
Formal Methods in Computer-Aided Design 2024

DAG-Based Compositional Approaches for LTLf to
DFA Conversions

Suguman Bansal
Georgia Institute of Technology, USA

suguman@gatech.edu

Yash Kankariya
Georgia Institute of Technology, USA

ykankariya3@gatech.edu

Yong Li
University of Liverpool, UK

yong.li3@liverpool.ac.uk

Abstract—Scalable and efficient conversions of LTL over finite
horizon (LTLf) to their deterministic finite automata (DFA) remain
a critical bottleneck in several applications of LTLf. Recently,
compositional approaches have seen remarkable success in scaling
the conversion to large formulas. Here the input formula is first
decomposed into smaller subformulas, each of which can be
easily converted to their DFAs, then these DFAs are composed
to generate the desired DFA. This work proposes a series of
simple-yet-effective optimizations to improve the performance
of compositional approaches based on reducing the number of
composition steps required to generate the desired DFA.

We incorporate these optimizations in a tool called Lisa2 that
builds on one of the state-of-the-art tools for LTLf-to-DFA con-
version. A comprehensive empirical evaluation of Lisa2 demon-
strates overall improvements on both parameters of the number
of benchmarks solved and runtime. Most remarkably, it demon-
strates significant improvement over structured benchmarks
where runtime speedups range between 1.5x to 8000x under fair
comparisons to prior state-of-the-art tools.

I. INTRODUCTION

Linear Temporal Logic over finite traces [1] (LTLf) is the
finite-horizon counterpart of Linear Temporal Logic (LTL)
over infinite traces [2]. LTLf is rapidly gaining popularity
among real-world applications where behaviors are better
expressed over a finite but unbounded horizon. These include
applications in planning and synthesis [3], [4], [5], [6], re-
inforcement learning [7], [8], [9], business processes [10],
verification [11].

A critical challenge facing its applications is the conversion
of LTLf specifications into their equivalent deterministic finite
automata (DFAs). This is not unexpected since the LTLf-to-
DFA conversion exhibits a double-exponential blow-up in the
size of the input specification in the worst-case [1], [12]. Yet,
state-of-the-art LTLf-to-DFA conversion tools like Lisa [13]
and Lydia [14] often succeed at converting large formulas.
Their success can be attributed to compositional algorithms
which are split into two phases. First, in the decomposition
phase a large LTLf formula is decomposed into smaller
subformulas using the formula’s Abstract Syntax Tree (AST).
Next, in the composition phase, subformulas at the leaves of
the AST are converted to their DFAs using direct LTLf-to-
DFA tools suitable for smaller formulas, such as Spot [15] or
Mona [16]. Then, these DFAs are composed using language-
theoretic and/or automata-based operations to obtain the DFA
of the original formula. For DFA composition, the AST of the
formula is traversed bottom-up.

Through this work, we propose a series of simple yet
effective optimizations to improve the performance of com-
positional algorithms. Our first optimization aims at striking a
balance between the time spent in converting subformulas at
the leaves of the AST into their DFAs and the time spent in
composing the intermediate DFAs. The deeper the AST is un-
rolled, the smaller are the subformulas at the leaves of the AST.
While these smaller subformulas may be easier to convert
into their DFAs, it increases the number of composition steps
required to traverse the AST. To this end, we propose to unroll
the AST on their outermost boolean operators only. In contrast,
both Lisa and Lydia unroll at the extremes: Lisa unrolls
on the outermost conjunction only whereas Lydia unrolls
completely till the propositional literals.

Our other optimizations focus on reducing the number of
composition steps required during the bottom-up traversal by
modifying the AST. Our first optimization is based on elimi-
nating subformula duplication within the AST. This eliminates
multiple computations of the DFA of the same subformula
that may be present at multiple locations in the AST of a
formula. Such duplication is not uncommon in structured, real-
world formulas. Our second optimization is based on using
semantics-preserving syntactic transformations to the formula.
In particular, subformulas of the form ϕ =

∧k
i=1(ψ ∨ ϕi)

are rewritten as ϕ = ψ ∨
∧k

i=1 ϕi, as the latter requires fewer
composition steps: The former representation of ϕ will require
2k − 1 composition steps (k steps to create the DFA for
all (ψ ∨ ϕi) and k − 1 steps from the outer conjunction of
these clauses). Whereas, the latter will require only k steps
of which k − 1 steps are required to create the DFA for
the large conjunction and one more is required to compose
with ψ. Neither Lisa nor Lydia incorporate either of these
optimizations.

We have implemented these optimizations in a tool
Lisa2 that builds on the existing tool Lisa. The compositional
algorithm in Lisa2 differs from Lisa as follows: (a). In the
decomposition phase, the formula is unrolled on all outermost
boolean operations using the formula’s AST, (b). Next, there
is an additional optimization phase in which duplicate removal
and syntactic transformations modify the AST to a DAG as
opposed to the AST, (c). Finally, in the composition phase,
formulas at the leaves of the DAG are converted to their
DFA and then these intermediate DFAs are composed in a

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 28 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0000-0002-0405-073X
https://orcid.org/0000-0002-7301-9234
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_28
https://creativecommons.org/licenses/by/4.0/

bottom-up traversal of the DAG. Lisa2 also differs from
Lisa and Lydia in supporting multiple representations for
DFAs. It permits Spot’s [15] labeled-graph and Reduced-
Ordered BDD (ROBDD) [17] (which is used by Lisa) as well
as Mona’s Shared Multi-Terminal BDD (ShMTBDD) (which
is used by Lydia) [16]. Permitting both datastructures makes
Lisa2 more versatile than prior tools. An additional benefit
is that this enables fair comparison with Lisa and Lydia.
While these prior tools implement differing compositional
approaches, a fair comparison of these algorithms has not
been possible since the performance of these tools is also
affected by the complementary strengths of the underlying
datastructure for DFAs. In particular, ROBDD may be slower
but require less memory whereas ShMTBDD can be blazingly
fast but are memory exhaustive. With the flexibility in choice
of DFA datastructure, Lisa2 can compare different algorithmic
approaches by ensuring that their underlying datastructures are
identical, hence xrendering fairer comparisons.

