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Abstract—Hardware designs often contain logical redundan-
cies: pairs of behaviorally-equivalent gates. Sequential redun-
dancy removal is the process of removing gates that are
behaviorally-equivalent within the reachable states of a design. It
has many applications in the hardware design process, including
logic optimization, equivalence checking, accelerating functional
verification, and engineering change-order optimization.

Redundancy removal is an intricate process, orchestrating
various algorithms to compute equivalence-classes of potentially-
equivalent gates, then to prove their validity. In this paper, we
introduce techniques to enable exhaustive redundancy removal
on practical designs, such as resource-balancing the underlying
algorithms; self-tailoring them to sequentially-deep logic; and
detailing an orders-of-magnitude optimization to the Proof Graph
essential to proving non-inductive redundancies. We integrate
these techniques within a state-of-the-art redundancy removal
framework, illustrating their efficacy on various benchmarks.

I. INTRODUCTION

Hardware designs are often rife with logical redundancies.
Some are deliberate, e.g. to improve circuit timing or imple-
ment error-resilience features. Many are unexpected and unde-
sired; including them in semiconductor devices degrades cost
and circuit performance, and increases power consumption.

In verification, logical redundancies are even more preva-
lent, e.g. due to input constraints disabling various functional-
ity, and redundancies arising between design and testbench
logic. Equivalence checking (EC) and engineering change
order (ECO) tools compare two related designs; significant
redundancy is common between those designs. Redundancy
removal is highly-beneficial to verification scalability, solving
some properties outright [1]–[3]; is the core solving procedure
of EC [4, 5]; and can yield smaller ECOs [6].

Sequential redundancy removal frameworks (Fig. 1) iden-
tify, then eliminate, functionally-equivalent gates. Each sus-
pected redundancy requires proving a property, called a miter,
confirming that a pair of gates behave identically in the
reachable states of a design. Simulation is used to refine
incorrect equivalence-classes of gates, correcting inaccurate
miters [4, 7]. Once a miter is proven, design size and power
can be reduced by replacing one of its gates by the other [5].
The choice of which gate to eliminate can be delay- and
placement-aware yielding higher-performance circuits.

Many techniques have been proposed to accelerate redun-
dancy removal. For example: combinational redundancy re-
moval solves miters from topologically-shallowest to deepest,
reducing effort for deeper miters by leveraging early-merging
and prior refinements [8, 9]. Speculative reduction models
assumptions through structural logic simplifications, enabling
a transformation-based verification (TBV) suite of model-
checking algorithms to benefit from those assumptions to

solve the non-inductive miters [2]. A Proof Graph enables
early-merging of selective miters even before a fixedpoint
of all-miters-proven is achieved, minimizing the number of
proofs necessary to converge, and yielding reductions even if
a resource-limit precludes convergence [10].

Contributions: We introduce various improvements to se-
quential redundancy removal in the pursuit of exhaustiveness.

(1) We present sequential resource-sweeping (Sec. III-A)
to self-tailor SAT-based bounded model-checking (BMC) [11]
and induction to the sequential depth of the design, enabling
them to solve deeper miters. This yields ≈ 5% greater redun-
dancy removal in less runtime via induction, and ≈ 20% fewer
incorrect miters deferred to TBV. (2) We propose techniques to
balance counterexample simulation runtime with solving effort
(Sec. III-B), yielding ≈ 30% overall speedup (Sec. III-B).
(3) We address scalability challenges of deep-counterexample
generation and simulation, via: separate eager shallow vs. lazy
deep simulation phases to accelerate ≈ 16% additional deep–
logic refinement (Sec. III-C); obtaining ≈ 34% complementary
deep refinements via seeded-state BMC (Sec. III-D); and min-
imally-lossy techniques to approximate pathologically-deep
miters impractical to simulate (Sec. III-E). (4) We present a
near-linear-runtime algorithm to construct a Proof Graph [10],
improving scalability by orders of magnitude (Sec. III-F).
Experiments in Sec. IV show our techniques yielding 2.1×
speedup to EC, 32.4% speedup with 16.9% more solves in
model-checking, and enabling exhaustive redundancy removal
on netlists up to 857110 AND gates, 75952 registers.

II. PRELIMINARIES AND RELATED WORK

We represent a hardware design as a netlist N , comprising
a directed graph G = ⟨V,E⟩. Vertices V represent logic gates
of different types: constants, primary inputs, combinational
primitives such as AND gates, and sequential primitives such
as registers. Edges E ⊆ V × V represent interconnections
between gates. The fanin (fanout) of gate u is the set of gates
reachable by traversing edges backward (forward) from u. A
strongly-connected component (SCC) is a set of gates having
a directed path between every pair of gates within the SCC.

Registers have initial values defining their time-0 behavior,
and next-state functions defining their time-i+1 behavior. A
trace is a sequence of Boolean valuations to gates over
timesteps, beginning from an initial state consistent with
initial-values at time 0. A state is a Boolean valuation to the
registers; a reachable state is one reachable along a trace.
Certain gates may be labeled as properties, representing a
verification objective to obtain a counterexample trace illus-
trating an assertion of that gate, or to prove the absence of any
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exhaustive sequential redundancy removal (Netlist N )
1: Create equivalence-classes of gates in N , where gate u in class Q(u)

is suspected functionally-equivalent to every other gate in Q(u).
2: Select a representative gate R(Q(u)) from each class Q(u).
3: Construct speculatively-reduced netlist N ′ (§II-A2) replacing the

source gate u of each (u, v) ∈ E by R(Q(u)); else copy N ′ = N .
4: For each gate v, add a miter to N ′ falsified when v ̸≡ R(q(v)).
5: Construct a Proof Graph P from N ′ and the set of miters M .
6: Attempt to falsify or prove each miter (§II-A1).
7: If P was computed or speculative-reduction was not used, merge the

soundly-proven-miter gates onto their representatives (§II-A3).
8: If a miter was not proven, refine equivalence classes to separate their

gates (simulating available counterexamples, §II-A4); goto Step 2.
9: Merge proven miter gates onto their representatives.

