
Formal Methods in Computer-Aided Design 2024

Clausal Equivalence Sweeping
Armin Biere

University Freiburg
Freiburg, Germany

biere@cs.uni-freiburg.de

Katalin Fazekas
TU Wien

Vienna, Austria
katalin.fazekas@tuwien.ac.at

Mathias Fleury
University Freiburg
Freiburg, Germany

fleury@cs.uni-freiburg.de

Nils Froleyks
Johannes Kepler University

Linz, Austria
nils.froleyks@jku.at

Abstract—The state-of-the-art to combinational equivalence
checking is based on SAT sweeping. It recursively establishes
equivalence of internal nodes of two circuits to prove equivalence
of their outputs. The approach follows the topological order
from inputs to outputs and makes use of simulation to refine
the set of potentially equivalent nodes to reduce the number of
SAT solver queries. This non-uniform hybrid reasoning, using
both the circuit structure and a clausal encoding, is complex to
orchestrate. In earlier work, clausal encoding was avoided using
a dedicated circuit-aware SAT solver. Instead, we propose to
perform SAT sweeping directly on the clausal encoding of the
complete equivalence checking problem within the SAT solver, but
again relying on a second, dedicated, internal SAT solver. Both
SAT solvers work on a clausal representation. This allows to
transparently make use of all the advanced reasoning capabilities
of the SAT solver, particularly pre- and inprocessing techniques.

Index Terms—Equivalence Checking, SAT Sweeping, Miters,
Equivalence Reasoning, Conjunctive Normal Form, Backbones.

I. INTRODUCTION

Hardware equivalence checking is considered one of the old-
est and most successful industrial formal verification techniques.
Its purpose is to formally prove that a synthesized circuit
matches its golden model. While early approaches [1] relied on
binary decision diagrams (BDDs), more recent approaches rely
on SAT sweeping [2]. It is fair to assume that SAT sweeping
is important in commercial equivalence checking tools too.

The state-of-the-art [3]–[8] uses a hybrid approach to detect
equivalent literals through SAT sweeping. It follows the
topological structure of the two compared circuits and uses
incremental queries to the SAT solver as well as dedicated
SAT solving engines which can be made aware of the circuit
structure too [4]–[6]. It can also focus the SAT solving effort
on small parts of the circuit, which avoids the overhead in
having the SAT solver deal with the full combined problem.

This hybrid approach is in contrast to a monolithic approach,
advertised in this paper, in which the equivalence checking
problem (the miter [9]) is translated once as a whole into
a clausal representation in conjunctive normal form (CNF)
and then simply given to a SAT solver. The advantage
of the monolithic approach is that it can easily make use
of sophisticated preprocessing [10] and inprocessing [11]
techniques implemented in modern SAT solvers.

This work was supported by the state of Baden-Württemberg through
bwHPC, the German Research Foundation (DFG) through grant INST
35/1597-1 FUGG, by the Austrian Science Fund (FWF) under project No.
T-1306, and by a gift from Intel Corporation.

In this paper we combine the benefits of both approaches
by using within the main SAT solver (KISSAT) a second
embedded simple SAT solver (KITTEN) for SAT sweeping
directly on CNF. This not only improves monolithic solving
of miters substantially but also reduces solving time on other
formulas in CNF for which no circuit structure is available.

Hybrid SAT sweeping relies on structural hashing to remove
isomorphic parts of the miter. For instance, when comparing
two identical copies of the same circuit, structural hashing
alone can prove equivalence. In the monolithic approach this
is much harder, at least for plain CDCL solving [10], which
empirically fails on such isomorphic miters [12], [13].

Our recent work [14] on clausal congruence closure allows
to simulate structural hashing on the CNF level. It relies on
gate extraction and succeeds in solving such simple isomorphic
miters instantly. Alone it falls far behind hybrid approaches
on more practically relevant miters checking equivalence of
optimized (synthesized) and original (golden) circuits, unless
it is combined with clausal equivalence sweeping, presented
in this paper. This monolithic sweeping approach has not been
described nor evaluated in the literature before, except briefly
being mentioned in system descriptions of KISSAT in SAT
competition proceedings [15], [16]. For more related work
from the SAT and CP community see [14], [17], [18].

II. PRELIMINARIES

We assume the reader is familiar with standard notations
in SAT, i.e., we work with formulas F in conjunctive normal
form (CNF), usually denoted as a set F = {C1, . . . , Cm}.
Each clause C is a set of literals C = {l1, . . . , ln}, with each
literal l being a variable v or its negation v. We also use
logical notation F = C1 ∧ · · · ∧ Cm and C = l1 ∨ · · · ∨ ln as
well as logical negation ¬v = v̄ and assume ¬¬l = l. Besides
variables we also use the Boolean constants B = {0, 1}.

