
Formal Methods in Computer-Aided Design 2024

Memory Consistency Model-Aware Cache
Coherence for Heterogeneous Hardware

Rachel Cleaveland
Stanford University
Stanford, CA, USA

rcleavel@stanford.edu

Caroline Trippel
Stanford University
Stanford, CA, USA
trippel@stanford.edu

Abstract—Implementing cache-coherent shared memory in
heterogeneous systems is challenged by memory consistency
model (MCM) mismatches among compute elements: what the
system-wide MCM should be and how it should be enforced are
not well-defined. In this paper, we posit that C11—the seminal
heterogeneous MCM—is the natural MCM choice for such sys-
tems. Based on this philosophy, we design and verify MEMGLUE,
an update-based consistency protocol (i.e., an MCM-respecting
coherence protocol) that enforces a slight strengthening of C11
among a set of interacting heterogeneous compute clusters.

MEMGLUE has three notable features. First, it is modular:
any cluster equipped with a MEMGLUE translation shim can
“plug into” any MEMGLUE system. Second, it is verifiable:
one system-wide proof ensures that MEMGLUE upholds the
C11 MCM with respect to MEMGLUE messages exchanged
by clusters’ shims, and per-cluster proofs ensure that shims
correctly translate relevant cluster coherence protocol messages
to MEMGLUE protocol messages. Third, it is polite: MEMGLUE is
compatible with a wide range of cluster coherence protocols and
MCMs and exploits the permissible relaxed ordering behavior of
each cluster to a high degree.

I. INTRODUCTION

Modern computer systems are increasingly heterogeneous:
outsourcing computation from general-purpose CPUs to
special-purpose hardware increases computational throughput
while saving power [36], [25], [37]. And, as evidenced by the
emergence of several industrial designs and standards (e.g.,
NVLink-C2C [5], CXL [71], CAPI [73], CHI [12], HSA [31],
CCIX [2]), there is growing interest in implementing cache-
coherent shared memory in such systems. Allowing compo-
nents to share a coherent address space eases the burden of
explicit memory management while reducing intra-system data
movement and increasing performance [71], [42], [48], [58].

Unfortunately, implementing cache-coherent shared mem-
ory in heterogeneous systems is not straightforward. A core
issue is that the heterogeneous processing elements com-
prising modern Systems-on-Chip (SoCs) [37], multi-chiplet
designs [84], [3], and data centers [26], [22], [76], [40] feature
disparate memory consistency models (MCMs) across their
instruction set architectures (ISAs). That is, these processing
elements assume/enforce differing restrictions on the ordering
and visibility of (all) shared memory accesses [59]. Traditional
coherence invariants order same-address memory accesses
only [59]. Failure to also coordinate ordering among different-

address accesses in heterogeneous shared memory systems can
lead to unexpected program outcomes [52], [63], [34], [9].

Most proposals for implementing heterogeneous cache-
coherent shared memory today require hardware designers and
software developers to collaboratively manage MCM diversity
per system [14], [66], [5], [71].

Recent academic work shows that software developer bur-
den can be alleviated by offloading the task of managing
MCM heterogeneity to hardware consistency protocols. And,
hardware designer effort can be reduced by automatically
synthesizing a hardware consistency protocol per set of het-
erogeneous clusters, given per-cluster coherence protocol and
MCM specifications as input [63]. (In this paper, a cluster
denotes a group of homogeneous compute elements sharing a
memory hierarchy.) Yet, the following key challenges remain.

First, synthesized consistency protocol implementations and
the system-wide MCMs they intend to enforce (described as
the “amalgamation” of the per-cluster MCMs [63]) are unique
for distinct inputs to the synthesis procedure. Each protocol-
MCM pair requires verification to ensure that synthesis did
not unintentionally introduce protocol bugs—a notoriously
difficult task [21], [65], [82], [15], [49], [55], [51], [54], [75],
[53]. Second, deploying these consistency protocols requires
explicitly merging, and thus modifying, cluster coherence
protocol implementations (adding new transient states) and
cache structures (combining clusters’ directory controllers and
last-level caches). This strategy is not readily compatible with
systems where some cluster’s memory system cannot be co-
designed with the rest (e.g., SoCs/multi-chiplet designs with
third-party cores/chiplets, data-centers). Third, clusters with
non-multiple-copy-atomic (non-MCA) MCMs [61], [50], [10],
[38] and update-based coherence protocols are not supported.

A. This Paper

Towards resolving the challenges above, we propose
MEMGLUE, a universal hardware consistency protocol that is
verifiable, modular, and polite. We coin the term consistency
protocol to refer to an MCM-respecting coherence protocol,
which provides coherent shared memory for arbitrary sets of
heterogeneous clusters while upholding the memory ordering
requirements of their respective ISA MCMs.

Insight 1: A universal consistency protocol enables verifi-
ability and modularity: MEMGLUE is a universal consistency

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 22 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0000-0002-6306-9502
https://orcid.org/0000-0002-5776-1121
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_22
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_22
https://creativecommons.org/licenses/by/4.0/

protocol, meaning that its implementation and the system-
wide MCM it enforces are the same for any composition of
heterogeneous clusters. In particular, MEMGLUE enforces a
slight strengthening of the C11/C++11 MCM [39], [46]—
henceforth referred to as C11—among clusters. This is a
natural design choice, since C11 was explicitly intended to be
compatible with the breadth of modern ISA MCMs, and many
new ISAs consider C11-compatibility a core requirement [78],
[50], [80]. C11 defines a variety of memory and synchroniza-
tion operations with different ordering strengths [4] attached
to them, so as to closely match the ordering semantics of a
wide range of ISA memory and synchronization instructions.
MEMGLUE protocol messages directly adopt the syntax and
semantics of these variable-strength C11 operations.

Per-cluster MEMGLUE translation shims translate relevant
cluster coherence protocol messages to MEMGLUE protocol
messages.1 For correctness, a shim must consider the ordering
requirements of the ISA instruction(s) that generate a partic-
ular coherence protocol message and output a MEMGLUE
message of equal (or greater) ordering strength. However,
shim design and its verification can be simplified thanks to
MEMGLUE’s C11-centric design and the existence of formally
verified compiler mappings from C11 to a variety of ISA
MCMs [69]. In particular, a shim can select the strongest C11
operation that could have generated a given coherence protocol
message, and output its matching MEMGLUE message.

Any cluster equipped with a MEMGLUE shim can “plug
into” any MEMGLUE system and know that its memory
ordering behaviors will adhere to its ISA MCM. Moreover, the
MEMGLUE protocol, which coordinates C11-style operations
among clusters’ shims, need only be designed and verified
once. Shims are verified once per cluster, but are simpler and
can reuse C11 compiler mappings [69]. By decoupling per-
cluster translation logic from its system-wide protocol imple-
mentation, MEMGLUE adopts a modular design philosophy,
which avoids explicitly merging clusters’ memory systems.

Insight 2: Update-based protocols enable politeness:
Ideally, a consistency protocol should be compatible with
as many local cluster coherence protocols and MCMs as
possible, while retaining performance of intra-cluster shared
memory communication (compared to a homogeneous shared
memory system), and maximizing performance of inter-cluster
communication. We say that such a protocol is polite. Our
goal of politeness, combined with the producer-consumer
access patterns typically seen among clusters in heterogeneous
systems [72], [79], motivates us to implement MEMGLUE
as an update-based protocol [35] (related work adopts an
invalidation-based approach [62], [9], [71], [63], [34]).

We show that as the fraction of clusters with weak (local)
MCMs grows in a MEMGLUE system, so does the number
of observable heterogeneous program execution behaviors
(§VI-A). This means that MEMGLUE effectively exploits the
permissible relaxed ordering behavior of its clusters’ MCMs.

1A “shim” is “a thin piece of wood, rubber, metal, etc. which is thicker at
one end than the other, that you use to fill a space between two things that
do not fit well together” [67].

Thread 1 Thread 2
1: Wx = 1 3: Ry = 1
2: Wy = 1 4: Rx = 0

Fig. 1: Message Passing (MP) litmus test. Memory locations
contain zero initially. The outcome is permitted by some
MCMs (e.g., ARMv8 [11]), but not others (e.g., x86-TSO [8]).

Plus, MEMGLUE accommodates cluster coherence protocols
and MCMs that current approaches for designing heteroge-
neous MCMs [63], [34] and their implementations as consis-
tency protocols [63] do not, e.g., update-based protocols [63],
[34], and non-multiple-copy-atomic (non-MCA) MCMs [63].

We summarize our contributions as follows.
• MEMGLUE Approach. We propose MEMGLUE, a uni-

versal consistency protocol for heterogeneous shared-
memory systems. To our knowledge, MEMGLUE repre-
sents the only attempt to go beyond an operational model
and implement C11 directly as a hardware protocol.

• MEMGLUE Design. We design MEMGLUE as an update-
based protocol to accommodate clusters with a variety of
local coherence protocols and MCMs and to optimize for
inter-cluster producer-consumer communication patterns.

• MEMGLUE Murφ Model. We implement MEMGLUE in
the Murφ model checker and prove that it closely upholds
C11 for a suite of 6,738 litmus test programs.

• MEMGLUE Correctness Proof. We manually prove that
MEMGLUE upholds C11 for all programs.