A comprehensive empirical evaluation demonstrates signif-
icant improvements over prior state-of-the-art tools in both
the number of benchmarks solved and their runtime. We
evaluated the performance of Lisa2 against Lisa and Ly-
dia on LTLf benchmarks (a collection of randomly generated
formulas and structured formulas) from the LTLf track in
SYNTCOMP20231. While Lisa2 outperforms both baselines
comprehensively, its performance on the structured bench-
marks is most remarkable. Not only Lisa2 solves ∼50%
more structured benchmarks than prior approaches, it also
demonstrates runtime improvements in the range of 1.5x-
8000x (with more benchmarks recording high runtime im-
provement), highlighting the strength of our tool on realistic
benchmarks.

II. PRELIMINARIES AND NOTATIONS

A. Linear Temporal Logic over Finite Traces (LTLf)

LTLf [1] extends propositional logic with finite-horizon
temporal operators. The syntax of LTLf over a finite set of
propositions Prop is identical to LTL, and defined as

φ := true | false | a ∈ Prop | ¬φ | φ1 ∧ φ2 | Xφ | φ1Uφ2

where X (Next) and U (Until), are temporal operators. We
include their dual operators, N (Weak Next) and R (Release),
defined as Nφ ≡ ¬X¬φ and φ1Rφ2 ≡ ¬(¬φ1U¬φ2). We
also use typical abbreviations such as Fφ ≡ trueUφ, Gφ ≡
falseRφ, φ1 ∨ φ2 = ¬(¬φ1 ∧ ¬φ2), φ1 → φ2 ≡ ¬φ1 ∨ φ2.
The semantics of LTLf can be found in [1].

Wlog, we assume formulas are given in negation normal
form (NNF), i.e., the negation operator (¬) appears in front
of propositions only. In the given syntax, all formulas can be
converted to their NNF with no blow-up in length.

Every LTLf formula φ over Prop can be converted into
a deterministic finite-state autoamta (DFA) D with alphabet
Σ = 2Prop and at most double-exponential number of states in
|φ| such that L(D) = L(φ) [1].

1https://www.syntcomp.org

B. Abstract Syntax Tree

The Abstract Syntax Tree (AST) is an n-ary tree represen-
tation of an LTLf formula. Formally, for an LTLf formula ϕ,
(1). Every node corresponds to a subformula of the formula φ.
In particular, the root of the AST corresponds to the formula
itself, (2). For every node, the operator of the node is given
by the outermost (primary) operator of its subformula, (3).
For every node, its children correspond to the immediate
subformulas of the formula in that node. Formulas with unary
operators (such as ¬, X, F, and so on), binary operators (U
and R), and n-ary operators (∨ and ∧) consist of one, two,
and n-many children, respectively. The order of children is
crucial for temporal operators U and R. For the remaining
operators, the order of children does not alter the semantics
of the formula since the operators are commutative.

III. RELATED WORK

Optimizations in compositional LTLf-to-DFA
approaches.: The current state-of-the-art AST-based
compositional tools, Lisa [13] and Lydia [14], employ
various optimizations to counter its inherent non-elementary
complexity. In addition to aggressive DFA minimization [16]
and order in which DFAs at each node are composed [13],
the tools optimize on the depth to which the ASTs are
unrolled during formula decomposition. For instance,
Lisa decomposes the original formula at its outermost
conjunction only, thus creating a k-ary AST of depth one.
Thus, the leaves represent subformulas as opposed to atomic
propositions. On the other hand, Lydia [14] generates the
full k-ary AST up to literals in the leaves. This way tools
attempt to trade-off between resources spent in the direct
conversion of subformulas at the leaves and composition
steps. The tools also optimize on the data structure used for
explicit state-space representations of the DFAs. Lisa stores
DFAs as labeled-graphs and in symbolical state-space using
Reduced-Ordered Binary Decision Diagrams (ROBDD) [17]
if necessary. Lydia stores DFAs using Shared Multi-Terminal
Binary Decision Diagrams (ShMTBDD) of Mona [16].

Direct LTLf-to-DFA conversions.: Spot [15] and
Mona [16] are two popularly used tools for direct LTLf-to-
DFA conversions of smaller formulas. Spot translates the
LTLf formula into an LTL formula with equivalent semantics,
converts this formula into a Büchi automaton [18], and then
transforms this Büchi automaton into a DFA. The Mona-
based approach translates LTLf into first-order logic over finite
traces (FOL) and then Mona converts the FOL formula into
a DFA. Both generate minimal DFAs in explicit state-space
representation.

DAG-based compositional approaches.: Mona also uses
directed acyclic graphs (DAGs) to represent formulas as we
do in this work [19]. The differences lie in the ways we
identify equivalent subformulas and the depth of the DAGs.
Mona identifies equivalent formulas ϕ and ϕ′ by checking
whether there is an order-preserving renaming of propositions
in ϕ such that ϕ and ϕ′ are identical, while we check the
syntax equivalence of two formulas, simpler but much more

228

efficient. Moreover, Mona’s DAG unrolls till its literals while
our DAG unrolls on boolean operators only. To the best of
our knowledge, Lisa and Lydia do not use DAG since no
intermediate DFAs are stored for later use in their source code.

Optimizations in LTL to automata conversion: The con-
version of LTL (Linear Temporal Logic) [2] to automata
forms has received much attention. While the conversion
incurs a single-exponential and double-exponential blow-up
for the non-deterministic and deterministic versions automata
versions, significant work has gone into developing optimiza-
tions for LTL to automata. However, these optimizations are
too sophisticated for LTLf to automata translations, where
relatively simpler translations have been shown to be more
effective.