The variables are taken from a fixed set V , which we assume
to be totally ordered via ≤. The variable v of a literal l is
obtained as |l| = v, meaning l = v or l = ¬v. The variable
order yields a preorder on the set of all literals, denoted as L,
and the Boolean constants as follows: l ≤ l′ iff |l| ≤ |l′| and
0, 1 ≤ l for all l, l′ ∈ L (note l ≤ ¬l and ¬l ≤ l). We also
use the irreflexive version <, where additionally |l| ≠ |l′|.

With V(C) = {|l| | l ∈ C} and V(F) = {V(C) | C ∈ F}
we denote the set of variables of a clause and a formula and
similarly for L(C) and L(F) for its literals. Let |S| refer to
the number of elements of a set S.

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 29 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0000-0001-7170-9242
mailto:biere@cs.uni-freiburg.de
https://orcid.org/0000-0002-0497-3059
mailto:katalin.fazekas@tuwien.ac.at
https://orcid.org/0000-0001-7170-9242
mailto:fleury@cs.uni-freiburg.de
https://orcid.org/0000-0003-3925-3438
mailto:nils.froleyks@jku.at
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_29
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_29
https://creativecommons.org/licenses/by/4.0/

full-sweeping (CNF G)
1 literal representative ρ : L → L ∪ B with ρ(l) = l
2 if G is unsatisfiable return λl.(l ̸= |l|) // map v ↦→ 0

3 pick initial assignment σ with σ(G) = 1
4 backbone candidates B ← {l ∈ L(G) | σ(l) = 1}
5 equivalent literals partition P ← {B}
6 while B ̸= ∅
7 pick l ∈ B and set B ← B\{l}
8 if exists model σ with σ(G ∧ ¬l) = 1 // SAT call
9 B ← {l ∈ B | σ(l) = 1} // refine backbone

10 P ← refine (P , σ) // refine partition
11 else
12 ρ ← propagate (G, ρ ◦ {l ↦→ 1} ◦ {¬l ↦→ 0})
13 remove from L ∈ P all l ∈ L with ρ(l) ∈ B
14 G ← ρ(G)
15 while exists literal class L ∈ P with |L| > 1
16 pick k, l ∈ L with k < l
17 if exists σ with σ(G ∧ l ∧ ¬k) = 1 or // SAT call
18 σ(G ∧ ¬l ∧ k) = 1 // SAT call
19 P ← refine (P , σ) // refine partition
20 else
21 ρ ← ρ ◦ {l ↦→ k} ◦ {¬l ↦→ ¬k}
22 remove l from L in P
23 return ρ

Fig. 1: Pseudo code of our full SAT sweeping routine, which in
practice is only applied to variable environments (cf. Fig.4/5).
We use the ‘◦’ operator to denote function composition.

An assignment σ : V → B is extended to literals, clauses
and formulas by applying Boolean simplification. A formula
F is satisfiable if there is an assignment σ with σ(F) = 1, also
called satisfying assignment or model. Let ⊥ = {∅} denote the
unsatisfiable CNF consisting of the empty clause ∅. Given a
satisfiable formula F , a literal l is a backbone of F if σ(l) = 1
for all models σ of F . This can be checked by showing that
F ∧ ¬l is unsatisfiable. Two literals k and l are equivalent if
σ(k) = σ(l) in all models σ of F . This can be checked by
showing that F ∧ l∧¬k is unsatisfiable as well as F ∧¬l∧ k.

III. ALGORITHM

Our unbounded algorithm for full-sweeping is shown in
Fig. 1. It returns a mapping ρ of the literals L of the given
formula to literals or to Boolean constants B = {0, 1}. We
further assume ρ(¬l) = ¬ρ(l) and ρ(l) ≤ l as it is common
in this kind of union-find data-structure.

The entire sweeping algorithm has three phases. First, lines
1–5, it tries to find a satisfying assignment σ. If none exists,
an arbitrary constant mapping ρ is returned, i.e., ρ(v) = 0 for
all v ∈ V , guaranteed to falsify at least one clause. Otherwise,
σ is used to determine the backbone candidates B (literals set
to true) and an initial equivalence class of literals also all set
to true. Note that thereby negations of these literals are also
considered potentially equivalent with each other.

refine (P , σ)
1 R ← ∅
2 for all L ∈ P
3 Li ← {l ∈ L | σ(l) = i} for i ∈ B
4 if L0 = ∅ or L1 = ∅ then R ← R ∪ {L}
5 else R ← R ∪ {L0} ∪ {L1}
6 return R

Fig. 2: Refinement of equivalent literal partition.

propagate (CNF F , literal mapping ρ : L → L ∪ B)
1 F ← ρ(F) // pre-simplify
2 while ∅ ̸∈ F and there is a unit clause {l} ∈ F
3 ρ ← ρ ◦ {l ↦→ 1} ◦ {¬l ↦→ 0}
4 F ← ρ(F) // simplify
5 return ρ

Fig. 3: Unit propagation on a literal mapping.

