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Abstract—Modern SAT solvers are trustworthy because their
results can be expressed in formal proof systems and validated
with verified proof checkers. Today, the RAT and PR proof systems
are the de facto standard: they capture many reasoning techniques
used by SAT solvers, and they are supported by efficient, formally-
verified checkers. However, RAT and PR struggle to succinctly
express advanced reasoning techniques like symmetry breaking.

In this paper, we present proof checking tools for the substitu-
tion redundancy (SR) proof system, a powerful generalization of
PR and RAT. We first highlight three problems with linear-size SR
proofs that are not expected to have linear-size PR or RAT proofs.
We then present proof formats for SR with and without unit
propagation hints, a tool to add those hints, and the first verified
SR proof checker. Since SR generalizes other proof systems, our
checker has the distinction of supporting the strongest clausal
proof system to date. Finally, our experimental results show that
SR proofs are much smaller than their RAT counterparts, and
that verified SR proof checking is efficient in practice.

I. INTRODUCTION

Satisfiability (SAT) solving continues to be a crucial tool for
industry and academia. For example, SAT solvers were recently
used to resolve open problems in computational geometry [1, 2]
and to improve lower bounds for a problem in quantum
mechanics [3]. In addition, SAT solvers form the core of SMT
solvers, which are queried a billion times a day by various
Amazon Web Services applications [4].

SAT solving is trustworthy due to the development of
verified proof checking. When reporting that a problem has no
solutions, modern SAT solvers emit a corresponding proof
of unsatisfiability expressed in a formal proof system. By
validating these proofs with verified software, we gain a high
degree of confidence in solver results, particularly those backing
mathematical theorems and industrial security guarantees.

Proof systems and SAT solvers are complementary, with
advances in one driving innovations in the other. For example,
the RAT proof system [5] was developed to validate the learned
clauses produced by CDCL solvers and some inprocessing
techniques. In the other direction, the PR proof system [6],
a generalization of RAT, validates short clauses that solvers
could not initially derive. But solvers have since caught up: the
2nd- and 8th-place finishers at the 2023 SAT Competition used
PR reasoning as a preprocessing step [7, 8]. More generally,
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stronger proof systems enable solvers to use more-powerful
reasoning techniques and produce shorter proofs.

In this paper, we develop verified proof checking tools for the
substitution redundancy (SR) proof system [9–11] (Section II).
SR generalizes PR, such that it can succinctly express a broad
range of symmetry-breaking techniques that PR cannot. We
show this by highlighting three problems that have SR proofs
with size linear in the number of variables and that, as far as
we know, do not have linear-sized PR proofs (Section III).

Currently, no solver supports SR reasoning. However, we
expect that the availability of our fast, verified SR checker will
stimulate the development of SR reasoning and preprocessing
techniques, similar to what happened with PR.

To enable SR proof checking (Section IV), we introduce the
DSR and LSR proof formats (Section V). Like the formats for
RAT and PR, DSR proofs record basic proof steps, while LSR
proofs include unit propagation hints that guide proof checking.
These formats are backwards compatible with the ones for
RAT and PR. Our set of SR proof checking tools (Section VI)
includes a tool that converts DSR proofs into DRAT and a tool
that converts DSR proofs into LSR by adding hints.

We also present the first verified LSR proof checker (Sec-
tion VII), giving it the distinction of supporting the strongest
clausal proof system to date. It implements several data struc-
tures and techniques commonly used in SAT proof checkers,
and we discuss how they impacted our formalization. We
proved our checker correct with the Lean theorem prover [12].

Finally, our experimental results (Section VIII) show the
clear benefits of using a stronger proof system. For example,
we found that the SR proofs from our benchmarks had 0.4%
as many proof lines as their transformations into RAT. We also
show that verified SR proof checking is efficient in practice:
our verified checker performs similarly to cake lpr [13], a
fast, verified PR proof checker written in CakeML [14].

II. SUBSTITUTION REDUNDANCY

We assume that the reader is familiar with SAT.1 Throughout,
let F be a formula in conjunctive normal form (CNF), let C and
D be clauses of boolean literals, and let τ be a truth assignment
on the boolean variables in F . We write ℓ for the negation
of boolean literal ℓ, and ¬C :=

⋀︁
ℓ∈C ℓ for the negation of

a clause C. A partial truth assignment is a non-tautological

1 For background reading, see Ch. 15 of the Handbook of Satisfiability [15].
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set of literals taken to be true. We abuse notation by writing
evaluation under (partial) assignments as τ(x).

When a SAT solver claims that a formula F is unsatisfiable,
it emits a proof of unsatisfiability in a formal proof system.
In clausal proof systems, each proof step adds a clause C to
F such that F and F ∧ C are equisatisfiable, meaning that F
is satisfiable if and only if F ∧ C is. Such clauses are called
redundant. The backward direction is trivial, so it suffices
to show only the forward direction. Notably, adding C to F
may (and often does) reduce the set of satisfying assignments,
but the important thing is that satisfiability is preserved. By
producing a series of redundant clauses ending in the empty
clause ⊥, a SAT solver can show that F is unsatisfiable.

Unfortunately, it is NP-hard to determine whether an
arbitrary C is redundant for F [16]. Therefore, most clausal
proof systems instead use a property implying redundancy that
is checkable in polynomial time when provided with a witness.
The SR proof system is based on such a property.

