% Formal Methods in Computer-Aided Design 2024

Semi-open-state testing for in-silicon coherent
interconnects

Jasmin Schult(>), Ben Fiedler

, David Cock

, Timothy Roscoe

ETH Ziirich, Ziirich, Switzerland
firstname.lastname@inf.ethz.ch

Abstract—In this paper, we extend open-state conformance
testing from Mealy FSM specifications to implementations where
only a subset of states are observable. We show that the
classical transition tour can be used to completely test such
implementations for conformance, including unobservable states,
under the assumption that in the specification, any trace from
an unobservable state eventually reaches an observable state
— i.e. that the observable states form a feedback vertex set.
Complete transition tour testing can efficiently test for many
conformance relations when they are appropriately formulated.
Generalized-quasi-reduction (GQR) is useful for protocol testing
because it allows for partial, non-deterministic specifications,
but establishing GQR in the general setting is complex and
expensive. We show a relation that implies GQR and is practical
for transition tour testing.

Our setting of partial state observability applies to an im-
portant class of protocol implementations in modern hardware:
cache coherence. These protocols are nearly universal in multi-
processor systems, and are notoriously difficult to verify both
at the specification and implementation level. We show that
their structure lends them naturally to complete open-state
testing under this extended definition. During design, coherence
protocols are elaborated from an FSM of stable states with atomic,
observable transitions by the addition of a large number of
unobservable transient states to handle concurrency, including
out-of-order and interleaved message delivery. We demonstrate
that a real in-silicon implementation on the Cavium ThunderX-1
CN88XX CPU has exactly the required characteristics and we
establish the GQR conformance relation against a specification
of its inter-socket coherence protocol.

I. INTRODUCTION

In this paper, we introduce semi-open-state testing, a test
setting where an implementation with partially visible states
is tested from a finite state machine model of its behavior
to establish a conformance property like GQR. We show that
under a set of additional requirements that we impose on semi-
open-state testing, complete visibility of the implementation’s
states is achieved, thus allowing simpler open-state testing
techniques [1] to be employed instead of the more expensive,
general complete Finite State Machine (FSM) testing meth-
ods [2]. This work arises out of our analysis of cache coher-
ence protocols in the context of the Enzian [3] project. We
show that this practically-important class of protocols match
the requirements of semi-open-state testing by demonstrating
a complete, online validation that the native protocol of the
server-class CN88XX (ThunderX-1) CPU is GQR-conformant
to its specification. This testing is conducted live against the
actual silicon implementation.

d https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_21

Semi-open-state testing is motivated by the structure of
hardware cache coherence protocols, particularly in emerging
standards such as CXL [4]. These protocols consist of a set of
stable states that are generally visible via debug mechanisms,
plus a larger number of intermediate transient states added to
handle the effects of concurrency between nodes e.g. message
reordering. A typical protocol has 3-5 stable states, and 10—
100 transient states. The degree of reordering is bounded in
practice, and thus a transient state will lead back to a stable
state after a finite number of messages. Our insight is to
label these intermediate states with the last stable state and
this finite, observable 10 trace, thereby reducing the task to
standard open-state testing. Open-state testing methods are
both simpler and less expensive, which greatly increases their
practicality for testing real hardware.

Formally, this work concerns the complete conformance
testing [5] of implementations against Mealy FSM specifica-
tions. Existing work leverages either general complete FSM
testing or open-state testing. The general complete testing
methods only assume an upper bound m on the number of
states in the implementation, hence they are referred to as m-
complete methods. They are comparatively heavy-weight and
worst-case exponential in m. Open-state testing, on the other
hand, derives large gains in efficiency and implementation
complexity from its stronger assumptions on the system under
test. Chief among these is that all implementation states are
visible. The first challenge in applying open-state techniques to
coherence protocols is thus the invisibility of transient states.
We overcome this by developing semi-open-state testing, the
first key contribution of this paper.

The second challenge is in identifying a conformance rela-
tion that matches the characteristics of a coherence protocol.
We settle on GQR principally for its ability to permit partial
and non-deterministic specifications, which is essential in a
practical protocol specification to leave sufficient freedom for
implementors to optimize their designs. GQR 1is presented in
an m-complete setting, and we know of no existing open-
state-compatible formulation in the literature. Our second
contribution is thus the open-state-testable relation GQRopen,
which we prove is testable under the assumptions of semi-
open-state testing and sufficient to establish standard GQR for
the systems we consider.

In section II, we introduce both conformance testing from
Mealy FSMs and GQR as used in existing literature. We
develop semi-open-state testing in section III, enumerating

This article is licensed under a Creative
BY Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0009-0000-1815-3206
https://orcid.org/0000-0002-7215-9147
https://orcid.org/0000-0003-2997-6560
https://orcid.org/0000-0002-8298-1126
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_21
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_21
https://creativecommons.org/licenses/by/4.0/

the assumptions needed to extend open-state testing to semi-
visible implementations. In section IV we explain the function
and characteristics of cache coherence protocols, why semi-
open-state testing is applicable to them and why the emergence
of coherent interconnect standards necessitates such testing.
We demonstrate how this approach performs in practice in
section V, by applying semi-open-state testing to the cache
coherence implementation of the ThunderX-1, which is de-
ployed as part of the Enzian platform. Finally, we conclude
and outline future work in section VI.

II. BACKGROUND AND RELATED WORK
A. Notation & Definitions

We consider Mealy-type 1O state machines whose output
depends both on state and current input, and adapt the notation
of Hierons [6]. A machine is a tuple M = (S,s0,X,Y,h)
where:

« S is the finite set of states.

e 5o € S is the initial state.

« X is the finite input alphabet.

« Y is the finite output alphabet.

e h C (SX X)X (SxY) is the transition relation.

Where necessary, a subscript identifies the associated ma-
chine, e.g. hgpgc for the transition relation of machine SPEC.

