
Formal Methods in Computer-Aided Design 2024

Automatic Verification of Right-greedy
Numerical Linear Algebra Algorithms

Carl Kwan
The University of Texas at Austin

Austin, TX, United States of America
carlkwan@cs.utexas.edu

Warren A. Hunt, Jr.
The University of Texas at Austin

Austin, TX, United States of America
hunt@cs.utexas.edu

Abstract—We present an automatic verification process for
formally proving the correctness of a class of greedy numerical
linear algebra algorithms. To demonstrate our methodology,
we present theorem prover verifications of LU and Cholesky
decompositions. We formalize a framework for reasoning about
matrices and matrix algorithms by partitioning matrices and
developing a generalized form of the inductive invariant common
to this class of greedy algorithms. Our framework enables users
to readily verify any algorithm in this class automatically by
simply defining the algorithm itself and specifying the class of
matrices on which the algorithm performs. Our framework is also
adaptable to other greedy numerical linear algebra algorithms.
To our knowledge, this is the first automatic approach to verifying
an entire class of numerical linear algebra algorithms.

Index Terms—Numerical linear algebra, LU decomposition,
Cholesky factorization theorem, Automated theorem proving.

I. INTRODUCTION

Linear algebra is everywhere, permeating across the natural,
mathematical, social, applied, and, in particular, computing
sciences. The prevalence of linear algebra includes critical
applications in which linear algebra computations are used
to build modern infrastructure, perform data analysis affecting
policy making, engineer control systems, secure information,
create scientific models, and develop hardware, software, and
cyberphysical systems. Determining the correctness of these
linear algebra computations is vital. Numerical linear algebra
concerns algorithms designed to perform such computations
accurately. However, implementations of such algorithms can
still fail with disastrous consequences. The potential human
and capital losses due to inadequate numerical implementa-
tions necessitates formal methods.

We present a formal method for automatically verifying
a class of greedy numerical linear algebra algorithms. We
demonstrate the utility of our approach by verifying a par-
ticular flavor of the LU and Cholesky decompositions; that
is, we verify that the product of the decomposed matrix is
the original matrix itself under the appropriate conditions. We
choose these specific decompositions because the development
or improvement of any new family of numerical linear algebra
algorithms typically begins with one of the “three amigos”:
LU, Cholesky, or QR decomposition. This makes LU and
Cholesky two of the most ubiquitous algorithms in numerical

This work was supported in part by Intel Corporation and Amazon Science.

methods. In this paper, we describe our approach to their
mechanization.

To the best of our knowledge, any verification of numerical
linear algebra algorithms by way of theorem prover is a new
area of research. By applying our approach to two of the
three amigos, we intend to embark on a significant line of
research involving the systematic and portable verification of
families of numerical linear algebra algorithms. One major
novel contribution we make is to identify the level of ab-
straction appropriate for reasoning with theorem provers. If
we implement matrix algorithms and reason at the level of
their scalar entries, such as in Algorithm 1, then our proofs
would be intractable because the mathematical expressions
quickly become too large and unwieldy. Moreover, such an
approach is not easily portable to other algorithms, even if
they are in the same family. If we reason at too high a level,
then verifying instantiated algorithms would require significant
user effort, thus reducing automation. In this paper, we apply
a partitioned approach to reasoning about matrices and their
algorithms, which enable our verification of LU and Cholesky
decompositions using the same shared framework.

LU and Cholesky decompositions are vital numerical tech-
niques with broad applications in linear algebra. LU de-
composition factorizes a matrix into a product of lower and
upper triangular matrices. Cholesky decomposition specifically
applies to symmetric positive definite matrices, breaking them
down into the product of a lower triangular matrix and its
transpose. Let

• LU(A) compute the LU decomposition of A;
• Chol(A) compute Cholesky decompositions of A;
• Lu be the strictly lower triangular part of LU(A), placing

1s on the diagonal;
• U retrieve the upper triangular part of LU(A).
• L be the lower triangular part of Chol(A); and

Specifically, we verify that
1) if every principal leading submatrices of A is nonsingu-

lar, then A = LuU ; and
2) if A is symmetric positive definite, then A = LLT .

We discuss the conditions on A later. Both LU and Cholesky
decompositions facilitate solving linear systems, performing
matrix inversions, and calculating determinants efficiently.
Cholesky is particularly useful when solving linear least-

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 30 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://orcid.org/0009-0001-8195-7706
https://orcid.org/0009-0004-1444-2544
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_30
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_30
https://creativecommons.org/licenses/by/4.0/

squares problems, performing Monte Carlo simulations, and
optimizing quadratic forms. These sorts of decompositions
play crucial roles in numerical stability, computational ef-
ficiency, and analysing the accuracy of solutions, making
them fundamental tools in diverse fields such as physics,
engineering, finance, and machine learning.

The particular variants of LU and Cholesky decomposi-
tion in this paper are sometimes known as “right-greedy”.
“Right-greedy” refers to the particular submatrices that are
updated in a partitioned representation of the matrix on which
an algorithm operates during the main body of a loop or
recursion. At each step of the algorithm, we update the
nearest submatrices into the desired form. As the algorithm
proceeds, the components are updated from left to right1. Our
method enables the theorem prover verification of a right-
greedy algorithm automatically with very few user-provided
hints. To discharge the algorithmic proof of correctness using
a theorem prover, the only knowledge necessary is the matrix
partitioning and a recognizer for the class of matrices on which
the algorithm is expected to operate. Our approach is the first
to enable the mechanical verification of an entire family of
numerical linear algebra algorithms.