Witnesses for clausal proof systems work as follows. Suppose
we are trying to show that C is redundant for F . If F entails
C, written as F ⊨ C and meaning that for any τ ⊨ F , we have
that τ ⊨ C, then certainly F and F ∧C are equisatisfiable. So
assume that τ satisfies F but does not satisfy C. We can show
that C is redundant by modifying τ into a new assignment
satisfying F ∧ C. The witness σ describes this modification,
and it is used to form the satisfying truth assignment τ ◦ σ.

As a motivating example (discussed further in Section III),
consider the following proof of unsatisfiability for the pigeon-
hole formula on n pigeons and n− 1 holes. To start, we learn
that the first pigeon p1 cannot go in the last hole hn−1, i.e.,
the unit clause x1,n−1. If F ⊨ x1,n−1, then we’d be done, so
assume that τ ⊨ F but τ ⊨ x1,n−1, meaning that τ places p1
in hn−1. One way of modifying τ to satisfy x1,n−1 is to swap
p1 with a different pigeon, say, pn, thus ensuring that p1 ends
up in a different hole while still satisfying the overall formula.
We accomplish this by mapping the variables associated with
p1 to the variables associated with pn, and vice versa, before
evaluating them under τ . Functions called substitutions capture
this technique, and they serve as the witnesses in SR.

Formally, a substitution σ maps boolean variables to either
a boolean literal or a truth value. They can satisfy clauses and
formulas, written as σ ⊨ C and σ ⊨ F . They can also reduce
them. The reduction of C under σ, written as C|σ , is obtained
by mapping σ over its literals and removing those falsified by
σ. The reduction of F under σ, written as F|σ , is obtained by
reducing each of its clauses and removing those satisfied by
σ. We say that σ reduces C if σ does not satisfy C and there
is a literal ℓ ∈ C not mapped to itself under σ, i.e., σ(ℓ) ̸= ℓ.
Notably, σ can reduce C even if C|σ = C, as in the example
where C := x1 ∨ x2 and σ maps x1 and x2 to each other.

Additionally, we can compose substitutions with truth
assignments to form new truth assignments. Define (τ ◦ σ)(x)
as σ(x) if σ(x) ∈ {⊤,⊥} and as τ(σ(x)) otherwise. From
this definition, we can derive the core lemma used to prove
redundancy from the SR property: if σ does not satisfy C,
then τ ◦ σ ⊨ C ⇔ τ ⊨ C|σ. In other words, knowing that τ

satisfies C|σ is the same as knowing that σ modifies τ into an
assignment (τ ◦ σ) satisfying C. The lemma follows from the
definition of composition: let ℓ ∈ C with τ(σ(ℓ)) = ⊤. But
since σ ̸⊨ C, then σ(ℓ) ∈ C|σ , and so τ ⊨ C|σ .

The SR property is based on unit propagation (UP), which
computes in polynomial time the partial assignment implied
by the unit clauses in a formula F . Starting from the empty
partial assignment τ , UP reduces F with the following rule
until fixpoint: if F|τ contains a unit clause x, then τ := τ ∪ x.
If UP finds a unit clause x ∈ F|τ with τ(x) = ⊥, then we
write F ⊢1 ⊥, and we say that we have a UP refutation for
F . Such formulas are unsatisfiable.

We extend this definition to include UP derivations of clauses
and formulas. If C is a clause, then F ⊢1 C if F ∧ ¬C ⊢1 ⊥.
Likewise, if G is a formula, then F ⊢1 G if F ⊢1 C for every
C ∈ G. It is well-known that if F ⊢1 G, then F ⊨ G.

We now define SR. A clause C is substitution redundant
(SR) [9–11] for a formula F if there exists a substitution σ
such that F ∧ ¬C ⊢1 (F ∧ C)|σ .2

The SR property implies redundancy.

Theorem 1 ([9, 10]). Let F be a CNF formula, and let C be
a clause. If C is SR for F , then C is redundant for F .

Proof. It suffices to show the forward direction. If F ⊨ C, then
we’d be done, so assume that τ ⊨ F and τ ⊨ ¬C, and let σ be
a substitution satisfying the SR property for C and F . We will
show that τ ◦ σ ⊨ F ∧ C, meaning that τ ◦ σ ⊨ D for every
D ∈ (F ∧ C). If σ ⊨ D, then so would τ ◦ σ ⊨ D and we’d
be done, so assume otherwise. Thus D|σ ∈ (F ∧ C)|σ. But
the SR property tells us that since τ ⊨ F ∧ ¬C, we have that
τ ⊨ D|σ , and by the lemma, this implies that τ ◦ σ ⊨ D.

SR generalizes PR [6], which itself generalizes RAT [5].3 If
we restrict the witness to be a partial truth assignment, we
obtain PR. If we restrict the witness further to be a partial
assignment defined by a single literal, we obtain RAT.

III. SHORT SR PROOFS

Many problems, including several that are hard for resolution,
have SR proofs with size linear in the number of variables. In
this section, we describe SR proofs for three such problems
that, as far as we know, do not have linear-sized PR proofs.
Our manually-constructed proofs are available at:

https://github.com/marijnheule/sr-proofs.

A. The pigeonhole principle

The pigeonhole principle (PHP) states that if n pigeons are
placed in m < n holes, then at least one hole contains multiple
pigeons. The unsatisfiable PHP CNF formulas on n pigeons
and n − 1 holes consist of O(n2) variables {xp,h}, where
xp,h = ⊤ means that pigeon p is in hole h, and O(n3) clauses,

2 There are several variants of SR. We use the one due to Gocht and
Nordström [10] because it is more general and easier to understand than the
original definition due to Buss and Thapen [9], which requires that σ ⊨ C or
that C|σ is a tautology, and that F|τ ⊢1 F|σ .

