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Kurzfassung

Die Theorie der optimalen Steuerung wird in vielen Bereichen der Naturwissenschaften eingesetzt,

um zeitliche Abläufe von Systemen zu optimieren und Trajektorien zu planen. Zur Auffindung von

optimalen Steuerungen wird eine Zielfunktion, unter Berücksichtigung von Nebenbedingungen,

minimiert oder maximiert. Die Zielfunktion beschreibt dabei z. B.: die Abweichung zu einer Soll-
trajektorie, den Energieverbrauch eines Systems oder die benötigte Zeit eines Ablaufs.

Im Rahmen dieser Arbeit wird letztere Zielfunktion betrachtet, um die zeitoptimale Trajektorie

für dynamische Systeme zu berechnen. Zeitoptimale Problemstellungen treten z. B. in der Fahr-

zeugmechanik, bei der Bestimmung der minimalen Rundenzeit einer Rennstrecke auf, oder in der

Robotik, wenn die Bahnkurve eines Roboters so gestaltet werden soll, dass die Zeit für ein Punkt-

zu-Punkt Manöver minimiert wird.

Bisher wurden solche Aufgabenstellungen weitgehend als Zwei-Punkt Randwertprobleme unter-

sucht, die schwer zu lösen sind, und eine Startlösung nahe der optimalen Lösung erfordern. Das

Ziel dieser Arbeit besteht nun darin, eine iterative, gradientenbasierte Lösungsstrategie zu ent-

wickeln, die auf komplexe Mehrkörpersysteme angewendet werden kann. Die Beschreibung der

Systeme erfolgt in einem ersten Schritt mit gewönlichen Differentialgleichungen und wird dann

auf differential-algebraische Gleichungen erweitert. Für die Berechnung des Gradienten, d. h. die

Variation des Steuersignals, die die größte lokale Reduktion der Endzeit verursacht, wird die so-

genannte adjungierte Methode herangezogen.

Die adjungierte Methode bietet dabei eine effiziente Möglichkeit, um den Gradienten eines Kos-

tenfunktionals hinsichtlich des Steuersignals zu berechnen. Die Grundidee dafür, ist die Einfüh-

rung zusätzlicher adjungierter Variablen, die durch eine Reihe von adjungierten Differentialglei-

chungen bestimmt werden, aus denen der Gradient berechnet werden kann.

Dabei ist es Ziel dieser Arbeit, die klassische adjungierte Gradientenberechnung für zeitoptimale

Problemstellungen in der Mehrkörperdynamik zu formulieren, und zu zeigen, dass damit zeitopti-

male Problemstellungen in der Dynamik effizient berechnet werden können.

Die in dieser Arbeit vorgestellten Methoden bieten einen robusten Alternativweg zur Lösung des

zugrundeliegenden Randwertproblems, und ermöglichen es, ausgehend von einer Initialsteuerung,

iterativ die zeitoptimale Lösung von Systemen zu berechnen.
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Abstract

The theory of optimal control is used in many areas of natural science to optimize time sequences

and to plan trajectories. Thereby the control of a system is searched, which minimizes or max-

imizes a desired objective function, under consideration of constraints. The objective function

describes, for example, the deviation from a target trajectory, the energy consumption of a system
or the operation period of a process.

In the context of this work, the latter objective function is considered in order to compute the

time-optimal trajectory for dynamic systems. Time-optimal control problems arise, for example,

in vehicle mechanics, when determining the minimum lap time on a race track, or in robotics,

when the trajectory of a robot has to be designed in order to minimize the time required for a

point-to-point maneuver.

So far, such tasks have been widely studied as two-point boundary value problems, which are

difficult to solve, and require an initial guess close to the optimal solution. However, the goal of

this work is to develop an iterative gradient-based solution strategy that can be applied to complex

multibody systems. The gradient, i. e., the variation of a control signal that results in the largest

local change of the final time, is computed using the so-called adjoint method.

The adjoint method provides an efficient way to compute the gradient of a cost functional with

respect to the control signal. The key idea is to introduce adjoint variables that are governed by

a set of adjoint differential equations from which the gradient can then be computed in a straight

forward way.

The goal of this work is to formulate the classical adjoint gradient approach for time-optimal con-

trol problems in multibody dynamics and to show how this method can be efficiently used to solve

time-optimal control problems arising from modern engineering science.

The methods in this work provide a robust way to solve the underlying boundary value problem

and enable the iterative computation of time-optimal solutions in multibody system dynamics.
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Preface

The present work was written during my employment as research assistant at the University of

Applied Sciences Upper Austria in cooperation with the Institute of Mechanics and Mechatron-

ics (E325) at the Vienna University of Technology in the period 2017–2021.

My scientific career was initiated with the support program of a Josef Ressel Center of the Chris-
tian Doppler Research Society. During the two-year period of the Josef Ressel Center the method-

ical approaches for the solution of optimal lap times of racing cars were developed. By receiving a

dissertation grant from the Austrian Research Promotion Agency (FFG), the work was completed

in another two years during a 50 % employment. During this time a scientifically very promising

way was found to extend the gradient based optimization methods to problems with given end

conditions for state variables of the system.

As described in the abstract, the thesis deals with the solution of time-optimal control problems in

multibody dynamics. However, the work is not meant to be a complete instruction guide for solv-

ing time-optimal control problems, but rather focuses on the adjoint method for minimal end time

problems. Note that in this work the designations adjoint method and adjoint gradient method can

be used synonymously.

The thesis is divided into eight chapters and organized as follows:

Chapter 1: In the first chapter, the reader is guided into the topic, state of the art methods

are presented, a literature review is given, and the scientific contribution of the

dissertation is emphasized.

Chapter 2: In the second chapter, a deeper understanding of the calculus of variations is

given in order to comprehend the newly developed theory and methodological ap-

proaches in the still following chapters in this book. A special emphasis is placed

on free endpoint problems, as these types of problems also occur when looking

for time-optimal controls.

Chapter 3: The third chapter of this thesis gives an overview of standard optimization tech-

niques and concentrates on customized methods to solve time-optimal control
problems. To cite an example, a new constrained optimization strategy is pre-

sented, which gives a first insight into the solution strategy pursued to solve time-

optimal control problems in multibody dynamics.
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In the following, Chapters 4 through 7 are devoted to optimal control theory. In detail, Chapter 4

deals with established methods in optimal control theory while Chapters 5, 6 and 7 are concerned

with the formulation of the adjoint method. Several parts of these chapters have already been

presented at conference visits, invited lectures and are published in peer reviewed journals.

Chapter 4: An introduction to optimal control theory is given and standard solution meth-

ods based on the two-point boundary value problem are presented in this chapter.

The necessary conditions for an optimal control solution are derived following

Pontryagin’s variational principles. Moreover, different boundary terms are con-

sidered for the optimal control task.

Chapter 5: This chapter discusses the adjoint method for solving a special class of time-

optimal control problems in which the final state of a system lies on a hyper-

surface. These problems occur, for example, in vehicle dynamics, where the final

state is defined by crossing the finish line of a race track. Finally, the proposed

method is demonstrated on examples from satellite and vehicle dynamics.

Chapter 6: In this chapter, we introduce a more general approach for the determination of

time-optimal controls subject to end conditions. In order to show the efficiency of

this method, the algorithm is tested with several examples at the end of the chapter.

Chapter 7: This chapter deals with the extension of the adjoint method discussed in the pre-

vious chapter to time-optimal control problems of multibody systems described

by a set of differential-algebraic equations of index three. The presented approach

has been published by the author only in excerpts in the open literature so far.

Chapter 8: At the end of the thesis a short summary is given, highlighting the advantages

and disadvantages of the newly developed methods and reflecting the author’s

experience regarding convergence behavior and robustness compared to previous

methods in this field.

Note that in the present work the following convention is used to describe a general size x: Scalar

sizes are written with x. Physical vectors are written with x while mathematical vectors are de-

scribed by x and matrices are represented by X. Partial derivatives of a function f are denoted by

fx and total time derivatives are written as ẋ. Note, due to notation simplicity, the dependencies

on time are omitted in many derivations. A minimizing solution is given by x while a solution x∗

denotes a modification of a minimizing solution.

– Philipp Eichmeir, Wels, March 25, 2022
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Chapter 1

Introduction

In the last few years, engineers and scientists have been increasingly faced with the challenge of

creating more complex simulation models to solve formidable tasks in mechanical engineering.

For this reason, there is a growing demand in both research and industry to develop efficient and

reliable algorithms to cope with these tasks and to design optimal processes.

A powerful tool is offered by modern theory of optimal control, which is concerned with finding

controls of systems in such a way that a desired target function is minimized. It enables scientists

and industrial users to plan the trajectory of dynamic systems and to operate systems at their load

limits.

If we consider a car, for example, we might be interested in the optimal control of the gas pedal,

brakes, and steering, while the target function could display fuel consumption or measure the lap

time on a race track. In this work we will focus on the latter class of problems and ask for con-

trolling dynamic systems so that the time required is minimal. Time-optimal control problems are

of great interest for a wide spectrum of applications in the field of mechanics not only originat-

ing from engineering but also from cybernetics, biomechanical or even medical investigations. A

special focus lays on the development and the extension of modern numerical methods for solving

time-optimal control problems which arise in the context of multibody dynamics.

The goal is to develop a robust algorithm for solving time-optimal control problems in multibody
dynamics in a reasonable amount of time. The novel methods in this work should support scien-

tific colleagues and researchers from industry in developing proposals for design improvements of

mechanical systems in aerospace applications, vehicle dynamics and robotics.

1.1 State of the Art

The history of optimal control theory goes back to the first half of the 20th century and its re-

search has made great progress with the Apollo moon program in the sixties of the past cen-

tury [35, 37, 16]. Among the references mentioned, the works by Kelley, Bryson and Ho are today

fundamental for modern optimal control.
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CHAPTER 1. INTRODUCTION

Despite the long history of optimal control, the topic is still interesting for research. Even to-

day, the computation of trajectories plays an important role in many application areas. Due to the

significant increase of computing power in the last decades, the problems of optimal control could

gain in complexity and difficulty. Nevertheless, among all optimal control tasks, the computation

of time-optimal solutions remains a challenge.

While the problem of finding optimal trajectories can be formulated and solved in a variety of

ways, a basic distinction can be made between (a) direct and (b) indirect methods discussed in

fundamental books on optimal control as e. g. [39, 7, 16].

(a) Direct methods are also addressed as nonlinear programming and transform the dynamic prob-

lem to a static problem by a parameterization of the control variables, see [9] for example. Nu-

merous methods follow a direct approach, e. g. interior point algorithms, active set, sequential
quadratic programming, pseudospectral method, to name but a few. Various authors [58, 19] pur-

sue a nonlinear programming strategy. The latter mentioned work by Casanova deals with the min-

imum lap time problem, which is still a challenging research issue in optimal control theory and is

therefore addressed in this book as well. More recently, Miller [46] deals with time-optimal trajec-

tory planning for guiding the Lunar Excursion Module from the Apollo program to and from the

Moon’s surface. There, the optimal control problem is solved by using a nonlinear programming

strategy, too. Moreover, an efficient alternative to solving constrained optimization problems could

be the interior point method which shows robustness with respect to initial values, see e. g. [73].

Here, the infinite-dimensional optimal control problem is reduced to a finite-dimensional static

optimization problem, which can be solved with classical methods, like Newton methods. There-

fore, the differential equation describing the dynamics of the system has to be discretized in time

by finite differences yielding algebraic equations. This time discretization can grow tremendously

in size in case of a long simulation time or a dynamic response as e. g. in bang-bang-control

systems.

(b) Indirect methods rely on solving the optimality conditions stated by the Soviet mathematician

Lev Semenovich Pontryagin, which leads to a two-point boundary value problem that can usually

be solved by shooting methods or full collocation techniques. Various authors [45, 20, 6, 43, 30]

discuss the solution methods of the boundary value problem, which are already well established

throughout a broad spectrum of engineering sciences. In the article by Graichen [30], a homotopy

method is presented, which is well suited to solve the boundary value problem particularly for
singular control tasks. This homotopy method is used to obtain some reference solutions in order

to compare the methods in this book, but more on that later.

For more details to indirect and direct methods, an overview of both is given in [11, 21, 22].

An alternative to the aforementioned methods is provided by gradient methods, which are regarded

as particularly robust with respect to initial controls. The key idea of gradient methods is an iter-

ative strategy to find a control history that leads to a minimum of the cost functional. Numerous

strategies are available to compute the control for which a functional is minimal, as e. g., the

method of the steepest descent, the conjugate gradient method, the gradient projection method,

the Gauss-Newton method, or quasi-Newton methods like the Broyden-Fletcher-Goldfarb-Shanno

2



CHAPTER 1. INTRODUCTION

(BFGS) algorithm when estimating the Hessian, see e. g. [56] for an overview and comparison of

performance behavior. In any cases, the gradient of the cost functional with respect to the control

history has to be computed. Unfortunately, the traditional numerical gradient computation is very

time consuming and especially in multibody simulations the determination of a gradient is often

the bottleneck for computational efficiency. To determine the partial derivatives with respect to

each time-discrete control parameter by means of a numerical differentiation, the entire dynamic

system must be solved once for a variation of every discretization parameter. In order to circum-

vent the tedious gradient computation by numerical differentiation, the so-called adjoint method

serves as the most efficient strategy in this case. Various authors have already utilized the adjoint

method in the field of multibody systems, as e. g., [8, 34], but nevertheless, there are still numerous

research questions.

The approach in multibody system dynamics is well suited for solving dynamical problems with
large rotations and deformations. Compared with other numerical engineering methods like the

Finite Element Method, which is utilized even in smaller enterprises, multibody simulations have

still a high potential for growing research and industrial recognition. Various authors have already

discussed the complexity and computational strategies of multibody systems [57, 60, 61, 63, 72].

The motion of multibody systems is frequently formulated by a set of differential-algebraic equa-

tions expressed in redundant generalized coordinates. Due to algebraic constraints, the equations

of motion are extended by constraint forces using Lagrange multipliers, see [64] for details. More-

over, a vector of time dependent control signals is actuating the system, which we aim to identify

in this work in such a way as to minimize a cost functional measuring the time period.

1.2 Scientific Contribution

The main novelty of the dissertation lies in the extension of the classical adjoint method, e. g.

presented in [66] to compute the gradient of a cost functional for time-optimal control problems

efficiently. The adjoint method is based on decoupling boundary conditions of the optimality con-

ditions and computes the gradient of a cost functional by a sequential integration of the equations

of motion and one or two systems of co-state (adjoint) equations.

The basic idea of the adjoint method goes back to the gradient technique pioneered by Bryson and

Ho [16]. Using the gradient information in nonlinear optimization routines, optimal control prob-

lems in multibody systems can be solved iteratively as described in [47, 50, 66]. The mentioned

articles discuss the application of the adjoint method for parameter identification and for solving

inverse dynamical problems in multibody dynamics.

Several facets of the adjoint method regarding time-optimal control problems are considered in

this thesis and the most promising formulation is enhanced to deal with constrained multibody

simulations described by differential-algebraic equations of index three. Therefore, an efficient

computation of the gradient using the adjoint equations and the adjoint-influence equations em-
bedded in the framework of multibody system dynamics is necessary. Moreover, an architecture

for time integration solvers for the adjoint equations as well as the adjoint-influence equations is

developed. Because of the highly nonlinear multibody problems, special focus is given to time-

3



CHAPTER 1. INTRODUCTION

and memory-efficiency. On the one hand, this work promotes basic research in the field of op-

timal control theory, and on the other hand, it enables the computation of time-optimal controls

in multibody system dynamics. While writing this thesis, the use of the adjoint method for solv-

ing time-optimal control problems has already been published by the author in renowned jour-

nals [21, 22, 23], the published papers consider only examples described by ordinary differential

equations.
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Chapter 2

The Calculus of Variations

Nature and mankind have always striven to design optimal shapes and processes. Many of them

are intuitive or occur in a natural way so that a maximum or minimum is achieved. For example, if

we consider a heavy chain suspended between two points, then the chain takes the shape for which

the potential energy is minimized. This natural response and behavior were already observed by

Euler while working on the calculus of variations. He also described this phenomenon in a famous

quotation:

“For since the fabric of the universe is most perfect, and is the work of a most wise

Creator, nothing at all takes place in the universe in which some relation of maximum

and minimum does not appear.” [52]

– Leonhard Euler, Lausanne and Geneva, 1744

The calculus of variations is a powerful tool to find functions for which a target functional is

maximized or minimized. In this chapter we shall discuss variational techniques to address issues

which are fundamental for solving time-optimal control problems.

2.1 Historical Notes

The history of the calculus of variations traces back to the 17th century [13, 28], and has its ori-

gin 1662 with the French mathematician Pierre de Fermat, when he discovered that light moves

through stratified media in minimal time. However, almost 25 years earlier, Galileo Galilei had

already formulated the problems of calculating the shape of a heavy chain and the Brachistochrone

curve, but his assumed solutions were not correct. Later, Johann Bernoulli studied Galileo’s two

problems and used Fermat’s approaches to present an approximate solution to the Brachistochrone

problem. Therefore, he divided the area between the given end points into thin horizontal layers

and made the assumption that the falling particle moves uniformly in each layer and that the tra-

jectory curve at each interface changes as if a light beam is refracted, thus minimizing the total

5



CHAPTER 2. THE CALCULUS OF VARIATIONS

time of descent. In 1685, Isaac Newton first formulated the basic principles of the calculus of

variations and published a method for finding the shape of a projectile, described by a body of

revolution, in such a way that the air resistance is minimized. The treatise in his Philosophiae

Naturalis Principia Mathematica has a significant impact on the further progress of the calculus

of variations, as it is the first problem in this field which was both correctly formulated and solved.

In the late 17th century, Johann Bernoulli asked the mathematical community to solve Galileo’s

Brachistochrone problem. The problem was then solved by himself, his brother Jacob, by Leibniz

and by Newton. Due to the controversies between Newton and Bernoulli at that time, Newton

published his solution of the Brachistochrone problem anonymously. However, Johann Bernoulli

revealed Newton’s solution by noticing that one can recognize a lion from its touch.

After the solution of the Brachistochrone problem, the Bernoulli brothers posed many other prob-

lems, thus founding a new field of mathematics. Inspired by Johann Bernoulli, the Swiss mathe-
matician Leonard Euler published in 1744 the textbook “The Method of Finding Curves that Show

Some Property of Maximum or Minimum” that entered the history of the calculus of variations.

Joseph-Louis Lagrange invented the method of variations, which Euler generously praised and

prompted him to give the calculus of variations its name. Another groundbreaking work of La-

grange is the method of multipliers, which measures the sensitivity of the functional with respect

to states. Euler also adopted this idea from Lagrange and wrote the necessary first order conditions

for a stationary solution which we know today as the Euler-Lagrange equations.

2.2 The Variation Principle for Free Final Points

Many problems in geometry deal with the task of finding a plane curve between two points for

which a functional is maximized/minimized. One of these problems is the mentioned Brachis-

tochrone curve that is a path between two points on which a particle mass travels in minimal time

under the influence of gravity. In this chapter we are interested in solving such problems, but

before we describe the solution of the Brachistochrone problem, we first summarize some basic

principles of the calculus of variations. Various textbooks deal with the calculus of variations,

e. g., see [71, 40], where the book by Lanczos deserves special mention. Later in this work, we

are dealing with free endpoint problems, thus for the variational task, we also consider the initial

point fixed and the endpoint free.

In general, a cost functional can be expressed in the form

J(y(t)) =
tf

t0

F (y(t), ẏ(t), t) dt, (2.1)

and we are looking for the function y(t) which minimizes J . The initial point of the function y(t)

is prescribed by t0 and y(t0) = y0, while we consider the final time tf and the final function value

y(tf ) free. For example, if we are looking for the shortest path between two points, the integrand
in Eq. (2.1) is given by the arc length F := 1 + (ẏ(t))2. In order to find a function y(t) which

minimizes J , we investigate a change of y(t). Hence, the modified function y∗(t) reads

y∗(t) = y(t) + δy(t) = y(t) + ε η(t), (2.2)

6
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in which y(t) is the function which minimizes J , η(t) is an arbitrary test function and ε is a small

disturbance parameter. Note that the test function η(t) must also fulfill the initial condition, hence

η(0) = 0. Analogously to Eq. (2.2), the modified final time t∗f is given by

t∗f = tf + δtf = tf + ε ξ, (2.3)

where tf is the free final time, ξ ∈ R is an arbitrary test number and ε is again the small disturbance

parameter. Inserting the modified function y∗(t) and the modified final time t∗f into Eq. (2.1) we

obtain

J(y∗(t)) = J(y(t) + ε η(t)) =
tf+ε ξ

t0

F (y(t) + ε η(t), ẏ(t) + ε η̇(t), t) dt. (2.4)

In order to apply a solution strategy to our problem, we investigate the change of J caused by the

variation of the function y∗(t), yielding

J(y∗(t))− J(y(t)) = J(y(t) + ε η(t)) − J(y(t))

≈ J(y(t)) + ε
d

dε ε=0
J y(t) + ε η(t) − J(y(t)) = δJ,

(2.5)

in which we utilized a linear Taylor expansion of J(y∗) with respect to the disturbance parameter ε.

Hence, we obtain a 1st order necessary condition for a maximizing/minimizing solution y(t) when

the variation of the functional

δJ = ε
d

dε ε=0
J(y(t) + ε η(t)), (2.6)

vanishes. Applying Eq. (2.6) to Eq. (2.4) yields

δJ = ε
d

dε ε=0

tf+ε ξ

t0

F (y(t) + ε η(t), ẏ(t) + ε η̇(t), t) dt, (2.7)

or, respectively, after dividing the integral into two parts

δJ = ε
d

dε ε=0

tf

t0

F (y(t) + ε η(t), ẏ(t) + ε η̇(t), t) dt

+ ε
d

dε ε=0

tf+ε ξ

tf

F (y(t) + ε η(t), ẏ(t) + ε η̇(t), t) dt.

(2.8)

Since the integration limits of the first integral do not depend on ε, we can simply shift the deriva-

tive with respect to ε under the integral resulting in

δJ =ε
tf

t0

∂F

∂y
η +

∂F

∂ẏ
η̇ dt+ ε

d

dε ε=0

tf+ε ξ

tf

F (y(t) + ε η(t), ẏ(t) + ε η̇(t), t) dt. (2.9)

The second integral of Eq. (2.9) deserves a closer look and can be rewritten by using the Leibniz

integration rule. In integral calculus, the Leibniz rule is a way to draw a derivative into the integral,

while the integration limits depend on the variable to be differentiated.
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An integration by the Leibniz rule results in

d

dε

tf+εξ

tf

F (y(t) + ε η(t), ẏ(t) + ε η̇(t), t) dt

=
tf+εξ

tf

d

dε
F (y(t) + ε η(t), ẏ(t) + ε η̇(t), t) dt+ F

tf+εξ

d

dε
tf + εξ . (2.10)

Substituting the second integral in Eq. (2.9) by Eq. (2.10), we obtain

δJ =ε
tf

t0

∂F

∂y
η +

∂F

∂ẏ
η̇ dt+ εF (y(tf ), ẏ(tf ), tf ) ξ, (2.11)

in which we evaluated the derivative with respect to ε at ε = 0, causing the integral term in

Eq. (2.10) to disappear. After applying an integration by parts of the term including η̇(t) in

Eq. (2.11), we obtain

δJ =
tf

t0

∂F

∂y
η −

d

dt

∂F

∂ẏ
η εdt+ ε

∂F

∂ẏ

tf

t0

+ F (y(tf ), ẏ(tf ), tf ) εξ. (2.12)

Note that the boundary term at t = t0 vanishes since the initial condition is not varied. If we now

replace ε, η and ξ by the original definitions δy = εη and δtf = εξ, introduced in Eq. (2.2) and

Eq. (2.3), we end up with

δJ =
tf

t0

∂F

∂y
−

d

dt

∂F

∂ẏ
δy dt+

∂F

∂ẏ tf

δy(tf ) + F (y(tf ), ẏ(tf ), tf ) δtf . (2.13)

Notice that δJ depends linearly on the variations δy(t), δy(tf ) and δtf . If we are looking for a

minimizing/maximizing function y(t), δJ must be zero for any variation δy(t), δy(tf ) and δtf .

Hence, from Eq. (2.13) we finally obtain the Euler-Lagrange equation

∂F

∂y
−

d

dt

∂F

∂ẏ
= 0, (2.14)

with associated boundary terms:

∂F

∂ẏ tf

= 0, F (y(tf ), ẏ(tf ), tf ) = 0. (2.15)

The conditions mentioned are necessary conditions for a minimizing/maximizing solution. Using

the second variation it can be shown that

δ2J =
ε2

2

d2

dε2 ε=0
J y(t) + ε η(t) ≥ 0, (2.16)

which is a necessary 2nd order condition for a local minimum. The derivation is analogous to

Eqs. (2.6–2.13), but leads to lengthy expressions, which are not shown here. An elaborate deriva-

tion is given in [71, Sec. 10.3].
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2.2.1 Boundary Conditions

In this section, we want to examine the boundary terms of δJ in Eq. (2.13) or, respectively, in

Eq. (2.15). In general, the variation of the final time and of the final states are not independent [39,

Sec. 4.3]. The relation between δtf , δy(tf ) and δyf is illustrated in Fig. 2.1. It should be noted

here that the total variation δyf takes into account the additional influence of the time variation

δtf on the change of the final function value. The solid line shows the function y(t) ending at tf ,

while the dashed line shows a modified function y∗(t) terminating at tf + δtf . Up to first order,

the variation of the final values is given by

δyf = y∗(tf + δtf )− y(tf )

= y(tf + δtf ) + δy(tf + δtf )− y(tf )

= ẏ(tf )δtf + δy(tf ).

(2.17)

Depending on the problem, different cases can now occur for the boundary terms. In the following,

we will take a closer look at two of these cases, as they will also play an important role later on.

Case I: Final Time and Final State Unrelated

If the final time tf and the final function value y(tf ) are free and independent, the variations in

Eq. (2.13) are arbitrary. After rearranging Eq. (2.17) and substituting δy(tf ) in Eq. (2.13) results in

δJ =
tf

t0

∂F

∂y
−

d

dt

∂F

∂ẏ
δy dt+

∂F

∂ẏ tf

δyf + F −
∂F

∂ẏ
ẏ

tf

δtf . (2.18)

If we now claim both boundary terms in Eq. (2.18) to disappear, the coefficient of δyf is zero, thus

we obtain F (y(tf ), ẏ(tf ), tf ) = 0 for a free end time, as in Eq. (2.15).

y

y(t)

y(tf )
y∗(t) δy(tf )

δyf

y0

t0 tf tf + δtf
t

Figure 2.1: Final time variation and the relationship between δtf , δy(tf ) and δyf
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Case II: Final Time and Final State Related

If the final time tf and the final function value y(tf ) are free but related, the variations in Eq. (2.13)

are not arbitrary. A special type of endpoint constraint occurs when the variation of the endpoint

is located on a curve. For example, the final time tf can be implicitly defined by a scalar equation

of the form

Φ(y(tf )) = yf , (2.19)

in which yf ∈ R is a given number. The operation period with modified function terminates when

the condition

Φ(y(tf ) + δyf ) = Φ(y(tf )) + Φy(y(tf ))δyf = yf (2.20)

is met. Since Φ(y(tf )) = yf and after inserting δyf from Eq. (2.17), we obtain

Φy(y(tf ))δyf = Φy(y(tf )) ẏ(tf )δtf + δy(tf ) = 0. (2.21)

Solving for δtf we end up with the relation

δtf = −
Φy(y(tf ))

Φy(y(tf ))ẏ(tf )
δy(tf ). (2.22)

From Eq. (2.22) we observe that the scalar product Φyẏ and the time derivative ẏ(tf ) must be

nonzero. Hence, the curve defined by Eq. (2.19) must be intersected in cross direction. Substitut-
ing δtf in Eq. (2.13) and collecting all variations results in

δJ =
tf

t0

∂F

∂y
−

d

dt

∂F

∂ẏ
δy dt+

∂F

∂ẏ
− F

Φy

Φyẏ tf

δy(tf ). (2.23)

Finally, we have combined both boundary terms from Eq. (2.13) to one single boundary term

in Eq. (2.23). As argued before, for an admissible extremal solution y(t) the variation of the

functional δJ must disappear, thus the brackets must be zero.

