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Abstract—The paper presents a simple, yet effective program
verification technique that combines symbolic execution with
implicit predicate abstraction and CEGAR. The technique can
prove correctness of many programs that are beyond the reach of
the standard symbolic execution because their symbolic execution
tree is prohibitively large or even infinite. The technique has
been implemented in the software model checker KRATOS. Our
experimental evaluation shows that it also decides correctness
of some programs that were decided neither by the standard
symbolic execution nor by IC3 with predicate abstraction (all
implemented in KRATOS).

Index Terms—Program verification, symbolic execution, pred-
icate abstraction, CEGAR.

I. INTRODUCTION

Symbolic execution [Kin76] is a powerful and popular
technique for static program analysis. It consists in exploring
the behaviours of the program by traversing its control flow
graph one path at the time, accumulating the constraints visited
during such traversal in formulas called path conditions, which
are then checked with a constraint solver (e.g., a SAT or SMT
solver) for feasibility. Symbolic execution has been applied
effectively to different program analysis tasks, including auto-
mated test generation [Kin76], software verification [JNS11],
input filtering [CCZ+07], program debugging [QRLV12], and
program repair [NQRC13], [MYR16]. Although primarily
aimed at finding feasible paths satisfying a desired condition
(e.g., reaching a target location, or traversing a specific set
of locations), symbolic execution can also be used to prove
unreachability of some error locations, by exhaustively enu-
merating all the feasible paths. In practice, however, this often
diverges, because the number of such paths in many programs
is prohibitively large or infinite (a simple example is shown
in Fig. 1).

In this paper, we present a simple technique for improving
the effectiveness of symbolic execution at proving unreach-
ability. The main idea is to integrate implicit predicate ab-
straction [JM07], [Ton09] in the enumeration of paths, so as
to ensure that the (abstract) symbolic execution tree is always
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finite (for a given set of predicates). This is done by setting up
abstraction locations covering all program loops, assigning to
each such location a finite set of abstraction predicates, and
then restricting the symbolic exploration to abstract simple
paths, i.e., paths in which all abstract states can occur at
most once. To better control when the abstraction is applied,
we also assign to each abstraction location an abstraction
threshold saying that the abstraction is not applied in this
location before the number of occurrences of the location in
the current path exceeds the threshold. This can help avoiding
the imprecise abstraction for loops with a small number of
iterations. We show how these ideas can be integrated in
a standard symbolic execution algorithm and included in a
standard CEGAR loop [CGJ+03] with little effort, and demon-
strate its effectiveness by evaluating our implementation in the
KRATOS [GJ23] software model checker on a benchmark set
obtained from the latest Competition on Software Verification
SV-COMP [Bey24]. In particular, our results show that the
new technique significantly improves the peformance of the
symbolic execution engine of KRATOS on safe benchmarks
(i.e., where the error location is unreachable), and it also can
prove correctness of some programs that could not be verified
by the other compared engines of KRATOS (within the given
resource bounds), thus contributing to its overall performance
on the benchmark set.

Paper outline: The rest of the paper is organized as follows.
We introduce general background notions in Section II and
standard symbolic execution in Section III. Our combination
of symbolic execution, implicit abstraction, and CEGAR is
described in Section IV. We present experimental evaluation in
Section V and discuss related work in Section VI. Finally, we
draw conclusions and discuss future directions in Section VII.

II. PRELIMINARIES

Logic: We work in the setting of standard first-order logic.
We use the standard notions of theory, satisfiability, and
validity of a formula. For each term t and an assignment µ
to variables and possibly uninterpreted function and relation
symbols, µ(t) denotes the result of the evaluation of t under
µ. Similarly, for a formula φ, we denote as µ(φ) the result of
the evaluation of φ under µ. If the formula evaluates to true ,
we say that µ is a model of φ and write µ |= φ. We assume
that we work over a theory whose quantifier-free fragment
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Fig. 1. A safe CFA where symbolic execution runs forever.

is decidable, i.e., there is a computable function ISSAT(φ)
that returns true if φ is satisfiable and false otherwise. For
presentation purposes, all the examples in the paper are over
the theory of linear integer arithmetic, but the concepts work
for any theory with decidable quantifier-free fragment.

Mathematical notation: For each function f : A → B and
a ∈ A, b ∈ B, we denote by f [a← b] the function that maps
a to b and x to f(x) for all x in A ∖ {a}. The domain of a
(partial) function f is denoted as dom(f). For each set A, we
denote as A+ the set of all non-empty sequences of elements
from A. If u, v ∈ A+, we denote their concatenation as u.v
(or just uv, if it is clear from the context). We denote the set
of Booleans as B = {true, false}.

Programs: We consider programs represented by control-
flow automata (CFA). Let Vars be a fixed set of pro-
gram variables. A control flow automaton is a tuple A =
(L, init , err , E), where L is a finite set of program locations,
init ∈ L is the initial location, err ∈ L ∖ {init} is the
error location, and E ⊆ L × Ops × (L ∖ {init}) is a finite
set of edges between program locations that are labeled by
operations. We assume that init has only outgoing edges. Each
operation o ∈ Ops has one of the three following forms:

1) an assumption [φ], where φ is a formula over Vars ,
2) an assignment x := t, where x ∈ Vars and t is a term

over Vars , or
3) a nondeterministic assignment x := ∗, where x ∈ Vars .

