
Formal Methods in Computer-Aided Design 2024

Translating Pseudo-Boolean Proofs
into Boolean Clausal Proofs

Karthik V. Nukala , Soumyaditya Choudhuri , Randal E. Bryant , Marijn J. H. Heule
Computer Science Department

Carnegie Mellon University, Pittsburgh, PA, United States
Email: {kvn, soumyadc}@andrew.cmu.edu, {rebryant, marijn}@cmu.edu

Abstract—Clausal proofs, particularly those based on the
deletion resolution asymmetric tautology (DRAT) proof system,
are widely used by Boolean satisfiability solvers for expressing
proofs of unsatisfiability. Their success stems from their simplicity
and scalability. When solvers go beyond pure propositional rea-
soning, however, generating clausal proofs becomes more difficult.
Solvers that employ pseudo-Boolean reasoning, including cutting-
planes operations, can express proofs in the VeriPB proof system,
but its adoption is not widespread.

We introduce PBIP (Pseudo-Boolean Implication Proof), a
framework that provides an intermediate representation be-
tween VeriPB and clausal proofs. We also introduce a toolchain
comprising 1) a VeriPB-to-PBIP translator that performs proof
trimming and optimization, and 2) a PBIP-to-LRAT translator
that makes use of proof-generating operations on ordered binary
decision diagrams (BDDs) to generate clausal proofs in LRAT
format, a variant of the DRAT that allows efficient checking.

We demonstrate the viability of our approach, the effectiveness
of our trimming, and the performance of our clausal proof
generator on a set of native PB benchmarks and compare our
approach to direct checking of VeriPB proofs.

I. INTRODUCTION

Boolean satisfiability (SAT) solvers underlie a large portion
of automated reasoning tools such as theorem provers, satis-
fiability modulo theory (SMT) solvers, and model checkers.
Given the safety-critical application domains of these tools,
correctness of the underlying solver is of utmost importance.
Creating a formally verified solver (using an interactive theo-
rem prover, for example) would severely compromise the abil-
ity to optimize and rapidly evolve the program. Most satisfia-
bility solvers take as input formulas expressed in conjunctive
normal form (CNF). These formulas consist of a conjunction
of clauses, each of which is a disjunction of literals, where
each literal is a Boolean variable or its complement.

An alternative to a formally verified solver is to have the
solver generate a proof certificate for each execution. When
this certificate is successfully checked by a verified proof
checker, the result is guaranteed to be correct. The deletion
resolution asymmetric tautology (DRAT) proof system [1] has
become the standard for modern SAT solvers and is widely
used by entries in the annual SAT competition [2]. DRAT is
notably a clausal proof system: a proof consists of a sequence
of clauses where each clause preserves the satisfiability of
the preceding clauses. A proof of unsatisfiability terminates
with the addition of the empty clause. Clausal proofs are
of particular interest because they are simple (resulting in

successful efforts to write verified proof checkers in interactive
theorem provers such as ACL2 [3], Coq [4], and CakeML [5])
as well as scalable (being able to check proofs two petabytes
in size [6]).

We consider pseudo-Boolean (PB) reasoning, chosen for
its status as a bridge between propositional satisfiability and
higher-level “beyond Boolean” reasoning. Also known as
0/1 integer linear programming, PB reasoning has been a
fertile area of research since the 1950s. It has been one
of longstanding multidisciplinary interest, with problems in
operations research [7], combinatorics [8], economics [9], and
VLSI design [10] (among others) benefiting from expressive
encodings as pseudo-Boolean constraints. By virtue of these
encodings, PB solvers can exploit richer structure and reason
in a way that would be difficult for native SAT solvers
to do. Notable PB solvers include PBS [11], Galena [12],
Pueblo [13], and RoundingSAT [14]. Having a way to express
and check PB proofs of unsatisfiability would enhance the
level of trust users could place in these solvers.

The VeriPB proof framework [15]–[17] supports both the
cutting planes (CP) proof system, viewing pseudo-Boolean
constraints as linear constraints over 0/1-valued variables,
and implication-based reasoning, viewing the constraints as
Boolean formulas. With cutting planes, new constraints can
be generated by summing two constraints or by scaling a
single constraint by either multiplication or division. With
implication-based reasoning, a new constraint can be added
when it is shown to be implied by previous constraints
via reverse unit propagation (RUP). Although a RUP-based
implication can be translated into a sequence of cutting planes
steps, RUP more directly captures the logical inferences made
by some tools.

This paper describes a series of tools that can transform a
VeriPB proof into a clausal proof in extended resolution [18],
a proof system that lies within the DRAT proof framework.
The generated proof is expressed in LRAT format, a variant
of DRAT for which a variety of proof checkers have been
developed, including ones that have been formally verified.

The key to our method is to represent pseudo-Boolean
constraints as ordered binary decision diagrams (BDDs) [19],
and to use a proof-generating BDD package to generate clausal
proof steps justifying each of its operations [20]. The BDD
representation of a pseudo-Boolean constraint over n variables
and with maximum coefficient a will have at most a ·n nodes,

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_23 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0009-0003-5192-115X
https://orcid.org/0009-0003-5448-9948
https://orcid.org/0000-0001-5024-6613
https://orcid.org/0000-0002-5587-8801
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_23
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_23
https://creativecommons.org/licenses/by/4.0/

and so we can say that the generated clausal proofs will be of
pseudo-polynomial complexity relative to the VeriPB proofs.
That is, the proofs will be polynomial in the values of the
coefficients, but this can be exponential in the number of bits
required to represent these values. In practice, many PB proofs
involve only small coefficients, and so the expansion will be
polynomial.

Some contributions of this work include:
• The ability to translate proofs in the relatively new and

unfamiliar VeriPB framework into a more established
clausal framework.

• The ability to directly compare the sizes of proofs gen-
erated using different approaches to logical reasoning.

• Methods to optimize VeriPB proof sizes and checking
times by adapting some of the trimming and hint gener-
ation methods used in clausal proofs.

• Experimental results relating the sizes of the clausal
proofs generated by several tools (including ours) to PB
proofs. These serve to quantify the advantage of proof
frameworks based on this higher level of reasoning. We
show that the clausal proofs scale polynomially, relative
to VeriPB, but their larger sizes pose challenges for more
difficult benchmark problems.

We note several limitations to our work:
• The soundness of our toolchain relies on a program

that generates CNF representations of the constraints
comprising the input pseudo-Boolean formula. Although
the current program is simple and has been thoroughly
tested, it would be preferable to have one that has been
formally verified.

• Our toolchain does not support the full suite of VeriPB
proof rules. Most significantly, it cannot handle the two
strengthening rules that enable symmetry reductions in
VeriPB proofs [21].

We discuss these in Section VII.

II. RELATED WORK

Recently, the CakePB [22] proof checker has been devel-
oped to enable formally verified checking of VeriPB proofs.
It operates by first converting the original VeriPB proof into
one in the VeriPB kernel format, where application of the
RUP proof rule is expanded into a sequence of cutting-planes
steps [23]. CakePB has the advantage that it can reason about
operations on pseudo-Boolean constraints directly, rather than
on their BDD representations. We compare the performance
of our toolchain to one based on CakePB in Section VI. Our
results show the effectiveness of proof trimming and motivate
its addition to future versions of CakePB.