Fig. 1. Exhaustive sequential redundancy removal algorithm.

counterexample. During redundancy removal, properties called
miters are created confirming the equivalence of postulated
gate redundancies. Each miter is represented as an XOR over
the suspected gate equivalence. Certain gates may be labeled
as observables, e.g. primary outputs of the design. A merge of
gate u onto gate v consists of moving output edges of u onto
v, then deleting u. Any gate not in the fanin of a property or
observable is irrelevant to netlist behavior, outside of its cone
of influence (COI). After merging a pair of redundant gates, a
secondary set of gates may become irrelevant in this way.

A. Redundancy Removal

Fig. 1 shows an exhaustive-capable sequential redundancy
removal algorithm. It first overapproximates the redundancy
candidates, represented as equivalence classes of gates sus-
pected as pairwise functionally-equivalent in all reachable
states. Initial equivalence-classes are constructed via: (1) run-
time options and syntactic information, e.g. whether to com-
pute redundancies only over registers vs. all gate types, and
whether to pre-filter e.g. via corresponded signal name pairs
in equivalence-checking; (2) compatible random-simulation
signatures [4, 7]. (While not depicted for brevity, redundancy-
removal can efficiently be performed modulo inversion.)

The miter properties M are then created and solved, com-
paring each gate to its equivalence-class representative. If a
miter is falsified, its counterexample shows a miscompare of
the corresponding gates (and/or fanin gates, due to speculative
reduction). Simulating a counterexample on the original netlist
often refines additional incorrect equivalence-classes. If a miter
is unsolved due to resource limits or incomplete proof tech-
nique, it must be pessimistically pruned from its equivalence-
class. If all miters are proven, the equivalence-classes represent
valid redundancies; the netlist may be optimized by merging
equivalent gate-pairs. Else the process repeats until this fixed-
point is achieved, or global timeout.

1) Induction: k-Induction [12] is commonly used to prove
miters [1, 4]. The base case is bounded model checking
(BMC), validating miters during the first k timesteps from the
initial states. The inductive step verifies miters in k timesteps
from any state (reachable or not) which satisfies the set of

(a) (b) (c)

Fig. 2. Assumption modeling for scalable redundancy removal. (a) Suspected
redundancies over gates. (b) Speculatively-reduced netlist with miters over
suspected redundancies. (c) Proof Graph representing miter dependencies.

mutually-postulated equivalences within fewer timesteps. Us-
ing a sufficiently-large k and unique-state constraints, induc-
tion can be a complete proof technique [1]. Though BMC and
induction solve NP-complete problems and become unscalable
as k increases, rendering them incomplete in practice.

Redundancy removal of large netlists often requires solv-
ing millions of miters, partially because each gate may be
compared to a sequence of varying representatives across
refinements. BMC can efficiently falsify, and k-induction can
efficiently prove, many miters. Though practical netlists often
comprise non-inductive miters. Discarding even a single non-
inductive yet accurate miter precludes exhaustive redundancy
removal, and often causes an iterative avalanche of fanout
miters to become unscalable as equivalence-classes are refined.
Stronger algorithms (logic reduction, abstraction, alternate
proof and falsification techniques) are thus useful to solve the
non-inductive miters to enable exhaustiveness [2, 3].

2) Speculative reduction: An assume-then-prove paradigm
enables assuming certain miters when proving others [1, 4].
Speculative reduction [2] models assumptions by replacing the
fanout edge from each gate to an edge from its equivalence-
class representative, aside from input edges to the miters them-
selves (necessary for soundness). Fig. 2a shows suspected-
redundant gate pairs {e, f} and {g, h}; Fig. 2b shows the
speculatively-reduced netlist with miters me,f and mg,h.

Speculative reduction reduces the amount of logic in the
fanin of each miter, making many inductive and often yield-
ing orders of magnitude speedup. However, speculatively-
reducing an incorrect miter alters fanout behavior of its
non-representative speculatively-reduced gate, i.e. e and g in
Fig. 2b. Therefore, this technique hinders the ability to early-
merge a proven miter’s gates until all of its fanin speculatively-
reduced gates have been proven accurate. Therefore, spec-
ulative reduction may require a fixedpoint of proving all
remaining miters, before any merge can be safely performed.

3) Early merging: A Proof Graph records the set of miters
whose speculatively-reduced gates may alter the behavior of
fanout miters, allowing to early-merge certain proven miters
before converging a fixedpoint [10]. The Proof Graph is a
directed graph P = ⟨M,D⟩ with one vertex in M per miter,
and edges D ⊆ M ×M representing dependencies of fanout
miters upon the speculative-reduced gate of each miter. Miter
m1 is dependent on miter m2 if the speculatively-merged gate
of m2 is in the fanin of either gate of m1. Fig. 2c shows a
Proof Graph for the speculatively-reduced netlist of Fig. 2b.
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A miter proof is sound when the miters of all of its
fanin speculatively-merged gates are proven. When a miter
is soundly proven, its gates may be safely merged, regard-
less of other falsified or unproven miters. Sound proofs are
propagated through fanout nodes of the Proof Graph, which
may enable proven fanout miters to become soundly-proven.
For k-induction, the Proof Graph only needs to record miter-
dependencies relevant to the k-timestep unrolled netlist, along
with dynamically-added SAT proof dependencies upon postu-
lated induction-hypothesis constraints. For TBV, all transitive
fanin dependencies are recorded, to ensure soundness using
arbitrary model-checking algorithms [10].

The Proof Graph does not alter the set of miters to be
proven. It improves scalability by: (1) prioritizing miter-
solution order, generalizing combinational topological order-
ing [8, 9] to cyclic sequential netlists. Leaves can be solved
first, minimizing effort wasted solving possibly-unsound
miters. With parallel orchestration, leaf miters can be stub-
bornly solved, in parallel to time-balanced iteration among
others [13]. (2) More redundancy is identifiable before global
timeout. (3) The number of times each miter is repeatedly
solved across refinements is reduced. This is especially im-
portant when using stronger model-checking algorithms to
solve non-inductive miters: a PSPACE-complete problem. (4)
Early-merging within the original netlist yields other speedups,
e.g. faster simulation, unrolling, SAT, and future Proof Graph
reconstruction.

