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Abstract—Zelkova is an AWS service that answers questions
about Identity and Access Management (IAM) access policies
such as “Does this policy allow public access?”. Zelkova formal-
izes IAM policies and the meaning of “public” as a logical query
that can be solved using SMT solvers. Among other conditions,
Zelkova defines a policy as public if it allows access from a
number of IP addresses that exceeds a given threshold. Encoding
this check so that it is supported by all SMT solvers in the
Zelkova portfolio is difficult because counting and restricting the
number of models are not core SMT features. We describe two
SMT encodings for checking whether the number of IPs allowed
by a policy exceeds a given bound. Both encodings generate an
SMT formula that can be discharged with a single call to an off-
the-shelf SMT solver. Our approach takes less than 3s to detect
whether a policy is public for 99.999% of the evaluated policies.

I. INTRODUCTION

Millions of customers use AWS to store their data in a vari-
ety of resources such as databases and key-value stores. These
resources are secure-by-default and accessible only when the
customer grants access. The customer can grant access by
authoring policies in the Identity and Access Management
(IAM) language. The IAM language can express properties
varying from simple sharing to complex constraints with a
logical combination of positive and negative operators.

AWS offers tools to help customers write and understand
their policies. One of these tools is Block Public Access
(BPA) [9] which protects customers from accidentally attach-
ing “public” policies to their resources.

The central design decision in BPA is the exact definition
of “public”, and three factors are at play here. First, the
definition must match a customer’s intuitions about public
access. Second, the definition must be mathematically precise
so it can be checked in a provable way. Specifically, a precise
mathematical definition of public access allows us to check
whether a policy is public using Zelkova [6], an IAM policy
analysis service based on SMT solvers. Third, the definition
must require no additional information from the customer so
that BPA itself can be a one-click solution.

The key idea underlying the AWS definition of public is
to examine a customer policy and extract out the trusted
entities—e.g. individual account IDs, networks, or users. In
general, a policy should only reference a limited number of
trusted entities. If there is any access granted outside this small

set of trusted entities, e.g., due to misuse of wildcards—e.g.,
a policy that allows access from any account ID—the policy
is considered to be granting public access. However, when
reasoning about IP addresses, treating each IP as a separate
trusted entity may make a policy look public when it really
is not. A single customer may own a large collection of IP
addresses, all of which are grouped together and considered
trusted—e.g., the company may own the 19.0.0/8 range
of IP addresses. This Classless Inter-Domain Routing (CIDR)
notation represents the set of 224 ≈ 1.7 × 106 IP addresses
between 19.0.0.0 and 19.255.255.255 inclusively. A
single customer policy could reference hundreds of similarly
sized CIDR blocks, which in total amounts to granting access
to the entire internet. Such a policy should be considered
public, so we need to update our definition of BPA to handle
IP addresses. For the domain of IP addresses we have decided
to draw a line at a specific number of IP addresses that
can be allowed before a policy is considered public. From
conversations with customers, we identified that any number
of IP addresses larger than a single /8 CIDR block—i.e., 224

IP addresses—should be considered public.
To check for public access, Zelkova turns an IAM policy

into a logical query that is discharged using a portfolio of SMT
solvers. The original version of the BPA check [9] removes
all trusted parts of the policy and then compiles the remaining
parts into a single logical formula. If an SMT solver finds a
model for the generated formula, the policy allows untrusted
access and is marked public. To support IP addresses as trusted
entities, we must precisely count how many IP addresses are
allowed by the policy after the other trusted parts are removed.

Today, there are no SMT solvers that support precise model
counting and that can solve this problem within a few sec-
onds [19]. Therefore, we encode this bounded projective IP-
counting problem into a single SMT query using arithmetic.
The key idea of our encoding is to split the set of IP addresses
into equivalence classes for which counting is trivial and then
reduce the bounded projective IP-counting problem to an SMT
query that checks if the sum of the IP counts in the “allowed”
equivalence classes exceeds the given bound. We also present
an encoding that eliminates the need for arithmetic by pre-
computing minimal sets of summands which will exceed the
bound. These two encodings allow us to solve the bounded
projective IP-counting problem using existing SMT solvers
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with the time constraints imposed by AWS customer needs
(i.e., within 3 seconds per check). We remark that both
encodings use a single SMT query and do not rely on features
such as incremental solving of multiple SMT queries (e.g.,
one per equivalence class), which may result in expensive
enumeration and are not necessarily supported by all SMT
solvers.

Contributions: This paper makes three contributions:
We formalize the bounded projective IP-counting prob-

lem (Section II) and illustrate how Block Public Access needs
to solve this problem (Section III).

We design two sound and efficient SMT encodings for
solving the bounded projective IP-counting problem (Sec-
tion IV). The encodings compute equivalence classes of IP
addresses and separately compute the sizes of each equivalence
class, thus bypassing the need to reason about individual IP
addresses and the need for model counting. The first encoding,
which is supported by all but one of the SMT solvers in the
Zelkova portfolio, requires support for arithmetic operations
(e.g., summing) on top of the theories already required by
Zelkova. The second uses a knapsack-based approach to iden-
tify combinations of equivalence classes that can exceed the
threshold and avoids arithmetic operations, thus imposing no
additional requirements on the SMT solver. This last encoding
is supported by all SMT solvers in the Zelkova portfolio.

We evaluate the encodings on 700,000 policies containing
IP addresses; our approaches take less than 3s (the time limit
required by the target application) to detect whether a policy
is public for 99.999% of the evaluated policies (Section V).