We perform our modeling and verification with ACL2, an
industrial-strength first-order logic automated theorem prover
with support for the real numbers via non-standard analy-
sis [1], [2]. One advantage of using ACL2 is that the structure
of the numerical linear algebra algorithms in which we are
interested is well suited to ACL2’s extensive support for
rewriting and induction. Another advantage of using ACL2 is
the support for execution via an underlying Lisp interpreter de-
fined within the theorem prover logic. ACL2 is unique among
theorem provers in its capability execute code at the speeds
of modern programming languages within the theorem prover
itself, making our verified numerical linear algebra programs
directly applicable to real-world problems. We use the ACL2
language to model commercial linear algebra applications,
and we analyze such codes mechanically for their fitness to
purpose using the ACL2 theorem prover.

There are very few verification efforts for numerical linear
algebra. First, the sheer number of numerical algorithms, even
for linear algebra, is daunting, and new ad hoc algorithms for
specific applications are often being published. Verifying just
the algorithms for critical applications would be an endless
affair, requiring large-scale organization and resources. Our
work addresses the verification of not just one algorithm
or application, but an entire family of numerical algorithms.
Second, different algorithms can have different structures
and correctness criteria. This suggests separate proofs for
each individual algorithm. Even identifying structures that
are exploitable for verification purposes is challenging. Third,
there is an over reliance of indexing in typical presentations
of numerical algorithms. Consider the LU decomposition
algorithm in Algorithm 1, which is representative of numerical
algorithms [3]. Here,

1Section IV provides a visual treatment of “right-greedy”.

Algorithm 1 Right-greedy LU decomposition (Stewart). [3]
for k = 1 : n− 1 do

if A[k, k] = 0 Error
A[k + 1 : n, k] = A[k + 1 : n, k]/A[k, k]
A[k + 1 : n, k + 1 : n]

= A[k+1 : n, k+1 : n]−A[k+1 : n, k]A[k, k+1 : n]

• A[a, b] refers to the scalar in the a-th row and b-th
column,

• A[a : b, c] refers to the column vector from row a to row
b in column c,

• A[a, b : c] refers to the row vector from column b to
column c in row a,

• A[a : b, c : d] refers to the submatrix from row a to row
b and from column c to column d.

Indexing obfuscates the design and intent of the algorithm to
the point where it is unclear what is a matrix, what is a vector,
or even what is a scalar in the main loop. Unbounded proofs
for algorithms of this sort can be discharged by induction
or rewriting by a general purpose theorem prover. Fourth,
ACL2 has extensive support for execution within its logic and
numerical linear algebra algorithms are usually designed to
be executed. Some theorem provers can generate executable
source or machine code but these tend to be unverified and un-
optimized, which limits their utility especially since unverified
but optimized numerical linear algebra libraries already exists.
Fifth, the scope of linear algebra algorithms is sometimes
limited to a class of matrices for which the definition is not
conducive to formalization. For example, Cholesky decom-
position is designed for matrices that are symmetric positive
definite, and the usual definition for positive definite involves
quantifying over all vectors. We want to avoid quantifiers in
the definition of, say, positive definite because they limit the
execution of a recognizer for such matrices.

In this paper we provide our solutions to the five chal-
lenges described. To address the first two challenges and
partially address the third, we take advantage of the Formal
Linear Algebra Methods Environment (FLAME) [4]. FLAME
is an approach for systematically deriving numerical linear
algebra algorithms that circumvents the problem of indexing
by representing numerical linear algebra algorithms in terms
of operations on the submatrices in a partitioned form of
the original matrix. The partitioned form is not only more
readable from a human perspective, but also exposes invariants
that facilitates ACL2 reasoning and verification. The problem
with algorithms in the original FLAME approach is that they
are loop-based and mathematical correctness follows from
identifying loop-invariants. In our approach, we recast loops
into recursions and instead identify generalizable inductive
invariants, which better aligns with the spirit of ACL2.

To address the last two challenges and finish addressing
the third, we develop ACL2 mechanisms to enable automatic
reasoning about linear algebra algorithms, define constructive
recognizers for the matrices on which these algorithms operate,

243

and execute them. It is important for these recognizers to be
executable because they can also serve as an efficient way to
check whether a matrix is part of a solvable problem before
performing more costly procedures. Execution is handled
natively by ACL2. To reason about matrix algorithms, we
develop our own ACL2 rules for partitioning matrices and
finding inductive invariants. Another contribution we make is
to identify and develop definitions that enable constructive rec-
ognizers for matrices that satisfy an algorithm’s precondition.

The rest of this paper is organized as follows: first, we
discuss the limited existing literature on linear algebra and
theorem proving; second, we introduce the basics of ACL2
and linear algebra; third, we motivate our mechanical method
for automatically verifying numerical linear algebra algorithms
by describing how to verify LU and Cholesky decompositions;
fourth, we describe how to generalize the techniques used
to verify our two motivating examples; finally, we conclude
by summarizing our approach and discussing its immediate
application and future work.

II. RELATED WORK

While theories of matrices and vector space exists in ACL2
and other theorem provers, there are practically no theorem
prover verifications of numerical linear algebra algorithms.
For the ACL2 theorem prover, the closest relevant existing
paper of which we are aware is a formalization and proof
of correctness for LU decomposition [5]. There has also
been ACL2 work on using abstract single threaded objects
to compute the column echelon form of a matrix [6]. Other
relevant ACL2 papers include formalizations of matrices [7],
[8], vectors (both real and abstract) [9], [10], and vector-
valued functions [11]. An application of ACL2 matrices is
the VWSIM circuit simulator for rapid, single-flux, quantum
(RSFQ) circuits, which is written in ACL2 and based on
repeatedly solving linear systems of the form Ax = b [12].
However, VWSIM’s matrix solver is not ACL2 verified.