In the second phase, lines 6–14, each remaining l in the
backbone candidate set B is checked to have a model of the
formula falsifying l. If such a model exists, we remove all
falsified literals from B in that model and refine the equivalence
classes in the partitioning according to Fig. 2 by splitting
classes inconsistent with that model into one class of literals
assigned to 0 and one class of literals assigned to 1. Otherwise,
there is no model of the formula which sets the considered
backbone candidate l to 0. So we update ρ by setting l
permanently to 1 and ¬l to 0 and propagate this information
over the formula, as shown in Fig. 3, which might deduce
additional constant assignments. Afterwards, the formula is
simplified (line 14) by applying the updated mapping.

In the third phase, lines 15–22, after backbone extraction, we
check for each pair of remaining equivalent literals candidates,
within the same equivalence class, whether there exists a model
of the formula with the two literals assigned to different values.
If this is the case we split their equivalence class as well as
all other equivalence classes which are inconsistent with the
model. Otherwise, we have shown that these two literals are
equivalent and record that information by mapping the larger
literal to the smaller (and accordingly their negations).

This procedure calls a SAT oracle in three places and as
such is not really useful to simplify a formula for which we
only want to know whether it is satisfiable. Thus in order to
use this sweeping procedure in the context of SAT solving,
we have to limit the effort put into these SAT calls. There are
two obvious ways to achieve this. Either we replace the oracle
calls by some cheaper procedure to limit the run-time of the
oracle or we apply full sweeping only to a subset of literals.

We have explored the first option before in LINGELING [19]
and SPLATZ [20] without much success though. Therefore,
KISSAT uses the second approach, shown in Fig. 4. As in
hybrid approaches [4]–[6], we focus each full-sweeping only
on a small part of the formula, assuming that the cheap-to-
detect equivalences are between literals close to each other.

237

bounded-sweeping (CNF F , bound k ∈ N)
1 working set Γ ← V(F) // all variables in F

2 while Γ ̸= ∅
3 pick v ∈ Γ and set Γ ← Γ\{v}
4 G ← environment ({v}, ∅, F , k)
5 ρ ← full-sweeping (G) // sweep environment clauses
6 ρ ← propagate (F , ρ) // propagate ρ on whole F

7 F ′ ← ρ(F) // simplify F with ρ

8 if ∅ ∈ F ′ return ⊥ // return CNF with empty clause
9 Γ ← Γ ∪ V(F ′\F) // add variables in changed clauses

10 F ← F ′

11 return F

Fig. 4: Pseudo code of our bounded SAT sweeping routine.

environment (variables V , CNF G, CNF F , bound k ∈ N)
1 if k = 0 return G
2 G′ ← {C ∈ F | V ∩ V(C) ̸= ∅} // clauses with V

3 V ′ ←
⋃︁
V(G′) // variables in clauses with V

4 return environment (V ′, G′, F , k − 1)

Fig. 5: Compute bounded environment of a variable.

To this extent we consider two variables (and thus their
literals) to be “very close” if they occur in the same clause and
extend this notion recursively in a breadth-first manner limited
by some bound k, i.e., the distance between two variables.
We further decided to restrict the part of a formula to which
full sweeping is applied to consist of all clauses containing
variables a maximum distance away from a given variable v,
i.e., the environment of v as shown in Fig. 5.

The bounded-sweeping algorithm goes over all variables v
of the formula and performs full sweeping on the environment
of v. The whole formula is then simplified by applying the
mapping ρ obtained from the full sweeping of the environment
(line 7). All variables in clauses that changed during that
simplification are reconsidered (line 9). This approach is sound
as both local backbones and equivalences of a sub-formula
are of course also backbones and equivalences of the whole
formula. It is obviously not complete but gives substantial
improvements in practice, as our experiments will show.