IV. OPTIMIZATIONS

We propose a series of optimizations to be applied to
compositional approaches for LTLf-to-DFA conversion. The
first optimization (Section IV-A) determines the depth to
which an input formula’s AST is unrolled during formula
decomposition into smaller subformulas. The remaining two
optimizations are geared to reduce the computation required
during the composition phase by reducing the number of com-
position operations. Here, the first optimization compresses
this AST by removing duplicate subformulas (Section IV-B).
The second optimization performs semantics-preserving syn-
tactic transformations that are guaranteed to reduce the number
of composition steps (Section IV-C).

A. Depth of AST Unrolling

Our first optimization is based on the depth to which
an input LTLf formula is unrolled to obtain smaller sub-
formulas. We propose to unroll subformulas only if their
outermost operator is a boolean operator. Recall, since we
assume formulas are given in NNF, the outermost boolean
operators are effectively only the conjunction operator or the
disjunction operator as negations appear before propositions
only. Consequently, for formulas at the leaves of this tree, the
outermost operator could be any of the temporal operators.
Figure 1 illustrates such an unrolling of an AST.

We make this choice to strike a balance between the
conversion of subformulas to DFAs at the leaves vs. the
composition of DFAs at intermediate nodes to obtain the final
DFA. Prior state-of-the-art approaches Lisa and Lydia take
diametrically opposite routes in this regard. Lisa unrolls the
AST at its outermost conjunction only. I.e., given an LTLf
formula φ =

∧n
i=1 φi, Lisa decomposes the original formula

into the n-subformulas given by φis. The disadvantage of
this decomposition is that in the worst case, the φis could
be too large to be handled by an off-the-shelf LTLf-to-DFA
conversion tools like Spot or Mona. The advantage, however,
is that once the DFAs for the φis are created, the approach
requires only n−1 composition steps, where each composition
consists of polynomial-time operations of DFA product and
DFA minimization only. In contrast, Lydia unrolls the AST
completely. I.e., its leaves comprise of literals (propositions

or their negation). This ensures that the DFA at the leaf node
is obtained trivially. However, not only do the number of
composition operations increase dramatically, the composition
operations may become more complex. In particular, the
composition at nodes with a boolean operator comprise of
polynomial-time operations identical to Lisa, but the composi-
tion at nodes with temporal operators may involve exponential-
time operations such as projection and/or determinization.

Our choice to unroll only on boolean operators ensures that
all composition operations require polytime operations only
while also ensuring that the size of subformulas at the leaves
are small, hence combining the benefits of Lisa and Lydia.

B. Duplicate Removal

For our next optimization, we observe that in several
formulas, an intermediate subformula may appear more than
once in the formula’s AST. This results in redundant com-
putation during the composition phase as it generates the
DFA for equivalent subformulas multiple times. To eliminate
such redundant recomputation, we propose to merge nodes of
equivalent subformulas. This is illustrated in Figure 2 where
formula θ1 that appeared twice in Figure 1 has been merged
into one node. Such duplication removal will result in the AST
being converted to a DAG as the merged nodes are required
to serve multiple parent nodes.

In order to merge nodes in an AST, we must check if the
formulas at two or more nodes are equivalent. LTLf formula
equivalence is PSPACE-complete, hence we must resort to
computationally inexpensive approaches to identify formula
equivalence. Tools such as Spot offer inexpensive syntactic
checks to examine formula equivalence. We combine these
checks with leveraging the parent-child relationship between
nodes in the AST to identify equivalent formulas.

To elaborate further, first we identify formula equivalence
between the leaf nodes of the AST using syntactic checks,
and merge each class of equivalent formulas into one leaf
node. This converts the AST into a DAG as the merged
leaf nodes will now serve multiple parent nodes. Next, it
is easy to see that two non-leaf nodes are equivalent if
all their children nodes are identical and their operators are
identical. All such formula equivalence in non-leaf nodes can
be identified efficiently in a single bottom-up traversal of the
DAG that simultaneously merges equivalent non-leaf nodes
into one node.

Note that this procedure may fail to recognize equivalent
subformulas that do not adhere to our inexpensive checks.
Despite this incompleteness, we observe that sometimes it can
reduce the number of nodes in the AST/DAG by 30-40% in
negligible time, hence demonstrating its effectiveness.

C. Semantics-Preserving Transformation

The final optimization aims to reduce the number of com-
position steps using semantics-preserving syntactic transfor-
mation of the formula. Lemma 1 motivates our optimization:

229

v0,∨

v1,∧

θ1 θ1,1 θ1,2

· · · vk,∧

θ1 θk,1 θk,2

Fig. 1: AST unrolled on boolean
operators only.

v0,∨

v1,∧ · · · vk,∧

θ1,1 θ1,2 θ1 θk,1 θk,2

Fig. 2: After duplicate removal. θ1
has been merged.

v0,∧

θ1 v′0,∨

v′1,∧

θ1,1 θ1,2

· · · v′k,∧

θk,1 θk,2

Fig. 3: After Transformation. θ1 has
been pulled out.

Lemma 1. Consider the following formula,

ϕ = ◦′ki=1

(
(θ1 ◦ · · · θl) ◦ (θi,1 ◦ · · · θi,mi

)
)

(1)

where ◦, ◦′ ∈ {∨,∧} s.t. ◦′ ̸= ◦, and for all i ∈ [k], mi ≥ 0.
Then ϕ is equivalently written as:

ϕ′ = (θ1 ◦ · · · θl) ◦
(
◦′ki=1(θi,1 ◦ · · · θi,mi)

)
(2)

using the laws of associativity. Assuming the DFAs for all θi
and θi,j are given, the required composition steps to create
the DFA for ϕ is O(l · (k − 1)) more than those required to
create the DFA for ϕ′.

Proof. We begin with a sketch of the argument. In practice,
a product over k DFAs requires k − 1 products between two
DFAs. Now, notice that the intermediate DFA for the common
segment θc = (θ1 ◦ · · · θl) is constructed k − 1 times more in
ϕ that in ϕ′. By pulling out the common segment θc using the
laws of associativity in ϕ′, the DFA for θc is constructed only
once, amounting to the difference.