3 These proof systems, and their extension-free variants, form a proof
hierarchy with interesting proof-theoretic properties [9, 11].
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encoding that each pigeon must be in at least one hole and
that two pigeons cannot both be in the same hole. Resolution
proofs of PHP formulas are exponential in n [17]. Extended
resolution admits proofs of size O(n4) [18], while PR admits
proofs of size O(n3) [16].

PHP SR proofs consist of O(n2) unit clauses [9, 11]. They
recursively use the following scheme to show that pigeon pn
must go in hole hn−1. We start by learning that p1 does not go
in the last hole, i.e., the unit clause x1,n−1. This clause is SR
because if the satisfying assignment τ assigns p1 to hn−1, then
we may modify τ with the substitution σ that instead assigns
pn to hn−1 by swapping (the variables for) the two pigeons.
Formally, σ = {x1,n−1 ↦→ ⊥, xn,n−1 ↦→ ⊤, x1,i ↦→ xn,i,
xn,i ↦→ x1,i} for i ∈ {1, . . . , n − 2}. Next we learn that p2
does not go in the last hole by swapping p2 with pn, and so
on, until only pn can go in hn−1. Now the problem has been
reduced to the PHP formula on n− 1 pigeons. Repeating this
process n− 1 times results in a refutation.

B. Tseitin formulas for expander graphs

Given a simple, undirected graph with an odd number of
black vertices and all others colored white, Tseitin formulas
ask whether there exists a subset of the edges S such that every
black vertex has odd degree in S and every white vertex has
even degree in S. This is not possible by the handshake lemma:
the sum of all vertex degrees in S is even, since each edge
is counted twice, but the sum of black edges (odd) and white
edges (even) must be odd. In the formula, every edge e receives
a variable that encodes whether e ∈ S. Figure 1 illustrates
the Tseitin constraints for a small graph. Tseitin formulas of
expander graphs have exponentially-large resolution proofs [19]
and polynomial-sized PR proofs [20].

6

4

5

3

2

1 e1,2 ⊕ e1,3 = 1

e1,2 ⊕ e2,3 ⊕ e2,4 = 0

e1,3 ⊕ e2,3 ⊕ e3,4 ⊕ e3,5 = 1

e2,4 ⊕ e3,4 ⊕ e4,5 ⊕ e4,6 = 0

e3,5 ⊕ e4,5 ⊕ e5,6 = 0

e4,6 ⊕ e5,6 = 1

Fig. 1. The Tseitin constraints for a small graph, ordered by vertex. If
ei,j = ⊤, then ei,j is in the edge subset S. The symbol ⊕ denotes XOR.

SR does better: any Tseitin formula has an SR proof linear
in the number of edges using the following derivation. First,
we may remove any vertex v incident to only a single edge e
because if v is white, then e cannot be in S, so removing them
both does not affect any other constraint; and if v is black,
then e must be in S, so we may remove them both as long as
we flip the color of the neighbor of v, since removing e will
change the degree-parity of the neighbor. We keep removing
degree-one vertices until a conflict (i.e., a black vertex with
no edges) or until every vertex in the graph has degree at least
two. Such a graph must have a cycle U . For any satisfying S,
we may swap the membership of every edge e ∈ U in S

and get a new satisfying edge set, as doing so maintains the
S-degree-parity of every vertex in U . As a result, we may pick
an arbitrary edge e ∈ U and fix e /∈ S. Repeating this process
will eventually result in a conflict.

We illustrate this process with the graph in Figure 1. Consider
the cycle {e1,2, e1,3, e2,3}. We can learn that the unit clause
e1,2 is SR with the witness σ = {e1,2 ↦→ ⊥, e1,3 ↦→ e1,3,
e2,3 ↦→ e2,3}. Afterwards, vertex v1 is adjacent to only the
edge e1,3. Since v1 is colored black, e1,3 must be in our edge
set S, so we may remove v1 and e1,3 to make the graph smaller,
as long as we swap the color of v3 from black to white.

C. Ramsey numbers

Ramsey number R(k, ℓ) is the smallest n such that every
2-coloring of the edges of the fully-connected graph on n
vertices with the colors red and blue has either a red k-clique
or a blue ℓ-clique. The encoding of R(k, ℓ) is straightforward:
boolean variables {ei,j}1≤i<j≤n represent the color of each
edge, where ei,j = ⊤ means the edge is blue, and for each
k-clique and ℓ-clique, there is a clause stating that at least
one of its edges is blue or red, respectively. An unsatisfiable
formula for any n, k, and ℓ proves that R(k, ℓ) ≤ n.

6
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Fig. 2. A short proof of R(3, 3) ≤ 6. After adding clauses that sort the edges
of vertex v1 by color (blue edges first), fixing the edge e1,4 to either blue or
red forces a red or blue 3-clique, respectively, via unit propagation.

Short SR proofs for small Ramsey numbers can be con-
structed by sorting edges by color. For example, we can assume
that the blue edges for vertex v1 come first, represented by
the clauses e1,j ∨ e1,j+1 for 1 < j < n. Figure 2 illustrates
the refutation derived by adding these four clauses to the
formula for R(3, 3) ≤ 6. These binary clauses are SR. For
instance, symmetry-breaking clause e1,2 ∨ e1,3 has witness
σ = {e1,2 ↦→ ⊤, e1,3 ↦→ ⊥, e2,4 ↦→ e3,4, e3,4 ↦→ e2,4,
e2,5 ↦→ e3,5, e3,5 ↦→ e2,5, e2,6 ↦→ e3,6, e3,6 ↦→ e2,6}.