II. BACKGROUND AND MOTIVATION

Memory consistency models (MCMs) govern the ordering
and visibility of shared memory accesses in parallel pro-
grams [59]. They define what program executions, and thus
outcomes (mappings of a program’s shared memory loads to
the values they return), are permitted/forbidden. For the same
program, one MCM may permit an outcome that another for-
bids. Such distinctions are often captured using small parallel
programs, called litmus tests (Fig. 1).

MCMs span the hardware-software stack: from high-level
languages (HLLs) [19], [56], [18] to intermediate representa-
tions (IRs) [83] and ISAs [50], [64], [78], [11], [38]. Yet, for
HLL programs, the HLL MCM ultimately dictates which of its
executions are permitted, and compilation to IRs and/or ISAs
must avoid creating more permitted execution possibilities.

A. Memory Consistency Model Overview

MCMs are often specified axiomatically [8], [18], [46], [50],
[68] by defining a “happens-before” relation (→hb) between
instructions that restricts which executions are permitted.
Permitted executions are those not containing happens-before
cycles. In Fig. 1, for example, a strong MCM may instantiate:
1 →hb 2 →hb 3 →hb 4 →hb 1 (i.e., 1 happens-before 2, etc.).
This cycle implies a contradiction—instruction 1 happened-
before itself—indicating that the MCM disallows this exe-
cution. A weaker MCM may only instantiate 2 →hb 3 and
4 →hb 1, resulting in an acyclic execution that is permitted.

164

rs = [W] ; (sb&loc)? ; [W& ∼ NA] ; (rf; rmw)∗
sw = [REL | ACQREL | SC] ; ([F]; sb)? ; rs ; rf ;

[R& ∼ NA] ; (sb; [F])? ; [ACQ | ACQREL | SC]
hb = (sb | sw)+

eco = rf | mo | fr | mo; rf | fr; rf
scb = hb | mo | fr

psc base = ([SC] | [F&SC] ; hb?) ; scb ; ([SC] | hb? ; [F&SC])

psc f = [F&SC] ; (hb | hb; eco; hb) ; [F&SC]

psc = psc base | psc f

Fig. 2: A subset of the C11 derived relations [46]. The |, ;,
?, +, and ∗ relational operators represent union, sequencing,
union with the identity relation, transitive closure, and reflexive
transitive closure. W, R, and F represent write, read, and fence
instructions. ACQ and REL denote instructions with the C11
acquire and release memory orders, and so on.

B. The C11 Memory Consistency Model

MEMGLUE targets C11—the seminal heterogeneous
MCM [19]—and more specifically, the RC11 variant [46].
From this point on, we use “C11” to refer to RC11, unless
otherwise stated. C11 programs are intended to be compiled
to and executed on virtually any hardware, despite the fact
that each target ISA has its own MCM.

To leverage weak ISA MCM offerings, C11 provides several
memory orders [4] (or “strengths”) for each memory and
fence operation: relaxed (RLX), acquire (ACQ), release (REL),
acquire-release (ACQREL), and sequentially consistent (SC).2

Programmers may label writes as RLX, REL, or SC; reads as
RLX, ACQ, or SC; and fences as ACQ, REL, ACQREL, or SC.
The read and write components of atomic “read-modify-write”
(RMW) operations can take on read and write labels, respec-
tively, yielding RLX, ACQ, REL, ACQREL, or SC RMWs. The
strength of each memory order subsumes that of all weaker
orders, per the partial order RLX ≺ REL/ACQ ≺ ACQREL ≺ SC.
So, any ordering restrictions on RLX instructions will apply to
REL instructions, and so on. Note that this partial order does
not relate REL to ACQ, but both are stronger than RLX and
weaker than ACQREL. Compilers translate these “labeled” C11
operations into sequences of load, store, and fence instructions
in the target ISA, such that the C11 ordering guarantees will
be upheld when compiled programs run on hardware [69].

As illustrated in Figs. 4, 5 and 6, C11 defines a variety of
relations between operations, which it uses to specify legal
program outcomes. Base relations include:

• sb (sequenced-before): describes program order.
• rf (reads-from): relates writes to same-address reads that

read from them.
• mo (modification order): relates same-address writes in

the order that they commit to memory.
• fr (from-reads): relates a read to a “newer” same-address

write that happened mo-after the write that it read from.

2RC11 does not support C11’s consume memory order, as it is not used by
major compilers [46].

Coherence = irreflexive (hb ; eco)

SC = acyclic (psc)

Atomicity = rmw ∩ (fr; mo) = ∅
No-Thin-Air = acyclic (sb | rf)

Fig. 3: C11 axioms [46].

• rmw (read-modify-write): relates the read component of
an RMW to the write component.

Note that sb, rf, mo, and fr are execution-specific, with
sb encoding a program’s dynamic control-flow and the others
encoding its data-flow. The remaining C11 relations (Fig. 2)
are derived from these base relations.

Two notable derived relations are sw (synchronizes-with)
and hb (happens-before): hb is the union of sw and sb,
and sw relates release operations to acquire operations.3 For
example, as shown in Fig. 4a, when a release write (or any
write that is sb-after a same-address release write) is related
to an acquire read by rf, the release write is also related
to the acquire read by sw. The sw relation can also involve
fences. A release fence that is sb-before a write may feature
an outgoing sw edge, and an acquire fence that is sb-after a
read may feature an incoming sw edge. As shown in Fig. 4b,
an rf edge between such a write and such a read instantiates
an sw edge between their corresponding release and acquire
fences. Note that release fences (release writes) can also be
related to acquire reads (acquire fences) by sw.

The different C11 memory orders induce different relations
between program operations, and thus different constraints on
permitted program executions. RLX operations are subject to
few restrictions, only guaranteeing atomicity (i.e., partially-
performed writes cannot be observed) and coherence (i.e.,
all threads can agree on a total order in which same-address
memory operations take place, or SC-per-location [47]). REL
and ACQ operations further restrict legal program outcomes
by requiring that all operations visible to a release must be
visible to any acquire that is related to the release by sw.
This requirement renders the outcome in Fig. 5a forbidden.
Finally, all threads must agree on a total order in which SC

operations take place. That is, SC reads on different threads
may not disagree on the order of SC writes.

Overall, C11 defines legal program executions using four
axioms (Fig. 3): Coherence, SC, Atomicity, No-Thin-Air.

The Coherence axiom states that pairs of operations related
by hb in one direction may not be related by eco (Fig. 2) in
the opposite direction. It enforces (among other things) SC-
per-location. Fig. 5 shows how the outcome in Fig. 1 can be
forbidden (5a) or permitted (5b) by Coherence depending on
the strengths of the program’s C11 operations and how they
instantiate hb.

The SC axiom asserts that SC operations must be totally
ordered. Fig. 6 shows the Independent Readers, Independent

3“Release operations” (“acquire operations”) denote memory and fence
operations whose strengths are at least as strong as REL (ACQ) per §II-B.

165

rf
Wrel x = 1

Wrlx x = 2

Racq x = 2
sb

sw

Thread/Core 1 Thread/Core 2

(a) Without fences.

rf
 Frel

Wrlx x = 1

Rrlx x = 1

 Facq

sbsb
sw

Thread/Core 1 Thread/Core 2

(b) With fences.

Fig. 4: Example instantiations of the sw relation.

rf, sw, hb
Wrlx x = 1

Wrel y = 1

Racq y = 1

Rrlx x = 0
sb, hbsb, hb

eco,
 fr

Thread/Core 1 Thread/Core 2

(a) REL-ACQ (Forbidden)

rf
Wrlx x = 1

Wrlx y = 1

Rrlx y = 1

Rrlx x = 0
sb, hbsb, hb

eco,
 fr

Thread/Core 1 Thread/Core 2

(b) No REL-ACQ (Permitted)

Fig. 5: MP litmus test variants. The REL-ACQ synchronization
induces hb in Fig. 5a, resulting in a violation of Coherence.

Writers (IRIW) litmus test, which highlights this requirement
and distinguishes orderings enforced by REL-ACQ synchroniza-
tion (when sw involves at least one non-SC operation) versus
SC-SC synchronization (when sw involves two SC operations).
Atomicity forbids intervening writes between any

read/write pair related by rmw.
Compared to the original C11 [19], RC11 fixes is-

sues with SC semantics and adds the No-Thin-Air axiom.
No-Thin-Air requires that an execution cannot speculatively
evaluate a read operation, such that this speculation satisfies
itself through a cyclic chain of dependence [20]. That is, values
cannot appear “out-of-thin-air.”

In practice, MEMGLUE implements a slight strengthening of
RC11 that uses a strictly stronger version of the scb relation,
which appears in the SC axiom [18]. RC11 weakened the scb

relation to accommodate Power processors, which can produce
outcomes that violate the SC axiom under the stronger scb

definition when programs mix SC and non-SC operations [46].
For MEMGLUE’s purposes, implementing a strictly stronger
variant of RC11 implies that RC11 is upheld. Further, doing so
reduces MEMGLUE’s metadata requirement without deviating
too far from (the weaker) RC11 behavior (§VI-A).

C. Update-Based Cache Coherence Protocols

Coherence protocols may be invalidation- or update-based,
and our MEMGLUE implementation adopts the latter approach.

