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Abstract—Recently a refined complexity analysis of the satisfi-
ability of Dependency Quantified Boolean Formula (DQBF) was
established. In particular, it is shown that the satisfiability of 3-
DQBF (i.e., DQBF with 3 existential variables) is NEXP-complete
and it becomes PSPACE-complete for 2-DQBF. While all state of
the art DQBF solvers focus on general DQBF, it is natural to ask
if there is an efficient approach for solving 2-DQBF – similar to
how modern SAT solvers differentiate between 2-SAT and 3-SAT
instances.

In this paper we show how to exploit modern Property
Directed Reachbility (PDR) solvers to solve 2-DQBF instances.
We present a novel linear time reduction from 2-DQBF instances
to PDR instances and show how to convert the inductive-invariant
certificates provided by PDR solvers to the Skolem-function
certificates for 2-DQBF instances. The experimental results show
that the approach is indeed more efficient than other state-of-
the-art DQBF solvers, at least in solving 2-DQBF instances.

Index Terms—Dependency quantified Boolean formula
(DQBF), property directed reachability (PDR), model extraction,
Skolem functions

I. INTRODUCTION

The dependency quantified Boolean formula (DQBF) [1,
2] extends the quantified Boolean formula (QBF) [3] with
Henkin quantifiers [4], which allow the dependency set of an
existential variable to be explicitly specified. This extension
makes DQBF a natural formalism for important applications
in system synthesis and verification, such as black-box syn-
thesis [5, 6], controller synthesis [7], engineering change
order [8], distributed synthesis for LTL fragments [9], etc,
all of which are beyond the expressiveness of QBF. These
amotivated the development of various DQBF solvers, e.g.,
HQS [10], Pedant [11, 12], DQBDD [13]. However, the
extension also lifts the complexity of the satisfiability for
DQBF to NEXPTIME-complete [1], in contrast to QBF which
is “only” PSPACE-complete.

Recent theoretical advancement uncovers important proper-
ties of special sub-classes of DQBF. For example, the satisfia-
bility of DQBFde – DQBF with disjoint or equal dependency
sets and CNF matrix – is shown to be in PSPACE [14].
Recently in [15] it is shown that the complexity of DQBF
depends on the number of existential variables in the same
way as the complexity of SAT depends on the width of the
clauses. For example, the complexity of 2-DQBF, i.e., DQBF
with 2 existential variables, is PSPACE-complete and for 3-
DQBF, it becomes NEXP-complete. This is analogous to SAT

whose complexity is NL-complete and NP-complete for 2-SAT
and 3-SAT, respectively. The main difference is the exponential
blow-up for the DQBF counterpart.

Analogous to modern SAT solvers that often differentiate
between 2-SAT and 3-SAT instances and solve them using
different methods, it is natural to ask whether we can do the
same for DQBF. In this paper, we investigate this question.
We are going to exploit the fact that 2-DQBF is essentially a
succinct version of 2-CNF formula [15], which implies that the
(un)satisfiability of 2-DQBF can be established by checking
whether there is a cycle in the (implicit) implication graph
that contains two vertices whose labeling assignments are
contradicting. We transform such a cycle detection problem
into a reachability problem in a way similar to the liveness-
to-safety conversion [16]. This conversion allows the state-of-
the-art model checking algorithms, such as IC3 [17], Property-
Directed Reachability (PDR) [18], and Abstractly Verifying
Reachability (AVR) [19], to be exploited for 2-DQBF solving.*

We also show how to convert the certificates provided by
the PDR algorithm to the certificates for 2-DQBF. For a false
2-DQBF instance, the trace of the corresponding reachability
can be converted directly to a certificate that witnesses the
falsity. For a true 2-DQBF instance, however, the conversion
is not as straightforward. In this case, the PDR algorithm gives
us an inductive state set separating the initial states from the
final states derived from the PDR computation and this set is
only an over-approximation of the reachable states. We will
show how to progressively refine the transition system until it
outputs an inductive set that reflects the appropriate Skolem
functions for the original 2-DQBF instance.

Note that at first glance, 2-DQBF and PDR may seem
to have little in common. PDR is essentially about graph
reachability problem, while 2-DQBF is about circuits with two
black-boxes. Thus, in retrospect, it is surprising that 2-DQBF
can be solved using PDR, owing to the connection between
2-DQBF and 2-SAT established in [15].

Experimental results show that our approach outperforms
all state-of-the-art DQBF solvers which demonstrates the
effectiveness of our approach, at least in solving 2-DQBF
instances. We also compare it with QBF solvers where we

*In this paper we refer to the IC3-based model-checking algorithms as PDR
algorithms.
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reduce 2-DQBF instances to QBF instances. In all instances,
the QBF solvers time out. This is not surprising since the
only known reduction to QBF is the one in [3], which yields a
quadratic blow-up in the number of variables, hence, instances
quickly become too large and beyond the capability of even
the best QBF solvers.

This paper is organized as follows. In Section II we briefly
review the basic notations on DQBF and PDR. We show the
reduction from 2-DQBF instances to PDR instances as well
as the Skolem functions extraction in Section III. Our experi-
mental results are presented in Section IV. We conclude with
Section V. Our code and benchmarks are publicly available
on https://github.com/LH104729/2-DQBF-Solving-and-Certi
fication-via-Property-Directed-Reachability-Analysis.

II. PRELIMINARIES

Let Σ = {0, 1}, where 0 and 1 represent the Boolean
values false and true, respectively. As usual, ¬0 = 1 and
¬1 = 0. Let Σi and Σ∗ denote the sets of Boolean strings of
length i and arbitrary length, respectively. We use the symbols
a, b, c to denote Boolean constants, i.e., elements in Σ, and
the bar version ā, b̄, c̄ to denote Boolean constant vectors,
i.e., strings in Σ∗ with |ā| denoting the length of ā. Tuples
of values from Σ are written as strings, e.g., 100 denotes
(1, 0, 0). Boolean variables are denoted by x, y, z, u, v and the
bar version x̄, ȳ, z̄, ū, v̄ denote vectors of Boolean variables
with |x̄| denoting the length of x̄. We insist that in a vector
x̄ there is no variable occurring more than once. We write
x̄′ to denote the vector obtained by priming all the variables
in x̄. For convenience, we view the vectors x̄, ȳ, z̄ as sets of
variables and use set-theoretic operations on them, e.g., z̄ ⊆ x̄
means every variable in z̄ also occurs in x̄.

As usual, φ(x̄) denotes a (Boolean) formula† with vari-
ables x̄. When the variables are not relevant or clear from
the context, we simply write φ. For φ(x̄) and ψ(z̄) where
z̄ ⊆ x̄, we write φ(x̄) ⇒ ψ(z̄) to denote that every satisfying
assignment of φ is also a satisfying assignment of ψ.