At first glance, having a translation from cutting-planes
proofs into clausal proofs that only achieves pseudo-
polynomial performance (in terms of the proof size) could
seem to fall short of the theoretical optimum. In particular,
W. J. Cook, et al. [24] sketch an algorithm for converting any
cutting planes proof of unsatisfiability for CNF formula F into
an extended resolution proof, such the number of steps in the

extended resolution proof would be bounded by a polynomial
function p(n,m), with n equal to the total number of literals
in F and m equal to the number of steps in the CP proof.
That result is not directly comparable to ours, however:

• It assumes that the problem consists entirely of PB
constraints encoding clauses, i.e., having only unit co-
efficients and a unit constant.

• The scale of the polynomial is not given in the paper, but
it appears to be large. The presented translation requires
converting the CP steps into many arithmetic operations
on an encoded representation of the coefficients similar
to a binary representation. [25].

• To our knowledge, the proposed algorithm has never
actually been implemented and doing so would require
a substantial effort.

By contrast, VeriPB allows the input formula to contain
constraints with coefficients of arbitrary size. In addition, even
when given a formula with small coefficients, the constraints in
the VeriPB proof can have coefficients of arbitrary size. Cook’s
method would require encoding these with low-level arithmetic
operations. This theoretical result is unlikely to translate into
a practical method for proof generation.

III. PRELIMINARIES

A. Pseudo-Boolean Formulas

We recommend the PhD thesis by Stephen Gocht [17] as a
helpful introduction to pseudo-Boolean reasoning. A pseudo-
Boolean constraint is a linear expression, viewing Boolean
variables as ranging over integer values 0 and 1. That is, a
constraint c has the form a1ℓ1+a2ℓ2+ · · ·+anℓn # b where
the coefficients ai and the constant b are integers, and each
literal ℓi equals either input variable xi or its complement
xi. For an ordering constraint, the relational operator # is
<, ≤, ≥, or >. For an equational constraint, the relational
operator is =. An equational constraint can also be represented
as the conjunction of two ordering constraints having the same
coefficients but one with relation ≤ and the other with ≥. We
will mostly refer to coefficient-normalized constraints (CNCs)
of the form

a1ℓ1 + a2ℓ2 + · · · anℓn ≥ b (1)

where the coefficients and the constant are nonnegative inte-
gers and the relation is ≥.

An assignment ρ is a mapping from some subset of the
variables in X to truth values 1 (true) and 0 (false). We can
view an assignment as a set of literals ρ = {xi | ρ(xi) = 1}
∪ {xi | ρ(xi) = 0}. Assignment ρ is total when it assigns a
value to every variable.

Constraint c denotes a Boolean function, written JcK, map-
ping total assignments to truth values. Constraints c1 and c2
are said to be equivalent when Jc1K = Jc2K. Constraint c is
said to be infeasible when JcK = ⊥, i.e., it always evaluates
to 0. This occurs if and only if

∑︁
1≤i≤n ai < b. Constraint c

is said to be trivial when JcK = ⊤, i.e., it always evaluates to
1. This occurs if and only if b = 0.

176

As described in [17], the following are some properties of
pseudo-Boolean constraints:

• A relational constraint with comparisons <, ≤, and >
can be converted to an equivalent CNC.

• An equational constraint can be converted into two CNCs.
• The logical negation of CNC c, written c, can also be

expressed as a CNC.
• Any coefficient ai with ai > b in a CNC can be replaced

with the coefficient b without changing the underlying
Boolean function.

Some nomenclature regarding CNCs will prove useful. The
constraint literals are those literals ℓi such that ai ̸= 0. A
cardinality constraint has ai ∈ {0, 1} for 1 ≤ i ≤ n. A
cardinality constraint with b = 1 is referred to as a clausal
constraint: at least one of the constraint literals must be
assigned 1 to satisfy a constraint. It is logically equivalent
to a clause in a conjunctive normal form (CNF) formula. A
cardinality constraint with b =

∑︁
1≤i≤n ai is referred to as a

conjunction: all of the constraint literals must be assigned 1
to satisfy the constraint. A conjunction for which ai = 1 for
just a single value of i is referred to as a unit constraint: it is
satisfied if and only if literal ℓi is assigned 1.

A pseudo-Boolean formula F is a set of pseudo-Boolean
constraints. We say that F is satisfiable when there is some
assignment ρ that satisfies all of the constraints in F , and
unsatisfiable otherwise.

Although feasibility can readily be tested for individual
CNCs, determining whether a set of constraints (even for
set size 2) is satisfiable is intractable, unless P = NP . For
example, the subset sum problem [26] can readily be translated
into an equational constraint, and this can then be expressed
as the conjunction of two CNCs.

Pseudo-Boolean optimization problems can be converted to
decision problem by imposing a bound on the metric being
optimized. For example, two runs of a PB solver suffice to
prove that a graph has maximum clique size k. First, the solver
is run with a cardinality constraint requiring clique size k.
The generated solution can then be checked to make sure it is
indeed a clique. Then the solver is run with proof generation
enabled and with a cardinality constraint requiring clique
size k + 1. The certificate of unsatisfiability completes the
proof. Similar approaches can be used for other optimization
problems [15].

B. (Reverse) Unit Propagation

We let c|ρ denote the CNC resulting when c is simplified
according to partial assignment ρ. That is, assume c has the
form of (1) and partition the indices i for 1 ≤ i ≤ n into
three sets: I+, consisting of those indices i such that ℓi ∈ ρ,
I−, consisting of those indices i such that ℓi ∈ ρ, and IX

consisting of those indices i such that neither ℓi nor ℓi is in
ρ. With this, c|ρ can be written as

∑︁
1≤i≤n a

′
i ≥ b′ with a′i

equal to ai for i ∈ IX and equal to 0 otherwise, and with
b′ = b−

∑︁
i∈I+ ai.

Literal ℓi is unit propagated by CNC c when the assignment
ρ = {ℓi} causes the constraint c|ρ to become infeasible. As

the name implies, a unit-propagated literal ℓi then becomes
a unit constraint. Observe that a single constraint can unit
propagate multiple literals. For example, 4x1 + 3x2 + x3 ≥ 6
unit propagates both x1 and x2. For CNC c, we let Unit(c)
denote the set of literals it unit propagates

Rather than simplifying a constraint c according to partial
assignment ρ and then detecting unit propagations, we can
combine these to detect the set of unit propagations for
a constraint with respect to a partial assignment. That is,
we define Unitρ(c) to be Unit(c|ρ). These propagations
can readily be detected by computing the slack, defined as
Slackρ(c) =

∑︁
i∈IX ai +

∑︁
i∈I+ ai − b, where IX and I+

are the sets of indices defined previously. Unitρ(c) is then
defined as {ℓi | ai > Slackρ(c)}. For example, the constraint
c
.
= 4x1+3x2+x3 ≥ 6 has slack 4+3+1−6 = 2 with respect

to ρ = ∅. We can therefore compute Unitρ(c) = {x1, x2}.
Furthermore c will be infeasible for partial assignment ρ when
Slackρ(c) < 0.

Given a set of constraints F , we can build up a partial
assignment ρ by repeatedly performing unit propagation. That
is, define the operation Uprop as Uprop(ρ, c) = ρ∪Unitρ(c).
For initial assignment ρ, unit propagation on formula F is
then the process of extending ρ by repeatedly computing ρ←
Uprop(ρ, c) to all of the constraints c ∈ F until no more
propagations are possible.

Consider a formula F consisting a set of constraints
c1, c2, . . . , cm. The reverse unit propagation (RUP) proof rule
[15], [17] uses unit propagation to prove that target constraint
c can be added to a formula while preserving its set of
satisfying assignments. That is, any assignment that satisfies
F also satisfies F ∧ c. A RUP addition justifies c by assuming
c holds and showing, via a sequence of RUP steps, that this
leads to a contradiction. It accumulates a partial assignment ρ
based on unit propagations starting with the empty set. Each
RUP step accumulates more assigned literals by performing
a unit propagation of the form ρ ← Uprop(ρ, d), where d is
either cj , a prior constraint, or c, the negation of the target
constraint. The final step causes a contradiction, where d|ρ is
infeasible. Unlike with clauses, a single constraint, including
the negated target, can be used for unit propagation on multiple
RUP steps within a single RUP addition.