The formal argument follows: Let us first analyze the
number of products required in ϕ. For every i ∈ [k], the clause
(θ1 ◦ · · · θl) ◦ (θi,1 ◦ · · · θi,mi

) requires l +mi − 1 products.
Next, these clauses are combined using products to obtain ϕ.
Since there are k clauses, we require k−1 additional products.
Therefore, evaluating ϕ requires (k−1)+Σk

i=1(l−1+mi) =
k · l − 1 + Σk

i=1mi product operations.
Next, we analyse the number of products required in ϕ′.

For every i ∈ [k], the clause (θi,1 ◦ · · · θi,mi
) requires mi − 1

products. In addition, these k clauses are combined using k−1

products to form the DFA for
(
◦′ki=1(θi,1 ◦· · · θi,mi

)
)

. Hence,(
◦′ki=1(θi,1 ◦ · · · θi,mi

)
)

requires k − 1 + Σk
i=1(mi − 1) =

(Σk
i=1mi)−1 operations. Combined with l many θjs to obtain

ϕ′, we require l−1+Σk
i=1mi products to form ϕ′. Therefore,

constructing the DFA via ϕ′ requires O(l · (k − 1)) fewer
operations than creating the same DFA via ϕ, where l is the
number of subformulas common to k-many clauses in ϕ.

Our optimization, therefore, applies the associative law to
transform nodes of the form ϕ to nodes of the form ϕ′ in
the DAG obtained after duplicate removal. As earlier, the

transformation is carried out by an analysis of the parent-
child relations between nodes. A node v0 is eligible for the
transformation if the formula it represents is of the form ϕ,
i.e. : (a) the outermost boolean operator should differ from
the outermost boolean operator of all of its children, and (b)
all its children share a common child of their own, referring
to θc = (θ0 ◦ · · · θl) in ϕ. In the DAG, the common child
of all children is simply a common grandchild node. The
common grandchildren are obtained from the intersection of
all of children of vi’s for i ≥ 1. In Figure 2, node v0 is eligible
for the transformation with a single common grandchild in
θ. When eligible, the transformation pulls out all common
segment θc. In the DAG, this translates to promoting all
common grandchildren of v0 to direct children of v0 and
the ealier children of v0 are modified accordingly. Figure 2
to Figure 3 illustrate the transformation. Observe that the
transformation may result in the creation of new nodes such
as v′0, · · · , v′k in Figure 3.

As earlier, these transformations are carried out in a single
bottom-up traversal (reverse topological order) of the DAG
starting with the leaf nodes. In instances when the transforma-
tion results in the creation of a new node (such as v′0, v

′
1, · · · v′k

in Figure 3), the new nodes are examined for duplicates using
the earlier approach. Then the transformation is recursively
applied to v′0 first and then to v′1, · · · v′k before returning to
the next node as per the reverse topological order.

V. COMPOSITIONAL ALGORITHM

For the sake of completion, we present an outline of the
compositional algorithm. W.l.o.g., our algorithm receives an
LTLf formula in NNF and outputs a minimal DFA for the
formula. The algorithm proceeds in three phases: First is
the decomposition phase in which the input LTLf formula is
decomposed into smaller subformulas based on its AST. The
AST is unrolled on boolean operators only. This is followed
by the optimization phase in which the proposed duplication
removal and semantic-transformations are applied. As a result,
the AST is converted to a DAG. Finally, in the composition
phase, the subformulas at the leaves of the DAG, i.e. nodes
with no outgoing edges in the DAG, are converted to their

230

minimal DFA form. Next, the DAG is traversed bottom-up
starting with the leaves, i.e. the DAG is traversed in reverse
topological order. During this traversal, the minimal DFA at a
node is created if the minimal DFA at all its children have
already been constructed. The primary difference from the
AST-based composition is that the DFA at a node in the AST
can be removed from memory as soon as the DFA in its parent
node has been constructed. In the case of a DAG, the DFA at
a node is discarded only after the DFA at all its parent nodes
have been generated.

VI. IMPLEMENTATION DETAILS

We have implemented compositional algorithm in a tool
called Lisa22. Lisa2 takes an LTLf formula in NNF as its
input and outputs its minimal DFA in explicit representation.

In brief, Lisa2 extends a current state-of-the-art tool Lisa to
incorporate the optimizations described in Section IV. In de-
tail, Lisa2 has been written in C++. It uses Spot LTLf parser
to parse the input formula. The input formula is decomposed
into a DAG following the optimizations described in Sec-
tion IV. To convert the subformulas at the leaves of the DAG,
Lisa2 converts the LTLf formulas at the leaf nodes to their
equivalent first-order logic (FOL) and uses Mona to convert
the FOL formulas to their minimal DFAs. The DFAs are then
composed as described in Section V. Similar to Lisa [13],
Lisa2 deploys two performance-enhancing heuristics (a)
aggressive DFA minimization, i.e. each DFA (intermediate of
final) is minimized as soon as it is created, and (b) smallest-
first heuristic that always picks the smallest two (minimal)
DFAs to compose during a k-way product construction (for
both conjunction and disjunction).

Lisa2 generates DFA in explicit-state representation, i.e.,
the states are given explicitly and the transitions are given
as labeled formulas over the propositions of the input LTLf
formula. Lisa2 supports two datastructures to represent the
final and all intermediate DFAs: (a) Spot’s labeled graphs and
Reduced Ordered BDD (ROBDD) and (b). Mona’s Shared
Multi-Terminal BDD (ShMTBDD). We refer to these two vari-
ants of our tool as Lisa2-Spot and Lisa2-Mona, respectively.
These tool variants use the DFA manipulation APIs provided
by Spot and Mona, respectively, for all DFA operations
including the product construction and minimization.