2.2.2 The δ-Operation for a Transformed Time Coordinate

Due to the complexity of many variational problems, an analytical solution is not always possible

and in such cases an extremal solution can only be determined numerically. For problems with

free end time, an additional difficulty arises because many algorithms require a fixed interval to

be applicable. To overcome this problem, on the one hand, a dimensionless unit interval can be

introduced. On the other hand, the time coordinate can be transformed to a “spatial” variable s(t)

with fixed endpoints, when this variable is strictly monotone increasing with respect to the original

time coordinate. If this applies, we can carry out a complete elimination of the time coordinate

(confer [21] for example), and utilize a formulation in space domain s instead.
However, Fig. 2.2 illustrates that the change of the integration variable has also an impact on the

δ-operation describing the function variation.
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s**

yy

y(t)
y(s)

t0 s0
t s

s

y∗(t)

y∗(s∗)

y∗(s)δy(t)
δy(s)

δy(s∗)

tftf sf

Figure 2.2: The relationship between the variations δy(t) and δy(s)

Let y∗(t) = y(t) + δy(t) be again a perturbed function in terms of the original time. Setting

s∗(t) = s(t) + δs(t), the function variation in terms of the time t reads

δy(t) = y∗(s∗(t))− y(s(t))

= y(s∗(t)) + δy(s∗(t))− y(s(t))

= y(s(t)) +
dy

ds
δs(t) + δy(s(t)) − y(s(t))

=
dy

ds
δs(t) + δy(s(t)),

(2.24)

in which we expanded y(s∗(t)) = y(s(t) + δs(t)) and δy(s(t) + δs(t)) about s in a linear Taylor

series. We will come back to this relation in Chapter 5.

2.3 The Brachistochrone Problem

In order to demonstrate the application of some variational techniques, we discuss the Brachis-

tochrone problem in Fig. 2.3. As history has shown, the solution of this problem plays an essential

role in the progress of the calculus of variations. Hence, this example is often discussed in con-

nection with the calculus of variations, and the solution is presented in many standard books.

A

B

g

x

y

v

Figure 2.3: Brachistochrone Problem
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The Brachistochrone, as e. g. discussed in [16, 27, 39], is a frictionless wire between an initial

point A and an end point B, on which a point mass slides in shortest time to the end point under

the influence of gravity. The goal is to find a function y which minimizes the functional

J =
tf

t0

1dt =
L

0

dl

v
, (2.25)

where J simply measures the length of the time interval tf − t0. Here, we transformed the integral

from time t into the arc length coordinate l of the curve by using the relation dt = dl/v, where v

is the velocity along the path and L is the total length of the curve. Without friction, the system is

conservative, hence we get

1

2
mv2 = mgy, or, v = 2gy, (2.26)

where y denotes the ordinate position, m the mass of the particle and g the gravitational accel-

eration. For a frictionless wire we observe that the velocity v is independent of the mass m of

the particle. Since we do not know the arc length L of the searched function y a priori, we make

another change to the integration variable by:

dl = 1 + y′2(x) dx. (2.27)

After inserting Eq. (2.27) and Eq. (2.26) into Eq. (2.25), we obtain the functional to be minimized

for the solution of the Brachistochrone problem.

Now a function y(x) is sought, which satisfies the boundary conditions prescribed by point A

and B and minimizes the functional

J =
xf

x0

1 + y′2(x)

2gy(x)
dx. (2.28)

Minimizing Eq. (2.28) gives the curve y(x) of fastest descent under the influence of gravity. We

consider the initial point in the origin fixed by A = (0, 0) and the end point fixed by B = (5, 2).

In order to apply a solution strategy to our problem, we use Eq. (2.13) and simply replace the time

dependence of y by the coordinate x, where δy(tf ) → δy(xf ) and δtf → δxf . Both variations

vanish due to the boundary conditions y(xf ) = yf and xf prescribed. Hence, for a minimizing

solution we have to solve
∂F

∂y
−

d

dx

∂F

∂ẏ
= 0. (2.29)

Since the integrand in Eq. (2.28) does not depend explicitly on x, we can further simplify the

differential equation in Eq. (2.29), see also [71, Sec. 2.3.2]. Therefore, we consider the total

derivative of F (y(x), y′(x)) with respect to x yielding

dF

dx
=

∂F

∂y
y′(x) +

∂F

∂y′
y′′(x). (2.30)
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x

y

1 2 3 4 5

−1

−2

Figure 2.4: Solution of the Brachistochrone problem and visualization of the cycloid gen-
erated by a rolling wheel

Multiplying the Euler-Lagrange equation in Eq. (2.29) by y′(x) and using the identity in Eq. (2.30),

we obtain

0 =
∂F

∂y
y′(x)−

d

dx

∂F

∂y′
y′(x) =

d

dx
F −

∂F

∂y′
y′(x) , (2.31)

or after an integration over x:

F −
∂F

∂y′
y′(x) = C, (2.32)

in which C is an integration constant.

After applying Eq. (2.32) to the Brachistochrone problem in Eq. (2.28), we get

1

2gy (1 + y′2(x))
= C, (2.33)

or, equivalently,

y 1 + y′2(x) = D, (2.34)

which is a separable differential equation for y(x). Here, D = 1/ 2gC2 is a new positive

constant to be determined. The solution of Eq. (2.34) is given by a parametric curve of a cycloid:

x(ϕ) =
1

2
D (ϕ− sin(ϕ)) , y(ϕ) =

1

2
D (1− cos(ϕ)) . (2.35)

If we now insert the final point B = (x(ϕf ), y(ϕf )) = (5, 2) into Eq. (2.35) and solve for the

constant D and the final value ϕf , the solution is given by D = 2.2487 and ϕ(t) ∈ [0, 3.820].

Finally, the solution of the Brachistochrone curve is shown in Fig. 2.4 as a cycloid of a rolling

wheel.
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Chapter 3

Numerical Optimization

The interest in obtaining optimal solutions has inspired scientists and engineers for centuries.

However, even nowadays, armed with computer aided algorithms, the computation of optimal

solutions is a challenging task. One way to find a solution is to formulate the problem as an

optimization task. In numerical implementation, optimization problems are solved by iterative

algorithms, which are proven robust in many fields of natural science.

This chapter is not intended to be a comprehensive presentation of optimization procedures, but

rather it focuses on numerical optimization techniques that will later be used for the iterative com-

putation of time-optimal controls. Numerical optimization problems (confer [48, 44]) can be basi-

cally divided into static and dynamic optimization problems. In a static optimization problem, the

optimization variables are elements of an n-dimensional Euclidean space, while in a dynamic op-

timization problem, the optimization variables are elements of an infinite dimensional space, such

as a time function. If the latter case involves differential equations, it is an optimal-control opti-

mization problem. In the following, we consider optimization problems in the Euclidean space,

which we later extend to dynamic optimization problems.

3.1 Optimization without Constraints

Let us begin our discussion of optimization methods by considering the static unconstrained opti-

mization problem
min
x∈Rn

f(x), (3.1)

in which x ∈ R
n denotes a vector of optimization variables and f the objective function. The

goal now is to find the variables x∗ for which the function f assumes a minimum. In many cases
an analytical solution for x∗ is not possible and iterative methods like the gradient or Newton

method have to be utilized to find a minimum of f . Starting from a point xk, one tries to find a

better point xk+1 such that f(xk+1) < f(xk). The process terminates when a sufficient criterion

for a minimum is met. In order to obtain a better iteration point, approaching the minimum of

f , we choose a descent direction pk ∈ R
n at point xk for which the objective function is locally
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decreasing, which means that the directional derivative d/dκ evaluated at κ = 0 is negative, i. e.

d

dκ κ=0
f(xk + κpk) = ∇fT(xk)pk < 0. (3.2)

Now the objective function f is traced along the straight line x(κ) = xk + κpk and we look for a

suitable parameter κ > 0 so that f(xk + κpk) < f(xk) applies. An update formula is then given

by

xk+1 = xk + κpk. (3.3)

In summary, an optimization algorithm involves two main steps: the computation of a search

direction pk (line search method) and the determination of a suitable update step size κ. In the

following we will take a closer look at both tasks.

3.1.1 Search Directions

There are numerous methods for determining a search direction pk, which differ in terms of com-

putational effort and convergence speed. In general, a search direction is given by

pk = −Hk ∇f(xk), (3.4)

in which ∇f(xk) ∈ R
n is the gradient of f and Hk ∈ R

n×n is a positive definite matrix, for

which Eq. (3.2) is satisfied automatically. Now the question arises how to choose the matrix Hk:

1. The simplest method to determine a search direction, is the gradient or steepest descent method,

which uses the search direction along the negative gradient. If we choose the direction of the steep-

est descent, then Hk := I in Eq. (3.4), where I is an n × n identity matrix. Hence, the search

direction is then given by pk = −∇f(xk). Note, when a quadratic problem is well conditioned,

the negative gradient points in the direction of the minimum (x∗, f(x∗)), see Fig. 3.1. In this case,

the gradient method converges quickly to the optimal solution. Unfortunately, perfect condition-
ing requires an eigenvalue calculation, which can become an unpleasant task.

x

y

−∇f

x

y

−∇f

x

y

−∇f

Figure 3.1: Comparison of a good-, moderately good- and ill-conditioned problem
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2. A more sophisticated search direction is given by the Newton search direction. The idea of

Newton’s method is to approximate the cost function locally by a quadratic function and minimize

this function instead. The Newton direction is given by

pk = − ∇2f(xk)
−1

∇f(xk), (3.5)

in which we introduced the matrix Hk := ∇2f xk))
−1 and assume that ∇2f(xk) is positive

definite. Figure 3.2 shows a comparison between the gradient- and the Newton-direction, where

the gradient direction is depicted in blue and the Newton direction is plotted in red.

3. Unfortunately, in many cases, the computation of the Hessian matrix is cumbersome and time-

consuming. An alternative method, which is less expensive and also exhibits a good convergence

rate, is the quasi-Newton method. The basic idea of the quasi-Newton method is to approximate

the Hessian matrix by the gradients of two successive iterations. Therefore, we apply a linear

Taylor expansion of the gradient at xk+1 yielding

∇f(xk+1) = ∇f(xk) +∇2f(xk+1) (xk+1 − xk)

∇2f(xk+1) (xk+1 − xk) = ∇f(xk+1)−∇f(xk)

Hk+1sk = yk,

(3.6)

in which we introduced the abbreviations Hk+1 = ∇2f(xk+1) for the Hessian, sk = xk+1 − xk

for the step length and yk = ∇f(xk+1)−∇f(xk) for the difference of two successive gradients.

However, this information is not sufficient to determine the search direction, i. e. Hk+1, since this

is an under-determined problem. Due to the fact that the symmetric matrix Hk+1 is composed of
1
2n(n + 1) elements, but Eq. (3.6)3 provides only n equations, additional constraints have to be

typically imposed on Hk, e. g., minimum difference between Hk and Hk+1.

x

y

Min.

f(x, y)

Figure 3.2: Comparison of the gradient- and Newton-direction for a quadratic function
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A common method for approximating the Hessian matrix is the BFGS-method, independently de-

veloped by Broyden, Fletcher, Goldfarb and Shanno in 1970. It defines Hk+1 by the optimization

problem:

Hk+1 = argmin
H

H−Hk , (3.7)

where · represents the Frobenius norm, subject to the conditions

H = HT, sk = Hyk. (3.8)

The analytical solution of Eq. (3.7) and Eq. (3.8) reads

Hk+1 = I− ρksky
T

k Hk I− ρksky
T

k + ρksks
T

k , (3.9)

with ρk := 1/(yT

k sk). The quasi-Newton method can be initiated, e. g., by computing the exact

Hessian, if this is possible, by approximating the Hessian using numerical differentiation, or by

using the identity matrix. The latter mentioned approach corresponds to a gradient update step.

A comprehensive derivation of the BFGS-method can be found in many standard optimization

textbooks, e. g., in [48, Sec. 8.1].

3.1.2 Step Length Determination

Step length algorithms are iterative. In the literature, two strategies are distinguished, the imprecise

line search and exact line search. We will consider the latter case, which is default in MATLAB’s

optimization toolbox and is frequently used in many other software packages. Once we have found

a suitable search direction pk, the question is how far we should walk along this direction so that

the objective function

φ(κ) := f(xk + κpk), (3.10)

decreases. Classical step length algorithms are initiated by estimating an interval [κa, κb] in which

a minimum is located. The interval can be found, for example, by starting with a sufficiently

small κa and by successively increasing κb until the function value f(κb) starts to increase. Then,

the interval is reduced step by step. The choice of a step size always represents a compromise

between accuracy and computational effort. Thus, it is often more convenient to make as few

function calls as possible and to avoid additional gradient computations along the search direction.

A computationally efficient and easy to implement method for determining a suitable step size is to

put a quadratic interpolation polynomial through a V-shaped assembly of three points (κ1, φ(κ1)),

(κ2, φ(κ2)) and (κ3, φ(κ3)). A suitable interpolation polynomial is readily given by

φ(κ) ≈ p(κ) = aκ2 + bκ+ c. (3.11)

where a, b and c denote the polynomial coefficients. The determination of a step length using a

polynomial is demonstrated on the Styblinski-Tang function [68] and is shown in Fig. 3.3.
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Figure 3.3: Step size determination demonstrated on the Styblinski-Tang function

Hence, the minimum of the quadratic polynomial in Eq. (3.11) can be simply determined by

κ∗ =
1

2

κ23 − κ22 φ1 + κ21 − κ23 φ2 + κ22 − κ21 φ3

(κ3 − κ2)φ1 + (κ1 − κ3)φ2 + (κ2 − κ1)φ3
(3.12)

in which we used the abbreviations φ1 = φ(κ1), φ2 = φ(κ2) and φ3 = φ(κ3). The process can

be repeated by selecting three closer V-shaped points from (κ1, φ(κ1)), (κ2, φ(κ2)), (κ3, φ(κ3))

and (κ∗, φ(κ∗)). There are many other methods for determining the step size, such as using higher

order interpolation polynomials or using an interval nesting method by applying the golden ratio,

see [48, Sec. 3.4] for more details.

3.2 Optimization with Constraints

In many optimization problems, it is necessary to satisfy constraint conditions, e. g. if we think

back to the variation task with given end conditions. We consider the static optimization problem

min
x∈Rn

f(x), (3.13)

subjected to the scalar auxiliary condition

g(x) = 0. (3.14)

On the one hand, the function f(x) should be minimized and on the other hand, the variables x

must fulfill the auxiliary condition g(x) = 0. In this section, we present two efficient optimization

algorithms to solve such problems. Generalizations for more than one auxiliary condition can be

found easily.

3.2.1 Projected Gradient Method

The key idea of the projected gradient method (according to [58], or in detail [44, Sec. 12.4]) is

to compute a search direction along the constraint manifold in Eq. (3.14). For this purpose, the
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negative gradient of the objective function in Eq. (3.13) is projected onto the tangent space of

the constraint manifold and this new direction is then used to update the optimization variables

xk. Therefore, the negative gradient is divided into a tangential t(xk) ∈ R
n and a normal part

η∇g(xk) with respect to the constraint manifold, which is illustrated in Fig. 3.4. Hence, we can

write the negative gradient as a linear combination with

−∇f(xk) := t(xk) + η∇g(xk), (3.15)

where η is a proper scaling factor defining the step length perpendicular to the constraint manifold.

If we multiply Eq. (3.15) from the left side with ∇gT(xk) we obtain

−∇gT(xk)∇f(xk) = η∇gT(xk)∇g(xk), (3.16)

in which we used ∇gT(xk) · t(xk) = 0. Solving Eq. (3.16) for the step length η, we get

η = −
∇gT(xk)∇f(xk)

∇gT(xk)∇g(xk)
. (3.17)

If we insert η from Eq. (3.17) into Eq. (3.15) and rearrange to t(xk), we obtain

t(xk) = − I−
∇g(xk)∇gT(xk)

∇gT(xk)∇g(xk)
∇f(xk), (3.18)

where I is an n× n identity matrix. Introducing the projection matrix

T(xk) = I−
∇g(xk)∇gT(xk)

∇gT(xk)∇g(xk)
, (3.19)

an update tangential to the constraint manifold is given by

xk+1 = xk − κT(xk)∇f(xk), (3.20)

where pk := −T(xk)∇f(xk) is here a tangential search direction regarding the constraint condi-

tion. In the case of a linear constraint equation g(xk), the update step by the projected gradient in

g(x) = 0

f(x) = const.

xk
xk+1

t(xk)
η∇g(xk)

−∇f(xk)

Figure 3.4: Update step of the projected gradient method (confer [44, Sec. 12.4])
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Eq. (3.20) does not lead to a deviation from the constraint manifold. However, in many problems

there are nonlinear constraints and the projected search direction leads to a violation of the con-

straint conditions even when choosing small step sizes κ. Hence, after an update step tangential to

the constraint manifold a correction step must be applied. The corrector step is a search direction

which is orthogonal to the projected search direction to get back to the constraint manifold. An

iteration rule is given by

x∗
k+1(ε) = xk+1 − ε∇g(xk), (3.21)

where ε > 0 is the update step size of the corrector step. If we claim that g(x∗
k+1) = 0, the update

step in Eq. (3.20) is small and we can linearize for ε, resulting in

0 = g(x∗
k+1(ε)) ≈ g(x∗

k+1(0)) +
∂g

∂x∗
k+1

dx∗
k+1

dε ε=0

ε

≈ g(xk+1)−
∂g

∂xk+1
∇g(xk)ε.

(3.22)

If xk+1 ≈ xk, then we can replace ∂g/∂xk+1 by ∇gT(xk) in Eq. (3.22) and after solving for ε,

we obtain

ε =
g(xk)

∇gT(xk)∇g(xk)
. (3.23)

Substituting ε in Eq. (3.21) we get

x∗
k+1 = xk+1 −

g(xk+1)

∇gT(xk)∇g(xk)
∇g(xk). (3.24)

After applying Eq. (3.24) to remove the residual in the constraint, we set xk+1 := x∗
k+1. Basically,

each iteration of the projected gradient method involves two steps:

1. Projection of the negative gradient by Eq. (3.20) and selection of an (optimal) step size κ by

using a line search algorithm from Sec. 3.1.2.

2. Elimination of the residual in Eq. (3.14) by utilizing Eq. (3.24). Note that this step may need

to be repeated iteratively until the residual in the constraint is sufficiently small.

If the residual in the constraint equation can not be eliminated in the second step, then the update

step size κ must be reduced in the first step.

3.2.2 A Modified Gradient Method

In this section we now introduce a handsome modification of the projected gradient approach,

as presented in [22], for solving constrained optimization problems, where the initial point x0

does not have to satisfy the constraint condition in Eq. (3.14). Finding a vector that satisfies the

constraint at the beginning is often not an easy task. Hence, we assume that we do not know a

state vector x0 ∈ R
n which satisfies this condition a priori. However, the variations of the cost
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function f in Eq. (3.13) and the auxiliary condition g in Eq. (3.14) are given by

δf = ∇fTδx

δg = ∇gTδx.
(3.25)

As a descent direction, approaching the constrained minimum of f , we now introduce a linear

combination of the two gradients ∇f and ∇g:

δx := −κ (∇f + ν∇g) . (3.26)

For the determination of the multiplier ν, we claim that the descent direction should always point

to the hypersurface g(x) = 0 by setting

δg := −ε g(x), where ε > 0. (3.27)

In this case, δg, i. e. the change of g, will be positive if g < 0 and negative if g > 0. Inserting

Eq. (3.26) into Eq. (3.25)2 and equating the resulting term with Eq. (3.27) yields

− κ∇gT (∇f + ν∇g) = −ε g(x). (3.28)

From this, ν can be computed as

ν =
1

∇gT∇g

ε

κ
g(x)−∇gT∇f . (3.29)

Hence, the combined search direction (cf. Eq. (3.26)) is given by

δx = −κ ∇f +
εg(x) − κ∇gT∇f

κ∇gT∇g
∇g = −κ I−

∇g∇gT

∇gT∇g

=:T(x)

∇f − ε
g

∇gT∇g
∇g.

(3.30)

Here, I is an n×n identity matrix and T(x) corresponds to the projection matrix of the projected

gradient method introduced in Eq. (3.19) in Sec. 3.2.1. However, note that the projected gradient

method is restricted to problems which assume the constraint g to be fulfilled at the beginning. In

summary, the projected gradient algorithm involves two steps. Recall, in a first step, the negative

gradient is projected, which causes, in general, to leave the manifold of the constraint. In a second

step, an iteration rule similar to the second summand on the right side of Eq. (3.30) is applied to

remove the residual in the constraint equation, confer Eq. (3.24).

A comparison shows that the introduced method corresponds to an incomplete iteration of the

projected gradient method, since both steps are carried out simultaneously, and therefore the con-

straint is not forced to be fulfilled in every iteration step, but the error is reduced continually.

Hence, this iteration enables to start the optimization at a point which is not lying on the constraint

manifold at the beginning.
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Convergence of the Algorithm

1. We first show that if x∗ is an optimizing point, the update step from Eq. (3.30) is zero. In the

constrained optimum, the following conditions must be satisfied

g(x∗) = 0 and ∇f(x∗) = λ∇g(x∗), (3.31)

where λ is a Lagrange multiplier. The latter condition expresses that the two gradients are parallel.

Evaluating Eq. (3.30) with the optimizing point x∗ yields

δx = −κ I−
∇g(x∗)∇gT(x∗)

∇gT(x∗)∇g(x∗)
∇f(x∗)− ε

g(x∗)

∇gT(x∗)∇g(x∗)
∇g(x∗)

= −κ I−
∇g(x∗)∇gT(x∗)

∇gT(x∗)∇g(x∗)
λ∇g(x∗) = 0.

(3.32)

2. The choice of a suitable update parameter ε depends on the problem, i. e. how much the initial

state violates the constraint condition g(x∗) = 0.
However, we can make a statement about the value range of ε. For that purpose, we consider an

update step from xk to xk+1. Using the update formula in Eq. (3.30) the relation between the

point xk and xk+1 is given by

xk+1 − xk = −κT(xk)∇f(xk)− ε
g(xk)

∇gT(xk)∇g(xk)
∇g(xk). (3.33)

A linear Taylor expansion of the constraint condition g(xk) in Eq. (3.14) about the point xk yields

g(xk+1) ≈ g(xk) +∇gT(xk) xk+1 − xk

≈ g(xk)− κ∇gT(xk)T(xk)∇f(xk)− ε g(xk),

(3.34)

in which we inserted Eq. (3.33) for the increment xk+1 − xk. Using the relation ∇gT(xk) ·

T(xk) = 0T, Eq. (3.34) simplifies to

g(xk+1) ≈ g(xk)− ε g(xk). (3.35)

In each step k we claim the error of the final condition to decrease:

g(xk+1) < g(xk) , (3.36)

or, respectively,

g(xk) (1− ε) < g(xk) . (3.37)

Hence,

1− ε < 1, for g(xk) = 0, (3.38)

a suitable update parameter ε is therefore given by 0 < ε < 2. Notice that Eq. (3.34) is only valid
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if xk+1 − xk is a sufficiently small update step. According to Eq. (3.33), this can be assumed if,

on the one hand, κ is small and, on the other hand, ε or g(xk) are small. Hence, in this case, the

sequence g(xk) should converge to zero.

3. Using the abbreviations ∇gk = ∇g(xk) and ∇fk = ∇f(xk), the change of the objective

function after one (sufficiently small) update step from Eq. (3.33) is given by

f(xk+1)− f(xk) =

= ∇fT(xk) xk+1 − xk

= −κ∇fT

k I−
∇gk∇gTk
∇gTk∇gk

∇fk − εg(xk)
∇fT

k ∇gk

∇gTk∇gk

= −κ ∇fk
2 −

(∇fT

k ∇gk)
2

∇gk 2
− εg(xk)

∇fT

k ∇gk
∇gk 2

= −κ ∇fk
2 1−

(∇fT

k ∇gk)
2

∇fk 2 ∇gk 2
− εg(xk)

∇fT

k ∇gk
∇fk ∇gk

∇fk
∇gk

.

(3.39)

Since

cos(αk) :=
∇fT

k ∇gk
∇fk ∇gk

, (3.40)

defining the angle between the gradients of f and g and by using 1 − cos2(αk) = sin2(αk), the

change of the objective function can be written in the form

f(xk+1)− f(xk) = −κ ∇fk
2 sin2(αk)

≤0

−εg(xk) cos(αk)
∇fk
∇gk

. (3.41)

Hence, as g(xk) will tend to zero as shown above, f(xk+1)−f(xk) ≤ 0 for large k. So, if f(x) is

bounded in the neighborhood of the constraint equation g(x) = 0, the algorithm should converge

to the constrained minimum of f , provided that the step size κ is sufficiently small. Moreover,

in the vicinity of the minimizing point, the angle αk approaches zero and the constraint equation

g(x) = 0 is satisfied more and more. Hence, f(xk+1)− f(xk) will tend to zero for k → ∞.

A Simple Example

As a simple example, we consider the cost function f(x, y) = 2x2+y2 and the auxiliary condition

g(x, y) = x − y + 2 = 0. We start the optimization procedure at the point x = −3 and y = 3.

Choosing ε = 0.3 and κ = 0.2, an update of x and y, which reduces the cost function and

approaches the constraint condition, can be computed from Eq. (3.30), yielding

δx =
1

2
εy − 4κx−

1

2
εx+ 2κx− κy − ε

δy =
1

2
εx− 2κy −

1

2
εy − 2κx+ κy + ε.

(3.42)
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Figure 3.5: Visualization of the optimization procedure with one auxiliary condition

After several updates, the method converges to the constrained optimum as depicted in Fig. 3.5.

The contour lines of g(x, y) are shown in gray, while the contour lines of the cost function f(x, y)

are depicted in black. Moreover, the contour line g(x, y) = 0 is shown in red. At the optimal

point, given by x = −2/3 and y = 4/3, this line is tangent to a contour line of the cost function

f(x, y). This simple static optimization problem with an initial state, which is not fulfilling the

constraint, shows that the proposed method converges to the constrained optimum.
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Chapter 4

Time-Optimal Control Theory

Among all optimal control problems, the computation of time-optimal trajectories is one of the

toughest challenges. In the present chapter we consider a dynamic system described by a minimal

set of independent coordinates and given initial values. The focus is on the optimal control of the

system such that the time for a prescribed process or maneuver becomes a minimum. In order to

solve such problems, two methods are basically pursued in optimal control theory. In the first, the

problem can be solved by the minimum principle according to Pontryagin [54], and in the second,

the dynamic programming strategy developed by Bellman can be utilized [4]. In this chapter,

we follow the solution strategy based on Pontryagin’s minimum principle using the variational

approach [54, 16], resulting in a two-point boundary value problem. The objective of this chapter

is to provide a detailed insight into the basic theory, including discussion on the adjoint equations

and the derivation of the necessary conditions for an optimal solution.