Invalidation-based protocols require caches to send invali-
dation requests to remote cores when they want to perform a
write. When a core wants to read a cache line that has been
invalidated, it must request access to it through the protocol.
Invalidation-based protocols often maintain the single-writer,
multiple-reader (SWMR) invariant by requiring that all remote
copies of a line be invalidated before a write may perform [59].

Update-based protocols [13], [74] replace invalidations with
updates that propagate writes to remote cores as soon as they
perform locally, trading off lower read latency for higher net-
work traffic. In general, each cache write results in a message
sent to all sharers, but remote cores always have the most
up-to-date data and can thus perform reads immediately [35].

Wrel x = 1 Wrel y = 1Racq x = 1

Rrlx y = 0
sb, hb

Racq y = 1

Rrlx x = 0
sb, hb

rf, sw, hb rf, sw, hb

fr, eco

fr, eco

Thread/Core 1 Thread/Core 2 Thread/Core 3 Thread/Core 4

(a) REL-ACQ (Allowed)

sb, hb, scb sb, hb, scb

rf, scb, hbrf, scb, hbWsc x = 1 Wsc y = 1Rsc x = 1

Rsc y = 0

Rsc y = 1

Rsc x = 0
fr, scb

fr, scb

Thread/Core 1 Thread/Core 2 Thread/Core 3 Thread/Core 4

(b) SC-SC (Forbidden)

Fig. 6: IRIW litmus test that is forbidden by C11 iff all the
operations are SC, due to a cycle in scb that violates SC.

III. MEMGLUE PRELIMINARIES

We now give an overview of the MEMGLUE consistency
protocol, before presenting two implementations (in §IV and
§V) that make different assumptions about interconnection
network ordering guarantees.

A. MEMGLUE Overview

MEMGLUE is an update-based consistency protocol that co-
ordinates correct shared memory interactions among a hetero-
geneous set of compute clusters, which have been augmented
with MEMGLUE translation shims (Fig. 7).

The MEMGLUE protocol operates within a fragment of
C11 that includes RLX, ACQ, REL, and SC memory operations
(including the read and write components of RMWs) and SC

fences. We omit support for the strictly weaker REL, ACQ, and
ACQREL fences for now. The semantics of RMWs is described
in our manual proof in our open-source repository [1]. How-
ever, RMWs are not implemented in our Murφ models, nor
are they discussed in the paper for space reasons.

MEMGLUE shims intercept relevant coherence protocol
messages internal to their local clusters and, based on their
local ISA MCMs, generate C11-style messages (§III-B) to be
handled by the MEMGLUE protocol.

We justify our decision to implement MEMGLUE as a novel
(§III-A2) update-based (§III-A1) protocol below.

1) Why Update-based Consistency Protocols?: Recall our
goal of designing a heterogeneous consistency protocol that
is polite (§I). That is, MEMGLUE should not overly-restrict
clusters’ (i) coherence protocols (invalidation- or update-based
variants should be supported), (ii) MCMs (any MCM should
be supported), (iii) performance on intra-cluster shared mem-
ory communication (operations on memory locations shared
within a single cluster should perform comparably to when
the cluster is not plugged into a MEMGLUE system), and (iv)
performance on inter-cluster shared memory communication.

Requirement (iv) precludes consistency protocols that en-
force SWMR (§II-C) among clusters, which subject inter-
cluster communication to sequentially consistent ordering con-
straints [47], [59], [57]. Update-based protocols generally do
not uphold SWMR [35], nor do certain invalidation-based

166

Consistency Controller

Cluster 1

LLC
L1 L1L1 L1

Network

Shim A Shim B

LLC

Cluster 2

Fig. 7: MEMGLUE system with two heterogeneous clusters.
MEMGLUE operates below the dashed line.

protocols, such as those that permit delayed invalidations [43],
[44]. Such protocols are reasonable options for exploiting
permissible relaxed ordering behaviors between clusters. How-
ever, for the reasons below, we elect to implement MEMGLUE
as an update-based protocol.

Related to requirements (i) and (ii), we find that update-
based consistency protocols easily support both update- and
invalidation-based cluster coherence protocols (§VI-A demon-
strates the latter), and enable a C11-centric design that can
accommodate arbitrary cluster MCMs.

Related to requirement (iv), MEMGLUE orchestrates inter-
cluster communication, which we anticipate to largely feature
producer-consumer access patterns (e.g., a producer/consumer
cluster writes to/reads from a shared queue [79]). For this style
of communication, update-based protocols have been shown to
perform better than invalidation-based alternatives [23]. One
may initially worry about increased memory traffic between
clusters. However, MEMGLUE is compatible with several per-
formance optimizations for update-based protocols that reduce
network traffic (e.g., an exclusive state [13], [74], competitive
updates [35]). Plus, thread migration, which exacerbates up-
date traffic in homogeneous shared memory systems [33], [35],
is unlikely across heterogeneous MEMGLUE clusters.

2) Why a Novel Protocol?: We implement MEMGLUE as
a novel protocol for two main reasons. First, our MEMGLUE
implementation can be viewed as an abstract-machine op-
erational model of (a slight strengthening of) C11. Due to
its complexity, such a model for C11 has not yet been
developed [30], [41], [60], and no existing coherence protocol
comes close to approximating C11 behavior. Second, many
prior update-based coherence protocols make restrictive as-
sumptions about the orderedness of the network through which
messages travel [74], [13], [81], [33], which we wish to avoid.

B. MEMGLUE Hardware Primitives

MEMGLUE introduces two types of hardware structures to
mediate communication between clusters: per-cluster shims
and a single system-wide consistency controller (CC).

Shims interface between local clusters and the MEMGLUE
system. Within their local clusters, shims intercept relevant
coherence protocol messages that are exchanged on behalf
of ISA write, read, and fence instructions; translate them
into their C11 analogs (§IV-D); and send WRITE, RREQ, and
FREQ MEMGLUE messages, respectively, to the CC. From the
CC, shims can receive WRITE, WRITE ACK, RRESP, FREQ, and

Remote Propagation Local Propagation
MSI + TSO L1 cache write hit Invalidate all locally
ppo = sb \ (W, R) cached copies. Write

data to LLC.
Firefly + SC Shared bus write Place write update
ppo = sb onto the shared bus.

RCC + RC Shared L2 cache Write data to shared
ppo = sb \ ((RLX, RLX) ∪ write back L2 cache.
(REL,RLX) ∪ (RLX, ACQ))

TABLE I: Local and remote write propagation strategies
for shim integration for several protocols: MSI (invalidation-
based) [59], Firefly (update-based) [74], and RCC (self-
invalidation-based) [59]. Remote Propagation provides the
local coherence actions that trigger a shim to send a WRITE

update to the CC; Local Propagation provides the actions that
a shim performs to propagate WRITE updates within its cluster.

FRESP messages (discussed in §IV-A). MEMGLUE messages
contain different metadata to ensure they are correctly ordered
by the protocol, such as C11-style strengths (RLX, REL, ACQ, or
SC). The CC acts as the directory structure within MEMGLUE:
all messages from the shims are sent to the CC, which orders,
responds to, and reroutes them appropriately.

The shims and CC track additional metadata per valid cache
line in existing cluster caches. A shim maintains a meta-
data cache that shadows its cluster’s shared last-level cache
(LLC). Without loss of generality, we assume inclusive cluster
LLCs. The CC acts as a directory for the full heterogeneous
MEMGLUE system, maintaining data, metadata, and cluster-
granularity sharer lists per cache line present in any of its
clusters’ LLCs. A cache line tracked by a shim is invalid
(valid) if its corresponding LLC cache line is invalid (valid).
A cache line in the CC is invalid (valid) if it is invalid (valid)
in every (some) cluster’s LLC. The shims and CC also track
a timestamp per cache line (§IV-B1).

C. Write Propagation and Shim Integration

Equipping a cluster with a MEMGLUE shim requires deter-
mining (i) when intra-cluster operations should be communi-
cated to remote clusters, and (ii) how MEMGLUE operations
arriving from a remote cluster should be propagated internally.

The answer to (i), in short, depends primarily on what intra-
thread write-write orderings the local MCM globally enforces.

The cluster actions which require external communication
are cache updates (shims must update remote clusters), cache
misses (shims must retrieve data and/or metadata), and fences
(shims must synchronize with remote clusters). When the
shims observe local coherence protocol messages indicative
of these actions, they send WRITE, RREQ, and FREQ messages
to the CC, respectively. Usually, WRITE and FREQ messages
correspond to (committed) ISA instructions within the local
cluster, so if a cluster’s MCM globally orders a pair of such
instructions, its shim must send their generated MEMGLUE
messages to the CC in the same order. For most cluster co-
herence protocols, where ISA fences do not generate protocol
messages, the main task of a MEMGLUE shim is to preserve
globally-enforced orderings among its cluster’s ISA writes.

167

Such globally-enforced orderings may order writes in differ-
ent threads (inter-thread) or the same thread (intra-thread). For
clusters with MCA MCMs, intra-thread orderings are typically
captured by a preserved program order (ppo) relation [8].
For clusters with nMCA MCMs, they are often embedded in
more subtle causality relations [50]. A shim can observe inter-
thread write-write orderings (e.g., mo) at a cluster’s coherence
ordering point; however, globally-enforced intra-thread write-
write orderings may require shims to be placed higher (closer
to cluster cores) within the memory hierarchy.