4) Trace simulation: When a miter is falsified, simulating
its counterexample on the original netlist identifies a set of
inaccurate miters. Failed induction proofs yield counterexam-
ples starting from possibly-unreachable induction leak states;
those may be simulated to refine other non-inductive miters.

Simulation can consume significant runtime, and thus re-
quires careful orchestration. Bit-parallel simulation atomically
simulates 64 independent patterns in each 64-bit machine
word. Counterexamples from BMC, induction, and TBV may
be accumulated into machine words [7, 14], allowing each
simulation to refine multiple counterexamples. Additional pro-
posed improvements include packing compatible counterex-
amples into the same machine-word pattern [14]; randomizing
unimportant input values; and permuting copies of counterex-
amples across patterns, e.g. with distance-1 modifications [15].

With shallow analysis, e.g. k-induction with small k, each
miter affects only a local fanout region. This allows to de-
compose the netlist into slightly-overlapping components to be
analyzed in parallel using fixed-depth simulation [5, 16, 17].
Exhaustive redundancy removal additionally requires deep
analysis across more timesteps. As the depth of analysis
increases, the inter-dependence of miters extends toward the
entire cone-of-influence; windowing becomes ineffective, and
simulation of the sequential netlist becomes inevitable.

III. EXHAUSTIVE REDUNDANCY REMOVAL

We describe the main contributions and experimentally eval-
uate their isolated impact on exhaustive redundancy removal

sequential resource sweeping (Netlist N , Miters M )
1: Miters Mu := ∅, Mi := ∅, Ms := ∅ # sets of miters
2: for k ∈ 0, 1, 2, 3, . . . : # iterate over increasing k-depth
3: for satLimit ∈ min, . . . , max : # iterate over SAT limits
4: # run BMC to increase bounded-proof depth ≥ k

5: ⟨proved, falsified, unsolved⟩ := BASECASE(k, M , N , satLimit) # BMC
6: ↪→ Check all miters with proof-depth < k using BMC
7: ↪→ Update proof-depth of newly-BMC-proved
8: ↪→ Simulate falsified miters to refine equivalence-classes
9: M := M \ falsified # discard BMC-falsified miters

10: Mu := Mu \ { proved ∪ falsified } # update unsolved miters
11: if satLimit ≡ max : Mu := Mu ∪ unsolved # cache unsolved miters
12: # run induction on miters adequately checked by BMC
13: Mi := M # snapshot active-miters for later rollback from induction leaks
14: if Ms ̸≡ ∅ :
15: M := Ms ∪ newly-BMC-proved, Ms:= ∅ # restore snapshotted miters
16: else
17: M := M \ (miters with proof-depth < k) # base-case inconclusive
18: M := M \ Mu # drop miters unsolved in prior induction steps
19: repeat # fixedpoint (FP) iterations
20: N ′ := SPECREDUCE(N , M ), Graph G := PROOFGRAPH(N ′, M )
21: ⟨proved, falsified, unsolved⟩ := INDUCTIVESTEP(k, G, N ′, satLimit)
22: ↪→ Check miters in leaves of Proof Graph G

23: ↪→ Update Proof Graph for proven miters # enable early-merging
24: ↪→ Simulate falsified miters to refine equivalence-classes
25: N := EARLYMERGE(N , G) and remove merged miters from M , Mi

26: M := M \ falsified # drop falsified miters (induction leaks)
27: if satLimit ≡ max : Mu := Mu ∪ unsolved # cache unsolved miters
28: else if |unsolved| > 0 and Ms ≡ ∅ : # FP iteration with unsolved
29: Ms := M # snapshot miters for next SAT iteration
30: M := M \ unsolved # drop inconclusive miters
31: until fixedpoint (no unsolved or falsified) for k at satLimit
32: M := Mi # restore active-miter snapshot to roll-back induction leaks
33: if n-steps with no merging or timeout : break # self-tailor depth

Fig. 3. Sequential resource-sweeping using BMC and k-induction

in this section. End-to-end experimental results for various
formal applications appear in Section IV.

A. Sequential resource-sweeping

Most miters are easy to solve at shallow BMC or in-
duction depth, becoming unscalable as depth increases. Be-
cause satisfiability checking is NP-complete, some miters are
pathologically-difficult, even at shallow depth. Large netlists
often contain a diversity of logic, often comprising a mix of
easier and difficult miters.

Borrowing from combinational equivalence checking [8, 9],
sequential redundancy removal frameworks typically solve
unfolded miters from topologically-shallower to deeper. Shal-
low miters are often easier; their solution simplifies fanout
miters through merging unfolded gates, and refining incor-
rect equivalence-classes. Resource-limits may be applied, and
another fixedpoint iteration attempted after refining unsolved
miters. Due to diversity of miter-difficulty, combinational
netlist simplification via BDD- and SAT-sweeping may benefit
from iterating unsolved miters with increasing resource-limits,
solving gradually-more-difficult miters without indefinite de-
lays caused by pathological miters [7, 9].

For exhaustive sequential redundancy removal, additional
resource-sweeping controls and equivalence-class management
are necessary across k values, and to optimally defer miters
into TBV. We introduce sequential resource-sweeping in Fig. 3
to manage these intricacies. For each k-depth, each miter is
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checked using increasing SAT-resource limits (lines 3–32). The
induction base-case is validated by BMC (lines 5–8). The
miters falsified with BMC are inaccurate, and permanently
discarded (line 9). Any miter unsolved by BMC is skipped
for that resource-limit, as induction would be unsound (line
17). The remaining miters are checked using induction (lines
19–31). Miters are solved from topologically-shallowest to
deepest, using an inductive Proof Graph [10]; early-merging
of soundly-proven miters is performed after iterating its leaves
(line 25), offering runtime benefits (Sec. II-A3). Any miter
unproven by induction is discarded (line 26 and 30). Because
k-induction is incomplete, it may spuriously falsify accurate
miters. For exhaustiveness, it is thus essential to snapshot and
restore active miters Mi (line 13 and 32, resp.) to prevent
induction leaks from permanently discarding accurate miters.