IV. IMPLEMENTATION

The use of a dedicated light-weight SAT solver in hybrid
approaches (cf. [6]) provided the motivation to explore using
a separate light-weight little SAT solver (KITTEN) within our
full-blown state-of-the-art big SAT solver (KISSAT). This al-
lows to (i) solve only parts of a big formula by copying it, and
(ii) avoids any other interaction of solving the small problems
such as keeping statistics, variable scores etc. untouched, and
(iii) allows to record proofs in memory in case it becomes
necessary to export proofs from the small to the big solver,
without the need to support this feature in the big solver.

Although clausal equivalence sweeping, presented in this
paper, was the first application of KITTEN inside KISSAT, it

was also used to mine definitions [21], [22], and to improve
bounded variable elimination [23]. The article on definition-
mining [21] contains implementation details about KITTEN.

Most of the time SAT calls during sweeping in Fig. 1 are of
course satisfiable as otherwise the formula would radically
simplify. Even though often trivial to solve (few or no
conflicts), these satisfiable queries are relatively expensive, as a
full model of the environment has to be constructed, i.e., at least
linear in the number of variables in the environment. Motivated
by the usefulness of model rotation in MUS extraction [24],
we added an API call “kitten_flip_literal” to KITTEN,
which checks after a model has been found, whether the value
of a single literal can be flipped, without falsifying any clause.

Flipping can be implemented efficiently by traversing only
the clauses watched by that literal, an insight which helped
to improve stand-alone backbone extraction [25] (after porting
it to CADICAL). Without using watches, model rotation
appears to be too costly [26]. In our implementation of clausal
equivalence sweeping, we aggressively use literal flipping
whenever we find a model (at line 9 and 19 in Fig. 1) to refine
both backbone candidates and the equivalent literal classes,
i.e., any backbone candidate and any literal in an equivalence
literal class can be removed if it can be flipped. This technique
reduces the number of full satisfiable queries substantially.

Despite a small bound of distance k = 3 (which actually
starts at k = 2 and only is increased to k = 3 in the next
inprocessing round after successful completion of sweeping),
we also limit the number of variables (213 = 8192) and
clauses (215 = 32768) allowed in an environment. Still,
also in contrast to clausal congruence closure [14], clausal
equivalence sweeping is too costly to run until completion on
larger instances. Therefore we limit the effort (time spent in
KITTEN measured in “ticks” – an approximation of cache line
accesses) relative to the time spent during CDCL, as with other
inprocessing procedures, preempt sweeping and continue later
with the remaining variables in the next inprocessing round.

V. BENCHMARKS

We evaluated our approach on problems of the hardware
model checking competition (HWMCC) from 2012 [27] and
2020 [28] and from the SAT competition 2022 and 2023. The
AIGER [29] problems from HWMCC are encoded into CNF
based on detecting and encoding XOR and ITE gates in an
optimized way instead of the default AND gate encoding.

Moreover, each miter comes in two versions: iso and opt.
The former (iso) compares each circuit with an isomorphic
copy of itself, while the latter set (opt) uses the command dc2
of ABC to optimize the original circuit and then compares this
optimized circuit with the original circuit [30]–[32].

Evaluating our technique on SAT competition benchmarks
allows us to assess the potential overhead and benefits of our
approach on more general SAT instances that may have less
underlying structure which can be exploited by our technique.

VI. EXPERIMENTS

We implemented our approach in KISSAT and evaluated its
performance on the bwForCluster Helix, utilizing AMD Milan

238

0 1000 2000 3000 4000 5000

26
0

28
0

30
0

32
0

34
0 100% = 341 instances50 sec 500 sec

341 abc−fraig
341 kissat−default
341 kissat−proof
341 kissat−no−sweep
340 dpr−trim
339 kissat−no−congruence
329 kissat−no−congruence−no−sweep

Fig. 6: Number of solved isomorphic miters (y-axis) from 341
HWMCC’12 benchmarks in the given time (x-axis in seconds).
The legend displays the number of solved instances per solver.

EPYC 7513 CPUs, with 15 GB of memory and 5000 second
time limit. All plots follow the SAT competition set-up [33]
showing the number of solved instances (y-axis) over the time
it took to solve them (on the x-axis in seconds). Source code
is available at [32] and experimental data at [32], [34].

In our experiments we compare the default configuration
of KISSAT (kissat-default), where both SAT sweeping and
clausal congruence closure [14] is enabled, to activating only
one or none of these techniques. Additionally, we consider
runs of the default configuration with proof production enabled
(kissat-proof), and present here the required time to check these
produced proofs using DPR-TRIM as well (dpr-trim).