Let φ(x̄) be a formula. Let z̄ = (z1, . . . , zm) ⊆ x̄ and
z̄′ = (z′1, . . . , z

′
m). We write φ[z̄/z̄′] to denote the formula

obtained by simultaneously substituting each zi with z′i for
each 1 ⩽ i ⩽ m. For a string ā = (a1, . . . , am) ∈ Σm, φ[z̄/ā]
denotes the formula obtained by assigning each ai to zi. When
z̄ = x̄, we just write φ[ā] instead of φ[x̄/ā].

For z̄ ⊆ x̄ and ā ∈ Σ|x̄|, we write ā
⃓⃓
x̄↓z̄ to denote the

projection of ā to the components in z̄ according to the order
of the variables in x̄. For example, if x̄ = (x1, . . . , x5) and
z̄ = (x1, x2, x5), then 00101

⃓⃓
x̄↓z̄ is 001, i.e., the projection of

00101 to its 1st, 2nd and 5th bits.

A. Dependency Quantified Boolean Formula (DQBF)

A dependency quantified Boolean formula (DQBF) in
prenex normal form is a formula of the form:

Φ := ∀x̄ ∃y1(z̄1) · · · ∃yk(z̄k) ϕ (1)

†The results in this paper also hold when a formula is written in circuit
form, thus, the term “formula” can be taken to also mean “circuit”.

where each z̄i ⊆ x̄ and ϕ, called the matrix, is a quantifier-free
Boolean formula using variables in x̄∪{y1, . . . , yk}. We called
x̄ the universal variables, y1, . . . , yk the existential variables,
and each z̄i the dependency set of yi. We call Φ a k-DQBF,
where k is the number of existential variables in Φ.

A DQBF Φ in the form of Eq. (1) is satisfiable if there
is a tuple (f1, . . . , fk) of functions, where fi : Σ|z̄i| → Σ
for every 1 ⩽ i ⩽ k, and by replacing each yi with fi(z̄i),
the formula ϕ becomes a tautology. The tuple (f1, . . . , fk) is
called the (satisfying) Skolem functions for Φ and we say that
Φ is satisfiable by the Skolem functions (f1, . . . , fk), i.e., the
Skolem functions form a model of Φ.

It is known that the complexity of the satisfiability problem
for DQBF is parametric in k, similar to k-SAT: When k = 2,
it is PSPACE-complete and when k = 3, it becomes NEXP-
complete and that there is a parsimonious polynomial-time
reduction from general DQBF to 3-DQBF [15].

Even before [15] it is already known that k-DQBF is indeed
k-CNF formula in an exponentially more succinct represen-
tation [20, 21, 22]. We will briefly review this equivalence
achieved by a simple rewriting technique from [15], which
will be useful later on. Let Φ be k-DQBF as in Eq. (1).

For each 1 ⩽ i ⩽ k and for each c̄ ∈ Σ|z̄i|, let Xi,c̄ be a
variable and for d ∈ Σ, we define the literal Ld

i,c̄ as:

Ld
i,c̄ :=

{︄
¬Xi,c̄ if d = 0

Xi,c̄ if d = 1

Note that Ld
i,c̄ = 1 if and only if Xi,c̄ = d.

For each (ā, b̄) ∈ Σn × Σk, where ā = (a1, . . . , an) and
b̄ = (b1, . . . , bk), define the clause Cā,b̄ as:

Cā,b̄ := L¬b1
1,c̄1

∨ · · · ∨ L¬bk
k,c̄k

where c̄i = ā
⃓⃓
x̄↓z̄i

, for each 1 ⩽ i ⩽ k. The expansion of Φ

to a k-CNF formula, denoted by exp(Φ), is defined as:

exp(Φ) :=
⋀︂

(ā,b̄) s.t. ϕ[(x̄,ȳ)/(ā,b̄)]=0

Cā,b̄

It is known that Φ is satisfiable if and only if its expansion
exp(Φ) is satisfiable (in the sense of Boolean formula) [15].
Moreover, a satisfying Skolem functions (f1, . . . , fk) for
Φ correspond to a satisfying assignment of exp(Φ), where
Xi,c̄ = fi(c̄) for every 1 ⩽ i ⩽ k and c̄ ∈ Σ|z̄i|.

As mentioned in the introduction, one of the main ap-
plications of DQBF is black-box synthesis, also known as
Partial Equivalence Checking (PEC). It is defined as given a
Boolean circuit with some black-boxes, check whether there is
an implementation of the black-boxes such that the function of
the whole circuit is a tautology. It can be naturally expressed
as the satisfiability of DQBF where the number of black-
boxes corresponds to the number of existential variables in
the DQBF.
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output

∨

∧ ¬

B1 B2

∨
¬ ∧

x1 x2 x3 x4 x5 x6 x7 x8

Fig. 1: A PEC example with two black-boxes B1 and B2 to
be synthesized.

Consider, for example, the circuit with two black-boxes
in Figure 1. The PEC solution is equivalent to the Skolem
functions of the following 2-DQBF:

∀x1 · · · ∀x10 ∃y1(x2, x9, x5) ∃y2(x5, x10, x8)(︂
x9 = (¬x3 ∨ x4) ∧ x10 = (x6 ∧ x7)

)︂
→

(︂
(x1 ∧ y1) ∨ ¬y2

)︂
The additional variables x9, x10 serve as the Tseitin variable
representing the values of ¬x3 ∨x4 and x6 ∧x7, respectively,
and y1 and y2 are the output variables of the two black-boxes
with the dependency sets (x2, x9, x5) and (x5, x10, x8).

B. Property-Directed Reachability (PDR)

A finite-state transition system is a system S = (x̄, I, T ),
where x̄ is a finite set of Boolean variables, the initial condition
I(x̄) is a Boolean formula describing the set of initial states
and the transition relation T (x̄, x̄′) is a Boolean formula
describing the relation between one state and the next. A state
in the system S is a Boolean assignment to the variables in x̄.
Abusing the notation, we denote the states in S by strings in
Σ|x̄|. We will also view a formula φ(x̄) as a set of states, i.e.,
the set of strings ā where φ[ā] = 1.

A trace in S is a sequence of states ā0, ā1, ā2, . . . such that
I[ā0] = 1 and for every i ⩾ 0, T [āi, āi+1] = 1. A state ā is
reachable (in S), if there is a trace ā0, ā1, ā2, . . . in which ā
appears. A formula P (x̄) is S-invariant if every state reachable
in S satisfies P . It is S-inductive, if I(x̄) ⇒ P (x̄) and P (x̄)∧
T (x̄, x̄′) ⇒ P (x̄′). Obviously, P is S-invariant, whenever P
is S-inductive. The converse however is not true: It is possible
that P is S-invariant, but not S-inductive, since the state that
makes P not S-inductive may actually be unreachable in S.
The formula P is often called a safety property.