C. Trusted Binary Decision Diagrams

Trusted binary decision diagrams (TBDDs) [20] provide
a method for generating clausal proofs when performing
sequences of operations on Boolean functions represented
as ordered binary decision diagrams (BDDs) [19]. TBDDs
have been used to generate proofs of unsatisfiability for SAT
solvers [27], proofs of satisfaction and refutation in QBF
solvers [28], and for proofs of unsatisfiability for pseudo-
Boolean constraints [29]. Proofs are generated directly in
the LRAT format, making use of the support for extended
resolution provided by the RAT proof system.

In the following, we write a clause consisting of literals
ℓ1, ℓ2, . . . , ℓk as [ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓk]. A unit clause with literal
ℓ is written as [ℓ].

177

The key idea is to introduce an extension variable u every
time a BDD node u is created, with proof clauses defining
the semantic relation between u, the node variable x, and
child nodes u1 and u0 [27], [30], [31]. Each step in the recur-
sive algorithms to generate new BDDs generates a sequence
of proof clauses justifying an inductive invariant about the
operation being performed. For example, suppose the Apply
algorithm [19] computes the conjunction of BDDs with root
nodes u and v to derive a BDD with root node w. Each
recursive step of the operation performs the conjunction of
argument nodes u′ and v′ to derive a node w′. With TBDDs,
this step also generates a sequence of proof steps concluding
with the addition of clause [u′ ∨ v′ ∨ w′], justifying that
u′ ∧ v′ ⇒ w′. The final step of the recursion then generates
the clause justifying u ∧ v ⇒ w.

A trusted BDD u̇ is a BDD having root node u for which
the unit clause [u] has been added to the proof. That is,
the BDD will evaluate to 1 for any assignment that satisfies
the input formula. A proof of unsatisfiability concludes with
the addition of the TBDD consisting of the leaf node L0,
representing ⊥. This is encoded in the proof by the empty
clause.

D. Cutting Planes

The cutting planes proof system defines rules to derive new
constraints from existing ones, as is shown in Figure 1.

DIV∑︂
i

aixi ≥ b

∑︂
i

ai
k
xi ≥

⌈︂ b
k

⌉︂
SAT∑︂

i

aixi ≥ b∑︂
i

min(ai, b)xi ≥ b

MUL∑︂
i

aixi ≥ b∑︂
i

kaixi ≥ kb

ADD∑︂
i

aixi ≥ b
∑︂
i

cixi ≥ d∑︂
i

(ai + ci)xi ≥ b+ d

Fig. 1. Cutting-Planes Proof Rules. For the division rule, each coefficient ai
must be divisible by k.

Notably, rules DIV, SAT, and MUL do not change the
underlying Boolean function of the constraint. That is, for any
constraint c, and k ∈ N+ (where each coefficient ai in the
division rule must be divisible by k):

JcK = JDIV(c, k)K = JSAT(c)K = JMUL(c, k)K

Generating a constraint via the ADD rule, on the other hand,
creates a constraint with a new underlying Boolean function,
but it is implied by the conjunction of the Boolean functions
for the arguments:

Jc1K ∧ Jc2K⇒ Jc1 + c2K

IV. PBIP: PSEUDO-BOOLEAN IMPLICATION PROOF

A Pseudo-Boolean Implication Proof (PBIP) provides a
systematic way to prove that a PB formula F is unsatisfiable.
The PBIP file format is described in Section IV-B. It is not
intended to be a useful format on its own, but rather a bridge
between a PB proof and its translations into a clausal proof.

A. PBIP Proof Structure

A PBIP proof is given as a sequence of constraints, referred
to as the proof sequence:

c1, c2, . . . , cm, cm+1, . . . , ct

such that the first m constraints are those of formula F , while
each added constraint ci (referred to as a lemma) for i > m
follows by implication from the preceding constraints. That is,⋀︂

1≤j<i

JcjK⇒ JciK (2)

The proof completes with the addition of an infeasible
constraint for ct. By the transitivity of implication, we have
therefore proved that F is not satisfiable.

Constraints ci with i > m, can be added in two different
ways, corresponding to two different reasoning modes.

1) In implication mode, constraint ci follows by implication
from at most two prior constraints in the proof sequence.
That is, some Hi ⊆ {c1, c2, . . . , ci−1} with |Hi| ≤ 2
satisfies ⋀︂

cj∈Hi

JcjK⇒ JciK (3)

Set Hi is referred to as the hint for proof step i.
To simplify the generation of PBIP proofs, the checker
supports a summation rule of the form

∑︁
1≤i≤k di ⇒ c,

where each di is a constraint from a previous step.
Checking this is performed by computing intermediate
constraints as pairwise sums and proving that they
satisfy implication.

2) In RUP mode, constraint ci is justified by RUP addi-
tion. The hint specifies the RUP steps as a sequence
[d1,m1], [d2,m2], . . . , [dk−1,mk−1], [dk]. Each dj indi-
cates either a previous constraint ci′ for i′ < i, or
the negated target constraint ci. Each mj indicates a
unit-propagated literal. The final constraint, indicated
by dk should conflict with the accumulated assignment
ρ = {m1,m2, . . . ,mk−1}.

Unless P = NP , we cannot guarantee that a proof checker
can validate even a single implication step of a PBIP proof
in polynomial time. In particular, consider an equational
constraint c encoding an instance of the subset sum problem,
and let c≤ and c≥ denote its conversion into a pair of ordering
constraints such that JcK = Jc≤K∧Jc≥K. Consider a PBIP proof
to add the constraint c≤ having the c≥ as the only hint. Proving
that Jc≥K⇒ Jc≤K, requires proving that Jc≤K∧Jc≥K = ⊥, i.e.,
that c is unsatisfiable.

On the other hand, checking the correctness of a PBIP
proof can be performed in pseudo-polynomial time using

178

BDDs, meaning that the complexity will be bounded by a
polynomially sized formula over the numeric values of the
integer parameters. In particular, a CNC over n variables and
having a as the maximum of its coefficients ai and the constant
b will have a BDD representation with at most a·n nodes [32].
For an implication proof step where the added constraints and
the hints all have coefficients and constants less than or equal
to a, the number of BDD operations to validate the step will
be O(a2 · n) when there is a single hint and O(a3 · n) when
there are two hints. This complexity is polynomial in a, but it
could be exponential in the size of a binary representation of
a. The number of BDD operations for each unit propagation
step in a RUP proof will be linear in the size of the BDD and
therefore O(a · n).

B. PBIP File Format

A PBIP file describes a sequence of transformations on a set
of pseudo-Boolean input constraints leading to an infeasible
constraint. The file therefore describes an unsatisfiability proof
for a PB constraint problem. The format assumes that each
input constraint is encoded as a set of clauses in conjunctive
normal form (CNF). The clauses for all of the constraints
are provided as a file in the standard DIMACS format. The
generation of this file is performed by a separate program PB-
CNF, described in Section VI.