After completing a lossy fixedpoint, SAT resource is incre-
mented up to a configurable maximum value, and previously-
unsolved miters Ms are snapshotted to check anew (line 29).
Any miter unsolved by the maximum SAT-limit during BMC
(line 11) or induction (line 27) is deferred to TBV (line 18).
Miters are then restored from Ms if available, incrementally
reusing prior effort (line 15). Note that any proofs obtained us-
ing a subset of miters are valid for a superset. Thus induction-
proved results when Ms was snapshotted may be re-applied
after restoring, despite adding any newly-BMC-proved miters.
However, the induction-hypotheses upon which reused proofs
relied must also be annotated onto the inductive Proof Graph.
Prior refinements reflected in Ms may be pessimistic within
the current SAT-limit and k if any newly-BMC-proved miters
are added. While spuriously-refined miters will be checked
at higher k values or by TBV, this temporary lossiness may
be compensated for, by: (i) using a dedicated pre-induction
BMC phase, which often helps overall scalability anyway; (ii)
skipping the restoration of Ms if newly-BMC-proved is non-
empty; or (iii) selectively restoring previously-falsified miters
that share logic with newly-BMC-proved to check anew.

The algorithm terminates after n timesteps without conclu-
sive result, or global timeout (line 33). Exhaustive redundancy
removal often benefits from deeper BMC than induction, to
minimize wasted effort trying to prove inaccurate miters and
to accelerate early-merging; n ≥ 5 for BMC, and n ≥ 2
for induction, are used in all experiments. While many miters
are sequentially shallow, robust redundancy removal requires
self-tailoring to deeper netlists. Solving easier miters at greater
BMC and induction depth is often faster than deferring those
to TBV: inductive Proof Graphs have fewer dependencies,
enabling earlier merging; counterexample generation for BMC
requires less reconstruction effort than through a sequence of
TBV engines. Thus it is beneficial to defer only the difficult
miters to TBV, not the easier deep miters.

Most prior work imposes SAT resource-limits via bounding
backtracks [9] or decisions [7]. While effective, those do not
closely align with actual runtime. Time-limits are volatile and
hurt reproducibility. We have found the number of propaga-
tions as a reproducible runtime-aligned metric, which also
allows balancing simulation and solver runtime (Sec. III-B).
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Fig. 4. Sequential resource-sweeping effectiveness: BMC and Induction for
industrial logic optimization (◦) and model-checking benchmarks [18] (⋄)

We evaluate sequential resource-sweeping in Fig. 4 for dif-
ficult industrial logic optimization and model-checking bench-
marks [18]. Redundancy removal begins with a refinement
phase of increasing-depth BMC, with 1800-second timeout
early-terminated by 5 timesteps without refinement; then a
proof phase of increasing-depth induction with 36000-second
timeout early-terminated by 2 timesteps without merging.1

SAT propagation-limits increment by 10× from 10000 to
10000000 when resource-sweeping, and are unbounded other-
wise. For industrial benchmarks, sequential resource-sweeping
enables 30.3% deeper BMC on average (32.4% for model-
checking) (Fig. 4b), yielding up to 20.7% more refinements
(23.1% for model-checking) (Fig. 4a). It also enables deeper
induction (Fig. 4e), yielding 5.2% more merged gates on aver-
age (3.4% for model-checking) (Fig. 4d). Note that unbounded
SAT-resource can sometimes solve a lucky miter with modestly
more than the maximum resource-sweeping SAT-limit, and
thus occasional modest losses for resource-sweeping occur.
These are offset by more-frequent, larger wins by deferring
difficult-for-SAT miters to TBV, while enabling BMC and
induction to solve easier deeper miters.

Fig. 4c and Fig. 4f show detailed per-k refinement and
merging respectively for a single deep benchmark. BMC
completes 12 more steps, and induction goes 6 steps deeper,
with resource-sweeping enabled. While some common success
is achieved at shallower k, self-tailoring depth when resource-
sweeping yields 201.5% more refinements and 32.4% more
merged gates at greater depth.

B. Resource-balanced simulation

Bit-parallel simulation allows atomically refining multiple
counterexamples, packed into each bit of a machine word.

1The time-limits used in these experiments are rarely encountered, though
are imposed for uncommon yet inevitable pathological scenarios.
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Fig. 5. Cumulative runtime with resource-balanced simulation

Resource-sweeping ensures that easier miters are solved early,
while difficult miters are deferred. When SAT-limits are small,
miters are solved quickly: accumulating more traces before
simulating is often faster. As SAT-limits increase, miter solving
is slower: simulating fewer traces more-frequently is often
faster. For greatest scalability, it thus is beneficial to tailor
simulation frequency as miters are solved within the resource-
sweeping loop of Fig. 3 (lines 8 and 24).

Predictive tuning of how many traces to accumulate vs.
SAT-limit can be improved via dynamic resource-balancing,
comparing runtime of the prior simulation to runtime of
solvers since the last simulation. When either exceeds the
other by more than a configurable threshold, simulation can
be deferred or expedited. (For better reproducibility, runtime
can be estimated by comparing number of gates and timesteps
simulated vs. SAT-propagations since the last simulation.)
While resource-sweeping ensures somewhat-balanced resource
per miter, dynamic balancing adjusts for factors such as the
percentage of miters proven vs. falsified vs. resource-exceeded,
or unexpected solver-resource variance using less-predictable
model-checking algorithms via TBV.