We assume that if a single location has multiple outgoing
edges, all of them are assumptions. A CFA used as a running
example can be found in Fig. 1.

A (control-flow) path π leading to a location lk ∈ L
is a nonempty finite sequence of consecutive edges π =
(l1, o1, l2)(l2, o2, l3) . . . (lk−1, ok−1, lk) ∈ E+ where l1 =
init . The path is called error path if lk = err .

A program state is a pair (l, µ), where l ∈ L is a program
location and µ is an assignment of values to program variables.

There is a transition (l, µ)
(l,o,l′)−−−−→ (l′, µ′) between two states

along the edge (l, o, l′) ∈ E if one of the following holds:
1) o = [φ], µ |= φ, and µ = µ′, or

2) o = (x := t) and µ′ = µ[x← µ(t)], or
3) o = (x := ∗) and µ′(v) = µ(v) for all v ∈ Vars ∖ {x}.

A path π = (l1, o1, l2)(l2, o2, l3) . . . (lk−1, ok−1, lk) is feasi-
ble if there exists a sequence of assignments µ1, µ2, . . . , µk

satisfying (li, µi)
(li,oi,li+1)−−−−−−−→ (li+1, µi+1) for all 1 ≤ i < k.

For example, the path π = (init , [n > 0], a)(a, x := 5, b) in
our running example is feasible, but the path π.(b, [n ≤ 0], g)
is not due to the contradictory assumptions on the value of n.

A CFA is called unsafe if there is a feasible error path and it
is called safe otherwise. In the rest of the paper, we assume that
(L, init , err , E) is an arbitrary fixed CFA and we are interested
in proving whether the CFA is safe or unsafe. We also assume
that Vars contains only the program variables used in the CFA.

III. SYMBOLIC EXECUTION

Symbolic execution [Kin76] is a technique that system-
atically explores all feasible paths of a given CFA. The
main idea is that instead of concrete input values, symbolic
execution uses variables representing arbitrary input values.
Consequently, values of program variables are terms over
the input variables. When symbolic execution evaluates an
assumption [φ], the program variables in φ are replaced by
the corresponding terms and the resulting formula is added to
the so-called path condition. The path condition is satisfiable
if and only if the corresponding path is feasible. When the path
condition becomes unsatisfiable, symbolic execution explores
another path. Now we present symbolic execution formally.

Let Inputs be a countably infinite set of variables that
represent inputs of the program. A symbolic state is a pair
(pc,m), where pc is a formula over Inputs called a path
condition and m is a symbolic memory which assigns to each
program variable x ∈ Vars a term m(x) over Inputs that
represents the current value of x. We extend m to arbitrary
terms and formulas. Namely, if t is a term over Vars , m(t) is
the result of simultaneously replacing each program variable x
in t by m(x). Analogously, m(φ) is the formula over Inputs
obtained from a formula φ over Vars in the same way. Given
a symbolic state s, by s.pc we denote its path condition and
by s.m its symbolic memory.

We assume that there is a function fresh() whose every
call returns a fresh variable from Inputs and a function
freshMem() whose every call returns a symbolic memory that
assigns to each program variable a fresh input variable.

We define a function next that for each symbolic state s
and each operation o ∈ Ops returns the successor symbolic
state next(s, o). For a state s = (pc,m) and an operation o,
we set

next(s, o) =

⎧⎪⎨⎪⎩
(pc ∧m(φ),m), if o = [φ],

(pc,m[x← m(t)]), if o = (x := t),

(pc,m[x← fresh()]), if o = (x := ∗).
Algorithm 1 presents standard symbolic execution formu-

lated as a recursive function exploring the tree of all feasible
paths in a depth-first manner.

The function SYMEX(l, s, h) has three arguments: the cur-
rent location l, the current symbolic state s, and the sequence h
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Algorithm 1 Standard symbolic execution
1: function SYMEX(l, s, h)
2: h← h.(l, s) ▷ update history
3: if l = err then
4: return (UNSAFE, h)
5:
6: for (l, o, l′) ∈ E do ▷ for each outgoing edge
7: s′ ← next(s, o) ▷ successor state
8: if o is an assumption then
9: if not ISSAT(s′.pc) then

10: continue ▷ the path is not feasible
11: h′ ← h.o ▷ new history with the operation
12: if SYMEX(l′, s′, h′) = (UNSAFE, h′′) then
13: return (UNSAFE, h′′) ▷ feasible error path
14:
15: return SAFE ▷ all outgoing feasible paths are safe

tracking the history of the current path (i.e., h stores the visited
pairs of a location and a symbolic state interleaved with the
performed operations). To symbolically execute a given CFA,
we call SYMEX(init , s0, ε), where s0 = (true, freshMem())
is a symbolic state with path condition true and a fresh
symbolic memory. The function first extends the history with
(l, s). If the current location is err , then it returns UNSAFE
and the current history representing the detected feasible error
path. Otherwise, the function processes the edges leading from
the current location l one by one. The operation of the edge is
evaluated and if it changes the current path condition into an
unsatisfiable one, the path is infeasible and we terminate its
exploration. Otherwise, the operation is added to the history
and symbolic execution is recursively called from the location
and symbolic state after the operation. If this recursive call
detects a feasible error path, the function produces the same
verdict. If the recursive call finishes without finding any
feasible error path, we continue with the next edge. If all
edges are processed without finding any feasible error path,
the function returns SAFE.

