SYNTHTL nl2spec SYNTHTL nl2spec

Space Size 7.26e16 5 8.29e4 5 3.05e10 6 2.99e6 6 9.33e17 6 5.97e8 6
Inspections 96 125 92 77 94 90 81 66 107 90 117 94
Trns Edit 18 18 17 18 21 20 16 21 26 22 25 23
Dcmp Edit 11 18 12 18 2 20 0 21 8 22 12 23
Tree Size 56 58 48 47 58 61
Sum Inspect Size 1.515 9.124 1.254 6.898 1.558 11.538 1.197 8.077 2.506 5.543 2.157 8.682
Avg Inspect Size 0.021 0.073 0.020 0.090 0.027 0.128 0.023 0.122 0.028 0.062 0.027 0.092
Max Inspect Size 0.209 1.020 0.150 1 0.142 1.302 0.202 1 0.127 1 0.120 1
Sum Edited Size 0.541 2.585 0.546 2.585 0.627 2.823 0.595 3 0.606 2.773 0.629 2.804
Avg Edited Size 0.030 0.144 0.032 0.144 0.030 0.141 0.037 0.143 0.023 0.126 0.025 0.122
Max Edited Size 0.089 1 0.089 1 0.177 1 0.177 1 0.084 1 0.084 1
Gen Correct? ✓ X ✓ X ✓ X ✓ X ✓ X ✓ X

TABLE II: Generating and validating the AMBA AHB TL specification with SYNTHTL versus nl2spec. Formula size is
normalized by the size of the full ground truth specification.

Module Worker Controller Arbiter
K=2 K=3 K=2 K=3 K=2 K=3

Exhaustive 4096 5832 4096 3888 4096 2916
SYNTHTL 505 376 2052 804 548 184
% Pruned 87.7 93.6 49.9 79.3 86.6 93.7

TABLE III: Exhaustive vs. SYNTHTL’s translation search

Module Arbiter Controller Worker
Formulas 128 128 10000
Clauses 640 62 1512
Variables 19 29 24
Exhaustive (s) 28075.69 10025.26 462.38
SYNTHTL (s) 7622.44 2975.77 13.09
Speedup 3.68 3.37 35.32

TABLE IV: Batch vs. Exhaustive Model Checking

inspected TL sub-specifications is on average 5.32×, 3.94×,
6.97× smaller with SYNTHTL compared to nl2spec, re-
spectively. The maximum, average, and total size of edited
TL sub-specifications is on average 4.68×, 4.68×, 9.61×
smaller with SYNTHTL compared to nl2spec, respectively.
These results show that SYNTHTL’s sub-translation trees
significantly reduce the manual effort required to inspect and
fix sub-translations compared to nl2spec.

Takeaway SYNTHTL significantly reduces manual effort
required to fix and validate LLM-generated TL specifications
compared to prior approaches and enables automatic genera-
tion of large and complex TL specifications.

B. Evaluation of Translation Search

Next, we evaluate the efficiency of translation search
(§IV-A) in discovering a correct TL specification among a
set of sub-translation trees, given a correctly implemented
DUT (i.e., the ground truth TL specification produced in
prior work [16]). To generate a set of sub-translation trees,
we direct SYNTHTL to conduct sub-translation tree gener-
ation and validation (§III-A) and limit the oracle to spec-
ifying one correct decomposition and K = 2, 3 TL sub-
specifications per node, where at least one TL sub-specification
is correct. Note that querying the LLM multiple times for
TL sub-specifications/decompositions may produce equivalent
TL sub-specifications/decompositions and, in such situations,

duplicates are discarded. To evaluate under multiple settings,
we also limit the oracle to only provide multiple TL sub-
specifications for a node if the tree space size would be less
than 213.

Results Table III shows the number of TL specifications
generated and checked on the DUT with SYNTHTL’s trans-
lation search utility (SYNTHTL row) versus exhaustively
searching all trees in the input set (Exhaustive row), i.e., the
maximum number of TL specifications to check on the DUT.
In all cases, translation search explores significantly fewer
sub-translation trees than the exhaustive approach to find the
correct TL specification. SYNTHTL prunes as many as 93.6%,
79.3%, 94.7% of the search space for the arbiter, controller,
and worker, respectively.

Takeaway SYNTHTL’s translation search greatly improves
the scalability of model checking many translation possibilities
for a given NL specification through effective sub-tree pruning.

C. Evaluation of Batch Model Checking

We now evaluate the efficacy of SYNTHTL’s batch model
checking optimization (§IV-A2) in accelerating model check-
ing many TL specifications against a DUT.