We evaluate resource-balancing in Fig. 5a on industrial se-
quential equivalence-checking (SEC) benchmarks, and Fig. 5b
on model-checking benchmarks. SAT-limits increment by 10×
from 10000 to 1000000 propagations. Cumulative runtime
is plotted for: (1) resource-sweeping disabled (baseline);
simulation-resource balancing disabled with (2) each trace
simulated vs. (3) 64 traces accumulated; resource-balancing
enabled with (4) gradual tapering of 64 patterns at 10000
propagations, 32 at 100000, and 1 at 1000000, (5) sharp
tapering from 64 patterns at 10000 propagations to 1 above; (6)
dynamic runtime balancing. Note that unsolved benchmarks
are not plotted, for clarity. Settings (3)-(6) are 8.38%, 10.07%,
20.87% and 27.28% faster, respectively, than (2) in Fig. 5a; vs.
3.24%, 25.92%, 11.18% and 32.71% in Fig. 5b. The reason
that sharp tapering wins for SEC, and gradual for model-
checking, is due to the percentage of miters falsified: corre-
sponded signal-name pairing for SEC ensures fewer incorrect
non-inductive miters. Dynamic balancing adjusts effectively to
either scenario. Setting (1) for SEC without resource-sweeping
is 18.4% and 60.6% slower compared to setting (2) and (6),
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Fig. 6. Deep simulation BMC for logic optimization on industrial (◦), and
public QUIP [20] and ITC99 [21] benchmarks (▽)

respectively; vs. 4.23% and 54.9% slower for these easier
model-checking benchmarks.

C. Lazy deep simulation

In lossy redundancy removal frameworks using only shal-
low fixed-depth induction [5, 16], deep simulation is unnec-
essary: incorrect miters are discarded along with accurate
non-inductive miters. Exhaustive redundancy removal requires
equivalence-classes to be corrected before miters can be
proven. Deep simulation may arise due to deep counterexam-
ples found by BMC or TBV, or simulating beyond shallower
trace length to propagate refinements through fanout logic.
While deep simulation is expensive, its refinements offset the
expense of explicitly computing long miter counterexamples
as NP- or PSPACE-complete problems.

Simulation consumes nearly identical runtime per timestep.
When balancing solver vs. imminent simulation runtime con-
sidering prior simulation runtime, depth should be considered.
We introduce the concept of lazy deep simulation using its
own deep-simulation trace storage, distinct from traditional
eager shallow simulation for minimal-depth simulation. Eager
shallow simulation is faster, and should occur more-frequently
using fewer traces. Very-shallow simulation may be paral-
lelized via simulating slightly-overlapping windowed compo-
nents [5, 16, 17]. Lazy deep-simulation is slower, evaluating
the sequential netlist. It thus should occur less-frequently,
sometimes accumulating more traces into multiple machine
words to leverage multi-word simulation speedup [19].

Shallow vs. deep simulation benefit from different resource-
balanced parameters affecting how many timesteps beyond
trace length to simulate: a maximum extension parameter,
and an inactivity limit to early-terminate the extension if
insufficient refinements occur during the prior n timesteps.

We evaluate lazy deep simulation during BMC in Fig. 6
for industrial and public logic optimization benchmarks.
Deep simulation is run when 640 patterns are accumulated,
with a maximum overall 900-second timeout early-terminated
with maximum extension of 2048 (vs. 10 for shallow), and
inactivity-limit of 100 (vs. 4 for shallow). Deep simulation
enables a median 15.78% more refinements (Fig. 6a), and
median 30.15% compared to disabled sequential resource-
sweeping (Fig. 6b). Fig. 6c shows per-k refinement for the
deep benchmark of Fig. 4c. Vertical lines indicate running deep
simulation, thrice after accumulating 640 patterns and once as
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BMC terminates. Each deep simulation provides 12.56% more
refinements on average, improving BMC (and subsequent
proof) scalability. BMC completes 6 additional timesteps via
this speedup, yielding 39.48% additional refinements.

D. Seeded BMC

When a miter is falsified, simulating its counterexample of-
ten refines additional miters. Randomizing and permuting bit-
parallel patterns, and simulating beyond trace length, increase
the number of secondary refinements. Though the return on
runtime investment, and probability of secondary refinements,
via additional simulation often quickly saturates.

Secondary refinements may be obtained via semi-formal
methods: when simulation encounters an interesting state (e.g.
one that refines an equivalence-class), one can seed BMC
into that state, trying to falsify additional miters [19]. If
miters are falsified by seeded BMC, eager simulation of those
counterexamples can be accelerated starting from the seeded
state vs. initial state; especially valuable for very-deep TBV
traces. Seeded-BMC traces may also be appended to the
deep-simulation trace storage to increase the probability of
secondary refinements during later deep simulation. To balance
overall runtime, seeded BMC runtime may be configured to a
fraction of time-elapsed to obtain those counterexamples.

One challenge to maximizing seeded BMC refinements is
that controllability to propagate the new refinement scenario
into adjacent logic may be limited by prior input valuations
locked into the seeded state. It thus is often useful to seed
BMC into a state several timesteps before the refinement of
interest. The optimal number of timesteps varies by netlist and
by miter. It can be approximated by the number of registers
along simple paths between the refined equivalence class and
primary inputs. It can also be varied, dynamically adjusting to
a setting suitable for the netlist.

We evaluate seeded BMC in Fig. 7a during logic-
optimization of public design benchmarks. Seeded BMC is
run directly after refining TBV counterexamples, starting
from already-refined equivalence-classes; their refinements are
thus complementary. Seeded BMC runtime is limited to the
lesser of 200 seconds, 25% of TBV runtime to produce the
trace, or 50 timesteps without refinement. Seeded BMC thus
consumes at most 25% of TBV runtime; in these experiments
it consumed less than 3%. Despite the advantages given
to TBV, seeded BMC yields 39.2% more falsified miters
than TBV, while TBV generates 2.18× as many refinements.
Fig. 7b identically evaluates larger proprietary industrial de-
signs. Seeded BMC yields 11.1% more falsified miters than
TBV, while TBV generates 1.7× as many refinements.