Ramsey number R(4, 4) = 18. A resolution proof of
R(4, 4) ≤ 18 requires around a billion resolution steps. In
contrast, the SR proof uses only 38 clause addition steps. See
Section X for the argument.

IV. SR PROOF CHECKING

In this section, we discuss the SR proof checking algorithm
and why it checks redundancy, as well as two performance
bottlenecks that are addressed in our verification.

The algorithm (Algorithm 1) is divided into two phases. The
first phase (Lines 1–4) determines whether F ⊢1 C, which
would imply that F ⊨ C, and thus that C is redundant. By
definition, this amounts to showing that F ∧ ¬C ⊢1 ⊥. We
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start with the partial assignment τ := ¬C (Line 1) and then
try to find a UP refutation for F (Lines 2–4).

Algorithm 1: Validating whether a clause is SR

Input: CNF F , clause C, and witness σ satisfying C
Output: “Yes” if C is SR for F , “No” otherwise.

1 Set τ ← ¬C
2 while there is a D ∈ F|τ with |D| ≤ 1 do
3 if |D| = 0 (i.e., D = ⊥) then return Yes
4 else τ ← τ ∪D
5 if C = ⊥ then return No
6 for D ∈ F do
7 if σ ⊨ D or D is not reduced by σ then continue
8 if τ ⊨ D|σ then continue
9 τ ′ ← τ ∪ ¬D|σ

10 while there is an E ∈ F|τ ′ with |E| ≤ 1 do
11 if |E| = 0 (i.e., E = ⊥) then
12 continue to the next iteration of Line 6
13 else τ ′ ← τ ′ ∪ E
14 return No
15 return Yes

UP

UP

If no UP refutation is found, then τ stores the unit clauses
found by UP on F , and we proceed to the second phase, the SR
check (Lines 5–15). The empty clause ⊥ cannot be SR, so we
stop if C = ⊥ (Line 5). Otherwise, we check the SR property.
In our proof checking tools, we assume that the witness σ
satisfies C, so it suffices to show that F ∧¬C ⊢1 D|σ for each
reduced clause D|σ ∈ F|σ .

The actual SR check looks slightly different. Rather than
iterate across every D|σ , we instead iterate across every D ∈ F
(Line 6), but we skip some clauses (Line 7). If σ ⊨ D, then it
is not in F|σ; and if σ does not reduce D, then since D ∈ F ,
F ∧ ¬C ⊢1 D has a trivial UP refutation. In both cases, we
can skip D and go to the next iteration of the loop.

That leaves the reduced clauses D|σ to be checked. Since τ
stores the unit clauses from UP on F ∧¬C, it suffices to show
that F ∧ τ ⊢1 D|σ . If τ ⊨ D|σ (Line 8), then we have a trivial
UP refutation. Otherwise, we perform UP with the addition
of ¬D|σ to τ , forming τ ′ (Lines 9–13). If UP fails to find a
refutation, then we cannot prove that C is SR (Line 14).

There are two potential computational bottlenecks in this
algorithm. The first is performing UP. In the worst case, we
must reduce every clause in F under τ when looking for unit
and empty clauses. Data structures called watch pointers [21]
are commonly used to efficiently implement this search process.
Yet even with watch pointers, a significant amount of SR proof
checking time is spent performing UP. One way of making
UP more efficient is to be told the series of clauses in F that
become unit or empty. And indeed, the hints in the hinted SR
proof format are precisely these clauses.

The second bottleneck is creating τ ′ on Line 9. If τ contains
many unit clauses, then we want to avoid copying them into a
new τ ′ object for each loop. One idea is to keep a record of
the unit clauses encountered by UP on Lines 10–13, and then
undo their effects on τ ′ afterwards to restore τ . However, this
would take time linear in the number of unit clauses. Instead,
we want a data structure that can do this in constant time. Such

proof ::= [line]
line ::= id, (add | delete),0, \n
add ::= clause, ⟨witness⟩,0, [id], [-id, [id]]

witness ::= p : lit, [lit], ⟨p, [(var, lit)]⟩
delete ::= d, [id] clause ::= [lit]
id, var ::= N \ {0} lit ::= Z \ {0}

Fig. 3. The formal grammar for the LSR proof format. A list with 0 or more
items is written as [·], and an optional object is written as ⟨·⟩. Additions to
the LSR format from LPR are bolded.

a data structure exists and is commonly used in SAT proof
checking tools. We implement it in our SR proof checkers, and
we describe how we formalized it in Section VII.

V. THE SR PROOF FORMATS

We introduce the proof formats for SR without and with hints,
which we call DSR and LSR, respectively.4 Our formats extend
the DPR/LPR proof formats [13], which themselves extend
DRAT/LRAT [22, 23]. Our formats are backwards compatible,
meaning that any RAT or PR proof is also a valid SR proof.

As with RAT and PR, SR proofs comprise addition and
deletion lines. Each addition line contains a clause C claimed
to be redundant. If C is nonempty, then the line may also
contain a substitution witness σ satisfying C. If no witness is
provided, then σ is defined as σ(p) = ⊤, where p is the first
literal of C (called the pivot), and is the identity everywhere
else. That way, σ satisfies C.

In the DSR format, addition lines contain only C and σ,
and the checker must run Algorithm 1. But in the LSR format,
addition lines also contain hints. In LSR, each clause is given
a unique numerical identifier starting at 1. Each hint is the ID
of a clause that becomes unit or conflict under UP. A list of
UP refutation hints are provided for each D|σ ∈ F|σ. While
hints do increase the size of the proof, they generally reduce
proof checking times by making UP much more efficient.