To see how a cluster’s intra-thread write-write ordering
requirements inform shim placement, consider the following
total store order (TSO) [70] and release consistency (RC) [59],
[32] examples from the Remote Propagation column of Ta-
ble I. For a TSO cluster, intra-thread W →sb W ordering is
preserved globally. Hence, its shim must send out a WRITE

message upon each L1 write hit and therefore monitor all L1
cache interfaces. In contrast, an RC cluster preserves intra-
thread W →sb Wrel order globally, but not intra-thread order
among non-rel writes.4 When a Wrel is performed at a core,
all dirty data in the L1 are written back to the shared L2 (the
cluster’s LLC) before the Wrel itself is written back to the L2.
Thus, the shim need only monitor the cluster’s L2 interface.

To question (ii), MEMGLUE propagates incoming WRITE

messages (which carry updates from remote clusters) within a
cluster by leveraging its local coherence protocol. The Local
Propagation column of Table I gives examples.

IV. ORDERED MEMGLUE CONSISTENCY PROTOCOL

We first present Ordered MEMGLUE (MEMGLUEO), which
assumes an ordered interconnection network (i.e., messages
from the same sender to the same receiver arrive in the order
they were sent). A complete specification of the protocol can
be found in our open-source repository [1].

A. MEMGLUEO Protocol

In this section, we present a simplistic view of MEMGLUE’s
actions upon observing cluster-local instructions via their
induced coherence protocol messages. In §IV-B we refine the
MEMGLUE protocol to maintain the C11 axioms (§II-B).

Cluster writes. When a shim sees a cluster write (via a
write hit or write-back, §III-C), it immediately sends a WRITE

to the CC and updates its cache line’s state to valid within the
shim (if it is not already). When the CC receives this WRITE,
it writes its data into its own cache and forwards the WRITE to
each cluster that is registered as a sharer of the updated cache
line. The cluster whose shim sent the original WRITE message
is added as a sharer. When remote sharers receive the WRITE,
they propagate it within their clusters (Table I).

Cluster reads. Clusters may always service reads with data
they have cached locally. On a read miss at the LLC, the shim
sends a RREQ to the CC and does not service local cluster
instructions until it receives back a RRESP. Upon receiving

4Note that RC’s Wrel operations have a slightly different semantics com-
pared to C11’s Wrel operations, but are similar in spirit.

Wx=1
Wx=2

Wx=3
Shim 1

Wx=2
Wx=1

Shim 2

Wx=3

I1: Wx = 1
I2: Wx = 2 I3: Wx = 3

Addr Data Sharers
x 0 1 2 3 1, 2

CC

(a) Concurrent writes violate coherence.

Wscx=1Wscy=1
Shim 1

Wscx=1

Shim 2

Wscy=1

I1: Wsc x=1
I2: Rsc y=0

I3: Wsc y=1
I4: Rsc x=0

Addr Data Sharers
x 0 1 1, 2
y 0 1 1, 2

CC

(b) SC writes violate the SC axiom.

Fig. 8: Motivating refinements to the MEMGLUEO protocol.

the RRESP, the shim services the cluster read by supplying
this data to its LLC and updating its state in the shim to valid.

Cluster fences. The shim sends a FREQ to the CC and stalls
handling all cluster requests. The CC responds with a FRESP.

B. Refining the Protocol

We refine the §IV-A protocol in two ways to maintain C11.
1) Timestamps: Recall that the C11 Coherence axiom en-

forces SC-per-location (§II-B), which requires that all threads
agree on a total order for same-address memory operations.
The simple MEMGLUE protocol described in the previous
section violates this notion.

Consider the example in Fig. 8a. Note the omission of
instruction strengths; the problematic behavior of this example
is present under any mapping of instructions to strengths.
Without loss of generality, suppose the WRITEs arrive in
ascending order at the CC, and x is initially 0. To maintain
SC-per-location, as required by Coherence, both shims must
observe these same-address writes in the same order. However,
under our current simple protocol, Shim 1 observes the write
order to be 1, 2, 3, while Shim 2 observes 3, 1, 2, because
each shim indiscriminately overwrites its local data with the
forwarded WRITE updates it receives. MEMGLUEO corrects
this behavior with timestamps.

Each cache line’s metadata in the shims and CC is extended
with a timestamp (TS) (Fig. 10). Each time the shims or CC
process a cluster write hit / write-back (shims) or MEMGLUE
WRITE (shims or CC), they increment the TS they track for the
target cache line. On a write miss, a shim synchronizes its TS
for the write’s cache line with the CC, by acquiring the CC’s
TS and setting its local TS equal to it. Any WRITE sent from
the CC to a shim is tagged with the CC’s TS. When the shims
receive a WRITE, they perform a timestamp check to determine
whether to propagate the WRITE’s data within their clusters.

Definition IV.1. For WRITE w, shim S, and address a, the
timestamp check determines whether w’s timestamp exceeds
the shim’s timestamp at a, i.e. w.TS > shim[a].TS.

The WRITE is propagated within the local cluster only if
the timestamp check passes; otherwise, its data is stale and
must be discarded. In either case, the shim increments its local
timestamp. Now, in Fig. 8a, when Wx = 1 arrives to Shim 2, its
timestamp and the shim’s timestamp for x will be both be 1.
Thus, the timestamp check will fail and the shim’s timestamp

168

will be incremented to 2 without overwriting the value 3. The
same happens when Wx = 2 with timestamp 2 arrives at Shim
2. However, when Wx = 3 with timestamp 3 arrives at Shim
1, the timestamp check passes, and 3 is written. This means
both shims will have data 3 and TS 3 in their caches at the
end of the exchange. Using these timestamps, we prove that
MEMGLUEO upholds SC-per-location:

Theorem IV.1. For all addresses a, ∃ ≺a a total order on all
writes to a, such that for all shims S, and any pair of reads
R →sb R

′ on S which read values w and w′, w ⪯a w
′.

2) SC Writes: Consider the motivating example in Fig. 8b.
Suppose both shims initially cache x and y, both with value 0.
Given the current simple protocol, both WRITEs are sent to the
CC, and then both reads immediately read the cached data (0)
before the remote WRITEs arrive. The outcome would therefore
be observable, despite being forbidden by C11’s SC axiom. To
address this, MEMGLUEO requires that a shim stop servicing
local cluster requests after outputting an SC WRITE until it has
received a WRITE ACK back from the CC. This requirement
forces prior SC WRITEs (that reached the CC before the shim’s
SC WRITE) to propagate to the shim before it may service
future instructions. Doing so ensures that SC reads observe
a total order for SC writes, as C11 requires (§II-B).

C. System-wide Proof of MEMGLUEO

For MEMGLUE to uphold C11, the program executions
observable in MEMGLUE must be a subset of those allowed
by C11 (i.e., MEMGLUE ⊆ C11). In this section, we sketch
three out of the four proofs that we conduct to verify that
MEMGLUEO upholds the C11 axioms for all programs. All
four proofs—one corresponding to each C11 axiom (§II-B)—
can be found in our open-source repository [1].

Each proof proceeds as follows. First, we assume the
existence of an axiom-violating program execution. Then, we
establish an order ≺CC in which messages must have hit the
CC for this execution to have been observable in MEMGLUEO

(e.g., m0 ≺CC m1 means m0 hits the CC before m1). Then, we
derive a contradiction (⇒⇐) that ≺CC must contain a cycle,
proving that the execution is not observable in MEMGLUEO.
Coherence (§II-B): ∄I1, I2.(I1, I2) ∈ hb ∧ (I2, I1) ∈ eco

Pf (sketch). We assume for sake of contradiction that such
instructions I1 and I2 exist. We use the orderedness of the
network and Thm. IV.1 to prove that instructions related by
hb hit the CC in hb order. We then prove that eco-related
instructions must hit the CC in eco-order by casing on each
eco edge type. Then, I1 ≺CC I2 because (I1,I2) ∈ hb, but
also I2 ≺CC I1 because (I2,I1) ∈ eco. ⇒⇐
SC Axiom (§II-B): acyclic (psc)
Pf (sketch): Recall that psc orders SC operations with respect
to one another (Fig. 2). Assume a cycle of psc edges exists
in some program execution. We first prove that any psc cycle
must contain at least one write or fence. Then we prove that
all WRITEs and FREQs generated in this cycle must hit the CC
in psc-order, meaning that ≺CC contains a cycle. ⇒⇐

x86 instruction Generated by (C11) Translated to (MemGlue)
MOV (from memory) LRLX,LACQ,LSC LSC

MOV (into memory) SRLX,SREL,SSC SSC
MFENCE FSC FSC

(a) TSO.

ARM instruction Generated by (C11) Translated to (MemGlue)
LDR LRLX LRLX

LDA LACQ, LSC LSC

STR SRLX SRLX
STL SREL,SSC SSC
DMB ISH LD FACQ FSC
DMB ISH FREL, FACQREL,FSC FSC

(b) ARMV8.