E. Approximating pathologically-deep logic

Industrial netlists often comprise sequentially-deep logic
components, such as large counters or linear-feedback shift-
registers (LFSRs). Incorrect miters dependent upon such com-
ponents might be falsifiable with traces of minimum-length
exponential with respect to their register count. Such compo-
nents pose two challenges. (i) BMC and induction become
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Fig. 7. Cumulative seeded BMC vs. TBV refinements for logic optimization

unscalable too-shallowly to converge very-deep miters. TBV
is often necessary, using heavier model-checking algorithms
to solve PSPACE-complete miters, including localization [22]
and logic reductions to reduce miter size, phase abstrac-
tion [23] to reduce sequential depth, well-tuned IC3 [24, 25]
and BDD-based reachability [26] as general solvers, and semi-
formal bug-hunting [19]. (ii) Simulating a very-deep trace
may be prohibitively slow. While TBV may use tailored tech-
niques to analyze deep miters (e.g. parameterized traces [27]),
speculative-reduction and logic transformations applied within
TBV require simulating traces on the original netlist (not
only its deep components) to enable precise refinements.
For extremely-deep traces, potentially billions of timesteps
long, lossy shortcuts are inevitable. The following are useful
minimally-lossy strategies.

(1). As refinement depth or BMC bound exceed a config-
urable threshold, a depth-compensation graph can annotate
gates with: (i) most-recent refinement depth; (ii) most-recent
bounded proof depth; (iii) the snapshotted equivalence-class
for which the former were obtained. The behavior of known-
deep gates can be randomly permuted when simulating bit-
parallel copies of a trace. Because the trace pattern itself is not
permuted, precise refinements occur. The random-permutation
may cause pessimistic refinements, discarding valid miters. To
limit the pessimism, permutation can be synchronized across
the snapshotted equivalence-class gates, similar to induction
counterexamples [28]. If new refinements occur, simulation
may be rolled-back, and newly-mismatched candidates may
be permuted for continued simulation. This process can flatten
a pathological sequence of double-length counterexamples
across refinements to near-linear simulation depth, similar
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to forcing X-pessimism to accelerate convergence in three-
valued approximate reachability analysis [29].

(2). Seeded BMC (Sec. III-D) can falsify deeper miters
from a simulated state, though often becomes unscalable too
shallowly to converge on large counters. It is sometimes
useful to overapproximate seeded BMC, randomly permuting
the value of known-deep gates, to be less dependent upon
simulation probabilities to propagate permuted values.

(3). In cases, the first concerningly-deep counterexample is
too deep to simulate, or even to generate. E.g., if a design
has a 64-bit LFSR, each bit may toggle shallowly, though
a compare-to value may only be reached incredibly-deeply.
If simulating a counterexample is impractical, the offending
miter may be blindly refined as if unsolved, losing the ability
to propagate refinements to fanout logic. Simulation permuta-
tion of deep gates may nonetheless be useful in other ways,
e.g. reusing previous (or future) counterexamples [14].

F. Linear Proof Graph construction

The Proof Graph [10] has one node per miter. Fanout
edges represent the miters whose behavior is compromised
by speculative-reduction until that node’s miter is proven. The
miters correlating to a node may be merged as soon as its
fanin miters are proven, regardless of other unproven miters.
Early merging has many runtime benefits (Sec. II-A3).

The Proof Graph is reconstructed whenever a new
speculatively-reduced netlist is created, at each iteration of
Fig. 1. Scalable construction is thus critical. Lossy redundancy
removal, e.g. using shallow fixed-depth induction [5], may
choose to not use a Proof Graph, instead deferring all merging
until fixed-point. Despite the overhead of deferred merging,
e.g. causing repeated proving of accurate miters across refine-
ments, this shortcut is motivated by the traditional runtime
overhead of constructing the Proof Graph vs. lossy-solver
runtime. Early merging is a practical necessity to enable ex-
haustive redundancy removal on large netlists, which requires
solving PSPACE-complete non-inductive miters via general
model-checking algorithms. In this section, we describe a
scalable graph-labeling algorithm to compute a minimally-
sized Proof Graph.

When using arbitrary model-checking algorithms to solve
miters, all transitive fanin dependencies are recorded in
the Proof Graph. Traditional iterative construction (e.g. [10]
Alg. 7) traverses the fanin of each miter m′ to find the
speculatively-reduced gates M ′ which affect its behavior
(stopping at vs. recursing through M ′, to contain runtime);
edges from M ′ to m′ are iteratively added to the Proof Graph.
This initial Proof Graph can be vastly larger than a condensed
version due to duplicate and transitively-implied edges, risking
memout. Postprocessing is proposed to condense the Proof
Graph to be irredundant and acyclic [10], reclaiming memory
before TBV. Though iterative fanin traversal and compaction
are often a runtime bottleneck on large netlists.

We propose a method to directly compute an optimally-
sized Proof Graph (Fig. 8), using a single netlist traversal. Our
algorithm uses an efficient graph-labeling approach [31, 32],

createProofGraph graphLabeling (Spec-Reduced Netlist N ′, Miters M )
1: Compute SCC within N ′ # Tarjan’s linear algorithm [30]
2: for each gate g ∈ topologically-sorted gates in N ′ :
3: if g is not in a multi-gate SCC :
4: if g is speculatively-reduced : # g is the non-rep. gate of a miter
5: Miter m := miter corresponding to g

6: # add dependencies of m in the fanin of g
7: for each miter n with index i such that bitvector(g)[i] ≡ 1 :
8: add edge(n, m) # add dependency n→m to graph
9: # create singleton bitvector for miter m

10: unsigned idx := get unique index for miter m
11: clear bitvector(g); bitvector(g)[idx] := 1 # singleton bitvector
12: # copy / union bitvector to fanout gates
13: for each gate h in the fanout of g : # propagate to fanout
14: if h is part of SCC S : h := representative gate of SCC S