Expanding the purview to theorem provers in general, we
find formal theories for matrices that either do not support
execution or are limited to basic matrix arithmetic operations
(e.g., addition, multiplication, etc.). These include Coq, Lean,
Isabelle, and HOL4. In the Coq community, there are at
least five proposed formal models for basic matrix theory and
recent work towards integrating them has been published [13].
There is a Lean proof that positive definite matrices have
an LDL decomposition [14]; however, none of the functions
involved in the proof are computable. Isabelle formalizations
of many matrix procedures, including algorithms for Gauss-
Jordan elimination, Schur decomposition, and finding various
normal forms, are in the Archive of Formal Proofs but none
are natively executable [15]. There is also a HOL4 theory for
basic matrix ideas and operations [16]. While many of these
theorem provers are excellent at modelling mathematics, they
have little to no support for the direct execution of numerical
code, making them unsuited to our purposes.

FLAME is a major influence on our work. In addition
to describing how to derive families of numerical linear

algebra algorithms and demonstrate their correctness based
on different loop-invariants, FLAME also provides an alter-
nate partitioning-based framework for backwards error anal-
ysis [17]. However, no formal method tools are used in the
FLAME project and FLAME algorithms are not recursive.
While FLAME derivations of algorithms such as LU and
Cholesky decompositions indicate a natural inductive step,
its mathematical proofs for the correctness and existence of
these decompositions deviate significantly from our approach.
Our approach to correctness is to define a recursive variant
of the algorithms of interest and then constructively define
a recognizer which induces an induction on the partitioning
of the matrix. Existence follows because we posit an explicit
algorithm which computes the desired decomposition.

No prior theorem-prover-based work supports FLAME-style
analyses. ACL2-specified algorithms are our best option. Our
work is the first to provide techniques for formally verifying
families of executable numerical linear algebra algorithms.

III. ACL2 BASICS

Our theorem prover of choice is ACL2, a first-order logic
with support for highly automated reasoning by way of exten-
sive rewriting heuristics and induction. ACL2 contains many
built-in features and tooling which support software engi-
neering efforts, proof and theory management, user-controlled
rewriting, file I/O and parsing of large-scale designs, calling
internal and external automated solvers in a sound manner, and
much more, all with extensive publicly-available documenta-
tion. ACL2 formalizes an applicative subset of pure Common
Lisp, which enables ACL2 code to be efficiently compiled and
executed.

In ACL2, functions are total, that is, all functions map
all objects in the logic. By first-order, we mean quantifiers
can only predicate over individuals (though we avoid explicit
quantifiers in practice). The return on this restriction is that
first-order logic theorem proving is highly developed, semi-
decidable, and allows for truly automated reasoning. ACL2
is primarily based on term-rewriting, which is a set of rules
for replacing one logical expression with another equivalent
expression. Sophisticated heuristics for rewriting and extensive
support for automatic induction allows ACL2 to be a highly
automated and efficient tool appealing to commercial applica-
tions. ACL2 is sometimes referred to as an industrial-strength
theorem prover, where it ensures the correctness of critical
systems. ACL2 has been deployed to verify industrial-scale
hardware designs and software systems at companies such as
Intel, AMD, Oracle, Collins Aerospace, IBM, and ARM [18].

Table 1 lists some commonly used ACL2 functions, macros,
and commands. A comprehensive description of the built-
in ACL2 functions can be found in the ACL2 documenta-
tion [19]. Table 2 lists some commonly used ACL2 linear
algebra functions which we do not further describe in this
paper. We take advantage of some defined primitive matrix
functions [7], but define our own functions to support rea-
soning about numerical linear algebra algorithms, accessing
their results, and executing the algorithms themselves. For

244

functions which are central to this paper, such as recognizers
for nonsingular matrices, more implementation details will be
provided as we discuss the verification process.

Finally, we make a distinction between vanilla ACL2 and
ACL2(r). Vanilla ACL2 numbers only include rationals and
complex rationals. ACL2(r) is the version of ACL2 with sup-
port for real and complex numbers in general via non-standard
analysis. In either case, computations on concrete numerics
(rational, floating-point, or otherwise) are handled by the
Common Lisp backend of ACL2 / ACL2(r), which enables the
theorem prover to support native execution at modern speeds.
In this paper, ACL2(r) is only necessary for taking square
roots in the Cholesky decomposition algorithm. The square-
root function used is the logical definition acl2-sqrt,
which involves operations on nonstandard numbers. To make
execution more amenable, we deploy a version of Cholesky
which employs an iterative square-root function sqrt-iter,
which has been verified to converge to acl2-sqrt [2], as
a drop in replacement. It is possible to reason about square
roots in vanilla ACL2 using only its algebraic properties, e.g.,
by augmenting the field of ACL2 numbers with some √ .
Instead of developing a new theory in ACL2, we decided to
simply use ACL2(r).

IV. LINEAR ALGEBRA BASICS

One core idea of our approach is to recast algorithms in
terms of operations on submatrices in a partitioned form of
the original matrix. Originally, this partitioning was meant to
make linear algebra code more intelligible and reasoning from
a human perspective easier. However, it also enables machine
reasoning in a verification context, which we will discuss in
Sections V and VI. To see this partitioning in action, we derive
the LU decomposition. An LU decomposition for a matrix A
are matrices L and U where L is lower triangular with “1”s on
the diagonal (i.e. unit lower triangular), U is upper triangular,
and A = LU . In the interest of memory optimization, the unit
lower triangular requirement makes it possible to overwrite
the upper part of A with the upper part of U and the strictly
lower part of A with the strictly lower part of L during the
algorithm. Partition A, L, and U as follows:

A :=

(︃
α11 aT12
a21 A22

)︃
, L :=

(︃
1
ℓ21 L22

)︃
,

U :=

(︃
υ11 uT

12

U22

)︃
.