Tool Features: By supporting both Spot and Mona,
Lisa2 is the only LTLf-to-DFA conversion tool that can
support both datastructures, adding to its versatility in applica-
tions. Another motivation to support both DFA datastructures
is to enable fair comparison for future algorithmic advances
in LTLf-to-DFA conversion tools. Prior tools Lisa and Ly-
dia support only one of the two Spot’s labeled graphs
+ ROBDD combination and ShMTBDD, respectively. These
datastructures have complementary benefits (ROBDD may be
slower but require less memory whereas ShMTBDD are faster
but are memory extensive.) and a bear significant impact
the performance of their tools. As a result, performance

2https://github.com/suguman-lab/lisa2

comparisons between prior tools are unable to differentiate
between the improvement caused by the algorithm vs. the
improvement caused by the datastructure. Thus the ability to
switch between DFA datastructures within Lisa2 creates the
opportunity for more fair comparisons of algorithmic advances
in LTLf-to-DFA tools.

A. Implementation-Level Optimizations

Lisa2 incorporates several implementation-level optimiza-
tions. Few key ones are described below.

First, formulas of the form G(
∧m

i=0 ϕi) and F(
∨m

i=0 ϕi) are
equivalently written as

∧m
i=0(Gϕi) and

∨m
i=0(Fϕi), respec-

tively, to promote deeper decomposition on boolean operators.
Had the formulas been retained in their earlier format, then
the formulas would not be decomposed any further since the
outermost operator is temporal. This optimization generates
smaller subformulas.

Second, Lisa2 already identifies few subformula duplica-
tions (using Spot’s inexpensive methods to determine formula
equivalence) during the unrolling of the formula’s AST. As a
result, the outcome of the unrolling may already be a DAG as
opposed to an AST. We do this as we observed that in some
cases, the AST obtained from unrolling on boolean operators
could become very large. Combining the unrolling with a
shallow duplication-removal curb the growth in the AST.

We observe that in practice most DAG/AST nodes do not
possess a common grandchild, making the node ineligible for
the semantics-preserving transformation. Instead, it is more
likely that several nodes possess a popular grandchild that may
be a child of most but not all children of the node. In these
cases, we perform the transformation only with the children
that share the popular grandchild.

VII. EXPERIMENTAL ANALYSIS

A. Design and Setup for Empirical Evaluation

Baselines and Fair Comparisons: We compare Lisa2 to
the three state-of-the-art baselines: Lydia, Lisa, and Lisa-
Explicit. All three tools are based on compositional algorithms.
They differ in the depth of unrolling, few algorithmic details,
and the underlying DFA datastructure. Lydia unrolls to
the literals whereas Lisa and Lisa-Explicit unroll on the
outermost conjunction only. In terms of DFA data structure,
Lydia uses Mona’s ShMTBDD while Lisa and Lisa-
Explicit use Spot’s labeled-graphs and ROBDDs. Since tool
performance is known to be impacted by the DFA datastruc-
ture, we establish the following fair comparisons:

• Lisa2-Mona vs. Lydia
• Lisa2-Spot vs. Lisa and Lisa-Explicit

All tools accept inputs in Spot-parsable format, ensuring
consistency among tools in input format.

231

Benchmarks: We use benchmarks from the LTLf-track at
SYNTCOMP 20233. We evaluate on 490 benchmarks of which
400 formulas are generated randomly and the remaining 90
are structured formulas derived from the ”two-player games”
category. Among the structured benchmarks, we use 20, 10,
and 60 benchmarks from the single counter, double counter,
and nim benchmark classes, respectively.

Set-up: All experiments were conducted on a single node
of a high-performance cluster (https://pace.gatech.edu/). Each
node consists of four quad-core Intel-Xeon processors running
at 2.6 GHz with 4hrs timeout and 16GB of RAM each.

B. Performance-Related Observations

We begin by examining the performance of Lisa2 against its
counterparts w.r.t. runtime and number of benchmarks solved.
Overall, Lisa2 not only solves more benchmarks that all other
counterparts, it also improves the runtime significantly. Most
remarkable is its performance on the structured benchmarks
where Lisa2 solves ∼50% more benchmarks and displays
runtime improvements in the range of 2x-8000x. We describe
our observations and inferences in detail below.

Lisa2 demonstrates the best overall performance: The
cactus plots of the performance of all tools in Figure 4a
(cactus plot on all benchmarks) and Figure 4b (cactus plot
on structured benchmarks only) demonstrate that variants of
Lisa2 solve the most number of benchmarks in both cases.
Recall the fair comparisons from the previous section. We
observe that on all benchmarks, Lisa2 Mona outperforms
Lydia and Lisa2-Spot is comparable to/better than its fair
counterparts.

Lisa2 comprehensively outperforms its fair counterparts
on structured benchmarks. Lisa2-Spot solves almost twice
as many benchmarks that its fair counterparts while Lisa2-
Mona solves ∼40% more benchmarks than Lydia. This high-
lights the benefits of our optimizations on realistic bench-
marks. More broadly, it reflects the merits of identifying and
leveraging patterns appearing in structured (realistic) formulas.

Next, we examine each structured benchmark class in detail.
Lisa2 performs remarkably on the nim benchmarks.:

Both variants of Lisa2 outperform their fair counterparts by
a large margin in both, the number of benchmarks solved
and runtime. Lisa2 solves almost twice as many benchmarks
as their counterparts (Figure 5). Furthermore, the runtime
speedup ranges between 2x-8000x with most benchmarks
displaying greater than 500x speedup on Mona’s ShMTBDD
data structure; and on average 5x speedup on Spot’s labeled-
graph and ROBDD data structure (Table I).

This outcome is impressive as the nim-benchmarks had
proven to be challenging for prior compositional approaches.
This occurs since on these benchmarks the intermediate (min-
imal) DFAs tend to be very large even though final (mininal)

3SYNTCOMP: https://www.syntcomp.org. Benchmarks were taken from
https://github.com/whitemech/finite-synthesis-datasets/tree/main. We chose
benchmarks from the whitemech repository because (a). All SYNTCOMP23
benchmarks in LTLf track were obtained by converting the whitemech
benchmarks to TLSF format, (b). All baseline tools natively support the format
used in whitemech as opposed to the TLSF format used by SYNTCOMP.