The biggest disadvantage of standard symbolic execution is
its unability to show that a system with an infinite number
of feasible paths is safe. This is, for example, the case of
the CFA in Fig. 1: for each j > 0, the path going through
locations init .a(bcdfbcef )jbg is feasible. Symbolic execution
of such a path leads to the symbolic state with memory
m(n) = vn − 2j, m(x) = 5 + j, and m(y) = 5 + (j − 1)
and path condition equivalent to vn = 2j ∧ vy ̸= 5,
where vn, vy ∈ Inputs represent the initial values of program
variables n, y, respectively.

IV. EXTENDING SYMBOLIC EXECUTION
WITH PREDICATE ABSTRACTION

One of the techniques used to reduce the number of
states and paths of programs is predicate abstraction [BR02],
[BHJM07]. Given a CFA A with program variables Vars and
a set P of formulas over Vars called the predicates, the
predicate abstraction is used to construct an abstract system

ˆ︁AP such that if the error state is unreachable in ˆ︁AP, it is
also unreachable in the original system A. The system ˆ︁AP has
Boolean variables VarsP = {xP | P ∈ P} that correspond to
the predicates and its states are thus pairs (l, µP) of a location
l and an assignment µP : VarsP → B representing the current
values of the predicates. There is a relation H(µ, µP) between
assignments to variables of the original and the abstracted
system that holds if and only if µ(P ) = µP(xP ) for all P ∈ P.

There is a transition (l, µP)
(l,o,l′)−−−−→ (l′, µ′

P) in ˆ︁AP if and only

if there exists a transition (l, µ)
(l,o,l′)−−−−→ (l′, µ′) in A such

that H(µ, µP) and H(µ′, µ′
P). The predicate abstraction can

be further refined by assigning different sets of predicates to
different program locations or by abstracting only in a subset
of the locations [BKW10]. The computation of the transition
relation in the abstract system is potentially expensive as
it needs many SMT queries or alternative approaches with
quantified SMT queries or AllSMT queries. This potentially
expensive computation can be avoided by implicit predicate
abstraction [JM07], [Ton09], where the abstraction itself is
embedded in SMT queries asking for the existence of a certain
path in the abstract system.

In the rest of this section, we present the main contribution
of the paper, which is extending the symbolic execution with
predicate abstraction and CEGAR. We do this in three concep-
tual steps. First, in Section IV-A we formalize the considered
abstractions, define feasibility of paths in the abstract system,
and introduce the simplicity of these paths which intuitively
means that a path cannot pass the same abstract state twice.
Section IV-B then presents our algorithm for symbolic exe-
cution extended with implicit predicate abstraction. Finally,
Section IV-C incorporates the algorithm in a CEGAR loop that
checks feasibility of the obtained abstract counterexamples and
refines the abstraction.

A. Precision Function, Feasible and Simple Abstract Paths

First of all, we define precision functions that specify where,
when, and what abstraction to use. Let F denote the set of
formulas over program variables. A precision function is an
arbitrary partial function p : L → N0 × Pfin(F) that assigns
to a program location l a pair p(l) = (c,P) of a non-negative
integer c called threshold and a finite set P of predicates.
Locations in dom(p) are called abstraction locations and the
abstraction will be used only there. For an abstraction location
l, the value p(l) = (c,P) says that the abstraction in location
l is applied only when the current path visits l at least c
times and the abstraction uses the formulas of P as abstraction
predicates. We refer to c and P assigned to l by p with p(l).c
and p(l).P, respectively. In the following, we always assume
that p denotes some precision function.

Given a path π = (l1, o1, l2)(l2, o2, l3) . . . (lk−1, ok−1, lk),
we say that li is an abstraction point on π if it is an abstraction
location that appears at least p(li).c times in l1, l2, . . . , li−1.
Given an abstraction location l, we say that two assignments
µ, µ′ are p(l)-equivalent if they satisfy the same predicates
assigned to l by p, i.e., for each P ∈ p(l).P it holds that
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1
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µ1

n ↦→ 3
x ↦→ 10
y ↦→ 4

µ′
2

n ↦→ 3
x ↦→ 5
y ↦→ 4

µ2

n ↦→ 0
x ↦→ 8
y ↦→ 2

µ′
3

n ↦→ 0
x ↦→ 8
y ↦→ 2

=
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µ′
2(x−y < 1) =

= µ2(x−y < 1) =
= false

[n > 0] x := 5 [n ≤ 0]

Fig. 2. A p-feasible path for p(b) = (0, {x− y < 1}) that is not feasible.

µ(P ) = µ′(P ). The values µ(P ) of the abstraction predicates
P ∈ p(l).P form the abstract state associated to l.

Definition 1 (p-feasible path). We say that a control-flow
path π = (l1, o1, l2)(l2, o2, l3) . . . (lk−1, ok−1, lk) is p-feasible
if there exist assignment sequences µ1, µ2, . . . , µk−1 and
µ′
2, µ

′
3, . . . , µ

′
k such that for each edge (li, oi, li+1) there is

a transition (li, µi)
(li,oi,li+1)−−−−−−−→ (li+1, µ

′
i+1) and for each

1 < i < k it holds that if li is an abstraction point on π
then µi, µ

′
i are p(li)-equivalent and µi = µ′

i otherwise.