Given a transition system S and property P , the PDR
algorithm decides if P is S-invariant. As output, it produces
a sequence of Boolean formulas F0, F1, . . . , Fm, all using
variables in x̄, such that:

• Fj is a formula that over-approximates the states that are
reachable in at most j steps, for every 0 ⩽ j ⩽ m.

• If P is S-invariant, Fm ⇒ P and Fm is S-inductive.

• If P is not S-invariant, it outputs a counterexample trace
ā0, ā1, . . . , ām constructed from F1, . . . , Fm that violates
the safety property P , i.e., P [ām] = 0.

For more details on the algorithm and its implementation, we
refer interested readers to [23, 17, 18, 19, 24].

III. 2-DQBF SOLVING AND CERTIFICATION

In this section we will show how to solve the satisfiability
of 2-DQBF with PDR algorithm. We present a linear time
reduction from 2-DQBFs to PDR instances in Section III-A.
We then show how to extract the Skolem functions from the
PDR certificates in Section III-B.

A. Linear time reduction from 2-DQBF to PDR

We first recall the approach for solving 2-SAT instances
which inspires our use of PDR in solving 2-DQBF. Given
a 2-CNF formula φ, we may assume w.l.o.g. that it is in
implicative normal form, i.e., a conjunction of implications
between literals:

⋀︁
1⩽i⩽n(ℓi,1 → ℓi,2). It can be viewed as a

directed graph G = (V,E), called the implication graph of φ,
where V is the set of all the literals in φ and (ℓi,1, ℓi,2) and
(¬ℓi,2,¬ℓi,1) are edges in E for every 1 ⩽ i ⩽ n. The formula
φ is not satisfiable if and only if there is a contradicting cycle
in G, i.e., a cycle that contains two contradicting literals. In
other words, checking the (un)satisfiability of φ is equivalent
to checking the existence of a contradicting cycle in G.

The main idea behind our encoding of 2-DQBF with a PDR
instance is similar. The only difference is that in the 2-DQBF
setting the edges in the implication graph are not explicitly
given. Instead, they are succinctly represented by the matrix
of the given 2-DQBF and it can be reduced to a PDR instance
in which a counterexample trace corresponds to a contradicting
cycle (in the implication graph of the expansion of 2-DQBF).

To illustrate, the following contradicting cycle:

ℓ0

ℓ1 ℓ2 ℓq−1

ℓq = ¬ℓ0

ℓq+1ℓn−2ℓn−1

where ℓq = ¬ℓ0, can be encoded as a counterexample trace:

init

(0, ℓ0, ℓ0)

(0, ℓ1, ℓ0)

(0, ℓq, ℓ0)

(1, ℓq, ℓ0)

(1, ℓq+1, ℓ0)

(1, ℓn−1, ℓ0)

(1, ℓ0, ℓ0)

where init is the dummy state that serves as the initial state and
the transition relation between two states can be constructed
from the matrix of the 2-DQBF. The change of the first bit
from 0 to 1 occurs when it reaches (0, ℓq, ℓ0) which indicates
the existence of a path from ℓ0 to ¬ℓ0. The safety property
states that the system will not reach (1, ℓ, ℓ) for any literal ℓ.

We now formally present the construction. Given a 2-DQBF
Φ := ∀x̄∃y0(z̄0)∃y1(z̄1) ϕ(x̄, y0, y1), where |x̄| = n, we
construct the transition system S = (r̄, I, T ) where each
component is as follows.
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The number of variables in r̄ is |r̄| = 6+n+max(|z̄0|, |z̄1|).
For convenience, we denote r̄ as the concatenation of the
following vectors:

r0 r1 k b x̄ kT bT z̄T

where |r0| = |r1| = |k| = |b| = |kT | = |bT | = 1, |x̄| = n and
|z̄T | = max(|z̄0|, |z̄1|). Note that the variables in x̄ are reused
as variables in the transition system S.

The intended meaning of r̄ is to encode a tuple (a, ℓi, ℓ0).
The bit r0 indicates whether it is the initial state. The bit
r1 is the “flag” bit indicating whether we have encountered
(1,¬ℓ0, ℓ0). The vector (k, b, x̄) corresponds to the literal ℓi :=
Lb
k,z̄k

, and (kT , bT , z̄T ) corresponds to the literal ℓ0.
The initial condition I(r̄) is r̄ = 10 · · · 0 that encodes the

dummy init state. The transition relation T (r̄, r̄′) is defined as
φ1 ∨φ2 ∨φ3 where φ1 encodes the transition from the initial
state, φ2 encodes the transition from the state (r1, ℓi, ℓ0) to
(r′1, ℓi+1, ℓ0), and φ3 encodes the transition when the flag bit
changes from 0 to 1. Formally, they are defined as follows.

φ1 := (r̄ = 10 · · · 0) ∧ (r′0 = 0) ∧ (r′1 = 0)

∧

{︄
(k′T = 0) ∧ ((b′, z̄′0) = (b′T , z̄

′
T )) if k′ = 0

(k′T = 1) ∧ ((b′, z̄′1) = (b′T , z̄
′
T )) if k′ = 1

φ2 := (r0 = r′0 = 0) ∧ (r1 = r′1) ∧ (k′ = ¬k)
∧ z̄0 ∩ z̄1 = z̄′0 ∩ z̄′1
∧ (kT , bT , z̄T ) = (k′T , b

′
T , z̄

′
T )

∧

{︄
¬ϕ[(x̄ \ z̄0)/(x̄′ \ z̄′0), y0/b, y1/¬b′] if k = 0

¬ϕ[(x̄ \ z̄1)/(x̄′ \ z̄′1), y0/¬b′, y1/b] if k = 1

φ3 := (r0 = r′0 = 0) ∧ (r1 = 0) ∧ (r′1 = 1)

∧ (k, b, z̄k) = (kT ,¬bT , z̄T )
∧ (k, b, z̄k) = (k′, b′, z̄′k)

∧ (kT , bT , z̄T ) = (k′T , b
′
T , z̄

′
T )

Remark 1. The formula φ2 captures all the edges in the
implication graph of exp(Φ) in the sense that:

• For every s̄0, s̄1 ∈ Σ|r̄|, if φ2[s̄0, s̄1] = 1, then Ld0
a0,c̄0 ∨

Ld1
a1,c̄1 is a clause in exp(Φ) where di = s̄i

⃓⃓
r̄↓b, ai =

s̄i
⃓⃓
r̄↓k and c̄i = s̄i

⃓⃓
r̄↓z̄i

for 0 ⩽ i ⩽ 1.
• Conversely, for every clause Ld0

a0,c̄0 ∨ Ld1
a1,c̄1 in exp(Φ),

there is s̄0, s̄1 ∈ Σ|r̄|, such that φ2[s̄0, s̄1] = 1, where
di = s̄i

⃓⃓
r̄↓b, ai = s̄i

⃓⃓
r̄↓k and c̄i = s̄i

⃓⃓
r̄↓z̄i

for 0 ⩽ i ⩽ 1.