4.1 Historical Notes

Optimal control theory is rooted in the calculus of variations and evolved from many disci-

plines into the theory we know today. There are many articles on the history of optimal con-

trol [13, 70, 59]. In the summary of Bryson [13], the beginnings can be traced back to classical

control, random processes, linear/nonlinear programming, dynamic programming and the maxi-

mum principle.
In 1919, the rocket scientist Robert H. Goddard posed one of the first optimal control problems in

aerospace [26], which was solved analytically as a variation problem three decades later. With the

introduction of the computer in the 50s, the theory of optimal control made tremendous progress,

since computing power was now available for the elaborate computations for the first time. Before

that, rather simple and mainly analytical problems could be solved, so that the theory of optimal

control was rarely used by scientists and engineers.

In the 1950s, the U.S. mathematician Richard Ernest Bellman and his colleagues developed the

dynamic programming algorithm. This method was based on an extension of the Hamilton-Jacobi

theory introduced over hundred years earlier by William Rowan Hamilton and Karl Gustav Jacob
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Jacobi. However, Bellman and his collaborators underestimated the expensive computations of

the dynamic programming strategy and so the algorithms exceeded the memory capacity of the

computers for systems with only a few degrees of freedom.

In 1956, the well-known maximum principle [54] was formulated as a hypothesis by Lev Semen-

ovich Pontryagin and proved in the subsequent years by him and his collaborators in the former

Soviet Union. The maximum principle was formulated for constrained controls and is an extension

of the necessary condition of Karl Wilhelm Theodor Weierstrass in the 19th century. Pontryagin’s

maximum principle is based on the Hamiltonian function and states that for an optimal control,

the Hamiltonian function must assume a maximum value at every time point.1 Countless scientific

articles followed, and George Leitmann, Richard Bellman and other pioneers, published the first

real book on optimal control theory [42] in 1962. Only a couple of years later, the first textbook

on optimal control was published by Athans and Falb [2].
In the following years, optimal control theory made further progress with the increasing comput-

ing power and the initiation of the Mercury space program in 1958. The first numerical computa-

tions of optimal trajectories came from Bryson and Ross [17], Breakwell [12], Okhotsimskii and

Eneev [51]. The numerical solutions were obtained by shooting methods, which showed good

results for conservative systems in spaceflight, but were not suitable for non-conservative systems

owing to numerical instabilities and sensitivities with respect to initial values. To overcome the

stability problem, gradient methods were introduced for the initialization of the shooting method,

which were developed by Kelley [36], Bryson and Denham [14].

Another remedy of the stability problem was created by the development of the multiple shooting

method, in which the computation interval is divided into subsegments. Algorithms of the mul-

tiple shooting method were developed in Fortran by Bulirsch [13, 18] and by Oberle [49] at the

University of Munich. These algorithms are still state of the art and widely recognized today to

solve challenging boundary value problems.

4.2 Problem Formulation

We consider a dynamic system described by a minimal set of coordinates, see also [21]; hence the

initial value problem considered, can be stated in the form

ẋ = f(x(t),u(t)), x(t0) = x0, (4.1)

where x(t) ∈ R
n denotes the vector of state variables and u(t) ∈ R

m the vector of control

inputs. In mechanics, the control inputs can either arise in the form of control forces/torques or

in the form of kinematic variables. The goal is to find controls which minimize the operation

period after which a state with some predefined properties is reached without violating inequality

constraints for the state and control variables.
1Note, originally, the maximum principle was formulated for maximization problems, however, it also applies to

minimization problems and is therefore often denoted as minimum principle in literature.

26



CHAPTER 4. TIME-OPTIMAL CONTROL THEORY

For that purpose a cost functional of the form

J =
tf

t0

[1 + Π(x(t))] dt, (4.2)

is introduced, where Π(x(t)) is a proper penalty function which is zero if the states satisfy the

constraint conditions, and increases rapidly if they are not satisfied. Moreover, Π should be con-

tinuously differentiable at least once. Unless violating constraints, the cost functional J is simply

the length of the time interval tf − t0. Notice that the controls u(t) = (ui(t)) ∈ R
m can be

constrained to satisfy the condition given by ui,min ≤ ui(t) ≤ ui,max. The time-optimal control

problem is then formulated as the problem of finding controls u(t) in the time interval t ∈ [t0, tf ]

which minimize the functional J .

4.3 The Variational Approach to Time-Optimal Control

Before we account for control limitations stated above, we consider in a first step the solution

approach for unbounded controls. Following [39], we first augment the cost functional in Eq. (4.2)

by the state equations in Eq. (4.1) yielding

J̄ =
tf

t0

1 + Π(x) + pT (f(x,u)− ẋ) dt, (4.3)

where p(t) ∈ R
n denotes the vector of adjoint variables.2 If the state equations are satisfied, the

term multiplied with p(t) is zero and J̄ is identical with J for any choice of p(t). Let us now

consider an infinitesimal variation of the controls δu(t). This results in an infinitesimal change of

the states δx(t) and, hence, of the final time δtf . The first order variation of J̄ is given by

δJ̄ =
tf

t0

Πxδx+ pT (fxδx+ fuδu− δẋ) dt

+ 1 + Π(x(tf )) + pT(tf ) (f(x(tf ),u(tf ))− ẋ(tf )) δtf ,

(4.4)

where fx and fu denote the partial derivatives of f(x(t),u(t)) with respect to x(t) and u(t),

analogously, the same abbreviation applies to Πx. Note that a variation of the final time also

contributes to a change of the integral but since the equations of motion are fulfilled at t = tf , the

variation of the cost functional reduces to

δJ̄ =
tf

t0

Πxδx+ pT (fxδx+ fuδu− δẋ) dt+ 1 + Π(x(tf )) δtf . (4.5)

Performing an integration by parts of the last term of the integral pT(t)δẋ(t) yields

tf

t0

pTδẋ dt = −
tf

t0

ṗTδxdt+ pT(tf )δx(tf ), (4.6)

2The adjoint variables are also commonly referred to as co-state variables in mathematics or shadow prices for
optimal control tasks in economics.
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where δx(t0) = 0 as the initial conditions are fixed. Thus, after substituting into Eq. (4.5), we

obtain

δJ̄ =
tf

t0

pTfuδu+ Πx + pTfx + ṗT δx dt

− pT(tf )δx(tf ) + [1 + Π(x(tf ))] δtf .

(4.7)

If the variation δJ̄ in Eq. (4.7) is assumed to vanish, one can write the first order necessary condi-

tions for an optimal solution:

ẋ(t) = f(x(t),u(t))

ṗ(t) = −ΠT

x
(x(t))− fT

x
(x(t),u(t))p(t)

0 = fT

u
(x(t),u(t))p(t),

(4.8)

for t ∈ [t0, tf ]. Note that the adjoint variables can be interpreted as a measure of sensitivity, i. e.,

how much the cost functional would change due to a small state perturbation. The left boundary

conditions are defined by the initial conditions of the state equations

x(t0) = x0. (4.9)

For the right boundary conditions, we can first conclude from Eq. (4.7) that

0 = −pT(tf )δx(tf ) + [1 + Π(x(tf ))] δtf . (4.10)

Based on Eq. (4.10), boundary conditions can be deduced, which form a two-point boundary

value problem with Eq. (4.8) and Eq. (4.9). This boundary value problem can then be solved, for

example, using indirect methods, i. e., shooting methods or with discretization techniques in which

both states and controls are discretized. The solution of boundary value problems is discussed by

various authors [20, 6, 53, 43]. The resulting boundary conditions depend on the relations of δtf
and δx(tf ) which are discussed below.

4.4 Boundary Conditions

Now, special attention is given to the boundary terms of δJ̄ summarized in Eq. (4.10). Notice, for

free final time problems the variation δtf is non-zero, and, since Π ≥ 0, the term 1 + Π(x(tf )) is

non-zero as well.

Depending on the problem, different final conditions result, and appropriate replacements in

Eq. (4.10) for δx(tf ) and δtf need to be made. In this section, we consider two cases for the

boundary terms, however there are various scenarios that may occur for these boundary terms,

see [39, Sec. 5.1] for an overview.

28



CHAPTER 4. TIME-OPTIMAL CONTROL THEORY

4.4.1 Final State Variables Lying on a Surface

In the first case, the final time tf > t0 of a maneuver or an operation period may be implicitly

defined by a scalar terminal condition for the state variables of the form

Φ(x(tf )) = sf , (4.11)

where Φ(x(tf )) is a function R
n → R and sf a given number. For example, if we consider a

car driving one lap on a race track, the operation period terminates, when the center of mass of

the vehicle crosses the finish line. Since the final states must satisfy Eq. (4.11), the variation of

the final time and of the final states are not independent [40, 39]. To rewrite the boundary terms,

we proceed in exactly the same manner as in Sec. 2.2.1. The relation between δtf and δx(tf ) is

given in Eq. (2.17). Analogously, the variation of the final states where the operation period ends

is given by

δxf = ẋ(tf )δtf + δx(tf ). (4.12)

The operation period with modified controls ends when the condition Φ(x(tf )+δxf ) = Φ(x(tf ))+

Φx(x(tf ))δxf = sf is satisfied. After inserting δxf from Eq. (4.12), we get

Φx(x(tf ))δxf = Φx(x(tf )) (ẋ(tf )δtf + δx(tf )) = 0. (4.13)

If we solve for δtf , we end up with the relation

δtf = −
Φx(x(tf ))

Φx(x(tf ))ẋ(tf )
δx(tf ), (4.14)

where ẋ(tf ) can be evaluated by the right-hand side f(x(tf ),u(tf )) of the differential equations.

Substituting δtf into Eq. (4.10) and collecting all variations results in

0 = pT(tf ) +
1 + Π(x(tf ))

Φx(x(tf ))f(x(tf ),u(tf ))
Φx(x(tf )) δx(tf ). (4.15)

Hence, the right boundary conditions read

p(tf ) = −
1 + Π(x(tf ))

fT(x(tf ),u(tf ))ΦT
x
(x(tf ))

ΦT

x
(x(tf )). (4.16)

4.4.2 Some Final State Variables Specified

Now we are interested in problems where some of the state variables at the final time are pre-

scribed. Such boundary conditions arise in robotics, for example, when the control of a robot has

to be designed for a rest-to-rest maneuver. If the prescribed states are ordered forward in the vector

x(t), we can assign i = 1, . . . , r for the prescribed states, and i = r + 1, . . . , n for the remaining

states.
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Hence, the boundary conditions for the states are defined by

xi(tf ) = xf,i with i = 1, . . . , r. (4.17)

First, we rewrite the right boundary term in Eq. (4.10) by the relation in Eq. (4.12), i. e.

δx(tf ) = δxf − f(x(tf ),u(tf ))δtf , (4.18)

in which we inserted again for ẋ(tf ) = f(x(tf ),u(tf )) yielding

0 = −pT(tf )δxf + 1 + Π(x(tf )) + pTf(x(tf ),u(tf )) δtf . (4.19)

Now the variation of the final states can be divided into the variations of the prescribed states and

the variations of the states which are considered free. Hence, Eq. (4.19) becomes

0 =−
r

i=1

pi(tf )δxf,i −
n

i=r+1

pi(tf )δxf,i

+ 1 + Π(x(tf )) + pT(tf )f(x(tf ),u(tf )) δtf .

(4.20)

For the states i = 1, . . . , r, which are prescribed at the endpoint, the corresponding variation δxf,i

vanishes, while for all free final states i = r + 1, . . . , n the variation δxf,i is arbitrary and the

associated adjoint variable pi(tf ) is zero. Hence, the boundary conditions can be summarized by

xi(tf ) := xf,i i = 1, . . . , r

pi(tf ) := 0 i = r + 1, . . . , n
(4.21)

Since the final time is considered free, the remaining variation δtf is arbitrary, so the bracketed

expression in Eq. (4.20) must vanish:

0 = 1 + Π(x(tf )) + pTf(x(tf ),u(tf )). (4.22)

This equation corresponds to the Hamiltonian function and states that the Hamiltonian function

must be zero for time-optimal control problems, but more on the role of the Hamiltonian function

in the next section.

4.5 Pontryagin’s Minimum Principle

In the derivation of the necessary conditions for an optimal solution, no restrictions have been

placed on the control so far. In reality, however, there are usually constraints on control variables,

e. g. if we consider the drive torque of a car as the control input. When the control variable is

constrained, the third optimality condition in Eq. (4.8)3 loses its validity upon closer inspection.

Equation (4.8)3 can be interpreted as gradient of the cost functional in Eq. (4.2) with respect to
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the control signals and thus, as in classical minimization problems in mathematics, gradient zero

can no longer be achieved due to the constraint. Hence, we require a new condition in place of

the zero gradient statement in Eq. (4.8)3 which is valid for constrained controls. In order to find

optimal solutions for constrained controls, the Russian mathematician L. S. Pontryagin formulated

the minimum principle in 1956. In brief, the minimum principle, see also [39, Sec. 5.3], can be

summarized as follows. A constrained control is optimal if the following condition holds:

J̄(u∗(t))− J̄(u(t)) = δJ̄(u(t),u∗(t)) ≥ 0, ∀ admissible u∗(t). (4.23)

In order to write the following formulas in a more compact form, we now introduce the Hamilto-

nian function with

H(x(t),u(t),p(t)) := 1 + Π(x(t)) + pT(t)f(x(t),u(t)). (4.24)

Once the state equations and adjoint equations are solved subject to control limitations, the varia-

tions δx(t), δx(tf ) and δtf in Eq. (4.7) vanish. Then, we can use Eq. (4.24) to rewrite Eq. (4.7),
and thus we obtain

δJ̄(u(t), δu(t)) =
tf

t0

Hu(x(t),u(t),p(t)) δu(t) dt. (4.25)

Now recall, if m denotes the number of control inputs, then Hu can also be written as difference

quotient by

Hui
(x(t), ui(t),p(t)) =

H(x(t), ui(t) + δui(t),p(t)) −H(x(t), ui(t),p(t))

δui(t)
, (4.26)

for i = 1, . . . ,m, or, after rearranging,

Hu(x(t),u(t),p(t)) δu(t) = H(x(t),u(t) + δu(t),p(t)) −H(x(t),u(t),p(t)). (4.27)

Substituting Eq. (4.27) into the varied functional in Eq. (4.25) yields

δJ̄(u(t), δu(t)) =
tf

t0

H(x(t),u(t) + δu(t),p(t)) −H(x(t),u(t),p(t)) dt. (4.28)

Since δJ̄ ≥ 0 for all admissible δu(t), as stated in Eq. (4.23), we deduce from Eq. (4.28) that the

condition

H(x(t),u(t) + δu(t),p(t)) ≥ H(x(t),u(t),p(t)), ∀ admissible δu(t), (4.29)

must be satisfied for optimal constrained controls. This condition is called Pontryagin’s mini-

mum principle, and states that an optimal control must minimize the Hamiltonian. The minimum

principle is a necessary condition for an optimal solution and replaces Eq. (4.8)3 for constrained

controls. If the control value is within the admissible range ui,min < ui(t) < ui,max, the control

can be computed according to Eq. (4.8)3.
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However, if the control value according to Eq. (4.8)3 falls outside the admissible value range,

the maximum or minimum value of the control applies. Note that even for unconstrained control

problems, where u(t) cannot be uniquely expressed explicitly by x(t) and p(t) using Eq. (4.8)3,

the solution that minimizes the Hamiltonian must be used.

4.6 Homotopy and Continuation Methods

Solving a two-point boundary value problem is not a trivial task, due to the challenge of finding

a good initial estimate for all unknown variables x(t), p(t), u(t) and tf . In particular, finding a

suitable initial estimate for the adjoint variables p(t), which causes the boundary value solver to

converge can become a cumbersome procedure. The application of homotopy, or more sophis-

ticated continuation methods, can help to overcome this problem, see [1, Sec. 8.3]. Homotopy

methods introduce a set of additional parameters λi to the system and construct a problem for

which a good estimate of the solution is known. A continuation method is an extension to the
homotopy approach, where the introduced homotopy parameters are regarded as system variables.

In the article by Graichen and Petit [30], a promising homotopy approach is presented based on

an auxiliary optimal control problem for which the adjoint variables are simply zero for the entire

time interval. Starting from any initial trajectory of the system x̄(t), ū(t), where t ∈ [t0, t̄f ],

the modified problem can be smoothly transformed into the real problem. Following [30], the

modified cost functional is of the form

J̄ = (1− λ1)S(tf ) +
tf

t0

λ1 1 + Π(x(t)) + (1− λ1) h(u(t)) dt, (4.30)

which is equal to Eq. (4.2) for λ1 = 1. Herein, λ1 ∈ [0, 1] is a homotopy parameter to transform

the problem, S(tf ) is a scrap function and h(u(t)) is an additional cost term. The scrap function

is defined by

S(tf ) :=
1

2
(tf − t̄f )

2 , (4.31)

where t̄f denotes the final time of the initial trajectory. Furthermore, the additional cost term is

given by

h(u(t)) :=
1

2

m

i=1

ui(t)− ūi(t)
2
, (4.32)

in which ūi is the initial control. In analogy to the derivation in Sec. 4.3 of the adjoint system in

Eq. (4.8)2, we obtain

ṗ(t) = −λ1Π
T

x
(x(t))− fT

x
(x(t),u(t))p(t), (4.33)

for the modified cost functional in Eq. (4.30). Furthermore, Eq. (4.8)3 is substituted by

0 = (1− λ1) u(t)− ū(t) + fT

u
(x(t),u(t))p(t), (4.34)

in which the term multiplied with (1 − λ1) acts as a regularization term. For ill-posed, or even

singular control tasks, where the control can not be determined from Eq. (4.8)3, a regularization
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term is often introduced to the cost functional. We will return to the role of singular and bang-bang

controls later. Finally, the resulting boundary term associated to the homotopy approach is given

by

0 = λ1 1 + Π(x(tf ),u(tf )) + pT(tf )f(x(tf ),u(tf ))

+ (1− λ1) h(u(tf )) + Stf (tf ) .
(4.35)

Again, the prescribed states are ordered forward and numbered by i = 1, . . . , r. For all free final

states i = r + 1, . . . , n the corresponding adjoint variables pi(tf ) are zero. In order to satisfy the

right boundary conditions, a second homotopy parameter λ2 ∈ [0, 1] is introduced to modify the

boundary conditions in Eq. (4.21). Hence,

xi(tf ) := λ2 xf,i + (1− λ2)x̄f,i i = 1, . . . , r

pi(tf ) := 0 i = r + 1, . . . , n,
(4.36)

where x̄f,i refers to the final state of the initial trajectory. For λ1 = 0 and λ2 = 0, the solution of

the optimal control problem is a priori given by u(t) = ū(t), tf = t̄f , x(t) = x̄(t) and p(t) = 0,

since Eq. (4.33–4.36) and the state equations are satisfied. Subsequently, the problem can be

smoothly transformed into the original problem by solving a series of boundary value problems.
As already briefly mentioned, the presented method is particularly interesting for singular optimal

control tasks where the control occurs linearly in the Hamiltonian. If the control appears linearly,

then Eq. (4.8)3 provides no information about the selection of u(t). The additional cost term in

Eq. (4.32) circumvents this problem. In contrast to classical regularization terms as e. g. εu2, ε

small, Eq. (4.34) is a clever choice. Since, on the one hand, this approach (widely) avoids difficul-

ties with singular controls, and on the other hand, this formulation serves as a homotopy approach

to support the boundary value solver in convergence issues. Hence, we can compute the control

variables u(t) from Eq. (4.34) by

u(t) = ū(t)−
1

1− λ1
fT

u
(x(t),u(t))p(t). (4.37)

However, when the quadratic part of the cost function h(u(t)) becomes very small, i. e. when

λ1 → 1, numerical difficulties may arise. For more information, an elaborate derivation of the

auxiliary optimal control problem can be found in the article [30].

The Homotopy Algorithm

Before solving a numerical example, we summarize the steps to compute the optimal control

using the homotopy method. Note that the final time is free, but the two-point boundary value

solver needs a fixed grid over time. To provide a fixed time mesh, we introduce a normalized time

τ = t/tf ranging from 0 to 1. With the state vector z := (xT(τ),pT(τ), tf )
T ∈ R

2n+1, we obtain
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the right-hand side of the boundary value problem by

z′(τ) = (z′1, z
′
2, . . . , z

′
2n+1)

T = tf




f(x(τ),u(τ))

−λ1Π
T
x
(x(τ)) − fT

x
(x(τ),u(τ))p(τ)

0


 , (4.38)

where the control u(τ) can be computed by Eq. (4.37) if we replace the time dependencies with

the normalized time τ . However, one must pay attention since ū(t) is only defined on [t0, t̄f ], and

therefore we replace ū(t) → ū(τ t̄f ). The last entry of the vector in Eq. (4.38) is the differential

equation for the time transformation. Finally, the boundary conditions can be summarized by

zj(0) = x0,j j = 1, . . . , n

zj(1) = λ2 xf,j + (1− λ2)x̄f,j j = 1, . . . , r

zj(1) = 0 j = r + 1, . . . , n

0 = λ1 1 + Π(x(1)) + pT(1)f(x(1),u(1))

+ (1− λ1) h(u(1)) + S(1) .

(4.39)

In order to initiate the algorithm, we define a mesh grid on which the solution should be computed.

Using the presented homotopy method, the procedure for solving two-point boundary value prob-

lems for time-optimal trajectories incorporates the following steps:

1. Guess a final time t̄f , a control history ū(t) and set λ1 = 0 and λ2 = 0. Note, a good

estimation saves computation time and avoids transformation difficulties during the solution

procedure.

2. Compute the state trajectories x̄(t) by a forward solution of the ODE-state equations in

Eq. (4.8)1 in the interval [t0, t̄f ] starting with x(t0) = x0. Store the solution in the memory.

3. Initialize z1(τ), . . . , zn(τ) by interpolating the state values x̄(t) at the grid points from the

memory. Set the values of the adjoint variables zn+1(τ), . . . , z2n(τ) to zero and the final

time z2n+1(τ) to t̄f .

4. Solve the boundary value problem consisting of Eq. (4.38) and Eq. (4.39) by using the

initial guess for z(τ) from the previous iteration. If the solver fails, reduce the value of the

homotopy parameters, otherwise save the solution z(τ) and increase one or both homotopy

parameters λ1 and/or λ2 for the next iteration.

5. Interpolate the new solution at the grid points as a new proposal for the next initial estimate

of the boundary value solution.

6. Repeat step 4 and 5 until λ2 = 1 and λ1 is equal or sufficiently close to one.

Concluding, if the initial solution is far away from the optimal solution, the necessary sequence

of boundary value problems can grow rapidly using the homotopy method. Furthermore, the so-

lution path from the modified problem to the original problem may include turning points, as e. g.

34



CHAPTER 4. TIME-OPTIMAL CONTROL THEORY

in [48, Sec. 11.3], so that the boundary solver is unable to converge. In this case, the continuation

method can circumvent this problem for one varying homotopy parameter. One possibility is, for

example, to increase λ2 rapidly to 1, so that the boundary conditions are fulfilled, and afterwards

to increase the value of λ1 using a continuation method by adding λ′
1(τ) = 0 to Eq. (4.38). In this

case, an additional boundary condition of the form

λ1 − λ1,old = s (4.40)

is numerically favorable. Herein, s is the step size which can be determined via the convergence

behavior of the boundary value solver routine. A simple suggestion would be to reduce the step

size s if the boundary value solver is struggling to obtain a solution, otherwise s can be increased.

To cite a further example, we can also use a boundary condition of the form

z(1) − zold(1)
2 = s2, (4.41)

Alternatively, one can also use the solution vector at τ = 0 instead.

4.7 Problems

In order to discuss the solution of the optimality conditions with boundary value solvers and for
comparison with the optimization methods developed below, we consider a classical example from

satellite dynamics and an academic example which is widely studied in control theory. The first

example deals with planning the time-optimal trajectory of a spacecraft from the lunar surface into

a circular orbit, which is also studied in [39]. In a second example we look for the excitation force

of a cart double pendulum system to transfer the double pendulum from the lower to the upper rest

position in minimal time. Both problems are implemented in MATLAB and solved by the bvp4c

routine, which solves the two-point boundary value problem using a collocation method, see the

article by Kierzenka and Shampine [38] for solver details.

4.7.1 The Lunar Ascent Problem

Almost 60 years ago, time-optimal control and minimal fuel problems have been focused in the

Apollo program. Not surprisingly, this topic continues to excite, and trajectory planning in space

flight remains the subject of many articles and textbooks. The time-optimal control problem for

a space vehicle in the lunar gravitational field shown in Fig. 4.1 is as well addressed in the book

by Kirk [39, Sec. 5.1], in which a space vehicle is launched from the surface of the Moon into a

circular orbit. We are interested in controlling the spacecraft minimizing the cost functional

J =
tf

t0

1dt, (4.42)

measuring only the time period, since no penalty terms are introduced.
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We consider only planar motions of the spacecraft described in polar coordinates r(t) and ϕ(t).

Then the system equations of the space vehicle can be readily formulated by

ṙ(t) = vr(t)

ϕ̇(t) =
vt(t)

r(t)

v̇r(t) =
v2t (t)

r(t)
−

µ

r2(t)
+

F

m(t)
sin(u(t))

v̇t(t) = −
vr(t)vt(t)

r(t)
+

F

m(t)
cos(u(t))

ṁ(t) = −
F

gIsp
,

(4.43)

where m(t) denotes the mass of the vehicle, g Earth’s gravitational acceleration at sea level, µ =

R2gM Moon’s gravitational constant, gM Moon’s gravitational acceleration, and R the radius of

the Moon. The vehicle can be maneuvered by a constant rocket thrust F in a variable direction

described by the angle u(t) which is considered as our control variable.

Restricting to small thrust angles the state equations become linear in u(t) and therefore would

lead to a classical bang-bang control. Nevertheless, notice that these differential equations are

nonlinear in the states and control variables. Hence, no constraints/bounds on the thrust angle are

introduced. Moreover, Isp denotes the specific impulse of the rocket propellant. If we introduce

x(t) = r, ϕ, vr , vt,m
T
, (4.44)

as the vector of state variables, the system equations in Eq. (4.43) have the form of Eq. (4.8)1.

M

o
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u(t)
ϕ(t)

Reference Axis

Local Horizontal

Figure 4.1: The Lunar Excursion Module in the gravity field of the Moon
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The adjoint equations are derived by Eq. (4.8)2 yielding

ṗ1(t) =
p2(t)vt(t)

r2(t)
+ p3(t)

v2t (t)

r2(t)
−

2µ

r3(t)
−

p4(t)vr(t)vt(t)

r2(t)

ṗ2(t) = 0

ṗ3(t) = −p1(t) +
p4(t)vt(t)

r(t)

ṗ4(t) = −
p2(t)

r(t)
−

2p3(t)vt(t)

r(t)
+

p4(t)vr(t)

r(t)

ṗ5(t) =
p3(t)F

m2(t)
sin (u(t)) +

p4(t)F

m2(t)
cos (u(t)) ,

(4.45)

where we have introduced a set of adjoint variables

p(t) = p1, p2, p3, p4, p5
T
. (4.46)

From Eq. (4.8)3 we obtain a condition for the optimal control u(t) given by

0 =
F

m(t)
p3(t) cos (u(t))− p4(t) sin (u(t)) , (4.47)

from which we can express the control input in terms of the adjoint variables p3(t) and p4(t) with

u(t) = arctan
p3(t)

p4(t)
, (4.48)

or, respectively,

sin(u(t)) = ±
p3(t)

p23(t) + p24(t)
cos(u(t)) = ±

p4(t)

p23(t) + p24(t)
(4.49)

to circumvent troubles with the domain of the arctan function. As already predicted, care must also

be taken with unconstrained controls that can not be expressed unambiguously from Eq. (4.8)3.