If ((s,x),(s’,y)) € h then on receiving input x when in
state s, the machine may transition to state s’ while producing
output y. h(s,x) denotes the image of {(s,x)} under #, i.e.
the allowed transitions for a given state and input.

We assume that all states in S are reachable from the
machine’s initial state, since unreachable states are not relevant
to the observable behavior of the machine.

We assume that M is observably non-deterministic: The
target state is completely determined by the observed input and
output. Equivalently, the outputs of any two distinct reactions
in h(s,x) must differ:

{(.3). (s".¥")} S h(s,x) = s"=s" vy #y" (1)

We denote the set of inputs x for which some transition of
machine M is defined from state s by

QM(S) = {X|((S,)C), (_’_)) € hM}

M is completely specified if Vs. Qp(s) = X i.e. its behavior
is specified for all inputs in all states.

Y contains the distinct special symbols ~ and L representing
no output and failure. ~ is allowed for both specification
and implementation, but L only for an implementation. ~
in a specification requires that an implementation produce
no output, and ~ in an implementation is assumed to be
observable (e.g. by timeout [7]). L does not satisfy any
specification. With these additions we may assume that any
implementation is completely specified.

Every machine step consumes exactly one input, and
produces exactly one output. A length-n trace of the ma-
chine records both state transitions and the corresponding
input/output pairs:

((S’xl)’ (S]’y]))7 T ((Sn—lvxn)’ (Sn7)’n))

The corresponding /O trace is the projection containing only
the message pairs:

xl/)’h"' 7xn/yn

We write t.x/y for the 10 trace ¢t extended with the IO
transition x/y and f,f, for trace concatenation.

The language Lps(s) is the set of permitted 10 traces
beginning with machine M in state s, and for any IO trace
t € Lp(s) of an observably non-deterministic machine,

AFTER (s, 1)

is the unique final state s’ that machine M reaches after
observing trace ¢ beginning in state s. We omit the state

s if it corresponds to the initial state: Lp; = Lps(so) and
AFTER (1) := AFTER s (50,).
Note that

AFTER (s, (1t")) = AFTER ; ((AFTERps (5,1)), 1) (2)

B. Conformance Testing against Mealy Machines

Testing an implementation against a specification is a well-
studied problem, known as conformance testing, model-based
testing, and fault detection in the literature. Different tech-
niques exist to test against a variety of formal models; This
paper considers conformance testing against Mealy FSMs.

Establishing a relation between a real-world implementation
and an abstract specification SPEC begins with the testability
hypothesis [8]. For Mealy FSM specifications, this includes
that the behavior of the implementation can be captured by an
unknown, abstract Mealy FSM denoted by IMPL.

For IMPL to be testable even if its behavior is non-
deterministic requires us to assume (at least) weak fairness: If
the implementation is presented with input x in state s enough
times, it will eventually take every possible transition (to some
state s with output y).

Existing work [5]-[7], generally considers IMPL to be
a completely specified, observably non-deterministic Mealy
FSM. Complete specification captures the practical reality that
a real-world implementation cannot refuse an input provided
by its environment and so always defines some reaction, even
if this is just failing or producing no output. These are the
~ and L output symbols already introduced. Further, any
completely-specified Mealy FSM can be transformed into an
observably non-deterministic equivalent via the standard NFA—
DFA construction [9].

Requirement 1. (7estability Hypothesis) In practice, the testa-
bility hypothesis requires a suitable 1/0O adaptor fo translate
between the implementation’s concrete and the specification’s
abstract 1/0. Aarts et al. formalize the requirements of such
an adaptor in the context of state machine learning [10].
Furthermore, the abstract implementation needs to be input-
driven by the input alphabet of SPEC.

For the fairness assumption to hold in practice, it is suf-
ficient that the implementation’s non-determinism originate
only from true randomization. In particular, the implemen-
tation’s non-determinism must not originate from concurrent

154

processing of inputs resulting in different outcomes (which
would require testing to generate unknown relative input
timings to explore all such outputs). Equivalently, the imple-
mentation’s processing of inputs must be linearizable.

It is important to ascertain that a real-world implementation
exhibits these properties before testing it against a Mealy
specification. We revisit these assumptions in the context of
coherence protocols in section IV.

Testing seeks to establish a conformance relation between
SPEC and IMPL. In this case we work with GQR as defined
by Hierons [6]. GQR allows partial specifications, i.e. it does
not require a transition in response to every input in every
state. This is necessary for protocols, which are typically
sparse; only a small set of inputs are expected in a particular
state. GQR interprets non-determinism in the specification as
implementation choice. An implementation is a generalized
quasi reduction of its specification if all its outputs are valid
choices offered by the specification, so long as only inputs
defined by the specification are provided to it. More formally,

Definition 1 (Generalized-Quasi-Reduction (GQR)).

Vt € Liypr, N Lgpec, X € Qsprc (AFTERgppc(1)).

{ylt.x/y € Limp} S {¥|t.x/y € Lspec} (3)

This definition simplifies the original in two ways: Firstly,
as our SPEC is observably nondeterministic, AFTERgpgc () is
unique, and thus we need only quantify over its inputs and
not over the set of possible states as well. Secondly, as IMPL
is completely specified we can drop the first condition, which
requires a corresponding implementation transition.

Conformance testing methods are either complete or incom-
plete. Complete methods can formally establish a conformance
relation, whereas incomplete methods increase the confidence
that a relation holds, but without formal guarantees. We
consider only complete conformance testing.

The difficulty of complete conformance testing depends
on the additional assumptions made on the implementation.
Without any assumptions, the IO behavior of even a finite
machine may be infinite, and thus impossible to completely
test with finite methods.