When in implication mode, each derived constraint must
follow by implication from either one or two preceding
constraints, referred to as the “antecedents”. That is, for target
constraint c and prior constraint c1, and possibly c2, we must
have either Jc1K ⇒ JcK or Jc1K ∧ Jc2K ⇒ JcK. When in RUP
mode, the constraint to be derived is set as a target, and a set
of unit constraints is accumulated. Each RUP step then derives
an additional unit constraint based on the previously derived
unit constraints, as well as either the complement of the target
constraint or some preceding constraint. The final step should
then cause a contradiction, with the set of accumulated unit
constraints falsifying the final constraint.

PBIP files build on the OPB format for describing PB
constraints, as documented in [33].

There are five line types. The first four types define con-
straints that can be referenced by later lines. Constraints are
numbered from 1, starting with the input constraints. File lines
beginning with “*” are treated as comments.

1) Input lines begin with “i”. This is followed by a
constraint, expressed in OPB format, and terminated by
“;”. Then, a set of clause numbers from the CNF file
is listed, separated by spaces and terminated with end-
of-line. Forming the conjunction of these clauses and
existentially quantifying any variables that are not listed
in the PB formula should yield a Boolean function that
is implied by the PB constraint.

2) Implication-mode assertion lines begin with “a”. This is
followed by a constraint, expressed in OPB format and
terminated by “;”. Then, either one or two constraint
numbers is listed, separated by spaces and terminated
with end-of-line.

3) RUP lines begin with “u”. This is followed by a con-
straint, expressed in OPB format and terminated by “;”.
Then, a sequence of lists is given, where each list is of
the form [I ℓ1 . . . ℓk], indicating that constraint number
I will propagate additional units ℓ1, . . . , ℓk. I can either
be the number of a previous constraint, or it can be
that of the current constraint. The latter case is known
as a “self reference”, and its unit propagations should
be based on the negation of the target constraint. The
final list is of the form [I], and the indicated constraint
must be falsified by the accumulated set of literals. A
list of the form [I ℓ1 . . . ℓk] with k > 1 indicates that
multiple literals will be unit propagated. This notation
is equivalent to listing the literals individually with the
sequence [I ℓ1] [I ℓ2] · · · [I ℓk].

4) Summation implication lines begin with “s”. This is
followed by a constraint c, expressed in OPB format and
terminated by “;”. Then, a set of constraint numbers is
listed, separated by spaces and terminated with end-of-
line. These numbers identify a set of prior constraints
c1, c2, . . . , ck satisfying:

k∑︂
i=1

JciK =⇒ JcK

This line avoids the need to expand a summation of
k constraints into k − 1 implication lines. Instead, the
checker performs the summations and tests the final
implication, using heuristics to optimize the order in
which the argument constraints are summed.

5) Deletion lines begin with “d”. This is followed by a list
of constraint numbers. These constraints cannot be used
as hints for the remainder of the proof.

For an unsatisfiability proof, the final constraint should be
infeasible, e.g. 0 ≥ 1.

V. PBIP TRIMMING AND CHECKING

Given a VeriPB proof, we must transform it into a PBIP
proof. In doing so, we trim the proof to eliminate those steps
that are not required for the final unsatisfiability result.

A. Hinting and Trimming Cutting-Planes and RUP Proofs

We present here a set of procedures that take a VeriPB proof
of unsatisfiability (generated by a proof-logging solver such as
RoundingSAT [34] or the Glasgow Subgraph/Clique Solvers
[15], [35]) and perform a translation into PBIP. In addition,
the resulting proof is trimmed, removing proof steps that do
not lead to the final unsatisfiability result.

Our procedures support the following VeriPB commands:
• f/l - OPB input constraint loading
• p/pol - Justification via reverse Polish notation (RPN)

arithmetic/cutting planes reasoning
• u/rup - Justification via reverse unit propagation (RUP)
• o/soli - Optimal value witness
In addition, we also support auxiliary VeriPB commands

such as a and j (variants of implication that show up in proofs
generated by the Glasgow solvers).

179

Our procedure performs a backwards reachability analysis
similar to DRAT-trim [1]: first, we identify a minimal set of
constraints required to justify the empty constraint ⊥ = 0 ≥ 1,
expressing unsatisfiability of the formula. We continue with
our reachability analysis from this minimal set. For each
lemma in the minimal set, we identify the lemmas needed to
prove it, mark them as necessary for the proof, and add them
to the set. All unmarked lemmas are discarded (trimmed).

The hinting/trimming algorithms can be partitioned into
two sub-procedures: (1) RUP lemma hinting and (2) arith-
metic/cutting planes reasoning.

1) Lemma Justification via RUP: The RUP procedure
serves to simultaneously

• trim the formula by computing a minimal necessary set
of constraints S′ required to justify all lemmas in S.

• construct a set of hints mapping each constraint ci ∈ S′

to a list of hints Hi, where each list element hj is of the
form [dj mj], indicating that constraint dj propagates
unit mj to falsify ci.

We make two notable optimizations here:

1) We implement a saturation procedure that aims to min-
imize the necessary set at each step—that is, we only
consider new lemmas if we cannot justify our target with
the current set.

2) Our data structures support near-instant unit discovery
by utilizing properties of a constraint’s slack: by main-
taining a sorted order over our constraint database (terms
sorted in decreasing-coefficient order, constraints sorted
in decreasing-slack order), unit discovery amounts to
queries to the first element under this ordering, which
can be done efficiently.

2) Arithmetic/Cutting Planes Reasoning: The goal of the
arithmetic procedures is to unroll sequences of reverse Polish
notation (RPN) arithmetic into hinted chains of clausal rea-
soning. Notable optimizations include:

• General trie-based arithmetic simplification: we avoid
recomputation of cutting-planes sequences that share
common prefixes by maintaining a trie.

• Heuristic arithmetic trimming: the solvers we have tested
tend to build up chains of cutting-planes reasoning where
only the last element of the chain is useful for the final
result, and hence the rest of the chain is unnecessary.
We proceed with this assumption, but in event of propa-
gation failure, we revert to a more cautious step-by-step
processing.

B. BDD-Based PBIP Checking and LRAT Generation

Our goal is to create a TBDD representation u̇i for each
constraint ci in the proof sequence. Our implementation
augments the existing TBDD operations in the TBUDDY
package [20] to support PB constraints and to provide special
operations to support RUP proof justification. The final step
of adding infeasible constraint ct will cause the empty clause
to be added to the proof. Here we provide a high-level

description of how the different PBIP steps translate into
TBDD operations.

When adding constraint ci, we invoke operation BDD(ci)
to construct the BDD representation ui of ci according to the
algorithm described by Abío, et al. [32]. Upgrading this to the
trusted BDD u̇i requires generating the unit clause [ui]. We
assume that every prior proof constraint ci′ , with i′ < i, has a
TBDD representation u̇i′ with an associated unit clause [ui′].

When ci is added by implication mode, generating its unit
clause is based on the constraints given as the hint. If the
hint consists of the single constraint ci′ , we can use the
BDD_IMPLY operation to add proof clause [ui′∨ui]. Resolving
this with the unit clause [ui′] then gives the unit clause [ui].
When the hint consists of two constraints ci′ and ci′′ , we first
use the BDD_AND operation on BDDs ui′ and ui′′ to generate
their conjunction w, along with proof clause [ui′ ∨ ui′′ ∨ w].
We then use the BDD_IMPLY operation to generate the clause
[w ∨ ui]. Resolving these clauses with the unit clauses for
TBDDs u̇i′ and u̇i′′ yields the unit clause [ui].