Fig. 9: C11 compiler mappings, and MEMGLUE reverse
compiler mappings for loads (L), stores (S), and fences (F).
Recall that MEMGLUE does not yet support non-SC fences.

No-Thin-Air (§II-B): acyclic (sb|rf)
Pf (sketch). Assume a (sb|rf) cycle exists in some program.
Then prove: ∀I1, I2. (I1 →sb I2 ∨ I1 →rf I2) =⇒ I1 ≺CC

I2. A cycle in (sb|rf) thus implies a cycle in ≺CC . ⇒⇐

D. Per-Cluster Proofs

§IV-C presents a proof that MEMGLUEO upholds correct
C11 instruction orderings; it remains to be shown that shims
correctly translate local coherence protocol messages to C11-
style MEMGLUE messages. We design shim translation units
assuming clusters run (correctly) compiled C11 code.

1) Translation Scheme: In a nutshell, shims observe cluster
coherence protocol messages, determine the ISA instruction(s)
that generate these messages, identify the strongest C11 op-
erations that generate these instructions [69], and output the
matching MEMGLUE messages. That is, we design shims to
effectively invert (verified) compiler mappings from C11 to a
cluster’s target ISA MCM,5 as illustrated in Fig. 9 [69].

Our translation strategy clearly enforces MEMGLUE ⊆ C11
in the absence of compiler optimizations. However, compilers
may perform legal optimizations, which guarantee ISA ⊆
C11 [6], [16], [17], [29], [28], [77]. We sketch a proof
by contradiction that in the presence of such optimizations,
MEMGLUE ⊆ C11 still holds. Suppose that a program is
compiled to p (unoptimized) and popt (legally optimized).
Shims enforce MEMGLUE ⊆ C11 iff three conditions hold.

Condition 1: Instructions in popt are at least as strong as
their p analogs. That is, under the mapping orig : inst →
inst from instructions in p to their counterparts in popt,
∀i, i′.(i, i′) ∈ orig =⇒ stren(i′) ≼ stren(i) (recall from
§II-B that RLX ≺ REL/ACQ ≺ ACQREL ≺ SC). Only a compiler
optimization that relaxes the strengths of instructions in p to
produce popt can violate the correctness condition above. But,
such a relaxation would also violate ISA ⊆ C11, contradicting
our assumption on legal compiler optimizations. ⇒⇐

Condition 2: Source-to-source instruction reorderings,
which happen at the C11 level before lowering to machine

5In the case of ISAs whose MCMs are not C11-compatible, MEMGLUE
can translate all instructions to SC, but cannot exploit their relaxed MCMs.

169

Address Valid (V/I) TS syncBit LWC RFBufCnt
x
y

M
et

ad
at

a
C

ac
he

icnt ocnt fc
Counters

Msg BufferShim Design

Seen Sets
SeenSetCache {}
SeenSetBuffer {}

Fig. 10: MEMGLUE shim design. Blue components are those
of MEMGLUEO, yellow are those added by MEMGLUEU.

code, may not violate C11. Legal compilers perform only
source-to-source transformations which uphold C11 [77].

Condition 3: ∀I1, I2. (I1, I2) ∈ sbp ∧ (I2, I1) ∈
sbpopt =⇒ (I1, I2) ̸∈ sbcause (we use sbcause to capture
those thread-local orderings that must be globally enforced by
the ISA MCM). That is, instructions may only get reordered in
the optimized program if such a reordering is permitted by the
ISA MCM. Any compiler violating this condition may produce
code that violates its ISA MCM. However, if compilers violate
their MCM, they lose any provable guarantee that ISA ⊆ C11.
Thus, such reorderings would not be legal. ⇒⇐

V. UNORDERED MEMGLUE CONSISTENCY PROTOCOL

MEMGLUE is intended to be implemented over a network
with no ordering guarantees, yielding Unordered MEMGLUE
(MEMGLUEU). As a motivating example, recall the programs
from Fig. 5; consider what happens if the two writes on
Core 1 are sent to Core 2 and arrive out-of-order. In Fig. 5b,
MEMGLUEU should not reconstruct the original ordering be-
cause the writes are allowed to be read out-of-order. However,
in Fig. 5a, this reordering should not be visible due to the REL-
ACQ synchronization between the cores. MEMGLUEU must
track enough metadata to distinguish cases like these and
reconstruct the proper ordering of messages when necessary.

A. Reorderings Allowed in MEMGLUEU

In this section, we distinguish between messages arriving
versus accepting at a destination. A message arrives when it
reaches its destination after being sent through the network. A
message accepts (after arriving) once its destination is allowed,
per MEMGLUEU’s state transition rules, to process it (e.g.,
update state, send response messages). A message arrives
early if it reaches its destination before all prior messages
from the same sender have been accepted at the destination.
A message accepts early if it arrives early, and then is accepted
before all prior messages from the same sender to the same
destination have been accepted. Any MEMGLUEU message
may arrive early; only some may accept early.

MEMGLUEU permits the following optimizations:
1) RLX reads from a cluster may read from WRITEs that

have arrived early to the shims.
2) RLX WRITEs and RRESPs may accept early.
3) REL WRITEs and ACQ RRESPs may accept early.

Each reordering is subject to certain constraints (§V-B).
MEMGLUEU tracks additional metadata, shown in Fig. 10.

To reconstruct the order in which messages were originally

sent to them from each sender, the shims and CC maintain
a set of message counters: an icnt per (incoming) message
source and an ocnt per (outgoing) message destination. These
track the number of messages received at and sent by each
shim/CC, respectively. The shims only have one source and
destination for all messages, the CC, and thus only have one
icnt and ocnt. A message arrives early if its cnt (i.e., the
ocnt of its sender at the time it was sent) is more than one
greater than the destination’s icnt for its sender. When a
message arrives early, but cannot accept early, it is queued
in a message buffer. Messages are removed from the buffer
either when enough prior messages have accepted such that
the buffered messages may accept early, or when all messages
from the same sender with a lower cnt have accepted. A
counter RFBufCnt is tracked per cache line to maintain
SC-per-location under the first optimization (see our open-
source repository [1] for details). MEMGLUEU also tracks
write ids, seen ids, seen sets, and fence counters
(§V-B2), as well as local write counters (§V-B1).

B. MEMGLUEU Protocol

MEMGLUEU enables significantly more reordering of pro-
tocol messages than MEMGLUEO. We describe how it retains
SC-per-location (§IV-B) and hb orderings (§II-B) below.

1) SC-per-location: Same-address write updates may ar-
rive to the shims out-of-order, potentially causing a stale
write to pass the timestamp check (Def. IV.1). This sce-
nario would occur in the execution in Fig. 8a if the write
updates of x = 1 and x = 2 arrive out-of-order to Shim 2.
Therefore, in MEMGLUEU, the shims must accept all same-
address write updates in order. To this end, the shims track a
local write counter (LWC) per address, and the CC tracks
a LWC per address, per shim. The LWCs function similarly to
the icnts/ocnts and ensure that same-address write updates
accept in order. With this ordering guarantee, the normal
timestamp check (§IV-B) may be used in MEMGLUEU.

2) Happens-Before Orderings: To maintain the hb relation,
instructions related by sw must correctly enforce orderings
induced by release-acquire synchronization, as described in
§II-B. This is difficult in MEMGLUEU, as REL WRITEs and
ACQ RRESPs can arrive to the shims out-of-order with respect
to write updates that happened before them. As an example,
consider Fig. 11. Instruction 1 (I1) synchronizes with I2,
meaning I1 →hb I3. However, I1 and I3’s write updates may
arrive out-of-order to Shim 3. This reordering would render the
forbidden outcome in Fig. 11 observable, so it should not be
allowed. However, some reordering of REL and ACQ messages
should be allowed, if the shim has already seen6 the writes
that are required in order to maintain sw-induced orderings.

To determine whether REL/ACQ reordering is allowed, we
add (1) unique write ids per write, assigned at the CC, (2) a
seen id per (REL/ACQ) message, to track the highest write id

a shim must see before accepting the message, and (3) two

6“Seen” is formally defined the proof [1]. Intuitively, a core has “seen” a
write once no reads on that core can read a from another write older than it.

170

Shim 1
1) Wrel x = 1

Addr TS Data Sharers
x 0 1 0 1 2, 3, 1
y 0 1 0 1 3, 2

Wrel x=1@1
(id=1,s=0)

Shim 2
2) Racq x = 1
3) Wrel y = 1

Wrel x=1
(s=0)

Shim 3
4) Racq y = 1
5) Rrlx x = 0?
Addr V/I TS Data
x V 0 0
y V 0 0

Wrel y=1
(s=1)

S = {1}

Current write id = 0 1 2

Addr V/I TS Data
x V 0 1 0 1
y I V 1 1

Addr V/I TS Data
x I V 1 1
y I

S = {}S = {}

 1
 2

 3

Wrel x=1@1
(id=1,s=0)

Wrel y=1@1
(id=2,s=1)

Fig. 11: Example of MEMGLUEU forbidding an execution of
a litmus test with REL-ACQ synchronization. Events unfold in
rainbow order. Shim and CC structures have been simplified.

seen sets per shim, to track what writes each shim has seen.
For simplicity, we elide details of the distinction between
each seen set; details can be found in our open-source
repository [1]. When REL WRITEs are sent to the CC, they
carry with them the highest write id that has previously
arrived at the sending shim. In Fig. 11, for example, there
are no writes in Shim 1’s seen set (S) when I1 performs,
so I1 carries seen id = 0 with its REL WRITE update.
This write gets assigned write id = 1 at the CC and is
then sent to Shim 2 as an update. When this update arrives
and is accepted at Shim 2, write id = 1 is added to
Shim 2’s seen set, signifying that any remote instruction
that synchronizes-with any later instruction at Shim 2 must
see I1. So, when I3 performs, its update to the CC carries
seen id = 1, and the forwarded update to Shim 3 carries this
seen id as well. Crucially, Shim 3 cannot accept this update
until write id = 1 is present in Shim 3’s seen set. If Shim
3 is not registered as a sharer of the cache line associated
with the update’s seen id (i.e., it will never be forwarded an
update with write id = 1), then it will not be able to accept
the update early. Hence, MEMGLUEU will not allow I5 to
read 0, which would violate Coherence. This “seen” logic
prevents write updates from arriving before hb-prior messages,
ensuring MEMGLUEU honors sw.