Finally, the safety invariant property P (r̄) is defined as:

P (r̄) := (k, b, z̄k) = (kT , bT , z̄T ) → ¬r1

That S and P capture precisely the satisfiability of Φ is stated
formally in Theorem 1.

Theorem 1. Φ is not satisfiable if and only if the safety
property P is not S-invariant.

Proof. We will show that there is a contradicting cycle in the
implication graph of exp(Φ) if and only if there is trace in S
that violates the safety property P (r̄).

(if) Suppose there is a counterexample trace s̄0, s̄1, . . . , s̄m.
We will use the following notations. For every 1 ⩽ i ⩽ m:

di = s̄i
⃓⃓
r̄↓b, ai = s̄i

⃓⃓
r̄↓k and c̄i = s̄i

⃓⃓
r̄↓z̄ai

.

Also let:

dT = s̄i
⃓⃓
r̄↓bT

, aT = s̄i
⃓⃓
r̄↓kT

and c̄T = s̄i
⃓⃓
r̄↓z̄aT

.

Note that s̄i
⃓⃓
r̄↓bT

and s̄i
⃓⃓
r̄↓kT

stay the same for every 1 ⩽ i ⩽
m, thus, dT , aT and c̄T are well defined. Let Li denote the
literal Ldi

ai,c̄i , for each 1 ⩽ i ⩽ m and LT the literal LdT
aT ,c̄T .

By the definition of S and P , we have:

s̄1
⃓⃓
r̄↓r1

= 0, s̄m
⃓⃓
r̄↓r1

= 1 and L1 = Lm = LT .

Since s̄1
⃓⃓
r̄↓r1

and s̄m
⃓⃓
r̄↓r1

differ, there is an index 1 ⩽ q ⩽ m
such that:

s̄q
⃓⃓
r̄↓r1

= 0 and s̄q+1

⃓⃓
r̄↓r1

= 1.

That is, q is the index when the flag bit changes from 0 to
1. This change only happens when φ3[s̄q, s̄q+1] = 1, which
means Lq and LT are contradicting literals.

Since φ1 holds only on the dummy init state, for every 1 ⩽
i ⩽ m where i ̸= q:

φ2[(r̄, r̄
′)/(s̄i, s̄i+1)] = 1.

By Remark 1, each Li∨Li+1 is a clause in exp(Φ), for every
1 ⩽ i ⩽ m − 1 where i ̸= q. By routine inspection, these
clauses form a cycle in the implication graph of exp(Φ) that
contains the literals LT and Lq which are contradicting literals.

(only if) Suppose there is a contradicting cycle in the
implication graph of exp(Φ). Let the cycle be:

ℓ1 → · · · → ℓq → ℓq+1 → · · · → ℓm = ℓ1.

where ℓq is ¬ℓ1.
For each 1 ⩽ i ⩽ m, let di, ai, c̄i be such that Ldi

ai,c̄i = ℓi.
Let dT , aT , c̄T be such that LdT

aT ,c̄T = ℓ1.
Consider the following trace s̄0, s̄1, . . . , s̄m+1, where each

s̄i is as follows.
• s̄0 = 10 · · · 0.
• For 1 ⩽ i ⩽ q, s̄i

⃓⃓
r̄↓r0

= 0, s̄i
⃓⃓
r̄↓r1

= 0, s̄i
⃓⃓
r̄↓k = ai,

s̄i
⃓⃓
r̄↓b = di, and s̄i

⃓⃓
r̄↓z̄ai

= c̄i.

• For i = q + 1, s̄i
⃓⃓
r̄↓r0

= 0, s̄i
⃓⃓
r̄↓r1

= 1, s̄i
⃓⃓
r̄↓k = aq ,

s̄i
⃓⃓
r̄↓b = ¬dq , and s̄i

⃓⃓
r̄↓z̄aq

= c̄q

• For q + 2 ⩽ i ⩽ m, s̄i
⃓⃓
r̄↓r0

= 0, s̄i
⃓⃓
r̄↓r1

= 1, s̄i
⃓⃓
r̄↓k =

ai−1, s̄i
⃓⃓
r̄↓b = di−1, and s̄i

⃓⃓
r̄↓z̄ai−1

= c̄i−1.

• For 1 ⩽ i ⩽ m + 1, s̄i
⃓⃓
r̄↓kT

= aT , s̄i
⃓⃓
r̄↓bT

= dT and
s̄i
⃓⃓
r̄↓z̄aT

= c̄T .

By routine inspection, s̄0, . . . , s̄m+1 is a counterexample trace
that violates the safety property P .
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B. Proof extraction and model extraction

In this section, we will show how to extract the certificate
for the original 2-DQBF from the certificate provided by
the PDR algorithm. Let Φ be the given 2-DQBF as in the
previous section and let S = (r̄, I, T ) and P be the constructed
transition system and the safety property.

If Φ is unsatisfiable, the PDR algorithm would give us a
counterexample trace s̄0, . . . , s̄m from which we can construct
the contradicting cycle in the implication graph of exp(Φ) as
described in the (if) direction in the proof of Theorem 1. Such
a contradicting cycle is the certificate for the unsatisfiability.

Now, consider the case when Φ is satisfiable. By Theo-
rem 1, P is S-invariant and the PDR algorithm outputs a
Boolean formula S(r̄) that is S-invariant and also is an over-
approximation of the reachable states from the initial states.
We will show how to extract the Skolem functions f0 and f1
for y0 and y1, respectively, from the formula S(r̄).

We first describe the main idea. Let GΦ be the implication
graph of exp(Φ). Let Tr(GΦ) be the transitive closure of GΦ.
To avoid clutter with parentheses, we write L→ L′ to denote
an edge from L to L′. The graph Tr(GΦ) will serve as the
guide in constructing the Skolem functions for Φ. The intuition
is that if the edge Xi,c̄ → ¬Xi,c̄ is present in Tr(GΦ), then
we have to assign Xi,c̄ to 0, which corresponds to the function
fi where fi(c̄) = 0. Similarly, if the edge ¬Xi,c̄ → Xi,c̄ is
present in Tr(GΦ), then we have to assign Xi,c̄ to 1, which
corresponds to the function fi where fi(c̄) = 1. If both edges
are not present in Tr(GΦ), we can freely assign Xi,c̄ to either
0 or 1. This intuition motivates us to introduce the following
definition.