According to Pontryagin’s minimum principle introduced in Sec. 4.5, the negative sign must be

taken in Eq. (4.49) to obtain a minimum of the Hamiltonian. The space vehicle with the initial

mass m0 is launched at the surface of the Moon with the polar coordinates (R, 0), where R is the

radius of the Moon. Thus, the vehicle starts from rest, the initial velocities vr and vt are zero at

t = t0 = 0. The boundary conditions read

r(0) = R ϕ(0) = 0 vr(0) = 0 vt(0) = 0 m(0) = m0, (4.50)

where m0 = 4774 kg is the initial mass of the ascent stage including a full propellant tank. The

final radius of the vehicle position is given by the radius of the Moon R and the altitude h of the

orbit. We require that the final radial velocity vr is zero and the centrifugal force is balanced by

the gravitational force, so we obtain also a condition for the tangential velocity vt. Moreover, the

final angle ϕ(tf ) and the final mass m(tf ) are arbitrary, therefore the associated adjoint variables

p2(tf ) and p5(tf ) must be zero.
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The right boundary conditions for the state/adjoint variables are of the form as in Eq. (4.21) and

are prescribed by

r(tf ) = R+ h vr(tf ) = 0 vt(tf ) =
µ

R+ h
p2(tf ) = 0 p5(tf ) = 0, (4.51)

forming a set of five boundary conditions at t = tf . Since the final time is free, we consider an

additional boundary condition according to Eq. (4.22) given by:

0 = 1−
F

m(tf )
p23(tf ) + p24(tf ), (4.52)

in which the control is eliminated by Eq. (4.49) and the final values r(tf ), vr(tf ), vt(tf ), p2(tf )

and p5(tf ) are inserted. The parameters for the numerical computations are taken from [46] and

can be summarized by: R = 1738 km, h = 111 km, g = 9.81 × 10−3 km/s2, gM = 1.622 ×

10−3 km/s2, µ = 4899.48 km3/s2, Isp = 311 s and F = 16kN. Recall, before we can apply

the boundary value solver directly, the problem must be transformed to a dimensionless time scale

τ ∈ [0, 1]. To facilitate convergence, one homotopy parameter is introduced to rescale the orbit

altitude h (defined in the boundary conditions) from small to the original size. The initial guess

for the boundary value routine for the state and adjoint variables have been adapted to satisfy the

boundary conditions. Then, the states and adjoint variables between the initial and final values

have been assumed linear. Of course, neither the state equations nor the adjoint equations are
satisfied by this assumption, but the boundary conditions are fulfilled, and in this case it is sufficient

that the solver converges. Finally, the solution is obtained by the boundary value solver routine

bvp4c using 500 mesh points. The control angle of the thrust nozzle is depicted in Fig. 4.2.

Initially, the control input is about 67.5 deg to accelerate towards the orbit. After 329 s the thrust
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Figure 4.2: Optimal control input for the thruster for lunar ascent
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nozzle angle becomes negative to reduce the radial velocity and reach a balanced state in the

orbit. The optimal trajectory for the orbit injection is depicted in Fig. 4.3. The arrows show the

orientation of the thrust force acting on the space vehicle.
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Figure 4.3: Optimal trajectory for lunar ascent

4.7.2 Inverse Double Pendulum

As a second example, we study an inverse double pendulum consisting of a cart and two rods

connected by hinge joints. The cart double pendulum is a popular model for demonstrating, how

to handle and control chaotic processes, see for instance [22]. The system under consideration is

depicted in Fig. 4.4 and we are looking for the excitation force u(t) of the cart which is required

to swing up the double pendulum into the upper rest position in minimal time. Hence, the cost

functional to be minimized is given by

J =
tf

t0

[1 + Π(x(t))] dt. (4.53)

While the control force can directly restricted by −u∗ ≤ u(t) ≤ u∗ with u∗ = 15, the sliding

distance is limited by −x∗ ≤ x(t) ≤ x∗ using a penalty approach. The penalty function is readily

given by

Π(x(t)) :=




0 for |x(t)| < x∗

µ

2
(|x(t)| − x∗)2 otherwise,

(4.54)

in which µ = 12 is a weighting constant to tune the function and to ensure that x(t) complies with

the limit x∗ = 1. The system has three degrees of freedom, given by the sliding distance x(t) of

the cart and the pendulum angles ϕ1(t) and ϕ2(t).
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Figure 4.4: The cart double pendulum system

The pendulum lengths are given by l1 = l2 = 0.5m and their center of gravity positions read

s1 = s2 = 0.25m. The mass of the cart is mc = 1.5 kg, and the inertia parameters of the rods are

m1 = m2 = 1kg and J1 = J2 = 0.0208 kg m2. In the hinge joints a linear damping force acts

with the damping constants d1 = 0.01Nms and d2 = 0.002Nms. The equations of motion of

the system read

(mc +m1 +m2) v̇(t) + (m1s1 +m2l1) cos(ϕ1(t))ω̇1(t) +m2s2 cos(ϕ2(t))ω̇2(t)

= u(t) + (m1s1 +m2l1) sin(ϕ1(t))ω
2
1(t) +m2s2 sin(ϕ2(t))ω

2
2(t)

(m1s1 +m2l1) cos(ϕ1(t))v̇(t) + J1 +m1s
2
1 +m2l

2
1 ω̇1(t)

+m2l1s2 cos(ϕ1(t)− ϕ2(t))ω̇2(t)

= −d1ω1(t) + d2 (ω2(t)− ω1(t))− g (m1s1 +m2l1) sin(ϕ1(t))

−m2l1s2 sin(ϕ1(t)− ϕ2(t))ω
2
2(t)

m2s2 cos(ϕ2(t))v̇(t) +m2l1s2 cos(ϕ1(t)− ϕ2(t))ω̇1(t) + J2 +m2s
2
2 ω̇2(t)

= −d2 (ω2(t)− ω1(t))−m2gs2 sin(ϕ2(t)) +m2l1s2 sin(ϕ1(t)− ϕ2(t))ω
2
1(t), (4.55)

where ω1(t) = ϕ̇1(t), ω2(t) = ϕ̇2(t) and v(t) = ẋ(t). These equations can be readily written in

first order form by introducing the vector of state variables

x(t) = (x, ϕ1, ϕ2, v, ω1, ω2)
T . (4.56)

A closer look at the equations of motion reveals that the control enters linearly and consequently

one expects either a singular or a bang-bang control if we minimize the final time. Besides, we

do not get any information about the choice of the control force from Eq. (4.8)3. Therefore, we

resort to the homotopy approach presented in Sec. 4.6, where the control can then be expressed by

Eq. (4.37) instead. Note that the derivation of the adjoint differential equations in Eq. (4.33) leads
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Figure 4.5: Optimal excitation force for the upswing maneuver

to unwieldy expressions that would fill entire pages, hence the adjoint equations are not stated

explicitly. Initially, the system is at rest with the coordinates

ϕ1(0) = 0 ϕ2(0) = 0 x(0) = 0 ω1(0) = 0 ω2(0) = 0 v(0) = 0. (4.57)

The final configuration of the system at t = tf is prescribed by

ϕ1(tf ) = ± (2a+ 1) π ϕ2(tf ) = ± (2b+ 1) π ω1(tf ) = 0 ω2(tf ) = 0 v(tf ) = 0 (4.58)

with a, b ∈ N. Notice that the final value for the cart position x(tf ) is free. However, before we

can solve now the proposed two-point boundary value problem we have to utilize a transformation

to the τ -domain. Finally, the resulting control signal is depicted in Fig. 4.5, which shows a pure

bang-bang control. We count eleven switching points, where the control signal alternates between

the control constraints +u∗ and −u∗. The minimum final time tf is given by 3.0332 s and the

series of the time-optimal swing up maneuver is illustrated in Fig. 4.6.

Since the solution of the boundary value problem is a challenging task and we do not want to

give the reader the impression that the solution was obtained by pressing one button, we would

like to conclude this example by spending a few remarks on handling such problems. As already

mentioned in Sec. 4.6, one problem in solving boundary value problems is finding suitable initial

estimates for all state and adjoint variables that are sufficiently close to the optimal solution, so

that the boundary value solver converges. Hence, to overcome this problem, the bvp4c routine

was modified by the author to utilize a continuation method and make the solver more robust with

respect to the initial guess of the solution. Therefore, the original cost functional in Eq. (4.53)

was replaced by Eq. (4.30) and the final conditions in Eq. (4.58) were replaced by Eq. (4.39).

Then the resulting auxiliary optimal control problem summarized in Eq. (4.30) and Eq. (4.37) was
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Figure 4.6: Series of the upswing maneuver of the cart double pendulum

solved instead and transformed to the original problem by solving a sequence of boundary value

problems. A step size control for the continuation method, denoting the change from one boundary

value problem to the next, can be utilized via the convergence behavior of the Newton method,

which is used within the bvp4c routine. A simple suggestion for this comes from Seydel in [62],

who uses the number of iteration steps of the Newton method as a measure for the sensitivity of the

problem, and allows to traverse sensitive areas of the solution curve. Based on the residual control

of bvp4c, the adaptive mesh refinement yields the solution on a grid of 2482 points, while the

maximum residual is smaller than 9.99 × 10−10. Note, the fraction of the regularization term that

includes the initial control in the cost functional becomes negligibly small.
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Chapter 5

The Adjoint Method for Final States
Lying on a Surface

In this chapter, we discuss a special class of time-optimal control problems for dynamic systems,

where the final state of a system lies on a hypersurface. As explained in the previous chapter,

the optimal control can be found by solving a two-point boundary value problem. However, the

treatment of the boundary value problem requires an appropriate estimation for all state and adjoint

variables, otherwise the boundary value solver will not converge. An alternative to solving the
underlying boundary value problem is given by gradient methods, independently developed by

Kelley [37] and by Bryson [15] already in the sixties of the past century. Unfortunately, the

numerical computation of a cost functional gradient with respect to controls is time-consuming

and is often the bottleneck for efficient computing power. The novel method in this chapter uses

the adjoint method to compute the gradient of a cost functional, which exploits the decoupling of

boundary conditions by sequentially integrating the equations of motion and the adjoint equations,

by one forward and one backward integration scheme. With the gradient information, the control

input can be improved iteratively converging to an optimal control. Even by choosing a suboptimal

initial guess for the control inputs, in general, the proposed method converges to the (local) optimal

solution. Several parts of this chapter have already been published by the author in the Journal of

Computational and Nonlinear Dynamics [21].

5.1 Problem Formulation

Before describing the adjoint gradient method for a special class of boundary condition, the time-

optimal control problem is summarized here. We consider a first-order system described by the

state equations

ẋ = f(x(t),u(t)), x(t0) = x0. (5.1)

We pursue the same goal as in the preceding chapter and look for controls that minimize the cost

functional

J =
tf

t0

[1 + Π(x(t),u(t))] dt. (5.2)
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In contrast to the boundary value problem, a control constraint is often considered by a penalty

term in the cost functional when using a gradient based method. Thus, we introduced a penalty

term Π(x(t),u(t)) that also includes a control dependence to account for the limits of u(t) and,

hence, the cost functional is open to include any inequality constraint. In order to cite two possible

application scenarios, the penalty term can be used to limit the drive force/torque of a system, to

account for natural bounds due to engine performance, or to consider obstacles in automotive and

robotics. In this chapter we are interested in problems where the final state x(tf ) of Eq. (5.1)

terminates on a hypersurface. In time domain, this end point constraint may be expressed by a

“spatial” variable

s(t) := Φ(x(t)), (5.3)

which ranges between the fixed boundaries s0 = Φ(x(t0)) and sf = Φ(x(tf )). If we apply an

iterative solution strategy to find δJ = 0 in Eq. (5.2), a problem arises because a modified control

causes a change of the time interval [t0, tf ] to [t0, t
∗
f ].

If t∗f < tf , which should be the case for a control variation, the improved control u∗(t) can be

truncated at t = t∗f although the information about u∗(t) is available also for t∗f < t < tf .

However, if the control update was selected too large, the terminal condition in Eq. (5.3) may be

eventually met at a later time instance t∗f > tf . In this case, we have no information about u∗(t)

for tf < t < t∗f . Hence, for time-optimal control problems, it is convenient to transform the time

coordinate into a coordinate within a fixed interval. For this purpose, it is natural to express the

time by the variable s(t) defined in Eq. (5.3). Depending on the problem, i. e. which boundary

conditions are imposed, different forms of the adjoint method can be pursued. Based on Eq. (5.3),

two solution strategies concerning the adjoint gradient method are pursued in this chapter:

(a) A hybrid formulation, where the state and adjoint equations are solved in the original time

domain and only the controls and the gradient are defined in the fixed interval, and

(b) the complete transformation of the time coordinate to a fixed interval.

Both approaches originate from [21], are robust with respect to poor initial controls and yield a

shorter final time and, hence, an improved control after every iteration.

5.2 Transformation to a Hybrid Domain

First, we discuss a hybrid formulation of the adjoint method. In order to apply a solution strategy

to our time-optimal control problem, we extend Eq. (5.2) by a zero term containing the state equa-

tions multiplied with a set of adjoint variables. For arbitrary adjoint variables p(t), the augmented

cost functional from Eq. (5.2) reads

J̄ =
tf

t0

1 + Π(x,u) + pT (f(x,u)− ẋ) dt. (5.4)

Now we try to compute the gradient of the cost functional by applying the δ-operation. In our

initial exposure to optimal control theory, we have found the variation of the augmented cost
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functional in Eqs. (4.1–4.7). However, since our penalty function may now depend also on the

controls, we observe an additional control variation of the peanlty function, i. e., Πuδu(t). Hence,

Eq. (5.4) is given by

δJ̄ =
tf

t0

Πu + pTfu δu+ Πx + pTfx + ṗT δx dt

− pT(tf )δx(tf ) + 1 + Π(x(tf ),u(tf )) δtf .

(5.5)

Since the end time and thus the boundary term in Eq. (5.5) is implicitly defined by Eq. (5.3), it

is difficult to realize a complete transformation of the time coordinate. If we are using a multi-

body simulation software, this would require a massive intervention into the software architecture.

Hence, it would be preferable to solve the equations of motion in the time domain and to transform

the gradient formula only. Before we consider a proper transformation, we rewrite the boundary

term in Eq. (5.5) by using Eq. (4.14) for δtf , leading to

δJ̄ =
tf

t0

Πu + pTfu δu+ Πx + pTfx + ṗT δx dt

− pT(tf ) +
1 + Π(x(tf ),u(tf ))

Φx(x(tf ))f(x(tf ),u(tf ))
Φx(x(tf )) δx(tf ),

(5.6)

in which we inserted f(x(tf ),u(tf )) for ẋ(tf ) again. At a first glance, it seems that the inte-

gration variable t can be directly substituted by s = Φ(x(t)). However, Fig. 2.2 illustrates that

the change of the integration variable has also an impact on the δ-operation describing the control

variation. Let u∗(t) = u(t) + δu(t) be a perturbed control in terms of the original time, then a

control variation δu(t) causes a state variation δx(t). Thus, we will also observe a variation of

the state dependent coordinate s(t) = Φ(x(t)), which is up to first order given by

δs(t) = Φx(x(t)) δx(t). (5.7)

Analogous to a varied function in Eq. (2.24), we deduce for a perturbed control δu(t) = δu(s(t))+

(du/ds)δs(t). Hence, after inserting Eq. (5.7) for δs(t), the control variation in terms of the time

t reads

δu(t) = δu(s(t)) +
du

ds
δs(t) = δu(s(t)) +

du

ds
Φx(x(t)) δx(t). (5.8)

Since we are looking for δu(s) which causes the largest local decrease of the cost functional J ,

the variation δu(t) in Eq. (5.6) must be expressed by this relation, yielding

δJ̄ =
tf

t0

Πu + pTfu δu(s(t)) dt

+
tf

t0

Πx +Πu

du

ds
Φx(x(t)) + pT fx + fu

du

ds
Φx(x(t)) + ṗT δx(t) dt

− pT(tf ) +
1 + Π(x(tf ),u(tf ))

Φx(x(tf ))f(x(tf ),u(tf ))
ΦT

x
(x(tf )) δx(tf ).

(5.9)
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So far, we have not put any restrictions on the adjoint variables. Now we shall find it convenient to

choose p(t) such that all terms multiplied with δx vanish. Thus, the adjoint variables are defined

by the linear final value problem

ṗ(t) = −ΠT

x
− Πu

du

ds
Φx(x(t))

T

− fx + fu
du

ds
Φx(x(t))

T

p(t)

p(tf ) = −
1 + Π(x(tf ),u(tf ))

Φx(x(tf ))f(x(tf ),u(tf ))
ΦT

x
(x(tf )),

(5.10)

which can be solved backward in time after the system equations in Eq. (5.1) have been solved for
x(t) yielding the time variant Jacobi matrices fx(x(t),u(t)), Φx(x(t)) and Πx(x(t),u(t)). No-

tice that we have added the term fu(du/ds)Φx to the adjoint system. If p(t) satisfies Eq. (5.10),

the first variation of the cost functional in Eq. (5.9) reduces to

δJ̄ =
tf

t0

Πu + pTfu δu(s(t)) dt, (5.11)

in which we can now substitute the integration variable t by s. With

dt =
1

ṡ
ds =

1

Φxẋ
ds =

1

Φxf(x,u)
ds = g(x,u)ds, (5.12)

where g(x,u) = 1/(Φxf(x,u)), we obtain

δJ̄ =
sf

s0

Πu + pTfu δu(s)g(x,u)ds. (5.13)

Finally, the largest local decrease of the cost functional in Eq. (5.11) results from the control

variation

δu(s) = −κ g(x,u) ΠT

u
+ fT

u
p , (5.14)

where κ is a sufficiently small positive number. With this result, we are ready to apply a gradient

based optimization procedure for finding a minimum of J , which can be summarized as follows:

1. Choose an initial guess for the control history u(s) which causes the states to satisfy the

terminal condition in Eq. (4.11).

2. Solve Eq. (4.1) for the state variables x(t) until Eq. (4.11) is satisfied. During the numerical

integration of the state equations, the argument s in u(s) must be replaced by the original
time t with Eq. (5.3).

3. Solve Eq. (5.10) starting at t = tf for the adjoint variables p(t) by a backward integration,

e. g., by using a multistep integration scheme, as described in [32, Sec. 3.1].

4. Select a value for κ and compute the control variation δu(s) for every s from Eq. (5.14) by

involving the inverse function of s(t). Alternatively, a quasi-Newton method can be applied

to the update formula in Eq. (5.14), e. g., the BFGS-method.
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5. Update the control history by setting u(s) → u(s)+ δu(s). With the updated control u(s),

the cost functional should be reduced, if κ was selected sufficiently small.

6. Vary κ, resolve the state equations and evaluate the cost functional until an optimal value for

κ is found, which minimizes the cost functional along the search direction. For that purpose,

a line search algorithm as described in Sec. 3.1.2 can be used.

7. Replace the control history u(s) by the updated control and repeat steps 2 through 6. Termi-

nate the optimization procedure when Eq. (5.13) becomes sufficiently small (zero gradient).

In summary, an advantage of the presented method is that the equations of motion and also the

adjoint system can be solved in the time domain and only the control variables and the gradient

formula are transformed into the state space. Unfortunately, this requires the derivative of the

controls with respect to s which can become infinite for bang-bang controls and could cause an

undesirable excitation term in the adjoint equations in Eq. (5.10)1. Note that s is often used as an

arc length parameter, but here no specific parametrization is chosen yet. In the next paragraph we

show that this problem can be overcome by an elimination of the time coordinate also in the state

equations in Eq. (4.1). However, the price to pay is that a standard multibody simulation software

is probably no longer applicable.

5.3 Transformation to Space Domain

The function s(t) defined by Eq. (5.3) can also be used to eliminate the time coordinate from the

state equations in Eq. (4.1). Using Eq. (5.12), we obtain

ẋ =
dx

ds

ds

dt
= x′(s)Φxẋ = f(x,u) x(t0) = x0, (5.15)

or, respectively,

x′(s) = g(x(s),u(s))f(x(s),u(s)) := f̃(x(s),u(s)), x(s0) = x0, (5.16)

in which we used again the abbreviation g(x,u) = 1/(Φxf(x,u)). Any derivative with respect

to s is denoted by (·)′, here. For measuring the original time, we make use of Eq. (5.3) once more
and include the additional differential equation

t′(s) =
dt

ds
= g(x(s),u(s)), t(s0) = t0, (5.17)

which is used to determine the final time tf = t(sf ). Applying a transformation to space, the cost

functional in Eq. (5.2) can be readily rewritten to

J = tf − t0 +
sf

s0

Π(x(s),u(s)) g(x(s),u(s))ds. (5.18)
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In order to derive now a gradient formula of Eq. (5.18) with respect to the controls u(s) we may

again extend J by the state equations in Eq. (5.16) and by Eq. (5.17) yielding

J̄ = tf − t0 +
sf

s0

Π(x,u) g(x,u) + pT f̃(x,u)− x′ + ξ g(x,u)− t′ ds, (5.19)

in which p(s) ∈ R
n denotes a vector of adjoint variables and ξ(s) ∈ R is a single adjoint variable

associated to the differential equation defining the time coordinate. The linear change of the

extended cost functional is given by

δJ̄ = δtf +
sf

s0

gΠxδx+Πgxδx+ gΠuδu+Πguδu

+ pT f̃xδx+ f̃uδu− δx′ + ξ gxδx+ guδu− δt′ ds,

(5.20)

where the initial time is fixed, hence δt0 = 0. The same applies after an integration by parts of the

terms including δx′ and δt′ yielding

sf

s0

pTδx′ ds = −
sf

s0

p′Tδxds+ pT(sf )δx(sf )

sf

s0

ξδt′ ds = −
sf

s0

ξ′δt ds+ ξ(sf )δtf ,

(5.21)

i. e., the variations δx(sf ) and δt0 are zero. Inserting Eq. (5.21) into Eq. (5.20) and collecting all

terms including δx(s), δu(s) and δt(s), we obtain

δJ̄ = 1− ξ(sf ) δtf +
sf

s0

gΠu +Πgu + pTf̃u + ξgu δu

+ gΠx +Πgx + pTf̃x + p′T + ξgx δx+ ξ′δt ds

− pT(sf )δx(sf ).

(5.22)

The adjoint variables ξ(s) and p(s) can now be again defined such that all terms with δx(s) and

δt(s) disappear. This is the case if ξ′(s) = 0 and ξ(sf ) = 1, i. e., ξ(s) = 1 for s ∈ [s0, sf ], and if

p′(s) = − 1 + Π gT
x
− gΠT

x
− f̃T

x
p

p(sf ) = 0.
(5.23)

This final value problem may be solved for p(s). Finally, the first variation of the cost functional

reduces to

δJ̄ =
sf

s0

1 + Π gu + gΠu + pTf̃u + gu δu(s) ds, (5.24)

showing the direct influence of δu(s) on J̄ . Finally, an update of the control signals is computed

from Eq. (5.24), by choosing

δu(s) := −κ 1 + Π gT
u
+ gΠT

u
+ f̃T

u
p+ gT

u
, (5.25)
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in which κ is again a small positive number determining the size of the control update. Finally, we

summarize the main steps of the algorithm for the s-domain:

1. Select a control history u(s) in the s-interval [s0, sf ].

2. Solve the state equations in Eq. (5.16) for x(s) and the differential equation in Eq. (5.17)

for t(s), simultaneously.

3. Solve the adjoint differential equations in Eq. (5.23) for the adjoint variables p(s) backward

in s.

4. Compute the control update δu(s) for every s by using Eq. (5.25). Note, instead of using

the update δu(s) directly, Eq. (5.25) can be used to apply a quasi-Newton method.

5. Improve the control history by setting u(s) → u(s) + δu(s). If κ was selected sufficiently

small, the updated control u(s) reduces the cost functional in Eq. (5.18), in which the final

time is given by tf = t(sf ).

6. Find a suitable factor κ, e. g., by using a line search algorithm.

7. Repeat steps 2 through 6 and stop the algorithm when δJ̄ in Eq. (5.24) is sufficiently small.

5.4 Examples

Two numerical examples from [21] are used, after revision, to apply the proposed methods for

computing the time-optimal control for dynamic systems. For the first example, the adjoint method

in a hybrid domain is used for trajectory planning of a space flight; while in the second example,

the adjoint method in the s-domain is utilized for computing time-optimal vehicle maneuvers. Be-

cause of the consistent transformation, both presented methods allow the application of preferable

quasi-Newton methods using the BFGS-update for the Hessian.

5.4.1 Orbital Transfer Problem

As a first example, we consider the time-optimal flight to the sphere of influence. The sphere of

influence is a domain around a celestial body that indicates where the gravity of the body has a

dominating effect on the dynamics of other space objects [67, Sec. 8.2]. We are interested in the

optimal control of a space vehicle to reach the sphere of influence in minimal time. At t = t0,

the spacecraft is in a circular orbit of the Moon with known parameters. The maneuver under

consideration is finished if r(t) is equal to the radius rfinal of the sphere of influence of the Moon.