II. THE BOUNDED PROJECTIVE IP-COUNTING PROBLEM

In this section, we first describe the AWS policy language
and its semantics, and then define the problem of checking
whether the number of IP addresses for which at least one
request is allowed by a given policy exceeds a given bound.

The AWS policy language is defined as serialized JSON [1].
In this paper, we describe a simplified abstract syntax of the
core constructs of the language to simplify our exposition. As
done in prior work [9], we model an IAM policy as a set of
statements that can either allow or deny a set of requests. A
request is granted when it is allowed by at least one statement
and not denied by any statement. In the rest of the section, we
formalize these concepts.
Requests. We assume a set of variables V , which represent
the possible fields in a request—e.g., principal, action,
resource, and sourceIP are variables.

A request r : V → val is a function that maps a variable
to its value (the value can be null). For example, the partial
snippet of a request r1 shown in Figure 1 maps the variable
principal to the value 111122223333:user/Bob, the
variable action to the value s3:ListBucket, the variable
resource to the value bucket/invoices, and the vari-
able sourceIP to the value 20.121.201.3. Each variable
v ∈ V is associated with a value of a specific type in IAM and
we use τ(v) to denote it. Common value types are booleans,
strings, and IP addresses. Less common types are integers

r1:( principal: 111122223333:user/Bob,
action : s3:ListBucket,
resource : bucket/invoices,
sourceIP : 20.121.201.3,
username : Bob, ...)

Fig. 1: A request allowed by statement s3 in Figure 2.

and floats. Every request contains the variables principal,
action, and resource, whereas others are optional. Re-
quests might not contain values for all the variables, so we
allow r to map variables to the special value null.

Statements. A statement s is a pair (e,Ψ) where e is either
the value allow (we call these statements allow-statements)
or the value deny (we call these statements deny-statements),
and Ψ : V 7→ pred is a partial function that maps variables to
predicates. For example, in the statement s3 = (allow,Ψ3)
in Figure 2, Ψ3 maps the variable action to the predicate
stating that the action of a request should start with s3: (i.e.,
the predicate is represented by the pattern s3:*). Common
predicate types are simplified regular expressions to restrict
values of strings, boolean comparisons, and Classless Inter-
Domain Routing (CIDR) [3] descriptions of sets of IP ad-
dresses. For example, the IP range 20.0.0.0/7 allows the
232−7 = 33, 554, 432 IPv4 addresses in the range 20.0.0.0
to 21.255.255.2551, which also includes the IP address
20.121.201.3 from the request r1 in Figure 1.

We use V (s) to denote the set of variables in the domain of
Ψ—i.e., all the values for which the partial function is defined.
Every statement always maps the variables principal,
action, and resource to a predicate.

Intuitively, a statement matches a request if, for every
variable appearing in the statement, the request’s values are
models of the corresponding predicates in the statement.

Definition (Statement-Matching Requests): Given a re-
quest r and a statement s = (e,Ψ) we say that s matches
the request r if and only if, for every v ∈ V (s), the value
r(v) is a model of the predicate Ψ[v]. We write M(s) to
denote the set of all requests matched by s—i.e, M(s) = {r |∧

v∈V (s) Ψ[v](r(v))}.
The statement s3 = (allow,Ψ3) in Figure 2 has five

keys principal, action, resource, sourceIP, and
username and matches the request r1 in Figure 1.

We simplify the syntax of IAM policies and assume that
each key is associated with its predicate. Our implementation
maps the JSON representation of statements to this predicate
format; this translation is straightforward and syntax-directed
and we do not present it formally here.

Policies. A policy P = {s1, s2, ..., sn} is a set of statements
and we use AS(P ) (resp. DS(P )) to denote all the allow
(resp. deny) statements in P. We write P = (AS(P ), DS(P ))

1We note that some of the IP addresses in this range are not usable, e.g.,
20.0.0.0 and 21.255.255.255, but in this paper we assume the size
of a CIDR also considers unusable IP addresses.
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s1:(allow, (principal: *,
action : s3:*,
resource : bucket/*,
sourceIP : 201.0.0.0/7,
account : 444455556666))

- - - - - - - - - - - - - - - - - - - - - - -
s2:(allow, (principal: *,

action : s3:*,
resource : bucket/*,
sourceIP : 14.0.0.0/7,
username : Alice))

- - - - - - - - - - - - - - - - - - - - - - -
s3:(allow, (principal: *,

action : s3:*,
resource : bucket/*,
sourceIP : 20.0.0.0/7,
username : Bob))

- - - - - - - - - - - - - - - - - - - - - - -
s4:(deny, (principal: *,

action : s3:*,
resource : bucket/*,
sourceIP : 14.0.0.0/8))

Fig. 2: An IAM policy with three allow statements s1, s2, s3
and one deny statement s4. The predicates in green describe IP
ranges, and the predicates 14.0.0.0/7 and 14.0.0.0/8
describe overlapping sets of IP addresses.

to directly denote these two sets and a and d instead of s to
denote an allow or deny statement respectively.

Definition (Granted Requests): A policy P grants a
request r if and only if there exists an allow statement that
matches the request, i.e., ∃a ∈ AS(P ). r ∈ M(a), and there
does not exist a deny statement that matches the request, i.e.,
∀d ∈ DS(P ). r ̸∈ M(d). We write Granted(P ) to denote
the set of all requests granted by the policy P , which can be
defined as follows.