Results Table IV shows runtimes of exhaustive and batch
model checking for a set of sub-translation trees generated by
an LLM with SYNTHTL’s sub-translation generation. Batch
model checking is 3.68×, 3.37×, 35.32× faster compared
to exhaustive model checking for the arbiter, controller, and
worker, respectively.

Takeaway Batch model checking significantly accelerates
model checking large sets of TL specifications.

D. Evaluation of Culprit Identification

We now evaluate the effectiveness of SYNTHTL’s culprit
identification in localizing inconsistencies with the DUT to
particular sub-translations (§IV-B) when a sub-translation tree
contains an incorrect sub-translation (§V-D1), and when the
DUT is incorrectly implemented (§V-D2). Note that AC refers
to culprit identification with no heuristic filters, and FC refers
to the approach with the heuristic filter (§IV-B).

127

Module Controller Worker Arbiter
Bug G X ¬ G X ¬ G X ¬
Ex. 13 35 28 16 41 53 11 23 30
App. AC FC AC FC AC FC AC FC AC FC AC FC AC FC AC FC AC FC
% Clpt 57.0 34.5 67.0 45.2 58.0 32.0 68.9 47.4 70.7 50.1 65.7 40.4 52.23 22.1 54.7 24.2 58.3 31.1
Recall 1 0.92 1 0.97 1 1 1 1 1 1 1 0.96 1 0.91 1 0.91 1 1

TABLE V: Culprit Identification given an incorrect AMBA AHB TL specification

Module Controller Worker Arbiter
Bug G X ¬ G X ¬ G X ¬
Ex. 3 8 10 16 42 50 2 9 10
App. AC FC AC FC AC FC AC FC AC FC AC FC AC FC AC FC AC FC
% Clpt 42.5 6.3 41.4 5.2 53.1 24.1 59.7 30.7 61.2 33.8 67.4 44.4 42.9 6.4 48.7 16.1 53.8 24.4
Recall 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TABLE VI: Culprit Identification given an incorrect AMBA AHB DUT

1) Culprit Identification Given an Incorrect TL Specifica-
tion and a Correct DUT: To emulate a sub-translation tree that
contains an incorrect sub-translation that causes the full TL
specification to not hold on a correctly implemented DUT, we
insert bugs into a correct sub-translation tree. Given a correct
sub-translation tree, we randomly select a node, and change
the sub-specification by adding an operator (i.e., either G, X ,
or ¬). If the perturbation causes the TL specification to not
hold on the DUT, then we run culprit identification and record
the percentage of nodes flagged as possible culprits and if the
set of possible culprits contains the true culprit.

Results Table V shows the number examples evaluated
per perturbation, the average percentage of nodes that are
marked as possible culprits per perturbation, and the fraction
of examples where the possible culprit set contained the true
culprit (recall). AC flags on average 56.8% of the nodes, and
the identified possible culprit set always contains the true
culprit (i.e., recall is always 1). FC flags 38.5% of the nodes
(fewer than AC), however, due to its heuristic nature, catches
the true culprit in 97.1% of all cases (fewer than AC).

In Figure 5, we show the percentage of nodes in the sub-
translation tree that are marked as possible culprits versus the
percentage of true culprits in the sub-translation tree when
perturbing randomly selected sub-translations with incorrect
LLM-generated sub-specifications. Note that the percentage of
true culprits does not go to 100%, because the LLM-generated
sub-specifications for the remaining set of nodes do not cause
inconsistencies with the DUT. In all cases both AC and FC
find all the true culprits. The percentage of nodes flagged as
possible culprits increases with the percentage of true culprits
in the sub-translation tree. AC flagged as few as 49.1%, 37.9%,
38.1% and as high as 90.6%, 96.6%, 92.1% for the controller,
worker, and arbiter, respectively. FC flagged as few as 15.1%,
5.2%, 4.8% and as high as 90.6%, 96.6%, 92.1% for the
arbiter, controller and worker, respectively.

2) Culprit Identification Given a Correct TL Specification
and an Incorrect DUT: We evaluate the efficacy of culprit
identification in localizing inconsistencies with the DUT to
particular sub-translations, given a correct TL specification
that does not hold on a buggy DUT. To emulate bugs in
the DUT, we first construct a correct sub-translation tree for

Fig. 5: Percent flagged possible culprits vs. true culprits of an
AMBA AHB controller (left), worker (middle), arbiter (right).

each module by manually transforming the ground truth LTL
specification [16] into one. Then, we add an operator (i.e.,
either G, X , or ¬) in a randomly selected a sub-translation
and use the perturbed TL specification as the DUT.