Theorem 1. Each feasible path is also p-feasible for each
precision function p.

Proof. Let π = (l1, o1, l2)(l2, o2, l3) . . . (lk−1, ok−1, lk) be a
feasible path. As the path is feasible, there exist assignments
µ1, µ2, . . . , µk such that (li, µi)

(li,o,li+1)−−−−−−→ (li+1, µi+1) for
each 1 ≤ i < k. The path is also p-feasible as the assignment
sequences µ1, µ2, . . . , µk−1 and µ′

2 = µ2, µ
′
3 = µ3, . . . , µ

′
k =

µk clearly satisfy all the conditions in Definition 1.

Note that the other implication does not hold. For example,
the path (init , [n > 0], a)(a, x := 5, b)(b, [n ≤ 0], g) of the
running example is not feasible as mentioned in Section II, but
Fig. 2 shows that it is p-feasible for precision function with
dom(p) = {b} and p(b) = (0, {x− y > 0}).

It would not be useful to modify the symbolic execution
to explore all p-feasible paths instead of all feasible paths as
Theorem 1 implies that the number of p-feasible paths can only
be higher. The key observation for our approach is that we do
not have to explore all p-feasible paths, but only the paths that
do not contain two abstraction points with the same location
and abstract state. We call such paths p-simple. Formally, this
is stated by the following definition and theorem.

Definition 2 (p-simple path). A control-flow path π =
(l1, o1, l2)(l2, o2, l3) . . . (lk−1, ok−1, lk) is called p-simple if it
is p-feasible and there exist assignment sequences from the
definition of p-feasibility that additionally satisfy the follow-
ing: for all 1 ≤ i < j ≤ k such that li is an abstraction point
on π and li = lj it holds that µi, µ

′
j are not p(li)-equivalent.

Theorem 2. If there exists a feasible error path, then for each
precision function p there is a p-simple error path.

Proof. Let π = (l1, o1, l2)(l2, o2, l3) . . . (lk−1, ok−1, lk) be a
feasible path leading to lk = err and p be a precision function.
Because π is feasible, there exist assignments ν1, ν2, . . . , νk

such that (li, νi)
(li,oi,li+1)−−−−−−−→ (li+1, νi+1) for each 1 ≤ i < k.

We show by induction that for each 1 < i ≤ k there exists a
path ρ leading to li and assignment sequences µ1, µ2, . . . , µ|ρ|
and µ′

2, µ
′
3, . . . , µ

′
|ρ|+1 showing that ρ is p-simple and

1) νi = µ′
|ρ|+1 or

2) the last location on ρ is an abstraction point and νi, µ
′
|ρ|+1

are p(li)-equivalent
Note that for i = k this proves the statement.

Base case (i = 2) Consider the path ρ = (l1, o1, l2) and
assignments µ1 = ν1 and µ′

2 = ν2. The path is p-feasible as

(l1, µ1)
(l1,o1,l2)−−−−−−→ (l2, µ

′
2). It is also p-simple as l1 = init has

no incoming edges and thus l1 ̸= l2.
Induction step (i > 2) The induction hypothesis gives

us a path ρ′ leading to li−1 and assignment sequences
µ1, µ2, . . . , µ|ρ′| and µ′

2, µ
′
3, . . . , µ

′
|ρ′|+1 showing that ρ′ is p-

simple and

1) νi−1 = µ′
|ρ′|+1 or

2) the last location on ρ′ is an abstraction point and
νi−1, µ

′
|ρ′|+1 are p(li−1)-equivalent.

Consider the path ρ′′ = ρ′.(li−1, oi−1, li) and the as-
signment sequences prolonged with µ|ρ′|+1 = νi−1 and
µ′
|ρ′|+2 = νi. Note that ρ′′ is p-feasible as ρ′ is p-simple,

(li−1, µ|ρ′|+1)
(li−1,oi−1,li)−−−−−−−−→ (li, µ

′
|ρ′|+2), and

1) µ|ρ′|+1 = νi−1 = µ′
|ρ′|+1 or

2) the last but one location on ρ′′ is an abstraction point,
and µ|ρ′|+1 = νi−1, µ

′
|ρ′|+1 are p(li−1)-equivalent.

If ρ′′ is also p-simple, we can simply set ρ = ρ′′ as νi =
µ′
|ρ′|+2 = µ′

|ρ′′|+1.
If ρ′′ is not p-simple, it has to be because of adding the last

edge as ρ′ is p-simple. Hence, there exists an abstraction point
li′ on ρ′ such that li′ = li and µi′ , µ

′
|ρ′′|+1 are p(li)-equivalent.

However, then we can set ρ to be the prefix of ρ′ ending with
li′ . Such ρ leads to li, it is p-simple, its last location is an
abstraction point and νi = µ′

|ρ′|+2 = µ′
|ρ′′|+1, µi′ = µ|ρ|+1 are

p(li)-equivalent.

The important benefit of restricting the attention to p-simple
paths is that for a suitable choice of the precision function
p, there are only finitely many p-simple paths. In particular,
we want to use a precision function p such that every cycle
in the CFA contains at least one abstraction location. This is
formalized by the following theorem, which will guarantee ter-
mination of the symbolic execution with predicate abstraction
formulated in the next subsection.