Adding constraint ci via a RUP addition involves two
phases. The first performs a series of clause generations
to justify the unit propagations. The second uses a sin-
gle clausal RUP addition to add the target clause. Dur-
ing the first phase, each step j < k in the sequence
[d1,m1], [d2,m2], . . . , [dk−1,mk−1], [dk], requires generating
a clause of the form [ui ∨ m1 ∨ m2 ∨ · · · ∨ mj−1 ∨ mj].
Step k requires generating the clause [ui ∨m1 ∨m2 ∨ · · · ∨
mk−1]. Implementing these justifications is complicated by
the negations in the RUP steps, since negation is not directly
supported in clausal reasoning. Instead, we make extensive
use of DeMorgan’s Laws. The final clausal RUP addition
has unit clause [ui] as its target and will have as hints the
unit-propagating clauses generated for the RUP steps. RUP
addition will start with unit literal ui and accumulate the
propagated literals m1,m2, . . . ,mk−1. The final clause will
cause a conflict. For the special cases where either the previous
constraint ci′ or the target constraint ci can be represented as
a single clause, we can use this clause directly to justify unit
propagation, reducing the number of BDD operations.

VI. IMPLEMENTATION AND RESULTS

The overall toolchain, illustrated in Figure 2, consists of the
following steps

• IPBIP-HINTS: Translates from VeriPB to PBIP while
simultaneously trimming the VeriPB proof, as described
in Section V-A.

• PB-CNF: Generates a CNF representation of the input
constraints by first constructing their BDD representa-
tions [32], and then encoding these with clauses, using at
most two clauses per BDD node.

• PBIP-CHECK: Generates an LRAT file from the PBIP
proof as described in Section V-B

• LRAT-CHECK: Checks an LRAT proof
As the thick lines in the figure indicate, steps PB-CNF
and PBIP-CHECK can cause an exponential growth in the
proof size, when input or intermediate constraints have large

180

IPBIP-HINTS
VeriPB PBIP

PBIP-CHECK LRAT LRAT-CHECK VERIFIED

PB-CNF CNF

PB PB

Fig. 2. PBIP toolchain: A VeriPB proof is first trimmed and translated into PBIP by IPBIP-HINTS. The VeriPB and the PBIP proofs contain a copy of
the original PB problem, denoted by the orange PB subnodes. PB-CNF generates a CNF file from the original PB problem. The PBIP proof and CNF file
are inputs to PBIP-CHECK, which translates the PBIP proof to LRAT using a a proof-generating BDD package [20]. The generated LRAT file can then be
checked by LRAT-CHECK. The two thick lines indicate cases where there can be an exponential size increase. The yellow blocks indicate steps that must be
correct to ensure soundness of the toolchain.

2 4 8 16 32 64
102

104

106

108

1010

Number of holes n

CNF Size
PBIP Size
LRAT Size

2 4 8 16 32 64
102

104

106

108

1010

Chessboard rows and columns n

CNF Size
PBIP Size
LRAT Size

Fig. 3. File sizes in bytes for (left) pigeonhole and (right) mutilated chessboard

coefficients. The figure also indicates that steps PB-CNF and
LRAT-CHECK form the trusted code base for the toolchain—
they must be correct for the overall verification to be sound.
In the case of LRAT-CHECK, one option would be to use a
formally verified checker. In the case of PB-CNF, the tool is
very simple, but it would be good to have a formally verified
version, as is discussed in Section VII.

A. Benchmarks

We demonstrate the effectiveness of our tools (trimming
procedure, clausal translation) and analyze our contributions
by evaluating them on the following benchmark problems:

1) Pigeonhole (PHP) Formulas - PBIP proofs generated by
summing the constraints across all pigeons and holes.

2) Mutilated Chessboard (MCB) Formulas - PBIP proofs
generated by summing the constraints for every square.

3) DIMACS Clique (CLQ) Benchmarks (23 instances) -
OPB/VeriPB proofs generated by Glasgow Clique Solver

4) Subgraph Isomorphism (SIP) Benchmarks (30 instances)
- OPB/VeriPB proofs generated by Glasgow Subgraph
Solver

For the CLQ benchmarks, the CakePB checker [22] was
evaluated on a 55-benchmark subset of the Second DIMACS
Implementation Challenge [36], out of which it was able to
verify 50 graphs. From this subset of 55 benchmarks, we were
able to translate 23 instances to LRAT and fully verify 21 of
them with LRAT-CHECK.

For the SIP benchmarks, we selected 30 instances from
subgraph isomorphism problems hosted by Christien Solnon
[37] and translate all of them down to LRAT and verify them
with LRAT-CHECK.

We ran our tests on the Jetstream2 cluster hosting a system
with a 16-core AMD EPYC-Milan Processor, 60GB RAM,
and 1TB disk space running Ubuntu 22.04.3 LTS.

Our results can be broken down into three sets of experi-
ments: (1) a comparison between PBIP/LRAT proof sizes and
how our pipeline performs against competing tools, (2) an
evaluation of the effectiveness of our trimming procedure, and
(3) an analysis of the runtimes of our toolchain.

B. Proof Sizes

Pigeonhole (PHP)/Mutilated Chessboard (MCB) Bench-
marks: For the pigeonhole and mutilated chessboard prob-

181

4 8 16 32 64 128
102

103

104

105

106

107

108

Number of holes n

KISSAT

PGPBS

PBIP-CHECK

Cook’s Proof
smallest known

4 8 16 32 64 128
102

103

104

105

106

107

108

Chessboard rows and columns n

KISSAT

PBIP-CHECK

PGPBS

PGBDD

Fig. 4. Total number of clauses in proofs for (left) pigeonhole and (right) mutilated chessboard

lems, Figure 3 shows the different file sizes (in bytes) as a
function of problem parameter n (the number of holes in PHP
and the number of rows and columns in MCB). The graphs
show a close correspondence between the CNF and the PBIP
proof sizes, and a polynomial separation between the PBIP
and LRAT proof sizes.

Figure 4 shows the number of clauses in proofs generated
by our toolchain compared to those for proofs generated
by competing tools. We consider here the proof-generating
SAT solver KISSAT [38], the proof-generating pseudo-Boolean
solver PGPBS [29], S. A. Cook’s manually constructed O(n4)
extended resolution proofs [39], and the smallest known proof
(O(n3)) [40]. We see that our PHP proofs asymptotically
match the O(n4) scaling of Cook’s proof. The scaling of
the MCB proofs matches that of PGPBS but is bested by
running the proof-generating BDD package PGBDD with a
carefully devised variable ordering and sequencing of BDD
operations [41]. In both instances, we greatly improve on the
exponential performance of KISSAT.

Maximum Clique/Subgraph Isomorphism Benchmarks: We
evaluate our pipeline on native pseudo-Boolean benchmarks
(CLQ/SIP) starting from VeriPB cutting planes proofs. From
the VeriPB proofs, we run the full pipeline presented in Figure
2 and obtain PBIP and LRAT proofs. Figure 5 compares the
various proof sizes.

The general trend confirms the polynomial separation be-
tween the PBIP and LRAT proof sizes, with some irregularities
due to extreme cases of proof trimming.

Figure 6 summarizes the average proof size increase (per
benchmark suite) across the various proof formats in relation
to the original VeriPB proof (in its non-kernel format).

C. Trimming Effectiveness

Here, we outline the effectiveness of the VeriPB trimming
procedures described in Section V-A and implemented in
IPBIP-HINTS.

Clique Benchmarks: Figure 7 demonstrates the effective-
ness of our trimming on a set of DIMACS clique problems. On
average, over our test suite, 45% of the input VeriPB lemmas
are deemed unnecessary and are therefore trimmed from
the proof. On 3 examples (hamming8-2, c-fat500-10,
and hamming10-2), our trimmed (clausal) PBIP proofs are
in fact shorter than the corresponding (non-clausal) VeriPB
proofs. Notably, these cases are trimmed very aggressively
(averaging 97.5% of lemmas trimmed) and this can be seen
in Figure 5, where the VeriPB line rises above the PBIP line.
The resulting LRAT proof for hamming10-2 is also only 3.7
times larger than the corresponding VeriPB proof.