Definition 1. Let 0 ⩽ i ⩽ 1 and c̄ ∈ Σ|z̄i|. The variable Xi,c̄ is
free (w.r.t. Φ), if both edges Xi,c̄ → ¬Xi,c̄ and ¬Xi,c̄ → Xi,c̄

are not in Tr(GΦ).

We make a few observations stated formally below that give
us the criterion the satisfying Skolem functions should obey.
(O1) If a variable Xi,c̄ is free, there are Skolem functions

(f0, f1) where fi(c̄) = 0 and (g0, g1) where gi(c̄) = 1.
In other words, if Xi,c̄ is free, we can assign the value
of fi(c̄) to either 0 or 1.

(O2) If Xi,c̄ → ¬Xi,c̄ is an edge in Tr(GΦ), then the value
of fi(c̄) must be 0 for every Skolem function f0, f1 for
Φ.

(O3) If ¬Xi,c̄ → Xi,c̄ is an edge in Tr(GΦ), then the value
of fi(c̄) must be 1.

(O4) It is not possible that both Xi,c̄ → ¬Xi,c̄ and ¬Xi,c̄ →
Xi,c̄ are edges in Tr(GΦ), since both edges forms a
contradicting cycle, which will contradict the assumption
that Φ is satisfiable.

The main technical difficulty in constructing the Skolem
functions is that we do not have the graph Tr(GΦ) explicitly,
but only the formula S(r̄). To connect S(r̄) with Tr(GΦ),
we view the formula S(r̄) as a graph GS , where the set of
vertices is the same as the set of vertices in GΦ and the set
of edges is as follows. For b1, k1, b2, k2 ∈ Σ, for c̄1 ∈ Σ|z̄k1

|

and c̄2 ∈ Σ|z̄k2
|, (Lb1

k1,c̄1
, Lb2

k2,c̄2
) is an edge in GS if and only

if
S[0, 0, k2, b2,Extx̄(c̄2, z̄k2

), k1, b1, c̄1] = 1, (2)

where Extx̄(c̄2, z̄k2) is the assignment of x̄ where all variables
in z̄k2

are assigned according to c̄ and all variables in x̄ \ z̄k2

are assigned with 0.
The intuition of Eq. (2) is as follows. Recall that the states

in S represent the tuple (b, ℓi, ℓ0) for some literals ℓi, ℓ0. The
set of reachable states in S are such tuples where there is a
path from ℓ0 to ℓi in the graph GΦ, or equivalently, ℓ0 → ℓi
is an edge in Tr(GΦ). Now the graph GS can be viewed as an
over-approximation of Tr(GΦ), i.e., it contains all the edges in
Tr(GΦ) and possibly some other edges that are not in Tr(GΦ).

Lemma 1 below states some useful facts on GS .

Lemma 1. • The set of edges in GS is an over-
approximation of the set of edges in Tr(GΦ).

• If L1 → L2 is an edge in GS and L2 → L3 is an edge
in Tr(GΦ), then L1 → L3 is an edge in GS .

• If L → ¬L is an edge in Tr(GΦ), then ¬L → L is not
an edge in GS .

Proof. For the first bullet item, let L → L′ be an edge in
Tr(GΦ). Since Tr(GΦ) is the transitive closure of GΦ, there
is a path from L to L′ in GΦ, say:

L = L1 → L2 → · · · → Lm = L′

Let di, ai, c̄i be such that Ldi
ai,c̄i = Li. Then in the transition

system S = (r̄, I, T ), consider the states:

s̄0, s̄1, . . . , s̄m,

where s̄0 = 10 · · · 0 and for each 1 ⩽ i ⩽ m:
• s̄i

⃓⃓
r̄↓r0

= 0,
• s̄i

⃓⃓
r̄↓r1

= 0,
• s̄i

⃓⃓
r̄↓k = ai,

• s̄i
⃓⃓
r̄↓b = di,

• s̄i
⃓⃓
r̄↓z̄ai

= c̄i,

• s̄i
⃓⃓
r̄↓kT

= a1,
• s̄i

⃓⃓
r̄↓bT

= d1,
• s̄i

⃓⃓
r̄↓z̄aT

= c̄1.

It is routine to verify that s̄0, s̄1, . . . , s̄m is a trace in S . In
particular, the state s̄m is reachable, i.e.:

S[0, 0, am, dm,Extx̄(c̄m), a1, d1, c̄1] = 1.

Hence by the definition of GS , L0 → Ln is an edge in GS ,
and thus, Tr(GΦ) is a subgraph of GS .

For the second bullet item, let Li = Ldi
ai,c̄i for i = 1, 2, 3

with L1 → L2 being an edge in GS and L2 → L3 being
an edge in Tr(GΦ). Consider the states s̄0, s̄1, s̄2, s̄3, where
s̄0 = 10 · · · 0 and for each 1 ⩽ i ⩽ 3:

• s̄i
⃓⃓
r̄↓r0

= 0,
• s̄i

⃓⃓
r̄↓r1

= 0,
• s̄i

⃓⃓
r̄↓k = ai,

• s̄i
⃓⃓
r̄↓b = di,
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• s̄i
⃓⃓
r̄↓z̄ai

= c̄i,

• s̄i
⃓⃓
r̄↓kT

= a1,
• s̄i

⃓⃓
r̄↓bT

= d1, and
• s̄i

⃓⃓
r̄↓z̄aT

= c̄1.
By similar arguments as the first bullet item, we can verify
that the state s̄1 is reachable from s̄0, s̄2 is reachable from s̄1,
and s̄3 is reachable from s̄2. Hence,

S[0, 0, a3, d3,Extx̄(c̄3), a1, d1, c̄1] = 1,

and L1 → L3 is an edge in GS .
For the third bullet item, let L→ ¬L is an edge in Tr(GΦ)

and let L = Ld
a,c̄. Suppose to the contrary that ¬L→ L is an

edge in GS . Consider the states s̄0, s̄1, s̄2, s̄3, s̄4, where:
• s̄0 = 10 · · · 0
• s̄1

⃓⃓
r̄↓r0

= 0, s̄1
⃓⃓
r̄↓r1

= 0, s̄1
⃓⃓
r̄↓k = a, s̄1

⃓⃓
r̄↓b = ¬d,

s̄1
⃓⃓
r̄↓z̄ai

= c̄ ,

• s̄2
⃓⃓
r̄↓r0

= 0, s̄2
⃓⃓
r̄↓r1

= 0, s̄2
⃓⃓
r̄↓k = a, s̄2

⃓⃓
r̄↓b = d,

s̄2
⃓⃓
r̄↓z̄ai

= c̄ ,

• s̄3
⃓⃓
r̄↓r0

= 0, s̄3
⃓⃓
r̄↓r1

= 1, s̄3
⃓⃓
r̄↓k = a, s̄3

⃓⃓
r̄↓b = d,

s̄3
⃓⃓
r̄↓z̄ai

= c̄ ,

• s̄4
⃓⃓
r̄↓r0

= 0, s̄4
⃓⃓
r̄↓r1

= 1, s̄4
⃓⃓
r̄↓k = a, s̄4

⃓⃓
r̄↓b = d,

s̄4
⃓⃓
r̄↓z̄ai

= c̄ ,

• For 1 ⩽ i ⩽ 4, s̄i
⃓⃓
r̄↓kT

= a, s̄i
⃓⃓
r̄↓bT

= ¬d, and
s̄i
⃓⃓
r̄↓z̄aT

= c̄.
It is routine to check that s̄i is reachable from s̄i−1 for every
1 ⩽ i ⩽ 4. In particular, the state s̄4 violates the property P ,
which is a contradiction to the existence of S. Hence ¬L→ L
is not an edge in GS .