Figures 6-9 depict the results of the experiments on the
HWMCC problems. Here we compare our approach to the
state-of-the-art SAT sweeping technique [6] implemented in
ABC, available as fraig -y in ABC superseding fraig -x

used in the cec command (according to personal communica-
tion with the author of ABC). The results show that our pure
SAT-based approach, that sees only the clausal representation
of the circuits is able to perform comparable to the hybrid
approach specialized in reasoning about circuits. Regarding
SAT competition problems, we follow [35] and include SBVA-
CADICAL, winner of the SAT Competition 2023. The results
in Fig. 10-14 demonstrate that sweeping and congruence
closure both contribute to better performance on these more
generic competition problems too. Fig. 13/14 also compare
solving times versus checking times with DPR-TRIM.

In Fig. 12 we show results on 5 challenging miters from the
IWLS’22 paper [6] (originating from [5]) which introduced
the advanced SAT sweeping technique implemented in ABC
(through the command “fraig -y”) as also used in our
experiments. Again sweeping gives a substantial improvement
in our monolithic approach. Note that one miter “test02” can
actually be solved by congruence closure instantly (faster than
ABC) and does not need sweeping (cf. [14] for details).

We further extracted from the log files [32], [34] the
following numbers. The time spent in clausal equivalence
sweeping with kissat-default is for hwmcc12/opt on average
13.72 sec (0.00 sec - 636.67 sec) and 21.77% (3.26% - 80.98%),

0 1000 2000 3000 4000 5000

26
0

28
0

30
0

32
0

34
0 100% = 341 instances50 sec 500 sec

336 kissat−default
335 kissat−proof
335 abc−fraig
334 kissat−no−congruence
331 dpr−trim
330 kissat−no−congruence−no−sweep
329 kissat−no−sweep

Fig. 7: Number of solved optimized miters (y-axis) from 341
HWMCC’12 benchmarks in the given time (x-axis in seconds).
The legend displays the number of solved instances per solver.

0 1000 2000 3000 4000 5000

26
0

27
0

28
0

29
0

30
0

31
0

32
0

100% = 324 instances50 sec 500 sec

324 abc−fraig
324 kissat−no−sweep
324 kissat−default
324 kissat−proof
324 dpr−trim
309 kissat−no−congruence
296 kissat−no−congruence−no−sweep

Fig. 8: Number of solved isomorphic miters (y-axis) from 324
HWMCC’20 benchmarks in the given time (x-axis in seconds).
The legend displays the number of solved instances per solver.

for hwmcc20/opt on average 31.42 sec (0.00 sec - 636.67 sec)
and 17.89% (3.26% - 80.98%), for iwls22 on average 64.35 sec
(0.00 sec - 104.51 sec) and 9.81% (0.00% - 10.92%), for
sc2022 on average 34.75 sec (0.04 sec - 681.70 sec) and 4.52%
(0.13% - 29.70%), for sc2023 on average 29.65 sec (0.00 sec
- 437.05 sec) and 5.87% (0.06% - 93.72%).

0 1000 2000 3000 4000 5000

26
0

27
0

28
0

29
0

30
0

31
0

32
0

100% = 324 instances50 sec 500 sec

320 abc−fraig
309 dpr−trim
309 kissat−default
309 kissat−proof
307 kissat−no−congruence
305 kissat−no−sweep
298 kissat−no−congruence−no−sweep

Fig. 9: Number of solved optimized miters (y-axis) from 324
HWMCC’20 benchmarks in the given time (x-axis in seconds).
The legend displays the number of solved instances per solver.

239

0 1000 2000 3000 4000 5000

0
10

0
20

0
30

0
40

0 100% = 400 instances

315 kissat−default
314 kissat−proof
312 kissat−no−sweep
305 kissat−no−congruence
304 kissat−no−congruence−no−sweep
291 sbva−cadical

Fig. 10: Number of solved SAT Competition 2022 main track
benchmarks (y-axis) in the given time (x-axis in seconds). The
legend displays the number of solved instances per solver.

0 1000 2000 3000 4000 5000

0
10

0
20

0
30

0
40

0 100% = 400 instances

287 sbva−cadical
277 kissat−no−congruence
275 kissat−default
275 kissat−proof
275 kissat−no−sweep
273 kissat−no−congruence−no−sweep

Fig. 11: Number of solved SAT Competition 2023 main track
benchmarks (y-axis) in the given time (x-axis in seconds). The
legend displays the number of solved instances per solver.