0 50 100 150 200 250
Number of solved cases over time

300 350

1e8

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Ti
m

eo
ut

 (
in

 m
ill

is
ec

on
ds

)

Lisa2
Lisa2

(a) Cactus plot: All benchmarks. Timeout 4hrs

0 10 6020 30 40 50
Number of solved cases over time

2.0

1.5

1.0

0.5

0.0

2.5

3.0

3.5

Ti
m

eo
ut

 (i
n

m
illi

se
co

nd
s)

1e7
Swift-mona
Swift-spot
Lydia
Lisa
Lisa-exp

Lisa2
Lisa2

(b) Cactus plot: Structured benchmarks. Timeout 4hrs

Fig. 4: Overall Performance

DFA is quite small. Hence, it is not uncommon for Lisa or
Lydia to fail at an intermediate stage due to memory or time
shortage. We attribute Lisa2’s success to our optimizations
in reducing the number of compositional steps. For most
benchmarks in the nim-class, after duplication removal and
semantic transformations, the resulting DAG comprised of 5-
20% fewer compositions steps than the AST obtaining from
unrolling on boolean operators only. In another class of nim-
benchmarks derived from [20], this reduction even ranged
between 20-50%, resulting in better performance gain.

These experiments clearly demonstrate the advantage of
reducing the composition steps.

Performance on counter benchmarks: On the single- and
double-counter classes of benchmarks, Lisa2-Mona demon-
strates 1.4x-100x runtime improvement over Lydia. Whereas,
Lisa2-Spot displays 1.5x-100x runtime improvement over
Lisa but is sometimes slower than Lisa-Explicit, as demon-
strated in Table II.

We attribute the performance of Lisa2 on the counter

232

Fig. 5: Number of benchmarks solved on the nim class. x- and
y-axes denote benchmark class (total instances in brackets) and
num. of benchmarks solved, respectively.

Cases Lisa2-Mona Lydia Lisa2-Spot Lisa Lisa-exp
nim 01 1 10 21 10 0 0
nim 01 2 30 44 20 0 0
nim 01 3 30 89 40 10 10
nim 01 4 50 277 50 20 10
nim 01 5 50 1087 80 50 40
nim 01 6 80 4413 100 120 100
nim 01 7 90 16929 110 210 220
nim 01 8 120 64115 160 - -
nim 01 9 190 181994 200 - -
nim 01 10 230 780581 240 - -
nim 01 11 380 1652381 330 - -
nim 01 12 420 3203658 360 - -
nim 01 13 620 - 560 - -
nim 01 14 820 - 780 - -
nim 01 15 2220 - 910 - -
nim 01 16 9780 - 810 - -
nim 01 17 49100 - 810 - -
nim 01 18 - - 1300 - -
nim 01 19 108890 - 1490 - -
nim 01 20 - - 1820 - -
nim 02 1 20 69 30 20 10
nim 02 2 40 483 80 60 80
nim 02 3 80 5979 180 380 400
nim 02 4 130 92548 380 2040 1760
nim 02 5 200 650682 820 - -
nim 02 6 350 3574672 2430 - -
nim 02 7 480 - 8890 - -
nim 02 8 1150 - 76890 - -
nim 02 9 2540 - 348840 - -
nim 02 10 3950 - 466940 - -
nim 02 11 - - - - -
nim 02 12 17690 - 452700 - -
nim 02 13 - - - - -
nim 02 14 - - - - -
nim 02 15 - - 3970670 - -
nim 03 1 60 465 110 160 160
nim 03 2 160 52220 810 3050 3260
nim 03 3 1110 1653251 27080 - -
nim 03 4 2110 - 91610 - -
nim 03 5 4000 - 396780 - -
nim 03 6 7270 - 1215350 - -
nim 04 1 180 23813 1050 3920 4520
nim 04 2 2540 7083597 75430 - -
nim 04 3 - - 1670340 - -
nim 04 4 - - 6634310 - -
nim 05 1 1310 755274 23500 112100 123220
nim 05 2 - - 1718010 - -

TABLE I: Runtime in millisecs for nim. Timeout 4hrs

Cases Lisa2-Mona Lydia Lisa2-Spot Lisa Lisa-exp
counter 1 10 7 10 10 10
counter 2 10 17 40 60 60
counter 3 10 33 310 560 540
counter 4 10 57 20 10 10
counter 5 20 82 20 30 10
counter 6 50 156 50 60 30
counter 7 200 371 170 300 100
counter 8 810 1111 690 9560 290
counter 9 3520 4212 2870 125350 990
counter 10 15190 16611 14770 113410 3700
counter 11 66390 76345 61690 - 15130
counter 12 366250 474631 277750 - 90000
counter 13 1910580 2419211 1762580 - 430210
counter 14 9241030 10013917 7970190 - -
counter 15 - - - - 550
counters 1 10 17 50 80 70
counters 2 10 55 10 10 10
counters 3 20 150 30 80 30
counters 4 80 1103 130 1220 170
counters 5 600 25784 1000 29540 1060
counters 6 7850 660391 8090 941940 7380
counters 7 74590 - 60060 - 47080

TABLE II: Runtime in millisecs for counters. Timeout 4hrs.

benchmarks to the unrolling depth. This is because for
most of these benchmarks, duplication removal and semantic
transformation did not result in any significant reduction in
composition steps as the benchmarks exhibit neither multiple
occurrences of a subformula nor are their patterns amenable
to the syntactic transformation. We observed that Lydia would
fail because of the accumulation in number and size of
intermediate DFAs in its AST that unrolls till the literals.
This is aggravated by the ShMTDD datastructure to represent
DFAs as they can become memory extensive. On the other
hand, on these benchmarks, Lisa and Lisa-Explicit benefit
from the shallowest unrolling. Lisa2-Spot unrolls the formula
deeper than Lisa and Lisa-Explicit, resulting in many more
composition steps. The runtime of Lisa2-Spot compared to
Lisa-Explicit is further affected as the underlying datastructure
of Spot’s labeled graphs and ROBDDs are known to result in
slower compositions.