Results Table VI shows what percent of nodes in the sub-
translation tree are marked as possible culprits. Both AC and
FC find all true culprits in all examples. AC/FC flag on average
59.7%/32.2% of nodes as possible culprits, respectively.

Takeaway Culprit identification significantly reduces man-
ual effort in localizing inconsistencies with the DUT to par-
ticular parts of an NL specification and TL specification.

VI. CONCLUSION

Typical translation of unstructured NL to TL is unstruc-
tured, requiring users to manually inspect/correct complex TL
outputs. Instead, SYNTHTL conducts structured translation of
unstructured NL to TL, which enables users to exclusively
validate simple TL sub-specifications and decompositions that
mechanically compose to produce a TL output. Plus, structured
translation enables LLMs, model checkers, and human users
to meaningfully collaborate on an NL to TL translation task.

ACKNOWLEDGMENT

We thank Mohammad Rahmani Fadiheh, Haoze Wu, and
the anonymous reviewers for their constructive comments and
feedback. This work was supported in part by the National Sci-
ence Foundation (NSF), under awards 2153936 and 2236855
(CAREER); the Defense Advanced Research Projects Agency
(DARPA) under contract W912CG-23-C-0025 and subcontract
from Galois, Inc.; and by the German Federal Ministry of
Education and Research (BMBF), through funding for the
CISPA-Stanford Center for Cybersecurity (FKZ: 16KIS1138).

128

REFERENCES

[1] E. M. Clarke, O. Grumberg, and D. A. Peled, Model checking. Cam-
bridge, MA, USA: MIT Press, 2000.

[2] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977), pp. 46–57, 1977.

[3] S. Vijayaraghavan and M. Ramanathan, “A practical guide for system
verilog assertions,” 2005.

[4] “Ieee standard for property specification language (psl),” IEEE Std 1850-
2010 (Revision of IEEE Std 1850-2005), pp. 1–182, 2010.

[5] H. Foster, “Part 1: The 2022 wilson research group functional verifica-
tion study,” Jan 2023.

[6] M. Cosler, C. Hahn, D. Mendoza, F. Schmitt, and C. Trippel, “nl2spec:
Interactively translating unstructured natural language to temporal logics
with large language models,” in Computer Aided Verification (C. Enea
and A. Lal, eds.), (Cham), pp. 383–396, Springer Nature Switzerland,
2023.

[7] I. Gavran, E. Darulova, and R. Majumdar, “Interactive synthesis of
temporal specifications from examples and natural language,” Proc.
ACM Program. Lang., vol. 4, nov 2020.

[8] F. Fuggitti and T. Chakraborti, “Nl2ltl - a python package for converting
natural language (nl) instructions to linear temporal logic (ltl) formulas,”
in Proceedings of the Thirty-Seventh AAAI Conference on Artificial
Intelligence and Thirty-Fifth Conference on Innovative Applications
of Artificial Intelligence and Thirteenth Symposium on Educational
Advances in Artificial Intelligence, AAAI’23/IAAI’23/EAAI’23, AAAI
Press, 2023.

[9] Y. Chen, R. Gandhi, Y. Zhang, and C. Fan, “NL2TL: Transforming
natural languages to temporal logics using large language models,” in
Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, Dec. 2023.

[10] J. He, E. Bartocci, D. Ničković, H. Isakovic, and R. Grosu, “Deepstl:
from english requirements to signal temporal logic,” in Proceedings
of the 44th International Conference on Software Engineering, ICSE
’22, (New York, NY, USA), p. 610–622, Association for Computing
Machinery, 2022.

[11] C. Hahn, F. Schmitt, J. J. Tillman, N. Metzger, J. Siber, and
B. Finkbeiner, “Formal specifications from natural language,” 2022.

[12] J. X. Liu, Z. Yang, B. Schornstein, S. Liang, I. Idrees, S. Tellex,
and A. Shah, “Lang2LTL: Translating natural language commands to
temporal specification with large language models,” in Workshop on
Language and Robotics at CoRL 2022, 2022.

[13] C. Wang, C. Ross, Y.-L. Kuo, B. Katz, and A. Barbu, “Learning a
natural-language to ltl executable semantic parser for grounded robotics,”
in Proceedings of the 2020 Conference on Robot Learning (J. Kober,
F. Ramos, and C. Tomlin, eds.), vol. 155 of Proceedings of Machine
Learning Research, pp. 1706–1718, PMLR, 16–18 Nov 2021.