15: bitvector(h) := bitvector(h) ∪ bitvector(g) # copy / union
16: delete bitvector(g) # cleanup
17: else if g is representative gate of SCC S :
18: if S contains miters :
19: # add cyclic dependencies between miters in SCC S

20: Miters M [ ] := get all miters in S, unsigned j := 0
21: while j+1 < size(M) :
22: Miter n := M [j], Miter m := M [j+1]
23: add edge(n, m) # add dependency n→m to graph
24: Miter n := M [size(M)], Miter m := M [0]
25: add edge(n, m) # add dependency n→m to graph
26: # add dependencies for miters in the fanin of SCC S

27: Miter m := miter corresponding to representative gate of SCC S

28: for each miter n with index i such that bitvector(g) [i] ≡ 1 :
29: add edge(n, m) # add dependency n→m to graph
30: # create singleton bitvector for miter m

31: unsigned idx := get unique index for miter m
32: clear bitvector(g); bitvector(g) [idx] := 1 # singleton bitvector
33: # copy / union bitvector to fanout gates
34: for each gate h in the fanout of gates in S : # traverse to fanout
35: if h is part of SCC T : h := representative gate of SCC T

36: bitvector(h) := bitvector(h) ∪ bitvector(g)
37: delete bitvector(g) # cleanup

Fig. 8. Graph labeling algorithm for Proof Graph construction.

propagating miter-dependency information as a bitvector. Each
speculatively-reduced gate is represented with a unique bit-
index, though all miters within an SCC reuse a single bit-
index, yielding a massive practical compaction.

Linear SCC identification [30] identifies the strongly-
connected components; each gate within an SCC is given
the bit-index of a representative miter therein (line 1). The
algorithm then iterates gates in a topological order, propagat-
ing fully-populated bitvectors denoting miter dependencies to
fanout logic. When gate g is traversed, bitvector copy or union
operators propagate g’s bitvector to fanout gates (lines 13–15
and 34–36), accumulating their fanin dependencies. If g is a
speculatively-reduced gate, all miters with indexed bits set to
1 in its bitvector are added as Proof Graph fanin edges to the
node for g’s miter (lines 7–8). Fanout edges of speculatively-
reduced gates propagate only that gate’s corresponding bit-
index vs. all transitive fanin dependencies (lines 10–11).

A single bitvector is maintained for all nodes in an SCC,
at its representative gate g (line 14, 35). If the SCC contains
miters, a single unique bitvector index for a representative
miter m therein is associated with all of that SCC’s miters
(line 27). The dependencies (asserted bitvector indices) of all
SCC inputs become Proof Graph fanin edges of the SCC-
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TABLE I
PROOF GRAPH CONSTRUCTION RESOURCES FOR LOGIC OPTIMIZATION

# #Gates #Miters
Iterative [10] Graph Labeling (Fig. 8)

Time (s) Memory Time (s) Memory

b1 4,476,762 192,445 4368.8* 340 GB* 9.12 134.5 MB
b2 1,043,224 969,135 889.3 15.8 GB 3.58 353.8 MB
b3 833,584 517,979 420.1 11.9 GB 1.49 188.6 MB
6s125 3,232,742 2,885,658 >684 >32 GB 15.13 1.03 GB
6s350 3,774,149 1,511,759 >14400 5.6 GB 47.02 559.78 MB

BOLD: 32GB memout. [*]: runtime, memory estimate for complete construction.
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Fig. 9. Proof Graph construction resources for logic optimization on industrial
logic optimization (◦) and model-checking benchmarks [33] (⋄)

representative miter m (lines 28–29). The one-hot bitvector
for m is then propagated to all SCC outputs (lines 31–32).
Miters inside an SCC are added to the Proof Graph in lines
20–25 as a cyclic chain through representative m, to minimally
record their inter-dependency.

Propagating a one-hot bitvector to the fanout of
speculatively-reduced gates ensures a minimally-sized Proof
Graph without unnecessary transitively-implied edges. When
later annotating the Proof Graph with solver results, tran-
sitive traversal is generally necessary anyway [10]. Adding
transitively-implied edges tends to degrade performance, bloat-
ing graph size and requiring more unsuccessful fanout-edge
traversals: until a miter is proven, soundly-proven results for
fanin miters cannot propagate through that miter anyway.

Theorem 1 (Sound). Given speculatively-reduced netlist N ′

and miters M , Fig. 8 generates a sound Proof Graph: every
fanout dependency of speculatively-reduced gate g is transi-
tively reachable via fanout traversal of g’s Proof Graph node.

Theorem 2 (Optimal). Proof Graph P = ⟨M,E⟩ generated
by Fig. 8 has minimal size. I.e., there does not exist a Proof
Graph P ′ with fewer nodes or edges correctly representing
the dependencies of N ′ and M .

Table I shows resources to construct the Proof Graph
for selected large industrial and model-checking benchmarks,
using the traditional iterative approach [10] vs. graph-labeling
(Fig. 8). This highlights the scalability limitation of the former,
precluding TBV on the largest netlists. Fig. 9 shows resources
across more industrial and model-checking benchmarks; each
run with 32GB memory-limit and 14400-second timeout.
Graph-labeling is up to 98.34× (Fig. 9a) faster with a 53.77%
lower peak memory requirement on average (Fig. 9b), and en-
ables the Proof Graph creation for 17 more benchmarks within
resource-limits. While the iterative approach postprocesses the
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Proof Graph by SCC compaction and pruning transitively-
implied edges, graph labeling generates a 59.25% smaller
Proof Graph without costly postprocessing (Fig.9c).

IV. EXPERIMENTAL RESULTS

In this section, we show end-to-end results for various
redundancy removal applications, using the contributions of
Sec. III. Though to minimize memouts, these all benefit from
the scalable Proof Graph presented in Sec. III-F. Our tech-
niques are implemented within RuleBase: Sixthsense Edition
[34], building upon the techniques presented in [13, 32].