Hence, using Eq. (5.3), our terminal condition reads

r(t) = Φ(x(t)) and r(tf ) = rfinal, (5.26)

which defines tf implicitly. We want to compute u(r) such that the flight time to the sphere of

influence is minimal.
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Hence, neither involving a penalty function nor a control constraint, the cost functional is simply

given by

J =
tf

t0

1 dt, (5.27)

i. e., the length of the time interval tf − t0. For finding the optimal control, we use the hybrid

method described in Sec. 5.2 and determine the control u as a function of r, which corresponds

to the coordinate s. Hence, if we substitute the time dependence in Eq. (4.43), i. e., u(t) → u(r),

we can refer to the state equations in Eq. (4.43). The associated adjoint equations can be directly

derived from Eq. (5.10) and read

ṗ1(t) =
p2(t)vt(t)

r2(t)
+ p3(t)

v2t (t)

r2(t)
−

2µ

r3(t)
−

du(r)

dr

F

m(t)
cos(u(r))

− p4(t)
vr(t)vt(t)

r2(t)
−

du(r)

dr

F

m(t)
sin(u(r))

ṗ2(t) = 0

ṗ3(t) =− p1(t) +
p4(t)vt(t)

r(t)

ṗ4(t) =−
p2(t)

r(t)
−

2p3(t)vt(t)

r(t)
+

p4(t)vr(t)

r(t)

ṗ5(t) =
p3(t)F

m2(t)
sin(u(r)) +

p4(t)F

m2(t)
cos(u(r)),

(5.28)

with the initial values p1(tf ) = −1/vr(tf ) and p2(tf ) = p3(tf ) = p4(tf ) = p5(tf ) = 0. The

formula for the control update, given by Eq. (5.14), yields

δu(r) = −κ
F

m(r)vr(r)
p3(r) cos(u(r))− p4(r) sin(u(r)) . (5.29)
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Figure 5.1: Convergence of the orbit transfer
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For the numerical example, the following parameters are used: The initial mass of the vehicle

m0 = 10.47 t, the specific impulse 2.4×103 s, the thrust force F = 16kN, the radius of the Moon

R = 1738 km, Earth’s gravitational acceleration g = 9.8106× 10−3 km/s2, Moon’s gravitational

acceleration gM = 1.622× 10−3 km/s2, Moon’s gravitational constant µ = R2gM and the radius

of the sphere of influence rfinal = 6.6 × 104 km. Initially, the space vehicle is in a circular Moon

orbit with altitude h = 111 km. Hence, the initial conditions at t = t0 = 0 are given by:

r(0) = R+ h ϕ(0) = 0 vr(0) = 0 vt(0) =
µ

R+ h
m(0) = m0. (5.30)

We consider two different initial controls, which are both far away from the optimal solution:

(a) u(r) = 0 and (b) u(r) = r π/(2rfinal). In the first case, the thrust always acts in tangential

direction. In the latter case, the thrust acts tangentially at the beginning and radially at the end, i. e.,

the sphere of influence is crossed in normal direction. The controls u(r) are discretized by 500 data

points in time. Notice that a traditional gradient computation by numerical differentiation would

require 500 additional forward solutions of the state equations, whereas with the proposed method

the gradient is obtained already from one solution of the adjoint system equations. Figure 5.1

depicts the decrease of the final time with an increasing number of quasi-Newton iterations for

both initial controls. The final time 1.0262× 104 s for the initial control (a) and 8.9482× 103 s for

the initial control (b) are reduced to tf = 7.8913× 103 s after the optimization process. The time-

optimal control angles u(r) computed from the initial controls (a) and (b) are shown in Fig. 5.2.
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Figure 5.2: Control angle of the thrust nozzle
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The flight trajectories of the space vehicle are plotted in Fig. 5.3. The optimized trajectories are

almost identical for both initial controls showing that the spacecraft moves nearly on a straight

flight path. Notice that for the initial control (a) some small oscillations remain in the control u(r)

at the end of the maneuver. The reason for this numerical artifact is that the final value u(rfinal) is

never updated by the gradient formula in Eq. (5.29) due to the zero values for p3 and p4 at t = tf

and, hence, the control keeps its original value u(rfinal) = 0. Clearly, the final control value has no

influence on the flight time. For the initial control (a), the algorithm converges to a step function

at r = rfinal which requires a higher number of iterations. However, as it can be seen from the

convergence plot in Fig. 5.1, the cost functional no longer decreases already after 20 iterations.

This can be explained by the fact that the control history close to t = tf has only small influence

on the cost functional. Hence, the oscillations in u(r) do not change the flight time and the flight

path very much. However, Fig. 5.1 shows that choosing the initial control (b), for which the final
value at t = tf coincides with the expected value π/2, increases the convergence rate and the

oscillations at the end of the optimal control history in Fig. 5.2 vanish.
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Figure 5.3: Time-optimal trajectory of the space vehicle

5.4.2 Minimum Lap Time Problem

As a second example, we consider a single track model of a car for which accelerating, braking

and steering should be determined such that the time for a vehicle maneuver becomes minimal. A

single track vehicle model is frequently studied in literature, as shown, e. g., in [65] for oversteer

vehicles, to investigate the handling and stability characteristics of cars. However, from the point

of view of optimal control theory, a classical question is how to minimize the end time, as also

discussed in [53].
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Figure 5.4: Single track vehicle model

We use the single track model in Fig. 5.4 and a Pacejka tire model for the wheel contact forces T1,

N1, T2 and N2. The vehicle position is described by the coordinates (x, y) of the center of mass

and by the orientation angle ϕ. The equations of motion are given by Eq. (A.2) in Appendix A.

To formulate the terminal condition and the penalty function, forcing the car to stay within the

boundaries of the road, we introduce the curvilinear coordinates (s, r), which describe the vehicle
position by the distance s along the road center line and the deviation r measured normal to the

center line. An elaborate derivation of the curvilinear coordinates is given in the Appendix A. With

the curvilinear coordinate s(t) and Eq. (5.3), the terminal condition, expressing that the vehicle

crosses the finish line, is readily formulated as

s(t) = Φ(x(t)) and s(tf ) = sfinal, (5.31)

where sfinal is the arc length coordinate of the finish line. Moreover, the penalty function for the

road boundaries can be described by the lateral coordinate r(t) as follows:

Π1(r(t)) :=





0 for |r(t)| < r̄

1

2
(|r(t)| − r̄)2 for r̄ < |r(t)| < r∗

1

2
(r∗ − r̄)2 + (r∗ − r̄) (|r(t)| − r∗) otherwise.

(5.32)

Here, r̄ = w−h, where w is the half road width and h is a small thickness parameter to activate the

penalty function before the track constraint is violated. The penalty function is zero if |r(t)| < r̄

and increases rapidly if |r(t)| > r̄. Note that Π1(r(t)) is quadratic in r(t) if r̄ < |r(t)| < r∗,

whereas it increases linearly if |r(t)| > r∗. Hence, Π1(r(t)) is a once continuously differentiable

function which is necessary to avoid jumps in the adjoint equations. A similar penalty function is
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also used to constrain the driving torque u2(t):

Π2(u2(t)) :=





0 for |u2(t)| < ū2

1

2
(|u2(t)| − ū2)

2 for ū2 < |u2(t)| < u∗2

1

2
(u∗2 − ū2)

2 + (u∗2 − ū2) (|u2(t)| − u∗2) otherwise.

(5.33)

Here, ū2(t) is the maximum drive torque provided by the powertrain and u∗2 separates the domains

of quadratic and linear increase. Both penalty functions are weighted and combined to one re-

sulting penalty function Π(r(t), u2(t)) = α1Π1(r(t)) + α2Π2(u2(t)). The cost functional to be

minimized can then be defined by

J =
tf

t0

(1 + Π(r(t), u2(t))) dt

= tf − t0 +
sf

s0

Π(r(s), u2(s)) g(r(s), ϕ(s), v(s), w(s))ds,

(5.34)

where t0 = 0 and tf is the minimal time to drive the vehicle through the road track. Here, g is the

function introduced in Eq. (5.16), which is derived in Appendix A. For the solution of the problem

posed above, we use the adjoint method in s-domain as described in Sec. 5.3. Notice that the

boundaries for s are fixed, since we know s = s0 for the initial state and s = sfinal for the terminal

state when the finish line is crossed. The transformed first order state equations in the s-domain

read

r′(s) =
g

r(s) k(s)− 1
v(s) cos(ϕ(s)) −w(s) sin(ϕ(s)) x′′c (s)r(s)− y′c(s)

+ v(s) sin(ϕ(s)) + w(s) cos(ϕ(s)) x′c(s) + y′′c (s)r(s)

ϕ′(s) = gΩ(s)

v′(s) =
g

m
mw(s)Ω(s) + T1 cos(u1(s)) + T2 −N1 sin(u1(s))

w′(s) =
g

m
−mv(s)Ω(s) +N1 cos(u1(s)) +N2 + T1 sin(u1(s))

Ω′(s) =
g

J
N1a cos(u1(s))−N2b+ T1a sin(u1(s))

ω′
1(s) = −

R g

J1
T1

ω′
2(s) =

g

J2
u2(s)− T2R ,

(5.35)

which are also derived in Appendix A. Moreover, we can add the differential equation t′(s) = g to

Eq. (5.35) from which we can determine tf = t(sf ). Here, v(s) and w(s) denote the components

of the absolute vehicle velocity vector with respect to the chassis fixed reference frame. The yaw

rate is given by Ω(s) = ϕ̇(s) and ω1(s) and ω2(s) denote the angular velocities of the wheels. The
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inertia parameters of the vehicle are given by m, J , J1 and J2. The wheelbase is given by a + b

and both wheels have the radius R. The control inputs of the model are the steering angle u1(s)

of the front wheel and the driving/braking torque u2(s) of the rear wheel.

Note that the tire forces T1, N1, T2 and N2 have a decisive impact on the handling of the vehicle.

However, with respect to the computational effort, we use a simplified Pacejka tire model proposed

in [53], where the camber angle of the tire is neglected.

With the lateral and longitudinal slips

α1 = u1(s)− arctan
w(s) + Ω(s)a

v(s)

κ1 =
ω1(s)R− v(s) cos(u1(s))− (w(s) + Ω(s)a) sin(u1(s))

v(s) cos(u1(s)) + (w(s) + Ω(s)a) sin(u1(s))

α2 = − arctan
w(s) + Ω(s)b

v(s)

κ2 =
ω2(s)R− v(s)

v(s)
,

(5.36)

for the front and the rear axis, the tire forces are given by

T1 =
Gb

a+ b
ft(κ1) gt(κ1, α1) N1 =

Gb

a+ b
fn(α1) gn(α1, κ1)

T2 =
Ga

a+ b
ft(κ2) gt(κ2, α2) N2 =

Ga

a+ b
fn(α2) gn(α2, κ2),

(5.37)

in which G denotes the gravitational force on the vehicle. The Pacejka tire formulas1 read

fi(x) := µi sin ci arctan bix− ai [bix− arctan(bix)]

gi(x, y) := cos ki arctan diy cos (arctan (eix)) .

(5.38)

The numerical values for the Pacejka tire parameters related to the design properties are referenced

from [53]. In summary, the parameters in longitudinal direction are given by: at = 0.362, bt =

11.1, ct = 1.69, dt = 12.4, et = −10.8, µt = 1.20 and kt = 1.09. Moreover, the parameter set in

lateral direction reads: an = −1.11, bn = 9.30, cn = 1.19, dn = 6.46, en = 4.20, µn = 0.961

and kn = 1.08.

The adjoint equations associated to Eq. (5.35) which define the adjoint variables

p(s) = p1, p2, p3, p4, p5, p6, p7
T
, (5.39)

to the state variables r, ϕ, v, w, Ω, ω1, ω2 can be derived from Eq. (5.23)1. Due to rather lengthy

expressions, we refrain from writing down the equations here. The final values for p(s) at s = sf

are defined by Eq. (5.23)2, i. e., by p(sf ) = 0. Finally, an update formula for the controls is given

1The Pacejka formulas are often referred to as "magic formulas" in literature, since the high number of coefficients
included have no physical meaning but rather describe a mathematical function that approximates the tire force law.
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by Eq. (5.25) and yields for the steering angle

δu1(s) =− κ −
p6 g R

J1

∂T1

∂u1

+
p5 g a

J
T1 cos(u1) +

∂T1

∂u1
sin(u1)−N1 sin(u1) +

∂N1

∂u1
cos(u1)

+
p4 g

m
T1 cos(u1) +

∂T1

∂u1
sin(u1)−N1 sin(u1) +

∂N1

∂u1
cos(u1)

+
p3 g

m
− T1 sin(u1) +

∂T1

∂u1
cos(u1)−N1 cos(u1)−

∂N1

∂u1
sin(u1) ,

(5.40)

and for the driving torque

δu2(s) = −κ
∂Π

∂u2
g +

p7 g

J2
. (5.41)

For the numerical computations, we consider a road center line which is composed of straight lines

and clothoids. The vehicle starts at the center line of the track with the initial conditions

r(0) = 0 v(0) = 12
m

s
w(0) = 0 Ω(0) = 0 ω1(0) =

v(0)

R
ω2(0) =

v(0)

R
. (5.42)

The vehicle parameters for the numerical computations can be summarized by m = 1000 kg, J =

1750 kg m2, Jw = 25kgm2, R = 0.3m, a = 1.40m, b = 1.35m and G = 9810N. Moreover,

the penalty parameters are given by w = 2m, α1 = 2 , r̄ = 1.7 , r∗ = 3 , α2 = 6.19 × 10−7 and

ū2 = 1798 . In order to start the optimization procedure we have to find a reasonable initial guess

for the control of the vehicle. Therefore, a simple driver model is applied, where the vehicle is

forced to trace the road center line at a certain speed. Various authors have already discussed the

problem of path planning strategies [19, 24], and the application of velocity profiles [19]. Since

the focus is on the computation of time-optimal controls, we refrain from examining the theory of

initial controls. It should be noted, however, that the proposed methods are robust with respect to

the initial controls and are therefore applicable to less sophisticated initial controls.

(a) Single 90 Degree Curve

The goal of the first example is to identify the control of a vehicle driving through a single 90

degree curve. The s-domain of the curve is described using a parameter representation of straight

lines and clothoids for the transition between two sections. A clothoid is a flat curve defined by the

condition that the curvature decreases linearly with arc length. Hence, clothoids are used in road

construction to achieve a smooth transition between roadway sections with different curvatures

56



CHAPTER 5. THE ADJOINT METHOD FOR FINAL STATES LYING ON A SURFACE

The parameter representation of the lane centerline describing a 90 degree curve is given by

xc(s) =







s, 0 s ∈ [s0, s1[

x1 +
s−s1

0
cos Aσ2 dσ,

s−s1

0
sin Aσ2 dσ s ∈ [s1, s2[

x2 −
s3−s

0
sin Aσ2 dσ, y2 −

s3−s

0
cos Aσ2 dσ s ∈ [s2, s3[

x3, y3 + s− s3 s ∈ [s3, sf ]

(5.43)

where s0 = 0, s1 = 29, s2 = 34, s3 = 39 and sf = 68. The offset parameters are given by:

x1 = 29, x2 = 35, y2 = 6, x3 = 35, y3 = 33 and the clothoid parameters read A = π/(4L2) and

L = 5.

Finally, the results of the time-optimal vehicle maneuver are summarized in Fig. 5.5, Fig. 5.6 and

Fig. 5.7. In Fig. 5.5, the convergence of the cost functional is shown. After approximately 988

quasi-Newton iterations the total time can be reduced from 7.3742 s to 4.9504 s. The optimization

was stopped due to a sufficient small first-order optimality measure.
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Figure 5.5: Convergence of the cost functional for driving through a 90 degree curve

The initial and the optimized trajectories are depicted in Fig. 5.6. The optimal control signals, i. e.,

the steering angle u1,opt and the drive torque u2,opt are compared to the initial controls u1,ini and

u2,ini in Fig. 5.7. According to Pontryagin’s minimum principle [54], see also [39, Sec. 5.4], we
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expect the following cases for the optimal drive torque, which appears linear in the Hamiltonian:

u2,opt(s) :=




u2,max, p7(s) < 0

u2,min, p7(s) > 0

singular, p7(s) = 0,

where u2,max ≃ ū2 and u2,min ≃ −ū2. If the adjoint variable p7(s) passes through zero we iden-

tify a switching point of the control u2(s). However, particular attention shall be paid to finite

time intervals in which the adjoint variable p7(s) remains zero. Such intervals are called singular

intervals. In that case, the necessary condition, which minimizes the Hamiltonian, provides no

information about the optimal control. Here, the maximum transmitted force of the tire is the

physical bound for the optimal control which is observed by the method itself. To circumvent the

singular interval problem, usually the following traditional strategies are pursed: On the one hand,

a singular control can be computed from differentiation of the switching condition p7 = 0 and

involving the state and costate equations, see [39, Sec. 5.6].

On the other hand, as a numerical approach, a regularization term can be added to the cost func-
tional as described in Sec. 4.6. However, both strategies require either massive manipulations of

the state and costate equations or an unphysical modification of the cost functional, whereas our

method provides a natural approach to handle the singular case.
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Figure 5.6: Comparison of the initial and the optimal trajectory for driving through a 90 de-
gree curve

With the presented approach, the control for a singular interval can be detected without any fur-

ther modification of the optimization process. Figure 5.7 shows that the numerical result is in

agreement with the theoretical principle.
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(b) Hairpin Turn

Finally, we are looking for the time-optimal control of the single track vehicle driving through a
hairpin turn. The description of the hairpin turn is given by the parameter representation:

xc(s) =







s, 0 s ∈ [s0, s1[

x1 +
s−s1

0
cos Aσ2 dσ,

s−s1

0
sin Aσ2 dσ s ∈ [s1, s2[

x3 −
s3−s

0
sin Aσ2 dσ, y3 −

s3−s

0
cos Aσ2 dσ s ∈ [s2, s3[

x3 −
s−s3

0
sin Aσ2 dσ, y3 +

s−s3

0
cos Aσ2 dσ s ∈ [s3, s4[

x4 +
s5−s

0
cos Aσ2 dσ, y4 −

s5−s

0
sin Aσ2 dσ s ∈ [s4, s5[

sf − s, y4 s ∈ [s5, sf ]

(5.44)

in which s0 = 0, s1 = 25, s2 = 31.3, s3 = 37.6, s4 = 43.9, s5 = 50.2 and sf = 75. The

coordinates are given by: x1 = 25, x3 = 32.5, y3 = 7.5, x4 = 25, and y4 = 15.
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Figure 5.8: Convergence of the hairpin maneuver

Further, the clothoids for the road construction is defined by A = π/(4L2) and L = 6.3. The

reduction of the cost functional over iterations is shown Fig. 5.8. After approximately 1804 quasi-

Newton iterations we stop the optimization procedure. Note that for industrial applications in

most cases a much lower number of iterations is sufficient, however, to demonstrate Pontryagin’s

theory on singular intervals a high accuracy is necessary. Finally, the total time can be reduced

from 9.9182 s to 6.4712 s.
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Figure 5.10: Comparison of the initial and the optimal control and verification of Pontrya-
gin’s minimum principle for the hairpin maneuver

In Fig. 5.9 we have once more established the result of the preprocessed driver model and the

final solution of the time-optimal control problem. The control signals are shown in Fig. 5.10. In

the latter diagram, we encounter the theory of Pontryagin, too, where the control behavior of the

driving torque prevails in a similar manner as discussed before.
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Chapter 6

The Adjoint Method for a Set of
Specified Final States

It was already demonstrated that the adjoint method is a robust algorithm for determining the gra-

dient of a cost functional. However, so far, we have only discussed a special class of time-optimal

control problems, in which the final state of a system is given by a scalar condition. In this chap-

ter, we are now concerned with solving problems with a given set of end conditions as described

in [22]. In particular, we are interested in problems where a control has to be found such that a

cost functional of the form as in Eq. (5.2) is minimized and the state variables at the final time tf

satisfy a set of (auxiliary) conditions.

In order to incorporate final constraints in the adjoint approach, additional penalty terms must be

introduced in the cost functional. However, this may distort the optimal control due to weighting
factors required for these terms and raise serious concerns about the magnitude of the weighting

factors. Here, the modified gradient approach from Sec. 3.2.2 is the cornerstone upon which the

method in this section is built. Following the fundamental ideas in applied optimal control pre-

sented in the book by Bryson and Ho [16], the adjoint method can be extended to account for

end conditions by introducing additional adjoint-influence differential equations beside the clas-

sical adjoint system to associate the control variations with the final conditions, referring to [16,

Sec. 7.4]. The key idea is to introduce a clever descent direction, as presented in Sec. 3.2.2, which

reduces the error in the final conditions and approaches the constrained optimum of the cost func-

tional within each iteration simultaneously. In many cases, time-optimal controls lead to so-called

bang-bang controls. To improve the convergence rate of the proposed method in this case, we pay

also attention to the efficient determination of the switching points with the adjoint method. The

present chapter includes a revision of two published articles [22, 23].

6.1 Problem Formulation and Solution Approach

Instead of a scalar bound that terminates the integration scheme of the state equations, we now

consider a vectorial condition that imposes the final state. We require that the system satisfies a
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set of end conditions given by

φ(x(tf ), tf ) = 0, φ : Rn ×R → R
r, (6.1)

In the following, we first compute the gradient of the cost functional in Eq. (5.2) and then the

gradient of the final conditions in Eq. (6.1), both with respect to the control signal. Afterwards,

we consider how the gradients can be combined in a reasonable way.

As the first step, to compute the gradient of the cost functional, we expand J in Eq. (5.2) with the

state equations, yielding

J̄ =
tf

t0

1 + Π(x,u) + pT (f(x,u)− ẋ) dt. (6.2)

Equipped with the knowledge from Eqs. (4.1–4.7), or respectively, Eq. (5.5), the resulting variation

of the extended cost functional in Eq. (6.2) is given by

δJ̄ =
tf

t0

Πu + pTfu δu+ Πx + pTfx + ṗT δx dt

− pT(tf )δx(tf ) + 1 + Πf δtf ,

(6.3)

up to first order terms, where Πx, Πu, fx and fu denote the partial derivatives of Π and f with

respect to x and u and Πf = Π(x(tf ),u(tf )). Since we have not made any restrictions on the

vector of adjoint variables p(t) yet, we now define them by the linear time-variant final value

problem
ṗ = −ΠT

x
− fT

x
p with p(tf ) = 0, (6.4)

which can be solved backward in time. In this case, the first variation of the cost functional in

Eq. (6.3) reduces to

δJ̄ =
tf

t0

Πu + pTfu δudt+ 1 + Πf δtf , (6.5)

showing the direct influence of δu(t) and δtf on δJ̄ . In a similar way, the auxiliary conditions in

Eq. (6.1) are extended by the state equations

φ̄ =
tf

t0

PT f(x,u)− ẋ dt+ φ(x(tf ), tf ), (6.6)

where we have introduced one more set of adjoint variables arranged in the matrix P(t) ∈ R
n×r.

Again, the integral term on the right side is zero for any matrix P(t), if the state equations are

satisfied. Next, we compute the variation of φ̄, yielding

δφ̄ =
tf

t0

PT fuδu+ fxδx− δẋ dt+ φx(x(tf ), tf ) δxf + φt(x(tf ), tf ) δtf , (6.7)

in which φx and φt denote the partial derivatives of the function φ(x, t) with respect to x and t.

Now recall that the variation δx(tf ) describes the variation of x at fixed end time tf , whereas δxf
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is the variation of x including also the end time variation. According to Eq. (4.12), the relation

between both is given by δxf = ẋ(tf ) δtf + δx(tf ). If we insert this into Eq. (6.7) and perform

an integration by parts of PTδẋ, we obtain

δφ̄ =
tf

t0

PTfuδu+ PTfx + ṖT δx dt

+ φx −PT

tf
δx(tf ) + (φxẋ+ φt)

tf
δtf .

(6.8)

Now we define P(t) by the matrix differential equations

Ṗ = −fT

x
P where P(tf ) = φT

x
(x(tf ), tf ), (6.9)

which can be integrated backward in time. For that purpose, we have to solve one set of n ordinary

differential equations for each component of the final condition φ(x(tf ), tf ) = 0. With P(t) from

Eq. (6.9), and with

φ̇f := φxẋ+ φt
tf

= φxf(x,u) + φt
tf
, (6.10)

as the total time derivative of φ at t = tf , the variation in Eq. (6.8) reduces to

δφ̄ =
tf

t0

PTfuδudt+ φ̇f δtf , (6.11)

showing again the direct influence of δu(t) and δtf on δφ̄. Like Eq. (3.25) for a constrained

static optimization problem, Eq. (6.5) and Eq. (6.11) describe the variations of the cost functional

and the auxiliary condition in the case of an optimal control problem with varying end time and

constraints on the final state. Similarly, a descent direction of the optimal control problem is also

obtained by choosing

δtf = −κα 1 + Πf + νTφ̇f

δu(t) = −κ ΠT

u
+ fT

u
p+ fT

u
Pν ,

(6.12)

where the number α serves for conditioning the problem and κ can be interpreted as step size for
a time and a control update which have to be selected appropriately. Moreover, ν ∈ Rr is a vector

of multipliers including weighted associations between δJ̄ and δφ̄, which can be determined as

follows: Since we claim that the variations δu(t) and δtf should result in a better approximation

of the condition φ(x(tf ), tf ) = 0, we set

δφ̄ := −εφ(x(tf ), tf ), where 0 < ε < 2. (6.13)

In order to compute ν, we equate Eq. (6.11) with Eq. (6.13) and insert Eq. (6.12) for δu and δtf .
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Introducing the abbreviations

A :=
tf

t0

PTfuf
T

u
Pdt+ α φ̇f φ̇

T

f ∈ R
r×r

b :=
tf

t0

PTfu ΠT

u
+ fT

u
p dt+ α φ̇f (1 + Πf ) ∈ R

r

(6.14)

we finally obtain

ν =
ε

κ
A−1φ(x(tf ), tf )−A−1b, (6.15)

which is used in the update formulas in Eq. (6.12) to reduce the deviation from the end condition.

It has to be mentioned that the presented derivations follow the basic ideas in [16, Sec. 7.4]. At a

first glance, it may seem that this version of the adjoint method in this chapter is the answer to all

of our problems, since it can also be used to deal with scalar terminal conditions as discussed in

Chapter 5. However, a decisive disadvantage is that the underlying cost functional can not longer

be used to determine the step size update and thus the convergence rate suffers compared to the

customized methods in the previous chapter.

An Introductory Example

As an introductory example we consider the Brachistochrone problem, discussed in Sec. 2.3, for-

mulated as an optimal control task [22]. The cost functional to be minimized is given by

J =
tf

t0

1 dt, (6.16)

which is simply the length of the time interval. The absolute motion of the particle mass is de-

scribed by the coordinates x(t), y(t) and the velocity v(t), which is measured tangential to the

wire. If we introduce the state vector

x(t) = x, y, v
T
, (6.17)

the state equations are given by

ẋ(t) = v(t) sin(u(t))

ẏ(t) = v(t) cos(u(t))

v̇(t) = g cos(u(t)),

(6.18)

where g is the gravitational acceleration and u(t) is the control input defining the local slope angle

of the wire. The initial values of the problem at t0 = 0 read

x(0) = 0 y(0) = 0 v(0) = 0, (6.19)

and the final conditions at the final time tf are given by

x(tf ) = xf y(tf ) = yf , (6.20)
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where v(tf ) = free. Thus, the set of auxiliary conditions can be collected in a vector:

φ(x, y) :=


x(t)− xf

y(t)− yf


 . (6.21)

Since we have no state constraints in the form of a penalty function, the adjoint variables p(t) in

Eq. (6.4) do not enter the gradient formula and only the adjoint-influence system has to be solved.

The adjoint-influence differential equations from Eq. (6.9) are then given by

Ṗ(t) =

−




0 0

0 0

P11(t) sin(u(t)) + P21(t) cos(u(t)) P12(t) sin(u(t)) + P22(t) cos(u(t))


 ,

(6.22)

which may be solved backward in time by starting at t = tf . Moreover, the final conditions are

simply given by

P(tf ) =




1 0

0 1

0 0


 . (6.23)

Following the algorithm, the components of the matrix A = (Aij) ∈ R
r×r can be determined by

Eq. (6.14)1, yielding

A11 =
tf

t0

P11v cos(u)− P21v + P31g sin(u)
2
dτ + α v2(tf ) sin

2(u(tf ))

A12 =
tf

t0

P11v cos(u) + P21v − P31g sin(u)

P11v cos(u) + P21v − P31g sin(u) dτ + αv2(tf ) sin(u(tf )) cos(u(tf ))

A22 =
tf

t0

P12v cos(u)− P22v + P32g sin(u)
2
dτ + α v2(tf ) cos

2(u(tf )),

(6.24)

where A12 = A21. Since the adjoint variables p(t) remain zero for t ∈ [t0, tf ], we obtain

b = α(v(tf ) sin(u(tf )), v(tf ) cos(u(tf )))
T by Eq. (6.14)2.