Theorem 3. Let p be a precision function such that each
control-flow cycle contains at least one abstraction location
l ∈ dom(p). Then the set of p-simple paths is finite.

275



Algorithm 2 Symbolic execution with predicate abstraction
1: function SYMEXPA(l, s, h, p)
2: h← h.(l, s) ▷ update history
3: if l = err then
4: return (UNSAFE, h)
5:
6: if ABSTRACT?(l, h, p) then ▷ should we abstract?
7: mA ← freshMem()
8: pcA ← s.pc ∧ eq(p(l).P, s.m,mA)
9: pcA ← pcA ∧ simple(p(l).P, l,mA, h)

10: s← (pcA,mA)
11:
12: for (l, o, l′) ∈ E do ▷ for each outgoing edge
13: s′ ← next(s, o) ▷ successor state
14: if o is an assumption or ABSTRACT?(l, h, p) then
15: if not ISSAT(s′.pc) then
16: continue ▷ the path is not p-simple
17: h′ ← h.o ▷ new history with the operation
18: if SYMEXPA(l′, s′, h′, p) = (UNSAFE, h′′) then
19: return (UNSAFE, h′′) ▷ p-simple error path
20:
21: return SAFE ▷ all outgoing p-simple paths are safe

Proof. We show that the length of each p-simple path is
bounded from above by a constant. Let LA = dom(p) be
the set of abstraction locations, LN = L ∖ LA be the set
of all non-abstraction locations, and π be a p-simple path.
Since π is p-simple, it contains each abstraction location l
at most p(l).c + 2|p(l).P| times. Overall, it contains at most
b =

∑︁
l∈LA

p(l).c+ 2|p(l).P| abstraction locations. Since each
control-flow cycle contains at least one abstraction location,
the path π does not contain more than |LN | consecutive
locations from LN . There are at most b + 1 consecutive
segments of locations from LN (initial, terminal, and between
each two abstraction locations). The length of the path is thus
at most b+ (b+ 1)|LN |.

B. Symbolic Execution with Implicit Predicate Abstraction

The symbolic execution with predicate abstraction is com-
puted by Algorithm 2. It is a modification of Algorithm 1
(the different parts are in red) that explores p-simple paths
instead of feasible paths. In particular, Algorithm 2 builds path
conditions that are satisfiable iff the corresponding path is p-
simple.

The function ABSTRACT?(l, h, p) returns true iff l is an
abstraction location that has already been visited at least
p(l).c times by the current path (i.e., we are in an abstraction
point). If this is not the case, the next step proceeds as in
the standard symbolic execution. If we are in an abstraction
point with a location l and a symbolic state s, we perform the
abstraction before processing the next step. The abstraction
resets the symbolic memory to a fresh memory mA. To
ensure that mA represents assignments that are p(l)-equivalent

with assignments represented by s.m , we add the formula
eq(p(l).P, s.m,mA) to the path condition, where

eq(P,m,m ′) =
⋀︂
P∈P

(m(P )↔ m ′(P )).

To ensure p-simplicity, we add to the path condition the for-
mula simple(p(l).P, l,mA, h) satisfied by assignments where
the memory mA is not p(l)-equivalent with any memory
previously visited by the path in an abstraction point with
the same location l. Formally, we define

simple(P, l,m, h) =
⋀︂

(l′,s′)∈aPoints(h)
l′=l

¬eq(P,m, s′.m)

where aPoints(h) is the set of abstraction points and their cor-
responding symbolic states in the history h, i.e., aPoints(h)
contains the pairs (l′, s′) such that l′ is an abstraction location
appearing in h at least p(l).c times before the pair (l′, s′).

Theorem 2 implies that the algorithm is sound, i.e., if it
returns SAFE, there is no feasible error path in the CFA.
On the other hand, if the algorithm returns (UNSAFE, h),
the p-simple error path represented by the history h can be
infeasible. Theorem 3 implies that the algorithm terminates for
each precision function p that defines at least one abstraction
location on each control-flow cycle. This is true as there is only
a finite number of p-simple paths and the algorithm checks
satisfiability of the path condition that enforces p-simplicity
one step after each abstraction point.

Algorithm 2 proves that our running example is correct if
we use the precision function that specifies the only abstraction
location b with p(b) = (0, {n > 0, x− y > 1, x = y}). We do
not show the full computation due to space limits. Figure 3
sketches the computaiton along the path through locations
init .ab.cdfb.cefb.cdfb.c that ends with an unsatisfiable path
condition meaning that the path is not p-simple. The figure
fully presents the initial symbolic state, the symbolic state
after the first two operations, and the symbolic state after the
first abstraction (corresponding to the first values of mA and
pcA in the algorithm). From the symbolic states after the next
three abstractions and the final symbolic state we show only
the symbolic memories and some imporant consequences of
the path conditons.

C. Abstraction Refinement Loop
Algorithm SYMEXPA can be integrated into the standard

CEGAR loop that checks the returned counterexamples for
feasibility and iteratively refines the precision until SYMEXPA
decides that the system is safe or a feasible error path is found.
An implementation of this loop is presented in Algorithm 3.
The algorithm uses three external functions:

• INITIALPRECISION() returns an initial set of abstraction
locations with their thresholds and abstraction predicates,
chosen either heuristically or by the user.