1) Property- and Equivalence-Checking: Fig. 10a com-
pares end-to-end runtime with vs. without our improvements
on 384 SEC benchmarks, using the refinement phase of Fig. 6
with 15-second seeded BMC, 4-hour induction, and 12-hour
overall time-limits using 1-process TBV. Our improvements
solve 362 common benchmarks 2.1× faster on average, with
22 unique solves. Fig. 10b shows model-checking speedup,
using a similar configuration though without corresponded
signal-name filtering. Cumulative runtime is 32.4% faster, and
16.9% more properties are solved using our improvements.

2) Logic Optimization: We present logic optimization re-
sults in Fig. 11a for public design benchmarks, and Fig. 11b
for industrial designs. Exhaustive logic optimization is a global
concern [35], and particularly challenging: (1) Unlike SEC,
name-correlation cannot fragment equivalence-classes to pairs.
Large equivalence-classes require many refinements to correct,
iteratively comparing a gate to many different representatives.
(2) Redundancy removal is not early-terminated when proper-
ties are solved. These benchmarks were preprocessed using
1-induction. On public benchmarks, preprocessing removes
1442832 gates. Deeper-k induction removes an additional 959
gates, then TBV an additional 40494, for 2.9% greater redun-
dancy removal overall. Redundancy-removal was exhaustive
for 65 of 74 netlists (containing up to 373338 AND gates and
8809 registers), capping resource at 64GB 3-day 5-process.
No-reduction points are not plotted. Miters of depth ≥ 32768
(up to 250125) were encountered on 3 netlists; synchronized
random-permutation (Sec. III-E) losslessly aided convergence.

The industrial benchmarks are evolving components, al-
ready redundancy-removed at prior logic iterations. Lever-
aging our contributions, deeper-k induction removes an ad-
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Fig. 11. Cumulative deep-k induction and TBV logic optimization

ditional 167462 gates (76259 with k ≥ 3), and TBV an
additional 14248. Practical benefits were significantly greater
due to multiple on-chip copies of each component. Exhaus-
tiveness was achieved for 11 of 59 netlists (containing up
to 857110 AND gates and 75952 registers). Miters of depth
≥ 32768 (some above 100M) were encountered on 21 netlists.
Without the contributions presented in this paper, exhaustive
redundancy removal was achievable for only 2 netlists.

V. CONCLUSIONS

Global energy use of semiconductor devices doubles every
three years, mandating a new type of Moore’s Law for energy
efficiency [35]. Sequential redundancy removal is one of many
remedies, and has many other applications.

We introduce various techniques to improve the scalability
of sequential redundancy removal, eliminating bottlenecks
to exhaustiveness. Sequential resource-sweeping self-tailors
to netlist depth, yielding > 20% greater equivalence-class
refinement via BMC and ≈ 5% greater inductive redundancy
removal, on average. Resource-balanced simulation acceler-
ates redundancy-removal by ≈ 30% on average. Lazy deep
simulation yields ≈ 16%, and seeded-state BMC ≈ 34%,
additional refinements with minor runtime overhead. Graph-
labeling Proof Graph construction boosts scalability by two
orders of magnitude, making TBV practical on very-large
netlists. Heuristics are introduced to prevent pathologically-
deep logic from derailing convergence. Overall, our techniques
yield 2.1× speedup to SEC, 32.4% speedup with 16.9% more
solves on large difficult model-checking problems, and enabled
exhaustive redundancy removal on large netlists up to 857110
AND gates, 75952 registers.

ACKNOWLEDGMENTS

We would like to thank the reviewers for their valuable
feedback and comments. Kristin Y. Rozier is supported by
NSF:CCRI grant 2016592 and NSF:CAREER grant 1664356.

REFERENCES

[1] P. Bjesse and K. Claessen, “SAT-based verification without state space
traversal,” in Formal Methods in Computer-Aided Design (FMCAD),
pp. 409–426, Oct 2000.

[2] H. Mony, J. Baumgartner, V. Paruthi, and R. Kanzelman, “Exploiting
suspected redundancy without proving it,” in Design Automation Con-
ference (DAC), pp. 463–466, Jun 2005.

[3] R. Brayton, N. Een, and A. Mishchenko, “Using speculation for se-
quential equivalence checking,” in International Workshop on Logic and
Synthesis (IWLS), Jun 2012.

[4] C. A. J. van Eijk, “Sequential equivalence checking without state space
traversal,” in Design, Automation and Test in Europe (DATE), pp. 618–
623, Feb 1998.

[5] A. Mishchenko, M. Case, R. Brayton, and S. Jang, “Scalable and
scalably-verifiable sequential synthesis,” in International Conference on
Computer-Aided Design (ICCAD), 2008.

[6] S. Krishnaswamy, H. Ren, N. Modi, and R. Puri, “DeltaSyn: An efficient
logic difference optimizer for ECO synthesis,” in 2009 International
Conference on Computer-Aided Design (ICCAD), pp. 789–796, 2009.

[7] A. Kuehlmann, “Dynamic transition relation simplification for bounded
property checking,” in International Conference on Computer-Aided
Design (ICCAD), November 2004.

[8] D. Brand, “Verification of large synthesized designs,” in International
Conference on Computer-Aided Design (ICCAD), November 1993.

[9] A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai, “Robust boolean
reasoning for equivalence checking and functional property verification,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 21, no. 12, 2002.

[10] M. Case, J. Baumgartner, H. Mony, and R. Kanzelman, “Optimal re-
dundancy removal without fixedpoint computation,” in Formal Methods
in Computer-Aided Design (FMCAD), pp. 101–108, Oct 2011.

[11] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without bdds,” in Tools and Algorithms for the Construction and Anal-
ysis of Systems (W. R. Cleaveland, ed.), (Berlin, Heidelberg), pp. 193–
207, Springer Berlin Heidelberg, 1999.

[12] M. Sheeran, S. Singh, and G. Stålmarck, “Checking safety properties
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