Fences may also be related by sw (§II-B). As such, messages
must not get reordered across them: all writes that happened
before them must be seen by any read or fence that synchro-
nizes with them. While trivial to achieve in MEMGLUEO due
to the orderedness of the network, in MEMGLUEU we must
add additional fence counters (fcs) to preserve these orderings.

When the CC receives a FREQ, it forwards it to all other
shims. The CC’s fcs count how many FREQs are sent to each
shim, and a shim’s fc counts how many FREQs it has received.
Each CC message to the shims is tagged with the CC’s fc for
that shim; when a message msg arrives to a shim, if msg.fc ̸=
shim.fc, then msg has arrived before a prior fence. The shim
buffers msg until it has seen msg.fc total FREQs.

C. System-wide Proof of MEMGLUEU

Coherence (§II-B): This proof proceeds exactly as the original
proof (§IV-C), but with MEMGLUEU’s ordering relaxations

factored in. For instance, to reason about orderings involving
ACQ reads and REL writes, we introduce the “seen” relation
in the proof, which is inspired by the intuitive definition we
presented in §V-B2. We prove that if I1 →hb I2, then I2

“saw” I1, and that if I2 →eco I1, then I1 “saw” I2. This
inverse seen relation presents our contradiction.
SC Axiom (§II-B): Since SC instructions are always accepted
in order in MEMGLUEU, this proof is nearly identical to the
ordered proof. However, we reason differently about fences;
when a fence is involved in an sw edge, it is necessary to prove
that instructions that happen before a release fence are seen
by all instructions that happen after an acquire fence (§II-B).
We prove this via fence counters.

VI. VERIFYING MEMGLUE’S CORRECTNESS

To verify MEMGLUE upholds C11, we (1) implement it in
a model checker, and (2) complete a manual correctness proof.

A. Model Checking

Murφ is an explicit-state model checker for concurrent sys-
tems commonly used to verify cache coherence protocols [27].
We first implement MEMGLUEO and MEMGLUEU in Murφ,
and verify these implementations with respect to a test suite
derived from the CoRR, SB, MP, WRC, and IRIW litmus
tests [7]. The first suite of 1,215 tests features all variations
of these litmus tests produced by assigning each instruction
with each relevant C11 memory order (§III-A). The second
suite of 3,645 tests is derived from the first by considering all
possible placements of SC fences. For all tests, we treat clusters
as black-boxes that emit MEMGLUE operations as defined in
their assigned litmus test thread. Our goal is to verify the
MEMGLUE protocol itself independent of shim translation.

We run each test through Murφ to determine its observ-
ability in MEMGLUE, and through the herd tool [8] using
the RC11 model [45] (axiomatically defined in the cat

language [8]) to determine its allowability in C11. Fig. 12a
shows the results of running these tests with Murφ. For each
implementation, no test forbidden by C11 is observable in
either MEMGLUE variant—both uphold C11 with respect to
the litmus tests. Also, MEMGLUEU allows most of the be-
havior that C11 does, meaning that MEMGLUEU’s reordering
optimizations are indeed leveraging the reordering behavior
that is allowable by C11 (and thus the weak MCMs C11
accommodates). While not a performance study per se, this
result suggests that the MEMGLUE protocol itself should not
overly restrict heterogeneous shared memory performance.

Next, we run a suite of 1,878 tests on MEMGLUEU, in
which we map all variations of the five tests across a set of
“strong” and “weak” clusters. The “strong” clusters implement
a standard MSI protocol locally [59], and we reverse-compile
all instructions to SC to model a TSO cluster with a standard
MSI coherence protocol (§IV-D1). The “weak” clusters are
again black boxes in that they do not contain a local protocol,
and reverse compilation could emit any combination of the
atomics (modeling a cluster which maximally exploits the
strengths offered by C11). The goal of these experiments is to

171

All CoRR SB MP WRC IRIW0.0
0.2
0.4
0.6
0.8
1.0

98
8

0

80

45

13
5

72
8

22
7

81

1

36

10
8

1

72

0

72

0 0 0

11
43

81

9

81

24
3

72
9

94
3

0

72

45

13
5

69
3

27
0

81

9

36

10
8

36

C11
Ordered
Unordered

(a) Ordered (yellow) and Unordered (red) MEMGLUE results. Green columns
show what is permitted in C11. Dark (light) colors are the portion of
observable (unobservable) tests.

All CoRR SB MP WRC IRIW0.0
0.2
0.4
0.6
0.8
1.0

17
82

0

14
4

54

16
2

14
22

18
63

24
3

99

18
9

56
7

76
5

0

10
8

0 0 0

35
37

24
3

13
5

24
3

72
9

21
87

70
2

0

10
8

27

81
 48

6

29
43

24
3

13
5

21
6

64
8 17

01

C11
Ordered
Unordered

(b) Results of tests with all distributions of fences.

0/2 1/2 2/2 0/2 1/2 2/2 0/3 1/3 2/3 3/3 0/4 1/4 2/4 3/4 4/40
20
40
60
80

100

%
 O

bs
er

va
bl

e

SB MP WRC IRIW

(c) Results of tests run on different fractions of weak (versus strong) cores.

Fig. 12: Litmus testing results.

demonstrate that MEMGLUEU permits more relaxed behavior
as the clusters it unifies become weaker.

Fig. 12c shows that as more litmus test threads are mapped
to weak clusters, more reordering is allowed by MEMGLUEU.

B. Proof

Since our Murφ model checking results represent bounded
proofs of MEMGLUE’s correctness guarantees, we construct a
manual proof that for any program, none of its C11-forbidden
executions are observable in a MEMGLUE system (as sketched
in §IV-C and §V-C). This is a particularly important re-
sult of this work—proving that a cache coherence protocol
implements a particular MCM is notoriously difficult, even
with protocols and MCMs that are significantly simpler than
MEMGLUE and C11 [15]. This proof is also reusable across
all MEMGLUE-enabled systems; only the shim-local proofs
need to be re-done for each new cluster.

VII. RELATED WORK

Coherence Interfaces: Some works propose novel coherence
interfaces to support fine-grained heterogeneous coherence.

Crossing Guard [62] provides a MESI-style coherence inter-
face between a host CPU and accelerators. Beyond correctness,
the main goal of Crossing Guard is to ensure safe and reliable
interactions of untrusted accelerators with the host, by defend-
ing against unauthorized data access, deadlock, and denial of

service attacks. However, to achieve some of these guarantees,
Crossing Guard may require host coherence protocol changes.

Spandex [9] provides a richer coherence interface based
on the DeNovo coherence protocol [24], with the primary
goal of high-performance integration of heterogeneous devices
with a wider range of coherence protocol demands. Spandex’s
device-side logic and integration logic are comparable to
MEMGLUE’s shims and CC, respectively. The authors discuss
on how Spandex could be extended to account for inter-device
MCM mismatches, but do not implement these extensions.

Instead of a coherence interface per se (like above or indus-
trial approaches [5], [71], [73], [12], [31], [2]), MEMGLUE
provides an MCM interface and adopts an update-based con-
sistency protocol design to intercept and propagate relevant
cluster operations, according to their ISA MCM requirements.

Consistency Protocols: HeteroGen [63], which synthesizes a
consistency protocol for a particular set of heterogeneous clus-
ters, is the first work to explicitly address MCM mismatches
among clusters in heterogeneous coherence protocol design.
§I discusses the trade-offs associated with this approach.

Follow-up work [34] presents a compositional operational
model for defining compound memory models, which result
from merging together per-cluster MCMs via a HeteroGen-
style approach. The operational model can handle scoped
and non-MCA cluster MCMs (unlike HeteroGen) by lever-
aging ordering relaxation in message propagation and pre-
decessor tracking of memory operations—similar in spirit to
MEMGLUE’s unordered update propagation and seen sets,
respectively. However, the model assumes that threads have
a global knowledge of where instructions have propagated in
order to maintain correct instruction orderings, challenging its
transformation into a concrete implementation. MEMGLUE, in
contrast, is designed to be implementable in hardware.