• ISFEASIBLE(cex ) checks feasibility of the path given by
cex . This can be done by performing the standard sym-
bolic execution along the path and checking satisfiability
of the path condition.
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m2:
n ↦→ vn2
x ↦→ vx2
y ↦→ vy2

pc2 ≡
vn1 > 0 ∧ eq(p(b).P,m ′

1,m2)

m3:
n ↦→ vn3
x ↦→ vx3
y ↦→ vy3

pc3 which implies
vx3 = vy3 ∧ vx3−vy3 ≤ 1

m4:
n ↦→ vn4
x ↦→ vx4
y ↦→ vy4

pc4 which implies vn3 > 0∧
∧ vx3 = vy3 ∧ vx3−vy3 ≤ 1

m5:
n ↦→ vn5
x ↦→ vx5
y ↦→ vy5

pc5 which implies vn3 > 0∧
∧ vx3 = vy3 ∧ vx3−vy3 ≤ 1∧
∧ vx5 = vy5 ∧ vx5−vy5 ≤ 1∧
∧¬eq(p(b).P,m3,m5)

m5:
n ↦→ vn5
x ↦→ vx5
y ↦→ vy5

pc5 ∧ vn5 > 0 which implies
false ≡ eq(p(b).P,m3,m5)∧
∧¬eq(p(b).P,m3,m5)

[n > 0]
x := 5

[n > 0]
[x ̸= y]
y := x

n := n−1

[n > 0]
[x = y]

x := x+1
n := n−1

[n > 0]
[x ̸= y]
y := x

n := n−1

[n > 0]

abstraction

abstraction

abstraction

abstraction

Fig. 3. A sketch of the run of SYMEXPA(init , (true, freshMem()), ε, p) on
the path going through locations init .ab.cdfb.cefb.cdfb.c with the precision
function p(b) = (0, {n > 0, x− y > 1, x = y})

Algorithm 3 Symbolic execution with predicate abstraction
and CEGAR

1: function SYMEXPA-CEGAR()
2: p← INITIALPRECISION()
3: s← (true, freshMemory())
4: while SYMEXPA(init , s, ε, p) = (UNSAFE, cex ) do
5: if ISFEASIBLE(cex ) then
6: return (UNSAFE, cex ) ▷ real counterexample
7: p← REFINE(p, cex )
8: return SAFE ▷ abstract system is safe

• REFINE(p, cex ) generates new predicates that block the
spurious counterexample. Here, we treat it as a black-box
that can be implemented by any existing technique for
predicate generation. As a back-up solution for the case
when predicate generation fails, the abstraction threshold
can be increased for all locations on the path.

Similarly to BLAST [BHJM07], Algorithm 3 can be im-
proved by not restarting the symbolic execution from scratch
after a refinement. The symbolic execution can simply back-
track to the highest location whose precision was increased
and restart from there with the new precision.

V. EXPERIMENTAL EVALUATION

A. Implementation

We implemented the algorithm proposed in Section IV-C,
including the symbolic execution backtracking after a re-

finement, in the KRATOS [GJ23] software model checker.
The changes overall amounted to 778 lines of C++ code,
including new user options related to the algorithm, logging,
and statistics computation. The abstraction is performed only
at loop heads. Refinement is implemented by computing
sequence interpolants at the loop heads from the unsatisfiable
feasibility query. The implementation relies on the SMT solver
MathSAT5 [CGSS13] both for constraint solving and for
interpolant computation. Because the proposed technique does
not support function calls, the implementation first eagerly
inlines all functions (and thus does not support unbounded re-
cursion). Note that all engines of KRATOS, including the newly
implemented one, support dynamic memory by modeling the
heap and pointers using the theory of arrays.

The implementation is closed-source, but the binary is
publicly available for academic and non-commercial use from
https://www.fi.muni.cz/∼xjonas/papers/fmcad24 symexecia/.

B. Experimental setup

For evaluation, we considered all the C programs from
the ReachSafety category of the 2024 edition of the annual
software verification competition SV-COMP [Bey24]. The cat-
egory consists of 11 222 C programs divided into 15 bench-
mark families. We compare the standard symbolic execution
implemented in KRATOS (symexec) and its proposed exten-
sion with implicit predicate abstraction and CEGAR using
initial abstraction thresholds 0, 1, and 100 (symexecia-0,
symexecia-1, symexecia-100, respectively). As external ref-
erence points, we execute the benchmarks using IC3 with
implicit predicate abstraction [CGMT16] implemented in
KRATOS (IC3IA), symbolic execution with CEGAR imple-
mented in CPACHECKER [BL16] (CPA-symexec+), and finally
SYMBIOTIC 10 [JKN+24] (Symbiotic) as a well performing
participant of SV-COMP based on the state-of-the-art symbolic
executor KLEE [CDE08].

The experiments were performed on several identical PCs
equipped with Intel Core i7-8700 CPU @ 3.20 GHz and
32 GiB of RAM. Each execution was limited to use a single
CPU core, 5 minutes of wall time, and 8 GiB of RAM. For
reliable benchmarking, all experiments were executed using
BENCHEXEC [BLW19].