Now consider the following candidate Skolem functions for
0 ⩽ i ⩽ 1:

fi(z̄i) := S[0, 0, i, 1,Extx̄(z̄i), i, 0, z̄i] = 1 ∧
S[0, 0, i, 0,Extx̄(z̄i), i, 1, z̄i] = 0

where Extx̄(z̄i) denotes the substitution of all variables in
x̄ \ z̄i with 0. Intuitively it means that for every c̄ ∈ Σ|z̄i|, we
assign fi(c̄) = 1 if and only if L0

i,c̄ → L1
i,c̄ is an edge in GS

and L1
i,c̄ → L0

i,c̄ is not an edge in GS .
Note that after the first call of the PDR algorithm, the

candidate Skolem functions are not necessary the correct ones,
because the formula S(r̄) is only an over-approximation of the
reachable states, as shown in the following example.

Example 1. Let ψ := ∀x ∃y0(x)∃y1(x) y0 ̸= y1, which
is obviously satisfiable. The first call of the PDR algorithm
gives us the formula S(r̄) where the graph GS is depicted in
Figure 2. The candidate Skolem functions f0, f1 defined by
GS are the constant function 0, which obviously are not the
correct Skolem functions for ψ.

To verify that the candidate functions f0, f1 are indeed the
Skolem functions for Φ, we check the satisfiability of the
formula:

¬ϕ(x̄, y0, y1) ∧ y0 = f0(z̄0) ∧ y1 = f1(z̄1) (3)

X0,0 ¬X0,0 X0,1 ¬X0,1

X1,0 ¬X1,0 X1,1 ¬X1,1

Fig. 2: The transitive closure of the implication graph of the
expansion exp(ψ) has only the black edges, while the graph
GS also contains the red edges.

If it is unsatisfiable, then f0, f1 are indeed Skolem functions
for y0, y1. Otherwise, we need to refine either f0 or f1. Let
(ā, b0, b1) be a satisfying assignment of the formula in Eq. (3).
Let c̄0 = ā

⃓⃓
x̄↓z̄0

and c̄1 = ā
⃓⃓
x̄↓z̄1

. It implies the clause Cā,b0,b1

in exp(Φ) is violated, i.e., both literals L¬b0
0,c̄0

and L¬b1
1,c̄1

have
value 0. Note also that since ϕ(ā, b0, b1) = 0, by definition,
the clause Cā,b0,b1 is in exp(Φ), hence, both Lb0

0,c̄0
→ L¬b1

1,c̄1

and Lb1
1,c̄1

→ L¬b0
0,c̄0

are edges in GΦ, hence, in Tr(GΦ). In this
case we can show that both X0,c̄0 and X1,c̄1 are free, as stated
formally in the following lemma.

Lemma 2. Suppose Φ is satisfiable and suppose (ā, b0, b1) is a
satisfying assignment of the formula in Eq. (3). Let c̄0 = ā

⃓⃓
x̄↓z̄0

and c̄1 = ā
⃓⃓
x̄↓z̄1

. Then, both X0,c̄0 and X1,c̄1 are free.

Proof. Since (ā, b0, b1) is a satisfying assignment of the
formula in Eq. (3), it is also a satisfying assignment for ¬ϕ.
Thus, the clause Cā,b0,b1 is in exp(Φ), which means that:

Lb1
1,c̄1

→ L¬b0
0,c̄0

and Lb0
0,c̄0

→ L¬b1
1,c̄1

are both edges in GΦ, hence, in Tr(GΦ).
Assume to the contrary that at least one of X0,c̄0 and X1,c̄1

is not free. We first assume that X0,c̄0 is not free, i.e., one of
L¬b0
0,c̄0

→ Lb0
0,c̄0

and Lb0
0,c̄0

→ L¬b0
0,c̄0

is an edge in Tr(GΦ). The
case when X1,c̄1 is not free can be treated in a similar manner.

If L¬b0
0,c̄0

→ Lb0
0,c̄0

is an edge Tr(GΦ), then there is a sequence
of edges in Tr(GΦ):

Lb1
1,c̄1

→ L¬b0
0,c̄0

→ Lb0
0,c̄0

→ L¬b1
1,c̄1

.

Since Tr(GΦ) is the transitive closure of Gϕ, the edge Lb1
1,c̄1

→
L¬b1
1,c̄1

is also in Tr(GΦ) and hence in GS . By Lemma 1,
L¬b1
1,c̄1

→ Lb1
1,c̄1

is not an edge in GS . By the construction of f1,
we have f1(c̄1) = ¬b1, which contradicts the assumption that
(ā, b0, b1) is a satisfying assignment of ¬ϕ∧y0 = f0∧y1 = f1.

If Lb0
0,c̄0

→ L¬b0
0,c̄0

is an edge in Tr(GΦ), by Lemma 1,
Lb0
0,c̄0

→ L¬b0
0,c̄0

is an edge in GS and L¬b0
0,c̄0

→ Lb0
0,c̄0

is not an
edge in GS . By the construction of f0, we have f0(c̄0) = ¬b0,
which contradicts the assumption that (ā, b0, b1) is a satisfying
assignment of ¬ϕ ∧ (y0 = f0) ∧ (y1 = f1).

Remark 2. It is worth noting that Lemma 2 does not contradict
with the fact that (f0, f1) are not the correct Skolem functions
for Φ. It is possible that there are correct Skolem functions
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X0,0 ¬X0,0 X0,1 ¬X0,1

X1,0 ¬X1,0 X1,1 ¬X1,1

Fig. 3: The closure of the original implication graph are the
black edges in black. Edges added to the closure after adding
X0,0 → ¬X0,0 are in blue. The red edges are the over-
aprroximated edges.

g0, g1, where g0 agrees with f0 on c̄0, but differ from f1 on
c̄1, or that g0 differs from f0 on c̄0, but agrees with f1 on c̄1.