Granted(P ) = (
⋃

a∈AS(P )

M(a)) \ (
⋃

d∈DS(P )

M(d))

The policy depicted in Figure 2 has three allow statements
and one deny statement and allows the request r1 shown in
Figure 1, which only matches statement s3.

Problem Definition. Given a policy P we define the set of
IPs for which at least one request is granted by P as the set
IPSet(P ) = {r(sourceIP) | r ∈ Granted(P )}. We are
now ready to define the problem solved in this paper.

Definition (Bounded Projective IP-Counting Problem):
The bounded projective IP-counting problem is to determine
if the number of IP addresses from which at least one request
is allowed by a policy P exceeds a given IP-count threshold
τ , which formally can be stated as |IPSet(P )| > τ .

III. ILLUSTRATIVE EXAMPLE

We illustrate our approach for solving the IP-count bound-
ing problem using the example policy presented in Figure 2.
This policy is for an Simple Storage Service (S3) bucket [2],

an object storage service, and it consists of four statements s1,
s2, s3 and s4.

The first statement s1 grants access for anyone from account
444455556666 to perform S3 actions on any S3 object in
the bucket bucket. The second statement s2 grants access for
a user named Alice to perform S3 actions on any S3 object in
the bucket bucket. Similarly, the third statement s3 grants
access for a user named Bob to perform S3 actions on the
same objects. Because users work in different companies, the
statements allow requests from different ranges of IP addresses
for each user (denoted in green).

The fourth statement s4 is a deny-statement that removes
access for any requests coming from an IP in the range
14.0.0.0/8. This IP range is a subset of the IP range
14.0.0.0/7 allowed by statement s2.

The question we are interested in answering is whether the
policy in Figure 2 allows public access to the S3 bucket. As
discussed in Section I, some AWS customers want to consider
a resource to be publicly accessible if the number of IP ad-
dresses from which one can issue an allowed request exceeds
a given threshold. However, not all IPs should contribute to
the total count. In our example, the statement s1 only allows
requests from a specific account ID. Because account IDs are
assigned by AWS (unlike usernames), this statement is already
associated with what in Section I we called a trusted entity
and it is irrelevant how many IP addresses it allows access
from. The existing work on AWS public access [9] can detect
such trusted entities and remove this statement from the policy
before we need to reason about IP addresses.

Once statement s1 has been removed, we are ready to count
how many IP addresses the other statements allow requests
from. In this section, we assume that the threshold is τ =
224 = 16, 777, 216 IP addresses—i.e., the size of a single /8
CIDR block, which is the largest block size owned by a single
entity. In general, the threshold can be set to any value.

Checking whether the number of IP addresses exceeds the
threshold requires counting how many IP addresses one can
issue an allowed request from, a problem that on the surface
requires going beyond the capability of SMT solvers, the
current tool of choice for reasoning about public access in IAM
policies [9], [6]. The encodings proposed in this paper provide
a way of checking if the number of allowed IP addresses
exceeds the threshold τ using traditional SMT solvers (i.e.,
without counting models).

We discuss what are the key insights of the encoding.
IP Equivalence Classes: The SMT encoding used by

Zelkova to describe what requests each statement allows (or
denies) is a conjunction of monadic predicates2 where each
predicate describes what values a request can contain for
each specific variable, and particularly for source IPs. For
example, the statement s2 is translated by Zelkova into the
following SMT formula φs2 involving the theory of Strings
(e.g., L(R) denotes the language of a regular expression R),

2We use the term monadic for predicates that involve one variable—e.g.,
the predicate x > 0 is monadic, whereas the predicate x > y is polyadic.

210



and bit-vectors (e.g., in ip range(sourceIP,I) denotes a
predicate for checking if the value of variable sourceIP is
in the set of bit-vectors encoding IPs belonging to the CIDR
block I):

principal ∈ L(*) ∧ action ∈ L(s3:*)∧
resource ∈ L(bucket/*)∧

in ip range(sourceIP,20.0.0.0/7)∧
username = “Alice”

(1)

The final result describing whether a request is allowed by
the policy is expressed by the formula φP (x̄,sourceIP) =
(φs1∨φs2∨φs3)∧¬φs4 , that is, a request is allowed by the pol-
icy if it is allowed by an allow statement and not denied by any
deny statement. The notation φP (x̄,sourceIP) separates the
variable sourceIP from all other free variables—i.e., x̄. Our
goal is to check whether #SAT (∃x̄. φP (x̄,sourceIP)) >
224. Because the source IP predicates are all monadic (i.e., they
do not interact with other variables other than sourceIP), the
predicate φP (x̄,sourceIP) can be expressed as a Boolean
combination of predicates of the following form (where i
denotes the ith statement):

ψ1
i (x̄) ∧ ψ2

i (sourceIP)

Therefore, our first key idea is that we can take
all satisfiable Boolean combinations of the predicates
ψ2
i (sourceIP)—i.e., all the predicates of the form

in ip range(sourceIP,range)—to obtain IP predicates
describing equivalence classes of IP addresses—i.e., if a
request is allowed (resp. denied) with an IP address, replacing
that address with another one in the same class will still make
the request allowed (resp. denied).

We show in Section IV-B how to compute equivalence, but
in our example, after removing s1, we have 3 equivalence
classes (other combinations are unsatisfiable and we simplify
each predicate in ip range(sourceIP,range) as simply
its range range):

• e1 = 14.0.0.0/8 is the result of the Boolean combi-
nation 14.0.0.0/7∧¬20.0.0.0/7∧14.0.0.0/8;

• e2 = 20.0.0.0/7 is the result of the Boolean combina-
tion ¬14.0.0.0/7∧20.0.0.0/7∧¬14.0.0.0/8;

• e3 = 15.0.0.0/8 is the result of the Boolean combina-
tion 14.0.0.0/7∧¬20.0.0.0/7∧¬14.0.0.0/8.