Complete testing generally assumes a known upper bound
m on the number of implementation states, giving m-complete
testing [6]. The number of transitions that must be tested
is exponential in m, as shown by Moore [11]. In particular,
it is insufficient to cover all transitions of the specification
once [2]. Note that this is true even if the implementation is
assumed to have at most as many states as the implementation,
since the implementation may enter the wrong state after a
transition. This is due to the implementation state not being
visible: it can only be inferred from the future I/O traces of
the implementation.

If the state is visible, the complexity decreases dramatically.
This is open-state testing [1] or testing with a reliable status
message [5], [12]. The finite representations of specification
and implementation can be compared directly, instead of

reasoning over all their (potentially) infinitely many I/O traces.
Complete testing against a specification reduces to an online
traversal of its transition graph, with sufficient repetitions to
account for non-determinism. Bourdonov et al. [1] describe a
traversal algorithm that can cope with detours caused by un-
favorable choices of non-determinism in the implementation.

Open-state testing is not only simpler to implement but
also more efficient than m-complete testing. Sidhu et al. [13]
show that transition traversal generates shorter test cases on
average compared to m-complete methods for deterministic,
complete specifications; this also holds even if the bound
m is equal to the number of states in the specification.
Open-state testing is much more efficient than the general
methods used to establish GQR, as testing against partial, non-
deterministic specifications is considerably more difficult [6],
[14]. Furthermore, open-state testing is able to detect if an
implementation possesses any number of additional states with
respect to the specification without an increase in testing
complexity, whereas we pay an exponential tax to do the same
for m-complete methods.

In the following sections, we show that m-complete test-
ing for GQR can be reduced to open-state testing, even
if only a subset of states are actually visible (section III),
and demonstrate that the necessary assumptions apply to an
important class of practical protocols: those for hardware
cache coherence (section IV).

ITII. SEMI-OPEN-STATE TESTING AND GQRpgy

Requirement 2. (Visible States) We require that a finite subset
of reachable implementation states, including the initial state,
are known a priori:

SOvpL € Sknown S SimeL

These states are fully observable—we see whether or not the
implementation is in such a state and if so, which one. All
others are only indirectly observable by their 10 behavior.

We thus obtain a partial labelling function, A, from traces
to states:

AFTERpypL(f) = S A'S € Sgpown = A(f) =5

“4)

We label the unknown states by reference to the last known
state. For any trace ¢ from sq, take the longest 75 such that

Ixty =1 /l(tK) € Sknown

We thus obtain a complete labelling of traces, A, with the
tuple of last known state and 1O trace since that state:

A1) = (A(tk), ty) (5)

As IMPL is observably nondeterministic, the trace uniquely
defines the final state, which is thus observable given the
observed label of the IO trace to the last known state (fg),
plus the IO trace through all subsequent unknown states (ty7).

For any known state sk, a corresponding trace tx, and a
continuation fy; such that ¢ := txty € Ly (or equivalently

155

A(1) = (sk,ty)), the state s corresponding to trace #’s label
matches the machine’s actual state after ¢:

s == AFTERypy (A(2))

= AFTERyp (A(1x), ty) by (5)
= AFTERypL (AFTERpL (1K), tU) by (4)
= AFTERpL (tkty) by (2)
= AFTERypL(7) (6)

Hence A is equivalent to labelling states with the full trace from
so which, by observable nondeterminism, uniquely identifies
the state. A thus allows a tester to identify the implementation
state after any trace, providing the complete visibility of the
implementation’s states needed for open-state testing.

To complete the reduction to open-state testing, the states
of SPEC need to match the observations returned by A. To
preserve the finiteness of Sspec, We need to impose the
following requirement on the specification that we wish to
test against:

Requirement 3. (Feedback Vertex Set) We require that the
known states form a feedback vertex set' in the specification’s
transition graph, and every trace through only unknown states
is finite. We further require that there exists some global bound,
¢, on the length of all such traces.

The transformation of the original specification to a semi-
open testable SPEC entails converting the DAGs between the
stable states in its transition graph to trees by duplicating states
as necessary. This transformation may therefore increase the
number of transitions and states to O(|Sknown|- (|X|-1Y])€) in
the worst case, depending on the shape of the transition graph.
We therefore need to carefully examine the specification to
determine if open-state testing remains practical and preferable
to m-complete testing:

Requirement 4. (Practicability) The bound c and the shape
of the original specification should be carefully examined to
determine if the size of the corresponding semi-open testable
SPEC remains manageable.

With the resulting transformed SPEC, our reduction of semi-
open-state testing to open-state testing is complete.

We now shift our attention to how open-state testing can be
leveraged to establish GQR. A relation is open-state testable
if, assuming that the tester can drive the machine’s input and
observe both its state and output, it is possible to determine
if a specification and implementation lie in the relation by
driving the implementation through all input transitions in the
specification a finite number of times (to account for non-
determinism). This implies that an open-state testable relation
can be established by a graph traversal of the specification, as
in the algorithm of Bourdonov [1].

GQR as formulated in Definition 1 is not directly open-
state testable. It permits a single specification state to be

A feedback vertex set of a directed graph G is a set of vertices whose
removal transforms G into a directed acyclic graph.

implemented as multiple states that are distinguishable only
by their inconsistent choices of non-deterministic options. For
a detailed discussion of this phenomenon, we refer to the study
of the classical reduction relation by Petrenko et al. [14].
In the open-state setting, the observations of these multiple
implementation states will fail to match the single state in the
specification, causing the test to fail even if the implementation
is GQR in the general sense.

We therefore propose the following open-state-testable spe-
cialization of Definition 1, which assumes the observability of
implementation states:

Definition 2 (Open-State GQR (GQRpen))-

$OmvpL = 5O0specA
Vs € SSPEC' Vx € QspEc(S).
(Ht € LIMPL N LSPEC' S = AFTERIMPL(t))
= hwpL(5,%) C hsppe(s,x) (7)

Notice that GQRpen is comparing states of the implemen-
tation and states of the specification for equality (in particular,
recall that the transition functions /spgc and hpyp. map to sets
of (next state, output)). This is possible because the states that
the implementation adopts are completely visible in the open
state setting and can hence act like an additional output of
the implementation. Recall that for the semi-open-state testing
setting that we have discussed earlier, this visibility is provided
by the A function.