VIII. CONCLUSIONS

MEMGLUE is an update-based consistency protocol that fa-
cilitates cache-coherent shared memory among heterogeneous
clusters with diverse MCMs. To do so, it equips each cluster
with a hardware shim that translates relevant cluster coherence
protocol messages to C11-style MEMGLUE messages, and
then coordinates the exchange of MEMGLUE messages among
shims. We prove that MEMGLUE upholds C11 with respect to
several thousand litmus tests (using model checking) and for
all programs (with a manual proof).

ACKNOWLEDGMENT

We thank Grigory Chirkov and the anonymous reviewers
for their constructive comments and feedback. This work was
supported by the National Science Foundation (NSF) under
the Graduate Research Fellowship Program and award number
CAREER CCF-2236855. Rachel would also like to acknowl-
edge and celebrate her late father, Dr. Rance Cleaveland,
for his guidance, encouragement, and support throughout this
project and all of her research work. He is dearly missed by
his family, his friends, and the academic community.

172

REFERENCES

[1] https://github.com/rachelcleaveland/memglue-litmus-testing.
[2] Cache coherent interconnect for accelerators (ccix). https://www.

ccixconsortium.com/. Accessed: 2023-08-14.
[3] Heteogeneous integration roadmap 2021 edition. https://eps.ieee.org/

technology/heterogeneous-integration-roadmap/2021-edition.html. Ac-
cessed: 2023-11-09.

[4] memory order. https://en.cppreference.com/w/c/atomic/memory order.
Accessed: 2023-07-11.

[5] Nvidia grace hopper superchip architecture. Technical report, Nvidia
Corporation, Santa Clara, CA, 2022.

[6] Shivali Agarwal, Rajkishore Barik, Vivek Sarkar, and Rudrapatna K
Shyamasundar. May-happen-in-parallel analysis of x10 programs. In
Proceedings of the 12th ACM SIGPLAN symposium on Principles and
practice of parallel programming, 2007.

[7] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Litmus:
Running tests against hardware. Proceedings of the 17th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), 2011.

[8] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats:
Modelling, simulation, testing, and data mining for weak memory. ACM
Transactions on Programming Languages and Systems (TOPLAS), 2014.

[9] Johnathan Alsop, Matthew Sinclair, and Sarita Adve. Spandex: A flexi-
ble interface for efficient heterogeneous coherence. In 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA),
2018.

[10] Arm. Architecture reference manual, Armv7-A and Armv7-R edition,
2008.

[11] Arm. Arm architecture reference manual, Armv8, for Armv8-A archi-
tecture profile, 2013.

[12] Arm. Amba chi architecture specification, 2024. Accessed 31 July 2024.
[13] Russell R Atkinson and Edward M McCreight. The dragon processor.

ACM SIGOPS Operating Systems Review, 1987.
[14] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M Balakrishnan, and

Peter Marwedel. Scratchpad memory: Design alternative for cache
on-chip memory in embedded systems. In Proceedings of the 10th
International Symposium on Hardware/Software Codesign, 2002.

[15] Christopher J. Banks, Marco Elver, Ruth Hoffmann, Susmit Sarkar, Paul
Jackson, and Vijay Nagarajan. Verification of a lazy cache coherence
protocol against a weak memory model. In 2017 Formal Methods in
Computer Aided Design (FMCAD), 2017.

[16] Rajkishore Barik and Vivek Sarkar. Interprocedural load elimination for
dynamic optimization of parallel programs. In 2009 18th International
Conference on Parallel Architectures and Compilation Techniques, 2009.

[17] Rajkishore Barik, Jisheng Zhao, and Vivek Sarkar. Interprocedural
strength reduction of critical sections in explicitly-parallel programs. In
Proceedings of the 22nd International Conference on Parallel Architec-
tures and Compilation Techniques, 2013.

[18] Mark Batty, Alastair F. Donaldson, and John Wickerson. Overhauling
SC atomics in C11 and OpenCL. 43rd Symposium on Principles of
Programming Languages (POPL), 2016.

[19] Hans-J. Boehm and Sarita V. Adve. Foundations of the C++ concurrency
memory model. 29th Conference on Programming Language Design and
Implementation (PLDI), 2008.

[20] Hans-J. Boehm and Brian Demsky. Outlawing ghosts: Avoiding out-of-
thin-air results. In Proceedings of the Workshop on Memory Systems
Performance and Correctness, 2014.

[21] Sebastian Burckhardt, Rajeev Alur, and Milo MK Martin. Verifying
safety of a token coherence implementation by parametric compositional
refinement. In International Workshop on Verification, Model Checking,
and Abstract Interpretation, 2005.

[22] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat,
Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,
Puneet Kaur, Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin
Ovtcharov, Michael Papamichael, Lisa Woods, Sitaram Lanka, Derek
Chiou, and Doug Burger. A cloud-scale acceleration architecture. In The
49th Annual IEEE/ACM International Symposium on Microarchitecture,
2016.

[23] Liqun Cheng and John B Carter. Extending cc-numa systems to
support write update optimizations. In SC’08: Proceedings of the 2008
ACM/IEEE Conference on Supercomputing, 2008.

[24] Byn Choi, Rakesh Komuravelli, Hyojin Sung, Robert Smolinski, Nima
Honarmand, Sarita V. Adve, Vikram S. Adve, Nicholas P. Carter,
and Ching-Tsun Chou. DeNovo: Rethinking the memory hierarchy
for disciplined parallelism. 20th International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2011.

[25] William J. Dally, Yatish Turakhia, and Song Han. Domain-specific
hardware accelerators. Communications of the ACM, 2020.

[26] Christina Delimitrou and Christos Kozyrakis. Quality-of-service-aware
scheduling in heterogeneous data centers with paragon. IEEE Micro,
2014.

[27] David L Dill. The mur ϕ verification system. In Computer Aided
Verification: 8th International Conference, CAV’96 New Brunswick, NJ,
USA, July 31–August 3, 1996 Proceedings 8, 1996.

[28] Johannes Doerfert and Hal Finkel. Compiler optimizations for openmp.
In Evolving OpenMP for Evolving Architectures: 14th International
Workshop on OpenMP, IWOMP 2018, Barcelona, Spain, September 26–
28, 2018, Proceedings 14, 2018.

[29] Johannes Doerfert and Hal Finkel. Compiler optimizations for parallel
programs. In International Workshop on Languages and Compilers for
Parallel Computing, 2018.

[30] Simon Doherty, Brijesh Dongol, Heike Wehrheim, and John Derrick.
Verifying c11 programs operationally. In Proceedings of the 24th
Symposium on Principles and Practice of Parallel Programming, 2019.

[31] HSA Foundation. Heterogeneous system architecture: A technical
review, 2012. Accessed 31 July 2024.

[32] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons,
Anoop Gupta, and John Hennessy. Memory consistency and event
ordering in scalable shared-memory multiprocessors. 17th International
Symposium on Computer Architecture (ISCA), 1990.

[33] David B Glasco, Bruce A Delagi, and Michael J Flynn. Update-based
cache coherence protocols for scalable shared-memory multiprocessors.
In 1994 Proceedings of the Twenty-Seventh Hawaii International Con-
ference on System Sciences, 1994.

[34] Andrés Goens, Soham Chakraborty, Susmit Sarkar, Sukarn Agarwal,
Nicolai Oswald, and Vijay Nagarajan. Compound memory models.
Proceedings of the ACM on Programming Languages, 2023.

[35] Håkan Grahn, Per Stenström, and Michel Dubois. Implementation
and evaluation of update-based cache protocols under relaxed memory
consistency models. Future Generation Computer Systems, 1995.

[36] John L. Hennessy and David A. Patterson. A new golden age for
computer architecture. Communications of the ACM, 2019.

[37] Mark D. Hill and Vijay Janapa Reddi. Accelerator-level parallelism.
Commun. ACM, 2021.

[38] IBM. Power ISA version 2.07, 2013.
[39] ISO/IEC. Information technology – programming languages – C.

International standard 9899:2011, 2011.
[40] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav

Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. In-datacenter performance analysis of a tensor
processing unit. In Proceedings of the 44th annual international
symposium on computer architecture, 2017.

[41] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek
Dreyer. A promising semantics for relaxed-memory concurrency. ACM
SIGPLAN Notices, 2017.

[42] Stephen W Keckler, William J Dally, Brucek Khailany, Michael Garland,
and David Glasco. Gpus and the future of parallel computing. IEEE
micro, 2011.

[43] Pete Keleher, Alan L Cox, and Willy Zwaenepoel. Lazy release
consistency for software distributed shared memory. ACM SIGARCH
Computer Architecture News, 1992.

[44] Leonidas I Kontothanassis, Michael L Scott, and Ricardo Bianchini.
Lazy release consistency for hardware-coherent multiprocessors. In
Supercomputing’95: Proceedings of the 1995 ACM/IEEE Conference
on Supercomputing, 1995.

[45] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek
Dreyer. Repairing sequential consistency in c/c++11. https://plv.
mpi-sws.org/scfix/.

[46] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek
Dreyer. Repairing sequential consistency in C/C++11. 38th Conference
on Programming Language Design and Implementation (PLDI), 2017.

[47] Leslie Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Transactions on Computing,
1979.