In a next step we relate the gradients of the final conditions, the final time and the controls. There-

fore, we compute the multiplier ν = (ν1, ν2)
T from Eq. (6.15) as

ν1 =
ε

κ

A22 (x(tf )− xf )−A12 (y(tf )− yf )

A11A22 −A21A12
−

A22b1 −A12b2
A11A22 −A21A12

ν2 =
ε

κ

A11 (y(tf )− yf )−A21 (x(tf )− xf )

A11A22 −A21A12
−

A11b2 −A21b1
A11A22 −A21A12

.

(6.25)
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Finally, the updates of the final time tf and the control history u(t) are given by

δtf =− κα 1 + ν1v(tf ) sin(u(tf )) + ν2v(tf ) cos(u(tf ))

δu(t) =− κ v(t) cos(u(t)) P11(t)ν1 + P12(t)ν2

− v(t) sin(u(t)) P21(t)ν1 + P22(t)ν2

− g sin(u(t)) P31(t)ν1 + P32(t)ν2 .

(6.26)

We prescribe the final conditions with xf = 5 and yf = −2. As initial guess we choose the final

time tf = 2 and we simply select the trivial control history u(t) = 0 with t ∈ [t0, tf ], which

corresponds to free fall of a particle mass. Note that there are no special requirements on the

selection of an initial control. The variation of the final time is scaled with α = 0.01 and the

update parameter and the step size are set to ε = 0.5 and κ = 1.

The convergence plot is depicted in Fig. 6.1 and shows that after 30 iterations the final time is given

by 1.2931 s and the end point error is close to zero. On closer inspection, it is noticeable that the

end time first decreases and then slightly increases again. This can be explained by the fact that the

initial sharp decrease in the end time does not permit the end conditions to be completely fulfilled

and thus the end time increases again. In order to show that the computed solution represents the

optimal path, we compare the result with the analytical solution of the Brachistochrone problem

in Sec. 2.3. The trajectory in Fig. 6.2 is in perfect agreement with the analytical solution of the

Brachistochrone problem.
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Figure 6.1: Convergence for the Brachistochrone optimal control problem

67



CHAPTER 6. THE ADJOINT METHOD FOR A SET OF SPECIFIED FINAL STATES

(−
y
)-

C
oo

rd
in

at
e

x-Coordinate

Analytical Solution
Optimization

0

0

1

1 2 3 4 5

−1

−2

−3

Figure 6.2: Trajectory of the Brachistochrone optimal control problem

6.2 Bang-Bang Principle

In the introductory example above, the control occurs nonlinearly in Eq. (6.18). However, if the

control appears linearly in the state equations and therefore also linear in the Hamiltonian, two

cases can be considered: either the control is singular or of bang-bang type, see [54]. Here, we

want to pay attention to the non-singular case, considering bounded (linear) inputs where only the

switching points are unknown. In order to make statements about the control, we introduce the

Hamiltonian:

H(x(t),u(t),p(t),P(t)) := 1 + Π(x(t),u(t)) + p(t) +P(t)ν
T
f(x(t),u(t)), (6.27)

including both sets of adjoint variables from Eq. (6.4) and Eq. (6.9). On the one hand, the pre-

sented adjoint method is an efficient way to compute the direction of the steepest descent of a cost

functional. On the other hand, the adjoint variables can be investigated to evaluate the optimality

conditions regarding the Hamiltonian function as described in [16, Sec. 7.4]. Now we focus on

the latter mentioned role of the adjoint variables in order to introduce a switching function for

the efficient computation of bang-bang controls. Following the minimum principle, see also [39,

Sec. 5.4], and introducing the switching function

hi(t) := fT

ui
p(t) +P(t)ν , (6.28)

the bang-bang control law reads

ui,opt(t) :=



ui,max, hi(t) < 0

ui,min, hi(t) > 0

singular, hi(t) = 0.

(6.29)
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ti,k ti,k+1
t

t

ui(t) u∗i (t)

δui(t)
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+ūi

−ūi

δti,k δti,k+1

Figure 6.3: Influence of the variation of switching times on bang-bang controls

If the function hi(t) passes through zero, the control signal ui changes from one extreme (admis-

sible) value to the other. A variation δui(t) of the bang-bang control ui(t), results from a variation

of the switching times t = ti,1 . . . ti,Ni
, where Ni is the total number of switching points asso-

ciated to ui. The maximum number of switching times Ni can be determined if we consider a

linear, stationary system. If the eigenvalues of the n × n coefficient matrix of the states are all

real and non-positive then each control switches at most n − 1 times, see [39, Sec. 5.4]. In order

to determine the exact number Ni for nonlinear systems, a solution of the whole control history

is required first. Afterwards the solution can be recomputed by introducing switching times to

achieve a higher accuracy. Since either ui = ui,min or ui = ui,max, a disturbed control u∗i (t) will

look like the dashed line in the upper diagram of Fig. 6.3. The difference between u∗i (t) and the

original signal ui(t) is shown in the lower diagram of Fig. 6.3 and is defined by the shift δti,k of

the switching points as follows:

δui(t) =
±ūi for t ∈ [ti,k; ti,k + δti,k]

0 otherwise,
(6.30)

where ūi = ui,max − ui,min. The negative sign of ūi has to be taken if the control switches from

ui,min to ui,max and the positive sign applies for a switch from ui,max to ui,min at ti,k. The bang-

bang controls are now numbered with i = 1, . . . l, and the remaining controls with i = l+1, . . . m.

Let δti,k be an infinitesimal small variation. Then, inserting Eq. (6.30) into Eq. (6.5) and into

Eq. (6.11) yields

δJ̄ =

l

i=1

Ni

k=1

±ūi pTfui
ti,k

δti,k +

m

i=l+1

tf

t0

Πui
+ pTfui

δui dt+ (1 + Πf ) δtf

δφ̄ =
l

i=1

Ni

k=1

±ūi PTfui
ti,k

δti,k +
m

i=l+1

tf

t0

PTfui
δui dt+ φ̇f δtf .

(6.31)
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Note that we assumed that the penalty function Π depends only on the variables ul+1, . . . um.

Hence, the derivative Πui
was set to zero for the bang-bang controls. The descent direction for the

switching points is now chosen analogously to Eq. (6.12). Hence, we set

δti,k = ∓κβūi fT

ui
p+ fT

ui
Pν

t=ti,k
, (6.32)

in which κ is again the gradient step size for δti,k and β is a conditioning parameter, analogously

to α. For the computation of the multiplier ν, we insert Eq. (6.32) for the bang-bang controls and

Eq. (6.12) for the final time and the remaining controls into Eq. (6.31)2 and set δφ̄ = −εφ. Using

the modified abbreviations

A := β
l

i=1

Ni

k=1

ū2i P
Tfui

fT

ui
P

ti,k
+

m

i=l+1

tf

t0

PTfui
fT

ui
Pdt+ α φ̇f φ̇

T

f

b := β

l

i=1

Ni

k=1

ū2iP
Tfui

fT

ui
p

ti,k
+

m

i=l+1

tf

t0

PTfui
ΠT

ui
+ fT

ui
p dt+ α φ̇f (1 + Πf ) ,

the multipliers ν can be again obtained from Eq. (6.15) in case bang-bang controls appear.

6.3 The Algorithm

Finally, we summarize the steps of the proposed adjoint gradient approach to compute time-

optimal controls. Since the final time tf is free, a transformation into a unit interval is useful.

Therefore, a new time coordinate τ ∈ [0, 1] is introduced, with t = tf τ . Derivatives with respect

to τ are denoted as (·)′ and given by (·)′ = tf d(·)/dt. The procedure to solve time-optimal control

problems with specified final values by the method of descent can be summarized as follows:

1. Select an initial control history u(τ) or switching points ti,k for bang-bang controls and

define a final time tf .

2. Solve the state equations

x′(τ) = tf f(x(τ),u(τ)), (6.33)

with the initial condition x(0) = x0 in the time interval τ ∈ [0, 1].

3. Solve the adjoint equations

p′(τ) = −tf ΠT

x
(x(τ),u(τ)) + fT

x
(x(τ),u(τ))p(τ) , (6.34)

with the final condition p(1) = 0 starting at τ = 1 to τ = 0.

4. Solve the adjoint-influence matrix differential equations

P′(τ) = −tff
T

x
(x(τ),u(τ))P(τ) with P(1) = φT

x
(x(tf ), tf ), (6.35)

from τ = 1 to τ = 0.
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5. Compute the multiplier ν from Eq. (6.15).

6. Update the controls and the final time by adding δu(τ) and δtf to the previous estimates of

u(τ) and tf , where

δtf = −κα 1 + Πf + νTφ̇f

δu(τ) = −κ ΠT

u
+ fT

u
p+ fT

u
Pν ,

(6.36)

or, respectively, for bang-bang controls the update for ti,k is given by

δti,k = ∓κβūi fT

ui
p+ fT

ui
Pν

τ=ti,k/tf
. (6.37)

The parameters α and β serve for the problem conditioning if the value range of the two
updates differs significantly. The value of the parameter ε controls the decrease of the

auxiliary condition and must be selected once such that the error of the auxiliary condition

decreases over iterations. The number κ denotes the step size of the updates and has to be

chosen appropriately, i. e., sufficiently small. A strategy for finding a suitable update step

size κ can be achieved for example by using a heuristic approach or by introducing a merit

function, see [10, Sec. 9.5.2] and [44, Sec. 15.5] for more information.

7. Repeat steps 2. through 6. until the errors of the auxiliary condition and the according

gradients are sufficiently small. If the process fails to converge, the step size κ must be

reduced.

Note that steps 3 and 4 are independent since there is no dependence between the differential

equations, and therefore can be executed in parallel to save computation time.

6.4 Examples

In order to show the application of the adjoint gradient technique for a set of final states specified,

various examples are presented here. In a first example, we consider a Moon-landing maneuver

as in the Apollo program, discussing several flight scenarios of the Lunar Excursion Module to

and from the Moon’s surface in minimum time. In a second example, we determine the time-

optimal control of a robot model for a rest-to-rest maneuver. Finally, a cart double pendulum

system is investigated to perform an upswing maneuver. Note, in the first example, the control

appears nonlinearly in the Hamiltonian, while in the other examples, the control is linear in the

Hamiltonian, and, hence, here we are dealing with bang-bang controls.

6.4.1 Trajectory Planning for a Moon Landing

In order to apply the proposed theory, we consider a Moon-landing, as e. g., presented by Miller [46].

In detail, we discuss the ascent, descent and abort maneuvers of the Apollo Lunar Excursion Mod-

ule to and from the Moon’s surface in minimum time. The goal is to find the control of the thrust
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nozzle of the space vehicle to minimize the final time. Note, in the Apollo program, trajectory

planning was not primarily based on time optimality, instead, the flight plan was developed re-

garding safety of the astronauts and mission success. A detailed description of the Apollo flight

plan is published by the National Aeronautics and Space Administration in [5].

Nevertheless, trajectory planning is an important issue in aerospace systems [42], and especially

time optimization is becoming increasingly important. Hence, the following numerical examples

consider the time-optimal Moon-landing of the Lunar Excursion Module in the gravity field of the

Moon, see Fig. 4.1. The challenge now is to find the control u(t) such that the cost functional

J =
tf

t0

1 dt, (6.38)

is minimized. If we assume the time-optimal control in an orbital plane, we may again consider

only planar motions. The first order state equations of the space vehicle, analogous to [46], are

given by Eq. (4.43) and the associated state vector reads

x(t) = r, vr, vt, ϕ,m
T
. (6.39)

From Eq. (4.43) we can derive the adjoint-influence equations defining P = (Pij) ∈ R
5×q. As

part of the following Apollo missions, we prescribe initial states and claim the space vehicle to

satisfy a set of conditions at the final time. Depending on the number of prescribed final conditions

q, we obtain the adjoint system

Ṗ1j(t) =
P2j(t)vt(t)

r2(t)
+ P3j(t)

v2t (t)

r2(t)
−

2µ

r3(t)
−

P4j(t)vr(t)vt(t)

r2(t)

Ṗ2j(t) = 0

Ṗ3j(t) = −P1j(t) +
P4j(t)vt(t)

r(t)

Ṗ4j(t) = −
P2j(t)

r(t)
−

2P3j(t)vt(t)

r(t)
+

P4j(t)vr(t)

r(t)

Ṗ5j(t) =
P3j(t)F

m2(t)
sin(u(t)) +

P4j(t)F

m2(t)
cos(u(t)),

(6.40)

where j = 1, . . . , q. If we compare Eq. (6.40) with Eq. (4.43), we recognize that the latter men-

tioned equations occur column-wise in P(t). Note that Eq. (4.43) and Eq. (6.40) can be read-

ily transformed by Eq. (6.33) and Eq. (6.35), respectively, if we introduce the τ -domain with

τ ∈ [0, 1]. For the following numerical computations, the same parameter set is used as in Sec. 4.7

for the lunar ascent problem.

Below, we now discuss the ascent, descent and abort maneuvers of the Lunar Excursion Module

with the proposed theory. Therefore, the state equations from Eq. (4.43) and the adjoint-influence

equations from Eq. (6.40) are the basis for all three missions. Depending on the mission, steps 5

and 6 of the algorithm in Sec. 6.3 lead to lengthy expressions and are therefore not written down

in detail below.
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Mission a.: The Lunar Ascent Problem

As a first mission, we consider the example from Sec. 4.7.1, where a spacecraft is supposed to

reach a stable state in the lunar parking orbit in minimum time. Recall, the space vehicle with

the mass of the ascent stage m0 is launched at the surface of the Moon with the polar coordinates

r = R and ϕ = 0. Thus, the space vehicle starts from rest, the initial velocities vr and vt are zero

at t0. In summary we observe five initial conditions given by Eq. (4.50), in which m0 is again the

mass of the ascent stage of the space vehicle. Again, we are looking for the optimal input angle

u(t) of the thrust nozzle to reach a stable state in the orbit in minimum time. The final values of

the Lunar Excursion Module are given by Eq. (4.51) and are collected in the final constraint vector

in Eq. (6.1) yielding

φ(r, vr, vt) =



r(t)− (R+ h)

vr(t)

vt(t)−
µ

R+h


 . (6.41)

We guess a final time tf = 440 s and use the initial control u(t) = 0 for t ∈ [0, 440] which is

far away from the optimal control. In order to start the algorithm, the optimization parameters

ε = 0.3, α = 0.5 and κ = 1 are chosen. The convergence of the final time and the final conditions

error for the lunar ascent problem are shown in Fig. 6.4. After 50 iterations, we already observe

good results despite a poor initial guess of the control variable. The optimal final time is given by

462.6575 s. In Fig. 6.5 the optimized control is compared to the solution of the boundary value

problem from Sec. 4.7.1, showing a good agreement. It has to be emphasized that uopt denotes
the solution obtained by optimization and ubvp is the reference solution from the bvp4c routine.
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Figure 6.4: Convergence of the time-optimal ascent maneuver
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Figure 6.5: Comparison of the optimization solution with the boundary value solution

Mission b.: The Lunar Descent Problem

As a second mission we consider a flight from the lunar parking orbit to the surface of the Moon.

The descent maneuver is initiated at the position defined by r = R + h and ϕ = 0, where R is

again the radius of the Moon and h the altitude of the orbit. We prescribe the initial radial velocity

vr(0) = 0 and claim that the centrifugal force is balanced by the gravitational force at t0 = 0, so

we receive also a condition for the tangential velocity vt(0) = µ/(R + h). During the descent

maneuver the Lunar Excursion Module consists of the ascent and the descent stages comprising

the total mass M0 = 15239 kg. Finally, the initial conditions read

r(0) = R+ h ϕ(0) = 0 vr(0) = 0 vt(0) =
µ

R+ h
m(0) = M0, (6.42)

and the final conditions at t = tf are given by

r(tf ) = R vr(tf ) = 0 vt(tf ) = 0. (6.43)

Hence, the final constraints in Eq. (6.1) can be written as

φ(r, vr, vt) =



r(t)−R

vr(t)

vt(t)


 . (6.44)

As initial guess for the final time we use tf = 480 s and for the control history we simply choose

u(t) = π for t ∈ [0, 440]. Since we have already found a suitable parameter setup for the descent

maneuver, it is an easy task to find a setup for further missions. For the present optimization
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Figure 6.6: Convergence of the time-optimal descent maneuver

problem, we can use the same values as before: ε = 0.3, α = 0.5 and κ = 1.

The convergence of the optimization procedure is depicted in Fig. 6.6. After 50 iterations we stop

the optimization procedure as the values of the endpoint error, the control gradient and the end

time gradient are sufficiently small. The optimal final time is 497.4586 s and the control signal
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Figure 6.7: Control of the time-optimal descent maneuver
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of the time-optimal descent flight is shown in Fig. 6.7. Figure 6.8 shows the flight path and the

arrows indicate the force vector of the thrust nozzle acting on the space vehicle. The results shown

in Fig. 6.7 and in Fig. 6.8 are in perfect agreement with the solution presented in [46], in which

the results are obtained by solving the underlying boundary value problem. Note that we retain

the results of this problem in the computer memory, as we will need one part of the solution for

the next mission to compute the optimal trajectory for a pull-up maneuver.
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Figure 6.8: Trajectory of the time-optimal descent maneuver

Mission c.: The Lunar Abort Maneuver

In the case of technical problems during the landing phase, the Apollo program has provided var-

ious emergency maneuvers. An overview of the Apollo mission and the different abort scenarios

is given in [46]. If an abort of the landing procedure is initiated in the early phase (altitude greater

than 80 km) of the descent flight, then the space vehicle is supposed to re-rendezvous with the

Command and Service Module in the lunar orbit. Hence, the problem of the abort maneuver can
be divided into two steps. In a first step, we apply the time-optimal descent maneuver from the

previous problem until t∗ = 150 s is reached, which marks the point in time when the descent

flight is aborted. Then, in a second step, we initiate the pull-up maneuver with t0 = t∗ to re-

rendezvous and to dock with the Command and Service Module again. The initial conditions are

given by the final values of the descent maneuver and the initial mass is prescribed by the mass of

the ascent stage m0, since the descent stage is jettisoned.

The initial values are then given by

r(t0) = r(t∗) ϕ(t0) = ϕ(t∗) vr(t0) = vr(t
∗) vt(t0) = vt(t

∗) m(t0) = m0. (6.45)
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Figure 6.9: Convergence of the time-optimal abort maneuver

The numerical values for the initial states are defined by: r(t∗) = 1828.9 km, ϕ(t∗) = 0.1167 rad,

vr(t
∗) = −0.2599 km/s, vt(t∗) = 1.2172 km/s and m(t∗) = m0 = 4774 kg, which are taken

from the previous example. Again, we demand the final radial velocity to be zero and the final

tangential velocity to be equal to the orbital velocity. In order to achieve a rendezvous with the

Command and Service Module, we define the final position of the Lunar Excursion Module by

r(tf ) = R+ h ϕ(tf ) = Ω tf vr(tf ) = 0 vt(tf ) =
µ

R+ h
. (6.46)

Herein, Ω denotes the angular velocity of the Command and Service Module and is given by

Ω = µ/ (R+ h)3 and tf is also the time that has elapsed since the descent maneuver was

initiated. Again, the constraints are collected in the vector in Eq. (6.1) yielding

φ(r, ϕ, vr , vt) =





r(t)− (R+ h)

ϕ(t)− Ω t

vr(t)

vt(t)−
µ

R+h



 . (6.47)

For the initial control we simply choose u(t) = 0 for t ∈ [150, 350]. It has to be mentioned

again that finding a suitable optimization setting is a simple task. For the proposed mission, the

optimization setup is given by: ε = 0.1, α = 0.5 and κ = 1. After 70 control updates the

optimality measures are sufficiently small and we already achieve reasonable results.

In Fig. 6.9 the convergence history of the optimization procedure for the pull-up maneuver is
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Figure 6.10: Control of the time-optimal abort maneuver

shown. We end up with an optimal final time of 519.4992 s including the initial time t∗ = 150.

Finally, the identified control angle is plotted in Fig. 6.10, where the unit interval [0, 1] corresponds

to the time span [t∗, tf ] of the pull-up scenario. The resulting trajectory is presented in Fig. 6.11,

including both, the time-optimal descent flight and the pull-up maneuver initiated at time t =

t∗ = 150 s, which perfectly matches the results presented in [46]. Note that we have joined the

trajectory of the time-optimal descent flight (until t = t∗) with the solution of the time-optimal

pull-up maneuver.
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Figure 6.11: Trajectory of the time-optimal abort maneuver
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As before, the arrows show the force acting on the space vehicle. The trajectory of the jettisoned

descent stage is depicted by the thin blue line and terminates at the surface of the Moon.

6.4.2 Planar Robot Arm

In this example we want to show that the proposed method is also able to deal efficiently with bang-

bang controls, see [22]. Figure 6.12 depicts a model of a SCARA robot consisting of two revolute

joints and two robot arms with the lengths l1 and l2. The system has two degrees of freedom,
where the angles ϕ1(t) and ϕ2(t) form a set of minimal independent generalized coordinates. The

two robot arms have the masses m1 and m2 and the moments of inertia J1 and J2 around their

centers of gravity.

The aim is to control the moments u1(t) and u2(t) in the joints so that the tool center point (TCP)

reaches a defined position in minimum time. Hence, the cost functional to be minimized reads

J =
tf

t0

1dt = tf − t0. (6.48)

The equations of motion are given by

J1 +m1s
2
1 +m2l

2
1 +m3l

2
1 ω̇1(t) + l1 (m2s2 +m3l2) cos(ϕ1(t)− ϕ2(t))ω̇2(t)

= u1(t)− u2(t)− l1 (s2m2 + l2m3) sin(ϕ1(t)− ϕ2(t))ω
2
2(t)

l1 (m2s2 +m3l2) cos(ϕ1(t)− ϕ2(t))ω̇1(t) + J2 +m2s
2
2 +m3l

2
2 ω̇2(t)

= u2(t) + l1 (s2m2 + l2m3) sin(ϕ1(t)− ϕ2(t))ω
2
1(t), (6.49)

where ω1(t) = ϕ̇1(t), ω2(t) = ϕ̇2(t). The state equations can be readily written in the form of
Eq. (6.33) by introducing the vector of state variables

x(t) = (ϕ1, ϕ2, ω1, ω2)
T. (6.50)

and by applying a transformation to the τ -space. Moreover, the initial conditions of the robot read:

ϕ1(0) = −π/4 ϕ2(0) = 0 ω1(0) = 0 ω2(0) = 0. (6.51)

We claim the robot to take a rest position with zero velocities

ω1(tf ) = 0 ω2(tf ) = 0, (6.52)

and the coordinates

xf = l1 cos(ϕ1(tf )) + l2 cos(ϕ2(tf )) yf = l1 sin(ϕ1(tf )) + l2 sin(ϕ2(tf )), (6.53)

in minimum time tf .
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Figure 6.12: Planar two-axis robot

Hence, the function φ(x, t) introduced in Eq. (6.1) reads

φ(ϕ1, ϕ2, ω1, ω2) :=




l1 cos(ϕ1(t)) + l2 cos(ϕ2(t))− xf

l1 sin(ϕ1(t)) + l2 sin(ϕ2(t))− yf

ω1(t)

ω2(t)



 . (6.54)

Note that ϕ1 and ϕ2 at t = tf could also be computed by solving the first two equations φ1 = 0

and φ2 = 0. In this case the function φ can be described in the simpler form φ(ϕ1, ϕ2, ω1, ω2) :=

(ϕ1 − ϕ1,f , ϕ2 − ϕ2,f , ω1, ω2)
T, however, we use the original form in Eq. (6.54) instead. Since

we do not need a penalty function Π for state constraints in our example, we get the solution

p(τ) = 0 in Eq. (6.34). It should be mentioned that the adjoint-influence differential equations in

Eq. (6.35) contain rather lengthy expressions and are therefore not reproduced here. To deal with

the unavoidable limitations of the drive torques u1(t) and u2(t), we compare two strategies below:

1. A penalty approach; where any violation of the limitations produces additional costs in the

cost functional. In this case, no restriction of the control histories need to be introduced for

the optimization process.

2. Since the controls u1(t) and u2(t) appear linearly in the equations of motion and also in the

Hamiltonian in Eq. (6.27), the time-optimal control should be a bang-bang control. In this

case, only the switching points have to be determined.

In the following, both approaches are discussed in detail.
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(a) The Penalty Approach

The first solution strategy is to put bounds on u1(t) and u2(t) by using a penalty approach. Hence,

we extend the cost functional in Eq. (6.48) in the following form

J =
tf

t0

[1 + Π(u1(t), u2(t))] dt, (6.55)

in which Π(u1(t), u2(t)) := µ1Π1(u1(t)) + µ2Π2(u2(t)) is used to force the controls to satisfy

the inequalities −u∗1 ≤ u1(t) ≤ u∗1 and −u∗2 ≤ u2(t) ≤ u∗2. A simple formulation of the penalty

function reads

Πi(ui(t)) :=




0 for |ui(t)| < u∗i
1

2
(|ui(t)| − u∗i )

2 otherwise.
(6.56)

The updates of the controls and the final time are then given by Eq. (6.36). For the numerical

computation we use the parameter set l1 = l2 = 1, m1 = m3 = 1, m2 = 0.5, J1 = 0.0833,

J2 = 0.0417, u∗1 = 4, u∗2 = 2, the weights µ1 = µ2 = 10 for the penalty functions, α = 0.5 for

the problem scaling, ε = 0.1 to approach the final condition and κ = 0.2 for the update step size.

The optimization is initiated with the control signals u1(t) = u2(t) = 0 for the entire interval

[t0, tf ], where t0 = 0 and tf = 3 s. The resulting drive signals are depicted in Fig. 6.14 where the

normalized time coordinate τ = t/tf is plotted on the abscissa. One can observe, that u1 and u2

converge to bang-bang controls where the jumps appear exactly at the times where the switching

functions h1(τ) and h2(τ), introduced in Eq. (6.28), cross the zero axis. Nevertheless, we notice
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Figure 6.13: Convergence of conventional control optimization using a penalty approach
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a rather slow convergence of this approach as expected for bang-bang controls. We stopped the

optimization procedure after 950 iterations. The convergence of the final time and the constraint

error is shown in Fig. 6.13, while the minimal final time is given by 1.8334 s and the constraint

error is sufficient small.
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Figure 6.14: Control histories for the rest-to-rest maneuver

(b) The Bang-Bang Approach

An alternative, and more efficient solution strategy is provided by optimizing directly the switching

points rather than using a penalty approach. Therefore, we introduce four switching points t1,1,

t1,2 and t2,1, t2,2 instead of computing u1(t) and u2(t) for the whole interval t ∈ [t0, tf ]:

u1(t) :=





−u∗1 for t < t1,1

+u∗1 for t1,1 ≤ t ≤ t1,2

−u∗1 for t1,2 < t

, u2(t) :=





+u∗2 for t < t2,1

−u∗2 for t2,1 ≤ t ≤ t2,2

+u∗2 for t2,2 < t.

(6.57)

Close attention shall be paid to maintain a certain distance between the initial points and to limit

the step size of the update, otherwise there are no special requirements for the selection of the

initial switch points. As initial estimates we impose an end time tf = 2 s and select the switching

points: t1,1 = 0.4, t1,2 = 1.4, t2,1 = 0.2 and t2,2 = 0.8 (in terms of the physical time coordinate).