Subgraph Isomorphism Benchmarks: The proofs generated
by the Glasgow Subgraph Solver [35] for the (unsatisfi-
able) subgraph isomorphism problems were succinct—most
required only a single RUP justification amounting to the
final unsatisfiability result. However, four benchmarks required
more than one lemma. Notably, g3-g12 underwent 91%
trimming, with the corresponding LRAT file being comparable
in size with the corresponding VeriPB file (as depicted in
Figure 5, where the file sizes only differ by a factor of 1.3×).

D. Tool Runtimes

Clique Benchmarks: Our approach incurs a significant cost
(in comparison with CakePB) in both the source trimming
and the clausal translation, as shown in Figure 8. On easy
instances, the trimming (IPBIP-HINTS, in blue) and checking
(PBIP-CHECK in red and LRAT-CHECK in yellow) all perform
moderately well whereas on hard instances, they become quite
slow. Average ratios (in relation to CakePB’s performance)
over the benchmark sets are seen in Figure 9.

Subgraph Isomorphism Benchmarks: Similar to the clique
benchmarks (as seen in Figure 8), our toolchain on subgraph
isomorphism problems generally incurs a large runtime over-
head versus CakePB. However, the trimming procedure does
take less time than CakePB, amounting to 80% of CakePB’s
total runtime. This can be attributed to the succinctness of the

182

ha
mm
in
g6
-2

jo
hn
so
n8
-2
-4

c-
fa
t2
00
-2

c-
fa
t2
00
-1

MA
NN
_a
9

ha
mm
in
g6
-4

c-
fa
t2
00
-5

ha
mm
in
g8
-2

c-
fa
t5
00
-2

c-
fa
t5
00
-1

jo
hn
so
n8
-4
-4

c-
fa
t5
00
-5

c-
fa
t5
00
-1
0

sa
n2
00
_0
.7
_2

ha
mm
in
g1
0-
2

p_
ha
t3
00
-1

sa
n4
00
_0
.5
_1

br
oc
k2
00
_2

sa
n2
00
_0
.7
_1

ke
ll
er
4

p_
ha
t3
00
-2

br
oc
k2
00
_3

p_
ha
t5
00
-1

104

106

108

1010

DIMACS Clique File Sizes (in bytes)

VeriPB Size
PBIP Size
LRAT Size

g4
-g
5

g4
-g
7

g4
-g
6

g4
-g
9

g4
-g
10

g4
-g
11

g4
-g
28

g9
-g
10

g4
-g
13

g8
-g
10

g9
-g
11

g3
-g
12

g7
-g
28

g7
-g
14

g4
-g
33

g4
-g
41

g8
-g
28

g9
-g
28

g1
0-
g2
8

g3
-g
18

g2
-g
3

g1
8-
g2
8

pa
tt
er
n1
-t
ar
ge
t5

pa
tt
er
n4
-t
ar
ge
t5

pa
tt
er
n4
-t
ar
ge
t3
56

pa
tt
er
n1
-t
ar
ge
t3
47

pa
tt
er
n4
-t
ar
ge
t3
9

pa
tt
er
n1
-t
ar
ge
t2
99

pa
tt
er
n1
-t
ar
ge
t3
56

pa
tt
er
n4
-t
ar
ge
t1
28

103

104

105

106

107

108

109

Subgraph Isomorphism File Sizes (in bytes)

Fig. 5. (L) DIMACS MAX-Clique proof file sizes in bytes (R) Subgraph Isomorphism proof file sizes in bytes

Benchmark VeriPB Kernel PBIP LRAT
CLQ 1.9× 11.3× 1682.0×
SIP 2.8× 08.1× 3342.8×

Fig. 6. Average proof size increase between VeriPB (non-kernel) and
Kernel/PBIP/LRAT

generated VeriPB proofs by the subgraph solver, requiring less
effort from our trimming/propagation procedures.

VII. CONCLUSION AND FUTURE WORK

We have presented a pipeline capable of translating native
pseudo-Boolean proofs (in the VeriPB format) to extended res-
olution proofs (in the LRAT format). This involved introducing
the intermediate PBIP (Pseudo-Boolean Implication Proof)
framework, from which a proof-generating BDD package can
generate the LRAT proof.

The work reported here suggests several avenues for future
research.

Verified PB Encodings. As indicated in Figure 2, we use the
unverified program PB-CNF to generate a CNF representation
of the input constraints. Although generating a clausal rep-
resentation of pseudo-Boolean constraints is straightforward,
this still represents a weak link in terms of the trustworthiness
of our toolchain. Based on recent work on formalized CNF
encodings in the Lean proof framework [42], we could pro-
duce verified CNF encodings of PB constraints expressed in
the OPB format and achieve end-to-end verification (verified
encodings of the PB source, verified translation by PBIP-
CHECK, and verified checking via LRAT-CHECK) of our
pipeline.

Supporting a Larger Subset of VeriPB. VeriPB is capa-
ble of even richer modes of reasoning, supporting rules
such as redundancy-based strengthening and dominance-based
strengthening [21]. Converting these to BDD-based proofs

benchmark total u done u trimmed (%)
brock200_2 3758 3388 9.85
brock200_3 14251 14210 0.29
c-fat200-1 17 6 64.71
c-fat200-2 3 1 66.67
c-fat200-5 86 29 66.28
c-fat500-1 9 2 77.78
c-fat500-2 15 2 86.67
c-fat500-5 34 2 94.12
c-fat500-10 65 1 98.46
hamming6-2 17 1 94.12
hamming6-4 82 82 0.0
hamming8-2 65 2 96.92
hamming10-2 257 3 98.83
johnson8-2-4 24 24 0.0
johnson8-4-4 120 115 4.17
keller4 13542 13495 0.35
MANN_a9 71 53 25.35
p_hat300-1 1473 1434 2.65
p_hat300-2 4078 3367 17.44
p_hat500-1 9708 9677 0.32
san200_0.7_1 13396 2604 80.56
san200_0.7_2 450 246 45.33
san400_0.5_1 2276 1554 31.72
g2-g3 701 701 0.0
g3-g12 411 37 91.0
g3-g18 321 69 78.5
g4-g7 21 20 4.76

Fig. 7. VeriPB lemmas trimmed on CLQ/SIP benchmarks - The column
marked “total u” represents the number of lemmas present in the source
VeriPB proof (RUP lemmas logged by the Glasgow solvers in their derivations
of ⊥) and “done u” represents the number of RUP lemmas actually deemed
necessary by our IPBIP-HINTS trimming procedure. The top 23 benchmarks
are max-clique benchmarks while the bottom 4 are (selected) subgraph
isomorphism benchmarks.