Before we continue, a note on notation: lower-case Greek
letters are field scalars; lower-case Latin letters are vectors;
upper-case Latin letters are matrices; and assume that any
posed variables are “conformal”, e.g., if A is m × n, then
a21 is (m − 1) × 1 and aT12 is 1 × (n − 1). Setting A = LU
gives(︃

α11 aT12
a21 A22

)︃
=

(︃
1
ℓ21 L22

)︃(︃
υ11 uT

12

U22

)︃
. (1)

We want Equation (1) to hold after performing the algorithm,
i.e.

α11 = υ11 , a21 = υ11ℓ21 ,

aT12 = uT
12 , A22 = ℓ21u

T
21 + L22U22 .

Since A is given, uT
12 and υ11 are obvious. Solving for the

remaining components of L and U forces

ℓ21 = a21α
−1
11 ,

and
L22U22 = A22 − a21α

−1
11 a

T
12 . (2)

This suggests an algorithm which requires merely updating
a21 and A22. In particular, Equation (2) in the derivation
above suggests a natural induction hypothesis which facilitates
a recursive algorithm, i.e. our recursive call is to simply call
the same LU decomposition algorithm on the smaller matrix
A22 − a21α

−1
11 a

T
12.

Consider our version of LU decomposition in Algorithm 2.
Contrasting Algorithm 2 with Algorithm 1 elucidates the
advantages of viewing numerical linear algebra algorithms
through the lens of partitioned matrices. In terms of aesthetics
alone, Algorithm 2 is more elegant than Algorithm 1. The
technical advantages of this is that coherent code facilitates
intelligent modularity, software reliability, codebase mainte-
nance, and high performance, while enhancing confidence in
its correctness.

Indeed, for our purposes, the major advantage of the pre-
sentation in Algorithm 2 is that partitioning the matrix at the
start and end of the algorithm exposes an inductive invariant.
At the start of the algorithm, all components of the matrix are
highlighted red, indicating that none of the present components
are in the desired “LU” form. The inductive invariant is that by
the time a recursive call is initiated, all but the “bottom right”
component is green, indicating that everything except A22 is
already in LU form. To remedy the final form, Equation (2)
indicates that we should simply call LU on A22.

The progress of a right-greedy algorithm is visualized in
Figure 1. Step (1) represents a matrix prior to the updates in a
particular recursive call. Green indicates portions of the matrix
that are already in the desired form and red indicates portions
of the matrix that still need to be updated. Step (2) represents
the matrix while updates are made during a recursive call.
Purple indicates the portions of the matrix that are being
updated. Step (3) represents the matrix just prior to the next
recursive call. As the algorithm progresses, the portion of the
matrix not yet in in the desired form reduces in size, until
no part of the matrix needs to be updated, at which point the
algorithm terminates.

What makes Algorithm 2 “right-greedy” is that the four
bottom right purple-colored components as shown in Step (2)
of Figure 1 are the submatrices of A to be updated within a
recursive call.

The visualization of Figure 1 is algorithm agnostic in that
the same progression holds for any right-greedy algorithm
– not just LU. Indeed, we can undergo a similar derivation

245

Table 1 Common ACL2 functions, macros, and other commands used in this paper.
Command Description
defun Define a function symbol, e.g. (defun add-1 (x) (+ x 1))
define A richer alternative to defun; enforces guard checking and more
defthm Name and prove a theorem, e.g. (defthm <-add-1 (< x (add-1 x)))
list Define a list, e.g. (list 1 2 3) returns (1 2 3)
car Returns the head of a list, e.g. (car (list 1 2 3)) returns 1
cons Construct a pair, e.g. (cons 1 (list 2)) returns (1 2)
/ Divide two numbers or return the reciprocal of a number, e.g. (/ 1 2) or (/ 2)

acl2-sqrt Square root of an ACL2 number, e.g. (acl2-sqrt 2)
b* Binder for local variables; often used to simplify control flow statements

Table 2 ACL2 linear algebra functions.
Function Intended Signature Description
matrixp Rn×m → {t,nil} Matrix recognizer, e.g. (matrixp (list (list 1 0 0))) returns t
m-emptyp Rn×m → {t,nil} Empty matrix recognizer, e.g. (m-emptyp nil) returns t
m-empty {} → R0×0 Returns an empty matrix, e.g. (m-empty) returns nil
mzero N× N → Rn×m Returns a zero matrix, e.g. (mzero 1 1) returns (list (list 0))

row-car Rn×m → Rm Returns the first row of a matrix
col-car Rn×m → Rn Returns the first column of a matrix
row-cdr Rn×m → R(n−1)×m Remove a matrix’s first row
col-cdr Rn×m → Rn×(m−1) Remove a matrix’s first column
row-cons Rn×m → R(n+1)×m Append a row to a matrix
col-cons Rn×m → Rn×(m+1) Append a column to a matrix

m+ Rn×m × Rn×m → Rn×m Matrix addition
m* Rn×m × Rm×ℓ → Rn×ℓ Matrix multiplication
sm* R× Rn×m → Rn×m Scalar-matrix multiplication
sv* R× Rn → Rn Scalar-vector multiplication

out-* Rn × Rn → Rn×n Outer product multiplication
get-L Rn×m → Rn×m Get a matrix’s lower triangular part
get-U Rn×m → Rn×m Get a matrix’s upper triangular part

Algorithm 2 LU decomposition (ACL2).
procedure LU(A ∈ Rm×n)

Partition A =

(︃
α11 aT12
a21 A22

)︃
▷ If n,m > 1, then α11 ∈ R, a21 ∈ R(n−1)×1,

aT12 ∈ R1×(m−1), A22 ∈ R(n−1)×(m−1)

if m = 0 or n = 0 then ▷ Edge case

return
(︁)︁

▷ Return an empty matrix

else if n = 1 then ▷ Base case

return
(︃

α11

a21α
−1
11

)︃
else if m = 1 then ▷ Base case

return A
else ▷ Recursive case

a21 := a21α
−1
11

A22 := A22 − a21a
T
12

return
(︃
α11 aT12
a21 LU(A22)

)︃

(1) (2) (3)

Figure 1: Progress of a right-greedy algorithm: (1) prior to
updates ; (2) during updates; (3) after updates.

for the right-greedy Cholesky decomposition. Given a (real)
symmetric positive definite matrix A, i.e. A = AT and
vTAv > 0 for all nonzero compatible vectors v, a Cholesky
decomposition for A is a lower triangular matrix L such that
A = LLT . Partition as before:

A :=

(︃
α11 aT12
a21 A22

)︃
, L :=

(︃
λ11

ℓ21 L22

)︃
.