[14] OpenAI, J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L.
Aleman, D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, R. Avila,
I. Babuschkin, S. Balaji, V. Balcom, P. Baltescu, H. Bao, M. Bavarian,
J. Belgum, I. Bello, J. Berdine, G. Bernadett-Shapiro, C. Berner,
L. Bogdonoff, O. Boiko, M. Boyd, A.-L. Brakman, G. Brockman,
T. Brooks, M. Brundage, K. Button, T. Cai, R. Campbell, A. Cann,
B. Carey, C. Carlson, R. Carmichael, B. Chan, C. Chang, F. Chantzis,
D. Chen, S. Chen, R. Chen, J. Chen, M. Chen, B. Chess, C. Cho,
C. Chu, H. W. Chung, D. Cummings, J. Currier, Y. Dai, C. Decareaux,
T. Degry, N. Deutsch, D. Deville, A. Dhar, D. Dohan, S. Dowling,
S. Dunning, A. Ecoffet, A. Eleti, T. Eloundou, D. Farhi, L. Fedus,
N. Felix, S. P. Fishman, J. Forte, I. Fulford, L. Gao, E. Georges,
C. Gibson, V. Goel, T. Gogineni, G. Goh, R. Gontijo-Lopes, J. Gor-
don, M. Grafstein, S. Gray, R. Greene, J. Gross, S. S. Gu, Y. Guo,
C. Hallacy, J. Han, J. Harris, Y. He, M. Heaton, J. Heidecke, C. Hesse,
A. Hickey, W. Hickey, P. Hoeschele, B. Houghton, K. Hsu, S. Hu,
X. Hu, J. Huizinga, S. Jain, S. Jain, J. Jang, A. Jiang, R. Jiang,
H. Jin, D. Jin, S. Jomoto, B. Jonn, H. Jun, T. Kaftan, Łukasz Kaiser,
A. Kamali, I. Kanitscheider, N. S. Keskar, T. Khan, L. Kilpatrick,
J. W. Kim, C. Kim, Y. Kim, J. H. Kirchner, J. Kiros, M. Knight,
D. Kokotajlo, Łukasz Kondraciuk, A. Kondrich, A. Konstantinidis,
K. Kosic, G. Krueger, V. Kuo, M. Lampe, I. Lan, T. Lee, J. Leike,
J. Leung, D. Levy, C. M. Li, R. Lim, M. Lin, S. Lin, M. Litwin,
T. Lopez, R. Lowe, P. Lue, A. Makanju, K. Malfacini, S. Manning,
T. Markov, Y. Markovski, B. Martin, K. Mayer, A. Mayne, B. McGrew,
S. M. McKinney, C. McLeavey, P. McMillan, J. McNeil, D. Medina,
A. Mehta, J. Menick, L. Metz, A. Mishchenko, P. Mishkin, V. Monaco,

E. Morikawa, D. Mossing, T. Mu, M. Murati, O. Murk, D. Mély,
A. Nair, R. Nakano, R. Nayak, A. Neelakantan, R. Ngo, H. Noh,
L. Ouyang, C. O’Keefe, J. Pachocki, A. Paino, J. Palermo, A. Pantu-
liano, G. Parascandolo, J. Parish, E. Parparita, A. Passos, M. Pavlov,
A. Peng, A. Perelman, F. de Avila Belbute Peres, M. Petrov, H. P.
de Oliveira Pinto, Michael, Pokorny, M. Pokrass, V. H. Pong, T. Powell,
A. Power, B. Power, E. Proehl, R. Puri, A. Radford, J. Rae, A. Ramesh,
C. Raymond, F. Real, K. Rimbach, C. Ross, B. Rotsted, H. Roussez,
N. Ryder, M. Saltarelli, T. Sanders, S. Santurkar, G. Sastry, H. Schmidt,
D. Schnurr, J. Schulman, D. Selsam, K. Sheppard, T. Sherbakov,
J. Shieh, S. Shoker, P. Shyam, S. Sidor, E. Sigler, M. Simens, J. Sitkin,
K. Slama, I. Sohl, B. Sokolowsky, Y. Song, N. Staudacher, F. P. Such,
N. Summers, I. Sutskever, J. Tang, N. Tezak, M. B. Thompson, P. Tillet,
A. Tootoonchian, E. Tseng, P. Tuggle, N. Turley, J. Tworek, J. F. C.
Uribe, A. Vallone, A. Vijayvergiya, C. Voss, C. Wainwright, J. J. Wang,
A. Wang, B. Wang, J. Ward, J. Wei, C. Weinmann, A. Welihinda,
P. Welinder, J. Weng, L. Weng, M. Wiethoff, D. Willner, C. Winter,
S. Wolrich, H. Wong, L. Workman, S. Wu, J. Wu, M. Wu, K. Xiao,
T. Xu, S. Yoo, K. Yu, Q. Yuan, W. Zaremba, R. Zellers, C. Zhang,
M. Zhang, S. Zhao, T. Zheng, J. Zhuang, W. Zhuk, and B. Zoph, “Gpt-
4 technical report,” 2024.