0 1000 2000 3000 4000 5000

1
2

3
4

5

100%

5 instances50 sec 500 sec

5 abc−fraig
5 dpr−trim
5 kissat−proof
5 kissat−default
5 kissat−no−sweep
5 kissat−no−congruence
4 kissat−no−congruence−no−sweep

Fig. 12: Number of solved miters (on the y-axis) of the 5
IWLS’22 benchmarks in the given time (on the x-axis in
seconds). The legend displays the number of solved instances
per solver. One of the miters, i.e., test02, is instantly solved
by KISSAT with clausal congruence closure even though it was
considered challenging in [6]. This is due normalization during
ITE gates extraction. See [14] for a more detailed explanation.

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

159 kissat−default
158 kissat−proof
157 kissat−no−sweep
155 kissat−no−congruence−no−sweep
154 kissat−no−congruence
151 dpr−trim
148 sbva−cadical

Fig. 13: Number of solved unsatisfiable SAT Competition
2022 main track benchmarks (y-axis) in the given time (x-axis
in seconds). The total number of unsatisfiable instances is
unknown though. The legend displays the number of solved
instances per solver.

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

163 sbva−cadical
151 kissat−default
151 kissat−no−congruence
151 kissat−proof
150 kissat−no−sweep
148 kissat−no−congruence−no−sweep
137 dpr−trim

Fig. 14: Number of solved unsatisfiable SAT Competition
2023 benchmarks (y-axis) in the given time (x-axis in seconds).
The total number of unsatisfiable instances is unknown though.
The legend displays the number of solved instances per solver.

The number of backbones and equivalences found were for
hwmcc12/opt 70 780 backbones and 446 784 equivalences, for
hwmcc20/opt 12 976 backbones and 162 427 equivalences, for
iwls22 2 052 backbones and 58 792 equivalences, for sc2022
298 065 backbones and 1 590 810 equivalences, for sc2023
838 120 backbones and 4 019 861 equivalences.

The percentage of satisfiable queries was for hwmcc12/opt
91.45%, for hwmcc20/opt 95.27%, for iwls22 94.25%, for
sc2022 95.64%, for sc2023 96.00% and the ratio of success-
fully flipped literals over the number of satisfiable queries
was for hwmcc12/opt 12.77, for hwmcc20/opt 32.34, for iwls22
21.03, for sc2022 64.05, for sc2023 23.34.

VII. CONCLUSION

We presented a “big-little” approach to clausal equivalence
sweeping directly on CNF using an embedded SAT solver
KITTEN inside of KISSAT and show that it improves solving
hard equivalence checking problems substantially as well as
being useful on plain CNF problems from the SAT competition.

240

REFERENCES

[1] A. Kuehlmann and F. Krohm, “Equivalence checking using cuts and
heaps,” in Proceedings of the 34st Conference on Design Automation,
Anaheim, California, USA, Anaheim Convention Center, June 9-13, 1997,
E. J. Yoffa, G. D. Micheli, and J. M. Rabaey, Eds. ACM Press, 1997,
pp. 263–268.

[2] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust boolean
reasoning for equivalence checking and functional property verification,”
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 21, no. 12,
pp. 1377–1394, 2002.

[3] V. N. Possani, A. Mishchenko, R. P. Ribas, and A. I. Reis, “Parallel
combinational equivalence checking,” IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst., vol. 39, no. 10, pp. 3081–3092, 2020.

[4] L. G. Amarù, F. S. Marranghello, E. Testa, C. Casares, V. N. Possani,
J. Luo, P. Vuillod, A. Mishchenko, and G. D. Micheli, “SAT-sweeping
enhanced for logic synthesis,” in 57th ACM/IEEE Design Automation
Conference, DAC 2020, San Francisco, CA, USA, July 20-24, 2020.
IEEE, 2020, pp. 1–6.

[5] H. Zhang, J. R. Jiang, L. G. Amarù, A. Mishchenko, and R. K. Brayton,
“Deep integration of circuit simulator and SAT solver,” in 58th ACM/IEEE
Design Automation Conference, DAC 2021, San Francisco, CA, USA,
December 5-9, 2021. IEEE, 2021, pp. 877–882.

[6] H. Zhang, J. R. Jiang, A. Mishchenko, and L. G. Amarù, “Improved
large-scale SAT sweeping,” in Proc. 31st International Workshop on
Logic & Synthesis, 2022.

[7] Z. Chen, X. Zhang, Y. Qian, Q. Xu, and S. Cai, “Integrating exact simula-
tion into sweeping for datapath combinational equivalence checking,” in
IEEE/ACM International Conference on Computer Aided Design, ICCAD
2023, San Francisco, CA, USA, October 28 - Nov. 2, 2023. IEEE,
2023, pp. 1–9.