Deletion lines specify clauses in F to delete. Deletion does
not maintain equisatisfiability, but if the formula after deletion
from F is unsatisfiable, then so is F . Deletion speeds up
proof checking by reducing the required number of D|σ UP
refutations to find. It can also increase the set of SR clauses,
as it can remove D|σ clauses that fail the SR check.

The formal grammar for the LSR format is shown in Figure 3.
Figure 4 shows a DIMACS CNF formula and its corresponding
LSR proof for PHP with n = 4. The parts of an LSR addition
line are color-coded. Their order is as follows:

1) A (positive, unique) numerical clause ID. Later LSR lines
refer to the added clause by this ID.

2) The (literals of the) candidate redundant clause C.
3) An optional substitution witness σ beginning with p, the

first literal of C (the pivot). The witness has two parts,

4 The names are acronyms. DSR stands for “deletion SR,” while LSR stands
for “linear SR,” where “linear” means that the hints included in the format
enable proof checking to take time linear in the size of the proof.
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CNF format

p cnf 12 22
1 2 3 0
4 5 6 0
7 8 9 0

...

LSR format

23 -10 -10 7 -10 8 11 11 8 9 12 12 9 0 7 9 10 -4 3 -6 -8 -12 13 ... 0
24 -7 -7 4 -7 5 8 8 5 6 9 9 6 0 23 6 8 -3 2 -5 -9 -11 12 ... 0
25 -4 -4 1 -4 2 5 5 2 3 6 6 3 0 23 24 5 -2 1 -6 -7 -11 11 ... 0
26 -11 0 24 25 15 16 2 3 20 0
27 0 23 24 25 26 4 21 22 2 3 14 0

Fig. 4. A DIMACS CNF formula (left) and its LSR proof (right). Each line in the CNF is a new clause. LSR addition lines comprise a clause ID (pink), the
literals of the clause (green), and an optional substitution witness containing literals mapped to true (orange) and variables mapped to other literals (blue), with
another appearance of the pivot literal (black) acting as a separator. The line concludes with UP hints (purple) and reduced-clause UP hints (red). Each reduced
clause D|σ is identified with a negative ID, and the positive hints that follow are the UP refutation for D|σ .

separated by another appearance of p:5 first, a list of
literals ℓ that σ maps to true (including p); and second,
a list of variable-literal pairs (v, ℓ) setting σ(v) := ℓ. All
other variables v are mapped to themselves, i.e., σ(v) := v.

4) A separating 0, marking where the hints begin.
5) A list of hints, not necessarily deriving UP refutation,

guiding Line 2 of Algorithm 1.
6) A list of hints deriving UP refutation for each reduced

clause, guiding Line 10. The reduced clause is identified
by the negative of its ID, and the UP hints follow.

If each of the line ID, the hints, and the ending 0 are
removed, then the addition line becomes a DSR addition line.

Currently, our checkers assume that the witness σ satisfies
the candidate clause C (which is the case for all of the SR
proofs that appear in this paper). However, the DSR and LSR
formats can also express proofs where σ causes C|σ to be a
tautology: the proof can simply map the pivot p to itself or to
any other literal in the substitution portion. We plan to support
this general case in the future.

LSR deletion lines start with a line ID, followed by a d
and the IDs of clauses to be deleted. Historically, the line
ID matches the ID of the most-recently-added clause so that
unordered proofs can be sorted. But most modern proof-logging
SAT solvers emit ordered proofs, so the line ID is ignored.

DSR does not use clause IDs, so deletion lines specify the
(literals of the) clause to be deleted directly. Thus, DSR deletion
lines only delete a single clause at a time.

The only addition to the LSR format from LPR is the second
part of the substitution. If no variable-literal mappings are
provided, then the substitution is a partial truth assignment,
which is the type of witness used for PR proofs. It is in this
way that the SR formats are backwards compatible.

VI. SR PROOF CHECKING TOOLS

Absent a dedicated SR proof checker, DSR proofs can
be checked by converting them into DRAT and then using
conventional DRAT/LRAT checkers. We implemented such a
conversion algorithm by extending one that converts DPR proofs
into DRAT [20]. The most important change to the algorithm is

5 The choice to use p as a separator is a historical one. In PR, the pivot
appears twice: once in the clause, and once to indicate when the partial
assignment begins. For SR, we need a way to indicate when variable-literal
mappings occur. Since 0 is a reserved symbol, we use p once again.

that it uses multiple auxiliary variables to convert a single SR
clause addition step into a sequence of DRAT proof steps. More
specifically, it introduces a fresh variable (i.e., one not appearing
in either the formula or the proof) for each SR addition step
and several fresh variables for each variable-literal mapping in
the substitution.

Our implementation is open-source and can be found at:

https://github.com/marijnheule/sr2drat.

We also developed SR proof checking tools. Following the
tradition of drat-trim6 [22] and dpr-trim7 [13], we present
dsr-trim, a tool for adding hints to DSR proofs to create LSR
proofs. The source code is available at:

https://github.com/ccodel/dsr-trim.

At the moment, dsr-trim can only perform forwards checking,
which means that it checks DSR proofs from start to finish and
adds hints as it goes. In contrast, drat-trim and dpr-trim both
additionally implement backwards checking, meaning that they
read the entire DSR proof into memory first and then work
backwards from the derivation of the empty clause, ignoring
unreferenced proof lines. In practice, backwards checking can
significantly reduce the size of proofs. Adding backwards
checking to dsr-trim is ongoing work.