[15] Arm Ltd., AMBA AHB Protocol Specification, 2021.
[16] Y. Godhal, K. Chatterjee, and T. A. Henzinger, “Synthesis of amba

ahb from formal specification: a case study,” International Journal on
Software Tools for Technology Transfer, vol. 15, pp. 585 – 601, 2011.

[17] E. Conrad, L. Titolo, D. Giannakopoulou, T. Pressburger, and A. Dutle,
“A compositional proof framework for fretish requirements,” in Proceed-
ings of the 11th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2022, (New York, NY, USA), p. 68–81,
Association for Computing Machinery, 2022.

[18] S. Konrad and B. H. C. Cheng, “Real-time specification patterns,”
Proceedings. 27th International Conference on Software Engineering,
2005. ICSE 2005., pp. 372–381, 2005.

[19] L. Grunske, “Specification patterns for probabilistic quality properties,”
in Proceedings of the 30th International Conference on Software Engi-
neering, ICSE ’08, (New York, NY, USA), p. 31–40, Association for
Computing Machinery, 2008.

[20] A. Brunello, A. Montanari, and M. Reynolds, “Synthesis of LTL
formulas from natural language texts: State of the art and research
directions,” in 26th International Symposium on Temporal Representa-
tion and Reasoning, TIME 2019, October 16-19, 2019, Málaga, Spain
(J. Gamper, S. Pinchinat, and G. Sciavicco, eds.), vol. 147 of LIPIcs,
pp. 17:1–17:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019.

[21] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” in Proceed-
ings of the 34th International Conference on Neural Information Pro-
cessing Systems, NIPS ’20, (Red Hook, NY, USA), Curran Associates
Inc., 2020.

[22] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel, S. Riedel, and D. Kiela,
“Retrieval-augmented generation for knowledge-intensive nlp tasks,” in
Proceedings of the 34th International Conference on Neural Information
Processing Systems, NIPS ’20, (Red Hook, NY, USA), Curran Asso-
ciates Inc., 2020.

[23] A. Duret-Lutz, E. Renault, M. Colange, F. Renkin, A. G. Aisse,
P. Schlehuber-Caissier, T. Medioni, A. Martin, J. Dubois, C. Gillard, and
H. Lauko, “From Spot 2.0 to Spot 2.10: What’s new?,” in Proceedings
of the 34th International Conference on Computer Aided Verification
(CAV’22), vol. 13372 of Lecture Notes in Computer Science, pp. 174–
187, Springer, Aug. 2022.

[24] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems (Y. Lakhnech and S. Yovine, eds.), (Berlin,
Heidelberg), pp. 152–166, Springer Berlin Heidelberg, 2004.

[25] B. Walshe, “What is amba?,” 2014.
[26] Arm Ltd., “Learn the architecture - an introduction to amba axi,” 2022.

129

	Introduction
	This Paper

	Related Work and Motivation
	Structured Translation of Structured NL
	Unstructured Translation of Unstructured NL
	End-to-end Translation
	Interactive Translation

	Our Approach: Structured Translation of Unstructured NL

	SynthTL Approach and Tool: Structured Translation of Unstructured Natural Language to Temporal Logics
	Interactive TL Specification Generation
	Sub-Translation Tree Generation and Validation
	Structured Translation of Sub-Translation Trees to TL Specifications
	LLM Prompts for Sub-Translation Tree Generation
	Sub-Translation Tree Expressiveness

	Searching for Translations that Hold on DUT
	Fixing Culprit Sub-Translations or the DUT

	SynthTL Utilities: Model Checker-guided Translation Search and Culprit Identification
	Translation Search Utility
	Sub-Tree Pruning in Translation Search
	Batch Model Checking

	Culprit Identification Utility

	Case Study: Translating an Industrial NL Specification to TL with SynthTL
	Evaluation of TL Generation and Validation
	Evaluation of Translation Search
	Evaluation of Batch Model Checking
	Evaluation of Culprit Identification
	Culprit Identification Given an Incorrect TL Specification and a Correct DUT
	Culprit Identification Given a Correct TL Specification and an Incorrect DUT

	Conclusion
	References