In our example, each predicate is defined using a single CIDR
block, but in general, a predicate can be described as a union
of CIDR blocks; we support this more general form in our
approach presented in Section IV.

Counting IPs without Model Counting: Once we have
computed equivalence classes, it is trivial to compute how
many IP addresses each class contains using the definition of
a CIDR block.

• |e1| = |14.0.0.0/8| = 224 = 16, 777, 216;
• |e2| = |20.0.0.0/7| = 225 = 33, 554, 432; and
• |e3| = |15.0.0.0/8| = 224 = 16, 777, 216.
With this information available, we can now write an SMT

formula that checks whether the sum of allowed IPs exceeds

the threshold. (We write φP (x̄,ip) to denote the result of
substituting the variable sourceIP with the constant ip in
the formula φP ).

(if ∃x̄. φP (x̄,14.0.0.0) then 224 else 0) +
(if ∃x̄. φP (x̄,20.0.0.0) then 225 else 0) +
(if ∃x̄. φP (x̄,15.0.0.0) then 224 else 0) > 224

(2)

Intuitively, each row uses the formula φP to check if the policy
allows a representative IP address from each equivalence class,
in which case it contributes the size of that class to the counter.
In this case, the policy is public because it allows access from
224 + 225 > 224 IP addresses.

The constraint in (2) requires arithmetic to describe whether
the number of IP addresses exceeds the threshold. Because
some SMT solvers do not support both the theories of strings
and arithmetic at the same time [21], in Section IV we
also introduce a version of the encoding that pre-computes
what combinations of equivalence classes can exceed that
given threshold and generates a formula that does not involve
arithmetic. In our example, the minimal combinations of
equivalence classes that exceed the threshold are |e1| + |e3|
and |e2|, therefore one can write an SMT formula that does
not use arithmetic and that checks whether the sum of allowed
IPs exceeds the threshold as follows:

(φP (x̄,14.0.0.0) ∧ φP (x̄,15.0.0.0)) ∨
φP (x̄,20.0.0.0)

(3)

In this case, the formula is satisfied by making the second
disjunct true, thus denoting that the 225 IP addresses allowed
by the equivalence class e2 exceed the threshold 224.

IV. COUNTING IPS WITHOUT MODEL COUNTING

Before presenting our technique for solving the bounded
projective IP-counting problem presented in Section II, we
recall that our goal is to devise an SMT-based approach for
solving the problem that does not rely on model counting.

At the high-level, given a policy P and a threshold τ our
main approach proceeds in two steps:

1) We compute a set of equivalence classes of IP addresses
such that all the IP addresses appearing in the same
equivalence class e are treated the same way by the policy
P (Section IV-B)—i.e., if a request r with an IP address
in e is granted (resp. not granted) by the policy P , the
request obtained by replacing the IP address with any
member of the equivalence class e is still granted (resp.
not granted).

2) Once the equivalence classes are computed, we can
separately compute the size of each equivalence class
(i.e., the number of IP addresses in it), and rewrite the
SMT formula encoding the policy semantics to remove
any mention of IP addresses and instead directly reason
about the size of each equivalence class (Section IV-C).

Step 2 in the algorithm above requires arithmetic operations,
and for some solvers, specifically NFA2SAT [21], this theory
is not supported in combination with the many theories (e.g.,
strings) required to model IAM policies. To address this
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limitation, we introduce a new encoding that avoids arithmetic
and instead uses a knapsack-based approach to compute a new
formula that identifies combinations of equivalence classes that
can lead to exceeding the threshold. The formula is entirely
expressible in propositional logic (Section IV-D).

Before presenting our approaches, we distill the essence
of the problem solved by our approach to a purely logical
formalization that is agnostic from the specific problem of
counting IPs (Section IV-A).

A. Bounded Projective Counting Problem

Prior work on verifying policies in the IAM language [9],
[6] has shown how, given a policy P , one can create a
formula φP (x1, . . . , xn) that is satisfied exactly by all the
granted requests in the set Granted(P ). Specifically, each
variable xi corresponds to a variable in the set V , and a
satisfying assignment c1, . . . , cn corresponds to the request
mapping each variable to the corresponding value—i.e., [x1 7→
c1, . . . , xn 7→ cn].

Thanks to the above formalization if we consider
sourceIP to denote the variable denoting a source IP address
in a request, by appropriately massaging the formula φ, we can
express the bounded projective IP-counting problem defined in
Section II as a formula of the following form

#SAT (∃x̄. φP (x̄,sourceIP)) > τ (4)

Here #SAT (·) is the function denoting the number of sat-
isfying assignments to a formula. Because sourceIP is the
only non-quantified (i.e., free) variable, the set of satisfying as-
signments to the formula ∃x̄. φP (x̄,sourceIP) corresponds
exactly to the set IPSet(P ). Thus, Equation (4) correctly
captures the bounded projective IP-counting problem.

With this observation, we can focus the rest of the section
on the following generalized version of the counting problem.

Definition (Bounded Projective Counting Problem): We
say that a formula φ(x, y) exceeds a y-count threshold τ if
the following is true:

#SAT (∃x. φ(x, y)) > τ (5)

In the rest of the section, we show how one can avoid solv-
ing the hard #SAT (·) problem over the quantified formula
∃x. φ(x, y) by instead solving an easier satisfiability problem
over formulas involving only y.