In addition to dsr-trim, we implemented lsr-check, an un-
verified LSR proof checker. Despite SR being more complicated
than PR/DRAT, lsr-check performs comparably to, and often
better than, its sister checkers lrat-check and lpr-check.

Both dsr-trim and lsr-check are configured to parse and/or
produce proofs in the ASCII format presented in Figure 4
and in a custom binary format that is faster to parse.
Compressed proofs tend to be 50-60% smaller in file size.
The compress/decompress tools included with dsr-trim
translate DSR and LSR proofs into and out of this binary format.

VII. THE VERIFIED LSR CHECKER

In this section, we discuss our implementation and verifica-
tion of an LSR proof checker in the Lean 4 interactive theorem
prover [12]. Our checker is open-source and can be found at:

https://github.com/FormalSAT/trestle.

6 https://github.com/marijnheule/drat-trim.
7 https://github.com/marijnheule/dpr-trim.
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The core of the checker is a function called checkLine

that runs Algorithm 1 with UP hints (i.e., LSR). Ideally, we
would expect its correctness theorem to look like this:

checkLine F C line = ok → eqsat F (F ∧ C).

And indeed, this is equivalent to what we proved in Lean. But
to make our checker efficient, we implemented data structures
that cause the correctness theorem to look more complicated:

theorem checkLine_ok : models R F C →
checkLine ⟨R, τ, σ⟩ line = .ok S →
eqsat F (F ∧ C) := by . . .

There are three main differences between the correctness
theorems. The first is the use of a functional programming
idiom similar to the state monad: checkLine takes a state
triple of a CNF data structure R, a partial assignment τ , and
a substitution σ, along with the LSR line, and it returns an
updated ⟨R, τ, σ⟩ state triple S and its yes/no result. By passing
along R, τ , and σ, Lean can allocate the memory for these
structures once, rather than at the start of each proof line,
which makes the checker more efficient.

The second difference is that the literals of the candidate
clause C are stored in R rather than in a separate object. This
eliminates the need of writing the literals twice: once during
parsing, and once when copying them into R after checking
that C is SR. According to a CPU profiler, this sleight of hand
gives a 10% speedup on our longest-running benchmark.

The third and greatest difference is how we implement R, τ ,
and σ. We implement CNF formulas with a data structure we
call RangeArray. In the correctness theorem, we assume that
R models formula F and candidate clause C. We implement
τ and σ with data structures we call PPA and PS, standing
for “persistent partial assignment” and “persistent substitution.”
These three data structures enable our checker to efficiently
implement UP, but at the cost of a much more complicated
proof of correctness.

In total, our verified checker and its supporting theorems
and data structures comprise 8k LoC, and the verification
took 4 person months. Much of that time was spent adjusting
how the checker iterates across data structures in order to
make the compiled Lean code performant. For example,
implementing reduction (i.e., C|σ) with an API-breaking, tail-
recursive function, as opposed to a foldlM in the Except

monad, gave an immediate speedup of 60% on our longest-
running benchmark. We hope that future versions of the Lean
compiler will be less picky about generating performant code.

In the rest of this section, we discuss the RangeArray

and PPA data structures, as they represent the most technical
portions of our verification. These data structures use techniques
common in other SAT solving tools, including dsr-trim.

A. RangeArray

Given a type of boolean literals ILit, a straightforward
type for CNF formulas is List (List ILit). We use this
datatype in our SAT theory, since Lean provides good support
for lists. However, this datatype suffers from two drawbacks.
The practical drawback is that a nested list unnecessarily

x1 x2

C1

x3 x2 x3

C2

x5

C3

x3 x5

C4

x8 x2 x4

Candidate C

1 −2 3 −2 −3 5 −3 5 8 2 4

0 −3 5 6

data

indexes 9 dataSize

Fig. 5. An example of a RangeArray modeling a formula with four clauses
and a candidate clause C. All literals are stored in a single array data, and
clauses are defined based on index “pointers” in indexes. The candidate
clause is implicitly defined as being the additional literals in data beyond the
index stored in dataSize. The RangeArray deletes clauses by marking
their index as negative. In the example, clause C2 is deleted.

fragments the memory for clauses across separately-allocated
blocks, leading to additional memory overhead and reduced
cache locality. The other drawback is that nested lists cannot
easily implement clause deletion. Recall that SR proofs may
delete clauses from the formula. Because LSR hints are static
IDs, we cannot simply remove deleted clauses from the nested
list, as this would shift the indexes of the remaining clauses.

One hack is to replace the deleted clause with the binary
clause C⊤ := x1 ∨x1, since a tautology behaves like ⊤ in our
SAT theory. But then the proof checker would be hard-coded to
check for deletion by comparing clauses to C⊤, which strikes
us as inelegant and non-modular. Another solution is to use
option types.8 However, options (in our opinion) clutter up code
and proofs, and they add another layer of pointer indirection
in compiled code, which leads to slower runtimes.

Instead, we implemented a common data structure for CNF
formulas we call RangeArray. Figure 5 shows an example.
RangeArrays flatten the nested list datatype so that all literals
lie in a single array data, and clauses are defined using index
“pointers” stored in a second array indexes. Intuitively, the
ith clause starts at position indexes[i] in data, and it has
size indexes[i+1] - indexes[i]. However, deletion is
implemented by setting an index p to −p, so calculations
involving indexes use their absolute value.