If we set the condition numbers to α = 0.1 and β = 0.1 and use the parameter ε = 0.05 and the

constant step sizes κ = 1, the final time is updated by Eq. (6.36)1 and the update for the switching
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Figure 6.15: Convergence of the switching point optimization

points is obtained by Eq. (6.37). Here, 150 iterations are already sufficient to determine the time-

optimal control. The resulting convergence and the solution are depicted in Fig. 6.15, Fig. 6.16 and
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Figure 6.16: Bang-bang controls for the rest-to-rest maneuver
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Fig. 6.17. Note that the convergence of the bang-bang approach depicted in Fig. 6.15 is much faster

than for the penalty approach. The resulting time-optimal controls are depicted in Fig. 6.16 and

the trajectory is shown in Fig. 6.17. The optimal switching times are obtained as t1,1 = 0.1758,

t1,2 = 1.0918, t2,1 = 0.7915, and t2,2 = 1.5241. In Fig. 6.16 the determined switching times fit

well with the control history in Fig. 6.14 and corresponds perfectly with the zero crossings of the

switching function h(τ). The time-optimal rest-to-rest maneuver is performed in 1.8320 s which

coincides well with the optimal final time (1.8334 s) of the penalty approach.
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Figure 6.17: Time-optimal path for a rest-to-rest maneuver

6.4.3 Inverse Double Pendulum

As third example we consider the inverse double pendulum depicted in Fig. 4.4 and studied in

Sec. 4.7.2 to show once again the application of the algorithm to a more challenging problem. The

solution via the adjoint method does not require much effort, since many equations of the boundary

value task are already implemented and much of them can be adopted. In summary, we can use

the cost functional in Eq (4.53), the penalty function in Eq. (4.54), the state equations in Eq. (4.55)

and the associated adjoint equations, which are not displayed here, but are already implemented.

Moreover, the boundary conditions in Eq. (4.57) and in Eq. (4.58) can also be copied and therefore

the function φ(x, t) defining the final constraints according to Eq. (6.1), is readily given by

φ(ω1, ω2, v, ϕ1, ϕ2) :=





ω1

ω2

v

modulo
2π

|ϕ1| − π

modulo
2π

|ϕ2| − π




. (6.58)
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Again, we use the direct optimization of the switching points presented in Section 6.2. For that

purpose, we introduce eleven switching points t1 < t2 < · · · < t11 and the control function

u(t) :=






+u∗ for t < t1

−u∗ for t1 ≤ t < t2

+u∗ for t2 ≤ t < t3

...

−u∗ for t11 ≤ t,

(6.59)

in which u∗ = 15. Initially, the final time is estimated as tf = 3 and for the switching points we

choose t1 = 0.15, t2 = 0.30, t3 = 0.45, t4 = 1.20, t5 = 1.80, t6 = 1.95, t7 = 2.25, t8 = 2.40,

t9 = 2.55, t10 = 2.70 and t11 = 2.85. With α = 0.2 and β = 0.005, the update of the final time

is determined by Eq. (6.36)1 and the update of the switching points is received by Eq. (6.37) using
the update parameter ε = 0.05 and the constant step size κ = 1. The optimization procedure is

stopped after 700 iterations and the convergence is depicted in Fig 6.18. The optimized switching

points were obtained as t1 = 0.2758, t2 = 0.3669, t3 = 0.3909, t4 = 1.0520, t5 = 1.7594,

t6 = 1.8632, t7 = 2.2141, t8 = 2.4527, t9 = 2.4753, t10 = 2.6320 and t11 = 2.7684. Figure 6.19

shows the identified force acting on the cart in comparison with the initial control and a solution

which was obtained from solving the underlying boundary value problem. The solution obtained

with our method is in perfect agreement with the solution of the boundary value solver.
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Figure 6.18: Convergence of the switching point optimization for the upswing
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The solution of the optimization procedure end up with a final time of 3.0339 s, while the final

time of the boundary value solution is given by 3.0332 s.

However, no secret is to be made of this; the troubles encountered in Chapter 4 should draw the

reader’s attention to the novel approach in this chapter. If we think back to the lengthy solution

process of the two-point boundary value problem in Sec. 4.7.2, it becomes clear once again that

the proposed theory offers a good alternative for solving time-optimal control problems.
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Chapter 7

The Adjoint Method in Multibody
Dynamics

The adjoint gradient method has already been utilized to find time-optimal solutions for academic

examples and for a variety of aerospace and robotics problems, and holds great promise for solv-

ing even more complicated problems. In this chapter, the adjoint method, introduced in Chapter 6,

is extended to solve time-optimal control problems in multibody dynamics.

If independent coordinates are used, the equations of motion, in many cases, can be too com-

plex to formulate. Hence, in multibody dynamics the equations of motion are described by a set

of differential-algebraic equations (DAE) in terms of redundant generalized coordinates. Due to

algebraic constraints, the equations of motion are extended by constraint forces using Lagrange

multipliers, see [63], leading to a differential-algebraic boundary value problem in optimal con-

trol theory. Once the solution of the equations of motion, the adjoint equations and the adjoint-

influence equations is obtained, the gradient of the cost functional can be computed efficiently,

which improves the final time and approaches the final conditions. Finally, the optimal solution is

found by applying an iterative optimization scheme.

Within this chapter, special care is given to find consistent boundary conditions for the adjoint

and the adjoint-influence equations. Moreover, an architecture for time integration solvers for the

adjoint equations as well as the adjoint-influence equations is developed herein.

7.1 Problem Formulation

The key idea of the adjoint gradient method for solving optimal control problems, regarding final

constraints, has already been shown in Sec. 6.1 for nonlinear systems described by a minimal set of

independent coordinates. In particular focusing on multibody systems, an extension of the theory
is proposed here.
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Therefore, the dynamics of constrained multibody systems is described by a set of differential-

algebraic equations of the form

M(q(t))q̈(t) +CT

q
(q(t))λ(t) = f(q(t), q̇(t),u(t))

C(q(t)) = 0,
(7.1)

where q(t) ∈ R
n denotes the vector of generalized coordinates and u(t) ∈ R

m the vector of con-

trol inputs. Moreover, M(q(t)) is the mass matrix of the system and f(q(t), q̇(t),u(t)) is called

the vector of applied and gyroscopic forces. The constraint equations are collected in C(q(t)), the

matrix Cq(q(t)) denotes the associated constraint Jacobian and λ(t) ∈ R
s is a vector of Lagrange

multipliers.

The system equations in Eq. (7.1) are called descriptor system including second order differential

equations and algebraic constraints for the generalized coordinates q(t) and the Lagrange mul-

tipliers λ(t). In order to solve the descriptor system one can rewrite the system to pure second

order differential equations by forming the second time derivative of the algebraic constraint in

Eq. (7.1)2. However, the resulting equations may cause the drift phenomenon when using a con-

ventional integration scheme. To circumvent the drift problem, numerous methods have already

been developed, such as the stabilization approach suggested by Baumgarte [3] in the year 1972.

Meanwhile, there are modern integrators that can directly address the differential-algebraic equa-

tions [31]. Nevertheless, before we solve the descriptor system in Eq. (7.1), in many cases it is

numerically advantageous to reduce the index of the system from three to two. Therefore, the

Gear-Gupta-Leimkuhler (GGL) formulation in [25] can be used, which is a widely recognized

approach in the literature. If we introduce the velocity vector v(t) := q̇(t) we can rewrite the

equations of motion by adding the constraint equations at velocity level and, hence, a further set

of Lagrange multipliers ξ(t) yielding

q̇(t) = v(t)−CT

q
(q(t))ξ(t)

M(q(t))v̇(t) +CT

q
(q(t))λ(t) = f(q(t),v(t),u(t))

C(q(t)) = 0

Cq(q(t))v(t) = 0.

(7.2)

For given initial conditions q(t0) = q0 and v(t0) = v0, the equations of motion in Eq. (7.2) can

be solved numerically for q(t), v(t) and λ(t) by applying a DAE-solver for index two equations.
Now we are looking for control inputs u(t), which minimize the cost functional

J =
tf

t0

1 + Π(q(t),v(t),u(t)) dt. (7.3)

Here, Π(q(t),v(t),u(t)) denotes again a penalty function in order to introduce constraints on

q(t), v(t) and u(t). The final time tf is considered free, and we claim the system to satisfy a set

of final conditions of the form

φ(q(tf ),v(tf ), tf ) = 0, φ : Rn × R
n × R → R

r. (7.4)
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However, some of the final boundary conditions may be regarded free. From Pontryagin’s mini-

mum principle, the optimal control can be obtained by solving a two-point boundary value prob-

lem, which can be derived from Eq. (7.2), Eq. (7.3) and Eq. (7.4) in case of multibody systems.

As we already know, solving such two-point boundary value problems is already a challenge for

ordinary differential equations.

7.2 Optimal Control of Multibody Systems

The key idea of the adjoint gradient method for solving optimal control problems, regarding final

constraints, has been shown already in Chapter 6 for nonlinear systems. In particular focusing

on multibody systems, an extension of the theory is proposed here: First, we derive the gradient

of the cost functional in Eq. (7.3) with respect to the controls. Second, we proceed for the final

constraints in Eq. (7.4) analogously. Finally, we combine both gradients by a linear combination

to achieve an improvement with respect to the function J while approaching the final constraints
φ(q(tf ),v(tf ), tf ) within one update.

In order to compute the gradient of J with respect to the controls u(t), we augment the cost

functional by the equations of motion in Eq. (7.2), yielding

J̄ =
tf

t0

1 + Π+wT v − q̇ −CT

q
ξ

+ pT f −CT

q
λ−Mv̇ + µTC + σTCqv dt,

(7.5)

in which w(t), p(t) ∈ R
n and µ(t), σ(t) ∈ R

s denote adjoint variables. Although the extended

cost functional in Eq. (7.5) looks impressive, its variation is not difficult, only cumbersome. The

first variation of J̄ results from a control variation δu(t) and can be written as

δJ̄ =
tf

t0

Πqδq +Πvδv +Πuδu+wT δv − δq̇ − CT

q
ξ

q

δq −CT

q
δξ

+ pT fqδq + fvδv + fuδu− CT

q
λ

q

δq −CT

q
δλ− (Mv̇)

q
δq −Mδv̇

+ µTCqδq + σT (Cqv)q δq +Cqδv dt+ 1 + Πf δtf ,

(7.6)

where we used the abbreviation for the penalty term Πf := Π(q(tf ),v(tf ),u(tf )). Now we

perform an integration by parts of terms including δq̇ and δv̇ yielding

tf

t0

wTδq̇ dt = −
tf

t0

ẇTδq dt+wT(tf )δq(tf )

tf

t0

pTMδv̇ dt = −
tf

t0

d

dt
pTM δv dt+ pT(tf )M(q(tf ))δv(tf ),

(7.7)

where the initial values q(t0) and v(t0) are fixed, and hence, the variation δv(t0) and δq(t0) are

zero.
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After collecting all variations δq, δv, δλ and δu we obtain:

δJ̄ =
tf

t0

Πq + ẇT −wT CT

q
ξ

q

+ pT fq − CT

q
λ

q

− (Mv̇)
q

+ µTCq

+ σT (Cqv)q δq + Πv +wT + pTfv +
d

dt
pTM + σTCq δv

− pTCT

q
δλ−wTCT

q
δξ + Πu + pTfu δu dt−wT(tf )δq(tf )

− pT(tf )M(q(tf ))δv(tf ) + 1 + Πf δtf .

(7.8)

In order to circumvent the computation of the variations δq(t), δv(t), δλ(t) and δξ(t), we choose

w(t), p(t), µ(t) and σ(t) as follows

ẇ = −ΠT

q
+ (Cqξ)

T

q
w −Gp−CT

q
µ− (Cqv)

T

q
σ

d

dt
(Mp) = −ΠT

v
−w − fT

v
p−CT

q
σ

Cqp = 0

Cqw = 0,

(7.9)

in which we introduced the abbreviation G = fT
q
− CT

q
λ

T

q
− (Mv̇)T

q
. Moreover, if we choose

the trivial final values w(tf ) = 0 and p(tf ) = 0, the boundary conditions are compatible with the

constraint equations in Eq. (7.9)3 and in Eq. (7.9)4. Due to the choice of the Lagrange multipliers

in Eq. (7.9) the variation of the cost functional in Eq. (7.8) simplifies to

δJ̄ =
tf

t0

Πu + pTfu δudt+ 1 + Πf δtf , (7.10)

which directly relates the changes δu(t) and δtf with δJ̄ . Since the equations of motion shall

satisfy the final conditions φ(q(tf ),v(tf ), tf ) in Eq. (7.4), we examine how a change in the con-

trol affects the final conditions. Hence, we enhance the final conditions in Eq. (7.4) also by the
equations of motion in Eq. (7.2) yielding

φ̄ =
tf

t0

WT v − q̇ −CT

q
ξ +PT f −CT

q
λ−Mv̇

+M
TC + S

TCqv dt+ φ(q(tf ),v(tf ), tf ),

(7.11)

where we introduced some further sets of adjoint variables arranged in the matrices W(t),P(t) ∈

R
n×r and M(t), S(t) ∈ R

s×r. The variation of the extended end condition vector in Eq. (7.11)
due to an infinitesimal change in the controls read

δφ̄ =
tf

t0

WT δv − δq̇ − CT

q
ξ

q

δq −CT

q
δξ +PT fqδq + fvδv + fuδu

− CT

q
λ

q

δq −CT

q
δλ− (Mv̇)

q
δq −Mδv̇ +M

TCqδq

+ S
T (Cqv)q δq +Cqδv dt + φq(q(tf ),v(tf ), tf ) δqf

+ φv(q(tf ),v(tf ), tf ) δvf + φt(q(tf ),v(tf ), tf ) δtf ,

(7.12)
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where φq , φv and φt are partial derivatives of the final conditions φ(q,v, t) with respect to q, v

and t. Again we may carry out an integration by parts of the terms containing δq and δv, yielding

δφ̄ =
tf

t0

ẆT −WT CT

q
ξ

q

+PT fq − CT

q
λ

q

− (Mv̇)
q

+M
TCq

+ S
T (Cqv)q δq + WT +PTfv +

d

dt
PTM + S

TCq δv −PTCT

q
δλ

−WTCT

q
δξ +PTfuδu dt−WT(tf )δq(tf )−PT(tf )M(q(tf ))δv(tf )

+ φq(q(tf ),v(tf ), tf )δqf + φv(q(tf ),v(tf ), tf )δvf +φt(q(tf ),v(tf ), tf )δtf .

(7.13)

Recall that δqf = δq(tf ), thus we have to make appropriate substitutions in order to combine the

boundary terms. With reference to Eq. (4.12), the relation is given by δqf = q̇(tf )δtf + δq(tf )

and analogously δvf = v̇(tf )δtf + δv(tf ), hence

δφ̄ =
tf

t0

ẆT −WT CT

q
ξ

q

+PT fq − CT

q
λ

q

− (Mv̇)
q

+M
TCq

+ S
T (Cqv)q δq + WT +PTfv +

d

dt
PTM + S

TCq δv −PTCT

q
δλ

−WTCT

q
δξ +PTfuδu dt+ φq −WT

tf
δq(tf ) + φv −PTM

tf
δv(tf )

+ φqq̇ + φvv̇ + φt
tf
δtf .

(7.14)

Since we have not imposed any restrictions on the adjoint matrices yet, we now define W(t),

P(t), M(t) and S(t) by a set of matrix differential-algebraic equations in the following way

Ẇ = CT

q
ξ

T

q

W−GP−CT

q
M− CT

q
v

T

q

S

d

dt
(MP) = −W− fT

v
P−CT

q
S

CqP = 0

CqW = 0,

(7.15)

with the final values

φT

q
−W

tf
= 0 and φT

v
−MP

tf
= 0. (7.16)

At a first glance, we can solve Eq. (7.16) for W(tf ) and P(tf ) to get appropriate final values.

Unfortunately, a closer look at Eq. (7.16) shows that a suitable choice of the boundary conditions is

not quite simple, because the choice must also fulfill the boundary conditions of the constraints in

Eq. (7.15)3 and Eq. (7.15)4. Later we will devote attention to finding suitable boundary conditions.

Nevertheless, if we assume that we have already found suitable final conditions in Eq. (7.16) to

91



CHAPTER 7. THE ADJOINT METHOD IN MULTIBODY DYNAMICS

solve the system in Eq. (7.15), the variation of the end conditions in Eq. (7.14) reduces to

δφ̄ =
tf

t0

PTfuδudt+ φ̇fδtf , (7.17)

in which we used the abbreviation φ̇f := φqq̇ + φvv̇ + φt tf
as the total time derivative of

φ at t = tf . Now Eq. (7.17) shows the direct impact of δu(t) and δtf on δφ̄. Combining the

variation of Eq. (7.10) and the variation of the final conditions in Eq. (7.17), a descent direction

can be identified as

δtf = −κα 1 + Πf + νTφ̇f

δu(t) = −κ ΠT

u
+ fT

u
p+ fT

u
Pν .

(7.18)

Herein, analogously to Eq. (6.12), ν ∈ R
r is a vector of multipliers for the clever combination of

the gradients of the cost functional and the final conditions. Through this combination we want to

achieve an improvement of the end time on the one hand and approach the end conditions on the

other hand. Hence, if we claim the variations δu(t) and δtf resulting in a better approximation of

the conditions in Eq. (7.4) we demand

δφ̄ := −εφ(q(tf ),v(tf ), tf ), (7.19)

where ε > 0 determines the approach to the final conditions. In order to compute the multiplier

ν, we equate Eq. (7.17) with Eq. (7.19) and insert Eq. (7.18) for δu(t) and δtf . Introducing the

abbreviations

A :=
tf

t0

PTfuf
T

u
Pdt+ αφ̇f φ̇

T

f ∈ R
r×r

b :=
tf

t0

PTfu ΠT

u
+ fT

u
p dt+ α (1 + Πf ) φ̇f ∈ R

r ,

(7.20)

the multiplier ν for the linear combination of the gradients in Eq. (7.18) is obtained as

ν =
ε

κ
A−1φ(q(tf ),v(tf ), tf )−A−1b. (7.21)

Finally, Eq. (7.18) can be used to update the control inputs and the final time to accomplish an

improvement of the final time and to approach the final conditions.

7.2.1 Consistent Boundary Conditions

Now we will pay closer attention to the boundary conditions in Eq. (7.16) of the adjoint-influence

differential-algebraic equations. Note, one has to take care that the choice W(tf ) := 0 and

P(tf ) := 0 satisfies the constraint equations in Eq. (7.15)3 and Eq. (7.15)4 at t = tf , however,

this is not in agreement with Eq. (7.16). In order to overcome this issue, we follow the idea

proposed by Gear, Gupta and Leimkuhler in [25]. Hence, we consider the constraints in Eq. (7.2)3
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and in Eq. (7.2)4 at the final time t = tf . If we carry out a variation of both equations with respect

to q and v and multiply them with two arbitrary matrices L ∈ R
n×s and U ∈ R

n×s, we obtain

LTCqδq
tf

= 0, UTCqδv
tf

= 0, (7.22)

or, respectively,

LTCqδq +UTCqδv
tf

= 0. (7.23)

This zero term can now be subtracted from Eq. (7.14), leading to the extended boundary condi-

tions:

φT

q
−W −CT

q
L

tf
= 0

φT

v
−MP−CT

q
U

tf
= 0.

(7.24)

These boundary conditions replace Eq. (7.16), and can now be solved for the adjoint matrices with-

out violating the constraint conditions in Eq. (7.15)3 and Eq. (7.15)4. One may solve Eq. (7.24)1
and Eq. (7.15)4, given by the system

I CT
q

Cq 0
tf

W(tf )

L
=

φT
q

0
tf

, (7.25)

for W(tf ) and L first, and then solve Eq. (7.24)2 and Eq. (7.15)3, reading

M CT
q

Cq 0
tf

P(tf )

U
=

φT
v

0
tf

, (7.26)

for P(tf ) and U. Note that L and U only serve to compute consistent boundary conditions and

are not further needed.

7.2.2 Bang-Bang Principle

Since control forces commonly appear linear in the equations of motion of multibody systems, it

is often the case that a control acts as a bang-bang control. We will now turn our attention to the

efficient calculation of bang-bang controls.

Recall the discussion in Sec. 6.2, the basic idea of this approach is the introduction of switch-

ing times instead of computing the whole control history for bang-bang controls. Therefore, we

introduce the Hamiltonian

H := 1 + Π(q,v,u) − w +Wν
T
CT

q
ξ

+ p+Pν
T

f −CT

q
λ−Mv̇ + µTC + σTCqv,

(7.27)

which shows an easy access to the optimality criterion for constrained multibody systems. Anal-

ogously to Eq. (6.29), when the control ui(t) occurs linearly in the Hamiltonian, we consider the
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following cases for an optimal control

ui,opt(t) :=



ui,max, hi(t) < 0

ui,min, hi(t) > 0

singular, hi(t) = 0.

(7.28)

Here, hi(t) denotes again the switching function and can be obtained by differentiating the Hamil-

tonian in Eq. (7.27) with respect to the control ui yielding

hi(t) := Πui
+ fT

ui
(q(t),v(t)) p(t) +P(t)ν . (7.29)

In the non-singular case, i. e., hi(t) < 0 or hi(t) > 0, the variation of the control ui is given by

the variation of the switching times ti,k, hence

δui(t) =


±ūi for t ∈ [ti,k; ti,k + δti,k]

0 otherwise,
(7.30)

where we used the abbreviation ūi = ui,max − ui,min. Switching from ui,min to ui,max results in a

negative variation while switching from ui,max to ui,min results in a positive variation of δui(t). If

there are pure bang-bang controls among the controls, the variations in Eq. (7.10) and Eq. (7.17)

can be rewritten as

δJ̄ =
l

i=1

Ni

k=1

±ūi pTfui
ti,k

δti,k +
m

i=l+1

tf

t0

Πui
+ pTfui

δui dt+ 1 + Πf δtf

δφ̄ =

l

i=1

Ni

k=1

±ūi PTfui
ti,k

δti,k +

m

i=l+1

tf

t0

PTfui
δui dt+ φ̇f δtf ,

(7.31)

in which we assigned i = 1, . . . , l for the bang-bang controls, and i = l + 1, . . . ,m for the non-

bang-bang controls. Note that the penalty function Π depends only on the variables ul+1, . . . , um,

hence, Πui
= 0 applies to bang-bang controls. Analogously to Eq. (7.18), we finally identify a

descent direction from Eq. (7.31) as

δti,k = ∓κβūi fT

ui
p+ fT

ui
Pν

ti,k
. (7.32)

Herein, the multiplier ν can be computed according to Eq. (7.21), where the matrix A and the

vector b can be computed by

A :=β

l

i=1

Ni

k=1

ū2i P
Tfui

fT

ui
P

ti,k
+

m

i=l+1

tf

t0

PTfui
fT

ui
Pdt+ αφ̇f φ̇

T

f

b :=β
l

i=1

Ni

k=1

ū2iP
Tfui

fT

ui
p

ti,k
+

m

i=l+1

tf

t0

PTfui
ΠT

ui
+ fT

ui
p dt+ α (1 + Πf ) φ̇f .

(7.33)

In case of bang-bang controls, we use the modified abbreviations in Eq. (7.33) instead of Eq. (7.20).
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7.2.3 An Introductory Example

In order to illustrate the derivation of the adjoint equations and the gradient method on switching

point optimization presented above, we consider a simple example where a car is approximated

by a unit point mass that can be accelerated and decelerated along a straight line. A corresponding

example is often discussed in literature of optimal control theory (confer [39, Sec. 5.4]), since the

optimal solution can be computed analytically. However, we consider a redundant formulation of

the problem in Fig. 7.1, where the total mass of the car (m = 1) is divided equally between the

two axle masses m1 = m2 = 1/2 which are connected by a rigid rod. The position of the axles

are the generalized coordinates given by

q(t) = q1, q2
T
. (7.34)

Of course, q1(t) and q2(t) are not independent since the rod constrains both mass points to move

in the same way. Hence, we observe one constraint to link the particle masses according to the

chassis frame. Referring to Fig. 7.1, the length of the rod is 1 and therefore we obtain the following

constraint equation

C(q(t)) = q2(t)− q1(t)− 1 = 0. (7.35)

To circumvent numerical troubles in the simulation, e. g. with the HHT integration scheme,

Eq. (7.2) is used to provide an index two formulation of the equations of motion, reading

q̇1(t) = v1(t) + ξ(t)

q̇2(t) = v2(t)− ξ(t)

v̇1(t) = 2 u(t) + λ(t)

v̇2(t) = −2λ(t)

0 = q2(t)− q1(t)− 1

0 = v2(t)− v1(t).

(7.36)

For a given control force u(t), Eq. (7.36) can be solved for q1(t), q2(t), the corresponding veloc-

ities v1(t), v2(t) and the Lagrange multipliers λ(t) and ξ(t). The control goal is to reach a rest

position v2(tf ) = 0 at the origin with q2(tf ) = 0 for given initial conditions in minimum time.

u(t)

q1(t)

q2(t)

1

Figure 7.1: Two linked masses
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Hence, we are looking for the control force u(t) which minimizes the cost functional

J =
tf

t0

1 dt = tf − t0, (7.37)

where the constraint equations

φ(q2(t), v2(t)) :=
q2(t)

v2(t)
, (7.38)

must become zero at the final time t = tf . Since the control force appears linear in Eq. (7.36), we

are dealing with a bang-bang control. Hence, the control is of the form u(t) = ±1 and can only

occur either as full acceleration {+1}, as full deceleration {−1}, or as the switching sequences

{+1,−1} or {−1,+1}. To be more precise, if we consider the latter switching case with one

switching point t1,1, the control law is given by

u(t) :=




−1 for t < t1,1

+1 otherwise,
(7.39)

where the switching point t1,1 has to be determined. Before we can compute update formulas

for t1,1 and tf , we have to compute the final time dependency of the function φ from a forward

solution of the equations of motion. As a first step, we compute the Jacobian matrices of φ in

Eq. (7.38) with respect to q(t) and v(t) yielding the constant matrices:

φq =
0 1

0 0
, φv =

0 0

0 1
. (7.40)

Note that the final conditions of the adjoint equations in Eq. (7.9) are simply given by w(tf) = 0

and p(tf ) = 0. Since we utilize the switching point optimization, we do not require penalty terms,

and consequently there are no excitation terms in Eq. (7.9). Hence, we obtain the trivial solution

w(t) = 0 and p(t) = 0 for the entire interval [t0, tf ].

To derive the adjoint-influence equations in Eq. (7.15), we introduce the adjoint matrices W ∈

R
2×2, P ∈ R

2×2, M ∈ R
1×2 and S ∈ R

1×2. Due to the simple structure of the equations of

motion, many terms are zero and thus the adjoint-influence equations derived from Eq. (7.15)

Ẇ(t) = −
−1

1
M(t) 0 = −1 1 W(t)

Ṗ(t) = −2
−1

1
S(t)− 2W(t) 0 = −1 1 P(t).

(7.41)

are rather compact.
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The boundary conditions for the adjoint-influence equations provided by Eq. (7.25) can be com-

puted by solving


 1 0 −1

0 1 1

−1 1 0





W11 W12

W21 W22

L11 L12




tf

=


0 0

1 0

0 0


 , (7.42)

which yields W11(tf ) = 1/2, W12(tf ) = 0, W21(tf ) = 1/2 and W22(tf ) = 0. Moreover,

Eq. (7.26) reads 


1
2 0 −1

0 1
2 1

−1 1 0





P11 P12

P21 P22

U11 U12




tf

=


0 0

0 1

0 0


 , (7.43)

and yields P11(tf ) = 0, P12(tf ) = 1, P21(tf ) = 0 and P22(tf ) = 1. Here, L11, L12, U11 and U12

are only introduced to solve the system of equations and are not required any further.