183

jo
hn
so
n8
-2
-4

c-
fa
t2
00
-2

ha
mm
in
g6
-2

c-
fa
t2
00
-1

ha
mm
in
g6
-4

MA
NN
_a
9

c-
fa
t5
00
-2

c-
fa
t5
00
-1

jo
hn
so
n8
-4
-4

c-
fa
t5
00
-5

c-
fa
t2
00
-5

ha
mm
in
g8
-2

0

1

2

3

4

5

Ti
m

e
(s

)
DIMACS Clique Runtimes (Easy)

Ipbip-Hints
Pb-Cnf

Pbip-Check
Lrat-Check

kernel + CakePB
CakePB

p_
ha
t3
00
-1

br
oc
k2
00
_2

p_
ha
t5
00
-1

p_
ha
t3
00
-2

ke
ll
er
4

br
oc
k2
00
_3

sa
n4
00
_0
.5
_1

sa
n2
00
_0
.7
_1

0

500

1,000

1,500

2,000

2,500

DIMACS Clique Runtimes (Hard)

g4
-g
5

g4
-g
7

g4
-g
6

g4
-g
9

g4
-g
10

g4
-g
11

g4
-g
28

g9
-g
10

g4
-g
13

g8
-g
10

g9
-g
11

g3
-g
12

g7
-g
28

g7
-g
14

g4
-g
33

g4
-g
41

g8
-g
28

g9
-g
28

g1
0-
g2
8

g3
-g
18

g2
-g
3

g1
8-
g2
8

pa
tt
er
n1
-t
ar
ge
t5

pa
tt
er
n4
-t
ar
ge
t5

pa
tt
er
n4
-t
ar
ge
t3
56

pa
tt
er
n1
-t
ar
ge
t3
47

pa
tt
er
n4
-t
ar
ge
t3
9

pa
tt
er
n1
-t
ar
ge
t2
99

pa
tt
er
n1
-t
ar
ge
t3
56

pa
tt
er
n4
-t
ar
ge
t1
28

0

5

10

15

20

Subgraph Isomorphism Runtimes

Fig. 8. (L) Toolchain performance on (easy) DIMACS Max-Clique benchmarks (M) Toolchain Performance on (hard) DIMACS Max-Clique benchmarks (R)
Toolchain performance on (selected) Subgraph Isomorphism benchmarks
The red dot (labelled CakePB) corresponds to running solely the CakePB checker on an already-generated kernel format while the black dot (labelled kernel
+ CakePB) incorporates the time taken to generate the kernel format as well.
Note: lrat_check was unable to verify p_hat300-2 and brock200_3 from the middle (hard cliques) graph.

Set IPBIP-HINTS PBIP-CHECK LRAT-CHECK

sip 0.8× 9.5× 6.9×
clq (all) 4.4× 42.5× 10.7×
clq (easy) 0.9× 4.2× 2.6×
clq (hard) 10.9× 109.5× 35.3×

Fig. 9. Average runtime overhead (ratio) of each phase in comparison with
CakePB checking.

would require going beyond the implication-based proofs sup-
ported by current proof-generating BDD packages. It requires
having proof rules that allow adding clauses that preserve
satisfiability but exclude possible solutions to a formula,
such as propagation redundancy [5], [43]. Translating the PB
strengthening rules into clausal proofs remains an unsolved
problem.

Fine tuning Performance/Tool Heuristics. Our tools make
use of various heuristics (from proof-specific optimizations
for trimming to BDD variable orderings). Fine-tuning these
and optimizing relevant parts of the toolchain (more efficient
structures for trimming, cache optimization) is definitely of
interest and could see improvements in the tool runtimes
described in Section VI-D.

Improvements to CakePB. Several of the optimizations we
made in our toolchain could be applied to CakePB:

• Direct support for RUP. The CakePB toolchain requires
converting a VeriPB proof into kernel format, replacing
each RUP addition with a sequence of cutting-planes
operations. Our experimental results show that this gen-
erally causes a small expansion in the proof size and a
small time overhead, but it is awkward, and it prompted
the authors to introduce special provisions to help users
debug failed proofs [22]. We have shown that methods
similar to those used by DRAT-trim [1] can be used to
identify the unit propagation steps required to justify a

RUP addition. These steps could be checked directly by
CakePB.

• Proof trimming. Our experimental results show that many
of the steps in VeriPB proofs are not relevant for a
proof of unsatisfiability. Trimming these can reduce the
checking time. It can also enable generating an “unsat
core” identifying the key properties of the problem that
cause it to be unsatisfiable. This capability has many
applications beyond proof generation [44].

ACKNOWLEDGMENTS

The authors thank the MIAO group and their
collaborators—in particular Ciaran McCreesh, Andy Oertel,
and Yong Kiam Tan–for support with their tools, benchmarks,
and general advice regarding pseudo-Boolean solving.
Special thanks to Ciaran McCreesh for numerous in-depth
clarifications on these matters. In addition, the authors
acknowledge Ruben Martins and Joseph Reeves of Carnegie
Mellon for helpful advice and encouraging discussions over
the course of the project. Finally, the authors thank Stephen
Deems of the Pittsburgh Supercomputing Center for providing
the computing resources to run our experiments.

This work was supported by the U. S. National Science
Foundation under grant CCF-2108521.

184

REFERENCES

[1] M. J. H. Heule, “The DRAT format and DRAT-trim checker,” arXiv
preprint arXiv:1610.06229, 2016.

[2] A. Balint, M. J. H. Heule, A. Belov, and M. Järvisalo, “The application
and the hard combinatorial benchmarks in SAT competition 2013,”
Proceedings of SAT Competition, pp. 99–100, 2013.

[3] M. J. H. Heule, W. Hunt, M. Kaufmann, and N. Wetzler, “Efficient,
verified checking of propositional proofs,” in Interactive Theorem Prov-
ing: 8th International Conference, ITP 2017, Brasília, Brazil, September
26–29, 2017, Proceedings 8, pp. 269–284, Springer, 2017.

[4] L. Cruz-Filipe, M. J. H. Heule, W. A. Hunt, M. Kaufmann, and
P. Schneider-Kamp, “Efficient certified RAT verification,” in Automated
Deduction–CADE 26: 26th International Conference on Automated De-
duction, Gothenburg, Sweden, August 6–11, 2017, Proceedings, pp. 220–
236, Springer, 2017.

[5] Y. K. Tan, M. J. H. Heule, and M. O. Myreen, “Verified propagation
redundancy and compositional UNSAT checking in CakeML,” Interna-
tional Journal on Software Tools for Technology Transfer, vol. 25, no. 2,
pp. 167–184, 2023.

[6] M. J. H. Heule, “Schur number five,” CoRR, vol. abs/1711.08076, 2017.
[7] P. M. Dearing, P. L. Hammer, and B. Simeone, “Boolean and graph theo-

retic formulations of the simple plant location problem,” Transportation
Science, vol. 26, no. 2, pp. 138–148, 1992.

[8] Y. Crama and P. L. Hammer, “Recognition of quadratic graphs and
adjoints of bidirected graphs,” in Proceedings of the third international
conference on Combinatorial mathematics, pp. 140–149, 1989.

[9] P. L. Hammer and E. Shlifer, “Applications of pseudo-Boolean methods
to economic problems,” Theory and decision, vol. 1, pp. 296–308, 1971.

[10] F. Barahona, M. Grötschel, M. Jünger, and G. Reinelt, “An application
of combinatorial optimization to statistical physics and circuit layout
design,” Operations Research, vol. 36, no. 3, pp. 493–513, 1988.

[11] F. A. Aloul, A. Ramani, I. Markov, and K. Sakallah, “PBS: a backtrack-
search pseudo-Boolean solver and optimizer,” in Proceedings of the 5th
International Symposium on Theory and Applications of Satisfiability,
pp. 346–353, 2002.

[12] D. Chai and A. Kuehlmann, “A fast pseudo-Boolean constraint solver,”
in Proceedings of the 40th annual Design Automation Conference,
pp. 830–835, 2003.

[13] H. M. Sheini and K. A. Sakallah, “Pueblo: A hybrid pseudo-Boolean
SAT solver,” Journal on Satisfiability, Boolean Modeling and Computa-
tion, vol. 2, no. 1-4, pp. 165–189, 2006.