B. Computing Equivalence Classes

Given a formula of the form ∃x. φ(x, y), the first step of our
algorithm is to compute equivalence classes for the variable y
for the following equivalence relation, which captures that two
values of y are equivalent if they behave the same for every
possible value of x. Because computing maximal equivalence
classes is in general unnecessary and in fact something we
want to avoid (as we will see later), we instead define valid
partitions of the domain into equivalent elements.

Definition (y-equivalence, y-partition): Given a formula
φ(x, y) say that two constants c1 and c2 are y-equivalent iff

∀x. φ(x, c1) ⇐⇒ φ(x, c2).

We say a partition Π = {e1, . . . , ej} forms a y-partition
of the domain Dom(y) with respect to y-equivalence iff (i)
Π is a valid partition of Dom(y) (i.e., the union of all ei is
Dom(y), and all elements of Π are disjoint), and (ii) for every
class ei ∈ Π, all elements of ei are y-equivalent.

If the variable y only appears within monadic predicates
in the formula φ(x, y) (which is the case for the problem of
IP-count bounding), we can always compute a y-partition of
Dom(y) by computing the set of minimal satisfiable Boolean
combinations of all the monadic predicates over y, also called
minterms [16].

For example, if the only predicates involving y in the
formula φ(x, y) are the monadic predicates ψ1(y) and ψ2(y),
a valid y-partition can be computed as the set

Π = {ψ1 ∧ ψ2,¬ψ1 ∧ ψ2, ψ1 ∧ ¬ψ2,¬ψ1 ∧ ¬ψ2}

If any of the predicates in Π is unsatisfiable, they can be
discarded before continuing to the next steps. In the worst
case, the y-partition can contain exponentially many classes
in the size of the formula φ(x, y), but in practice this is rarely
the case.

The appealing aspect of computing y-partitions in the
aforementioned way is that one does not need to reason
about satisfiability of the whole formula φ(x, y) and instead
only needs to check satisfiability of Boolean combinations
of predicates involving y, which in our application domain,
counting IPs, is a very friendly theory to work with, as we
illustrate next.
sourceIP-equivalence: For IP addresses, each monadic

predicate appearing in an IAM statement is a union of CIDR
blocks c1 ∪ . . .∪ cn (in our running example, each union only
contain one CIDR block). We note that two CIDR blocks
can be disjoint, or one can be a subset of the other; other
logical relations are not possible—e.g., partial overlap. We
can therefore assume that c1 ∪ . . . ∪ cn contains all disjoint
CIDR blocks (ones that are subsets of others can be removed).

After this pre-processing, by collecting positive and negative
terms, any satisfiable Boolean combination of unions of CIDR
blocks can be written in the following form:

(ψ1 ∩ . . . ∩ ψj) \ (ψj+1 ∪ . . . ∪ ψk).

The right-hand side of the \ is itself a union of CIDR blocks.
We next show that the left-hand side can also be rewritten

as a union of CIDR blocks and that the \ of two unions of
CIDR blocks can also be translated to a union of CIDR blocks.

Given two unions of CIDR blocks C1 ∪ . . .∪Cn and D1 ∪
. . . ∪ Dm, their intersection can be defined as the union of
CIDR blocks ∪i≤n,j≤mCi∩Dj , where the intersection of two
CIDR blocks is defined as:

1) C ∩D = ∅ if C is disjoint from D;
2) IP1/M1 ∩ IP2/M2 = IP2/M2 ∩ IP1/M1 = IP1/M1

if IP1/M1 is a subset of IP2/M2—i.e., M1 ≥ M2 and
the first M2 bits of IP1 and IP2 are the same.

Given two unions of CIDR blocks C1 ∪ . . .∪Cn and D1 ∪
. . . ∪Dm, their difference can be defined as ∪i≤n(∩j≤mCi \
Dj) where
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1) C \D = ∅ if C ⊆ D;
2) C \D = C if C ∩D = ∅;
3) if IP1/M1 ⊃ IP2/M2—i.e., M1 < M2 and the

first M1 bits of IP1 and IP2 are the same—
we recursively split the CIDR of IP1/M1 into two
longer CIDR blocks (the one obtained by choosing the
(M1+1)-th bit to be 0 or 1, respectively) and recur-
sively subtract IP2/M2 from them—i.e., IP1/M1 ∩
IP2/M2 = (IP1[1..M1]0/M1+1 \ IP2/M2) ∪
(IP1[1..M1]1/M1+1 \ IP2/M2).

Because of the 0-1 splitting in case 3, the above algorithm
guarantees that CIDR blocks appearing in the final union are
all disjoint.

Example (From Section III): In the example in Sec-
tion III, the class e3 = 15.0.0.0/8 is the result of
14.0.0.0/7 \ (20.0.0.0/7 ∪ 14.0.0.0/8). First, we
rewrite the formula as (14.0.0.0/7 \ 20.0.0.0/7) ∩
(14.0.0.0/7\14.0.0.0/8)) following the definition of \
on unions of CIDR blocks. The first conjunct is 14.0.0.0/7
following case 2 of the definition of \ on CIDR blocks,
whereas the second conjunct is rewritten as (14.0.0.0/8 \
14.0.0.0/8)∪(15.0.0.0/8\14.0.0.0/8)) following
case 3. Now, the first disjunct rewrites to the empty set (case 1),
and the second disjunct rewrites to 15.0.0.0/8 (case 2). Fi-
nally, e3 = 14.0.0.0/7∩15.0.0.0/8 = 15.0.0.0/8.