[8] H. Pan, R. Zhang, Y. Xia, L. Wang, F. Yang, X. Zeng, and Z. Chu,
“A semi-tensor product based circuit simulation for sat-sweeping,” in
Design, Automation & Test in Europe Conference & Exhibition, DATE
2024, Valencia, Spain, March 25-27, 2024. IEEE, 2024, pp. 1–6.

[9] D. Brand, “Verification of large synthesized designs,” in Proceedings
of the 1993 IEEE/ACM International Conference on Computer-Aided
Design, 1993, Santa Clara, California, USA, November 7-11, 1993,
M. R. Lightner and J. A. G. Jess, Eds. IEEE Computer Society / ACM,
1993, pp. 534–537.

[10] A. Biere, M. Järvisalo, and B. Kiesl, “Preprocessing in SAT solving,” in
Handbook of Satisfiability - Second Edition, ser. Frontiers in Artificial
Intelligence and Applications, A. Biere, M. Heule, H. van Maaren, and
T. Walsh, Eds. IOS Press, 2021, vol. 336, pp. 391–435.

[11] M. Järvisalo, M. Heule, and A. Biere, “Inprocessing rules,” in Automated
Reasoning - 6th International Joint Conference, IJCAR 2012, Manchester,
UK, June 26-29, 2012. Proceedings, ser. Lecture Notes in Computer
Science, B. Gramlich, D. Miller, and U. Sattler, Eds., vol. 7364.
Springer, 2012, pp. 355–370.

[12] A. Biere, M. Heule, M. Järvisalo, and N. Manthey, “Equivalence
checking of HWMCC 2012 circuits,” in Proc. of SAT Competition 2013
– Solver and Benchmark Descriptions, ser. Department of Computer
Science Series of Publications B, A. Balint, A. Belov, M. Heule, and
M. Järvisalo, Eds., vol. B-2013-1. University of Helsinki, 2013, p.
104.

[13] M. Heule, M. Järvisalo, and A. Biere, “Revisiting hyper binary resolu-
tion,” in Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems, 10th International Confer-
ence, CPAIOR 2013, Yorktown Heights, NY, USA, May 18-22, 2013.
Proceedings, ser. Lecture Notes in Computer Science, C. P. Gomes and
M. Sellmann, Eds., vol. 7874. Springer, 2013, pp. 77–93.

[14] A. Biere, K. Fazekas, M. Fleury, and N. Froleyks, “Clausal Congruence
Closure,” in 27th International Conference on Theory and Applications
of Satisfiability Testing, SAT 2024, August 21-24, 2024, Pune, India, ser.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024.

[15] A. Biere, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat, Paracooba
entering the SAT Competition 2021,” in Proc. of SAT Competition 2021
– Solver and Benchmark Descriptions, ser. Department of Computer
Science Report Series B, T. Balyo, N. Froleyks, M. Heule, M. Iser,
M. Järvisalo, and M. Suda, Eds., vol. B-2021-1. University of Helsinki,
2021, pp. 10–13.

[16] A. Biere and M. Fleury, “Gimsatul, IsaSAT and Kissat entering the
SAT Competition 2022,” in Proc. of SAT Competition 2022 – Solver and
Benchmark Descriptions, ser. Department of Computer Science Series of

Publications B, T. Balyo, M. Heule, M. Iser, M. Järvisalo, and M. Suda,
Eds., vol. B-2022-1. University of Helsinki, 2022, pp. 10–11.

[17] M. Heule and A. Biere, “Blocked clause decomposition,” in Logic for
Programming, Artificial Intelligence, and Reasoning - 19th International
Conference, LPAR-19, Stellenbosch, South Africa, December 14-19, 2013.
Proceedings, ser. Lecture Notes in Computer Science, K. L. McMillan,
A. Middeldorp, and A. Voronkov, Eds., vol. 8312. Springer, 2013, pp.
423–438.

[18] M. Codish, Y. Fekete, and A. Metodi, “Backbones for equality,” in
Hardware and Software: Verification and Testing - 9th International
Haifa Verification Conference, HVC 2013, Haifa, Israel, November 5-7,
2013, Proceedings, ser. Lecture Notes in Computer Science, V. Bertacco
and A. Legay, Eds., vol. 8244. Springer, 2013, pp. 1–14.

[19] A. Biere, “Lingeling and friends entering the SAT Race 2015,” Insti-
tute for Formal Models and Verification, Johannes Kepler University,
Altenbergerstr. 69, 4040 Linz, Austria, Tech. Rep. 15/2, 2015.