[14] J. Elffers and J. Nordström, “Divide and conquer: Towards faster pseudo-
Boolean solving.,” in IJCAI, vol. 18, pp. 1291–1299, 2018.

[15] S. Gocht, R. McBride, C. McCreesh, J. Nordström, P. Prosser, and
J. Trimble, “Certifying solvers for clique and maximum common (con-
nected) subgraph problems,” in Principles and Practice of Constraint
Programming (CP), 2020.

[16] S. Gocht, C. McCreesh, and J. Nordström, “An auditable constraint
program solver,” in Principles and Practice of Constraint Programming
(CP), 2022.

[17] S. Gocht, Certifying Correctness for Combinatorial Algorithms by Using
Pseudo-Boolean Reasoning. PhD thesis, Lund University, 2022.

[18] G. S. Tseitin, “On the complexity of derivation in propositional calcu-
lus,” in Automation of Reasoning: 2: Classical Papers on Computational
Logic 1967–1970, pp. 466–483, Springer, 1983.

[19] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Transactions on Computers, vol. 35, no. 8, pp. 677–691,
1986.

[20] R. E. Bryant, “TBUDDY: A proof-generating BDD package,” in Formal
Methods in Computer-Aided Design (FMCAD), pp. 49–58, IEEE, 2022.

[21] B. Bogaerts, S. Gocht, C. McCreesh, and J. Nordström, “Certified
dominance and symmetry breaking for combinatorial optimisation,”
Journal of Artificial Intelligence Research, 2023.

[22] S. Gocht, C. McCreesh, M. O. Myreen, J. Nordström, A. Oertel, and
Y. K. Tan, “End-to-end verification for subgraph solving,” in AAAI
Conference on Artificial Intelligence, 2024.

[23] B. Bogaerts, C. McCreesh, M. O. Myreen, J. Nordström, A. Oertel,
and Y. K. Tan, “Documentation of VeriPB and CakePB for the SAT
competition 2023 (Mar 2023).” https://satcompetition.github.io/2023/
downloads/proposals/veripb.pdf.

[24] W. J. Cook, C. R. Coullard, and G. X. R. Turán, “On the complexity of
cutting-plane proofs,” Discrete Applied Mathematics, vol. 18, pp. 25–38,
1987.

[25] S. A. Cook, “Feasibly constructive proofs and the propositional calcu-
lus,” in ACM Symposium on the Theory of Computing (STOC), pp. 83–
97, 1975.

[26] M. R. Garey and D. S. Johnson, Computers and Intractability. W. H.
Freeman and Company, 1979.

[27] R. E. Bryant and M. J. H. Heule, “Generating extended resolution proofs
with a BDD-based SAT solver,” ACM Transactions on Computational
Logic, vol. 24, no. 4, pp. 1–28, 2023.

[28] R. E. Bryant and M. J. H. Heule, “Dual proof generation for quan-
tified Boolean formulas with a BDD-based solver,” in Conference on
Automated Deduction (CADE), vol. 12699 of LNAI, pp. 433–449, 2021.

[29] R. E. Bryant, A. Biere, and M. J. H. Heule, “Clausal proofs for
pseudo-Boolean reasoning,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pp. 443–461,
Springer, 2022.

[30] C. Sinz and A. Biere, “Extended resolution proofs for conjoining BDDs,”
in Computer Science Symposium in Russia (CSR), vol. 3967 of LNCS,
pp. 600–611, 2006.

[31] T. Jussila, C. Sinz, and A. Biere, “Extended resolution proofs for
symbolic SAT solving with quantification,” in Theory and Applications
of Satisfiability Testing (SAT), vol. 4121 of LNCS, pp. 54–60, 2006.

[32] I. Abío, R. Nieuwenhuis, A. Oliveras, and E. Rodríguez-Carbonell, “A
new look at BDDs for pseudo-Boolean constraints,” Journal of Artificial
Intelligence Research, vol. 45, pp. 443–480, 2012.

[33] O. Roussel and V. Manquinho, “Input/output format and solver re-
quirements for the competitions of pseudo-Boolean solvers.” https:
//www.cril.univ-artois.fr/PB12/format.pdf, 2012.

[34] J. Elffers and J. Nordström, “Divide and conquer: Towards faster pseudo-
boolean solving.,” in IJCAI, vol. 18, pp. 1291–1299, 2018.

[35] C. McCreesh, P. Prosser, and J. Trimble, “The Glasgow subgraph solver:
using constraint programming to tackle hard subgraph isomorphism
problem variants,” in International Conference on Graph Transforma-
tion, pp. 316–324, Springer, 2020.

[36] D. S. Johnson and M. A. Trick, Cliques, coloring, and satisfiability: Sec-
ond DIMACS Implementation Challenge, October 11-13, 1993, vol. 26.
American Mathematical Soc., 1996.

[37] C. Solnon, “Benchmarks for the subgraph isomorphism problem.” http:
//liris.cnrs.fr/csolnon/SIP.html, 2016. visited on May 11th, 2024.

[38] A. Biere and M. Fleury, “Gimsatul, IsaSAT and Kissat entering the SAT
Competition 2022,” in Proc. of SAT Competition 2022 – Solver and
Benchmark Descriptions (T. Balyo, M. Heule, M. Iser, M. Järvisalo,
and M. Suda, eds.), vol. B-2022-1 of Department of Computer Science
Series of Publications B, pp. 10–11, University of Helsinki, 2022.

[39] S. A. Cook, “A short proof of the pigeon hole principle using extended
resolution,” Acm Sigact News, vol. 8, no. 4, pp. 28–32, 1976.

[40] I. Grosof, N. Zhang, and M. J. H. Heule, “Towards the shortest DRAT
proof of the pigeonhole principle,” 2022.

[41] R. E. Bryant and M. J. H. Heule, “Generating extended resolution
proofs with a BDD-based SAT solver,” in Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), Part I, vol. 12651
of LNCS, pp. 76–93, 2021.

[42] C. R. Codel, J. Avigad, and M. J. H. Heule, “Verified encodings for SAT
solvers,” in 2023 Formal Methods in Computer-Aided Design (FMCAD),
pp. 141–151, IEEE, 2023.

[43] M. J. H. Heule, B. Kiesl, and A. Biere, “Strong extension-free proof
systems,” Journal of Automated Reasoning, 2019.

[44] J. P. Marques-Silva, “Minimal unsatisfiability: Models, algorithms, and
applications,” in IEEE Symposium on Multi-Valued Logic, 2010.

185

https://satcompetition.github.io/2023/downloads/proposals/veripb.pdf
https://satcompetition.github.io/2023/downloads/proposals/veripb.pdf
https://www.cril.univ-artois.fr/PB12/format.pdf
https://www.cril.univ-artois.fr/PB12/format.pdf
http://liris.cnrs.fr/csolnon/SIP.html
http://liris.cnrs.fr/csolnon/SIP.html

	Introduction
	Related Work
	Preliminaries
	Pseudo-Boolean Formulas
	(Reverse) Unit Propagation
	Trusted Binary Decision Diagrams
	Cutting Planes

	PBIP: Pseudo-Boolean Implication Proof
	PBIP Proof Structure
	PBIP File Format

	PBIP Trimming and Checking
	Hinting and Trimming Cutting-Planes and RUP Proofs
	Lemma Justification via RUP
	Arithmetic/Cutting Planes Reasoning

	BDD-Based PBIP Checking and LRAT Generation

	Implementation and Results
	Benchmarks
	Proof Sizes
	Trimming Effectiveness
	Tool Runtimes

	Conclusion and Future Work
	References