To “fix” the candidate functions f0, f1, we add edges into
the graph GS . Consider the 2-DQBF ψ in Example 1. Taking
the constant functions f0, f1 = 0, the formula in Eq. (3) has
a satisfying assignment: x = 0, y0 = 0, y1 = 0. Lemma 2
implies that both X0,0 and X1,0 are free. We can “refine”
the function fi by adding the edge X0,0 → ¬X0,0, which is
equivalent to fixing the value f0(x) to 0. Note that to add the
edge X0,0 → ¬X0,0 into the graph GS , we only need to add
it to the transition of the system S. After calling the PDR
algorithm again, the graph GS is now as in Figure 3 and the
candidate Skolem functions become f0 = 0, f1 = 1, which
are indeed correct Skolem functions of ψ.

We formalise this idea in Algorithm 1. The while-loop
corresponds to the refinement of the candidate Skolem func-
tions. In Line 10 we force an assignment the assignment
f0,c̄0 = b0 by adding the edge L¬b0

0,c̄0
→ Lb0

0,c̄0
to the transition

relation T . The correctness of Algorithm 1 is stated formally
in Theorem 2.

Theorem 2. Algorithm 1 is correct.

Proof. The correctness of the reduction to the PDR instance
S and P follows from Theorem 1. What is left is to show that
the output Skolem functions f0, f1 are indeed the satisfying
Skolem functions for Φ (when Φ is satisfiable).

It suffices to show that the refinement step is correct. Sup-
pose Φ is satisfiable. Let (ā, b0, b1) be a satisfying assignment
of ¬φ∧y0 = f0∧y1 = f1. Lemma 2 implies that both f0(c̄0)
and f1(c̄1) are free, where c̄0 = ā

⃓⃓
x̄↓z̄0

and c̄1 = ā
⃓⃓
x̄↓z̄1

. Thus,
there are satisfying Skolem functions for Φ regardless of what
we choose to assign in the refinement step.

In each refinement step, we force one assignment, and
the number of free variables decreases by at least one per
refinement. Hence the algorithm will terminate and the output
(f0, f1) are correct Skolem functions.

Note that in the refinement step in Algorithm 1, we choose
to force f0(c̄0) = b0, which will implicitly force f1(c̄1) = ¬b1,
due to the clause Cā,b0,b1 in exp(Φ). Alternatively, we may
choose to force f0(c̄0) = b0, but this choice will not implicitly
force the value of f(c̄1). In our experiments we implement the

Algorithm 1 2DQR
Input: 2-DQBF Φ := ∀x̄ ∃y0(z̄0)∃y1(z̄1) φ(x̄, y0, y1)

1: Run the reduction as in Section III-A on Φ.
2: Let S = (r̄, I, T ) and P be the output.
3: Run the PDR algorithm on S with the safety property P
4: if P is S-invariant then ▷ The input Φ is satisfiable
5: Let S(r̄) be the inductive safe set formula.
6: Construct the formulas f0(z̄0) and f1(z̄1) based on S.
7: while ¬φ ∧ y0 = f0 ∧ y1 = f1 is satisfiable do ▷ Refinement
8: Let (ā, b0, b1) be the satisfying assignment.
9: Let c̄0 = ā

⃓⃓
x̄↓z̄0

and c̄1 = ā
⃓⃓
x̄↓z̄1

.
10: T ← T ∨ ASSIGN(0, c̄0, b0) ▷ Forcing an assignment
11: Call the PDR algorithm on S = (r̄, I, T ) and P .
12: Let S(r̄) be the inductive safe set formula.
13: Construct the formulas f0(z̄0) and f1(z̄1) based on S.
14: return f0, f1.
15: else ▷ The input Φ is not satisfiable
16: return UNSAT.

17: procedure ASSIGN(i, c̄, b0)
18: return (r0 = r′0 = 1)∧ (r1 = r′1)∧ (k = k′ = i)∧ (z̄i = z̄′i =

c̄) ∧ (¬b = b′ = b0) ∧ (kT , bT , z̄T ) = (k′T , b′T , z̄′T )

forcing of f0(c̄0) = b0, which we believe is more efficient than
the other due to the “implicit” forcing.

IV. EXPERIMENTAL EVALUATION

Benchmarks: We generate two families of benchmarks:
PEC and succinct graph 2-colorability, which are then con-
verted to 2-DQBF.

(PEC) We generate PEC instances with two black-boxes
from the ISCAS89 benchmarks [25], where we randomly
choose two “sub-circuits” from each circuit and replace them
with two black-boxes. We ensure that the dependency sets of
the sub-circuits ranges from “being disjoint” to “being almost
equal”. The instances have 33-674 (universal) variables and
the states in the constructed transition systems have 61-1071
bits. In total, there are 624 instances. Each instance is post-
processed with the command fraig in ABC [26] and the
resulting test case is in circuit form.

The above method would generate satisfiable instances. We
obtain unsatisfiable instances by swapping the dependencies
set. Though such swapping does not always guarantee unsatis-
fiability, but it almost always produces unsatisfiable instances.

(Succinct graph 2-colorability) This family of benchmarks is
based on the succinct graph models introduced in [27] where,
instead of being given the list of edges in the graph, we are
given a Boolean circuit that represents the edges in the graph.
Let C(ū, v̄) be a Boolean circuit where |ū| = |v̄| = n. It
represents a graph GC where {0, 1}n is the set of vertices and
two vertices ā and b̄ are adjacent if and only if C(ā, b̄) = 1.
The problem of succinct graph 2-colorability is defined as:
Given a circuit C, decide if the graph GC is 2-colorable.

We generate 2-colorability instances by first generating two
random permutation circuits D,D′ : {0, 1}n → {0, 1}n. We
consider the graph where (x, x′) is an edge if the first bit of
D(x) is the same as the first bit of D′(x′). If we let D′ = D,
the graph defined by C is bipartite, i.e. 2-colorable. Otherwise,
the graph is unlikely to be bipartite.
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Each random permutation is constructed in m rounds. In
each round, we randomly pick k ∈ [n], generate a clause
c ⊆ {x1, · · · , xn} with Pr[xi ∈ c] = 1

2 for i ̸= k and xk ̸∈ c,
and let xk to be xk ⊕ c. We generate one instance for each
n ∈ {2, · · · , 127} and set m = 2n. Again, each instance is
post-processed with the command fraig in ABC [26]. The
resulting instances are in circuit form.

We then use the following reduction to obtain 2-DQBF.
On input circuit C(ū, v̄) where |ū| = |v̄| = n, let Φ be the
following 2-DQBF:

∀x̄1∀x̄2 ∃y1(x̄1)∃y2(x̄2)
(︁
x̄1 = x̄2 → y1 = y2

)︁
∧

(︁
C(x̄1, x̄2) → y1 ̸= y2

)︁
where |x̄1| = |x̄2| = n. Intuitively, we regard the values 0, 1
as the colors and view a coloring on the vertices as a Boolean
function f : {0, 1}n → {0, 1}. The formula Φ states that y1
and y2 must represent the same function and that two adjacent
vertices have different colors. Thus, Ψ is satisfiable if and only
if the graph GC is 2-colorable.