We observed that some of the tools produced false positives,
i.e., returned unsafe for benchmarks marked as safe. In par-
ticular, CPA-symexec+ has 44 false positives (23 in Arrays, 1
in Fuzzle, and 20 in Heap), IC3IA has 5 false positives (all in
Hardness), Symbiotic has 1 false positive (in Fuzzle), symexec
has 3 false positives (2 in Hardness and 1 in Hardware), and
symexecia-100 has 1 false positive (in Hardware). We do not
consider these results in the rest of the evaluation and focus
only on the correctly solved benchmarks.

C. Results

We first compare the results of the standard symbolic
execution implemented in KRATOS with the proposed sym-
bolic execution with predicate abstraction and CEGAR. The
numbers of correctly solved benchmarks are shown in Table I.

277

https://www.fi.muni.cz/~xjonas/papers/fmcad24_symexecia/


TABLE I
NUMBERS OF CORRECTLY SOLVED UNSAFE (U) AND SAFE (S) BENCHMARKS BY STANDARD SYMBOLIC EXECUTION AND

SYMBOLIC EXECUTION WITH PREDICATE ABSTRACTION AND CEGAR WITH VARIOUS INITIAL ABSTRACTION THRESHOLDS.

Total symexec symexecia-0 symexecia-1 symexecia-100
Family U S U S U S U S U S

Arrays 113 320 5 10 57 4 59 4 53 8
BitVectors 15 34 11 21 10 23 10 24 11 27
Combinations 430 241 55 10 0 2 0 2 4 7
ControlFlow 29 37 3 3 4 15 3 7 3 6
ECA 480 783 18 0 25 51 29 44 28 0
Floats 268 804 39 202 10 200 10 200 10 200
Fuzzle 0 15 0 0 0 0 0 0 0 0
Hardness 0 4005 0 824 0 2315 0 1646 0 833
Hardware 497 727 62 0 47 44 50 49 71 32
Heap 73 166 20 52 20 48 20 49 21 52
Loops 201 528 114 282 73 194 84 195 111 286
ProductLines 265 332 178 86 129 156 128 104 213 86
Recursive 54 102 0 0 0 0 0 0 0 0
Sequentialized 400 184 4 0 3 4 4 3 6 0
XCSP 59 60 47 49 47 49 47 49 47 49

Total 2884 8338 556 1539 425 3105 444 2376 578 1586

TABLE II
NUMBERS OF CORRECTLY SOLVED UNSAFE (U) AND SAFE (S) BENCHMARKS BY COMPETING TOOLS

AND THE BEST CONFIGURATION OF SYMBOLIC EXECUTION WITH PREDICATE ABSTRACTION AND CEGAR.

Total CPA-symexec+ IC3IA Symbiotic symexecia-0
Family U S U S U S U S U S

Arrays 113 320 68 1 66 1 86 65 57 4
BitVectors 15 34 11 11 12 27 13 16 10 23
Combinations 430 241 122 0 60 24 211 0 0 2
ControlFlow 29 37 9 15 4 15 18 4 4 15
ECA 480 783 38 279 145 347 270 0 25 51
Floats 268 804 33 156 31 78 21 335 10 200
Fuzzle 0 15 0 0 0 0 0 0 0 0
Hardness 0 4005 0 6 0 3160 0 98 0 2315
Hardware 497 727 38 9 114 202 48 0 47 44
Heap 73 166 50 26 20 46 70 119 20 48
Loops 201 528 110 110 57 130 132 306 73 194
ProductLines 265 332 128 271 249 286 265 94 129 156
Recursive 54 102 0 1 0 0 50 44 0 0
Sequentialized 400 184 82 7 7 10 244 51 3 4
XCSP 59 60 11 0 46 50 38 50 47 49

Total 2884 8338 700 892 811 4376 1466 1182 425 3105

The proposed technique significantly improves the number of
decided safe benchmarks (1539 vs 3105 with initial threshold
0) and also slightly improves the number of decided unsafe
benchmarks (556 vs 578 with initial threshold 100). The im-
provements occur among multiple benchmark families. Differ-
ent initial abstraction thresholds provide different benefits and
downsides (see for example safe benchmarks from BitVectors
and Loops or unsafe benchmarks from ProductLines). Intu-
itively, the chosen thresholds determine the numbers of loop
unrollings after which the abstraction is applied. Therefore,
if some loops of the program need only a small number of
iterations, a higher threshold allows exploring them precisely
by the standard symbolic execution without applying the
abstraction. The experiments show that this might be cheaper
and beneficial in some cases.

Out of the 3530 benchmarks decided by symexecia-0,
2673 were decided without any refinements. Additionally, 149

benchmarks were decided after 1 refinement and required
at most 8 predicates per abstraction location, 52 after 2
refinements with at most 28 predicates, 114 after 3 refinements
with at most 14 predicates, 69 after 4 refinements with at most
101 predicates. The remaining 473 benchmarks required at
least 5 refinements and at most 204 predicates per location.

Table II presents a comparison of the best-performing con-
figuration of our algorithm, symexecia-0, with other competing
tools. It can be seen that our algorithm outperforms other
symbolic-execution-based competitors, Symbiotic and CPA-
symexec+, on several families of safe benchmarks and also
on some families of unsafe benchmarks. On the other hand,
symexecia-0 is outperformed by the other engine of KRATOS,
IC3IA. However, we note that symexecia can be easily imple-
mented into virtually any existing symbolic execution engine,
whereas this is not the case of IC3IA as it uses a significantly
different and more complex algorithm.
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Fig. 4. The cactus plot of benchmarks solved by each tool. For each tool, the corresponding line shows the number of benchmarks (x-axis) solved in at most
the given number of seconds of wall time (y-axis).