GQRopen implies, inductively, that the states of the imple-
mentation that are reached by traces defined by the specifica-
tion must agree with those of the specification:

Lemma 1.

GQRypen = V1 € LiypL N Lspec.
AFTERypL(?) = AFTERgpgc (2)

Initially,
AFTERmpr ([]) = sO1vpr. = $Osprc = AFTERgppc ([])

Take any
t.x/y € Lspgc N Livpr ®)

such that
s = AFTERypr (f) = AFTERgpgc(7) 9)

Since t.x/y € Lspgc N Liyipr, by the definition of hyy:

X € Qgppc(s) (10)
(AFTERypL (1. X/),y) € hiypL (5, %) (11
(AFTERspgc (1. x/),y) € hsppc(s,x) (12)

Given (8,9, and 10), GQR e, (7) yields:

hivp (8, X) € hgpre (s, x)

or, the implementation’s transitions are a subset of the speci-
fication’s.

156

Combined with (11) we have that

(AFTERypL (1. X/), y) € hsppc (s, X)

or, the final implementation state is among those of the
specification with the same observable 10 behaviour.

The actual specification state must also be in this set (12),
and thus by the definition of observable non-determinism (1)
must be equal to the implementation state:

AFTERypL (7. X/y) = AFTERsprc (1. X/)

Lemma 2. GQR,,., is open-state testable.

Definition 2 applies to the set of implementation states
reachable by a trace also accepted by the specification. This
set is finite. Assuming weak fairness (Requirement 1), we will
eventually observe every possible y for each s and x. Thus by
repeatedly traversing every input transition we will terminate,
having exhaustively tested the subset relation. m|

Lemma 3. GQR,,., = GQR

Using Definition 1 (GQR) take t € Lyyp. N Lgppc, X €
Qspec (AFTERgpec (1)) and y such that t.x/y € Liypr.

Since t,t.x/y € Liypr,

3s". (5", y) € himpr (AFTER (1), X) (13)

Moreover, from GQRpe, we have, by Lemma 1
AFTERgpgc (1) = AFTERyp ()
Thus, by GQRgpen (7)
hivpL (AFTERpr (2),X) € hsprc (AFTERgpgc (7), X)

Together with (13) we have

(5", ¥) € hspec (AFTERgpec (1), X)

Thus, since t € Lgpgc:

t.x/y € Lspgc

]

In this section we have presented semi-open-state testing
for semi-visible machines, and GQRopen: a sufficient, semi-
open-state-testable condition for GQR to hold on the traces
of such a machine. By exploiting the observability of the
subset of known states and the observable nondeterminism
of the implementation, we construct a complete labelling,
A, of implementation states. Given an appropriately shaped
specification, this allows us to reduce semi-open-state testing
to open-state testing, avoiding the cost of general m-complete
testing.

IV. CACHE-COHERENCE PROTOCOL INTEROPERABILITY

We now turn to a key real-world problem which is highly
amenable to semi-open-state testing. Indeed, our motivation
to develop the formalism stemmed from a practical problem
we faced: how to gain confidence that two different endpoint
implementations of an informally-defined and under-specified
cache coherence protocol will successfully interoperate. The
endpoints of mainstream inter-processor cache coherence pro-
tocols turn out to be an excellent match to the requirements
for semi-open-state testing.

Modern computers with multiple processor cores rely on
caches for performance: a hierarchy of caches holds copies of
data from memory (lines), and these caches are kept coherent
by a hardware cache coherence protocol which ensures that, at
any point in time, all copies of a line that reside in the system’s
caches are identical [15]. This is a global invariant that must
be upheld at all times; the protocol maintains this invariant
while serving memory requests (reads and writes) made by
different cores. To correctly and efficiently negotiate the si-
multaneous handling of multiple such requests, the endpoints
of modern coherence protocols tend to be large and complex
state machines. At the same time, high assurance in the correct
operation of these endpoints is required: bugs prevent correct
execution of the entire machine, and the performance-critical
implementation in silicon means that these bugs can rarely be
fixed post-silicon. For this reason, formal methods have long
been employed in coherence protocol designs [16], e.g. for
verifying the protocol definitions [17], or generating correct-
by-construction protocol state machines [18].

Work to date that tests if hardware implementations cor-
rectly implement these verified protocol designs has operated
on the entire coherent system, rather than on individual proto-
col endpoints as we are proposing: Kahlouche et al. [19] and
Kriouile et al. [20] also generate tests from formal models,
but the scale of the system-wide protocol makes complete
testing intractable and simulation environments are needed to
exert control over the concurrent execution at the protocol
endpoints. Consequently, these works have neither addressed
the visibility of endpoint states nor leveraged those states
to achieve complete testing coverage. Orthogonally, other
efforts [21], [22] have integrated additional testing logic into
the system implementation to generate test stimuli and to
directly check the high-level protocol invariants.

These existing testing methods have worked so far because
coherence protocols have generally been specific to a particular
processor model, allowing a single hardware team to conduct
the design, verification, and implementation of the entire
coherent system.

This situation is changing: open, cache-coherent intercon-
nect standards like CXL.cache [4], NVlink [23], CCIX [24],
and TileLink [25] attach a range of 3rd-party cache-coherent
devices to a computer system. The resulting new and po-
tentially different protocol endpoint implementations of these
devices must be able to interoperate with each other and
achieve global coherence in flexible system compositions.

157

(snoop(RdEx), ~)

(a) A snoop-based, symmetric MESI protocol

(b) Asymmetric specs for 2-node directory-based MESI; the remote side (left) tracks

only M-E-S-1 states, and the home side (right) tracks local and remote states.