Setup: We implement our method, which we call 2DQR,
using AVR [19] as the PDR solver and Z3 [28] as the SAT
solver and a parser for the SMT-LIB 2 format. We compare
its performance (with or without Skolem function generation
for satisfiable test cases) with DQBDD [13], HQS [10] and
Pedant [11, 12]. We run DQBDD without generating the
Skolem functions, while HQS and Pedant are run both with
and without Skolem function generation. The latest version of
HQS does not support Skolem function generation. When the
Skolem functions are needed, we use an older version of HQS.
Otherwise, we use the latest version. Since HQS and Pedant
do not take circuit form as input, Tseitin transformation is
applied to the instances before being fed to HQS and Pedant.
Each solver had 600 seconds to solve each instance. We run
the experiments on Ubuntu 22.04.3 LTS with 48 GB of 2400
MHz DDR4 memory and i5-13400 CPU.

Results: In the first batch of experiments, we compare
2DQR with other DQBF solvers on the PEC instances. The
cactus plots in Figure 4a show the results, where the horizontal
axis corresponds to the running time (s) and the vertical
axis to the number of solved instances. 2DQR means without
Skolem function generation and 2DQR_skolem means with
Skolem function generation. The time is measured starting
from when the input DQBF is read until it terminates/time
out, i.e., it includes the reduction time to PDR instance, the
pre-processing step fraig in ABC and the output generation.

For satisfiable instances, 2DQR outperforms the other
solvers by large margins. We remark that the Skolem function
generation introduces little run-time overhead since in most
cases, they need very few extra calls to the PDR solver. For
unsatisfiable instances, 2DQR outperforms HQBDD and HQS,
while Pedant outperformed 2DQR by a small margin.

Next, we provide a pairwise comparison between our
method and other solvers. The scatter plots in the log scale are
shown in Figure 4b, where each point represents an instance.
The horizontal axis corresponds to the time spent by 2DQR
and the vertical axis represents that by the compared solver.

In most plots, there are a lot of points lying on the bottom
right plane, a lot of which have minor differences and are
solved within 10 seconds by both methods. Also, there are a
lot of points lying on the top boundary of the graph, indicating
that there are a lot of cases that are solved by 2DQR but not
the others. As for the graph of Pedant v.s. 2DQR on the
unsatisfiable cases, the dots are quite close to the center line,
and there are only four cases in which Pedant solves but
2DQR does not.

Next, we analyze the circuit size generated by the three
methods, 2DQR generates an AIG in SMT2 format, while
HQS and Pedant generate an AIG in AIGER format. For a
fair comparison, we first remove the Tseitin variables from
the Skolem function given by HQS and Pedant using ABC,
which is done by first removing the definition from the file
and running read skolem.aig; write skolem.aig
on ABC. As for 2DQR, we transform the
SMT2 format to verilog format and run
read skolem.v; strash; write skolem.aig.
We also use fraig in ABC to do some optimization.

For the post-processing steps above, 2DQR takes 26 sec-
onds, 2DQR with fraig 33 seconds, HQS 10 seconds, HQS
with fraig 28 seconds, and Pedant 74 seconds. However,
Pedant with fraig takes more than a day to post-process,
so we exclude it here. In Figure 4c, we plot the number of
AND gates in the Skolem function as a scatter plot to give a
pairwise comparison between solvers. Only instances solved
by both solvers appear in this plot. It shows that 2DQR and
HQS performed similarly, and both outperformed Pedant
with quite a large margin. When fraig is used, that are
slight reductions on the number of AND gates for every solver.
Figure 4d shows that the performance of 2DQR and HQS are
similar, but 2DQR and 2DQR with fraig are slightly better
than HQS and HQS with fraig. Note also that Pedant’s
distribution is not close to the others.

In the construction of Skolem functions, on most PEC
instances, there is no extra call to the PDR algorithm. Out
of 624 instances, two require 1 extra call, one requires 2 extra
calls, one requires 17 extra calls, one requires 22 extra calls
and one 29 extra calls.

In the second batch of experiments, we consider the 2-
colorability instances. Figure 5 shows the results, where the
horizontal axis corresponds to the number of bits of the
graph, and the vertical axis corresponds to the time needed to
solve the instance. The vertical axis is in log scale for better
resolution. For the satisfiable instances, 2DQR outperforms the
other solvers by quite a large margin. Here, each instance
needs at least one more extra PDR call for the generation of
the Skolem function, which is expected as we need to choose
a color to assign to a partition before we can get a coloring.
For the unsatisfiable instances, 2DQR, DQBDD, and HQS could
not solve any instance of size at least 12 bits, but Pedant
solves almost all of them.

Additional remark: PEC (with 2 black boxes) and succinct
2-colorability are both PSPACE-complete [15, 29]. Thus, it is
natural to ask if we can reduce them to QBF instances and use
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(a) Number of solves vs time in PEC instances. The black horizontal dotted line indicates the number of instances.
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Fig. 4: Various plots for PEC instances.
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Fig. 5: Time needed to solve for n-bit 2-colorability test cases.

QBF solvers to solve them. In all instances QBF solver time
out. This is not surprising since the only known reduction to
QBF is the one in [3] which yield quadratic blow-up in the
number of variables. For example, in the PEC instances with
n universal variables, the resulting QBF would have about
24(n+2)2 variables. Our smallest PEC instance already uses
24 universal variables, and the resulting QBF would have at
least 16000 variables, which is beyond the capability of current
QBF solvers.

V. CONCLUSIONS

We introduce a novel technique to use PDR algorithms
to solve 2-DQBF instances. The main insight is based on
the properties that 2-DQBF is essentially a succinct 2-CNF
formula. We also give a method for extracting both the positive
and negative certificates for 2-DQBF based on the certificates
provided by the PDR solver. We implement our reduction
with AVR as the PDR solver and empirically show that
this approach performs better than the state-of-the-art DQBF
solvers on most of the PEC and 2-colorability test cases with
a very large margin, except Pedant on some unsatisfiable
2-colorability test cases.

We believe our work is just the tip of the iceberg. First, we
note that the Skolem function generation could be improved
if we use an incremental approach, i.e., by modifying AVR to
support incremental solving like [30]. Another direction is to
efficiently integrate our 2-DQBF solver inside a general DQBF
solver, which is very similar in spirit to how modern SAT
solvers utilize 2-SAT solvers, e.g., when applying the Unit
Propagation strategy, the SAT solver inadvertently is solving
2-SAT instances. We leave this as future work.
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