[20] ——, “Splatz, Lingeling, Plingeling, Treengeling, YalSAT Entering the
SAT Competition 2016,” in Proc. of SAT Competition 2016 – Solver
and Benchmark Descriptions, ser. Department of Computer Science
Series of Publications B, T. Balyo, M. Heule, and M. Järvisalo, Eds.,
vol. B-2016-1. University of Helsinki, 2016, pp. 44–45.

[21] M. Fleury and A. Biere, “Mining definitions in Kissat with Kittens,”
Formal Methods Syst. Des., vol. 60, no. 3, pp. 381–404, 2022.

[22] J. E. Reeves, M. J. H. Heule, and R. E. Bryant, “Moving definition
variables in quantified boolean formulas,” in Tools and Algorithms for the
Construction and Analysis of Systems - 28th International Conference,
TACAS 2022, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7,
2022, Proceedings, Part I, ser. Lecture Notes in Computer Science,
D. Fisman and G. Rosu, Eds., vol. 13243. Springer, 2022, pp. 462–
479.

[23] N. Eén and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” in Theory and Applications of Satisfiability
Testing, 8th International Conference, SAT 2005, St. Andrews, UK, June
19-23, 2005, Proceedings, ser. Lecture Notes in Computer Science,
F. Bacchus and T. Walsh, Eds., vol. 3569. Springer, 2005, pp. 61–75.

[24] A. Belov and J. Marques-Silva, “Accelerating MUS extraction with re-
cursive model rotation,” in International Conference on Formal Methods
in Computer-Aided Design, FMCAD ’11, Austin, TX, USA, October 30
- November 02, 2011, P. Bjesse and A. Slobodová, Eds. FMCAD Inc.,
2011, pp. 37–40.

[25] A. Biere, N. Froleyks, and W. Wang, “Cadiback: Extracting backbones
with cadical,” in 26th International Conference on Theory and Applica-
tions of Satisfiability Testing, SAT 2023, July 4-8, 2023, Alghero, Italy,
ser. LIPIcs, M. Mahajan and F. Slivovsky, Eds., vol. 271. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023, pp. 3:1–3:12.

[26] M. Janota, I. Lynce, and J. Marques-Silva, “Algorithms for computing
backbones of propositional formulae,” AI Commun., vol. 28, no. 2, pp.
161–177, 2015.

[27] A. Biere, K. Heljanko, M. Seidl, and S. Wieringa, “Hardware
model checking competition (hwmcc’12),” 2012. [Online]. Available:
https://fmv.jku.at/hwmcc12

[28] A. Biere, N. Froleyks, and M. Preiner, “Hardware model checking
competition (hwmcc’20),” 2020. [Online]. Available: https://hwmcc.
github.io/2020

[29] A. Biere, K. Heljanko, and S. Wieringa, “AIGER 1.9 and beyond,”
Institute for Formal Models and Verification, Johannes Kepler University,
Altenbergerstr. 69, 4040 Linz, Austria, Tech. Rep. 11/2, 2011.

[30] A. Biere, K. Fazekas, M. Fleury, and N. Froleyks, “CNF Encoded
Isomorphic and Optimized Miters from Hardware Model Checking
Competition 2020 Models,” May 2024. [Online]. Available: https:
//doi.org/10.5281/zenodo.11202461

[31] A. Biere, “CNF Encoded Isomorphic and Optimized Miters from
Hardware Model Checking Competition 2012 Models,” Mar. 2024.
[Online]. Available: https://doi.org/10.5281/zenodo.10823128

[32] [Online]. Available: https://cca.informatik.uni-freiburg.de/ces
[33] N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda, “SAT

Competition 2020,” Artif. Intell., vol. 301, p. 103572, 2021.
[34] A. Biere, K. Fazekas, M. Fleury, and N. Froleyks, “Clausal

equivalence sweeping paper logs,” May 2024. [Online]. Available:
https://doi.org/10.5281/zenodo.11203283

[35] A. Biere, M. Järvisalo, D. Le Berre, K. S. Meel, and S. Mengel,
“The SAT practitioner’s manifesto,” Sep. 2020. [Online]. Available:
https://doi.org/10.5281/zenodo.4500928

241

https://fmv.jku.at/hwmcc12
https://hwmcc.github.io/2020
https://hwmcc.github.io/2020
https://doi.org/10.5281/zenodo.11202461
https://doi.org/10.5281/zenodo.11202461
https://doi.org/10.5281/zenodo.10823128
https://cca.informatik.uni-freiburg.de/ces
https://doi.org/10.5281/zenodo.11203283
https://doi.org/10.5281/zenodo.4500928

	Introduction
	Preliminaries
	Algorithm
	Implementation
	Benchmarks
	Experiments
	Conclusion
	References