Fig. 1: Mealy machines for snoopy and directory-based MESI.

This development motivates both the formal specification
of protocol endpoints in such standard, and the means to
efficiently and exhaustively test their resulting in-silicon im-
plementations. More concretely, formal specification allows
the desired system-level properties to be verified on the
abstract compositions of the standard’s endpoints. A complete
test method then allows those system-level properties to be
transferred from the abstract to the composition of successfully
tested endpoint implementations. To apply to a standard’s com-
plex multi-vendor ecosystem, this test method must operate on
the in-silicon implementation only, without requiring access
to additional information such as internal documentation or
design sources.

Given that the requirements for semi-open-state testing
are met, our proposed testing approach is applicable to this
setting: a successful test verdict guarantees complete con-
formance of an in-silicon coherence endpoint to its formal
Mealy FSM specification. Semi-open-state testing does not
require any additional information beyond access to the in-
silicon implementation, and can be naturally integrated into the
usual compliance testing workshops conducted for hardware
interconnect standards like PCI Express (PCle).

We will now discuss why the requirements of semi-open-
state testing can be met by protocol endpoints of cache
coherent interconnect standards. To this end, we take a closer
look at the nature of these endpoints. We then argue why the
requirements of semi-open-state testing constitute reasonable
restrictions on these endpoints and can therefore be imposed
on vendor implementations by the standard.

A. Directory-based cache coherence protocols

Basic textbook coherence protocols tend to be snoopy: each
node can observe the operations performed by all other nodes
instantaneously. The classic example is MESI, which asso-
ciates one of four different states with each line: M(odified),
E(xclusive), S(hared) or I(nvalid). The M and E states imply
that the cache holds the only valid copy (dirty or clean resp.)
of the data and reads and writes can be performed locally on
it without coordination. State S implies the copy is valid and
clean but may exist in other caches, requiring coordination for
writes. A snoopy MESI protocol endpoint can thus be specified

with the Mealy FSM in Figure la. Transitions are defined on
inputs corresponding to local memory requests or snooped-
on remote bus transactions, while outputs are initiated bus
transactions.

The shared bus required for snoopy protocols does not scale
well, and so in practice most real inter-die implementations are
directory-based, including those used by coherent interconnect
standards. These protocols track the cache line status of all
participating nodes in a directory held at the line’s home node
(typically where the main memory for the line is attached),
and coordinate with explicit point-to-point messages instead
of bus snooping.

This makes the protocol endpoints asymmetric: remote
nodes have the same stable states (e.g. M, E, S, I) as the
snoopy protocol, but the home directory needs stable states
that reflect the system-wide state combinations. Moreover, the
use of point-to-point messages requires additional transient
states (sometimes hundreds) in order to cope with all possible
interleavings of messages and actions on each node, including
conflicting concurrent transactions and message reordering.
The resulting two Mealy FSMs are therefore more complex
(Figure 1b).

B. Connection to semi-open-state testing

The endpoints of directory-based coherence protocols are
amenable to semi-open-state testing: the special visible states
in the implementation correspond to the stable protocol states,
and the main assumptions we require do hold.

Requirement (1) Testability Hypothesis: A valid I/O adaptor
can abstract the data in a cache line, assembly load and store
instructions, and the format of coherence messages, retaining
only the message and software request types. The abstracted
behavior of the in-silicon implementation can be driven with
respect to the inputs of the spec, which requires that the
protocol-relevant state does not change except in response
to such inputs. Notice that our state machines only reason
about a single cache line; silicon implementations generally
do indeed treat each line independently [16], although some
dependencies may be introduced if the implementation re-
lies on particular message reorderings [26]. For the standard
fairness assumption, we further require the implementation’s

158

(store, send(ReqE))

(recv(AckE),
{msg(ToI), msg(ReqE)})

(invalidate, ~) (store, ~)
Fig. 2: A cycle of transient states in a remote node, produced
by its software repeating concurrent invalidates and reads.

processing of inputs to be linearizable. This is usually the
intended behavior of a protocol endpoint; whether linearizable
processing is achieved needs to be validated separately.

Requirement (2) Visible stable cache line states: Although
not used by most programmers, it turns out that existing
hardware generally provides precisely this property to software
via facilities intended for performance analysis and low-level
debugging. An example is the processor we test in section V.
Furthermore, the initial state of the protocol naturally corre-
sponds to the stable Invalid state, and is therefore among the
visible states, as required.

Requirement (3) Stable cache states form a feedback vertex
set: To achieve this, our specification must exclude input
buffering and the remaining pure protocol processing must
exhibit the feedback vertex property. Without the exclusion of
input buffering, a continuous stream of stores and invalidations
on the remote node could yield a cycle of transient states, as
shown in Figure 2: as soon as coordination with the home node
completes, a request is immediately replaced by its buffered
successor, and thus no intermediate stable state is visible.

Real implementations do require the buffering behavior
we exclude from the specification. However, in practice the
buffering only depends on the aspects of the protocol state
that the implementation makes directly visible: only entering a
stable state serves as a signal to fetch the next request from the
buffer. This choice is made by hardware designers precisely
to limit complexity of both implementation and validation.

Consequently, we only need pure protocol processing to
respect the feedback vertex set property. This requirement
might preclude aggressive cache optimizations such as eager
replies to requests, or remote-allocate of the line into a remote
node’s cache (which may require the remote node to handle an
unbounded number of home-enforced caching state upgrades
and downgrades while a request of its own is pending). In
practice, such features are rare.

Requirement (4) Practicability: Recall that the specification
needs to be transformed to define its states according to the
A function (Equation 5). This entails unrolling traces through
transient states, which may cause the size of the specification
to grow exponentially.