C. Arithmetic Approach

The arithmetic approach formalizes the IP counting problem
as a summation problem. Recall that our goal is to asses
whether the formula in Equation (5) is true. One way to
encode this problem as an SMT formula involving arithmetic
operations for counting is to rewrite the formula as follows:

(Σc∈Dom(y) if ∃x. φ(x, c) then 1 else 0) > τ (6)

By skolemizing the existentially quantified variable x, we can
simplify the formula as follows:

(Σc∈Dom(y) if φ(xc, c) then 1 else 0) > τ (7)

The encoding in Equation (6) is expressible as an SMT for-
mula whenever Dom(y), the domain of y, is finite. However,
if the domain of y is large (which is the case when y represents
IP addresses) solving Equation (6) will either require a very
large SMT formula or iterating over many possible smaller
formulas (one per IP address).

We call this approach the Arithmetic Approach (AA).
Our Arithmetic Approach sidesteps this problem thanks to
the previously computed equivalence classes, which we call
ECy(φ(x, y))). For every equivalence class e in the set
ECy(φ(x, y)), we use the symbol repe to denote a repre-
sentative value of y from that class. Equation (7) can then be
optimized as the following formula:

(Σe∈ECy(φ(x,y)) if φ(xe, repe) then |e| else 0) > τ (8)

If we consider the example formula in Equation (1), and
the equivalence class e1 = 14.0.0.0/8 the formula

φ(xe1 ,14.0.0.0) can be obtained by replacing the variable
x with xe1 and the variable sourceIP with the concrete IP
14.0.0.0. The encoding in Equation (8) is expressible as
an SMT formula whenever the size |e| of an equivalence class
e is computable.

Because our y-partition algorithm computes equivalence
class that are expressed as monadic predicates ψ(y), all one
needs to generate the formula in Equation (8) is a technique
for counting the number of models for the theory of y, a trivial
problem for predicates involving IPs.

Theorem (Soundness of Arithmetic Approach): A for-
mula φ(x, y) exceeds a y-count threshold τ iff Equation (8)
holds.

Proof. We know that for any two elements c1, c2 in the same
y-equivalence class e ∈ ECy(φ(x, y)), the following holds
∀x. φ(x, c1) ⇐⇒ φ(x, c2). Thus, ∃x. φ(x, repe) holds iff
∃x. φ(x, c) holds for every c ∈ e. Therefore, the formula
if ∃x. φ(x, repe) then |e| else 0 correctly computes the size

of the equivalence class e.

Note that if the formula φ(x, y) lies in a theory T , the
constraints in Equation (8) are in the theory T + QFLIA.

Counting IPs: In particular, when y represents IP addresses,
|e| can be computed efficiently. If e is represented by a set of
disjoint CIDR blocks—which the Boolean operations defined
in Section IV-B guarantee—then |e| is the sum of the size of
each CIDR block. In particular, for IPv4, the size of a CIDR
IP/M is 232−M—e.g., |14.0.0.0/8| = 224.

D. Arithmetic-free Approach

The arithmetic approach discussed in Section IV-C requires
adding an arithmetic theory on top of the theory T needed
to reason about the formula φ(x, y). In some cases, an SMT
solver might support the theory T , but not the combined the-
ory, e.g., T +QFLIA. For example, the NFA2SAT solver [21]
is a powerful solver used by Zelkova [6] to prove properties of
policies, and relies on SAT solving to reason about strings and
does not support arithmetic. Since industrial applications rely
on portfolio solving to provide performance and robustness, an
ideal solution to the bounded projective IP-counting problem
should work with all possible available solvers.

In this section, we describe an approach for solving the y-
count bounding problem entirely within the theory T —i.e.,
without the need for an arithmetic theory for counting. We
call this approach the Arithmetic-free Approach (AFA).

At a high level, the AFA proceeds in the following steps:

1) First, it uses a dynamic programming algorithm (a variant
of knapsack) to compute all minimal combinations of
equivalence classes C that can cause the threshold τ to
be exceeded.

2) Then, it creates a new constraint ψC that is satisfied ex-
actly by combinations of equivalence classes that exceed
the threshold τ .
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Computing Minimal Possible Violations: We have shown
in Section IV-C how we can compute the size |e| of every
equivalence class e. First, we define the combinations of
equivalence classes that are minimal possible violations of the
given threshold. Given a set A of equivalence classes, we write
Weight(A) to denote the sum of the sizes of the equivalence
classes in A—i.e., Weight(A) =

∑
e∈A |e|.

Definition (Minimal Possible Violation): Given a set of
equivalence classes EC, we say that a subset A ⊆ EC forms
a possible violation of the threshold τ iff the sum of the sizes
of each class exceeds the threshold—i.e., Weight(A) > τ .

Furthermore, A is a minimal possible violation iff no
strict subset of A is a possible violation—i.e., ¬∃e ∈
A. Weight(A) ≥Weight(A \ {e}) > τ .

In the worst case, if we have n equivalence classes, it
is possible to have 2O(n) minimal possible violations. For
example, if we have a threshold of n/2 and each class has
weight 1, there are approximately

(
n

n/2

)
minimal possible

violations—i.e., all ways to pick n/2 classes from the set. In
practice, the number of minimal possible violations is often
much smaller as illustrated by the following example.