A closer examination of this class of benchmark revealed
a potential avenue for improvement. While the formulas did
not have duplicates, they had several symmetric subformulas
upto propositional isomorphism. Further optimizations based
on leveraging such similarities within such formulas could
further improve the performance of LTLf-to-DFA conversion
tools, including ours.

Lisa2-Spot vs. Lisa2-Mona.: We compare the perfor-
mance of Lisa2-Spot and Lisa2-Mona. Note that here the
underlying algorithm is identical. The only difference between
the two is the choice of datastrcture for DFA representations.
As a result, we expect this experiment to highlight the impact
of datastructure on a tool’s performance.

Our observations confirm that the datastructure plays a vital
role in a tool’s performance, as we observe that the tools
Lisa2 Mona and Lisa2-Spot display the same differences
displayed by the underlying datastrcuture, i.e. the observed
trend is that Lisa2-Mona consumes more memory but is
faster while Lisa2-Spotmay be slower but it consumes lesser

233

Cases Lisa2-Spot
Lisa2-Spot
(Dup. Rem.
only)

Lisa2-Mona
Lisa2-Mona
(Dup. Rem.
only)

nim 01 01 10 20 10 10
nim 01 02 20 20 30 20
nim 01 03 40 40 30 40
nim 01 04 50 60 50 50
nim 01 05 80 70 50 70
nim 01 06 100 100 80 90
nim 01 07 110 120 90 110
nim 01 08 160 150 120 140
nim 01 09 200 170 190 230
nim 01 10 240 210 230 210
nim 01 11 330 290 380 280
nim 01 12 360 350 420 440
nim 01 13 560 500 620 640
nim 01 14 780 570 820 870
nim 01 15 910 690 2220 1750
nim 01 16 810 810 9780 4270
nim 01 17 810 780 49100 50760
nim 01 18 1300 1170 - -
nim 01 19 1490 1400 108890 81370
nim 01 20 1820 1700 - -
nim 02 01 30 40 20 30
nim 02 02 80 80 40 40
nim 02 03 180 180 80 90
nim 02 04 380 400 130 140
nim 02 05 820 770 200 220
nim 02 06 2430 2240 350 330
nim 02 07 8890 4870 480 510
nim 02 08 76890 66990 1150 1150
nim 02 09 348840 276800 2540 2380
nim 02 10 466940 4576480 3950 5000
nim 02 11 - 2953960 - 6930
nim 02 12 452700 299940 17690 18400
nim 02 13 - 13147500 - -
nim 02 14 - - - -
nim 02 15 3970670 4717260 - -
nim 03 01 110 100 60 60
nim 03 02 810 700 160 170
nim 03 03 27080 8580 1110 640
nim 03 04 91610 173470 2110 1800
nim 03 05 396780 314470 4000 5810
nim 03 06 1215350 9473690 7270 -
nim 04 01 1050 890 180 210
nim 04 02 75430 104110 2540 2120
nim 04 03 1670340 1093050 - -
nim 04 04 6634310 14091500 - -
nim 05 01 23500 17230 1310 1070
nim 05 02 1718010 5659390 - -

TABLE III: Ablation Study: Runtime in millisecs for nim
benchmarks on Lisa2 and its version with the duplicate
removal optimization (i.e. no semantic transformation) only.
The lower runtime is in bold. Timeout 4hrs.

memory, hence is capable to solve more benchmarks.
These observations further highlight the need for fair com-

parisons in LTLf-to-DFA conversions that we raised earlier,
hence reflects on the importance of tools supporting both
datastrucutres for DFA representation.

C. Ablation Study

Finally, we perform an ablation study to examine the effect
of each optimization individually. Together the optimizations
of duplicate removal and syntactic transformation reduce
the number of composition operations. We are interested in
studying their effects individually. For this, we compare the

performance of Lisa2 (under each DFA datastructure choice)
against its own version in which the syntactic transformation
has been disabled, i.e., they only applied duplicate removal.

Figure 5 demonstrates the performance of Lisa2-Spot and
Lisa2-Mona against their variants that perform duplicate
removal only. Apriori, one would imagine that compounding
reduction in composition steps through duplicate removal and
syntactic transformation would result in improved performance
(both in number of benchmarks solved and runtime). How-
ever, Figure 5 demonstrates that in some cases (nim 02) the
variant that only performed duplicate removal solved more
benchmarks. This surprising result led us to further examine
the runtime of these tools, shown in Table III. This reveals
that there are a significant number of cases where only per-
forming duplicate removal performed better than compounding
both optimizations and there are equally many cases where
compounding optimizations displayed the stronger runtime
performance. In either case, the overall runtime performance
is still an improvement over prior state-of-the-art tools.

In order to understand this behavior, we first ascertained
that each optimization consumes such a negligible amount of
time that it cannot be considered to be the reason behind run-
time decline. Similarly, we ascertained that each optimization
contributed to reducing the number of composition steps.

We conclude that the unpredictability, despite the reduction
in number of composition steps, arises due to the creation of
new nodes (new subformulas) after syntactic transformation.
To elaborate further, syntactic transformations may result in
creating subformulas that were not originally present in the
input formula. It is possible that the new formulas are such
that even though their DFA construction may require fewer
composition steps, these steps may be more expensive as an
intermediate DFA may be difficult to create. This results in
unpredictability in performance when both optimizations are
compounded. In contrast, duplicate removal never creates any
new node (new subformula). It only reduces the number of
times some nodes may be computed. Hence, duplicate removal
will always reduce the overall runtime.