Fortunately, in coherence protocols this is not the case. They
exhibit a small upper bound on the number of intermediate
transient states, because only a limited number of requests

from a peer must be handled before the node can conclude the
processing of its own requests and reach the next stable state.
In MESI, for example, the home node can only ask the remote
to downgrade its state twice (from M/E to S, then from S to I).
Furthermore, like other communication protocols, coherence
protocols are sparse — only a few messages can be received
from a valid peer implementation in any given state. Therefore,
we expect the transformation to only yield a moderate increase
in size.

V. APPLICATION TO A REAL IN-SILICON IMPLEMENTATION

While production hardware for the cache-coherent variants
of protocol standards like CXL has yet to appear, we have
applied our technique to the cache-coherent interconnect of the
Enzian research computer [3]; indeed, this was a motivation for
our original work. Enzian can be viewed as a 2-socket NUMA
machine combining a Cavium ThunderX-1 48-core ARMvS8
CPU with a large Field Programmable Gate Array (FPGA),
which also implements the Cavium Coherent Processor In-
terconnect (CCPI), the CPU’s native inter-socket coherence
protocol, appearing to the CPU as a second processor node.

While the ThunderX-1 was not originally intended to in-
teroperate at the coherence level with anything other than
another ThunderX-1, Enzian was designed to explore the space
of emerging coherent heterogeneous platforms, and so must
provide an endpoint implementation of CCPI on the FPGA
that interoperates with the CPU. In the context of this work, we
use the CPU’s Last-level cache (LLC) as the system under test,
and use a combination of FPGA programming and software
running on the CPU to exhaustively test the CPU’s silicon
implementation of CCPI against our specification.

CCPI is a distributed directory-based MESI coherence pro-
tocol whose endpoints satisfy all of the requirements for semi-
open-state testing: CCPI maintains cache line independence; it
enforces sequential consistency and is able to cope with arbi-
trary reorderings of messages on the interconnect. Its endpoints
further cleanly separate their input buffering and processing,
and the design of their processing guarantees that a stable
M-E-S-I protocol state (combination) is always reached after
at most four transitions. As a result, CCPI’s behavior can be
accurately described by two Mealy FSMs, one for a remotely-
owned and one for a homed cache line, both of which return
to a stable state in a bounded number of steps. Furthermore,
software on the CPU can use hardware performance counters
to determine if a cache line is in a transient or stable state,
and for the latter, the state of each cache line can be explicitly
read from the cache using privileged registers. Thus, the stable
caching states are made visible in the protocol implementation,
as required.

Our initial specification of the protocol endpoints was
manually constructed from informal vendor documentation,
and subsequently refined as a result of the testing process. The
result is an exhaustively-tested specification of an in-silicon
cache coherence protocol implementation.

159

A. Testing setup and methodology

Our testing setup operates on a single designated Cache
Line Under Test (CLUT), and consists of three components:
an orchestrator and a C library running on the CPU, and
an FPGA testing component. The orchestrator is responsible
for generating the test stimuli from the supplied specification
and coordinating their execution. To generate test stimuli,
the orchestrator performs the online graph traversal algorithm
by Bourdonov et al. [1] while driving the implementation
in tandem. The C library can issue operations (load, store,
etc.) on the CLUT and can return the visible aspects of
the CLUT’s current protocol state (transient or stable with
a particular caching state) when invoked by the orchestrator.
The FPGA tester implements the underlying reliable link
protocol, can send and receive coherence messages to and
from the CPU’s LLC when directed by the orchestrator, and
relay received events back. Communication between the FPGA
component and orchestrator cannot use the coherence protocol
because it must not interfere with the CLUT state. We exploit
the uncached I/O load/store operations that the ThunderX-1
supports as an out-of-band communication channel between
the software orchestrator and the FPGA logic.

We must also prevent any other events in the system (such
as conflict or capacity misses in the cache) from affecting the
CLUT. We achieve this by placing the CLUT in a region of
memory otherwise unused, and exploiting a feature of the CPU
to “lock” it in the LLC, ensuring that the only operations that
affect it are those explicitly initiated by the orchestrator.

This also addresses a further practical problem: since we
are deliberately stalling the cache protocol, we run the risk
of preventing the orchestrator itself making forward progress
unless we can ensure that it does not need to initiate inter-node
cache operations. In our current implementation, this can still
occasionally happen due to global barrier operations we cannot
control, deadlocking the interconnect and causing a “machine
check” exception in the processor. In this case, we simply try
again: the phenomenon does not affect the validity of a run
that completes without a machine check.

B. Experience and results

Having developed our methodology and tools, and based
on an incomplete understanding of CCPI derived from vendor
documentation, it took approximately 2 person-days to formal-
ize the behavior of the protocol in our specification format.
It then took a further person-day to iteratively improve the
specification based on testing feedback. A snippet from our
specification is shown in Table I. It details some transition the
home node can take when the remote node has the CLUT in
shared.

The resulting remote node specification yields a successful
verdict, establishing that the ThunderX-1’s CCPI remote node
implementation is generalized-quasi-equivalent to this specifi-
cation. This final specification has 107 transitions between the
4 stable M-E-S-I states and 42 additional transient states.

In an interoperability scenario, creating the specification
would be done at most once against a “gold standard” ref-

SK tu X - Sk U y
I S [1 SI - I I [1~
I S [1 SEq —- 1 E [1 AE
I S [] LE - 1 S [(LEIV)]| 1V
I S [] IEg — I S [(B4~ 1 ~

TABLE I: Excerpt from our home node specification: to the
left of the arrow we denote the (state, input) pair consisting
of last stable state sk and the trace ty; since. To the right of
the arrow we denote the state (s%,7;;) the machine transitions
to, and the output y generated. The symbol ~ denotes that no
output is generated.

erence implementation, or would ideally be provided directly
by the coherent interconnect standard.