173

https://github.com/rachelcleaveland/memglue-litmus-testing
https://www.ccixconsortium.com/
https://www.ccixconsortium.com/
https://eps.ieee.org/technology/heterogeneous-integration-roadmap/2021-edition.html
https://eps.ieee.org/technology/heterogeneous-integration-roadmap/2021-edition.html
https://en.cppreference.com/w/c/atomic/memory_order
https://plv.mpi-sws.org/scfix/
https://plv.mpi-sws.org/scfix/

[48] Daniel Lustig and Margaret Martonosi. Reducing gpu offload latency via
fine-grained cpu-gpu synchronization. In 2013 IEEE 19th International
Symposium on High Performance Computer Architecture (HPCA), 2013.

[49] Daniel Lustig, Michael Pellauer, and Margaret Martonosi. PipeCheck:
Specifying and verifying microarchitectural enforcement of memory
consistency models. Proceedings of the 47th International Symposium
on Microarchitecture (MICRO), 2014.

[50] Daniel Lustig, Sameer Sahasrabuddhe, and Olivier Giroux. A formal
analysis of the NVIDIA PTX memory consistency model. Proceedings
of the 24th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2019.

[51] Daniel Lustig, Geet Sethi, Margaret Martonosi, and Abhishek Bhat-
tacharjee. COATCheck: Verifying memory ordering at the hardware-OS
interface. Proceedings of the 21st International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2016.

[52] Daniel Lustig, Caroline Trippel, Michael Pellauer, and Margaret
Martonosi. ArMOR: Defending against memory consistency model mis-
matches in heterogeneous architectures. 42nd International Symposium
on Computer Architecture (ISCA), 2015.

[53] Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Aarti Gupta.
PipeProof: Automated memory consistency proofs for microarchitectural
specifications. Proceedings of the 51st International Symposium on
Microarchitecture (MICRO), 2018.

[54] Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Michael
Pellauer. RTLCheck: Verifying the memory consistency of RTL designs.
Proceedings of the 50th International Symposium on Microarchitecture
(MICRO), 2017.

[55] Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Margaret
Martonosi. CCICheck: Using µhb graphs to verify the coherence-
consistency interface. Proceedings of the 48th International Symposium
on Microarchitecture (MICRO), 2015.

[56] Jeremy Manson, William Pugh, and Sarita V Adve. The java memory
model. ACM SIGPLAN Notices, 2005.

[57] A. Meixner and D.J. Sorin. Dynamic verification of memory consistency
in cache-coherent multithreaded computer architectures. In International
Conference on Dependable Systems and Networks (DSN’06), 2006.

[58] Harini Muthukrishnan, Daniel Lustig, Oreste Villa, Thomas Wenisch,
and David Nellans. Finepack: Transparently improving the efficiency of
fine-grained transfers in multi-gpu systems. In 2023 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), 2023.

[59] Vijay Nagarajan, Daniel Sorin, Mark Hill, and David Wood. A Primer on
Memory Consistency and Cache Coherence, Second Edition. Synthesis
Lectures on Computer Architecture. Morgan & Claypool Publishers,
2020.

[60] Kyndylan Nienhuis, Kayvan Memarian, and Peter Sewell. An oper-
ational semantics for c/c++ 11 concurrency. In Proceedings of the
2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2016.

[61] NVIDIA. Parallel thread execution ISA version 6.0., 2017. http://docs.
nvidia.com/cuda/parallel-thread-execution/index.html.

[62] Lena E. Olson, Mark D. Hill, and David A. Wood. Crossing guard:
Mediating host-accelerator coherence interactions. 22nd International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2017.

[63] Nicolai Oswald, Vijay Nagarajan, Daniel J Sorin, Vasilis Gavrielatos,
Theo Olausson, and Reece Carr. Heterogen: Automatic synthesis of
heterogeneous cache coherence protocols. In 2022 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), 2022.

[64] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory
model: x86-tso. In Theorem Proving in Higher Order Logics: 22nd
International Conference, TPHOLs 2009, Munich, Germany, August 17-
20, 2009. Proceedings 22, 2009.

[65] Fong Pong, Andreas Nowatzyk, Gunes Aybay, and Michel Dubois.
Verifying distributed directory-based cache coherence protocols: S3. mp,
a case study. In EURO-PAR’95 Parallel Processing: First International
EURO-PAR Conference Stockholm, Sweden, August 29–31, 1995 Pro-
ceedings 1, 1995.

[66] Jason Power, Arkaprava Basu, Junli Gu, Sooraj Puthoor, Bradford M
Beckmann, Mark D Hill, Steven K Reinhardt, and David A Wood.
Heterogeneous system coherence for integrated cpu-gpu systems. In
Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture, 2013.

[67] Oxford University Press. Oxford advanced learner’s dictionary, 2024.
https://www.oxfordlearnersdictionaries.com/.

[68] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar,
and Peter Sewell. Simplifying arm concurrency: multicopy-atomic
axiomatic and operational models for armv8. Proceedings of the ACM
on Programming Languages, 2017.

[69] Peter Sewell. C/c++11 mappings to processors. https://www.cl.cam.ac.
uk/∼pes20/cpp/cpp0xmappings.html. Accessed: 2023-07-11.

[70] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli,
and Magnus O. Myreen. x86-TSO: A rigorous and usable programmer’s
model for x86 multiprocessors. Communications of the ACM, 2010.

[71] Debendra Das Sharma and Siamak Tavallaei. Compute express link 2.0
white paper. CXL. Retrieved October, 31:2021, 2020.

[72] Per Stenstrom. A survey of cache coherence schemes for multiproces-
sors. Computer, 1990.

[73] J. Stuecheli, B. Blaner, C. R. Johns, and M. S. Siegel. Capi: A
coherent accelerator processor interface. IBM Journal of Research and
Development, 2015.

[74] Charles P Thacker and Lawrence C Stewart. Firefly: a multiprocessor
workstation. ACM SIGARCH Computer Architecture News, 1987.

[75] Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, Michael Pellauer,
and Margaret Martonosi. TriCheck: Memory model verification at the
trisection of software, hardware, and ISA. Proceedings of the 22nd

International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2017.

[76] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A Kozuch, Mor
Harchol-Balter, and Gregory R Ganger. Tetrisched: global rescheduling
with adaptive plan-ahead in dynamic heterogeneous clusters. In Pro-
ceedings of the Eleventh European Conference on Computer Systems,
2016.

[77] Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Moris-
set, and Francesco Zappa Nardelli. Common compiler optimisations are
invalid in the c11 memory model and what we can do about it. In
Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 2015.

[78] Andrew Waterman and Krste Asanović. The RISC-V instruction set
manual, volume I: Unprivileged ISA document, version 20190608-
base-ratified. Technical report, SiFive Inc. and CS Division, EECS
Department, University of California, Berkeley, June 2019.

[79] Tianrui Wei, Nazerke Turtayeva, Marcelo Orenes-Vera, Omkar Lonkar,
and Jonathan Balkind. Cohort: Software-oriented acceleration for
heterogeneous socs. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, 2023.

[80] Will Deacon. Formalising the armv8 memory consistency model.
https://www.csm.ornl.gov/workshops/openshmem2018/presentations/
mm-openshmem2018.pdf, August 2018.

[81] Andrew W. Wilson and Richard P. LaRowe. Hiding shared memory
reference latency on the galactica net distributed shared memory archi-
tecture. Journal of Parallel and Distributed Computing, 1992.

[82] Meng Zhang, Alvin R Lebeck, and Daniel J Sorin. Fractal coherence:
Scalably verifiable cache coherence. In 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, 2010.

[83] Jianzhou Zhao, Santosh Nagarakatte, Milo MK Martin, and Steve
Zdancewic. Formalizing the llvm intermediate representation for verified
program transformations. In Proceedings of the 39th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
2012.

[84] Zhen Zhuang, Bei Yu, Kai-Yuan Chao, and Tsung-Yi Ho. Multi-package
co-design for chiplet integration. In Proceedings of the 41st IEEE/ACM
International Conference on Computer-Aided Design, 2022.

174

http://docs.nvidia.com/cuda/parallel-thread-execution/index.html
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://www.oxfordlearnersdictionaries.com/
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://www.csm.ornl.gov/workshops/openshmem2018/presentations/mm-openshmem2018.pdf
https://www.csm.ornl.gov/workshops/openshmem2018/presentations/mm-openshmem2018.pdf

	Introduction
	This Paper

	Background and Motivation
	Memory Consistency Model Overview
	The C11 Memory Consistency Model
	Update-Based Cache Coherence Protocols

	MemGlue Preliminaries
	MemGlue Overview
	Why Update-based Consistency Protocols?
	Why a Novel Protocol?

	MemGlue Hardware Primitives
	Write Propagation and Shim Integration

	Ordered MemGlue Consistency Protocol
	MemGlueO Protocol
	Refining the Protocol
	Timestamps
	SC Writes

	System-wide Proof of MemGlueO
	Per-Cluster Proofs
	Translation Scheme

	Unordered MemGlue Consistency Protocol
	Reorderings Allowed in MemGlueU
	MemGlueU Protocol
	SC-per-location
	Happens-Before Orderings

	System-wide Proof of MemGlueU

	Verifying MemGlue's Correctness
	Model Checking
	Proof

	Related Work
	Conclusions
	References