TABLE III
NUMBERS OF CORRECTLY SOLVED UNSAFE (U) AND SAFE (S)

BENCHMARKS BY VIRTUAL-BEST SOLVER OF IC3IA + SYMEXEC
IMPLEMENTED IN KRATOS AND THE VIRTUAL-BEST SOLVER OF IC3IA +

SYMEXEC + ALL VARIANTS OF SYMEXECIA.

VBS old VBS new Gain
Family U S U S

Arrays 71 11 72 12 2
BitVectors 12 31 12 31 0
Combinations 68 26 68 27 1
ControlFlow 5 15 5 15 0
ECA 156 347 159 347 3
Floats 41 225 41 225 0
Fuzzle 0 0 0 0 0
Hardness 0 3208 0 3369 161
Hardware 134 202 134 202 0
Heap 22 52 22 52 0
Loops 127 358 129 368 12
ProductLines 258 315 258 327 12
Recursive 0 0 0 0 0
Sequentialized 7 10 7 10 0
XCSP 47 50 47 50 0

Total 948 4850 954 5035 191

To see whether the proposed technique brings any additional
benefit to KRATOS compared to a simple parallel portfolio
combination of predicate abstraction implemented in IC3IA
and standard symbolic execution, we also compare the virtual-
best solver composed of IC3IA+symexec (denoted as VBS old)
and the virtual-best solver that also includes all variants of
symexecia-* (denoted as VBS new). The results are shown in
Table III. Symexecia brings 6 newly solved unsafe benchmarks
and 185 safe benchmarks across multiple benchmark families.

We also compared the runtime of all the tools. The number
of solved benchmarks depending on the time-out is presented
in the cactus plot in Figure 4. The plot supports all of the quan-
titative results from the tables and the previous paragraphs.

Additional plots and tables and all the logfiles from our
experiments and scripts used for their analysis can be found at
https://www.fi.muni.cz/∼xjonas/papers/fmcad24 symexecia/.

Overall, despite its simplicity, our algorithm significantly

outperforms symbolic-execution-based competitors on safe
benchmarks and can solve benchmarks that can be solved
neither by standard symbolic execution nor by more advanced
approaches as IC3 with predicate abstraction.

VI. RELATED WORK

Our procedure can be seen as an instance of a more general
family of techniques combining exploration of CFA paths
with abstraction and refinement, using (lazy) predicate ab-
straction [BHJM07], [BKW10] and/or interpolants [McM06],
[McM10], [BW12], possibly combined with symbolic exe-
cution and invariant inference [JNS11], [McM10]. All such
approaches work by constructing abstract reachability graphs,
in which nodes correspond to abstract states representing an
overapproximation of states that are reachable by following
some specific program paths, and rely on node coverage, i.e.,
showing that all the states represented by a given node n
are contained within the states represented by a previously-
visited node m, to ensure that the constructed abstract graph
is finite. Our method, on the other hand, does not require
the explicit computation of abstract states, and it relies only
on (abstract) simple path constraints for making the abstract
space finite. This is conceptually much simpler to integrate in a
standard symbolic execution algorithm than approaches based
on abstract states and covering such as [JNS11]; it should
however be acknowledged that the technique of [JNS11] can
potentially result in more compact abstract graphs.

There are other techniques that combine symbolic execution
and abstraction, but in a different way and with a different aim
than our procedure. For example, [APV09] extends symbolic
execution with memory abstraction, but explicitly stores the
visited abstract states, computes underapproximations of fea-
sible paths, the abstract domain is fixed beforehand, there is no
refinement, and the technique requires a dedicated algorithm
for subsumption check. In [RMV09], the authors propose to
use the abstract counterexample obtained by other means to
guide the computation of standard symbolic execution on the
original program towards the error location.
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Another recent technique for combining symbolic execu-
tion with CEGAR and interpolation-based refinement is pro-
posed in [BL16]. The difference with our approach is that
in [BL16] the abstraction consists in tracking only a subset
of the program variables and CFA constraints precisely (with
interpolation-based refinement used to increase the set of vari-
ables and constraints to track), but the core symbolic execution
algorithm is not modified; in particular, the technique does not
guarantee that only finite abstract spaces are explored during
each iteration of the CEGAR loop.

VII. CONCLUSIONS AND FUTURE WORK

We presented a program verification technique that com-
bines symbolic execution with implicit predicate abstraction
and CEGAR, and implemented it the software model checker
KRATOS. Our experimental evaluation showed that, despite its
simplicity, the technique is effective in improving not only
the proving capabilities of symbolic execution, but also the
overall performance of KRATOS, by solving some benchmarks
that could not be decided by its other verification engines.

As future work, we plan to extend the technique with
interprocedural analysis, i.e., to handle function calls without
relying on inlining. We also want to investigate additional
ways of computing predicates during refinement, instead of
relying on interpolation, and additional strategies for exploring
the symbolic execution tree besides the current depth-first
search.
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