Subsequent conformance testing against the specification is
much quicker. Testing one transition of the ThunderX-1’s in-
silicon implementation takes approximately 10 milliseconds,
most of which is spent waiting between applying the input and
observing the generated outputs to ensure that the ThunderX-1
has finished the processing of the former. Exhaustive testing of
the remote node specification concludes in under two minutes,
during which each stimulus is executed multiple times to
exercise all potential non-deterministic behavior.

Moreover, our specification is human-readable and com-
prehensible, in part because it obviates the need for abstract
state identifiers. With abstract identifiers, a reader would
have to explicitly remember the context of each and every
such identifier, something challenging for a protocol of this
complexity. In contrast, our trace-based identifiers carry all
the relevant context to determine at a glance which sequence
of events has lead to that state, and eliminate the need to think
about how to group behaviors into states, since every behavior
has a unique representation in the specification.

We are convinced that the testing accurately reflects the
implementation behavior. All the discrepancies revealed when
iterating our manually-written specification were reasonable
from a protocol perspective. We also uncovered behavior that
we could not have known based on the documentation; for
example, an undocumented error message that the remote
node generates when it receives unexpected messages in some
situations, or the elision of a particular protocol message in
a way that correctly maintains coherence, yet is at odds with
convention in the rest of the protocol implementation.

Finally, we observe completely deterministic behavior in
testing. If our modelling had missed an important aspect
of the protocol, we would expect this to manifest as non-
deterministic behavior.

VI. CONCLUSION AND FUTURE WORK

Our experience shows that semi-open-state testing is a
viable approach for testing state machine implementations.
Building on existing open-state testing techniques allows us
to design an efficient testing procedure, covering a significant
space of real-world state machines. We evaluate these claims
by testing the in-silicon state machine of a ThunderX-1 LLC

160

against a specification of a directory-based cache coherence
protocol. Exhaustively testing the ThunderX-1 coherence im-
plementation completes in a matter of minutes, demonstrating
that our approach is also efficient in practice.

Our method can extend to specification synthesis, where we
extract the behavior of a state machine implementation from
an implementation. This is useful in situations where we ob-
serve interactions between implementations known to be good
(by accident or design). Synthesis helps derive specifications
where we only have access to implementations, e.g. when
observing the interactions of two reference implementations.

The ThunderX-1 specification we test is restricted to two
protocol actors. Proposed coherent interconnect standards like
CXL allow many actors participating in a coherence protocol,
and will require more sophisticated specifications to deal with
the additional complexity. Testing whether the composition
of heterogeneous cache coherence implementations provides
cache coherence correctly is an important consideration for
system integrators and hardware designers alike.

There are other real-world protocols that could benefit from
semi-open-state testing, for example remote conformance of
TCP stacks. Successful application of our approach in the
context of other protocols and specifications would further
demonstrate its general applicability.

Semi-open-state testing extends the set of state machine
implementations that can be efficiently but exhaustively tested,
to the case where a stable subset of implementation states is
observable. We successfully apply semi-open-state testing to
the in-silicon implementation of unmodified, real hardware.

VII. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their helpful com-
ments and feedback, and we are grateful to Google for
financial support.

REFERENCES

[1] 1. B. Bourdonov and A. S. Kossatchev, “Complete open-state testing
of limitedly nondeterministic systems,” Programming and Computer
Software, vol. 35, no. 6, pp. 301-313, Nov. 2009. [Online]. Available:
https://doi.org/10.1134/S0361768809060012

T. Chow, “Testing Software Design Modeled by Finite-State Machines,”
IEEE Transactions on Software Engineering, vol. SE-4, no. 3, pp.
178-187, May 1978. [Online]. Available: https://doi.org/10.1109/TSE.
1978.231496

D. Cock, A. Ramdas, D. Schwyn, M. Giardino, A. Turowski,
Z. He, N. Hossle, D. Korolija, M. Licciardello, K. Martsenko,
R. Achermann, G. Alonso, and T. Roscoe, “Enzian: An open, general,
CPU/FPGA platform for systems software research,” in Proceedings of
the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, Feb. 2022, pp.
434-451. [Online]. Available: https://doi.org/10.1145/3503222.3507742
D. D. Sharma and I. Agarwal, “Compute Express Link 3.0 Standard,”
CXL Consortium, Tech. Rep., 2022.

D. Lee and M. Yannakakis, “Principles and methods of testing finite
state machines-a survey,” Proceedings of the IEEE, vol. 84, no. 8, pp.
1090-1123, 1996. [Online]. Available: https://doi.org/10.1109/5.533956
R. M. Hierons, “Testing from Partial Finite State Machines without
Harmonised Traces,” IEEE Transactions on Software Engineering,
vol. 43, no. 11, pp. 1033-1043, Nov. 2017. [Online]. Available:
https://doi.org/10.1109/TSE.2017.2652457

[2]

[3]

[4]

[6]

[7]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

161

G. V. Bochmann and A. Petrenko, “Protocol testing: review of
methods and relevance for software testing,” in Proceedings of the
1994 ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA ’94. New York, NY, USA: Association
for Computing Machinery, 1994, p. 109-124. [Online]. Available:
https://doi.org/10.1145/186258.187153

M.-C. Gaudel, “Software testing based on formal specification,” in
Testing Techniques in Software Engineering: Second Pernambuco
Summer School on Software Engineering, PSSE 2007, Recife,
Brazil, December 3-7, 2007, Revised Lectures. Springer Berlin
Heidelberg, 2010, pp. 215-242. [Online]. Available: https://doi.org/10.
1007/978-3-642-14335-9_7

R. M. Hierons, “FSM quasi-equivalence testing via reduction and
observing absences,” Science of Computer Programming, vol. 177, pp.
1-18, May 2019. [Online]. Available: https://doi.org/10.1016/j.scico.
2019.03.004