Setting A = LLT gives(︃
α11 aT12
a21 A22

)︃
=

(︃
λ11

ℓ21 L22

)︃(︃
λ11 ℓT21

LT
22

)︃
(3)

246

Algorithm 3 Cholesky decomposition (ACL2).
procedure CHOL(A ∈ Rm×n)

Partition A =

(︃
α11 aT12
a21 A22

)︃
▷ If n,m > 1, then α ∈ R, a21 ∈ R(n−1)×1,

aT12 ∈ R1×(m−1), A22 ∈ R(n−1)×(m−1)

if m = 0 or n = 0 then ▷ Edge case

return
(︁)︁

▷ Return an empty matrix

else if n = 1 then ▷ Base case

return
(︃ √

α11

a21α
−1
11

)︃
else if m = 1 then ▷ Base case

return
(︁√

α11 aT21
)︁

else ▷ Recursive case
α11 :=

√
α11

a21 := a21α
−1
11

A22 := A22 − a21a
T
21

return
(︃
α11 aT12
a21 CHOL(A22)

)︃

forces

λ11 = ±
√
α11, ℓ21 = a21λ

−1
11 ,

L22L
T
22 = A22 − ℓ21ℓ

T
21. (4)

For our purposes, we pick λ11 =
√
α11. Again, note that Equa-

tions (3) and (4) suggest a natural recursion. Our Cholesky
decomposition algorithm is Algorithm 3.

Comparing Algorithm 3 with Algorithm 2 emphasizes the
similar derivations, with the only contrast being the update to
α11 in Algorithm 3. This extra update is necessary because
the diagonals in a Cholesky decomposition are the same. In
Algorithm 2, this update isn’t necessary because we store the
diagonal of an LU decomposition in L.

V. VERIFYING RIGHT-GREEDY LU DECOMPOSITION

Here we describe our verification of an LU decomposition
algorithm in ACL2. There are a few points to observe in this
section. First, we describe some further ACL2 details as this
will be the first instance of an ACL2 program in this paper.
Second, note how we specify the algorithm’s conditions for
success. The textbook conditions require all principal leading
submatrices to be nonsingular, which is a quantified statement
and undesirable for executional efficiency. LU decomposition
is only one numerical linear algebra algorithm; we are in-
terested in verifying an entire family of algorithms. Third,
the proof of correctness for our ACL2 LU decomposition
program goes hand-in-hand with the derivation in Section IV.
A pen-and-paper proof may directly apply the derivation as
an induction step to prove the LU decomposition correct
by construction. However, in ACL2, we first specify the LU

decomposition algorithm as an executable program, and then
prove it correct. Ideas in this section will be discussed at a
higher level of abstraction in Section VII.

With the exception of some extra edge cases, Program 1
implements Algorithm 2 directly. The macro define is a
wrapper for defun that simplifies many common aspects
of function definition in ACL2, such as guards. Since ACL2
functions are total, guard checking is used to validate certain
conditions or constraints before proceeding with execution.
Guard checking is employed to enhance the robustness and
reliability of ACL2 code by preventing the execution of code
under inappropriate or unexpected circumstances.

The b* in the definition of lu is an example of an ACL2
macro for binding local variables with support for control
flow. The first argument to b* is a list of “bindings” and the
second argument is the ACL2 expression to which the bindings
apply. For example, the binding (alph (car (col-car
A))) declares the local variable alph to be equal to (car
(col-car A)), i.e. the first element of the first column in
A. If no early-exit bindings (such as unless) are triggered,
then the value of the b* expression is the value of the second
argument to b* with the bindings given by the first argument.

It is challenging to formalize the typical conditions for an
LU decomposition of a matrix A to succeed. For one, they
are presented as a quantified statement over the submatrices
of A: all principal leading submatrices of A need to be
nonsingular. If A is n× n, the principal leading submatrices
of A are the k × k “top left” submatrices of A, where
k ∈ [1, n]. While ACL2 supports quantifiers via Skolem
functions, these are not executable. We want a recognizer for
LU decomposable matrices to be at least executable, not to
mention efficient, because: (1) it can serve as a guard; and (2)
our recognizer will also serve to induce an induction scheme
for proving the correctness of lu. The other problem with
the typical conditions is that nonsigularity is challenging to
formalize. Thanks to the Invertible Matrix Theorem, there are
over 20 equivalent characterizations for nonsingularity, most
of which are computationally inefficient, require significant
theory building, or also involve quantified statements.

Our solution is to use Schur complements. Consider Equa-
tion (1)(︃

α11 aT12
a21 A22

)︃
=

(︃
1
ℓ21 L22

)︃(︃
υ11 uT

12

U22

)︃
.