The RangeArray has two main benefits. The first benefit is
that all literals lie in the same array, so iteration across an entire
formula has increased cache locality. The second benefit is
the ability to store the candidate clause C in the RangeArray

during proof checking. We do so by adding the literals of C to
data without assigning C an index. To differentiate between
formula literals and candidate clause literals, we store the total
number of formula literals in a variable dataSize. Thus, the
literals of C lie between dataSize and the actual size of data.
The commit operation adds C to the formula by assigning C
an index and increasing dataSize by |C|.

We relate RangeArray to our model for CNF formulas
and clauses with the models predicate. Given a formula
F and a candidate clause C, models R F C means that

8 Values of type Option V are either none or some v, where v:V.
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Fig. 6. An example of the PPA data structure in use. If |gi| ≥ g, then the
sign of gi determines if τ(xi) is true (green) or false (red). Otherwise, τ(xi)
is undefined (gray). On the left, τ := x1, and its truth value is set for 6 rounds
of UP (6 bumps). In the middle, the unit clauses x2 and x3 are added to τ .
On the right, those two truth values are cleared with a bump in O(1) time.

R agrees with F and C on every non-deleted clause, such
that R[indexes[i]+j] = F[i][j] and R[dataSize+i]

= C[i]. We prove that commit and other operations preserve
the models predicate in the appropriate way.

B. Persistent partial assignments

Partial truth assignments can be implemented with an
Array (Option Bool). For any variable v, if A[v] = none,
then τ(v) is undefined, and otherwise A[v] = some b means
that τ(v) = b. However, this implementation would make it
inefficient to run Lines 1 and 9 of Algorithm 1: an array of
booleans would need to be cleared for each LSR line, and
the array would need to be restored from τ ′ to τ after each
reduced-clause check, of which there might be many. All of this
copying and clearing would make proof checking intractable.

A common solution to this problem is to use a technique
we call generation bumping (or timestamping), which enables
O(1) clearing of UP unit clauses. The idea is for the PPA to
store a global generation number g and a generation number gi
for each boolean variable xi. If |gi| ≥ g, then the sign of gi
determines if τ(xi) is true (+) or false (−). Otherwise, τ(xi)
is undefined. Incrementing g, called bumping, clears the truth
values of any xi with |gi| = g. Setting g := max |gi| + 1,
called clearing, clears all truth values.

Proof checkers can use generation bumping because they
know in advance the exact number of bumps any particular truth
value should be set for. Unit clauses found during UP in the
entailment phase (Lines 1–4) must persist in τ for all rounds of
UP in the SR phase (Lines 10–13). Since each reduced clause
UP refutation is marked in the LSR line, proof checkers can
count the expected number of refutations r during parsing,
and then set the generation number for unit clauses in τ to
|gi| := g + r + 1. In the SR phase, new unit clauses added to
τ ′ have their generation numbers set to g so that they can be
cleared afterwards with a single bump. Figure 6 illustrates how
this works. Our verification of checkLine includes careful
bookkeeping to ensure that the unit clauses in τ persist.

Our implementation of PS also uses generation bumping,
except that an additional array stores what each variable is
mapped to under the substitution.

VIII. EXPERIMENTAL RESULTS

Our experimental results demonstrate the clear benefits
of using a strong proof system. We highlight three main
results: (1) that our verified LSR checker performs well against
cake lpr [13], a fast, verified LPR checker, (2) that SR proofs
are smaller than their RAT counterparts, and (3) that our verified
checker incurs reasonable overhead compared to lsr-check,
our unverified LSR checker written in C.

Our benchmarks comprise five families of SR formulas:
Ramsey instance R(4, 4) ≤ 18, Schur number five [24], a
packing problem [1], and PHP and Tseitin formulas. We also
include a similar set of five PR families, where instead of
packing, Schur, and Ramsey, it has Mycielski [25], mutilated
chessboard, and two-pigeons-per-hole (tph) formulas [26].

We ran our experiments on a 2022 M1 Mac Studio with
32 GB of memory and a clock speed of 3.2 GHz. To replicate
our results, use the scripts found at:

https://github.com/ccodel/sr-benchmarking.

A. Comparison to cake lpr

We first show that our verified Lean checker performs
similarly to cake lpr. Our experiments covered the PR proof
families. Figure 7 summarizes our results.

For proofs that took longer than 1 second to verify, our
checker took an average of 81.95 seconds, while cake lpr
took an average of 124.86 seconds. The geometric mean of
the ratio of Lean / cake lpr runtimes was 0.718.

For proofs that took less than 1 second to verify, our checker
took proportionally longer than cake lpr. For example, the
geometric mean of the ratios of runtimes on these instances
was 5.84. A CPU profiler revealed that 75% of the runtime on
these instances was spent on Lean’s initialization code that is
run only once at the start of the program, and so this does not
represent a bottleneck for larger proofs.

B. Comparison of LSR and converted LRAT proofs

Next, we show that SR proofs are smaller than their DRAT
counterparts. For these experiments, we used sr2drat to
translate the DSR proofs into DRAT, which were then translated
into LRAT by drat-trim. (We convert from SR to DRAT instead
of SR to PR because we do not know of a way to use the PR
rule when converting from SR.)

The SR proofs are indeed smaller, both in terms of file size
and the number of proof lines. Figure 8 shows our results. On
average, an LSR proof was 6.2 MB and had 13.2K proof lines,
while the translated LRAT proof was 41.2 MB and had 1.03M
proof lines. The geometric means of ratios of LSR to LRAT for
file size and line count were 0.085 and 0.004, respectively.