Example (Minimal IP Violations): We discussed in Sec-
tion III how the example in Figure 2 leads to three equivalence
classes, 14.0.0.0/8, 20.0.0.0/7, and 15.0.0.0/8.

The minimal possible violations are obtained by the sets
{14.0.0.0/8,15.0.0.0/8} and {20.0.0.0/7}.

The problem of computing the set of all minimal possible
violations can be solved using a variant of the knapsack
dynamic programming algorithm. Intuitively, starting from an
empty set, one can build incrementally larger subsets, by
adding additional equivalence classes as long as the unused
equivalence classes can still be used to cross the threshold.
By considering the equivalence classes ordered by their size,
this process ensures that we can stop as soon as we cross the
threshold, resulting in a minimal possible violation.

Minimal Satisfiable Violations: We now assume we have
computed the set MPV = {A1, . . . , Am} of all minimal
possible violations. The last step is to find one that is an actual
satisfiable violation—i.e., a set Ai such that each class e ∈ A
makes the formula ∃x. φ(x, repe) true.

To encode this problem as a constraint, we introduce for
each class e, a new variable ve to model whether the class
e corresponds to a positive class (i.e., one that makes the
formula ∃x. φ(x, repe) true) or a negative class (i.e., one
that makes the formula ∃x. φ(x, repe) false). After replacing
the existentially quantified variable x with xe, we get the
constraint:

ve ⇔ φ(xe, repe) (9)

The y-count bounding problem can then be solved by
checking satisfiability of the following formula, which simply
looks for a minimal possible violation A ∈ MPV consisting
only of positive classes. ∨

A∈MPV

∧
e∈A

ve (10)

For our example in Section III, we obtain Equation (3).

Arithmetic Arithmetic-free
# fastest % fastest # fastest % fastest

cvc4 2,012 0.3% 403 0.1%
cvc5 196,431 28.0% 92,412 13.2%

trivial 500,927 71.6% 500,996 71.5%
z3 622 0.1% 241 0.1%

nfa2sat N/A N/A 105,948 15.1%
timeout (3s) 13 0.0% 7 0.0%

TABLE I: The numbers of problems solved by every solver
in the Zelkova portfolio.

Theorem (Soundness of Arithmetic-free Approach):
A formula φ(x, y) exceeds a y-count threshold τ iff the
conjunction of the constraints in Equations (9) and (10) is
satisfiable.

Proof. In Equation (9), variable ye can only be true if every
∃x. φ(x, repe) holds. From the definition of y-equivalence,
we have that ∃x. φ(x, repe) holds iff ∃x. φ(x, c) holds for
every c ∈ e. Therefore Equation (10) is true iff and only if
there exists a combination of minimal possible violations that
is actually satisfiable. The definition of MPV and minimal
satisfiable violation ensures that if any violation exists—i.e.,
there exists a set of equivalence classes that exceeds the
threshold—there also exists a minimal satisfiable version of
it that is considered in Equation (10).

If φ(x, y) lies in a theory T , assuming a decision proce-
dure for counting models over each equivalence class e, the
constraints in Equations (9) and (10) are in the theory T .

V. IMPLEMENTATION AND EVALUATION

The Block Public Access (BPA) feature detects if a bucket
is publicly accessible (Public) or not (Not Public), and
is integrated in many AWS services. Some services use BPA
as a preventative control that prevents attaching any policy
that is detected to be public to an AWS resource. BPA is an
essential guard rail to ensure data is not exposed to broad
access. Other detective services, like Config, Macie, Guard
Duty and Security Hub, reports to customers which resources
have public policies attached, without preventing any access.

Implementation: BPA is built on top of Zelkova’s encoding
of IAM policies and runs on the portfolio of solvers supported
by Zelkova. Zelkova runs on AWS Lambda, a serverless com-
puting platform that runs applications without users needing
to provision or manage servers. Zelkova currently uses the
solvers CVC4, CVC5, Z3, and NFA2SAT [21] as part of its
portfolio. The arithmetic-free approach is supported by all
solvers, whereas the arithmetic approach produces an encoding
that is not supported by NFA2SAT [21]. Zelkova invokes all
supported solvers in parallel and returns the results as soon as
one of the solvers provides the answer.

Evaluation: We evaluate the performance of our encodings
on 700K randomly chosen policies that contain IP addresses
and set a timeout of 3 seconds. The BPA checker [9] performs
a pre-processing step that simplifies statements that do not
allow any access to untrusted entities. This step removes a
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large number of statements, thus leaving us with 225,215
policies to still analyze with our technique. We report a
timeout if none of the solvers terminates within 3s, the timeout
used in production for BPA checks. We run our experiments
on an x86 64 cloud desktop running Amazon Linux version
2 with 96 CPUs and 382GB memory.

Table I shows how many times (# fastest) and for what
percentage of the benchmarks (% fastest) each solver was
the fastest. The arithmetic approach described (Section IV-C)
times out on 13 policies whereas the arithmetic-free approach
(Section IV-D) times out on 7 policies. The arithmetic-free
approach could solve 6/13 problems the arithmetic approach
timed out on, whereas the arithmetic approach couldn’t solve
any of the policies the arithmetic-free approach timed out on.

The average running time of the arithmetic approach is 8ms,
with 50% of the policies terminating within 3ms, 90% of the
policies terminating within 21ms, and 99.99% of the policies
terminating within 850ms. The average running time of the
arithmetic-free approach is 8ms, with 50% of the policies
terminating within 3ms, 90% of the policies terminating within
21ms, and 99.99% of the policies terminating within 709ms.