F. Aarts, B. Jonsson, and J. Uijen, “Generating Models of Infinite-State
Communication Protocols Using Regular Inference with Abstraction,”
in Testing Software and Systems, A. Petrenko, A. Simdo, and J. C.
Maldonado, Eds. Berlin, Heidelberg: Springer, 2010, pp. 188-204.
[Online]. Available: https://doi.org/10.1007/978-3-642-16573-3_14

E. F. Moore et al., “Gedanken-experiments on sequential machines,”
Automata studies, vol. 34, pp. 129-153, 1956.

A. Dahbura, K. Sabnani, and M. Uyar, “Formal methods for generating
protocol conformance test sequences,” Proceedings of the IEEE,
vol. 78, no. 8, pp. 1317-1326, Aug. 1990. [Online]. Available:
https://doi.org/10.1109/5.58319

D. Sidhu and T.-K. Leung, “Formal methods for protocol testing:
A detailed study,” [EEE Transactions on Software Engineering,
vol. 15, no. 4, pp. 413-426, Apr. 1989. [Online]. Available:
https://doi.org/10.1109/32.16602

A. Petrenko, N. Yevtushenko, A. Lebedev, and A. Das, “Nondetermin-
istic State Machines in Protocol Conformance Testing.” in Proceedings
of the IFIP TC6/WG6. 1 Sixth International Workshop on Protocol Test
systems VI, Jan. 1993, pp. 363-378.

D. Culler, J. P. Singh, and A. Gupta, Parallel Computer Architecture:
A Hardware/Software Approach. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., Aug. 1998.

F. Pong and M. Dubois, “Verification techniques for cache coherence
protocols,” ACM Computing Surveys, vol. 29, no. 1, pp. 82-126, Mar.
1997. [Online]. Available: https://doi.org/10.1145/248621.248624
——, “Formal verification of complex coherence protocols using
symbolic state models,” Journal of the ACM, vol. 45, no. 4, pp. 557-587,
Jul. 1998. [Online]. Available: https://doi.org/10.1145/285055.285057
N. Oswald, V. Nagarajan, and D. J. Sorin, “ProtoGen: Automatically
Generating Directory Cache Coherence Protocols from Atomic
Specifications,” in 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), Jun. 2018, pp. 247-260.
[Online]. Available: https://doi.org/10.1109/ISCA.2018.00030

H. Kahlouche, C. Viho, and M. Zendri, “Hardware Testing Using
a Communication Protocol Conformance Testing Tool,” in Tools
and Algorithms for the Construction and Analysis of Systems,
ser. Lecture Notes in Computer Science, W. R. Cleaveland, Ed.
Berlin, Heidelberg: Springer, 1999, pp. 315-329. [Online]. Available:
https://doi.org/10.1007/3-540-49059-0_22

A. Kriouile and W. Serwe, “Using a formal model to improve verification
of a cache-coherent system-on-chip,” in Tools and Algorithms for the
Construction and Analysis of Systems: 21st International Conference,
TACAS 2015, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015,
Proceedings 21, 2015, pp. 708-722.

J. You, D. Bural, J. Brown, and J. Zbiciak, “Red Baron: Near/post-
silicon SoC cache coherence stress tester,” in 2016 IEEE Dallas
Circuits and Systems Conference (DCAS), Oct. 2016, pp. 1-4. [Online].
Available: https://doi.org/10.1109/DCAS.2016.7791135

A. DeOrio, A. Bauserman, and V. Bertacco, “Post-silicon verification
for cache coherence,” in 2008 IEEE International Conference on
Computer Design, Oct. 2008, pp. 348-355. [Online]. Available:
https://doi.org/10.1109/ICCD.2008.4751884

D. Foley and J. Danskin, “Ultra-Performance Pascal GPU and NVLink
Interconnect,” IEEE Micro, vol. 37, no. 2, pp. 7-17, 2017.

CCIX Consortium and others, “Cache Coherent Interconnect for
Accelerators (CCIX),” January 2019. [Online]. Available: http:
/Iwww.ccixconsortium.com

https://doi.org/10.1134/S0361768809060012
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1145/3503222.3507742
https://doi.org/10.1109/5.533956
https://doi.org/10.1109/TSE.2017.2652457
https://doi.org/10.1145/186258.187153
https://doi.org/10.1007/978-3-642-14335-9_7
https://doi.org/10.1007/978-3-642-14335-9_7
https://doi.org/10.1016/j.scico.2019.03.004
https://doi.org/10.1016/j.scico.2019.03.004
https://doi.org/10.1007/978-3-642-16573-3_14
https://doi.org/10.1109/5.58319
https://doi.org/10.1109/32.16602
https://doi.org/10.1145/248621.248624
https://doi.org/10.1145/285055.285057
https://doi.org/10.1109/ISCA.2018.00030
https://doi.org/10.1007/3-540-49059-0_22
https://doi.org/10.1109/DCAS.2016.7791135
https://doi.org/10.1109/ICCD.2008.4751884
http://www.ccixconsortium.com
http://www.ccixconsortium.com

[25]

[26]

W. W. Terpstra, “TileLink: A free and open-source, high-performance
scalable cache-coherent fabric designed for RISC-V,” in Proc. 7th RISC-
V Workshop, 2017.

M. Martin, “Formal verification and its impact on the snooping
versus directory protocol debate,” in 2005 International Conference
on Computer Design, Oct. 2005, pp. 543-549. [Online]. Available:
https://doi.org/10.1109/ICCD.2005.58

162

https://doi.org/10.1109/ICCD.2005.58

	Introduction
	Background and related work
	Notation & Definitions
	Conformance Testing against Mealy Machines

	Semi-open-state Testing and GQR-open
	Cache-coherence protocol interoperability
	Directory-based cache coherence protocols
	Connection to semi-open-state testing

	Application to a real in-silicon implementation
	Testing setup and methodology
	Experience and results

	Conclusion and future work
	Acknowledgements
	References