Unsurprisingly, the smaller SR proofs were faster to check.
Figure 9 shows the runtimes for our Lean checker on the LSR
proofs compared to cake lpr on the converted LRAT proofs.
On average, our checker took 1.06 seconds, while cake lpr
took 4.00 seconds. For proofs that took longer than 1 second
to check, the geometric mean of the ratio of Lean / cake lpr
proof checking times was 0.255.
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Fig. 9. Comparison of proof checking times for our Lean checker on the
LSR proofs and for cake lpr on the LRAT conversions. Points below the red
y = x line indicate that our checker was faster than cake lpr.

C. Comparison of verified and unverified checking

Finally, we report that the added constant factors of our
verified proof checker are not excessive. On the LSR proofs, our
Lean checker is about 10x slower than our unverified checker
lsr-check. Figure 10 summarizes our results. On average, our
Lean checker took 1.06 seconds, while lsr-check took 0.10
seconds. For proofs that took longer than 1 second to check,
the geometric mean of the ratios of their runtimes was 9.936.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented our tools for verified SR proof
checking. SR admits short proofs for many problems, and
our experimental results show the clear advantages of using
SR over weaker proof systems such as RAT and PR. While
no modern SAT solver supports SR reasoning yet, we hope
that our tools—including our verified SR proof checker—will
support the future development of SR tooling for SAT solving.

There are several avenues for future work. One such avenue
is improving dsr-trim and our verified Lean checker. We plan
to add backwards proof checking to dsr-trim. In addition, the
Lean checker can be made more efficient by minimizing the
number of clauses it checks. We have seen that if D|σ = D,
then it can be skipped during the SR phase. By storing the first
and last clause containing each literal, we can compute the
range of clauses reduced by σ such that clauses outside of this
range are not reduced, and thus do not need to be checked.
Our lsr-check tool implements this technique. While it only
gives modest speedups, we hope that implementing it in Lean
will improve the Lean checker’s runtime.

Another avenue of future work is in automatically generating
symmetry-breaking SR proofs. CDCL SAT solvers tend to
struggle on problems with a high degree of symmetry. Adding
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symmetry-breaking clauses via SR proof steps can be a trusted
way to improve solver runtimes.

X. SHORT SR PROOF OF R(4, 4) ≤ 18

We constructed a short SR proof of R(4, 4) ≤ 18 that consists
of only 38 clauses. The proof consists of four phases. In the
first phase, we assume WLOG that vertex v1 is connected to at
least nine blue edges and that these blue edges connect v1 to the
vertices v2, . . . , v10. To show this, we sort the edges adjacent
to vertex v1 so that the blue edges appear first. The clauses that
express the sorting are of the form e1,i∨e1,i+1 with 1 < i < n.
The SR witnesses for these clauses are a permutation of the
vertices. At this point, we can still exchange the two colors.
We use this to fix the edge e1,10 to blue. The result is shown
in Figure 11. This phase consists of 17 clause addition steps.

In the second phase, we assume WLOG that v2 is connected
to at least five red edges and that these red edges connect
v2 to the vertices v3, . . . , v7. In the proof, we sort the edges
adjacent to vertex v2 with the red edges appearing before the
blue edges. The clauses that express the sorting are of the
form e2,i ∨ e2,i+1 with 2 < i < 11. If we assign edge e2,7 to
blue, then unit propagation will result in a conflict as shown
in Figure 12. Thus, we may fix e2,7, e2,6, e2,5, e2,4, and e2,3
to red. This phase consists of 9 clause addition steps.

In the third phase, observe that there cannot be a red or blue
3-clique among the vertices v3, v4, v5, v6, and v7, because all
of them are connected to v1 with a blue edge and all of them
are connected to v2 with a red edge. There is a unique red-
blue assignment (modulo symmetry) that avoids a red or blue
3-clique among five vertices: a blue 5-cycle and a red 5-cycle.
We fix this assignment after sorting the edge for vertex v3
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Fig. 11. First phase: sort the edges for vertex v1 so the blue edges come first,
and fix the edge e1,10 to blue.
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Fig. 12. Second phase: sort the edges for vertex v2 so the red edges come
first, and fix e2,7 to blue. This results in a conflict via unit propagation: a red
4-clique v7, v8, v9, v10. As a consequence we can fix e2,7 to red.

(blue edges first). The result is shown in Figure 13. This phase
consists of 7 clause addition steps.

In the fourth and final phase, we first determine that the
edges e2,8, e2,9, and e2,10 must be blue. This is achieved with
two clauses. The first clause assumes e2,8 and e3,8 are red.
This results in a conflict by unit propagation. Afterwards we
only assume that e2,8 is red. This now results in a conflict
by unit propagation as well, as e3,8 is forced to be blue. The
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Fig. 13. Third phase: There cannot be a 3-clique in red nor a 3-clique in blue
among v3, v4, v5, v6, and v7. There is a unique assignment that achieve this.
We sort the edges among these vertices and fix that unique assignment.

failed assumption allows us to fix e2,8 to blue. See Figure 14.
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Fig. 14. Fourth phase: determine that e2,8, e2,9, and e2,10 must be blue.

Afterward the edges e3,8, e3,9, and e3,10 are sorted (red
first). This step is allowed because vertices v8, v9, and v10 are
still interchangeable at this point. Assuming that e3,9 is blue
results in a conflict by UP, so e3,9 (and thus e3,8) needs to
be red. The final refutation comes from the observation that
assuming either e4,8 to red or blue results in a conflict by UP.
This phase consists of 7 clause addition steps.
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