The arithmetic-free approach is on average 0.09 times
slower (geomean) than arithmetic approach. However, it times
out on 6 fewer policies.

The arithmetic-free approach enables using the NFA2SAT
solver [21], and for 105,948 queries (15.13% of our dataset)
the NFA2SAT was faster than any other solver. Table I presents
the number of problems solved by each solver in the Zelkova
portfolio for both techniques.

To summarize, both solving approaches are effective for the
BPA application and the arithmetic-free approach can solve
more queries, but is slightly (0.09 times) slower.

We further analyze the experiments. The formula size ranges
from 2K to 1,095K bytes (avg. 17K), the number of equiva-
lence classes ranges from 1 to 9 (avg. 1.1), the time taken to
compute equivalence classes ranges from 1ms to 254ms (avg.
2ms), and the SMT solver takes 1ms to 1,559ms (avg. 8ms).
The time taken to compute the MPV sets in the arithmetic-free
approach ranges from 1ms to 50ms (avg. 1ms). The additional
data indicates that the SMT solvers takes most of the time
needed to check BPA for IPs.

VI. RELATED WORK

Previous work on Block Public Access [9] did not address
the issue of counting IP addresses; this new use case emerged
afterwards through conversations with customers. The previ-
ous work was designed for cases where there were a relatively
small number of trusted values drawn from an overwhelmingly
larger universe of possibilities. The difference in size between
the trusted values and the possible universe meant that no
model counting was necessary; any set of trusted values was
small enough. For IP addresses, one needs to consider large
sets of trusted values drawn from the limited universe of IP
addresses. Here one must count models to precisely capture
the boundary between public and non-public access.

Quacky [17] can quantify the permissions provided by IAM
policies. It uses model counting to count how many requests
of size up to a certain bound a policy can match. While
Quacky solves a different problem, their methodology could
be in principle adapted to count how many IPs one can
issues requests from. As we have argued, model counting is
a feature supported by very few solvers; Quacky uses one
solver called ABC [5], which only supports strings and integer
constraints (and thus limited sets of policies). Furthermore,
model counting is generally expensive: for simple EC2 policies
consisting of often just one statement, Quacky incurs an
average running time of more than 100s, a time that is not
acceptable for customers using BPA. We attempted using the
solver abc used by Quacky [17] to quantify permissions of
access control policies, but abc did not support the constraints
generated by Zelkova, specifically the theory of bit vectors.

To put other work in context, we will consider them through
the lens of the requirements of Zelkova. Zelkova is a live
AWS service handling customer access policies and supporting
many security use cases where soundness is paramount.

Model Counting in SAT: Model counting and model enu-
meration [19] are established research areas in the SAT com-
munity, with a wide range of application in domains that re-
quire quantitative analysis—e.g., probabilistic inference [13].
Approaches from SAT that directly enumerate and count
Boolean-level models have straightforward translations to the
SMT level [20], and are available in some SMT solvers [15].
In our domain, it is insufficient to enumerate the Boolean
structure without accounting for the complex SMT formulas
involving, e.g., strings, generated by Zelkova to model IAM
policies. Enumerating all models is also infeasible due to the
size of the solution space—i.e., a typical threshold for the IP-
count bounding problem is 224!

Approximate Model Counting: To avoid enumeration of all
models in SAT, approximate model counting [12] relies uses
universal hashing to provide provable approximations. Beyond
the initial theoretical results [23], this approach yielded highly
scalable tools for SAT problems [11], [18] with extensions
to extended to some SMT theories, such as bit-vectors [10]
and linear arithmetic [14]. These results do not work in the
presence of string constraints, which are ubiquitous when
modeling IAM policies. Most importantly, our application
domain—i.e., counting IPs—requires exact results and cannot
rely on probabilistic approximations.

Model Counting in SMT: Precise model counting at the
SMT level has mostly focused on individual theories such
as integers [8] and restricted theory of strings [22]. Our
domain requires reasoning about many string operations, often
combined with the theories of arithmetic over integers. The
most relevant work that attempts to cover these theories
translates string and integer constraints into automata repre-
sentations that facilitates counting of feasible solutions [4], [5].
Because this line of work relies on transforming constraints
to automata, it is limited to string constraints with integer
bounds and thus cannot handle the full multi-sorted constraints
required by Zelkova.
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Summary: In contrast to related work, our approach encodes
the counting constraints into a single SMT query that relies
on standard SMT-LIB [7] language and theories. The use of
standard SMT language allows one to rely on battle-tested
general-purpose SMT solvers that match Zelkova’s portfolio
approach and goals.

VII. CONCLUSION

This paper defined the IP-count bounding problem as the
problem of checking whether the number of IPs from which
an IAM policy allows requests exceeds a given bound. The
bounded projective IP-count problem is formalized logically
as the bounded projective counting problem where the goal is
to check whether a formula #SAT (∃x. φ(x, y)) > τ is true.

We presented two SMT encodings of the bounded projective
counting problem that avoid the need to solve a model
counting problem—i.e., the #SAT (·) primitive—for which no
performant solver support exists. Our encodings are general:
if the variable y only appears within monadic predicates in the
formula φ(x, y) and one has access to a model counter for the
theory of y (but one for the theory of x is not required!), our
encodings generate SMT formulas that are true iff the bounded
projective counting problem admits a solution.

The generality of our encoding opens opportunities to solve
other bounding problems for IAM policies, but also in other
domains, e.g., if constraints denote valid tuples in a table and
one wants to bound the number satisfying assignments for the
values of a numerical column.
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