(1 revisited)
Notice that if α11 ̸= 0, then A is LU decomposable iff the
RHS of Equation (2)

L22U22 = A22 − a21α
−1
11 a

T
12 (2 revisited)

is also LU decomposable. This is interesting because it reduces
the condition for a matrix to be LU decomposable into a
condition about a smaller matrix, which is reminiscent of
some “induction step”. Indeed, the RHS of Equation (2) is the
Schur complement of α11 in A. While mathematical references
commonly describe the conditions for a matrix to be LU
decomposable in terms of the leading principal submatrices,

247

Program 1 ACL2 implementation of LU decomposition Algorithm 2.

(define lu ((A matrixp)) ...
(b* (;; BASE CASES

((unless (matrixp A)) (m-empty)) ;; If A not a matrix, return empty
((if (m-emptyp A)) A) ;; If A empty, return A
(alph (car (col-car A))) ;; alph := "top left" scalar in A
((if (zerop alph)) ;; If alph zero, return a zero
(mzero (row-count A) ;; matrix of the same dimensions

(col-count A))) ;; as A
((if (m-emptyp (col-cdr A))) ;; If A is a column, return
(row-cons (list alph) ;; [1] [a1] = [a1] = A

(sm* (/ alph) ;; [a2/a1] [a2]
(row-cdr A)))) ;; [...] [...]

((if (m-emptyp (row-cdr A))) A) ;; If A is a row, return A

;; PARTITION
(a21 (col-car (row-cdr A))) ;; [alph | a12] := A
(a12 (row-car (col-cdr A))) ;; [----------]
(A22 (col-cdr (row-cdr A))) ;; [a21 | A22]

;; UPDATE
(a21 (sv* (/ alph) a21)) ;; a21 := a21 / alph
(A22 (m+ A22 (sm* -1 (out-* a21 a12))))) ;; A22 := A22 - a21 * a12

;; RECURSE ;; [alph | a12]
(row-cons (row-car A) ;; [--------------]

(col-cons a21 (lu A22)))) ...) ;; [a21 | LU(A22)]

Program 2 ACL2 theorem for LU decomposition correctness.

(defthm lu-correctness
(b* ((LU (lu A))

(L (get-unit-L LU))
(U (get-U LU)))
(implies (and (equal (col-count A)

(row-count A))
(nonsingular-submatrices-p A))

(equal (m* L U) A)))))

the proof that these conditions are sufficient reduces to an
induction step that depends on Equation (2) [3].

To see the connection with nonsingular principal submatri-
ces, observe that if no zeros appear after k recursive steps, then
the k-th principal leading submatrix is nonsingular because
its determinant is nonzero. Instead of reasoning with determi-
nants, which are rarely useful in numerical algorithms [20],
Schur complements provide a more concise ACL2 condition
for success and generalizes to other algorithms.

VI. VERIFYING RIGHT-GREEDY CHOLESKY
DECOMPOSITION

Here we briefly describe our verification of the right-greedy
Cholesky decomposition. Our focus will be on the common-
alities with LU decomposition verification, some peculiarities
in recognizing symmetric positive definite matrices, and less
on ACL2 implementation details.

In order for a matrix A to have a Cholesky decomposition, it
must be symmetric positive definite. Symmetric simply means
AT = A, but positive definite requires vTAv > 0 for all
nonzero compatible v. The latter is once again a quantified
statement, which has all the implications discussed previously

Program 3 ACL2 theorem for Cholesky decomposition cor-
rectness.

(defthm chol-correctness
(b* ((L (get-L (chol A)))

(Lt (mtrans L)))
(implies (and (equal (mtrans A) A)

(positive-definite-p A)
(equal (col-count A)

(row-count A)))
(equal (m* L Lt) A)))))

in Section V. In order to define a executable recognizer
for positive definite matrices, we once again look at Schur
complements to satisfy Sylvester’s criterion for a symmetric
matrix to be positive definite. Sylvester’s criterion states that a
symmetric matrix is positive definite iff the principal leading
submatrices are positive. The latter is equivalent to each
principal leading submatrix having a positive determinant.
From Section V, we saw that recursively computing Schur
complements along the diagonal of A exhibits the determinants
of the principal leading submatrices of A. Thus we merely
need to check that each of these determinants are positive,
which is how positive-definite-p in Program 3 is
defined. The theorem for right-greedy Cholesky decomposition
correctness then passes with minimal user-provided hints.

VII. GENERALIZING RULES FOR AUTOMATED
VERIFICATION

Generalizing the ideas of Sections V and VI, our method to
verifying the LU and Cholesky decompositions can be gener-
alized to any right-greedy numerical linear algebra algorithms.

1) Define a recursive right-greedy algorithm.

248

2) Verify the derivation using the partitioned matrix ap-
proach.

3) Define a recursive recognizer for the appropriate class
of matrices.

4) Induct according to a scheme automatically suggested
by the recognizer.

The only steps which require human involvement is in Step
1 and 3. All that is required of a user is to define the algorithm
to be verified and the class of matrices for which the algorithm
computes. Step 4 is performed automatically because induction
in ACL2 requires no human involvement. Step 2 is made
automatic thanks to a formalized approach to deriving right-
greedy algorithm. Observe that the RHS of both Equations (1)
and (3) are simply instances of matrix multiplication between
general partitioned matrices

BC =

(︃
β11 bT12
b21 B22

)︃(︃
γ11 cT12
c21 C22

)︃
=

(︃
β11γ11 + bT12c21 β11c

T
12 + bT12C22

b21γ11 +B22c21 b21c
T
12 +B22C22

)︃. (5)

We formalize Equation (5) as an ACL2 rewrite rule which fires
automatically when verifying the LU and Cholesky deriva-
tions. More generally, suppose we want to verify a right-greedy
algorithm which computes B and C such that BC = A. The
updates performed by a right-greedy algorithm’s recursive step
will be to compute β11, γ11, b21, c21, bT12, and cT12 such that

α11 = β11γ11 + bT12c21, aT12 = β11c
T
12 + bT12C22,

a21 = b21γ11 +B22c21

all hold. Then the algorithm’s recursive call will be to find the
decomposition

B22C22 = A22 − b21c
T
12. (6)

The above identities are easily translated into ACL2 rewrite
rules as an instantiation of the rewrite rule for Equation (5).
Given these rewrite rules, the induction in Step 4 discharges
automatically.