VIII. CONCLUDING REMARKS

This work presents Lisa2 which incorporates a series
of simple-yet-effective optimizations for compositional ap-
proaches for LTLf-to-DFA conversion. Empirical evaluations
of this tool displays significant performance improvement,
especially on structured benchmarks derived from real-world
scenarios: Lisa2 solves ∼50% more benchmarks and shows
runtime improvement in the range of 1.5x-8000x.

Our optimizations are based on reducing the number of
composition steps required to construct the desired DFA.
Despite the remarkable performance of Lisa2, our experiments
reveal that simply reducing the number of composition steps
may not be sufficient, especially if the reduction is accom-
panied with the creation of new subformulas for which DFA
construction may be hard to generate.

We also emphasize on the need for fair comparison to
compare algorithmic advances. This is crucial for LTLf-to-

234

DFA conversion as the choice of datastructure for DFAs have
a significant impact on a tool’s performance.

Acknowledgements: We thank Marco Favorito and Kuldeep
Meel for their help in setting up baseline tools. We thank
the anonymous reviewers for their valuable feedback. This
work has been supported by the EPSRC through grant
EP/X021513/1 and Georgia Institute of Technology’s Presi-
dential Undergraduate Research Award for Fall 2023.

REFERENCES

[1] G. De Giacomo and M. Y. Vardi, “Linear temporal logic and linear
dynamic logic on finite traces,” in IJCAI. AAAI Press, 2013, pp. 854–
860.

[2] A. Pnueli, “The temporal logic of programs,” in FOCS. IEEE, 1977,
pp. 46–57.

[3] A. Camacho, E. Triantafillou, C. Muise, J. Baier, and S. McIlraith, “Non-
deterministic planning with temporally extended goals: Ltl over finite
and infinite traces,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 31, no. 1, 2017.

[4] G. De Giacomo, F. M. Maggi, A. Marrella, and F. Patrizi, “On the
disruptive effectiveness of automated planning for ltlf-based trace align-
ment,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 31, no. 1, 2017.

[5] J. A. Baier and S. McIlraith, “Planning with temporally extended goals
using heuristic search,” in ICAPS. AAAI Press, 2006, pp. 342–345.

[6] M. Lahijanian, S. Almagor, D. Fried, L. E. Kavraki, and M. Y. Vardi,
“This time the robot settles for a cost: A quantitative approach to
temporal logic planning with partial satisfaction.” in AAAI. AAAI
Press, 2015, pp. 3664–3671.

[7] R. Brafman, G. De Giacomo, and F. Patrizi, “LTLf/LDLf non-markovian
rewards,” in AAAI, vol. 32, no. 1, 2018.

[8] A. Camacho, R. T. Icarte, T. Q. Klassen, R. A. Valenzano, and S. A.
McIlraith, “LTL and beyond: Formal languages for reward function
specification in reinforcement learning.” in IJCAI, vol. 19, 2019, pp.
6065–6073.

[9] K. Jothimurugan, S. Bansal, O. Bastani, and R. Alur, “Compositional
reinforcement learning from logical specifications,” Advances in Neural
Information Processing Systems, vol. 34, pp. 10 026–10 039, 2021.

[10] M. Pesic, D. Bosnacki, and W. M. P. van der Aalst, “Enacting declarative
languages using LTL: avoiding errors and improving performance,” in
SPIN. Springer, 2010, pp. 146–161.

[11] S. Bansal, Y. Li, L. M. Tabajara, M. Y. Vardi, and A. Wells, “Model
checking strategies from synthesis over finite traces,” in International
Symposium on Automated Technology for Verification and Analysis.
Springer, 2023, pp. 227–247.

[12] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,”
in CAV. Springer, 1999, pp. 172–183.

[13] S. Bansal, Y. Li, L. Tabajara, and M. Vardi, “Hybrid compositional
reasoning for reactive synthesis from finite-horizon specifications,” in
AAAI, vol. 34, no. 06, 2020, pp. 9766–9774.

[14] G. De Giacomo and M. Favorito, “Compositional approach to translate
LTLf/LDLf into deterministic finite automata,” in Proceedings of the In-
ternational Conference on Automated Planning and Scheduling, vol. 31,
2021, pp. 122–130.

[15] A. Duret-Lutz, E. Renault, M. Colange, F. Renkin, A. G. Aisse,
P. Schlehuber-Caissier, T. Medioni, A. Martin, J. Dubois, C. Gillard,
and H. Lauko, “From spot 2.0 to spot 2.10: What’s new?” in Computer
Aided Verification - 34th International Conference, CAV 2022, Haifa,
Israel, August 7-10, 2022, Proceedings, Part II, ser. Lecture Notes in
Computer Science, S. Shoham and Y. Vizel, Eds., vol. 13372. Springer,
2022, pp. 174–187.

[16] J. G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, R. Paige,
T. Rauhe, and A. Sandholm, “Mona: Monadic second-order logic in
practice,” in TACAS. Springer, 1995, pp. 89–110.

[17] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Transactions on Computers, vol. 100, no. 8, pp. 677–691,
1986.

[18] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper, “Simple on-the-fly
automatic verification of linear temporal logic,” in PSTV. Springer,
1995, pp. 3–18.

[19] N. Klarlund and A. Møller, MONA Version 1.4: User Manual, Jan 2001.

[20] L. M. Tabajara and M. Y. Vardi, “Partitioning techniques in LTLf
synthesis,” in IJCAI. AAAI Press, 2019, pp. 5599–5606.

235

	Introduction
	Preliminaries and Notations
	Linear Temporal Logic over Finite Traces (LTLf)
	Abstract Syntax Tree

	Related Work
	Optimizations
	Depth of AST Unrolling
	Duplicate Removal
	Semantics-Preserving Transformation

	Compositional Algorithm
	Implementation Details
	Implementation-Level Optimizations

	Experimental Analysis
	Design and Setup for Empirical Evaluation
	Performance-Related Observations
	Lisa2 demonstrates the best overall performance
	Performance on counter benchmarks

	Ablation Study

	Concluding Remarks
	References