The LU and Cholesky decompositions we verify are instan-
tiations of the above. Note that Equation (2)

L22U22 = A22 − a21α
−1
11 a

T
12 (2 revisited)

is a case of Equation (6). If α11 ̸= 0 also holds, then A = LU .
Similarly, Equation (4)

L22L
T
22 = A22 − ℓ21ℓ

T
21 (4 revisited)

is a case of Equation (6). If α11 > 0 and a12 = a21 also hold,
then A = LLT . These rules follow directly from Equation (5)
with little user-guidance in ACL2.

VIII. CONCLUSION

We demonstrated a formal method for automatically veri-
fying right-greedy numerical linear algebra algorithms. At the
heart of our approach is the partitioned matrix environment
which we use to define and verify derivations of recursive
right-greedy algorithms. Partitioning and defining algorithms

in this manner promotes automated reasoning and verifica-
tion by introducing induction schemes. We’ve implemented
our method using the ACL2 theorem prover. The choice of
theorem prover is not vital provided that it supports induction.
However, ACL2 provides two additional major benefits. First
ACL2 offers a high degree of automation beyond what is
possible with other theorem provers. Second, our verified for-
malizations are natively executable within the logic of ACL2;
this provides industrial-level computational performance. This
is particularly important because numerical algorithms are
usually meant to be implemented and executed in real world
systems. No other theorem prover offers the same level of
execution performance.

Our work involved writing 1593 lines of new ACL2 code,
used to introduce 262 new ACL2 events. Verifying the new
ACL2 code required 6 793 576 prover steps, which were
performed automatically. Performing these steps took 9.76
seconds and ACL2 used 1.37 GB of memory on a laptop. The
interested reader may try using our code [21] to decompose
their own matrices.

There are immediate applications for our work. We dis-
cussed determinants in Sections V and VI. Note that if A =
LU is LU decomposable, then det(A) = det(L) det(U) =
det(U) is simply the product of the diagonal of U . Another
consequence of formalizing a right-greedy LU decomposition
algorithm is that the computed U is actually the row echelon
form of A. This means that (defun ge (A) (get-U
(lu A))) is the ACL2 verified formalization of Gaussian
elimination. One very important application of LU decompo-
sition is that it can be used to solve a linear system b = Ax.
If A = LU , then b = Ax = (LU)x = L(Ux) indicates that
one can first solve b = Ly via forwards substitution and then
y = Ux via backwards substiution to solve b = Ax. Cholesky
can be applied similarly. We have formalized backwards and
forwards substitution in ACL2, which is beyond the scope of
this paper, but this indicates we have a verified and executable
method for solving systems of linear equations in ACL2.

The applications of numerical linear algebra in which safety,
correctness, and accuracy are critical indicates a need for
formally verified numerical linear algebra software systems.
In addition to solving linear systems, we can pursue the
verification of other executable numerical linear algebra algo-
rithms. The class of right-greedy algorithms includes classical
QR decomposition, which has yet to be formally verified.
Proving this in ACL2 would give rise to verified executable
implementations of LU, Cholesky, and QR decompositions
(sometimes referred to as the “three amigos” by the scientific
computing community), which could serve as the beginnings
of a fully verified numerical linear algebra library.

Right-greedy algorithms are a major player in scientific
and high-performance computing, with many dozens of such
algorithms serving as the basis for ongoing research. Targeting
improved performance on not just dense, but also sparse and
block matrices across architectures such as GPUs and FGPAs
place variants of right-looking algorithms in the hundreds.
Other names for “right-greedy” are “right-looking”, “data-

249

driven” or “submatrix”. Our approach can be augmented to
verify other families of numerical linear algebra algorithms. In
the FLAME framework, identifying different loop invariants
suggests derivations of other algorithmic flavors, such as “left-
greedy”, “up-greedy”, “bordered”, etc. We want to develop
formal methods for automatically verifying these other fami-
lies of numerical linear algorithms.

Another important FLAME idea is using the partitioned
matrix approach to perform backwards error analysis. For-
malizing bounds on errors and proving the convergence of
iterative numerical algorithms are vital to the reliability of
their implementations. This would involve notions such as
matrix norms or the condition number of a matrix. ACL2
supports matrix and vector analysis by way of nonstandard
analysis [11], [22] and recent developments in the ACL2
research community include a deep embedding of floating-
point numbers into the ACL2 logic. This provides all the
formal tools necessary to perform ACL2 backwards error
analysis of numerical linear algebra algorithms and we intend
to pursue these sorts of proofs.

Linear algebra underlies modern scientific computing infras-
tructure. It is critical real world linear algebra computations are
accurate and correct. We endeavour to guarantee the veracity
of these computations by developing verified numerical linear
algebra libraries. Our method for automating the verification
of right-greedy numerical linear algebra algorithms is founda-
tional to achieving this objective.

ACKNOWLEDGMENTS

We thank Robert van de Geijn, Margaret Myers, and the
anonymous reviewers for their helpful comments and feed-
back.

REFERENCES

[1] M. Kaufmann and J. S. Moore, “ACL2 home page,” https://cs.utexas.
edu/∼moore/acl2/, 1997, accessed 2024-06-25.

[2] R. A. Gamboa and M. Kaufmann, “Nonstandard analysis in ACL2,” J.
Autom. Reason., vol. 27, no. 4, p. 323–351, November 2001.

[3] G. W. Stewart, Matrix Algorithms Volume I: Basic Decompositions,
1st ed., 1998.

[4] J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn,
“FLAME: Formal linear algebra methods environment,” ACM Trans.
Math. Softw., vol. 27, no. 4, pp. 422–455, December 2001.

[5] C. Kwan, “Classical LU decomposition in ACL2,” Electronic Proceed-
ings in Theoretical Computer Science, vol. 393, pp. 1–5, November
2023.

[6] L. Lambán, F. J. Martı́n-Mateos, J. Rubio, and J.-L. Ruiz-Reina, “Using
abstract stobjs in ACL2 to compute matrix normal forms,” in Interactive
Theorem Proving, M. Ayala-Rincón and C. A. Muñoz, Eds. Cham:
Springer International Publishing, 2017, pp. 354–370.

[7] J. Hendrix, “Matrices in ACL2,” 2003. [Online].
Available: https://www.cs.utexas.edu/users/moore/acl2/workshop-2003/
contrib/hendrix/hendrix.pdf

[8] R. Gamboa, J. Cowles, and J. Van Baalen, “Using ACL2 arrays
to formalize matrix algebra,” 2003. [Online]. Available: https:
//www.cs.uwyo.edu/∼ruben/static/pdf/matalg.pdf

[9] C. Kwan and M. R. Greenstreet, “Real vector spaces and the Cauchy-
Schwarz inequality in ACL2(r),” Electronic Proceedings in Theoretical
Computer Science, vol. 280, pp. 111–127, October 2018.

[10] C. Kwan, Y. Peng, and M. R. Greenstreet, “Cauchy-Schwarz in ACL2(r)
abstract vector spaces,” Electronic Proceedings in Theoretical Computer
Science, vol. 327, pp. 90–92, May 2020.

[11] C. Kwan and M. R. Greenstreet, “Convex functions in ACL2(r),”
Electronic Proceedings in Theoretical Computer Science, vol. 280, pp.
128–142, October 2018.

[12] W. A. Hunt, Jr., V. Ramanathan, and J. S. Moore, “VWSIM: A circuit
simulator,” in Proceedings Seventeenth International Workshop on the
ACL2 Theorem Prover and its Applications, Austin, Texas, USA, 26th-
27th May 2022, ser. Electronic Proceedings in Theoretical Computer
Science, R. Sumners and C. Chau, Eds., vol. 359. Open Publishing
Association, 2022, pp. 61–75.

[13] Z. Shi and G. Chen, “Integration of multiple formal matrix models
in Coq,” in Dependable Software Engineering. Theories, Tools, and
Applications, W. Dong and J.-P. Talpin, Eds. Cham: Springer Nature
Switzerland, 2022, pp. 169–186.

[14] “Lean mathlib3 documentation: LDL decomposition,”
https://leanprover-community.github.io/mathlib docs/linear algebra/
matrix/ldl.html, accessed 2023-07-13.

[15] R. Thiemann and A. Yamada, “Matrices, Jordan normal forms, and
spectral radius theory,” Archive of Formal Proofs, August 2015, https:
//isa-afp.org/entries/Jordan Normal Form.html, Formal proof develop-
ment.

[16] Z. Shi, Y. Zhang, Z. Liu, X. Kang, Y. Guan, J. Zhang, and X. Song,
“Formalization of matrix theory in HOL4,” Advances in Mechanical
Engineering, vol. 6, pp. 195–276, 2014.

[17] P. Bientinesi and R. A. van de Geijn, “Goal-oriented and modular
stability analysis,” SIAM J. Matrix Anal. Appl., vol. 32, no. 1, p.
286–308, March 2011.

[18] W. A. Hunt, M. Kaufmann, J. S. Moore, and A. Slobodova, “Industrial
hardware and software verification with ACL2,” Philosophical Trans-
actions of the Royal Society of London Series A, vol. 375, no. 2104,
September 2017.

[19] ACL2, User manual for the ACL2 Theorem Prover and the
ACL2 Community Books, accessed 2024-07-12. [Online]. Available:
https://www.cs.utexas.edu/users/moore/acl2/current/manual/index.html

[20] L. N. Trefethen and D. Bau, III, Numerical Linear Algebra. Philadel-
phia, PA: Society for Industrial and Applied Mathematics, 1997.

[21] M. Kaufmann and J. S. Moore, “ACL2 system and community books,”
https://github.com/acl2/acl2, 2014.

[22] C. Kwan, “Towards formalized matrix analysis and algorithms,” in
International Symposium on Artificial Intelligence and Mathematics,
2022.

250

https://cs.utexas.edu/~moore/acl2/
https://cs.utexas.edu/~moore/acl2/
https://www.cs.utexas.edu/users/moore/acl2/workshop-2003/contrib/hendrix/hendrix.pdf
https://www.cs.utexas.edu/users/moore/acl2/workshop-2003/contrib/hendrix/hendrix.pdf
https://www.cs.uwyo.edu/~ruben/static/pdf/matalg.pdf
https://www.cs.uwyo.edu/~ruben/static/pdf/matalg.pdf
https://leanprover-community.github.io/mathlib_docs/linear_algebra/matrix/ldl.html
https://leanprover-community.github.io/mathlib_docs/linear_algebra/matrix/ldl.html
https://isa-afp.org/entries/Jordan_Normal_Form.html
https://isa-afp.org/entries/Jordan_Normal_Form.html
https://www.cs.utexas.edu/users/moore/acl2/current/manual/index.html
https://github.com/acl2/acl2

	Introduction
	Related Work
	ACL2 Basics
	Linear Algebra Basics
	Verifying Right-greedy LU Decomposition
	Verifying Right-greedy Cholesky Decomposition
	Generalizing Rules for Automated Verification
	Conclusion
	References