From the algebraic constraints in Eq. (7.41), we deduce P11 = P21, P12 = P22, W11 = W21

and W12 = W22, which are in perfect agreement with the boundary conditions for Wij and Pij .

If we insert these relationships into the differential equations introduced in Eq. (7.41), we obtain

M(t) = 0 and S(t) = 0. Hence, the differential equation in Eq. (7.41)1 is given by Ẇ(t) = 0.

From the boundary conditions, we then obtain

W(t) =
1
2 0
1
2 0

= const. (7.44)

After inserting Eq. (7.44) into the differential equation for P(t) in Eq. (7.41)2, we obtain

Ṗ(t) =
−1 0

−1 0
. (7.45)

With the boundary conditions for Pij at t = tf , we get

P(t) =
tf − t 1

tf − t 1
. (7.46)

As a next step, we compute the multiplier ν from Eq. (7.21) by using the abbreviations for A and
b defined in Eq. (7.33) for bang-bang controls. The total time derivative of φ at the final time is

given by

φ̇f =
q̇2

v̇2 tf

=
v2 − ξ

−2λ
tf

, (7.47)

in which we inserted Eq. (7.36)2 and Eq. (7.36)4 for q̇2 and v̇2.
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Figure 7.2: Convergence of the mass transfer problem

Now the A-matrix from Eq. (7.33)1 is given by

A := 4β
(tf − t)2 tf − t

tf − t 1
t1,1

+ α
(v2 − ξ)2 −2λ (v2 − ξ)

−2λ (v2 − ξ) 4λ2
tf

. (7.48)

A glance at Eq. (7.33)2 shows that b = α (v2(tf )− ξ(tf ),−2λ(tf ))
T and the multiplier ν =

(ν1, ν2)
T is obtained by

ν =
ε

κ
A−1

q2(tf )

v2(tf )
− αA−1

v2(tf )− ξ(tf )

−2λ(tf )
. (7.49)

Since we observe a shift from −1 to +1 at t1,1, we apply the positive sign in the update formula in

Eq. (7.32). Hence, with ū = 2 and fu = (1, 0)T, the updates of the end time and of the switching

point is finally given by

δtf = −κα 1 + ν1 (v2(tf )− ξ(tf ))− 2ν2λ(tf )

δt1,1 = +2κβ (tf − t1,1) ν1 + ν2 .
(7.50)

We choose the initial values q1(0) = −3, q2(0) = −2 and v1(0) = v2(0) = 2.236 and set

the initial switching point to t1,1 = 1.5. We guess a final time tf = 3 and choose the update

parameters α = β = 1, ε = 0.3 and κ = 1. The convergence analysis of the final time and of

the end condition error is shown in Fig. 7.2. The trajectory to transfer the system to the origin in

minimal time is depicted in Fig. 7.3.

98



CHAPTER 7. THE ADJOINT METHOD IN MULTIBODY DYNAMICS

0.5

1

1 1.5

2

2

3

−0.5

−1

−1−1.5

−2

−2

−3

q2

v2

u = −1

u = +1

Optimal Trajectory

Figure 7.3: Switching arcs for two linked masses

However, in general, the adjoint equations in Eq. (7.9) and the adjoint-influence equations in

Eq. (7.15) must be solved numerically by using an integration scheme. For this purpose we can

use a multi-step procedure, as it is widely used in multibody dynamics for solving differential-

algebraic equations. A particularly well suited method is the backward differentiation scheme, for

which we derive the formulas in the next section.

7.3 A Backward Differentiation Scheme

Writing down the co-system differential-algebraic equations for a dynamic system in redundant

coordinates is not a difficult exercise; obtaining solutions is another matter. Hence, this section is

dedicated to the efficient solution of the adjoint differential system in Eq. (7.9) and the adjoint-

influence differential system in Eq. (7.12). Therefore, we use a backward differentiation formula
(BDF) which is known to be perfect for stiff problems, has superior stability properties and can be

used to directly discretize differential-algebraic equations.

A discretization scheme for the adjoint equations, as demonstrated in [47], benefits from tai-

lored solvers capable of performing an accurate and time-efficient solution. Note, if the for-

ward solution is provided by the Hilbert-Hughes-Taylor (HHT) solver, then the hidden constraint

Cq(q(t))ξ(t) = 0 is satisfied, i. e., ξ(t) = 0. Since the numerical methods in this section already

provide very long expressions, we will assume for simplicity that the forward solution is provided

by the HHT solver and set ξ(t) = 0. Since the final time tf is free, we apply a transformation

into a unit interval. Moreover, both sets of differential equations are solved backward in physical
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time and so it is convenient to claim our new time coordinate τ to run from tf to t0. Hence, the

relation between t and our new time coordinate τ is given by t = tf (1− τ). If z(t) is approached

by k + 1 points, the general form of the backward differentiation formula is given by

z′(τn) ≈
k

i=0

ηi(τn, . . . , τn−i)z(τn−i), (7.51)

where the coefficients ηi depend on the sizes of the time step intervals. Note, if constant step sizes

are used, then we get constant values for ηi depending on the integration order. For integration

order k = 1, the coefficients for varying solver step sizes can be computed by

η0 =
1

τn − τn−1
, η1 = −

1

τn − τn−1
. (7.52)

If we insert Eq. (7.52) into Eq. (7.51), we obtain the implicit Euler method, whose order of ac-

curacy is, of course, one. The first BDF integration step can be computed with the coefficients

in Eq. (7.52). Due to the transformation to the τ -domain, the variables in the first step are given

by τn−1 = 0 and τn = h, where h is the step size of the first integration step. Afterwards the

integration order can be raised and the subsequent step can be computed with the coefficients:

η0 =
2τn − τn−1 − τn−2

(τn − τn−1) (τn − τn−2)
, η1 =

τn − τn−2

(τn−1 − τn−2) (τn−1 − τn)
,

η2 =
τn − τn−1

(τn−2 − τn) (τn−2 − τn−1)
.

(7.53)

The integration order k = 1 and k = 2 of the BDF method are A-stable, see [69, Sec. 12.12] for

an elaborate derivation and a stability plot in the complex plane. However, in some cases it might

be convenient to increase the integration order further, but care must be taken because even order

k = 3 can lead to stability problems of the integration scheme. It has to be emphasized, order

k = 2 is sufficient in most cases and delivers accurate results in our examples examined so far.

7.3.1 The Solution of the Adjoint Differential Equations

In this section, we discretize the differential equations and derive the resulting BDF rule by fol-

lowing Nachbagauer et al. [47]. Derivatives with respect to τ are denoted as primes and can be
determined with d/dt = d/dτ · dτ/dt = −(1/tf ) · d/dτ . Applying Eq. (7.51) to the adjoint

system in Eq. (7.9), we obtain

k

i=0

ηiw(τn−i) = tf ΠT

q
+Gp+CT

q
µ+ (Cqv)

T

q
σ

τn

k

i=0

ηiM(q(τn−i))p(τn−i) = tf ΠT

v
+w + fT

v
p+CT

q
σ

τn

Cq(q(τn))p(τn) = 0

Cq(q(τn))w(τn) = 0.

(7.54)
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The values for q(t), v(t) and λ(t) are obtained by a forward simulation of the equations of motion

in Eq. (7.1), and can be readily transformed to the dimensionless time coordinate τ by q(τ) =

q(tf (1− τ)), v(τ) = v(tf (1− τ)) and v̇(τ) = v̇(tf (1− τ)). As a first step, we compute w(τn)

from Eq. (7.54)1, yielding

w(τn) =
tf
η0

Gp+CT

q
µ+ (Cqv)

T

q
σ +ΠT

q
τn

−
1

η0

k

i=1

ηiw(τn−i), (7.55)

where we applied a simple index shift of the sum to solve the equation for w(τn). After inserting

w(τn) from Eq. (7.55) into Eq. (7.54)2, we get

η0Mp−
t2f
η0

Gp+CT

q
µ+ (Cqv)

T

q
σ − tff

T

v
p− tfC

T

q
σ

τn

= tfΠ
T

v
(τn) +

t2f
η0

ΠT

q
(τn)−

k

i=1

ηiM(q(τn−i))p(τn−i) +
ηi
η0

tfw(τn−i) .

(7.56)

Moreover, we also can insert w(τn) from Eq. (7.55) into Eq. (7.54)4, yielding

CqGp+CqC
T

q
µ+Cq (Cqv)

T

q
σ

τn
=−Cq(τn)Π

T

q
(τn)

+
1

tf
Cq(τn)

k

i=1

ηiw(τn−i).

(7.57)

A closer observation of Eq. (7.55) and of Eq. (7.57) shows that q(τn−i), p(τn−i) and w(τn−i) are

known from the initial conditions or, respectively, from previous integration steps.

If we arrange Eq. (7.56), Eq. (7.57) and Eq. (7.54)3 in matrix form, we receive:



η0M−

t2
f

η0
G− tff

T
v

−
t2
f

η0
(Cqv)

T

q
− tfC

T
q

−
t2
f

η0
CT

q

CqG Cq (Cqv)
T

q
CqC

T
q

Cq 0 0




τn




p(τn)

σ(τn)

µ(τn)





=



tfΠ

T
v
(τn) +

t2
f

η0
ΠT

q
(τn)−

k
i=1 ηiM(q(τn−i))p(τn−i) +

ηi
η0
tfw(τn−i)

−Cq(τn)Π
T
q
(τn) +

1
tf
Cq

k
i=1 ηiw(τn−i)

0


 ,

(7.58)

which can be solved for p(τn), σ(τn) and µ(τn) after Eq. (7.55) is solved for w(τn). In order to

initiate the integration scheme, we set the integration order to k = 1 and insert the final values for

w(1) = p(1) = 0 into Eq. (7.58). To achieve a higher accuracy of the integration scheme, the

order k can be increased after Eq. (7.58) is solved for the first time.
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7.3.2 The Solution of the Adjoint-Influence Differential Equations

The differential equations for the adjoint-influence functions can be solved by Eq. (7.55) and

Eq. (7.58). First, one has to compute consistent final conditions by solving Eq. (7.25) and Eq. (7.26)

for W(tf ) and P(tf ). Then, P(tf ), S(tf ) and M(tf ) can be determined by solving



η0M−

t2
f

η0
G− tff

T
v

−
t2
f

η0
(Cqv)

T

q
− tfC

T
q

−
t2
f

η0
CT

q

CqG Cq (Cqv)
T

q
CqC

T
q

Cq 0 0




τn




P(τn)

S(τn)

M(τn)




=



− k

i=1 ηiM(q(τn−i))P(τn−i) +
ηi
η0
tfW(τn−i)

1
tf
Cq

k
i=1 ηiW(τn−i)

0


 .

(7.59)

Afterwards, we can determine the next solver time step by first computing W(tf ) through

W(τn) =
tf
η0

GP+CT

q
M+ (Cqv)

T

q
S

τn
−

1

η0

k

i=1

ηiW(τn−i), (7.60)

and then solving Eq. (7.59) again. Note, due to the independence of the adjoint and the adjoint-

influence differential-algebraic equations, they can be solved simultaneously in order to save com-

putation time.

7.3.3 The Algorithm

Now we summarize the descent algorithm, from which the update of time-optimal controls can be

derived. The algorithm can be subdivided into eight steps.

1. Select an initial control history u(τ) and/or switching points ti,k for bang-bang controls and

guess a final time tf .

2. Solve the equations of motion in Eq. (7.1) with the initial values q(0) = q0 and q̇(0) = v0

in the time interval t ∈ [t0, tf ]. The solution may be obtained, e. g. by applying the HHT

integration scheme. Store q(t), v(t) and v̇(t) along the forward simulation and compute

them as functions of the dimensionless time coordinate τ by applying q(τ) = q(tf (1− τ)),

v(τ) = v(tf (1− τ)) and v̇(τ) = v̇(tf (1− τ)).

3. Solve the adjoint differential-algebraic equation system in Eq. (7.9) by computing w(τn)

from Eq. (7.55) first, and then solve the linear system of equations in Eq. (7.58) for p(τn),

σ(τn) and µ(τn). Both steps are initiated with the trivial final conditions w(1) = 0 and

p(1) = 0. Note, in the first step, the integration order k is initiated with one and may

be increased afterwards. If there are no state constraints in form of penalty functions, one

derives the trivial solution w(τ) = 0 and p(τ) = 0 for the whole τ -interval.
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4. Calculate consistent final conditions by solving Eq. (7.25) and Eq. (7.26) for W(tf ) and

P(tf ) which correspond to the final conditions in the τ -domain.

5. Using the final conditions from step 4, solve the adjoint-influence matrix differential equa-

tions in Eq. (7.15). Therefore, apply the BDF-scheme introduced in Eq. (7.60) and in

Eq. (7.59). Note, the solution process is the same as described in step 3 for the adjoint
system.

6. Compute the multiplier ν from Eq. (7.21).

7. Update the final time by

δtf = −κα 1 + Πf + νTφf , (7.61)

and update the control by

δu(t) = −κ ΠT

u
+ fT

u
p+ fT

u
Pν , (7.62)

or, respectively, for bang-bang controls

δti,k = ∓κβūi fT

ui
p+ fT

ui
Pν

ti,k/tf
, (7.63)

by adding δtf , δu(t) and δti,k to the previous estimates of tf , u(t) and ti,k. Herein, α and

β are again scaling factors for the conditioning of the optimization problem and ε has to

be tuned to approach the final conditions. Finally, the variable κ determines the size of the

update and has to be chosen appropriately.

8. Repeat steps 1 through 7 until the final error and the update gradients are sufficiently small.

In this case we can assume that we have found a constrained (local) minimum of the optimal

control problem.

7.4 Examples

In this section we will now threat two problems from robotics in order to apply the proposed

theory. Modern robot systems are developed according to innovative technologies of lightweight

construction. This reduces the moving mass of the system and makes the robots highly agile.

Hence, the knowledge of the optimal control law of robots related to an optimization criterion,

e. g., the end time, is of high interest. So far, in robotics, the computation of time-optimal ma-

nipulation is usually performed by parameterizing the trajectory, e. g. by spline functions, and
optimizing the grid points instead. This parameterization reduces the dimension of the optimiza-

tion task and thus allows to find a solution to the problem. In opposite, the presented method is not

subject to any restrictions, can be applied to complete time histories, and is even open to arbitrary

parameterizations of the control variables.

First, we consider the planar robot arm from Sec. 6.4.2, which is now described by redundant

coordinates to verify the proposed theory and to show its correctness. Once again, the problem
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is solved using, on the one hand, a penalty approach to limit the drive torques and, on the other

hand, the bang-bang method to directly identify the optimal switching points as described in Sec-

tion 6.4.2. Second, a rigid multibody model of a complex 3D-robot model will be investigated to

minimize the time for a point-to-point operation in order to demonstrate the applicability for more

complex industrial problem setups.

7.4.1 Planar Robot Arm

As a first example, the SCARA robot arm from Sec. 6.4.2 is investigated by using a redundant

coordinate formulation. We consider the robot arm in Fig. 6.12 consisting of two bodies and

search for controls so that the robot moves from point-to-point in minimal time. Therefore, we

introduce the redundant coordinates

q(t) = x1, y1, ϕ1, x2, y2, ϕ2, x3, y3
T
, (7.64)

in which (x1, y1, ϕ1) and (x2, y2, ϕ2) denote the coordinates of the centers of gravity of the first

and second robot arm. Moreover, (x3, y3) describe the position of the tool center point (TCP).

Since the coordinates are not independent, we observe six algebraic constraint equations

C(q) =





x1(t)− s1 cos(ϕ1(t))

y1(t)− s1 sin(ϕ1(t))

x2(t)− l1 cos(ϕ1(t))− s2 cos(ϕ2(t))

y2(t)− l1 sin(ϕ1(t))− s2 sin(ϕ2(t))

x3(t)− l1 cos(ϕ1(t))− l2 cos(ϕ2(t))

y3(t)− l1 sin(ϕ1(t))− l2 sin(ϕ2(t))




, (7.65)

which describe the kinematic chain of the robot. Herein, l1, and l2 denote the lengths of the robot

axes while the center of gravity positions are given by s1 and s2. Due to the redundant formulation,

the mass matrix is constant and readily given by

M = diag m1,m1, J1,m2,m2, J2,m3,m3 . (7.66)

The SCARA robot is again actuated by the control torques u1(t) and u2(t), hence the generalized

forces are given by

f(u1(t), u2(t)) =





0

0

u1(t)− u2(t)

0

0

u2(t)

0

0




, (7.67)
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which can be derived from the principle of virtual work. Finally, the cost functional to be mini-

mized is given by

J =
tf

t0

1dt. (7.68)

Since we use a redundant formulation of the robot, we can directly prescribe the position and

velocity of the TCP. Hence, the final conditions read

φ(x3, y3, vx3
, vy3) :=





x3(t)− xf

y3(t)− yf

vx3
(t)− vxf

vy3(t)− vyf



 , (7.69)

in which the end position is the same as in the robot example in Sec. 6.4.2 and is given by xf = 1

and yf = 1. A glance at the function φ(x3, y3, vx3
, vy3) shows once again the elegance of the pro-

posed method using a redundant formulation. If a minimal set of only two generalized coordinates

is used to describe the robot equations, the desired final conditions can not be addressed directly

and the function φ becomes more complicated.

(a) The Penalty Approach

Since the controls u1(t) and u2(t) appear linear in the Hamiltonian, we first use a penalty approach

to put bounds on the driving torques. Hence, we add the function Π(u1(t), u2(t)) to the cost

functional in Eq. (7.68) yielding

J =
tf

t0

[1 + Π(u1(t), u2(t))] dt, (7.70)

where Π(u1, u2) := µ1Π1(u1(t)) + µ2Π2(u2(t)) is again defined by

Πi(ui(t)) :=




0 for |ui(t)| < u∗i
1

2
(|ui(t)| − u∗i )

2 otherwise.
(7.71)

The computations are carried out with the same model parameters and the same weighting parame-

ters µ1 and µ2 for the penalty functions as presented in Sec. 6.4.2. For the optimization procedure,

we use the parameter setup given by α = 0.5, ε = 0.1 and κ = 0.2. Finally, the results are

depicted in Fig. 7.4 and Fig. 7.5. The final time tf is reduced from 3 s to 1.8335 s, while the error

in the prescribed final conditions approaches zero, as shown in Fig. 7.4. The control histories and

the switching functions (from Eq. (7.29)) are plotted in Fig. 7.5 which are in agreement with the

results from Sec. 6.4.2.
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Figure 7.4: Convergence of conventional control optimization using a penalty approach
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Figure 7.5: Controls for the rest-to-rest maneuver
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(b) The Bang-Bang Approach

Armed with the knowledge that the controls converge to pure bang-bang controls, we can again

determine the switching times instead of calculating the complete control history. Recall, one ben-

efit of the switching point optimization is that only the end time is included in the cost functional

in Eq. (7.68) yielding high accurate results, since no penalty functions need to be weighted to put

bounds on controls. Hence, in case of bang-bang controls, the driving torques can be defined by

u1(t) :=





−u∗1 for t < t1,1

+u∗1 for t1,1 ≤ t ≤ t1,2

−u∗1 for t1,2 < t

, u2(t) :=





+u∗2 for t < t2,1

−u∗2 for t2,1 ≤ t ≤ t2,2

+u∗2 for t2,2 < t.

(7.72)

which are equal to the definition in Eq. (6.57). The initial controls are defined by the switching

points: t1,1 = 0.4, t1,2 = 1.4, t2,1 = 0.2 and t2,2 = 0.8 referring to the SCARA robot described

by a minimal set of coordinates in Sec. 6.4.2. For the switching point optimization, we use α = 1,

ε = 0.05 and κ = 0.1 yielding the results in Fig. 7.6 and Fig. 7.7. The optimal switching points

are given by t1,1 = 0.1757, t1,2 = 1.0917, t2,1 = 0.7913, and t2,2 = 1.5240 and the final time can

be reduced from 2 s to 1.8320 s. As expected, Fig. 7.6 shows a faster convergence than the penalty

approach (in Fig. 7.4). The resulting controls are shown in Fig. 7.7. Herein, the solid line shows

the time-optimal solution of the system described in redundant coordinates, while the dashed line

is related to the solution of the system in minimal coordinates.
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Figure 7.6: Convergence of the switching point optimization
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Figure 7.7: Bang-bang controls for the rest-to-rest maneuver

7.4.2 Industrial Robot

As a next example, we consider a rigid multibody model of a robot consisting of three robot arms

B1, B2, B3 and a particle mass at the end of the kinematic chain. The three-dimensional model is

depicted in Fig. 7.8 and has basically three independent degrees of freedom. However, we describe

the system by the generalized dependent coordinates introduced by

q(t) = x1, y1, ϕ1, x2, y2, z2, ϕ2, x3, y3, z3, ϕ3, x4, y4, z4
T
. (7.73)

The center of gravity positions of the robot arms B1, B2 and B3 are described by (x1, y1, a1),

(x2, y2, z2) and (x3, y3, z3). The coordinates ϕ1, ϕ2 and ϕ3 indicate the absolute angular position

to the environment. Furthermore, the position of the end effector is represented by (x4, y4, y4).

The mass matrix of the robot is therefore given by

M = diag m1,m1, J1,m2,m2,m2, J2,m3,m3,m3, J3,m4,m4,m4 , (7.74)

which has a diagonal structure and is constant due to the redundant formulation.
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The coordinates in Eq. (7.73) are not independent, but constrained by the vector

C(q(t)) =



x1(t) + s1 sin(ϕ1(t))

y1(t)− s1 cos(ϕ1(t))

x2(t)− b2 cos(ϕ1(t)) + a1 + s2 cos(ϕ2(t)) sin(ϕ1(t))

y2(t)− b2 sin(ϕ1(t))− a1 + s2 cos(ϕ2(t)) cos(ϕ1(t))

z2(t)− b1 − s2 sin(ϕ2(t))

x3(t) + b23 cos(ϕ1(t)) + a1 + a2 cos(ϕ2(t)) + s3 cos ϕ2(t) + ϕ3(t) sin(ϕ1(t))

y3(t) + b23 sin(ϕ1(t)) − a1 + a2 cos(ϕ2(t)) + s3 cos ϕ2(t) + ϕ3(t) cos(ϕ1(t))

z3(t)− b1 − a2 sin(ϕ2(t))− s3 sin ϕ2(t) + ϕ3(t)

x4(t) + b23 cos(ϕ1(t)) + a1 + a2 cos(ϕ2(t)) + a3 cos ϕ2(t) + ϕ3(t) sin(ϕ1(t))

y4(t) + b23 sin(ϕ1(t))− a1 + a2 cos(ϕ2(t)) + a3 cos ϕ2(t) + ϕ3(t) cos(ϕ1(t))

z4(t)− b1 − a2 sin(ϕ2(t))− a3 sin ϕ2(t) + ϕ3(t)




(7.75)
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in which we introduced the abbreviation b23 = (b3 − b2). The robot model is actuated by the

driving torques u1(t), u2(t) and u3(t). Hence, the force vector including the control torques is

given by

f(q, q̇) =





0

0

u1(t)− d1ϕ̇1(t)

0

0

0

u2(t)− u3(t)− d2ϕ̇2(t) + d3 (ϕ̇3(t)− ϕ̇2(t))

0

0

0

u3(t)− d3 (ϕ̇3(t)− ϕ̇2(t))

0

0

0





. (7.76)

Initially, the robot is at rest, therefore the total time derivatives of the initial coordinates are given

by q̇0 = 0. When choosing the initial position, we have to be careful that, on the one hand,

the initial position is feasible and, on the other hand, a singular robot constellation is avoided.

Thus, we do not specify the TCP coordinates of the robot directly, but rather prescribe the initial

orientation of the robot arms by ϕ1,0 = π/6, ϕ2,0 = π/6 and ϕ3,0 = −π/4, and compute the
initial position with the kinematic relations:

q0 =





−s1 sin(ϕ1,0)

s1 cos(ϕ1,0)

ϕ1,0

b2 cos(ϕ1,0)− a1 + s2 cos(ϕ2,0) sin(ϕ1,0)

b2 sin(ϕ1,0) + a1 + s2 cos(ϕ2,0) cos(ϕ1,0)

b1 + s2 sin(ϕ2,0)

ϕ2,0

b23 cos(ϕ1,0)− a1 + a2 cos(ϕ2,0) + s3 cos ϕ2,0 + ϕ3,0 sin(ϕ1,0)

b23 sin(ϕ1,0) + a1 + a2 cos(ϕ2,0) + s3 cos ϕ2,0 + ϕ3,0 cos(ϕ1,0)

b1 + a2 sin(ϕ2,0) + s3 sin ϕ2,0 + ϕ3,0

ϕ3,0

b23 cos(ϕ1,0)− a1 + a2 cos(ϕ2,0) + a3 cos ϕ2,0 + ϕ3,0 sin(ϕ1,0)

b23 sin(ϕ1,0) + a1 + a2 cos(ϕ2,0) + a3 cos ϕ2,0 + ϕ3,0 cos(ϕ1,0)

b1 + a2 sin(ϕ2,0) + a3 sin ϕ2,0 + ϕ3,0





. (7.77)
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In summary, we face an optimization problem in which we minimize

J =
tf

t0

[1 + Π(u1(t), u2(t), u3(t))] dt, (7.78)

Referring to the penalty approach of the planar robot model, we introduce a penalty term of the

form

Π(u1, u2, u3) := µ1Π1(u1(t)) + µ2Π2(u2(t)) + µ3Π3(u3(t)), (7.79)

where µ1, µ2 and µ3 are weighting factors for the penalty functions to comply with the control

restrictions, e. g. for u∗1 = u∗2 = u∗3 = 20 we set µ1 = µ2 = µ3 = 1. The penalty terms are again

readily formulated by

Πi(ui(t)) :=




0 for |ui(t)| < u∗i
1

2
(|ui(t)| − u∗i )

2 otherwise.
(7.80)

The end position of the robot can be expressed by the final constraints given by

φ(x4, y4, z4, vx4
, vy4 , vz4) =





x4(t)− xf

y4(t)− yf

z4(t)− zf

vx4
(t)

vy4(t)

vz4(t)




, (7.81)

where the latter three conditions address the rest position of the robot and the end position is again

defined via the orientation angles ϕ1,f = −π/4, ϕ2,f = π/3 and ϕ3,f = −π/4 yielding

xf = b23 cos(ϕ1,f )− a1 + a2 cos(ϕ2,f ) + a3 cos ϕ2,f + ϕ3,f sin(ϕ1,f )

yf = b23 sin(ϕ1,f ) + a1 + a2 cos(ϕ2,f ) + a3 cos ϕ2,f + ϕ3,f cos(ϕ1,f )

zf = b1 + a2 sin(ϕ2,f ) + a3 sin ϕ2,f + ϕ3,f .

(7.82)

Note, the adjoint-influence equations, the A-matrix, the b-vector, and the update formulas are far

too complicated to state here in comprehensible form. However, the derivation is readily accom-

plished by following the proposed algorithm in Sec. 7.3.3. For the numerical calculation we use

the parameter set given by the damping coefficients d1 = 0.5Nms, d2 = 0.5Nms, d3 = 0.5Nms,

the lengths b1 = 0.450m, a1 = 0.150m, a2 = 0.810m, a3 = 0.740m, b2 = 0.142m,

b3 = 0.147m, the distances to the center of gravity s1 = 0.051m, s2 = 0.361m, s3 = 0.243m,

the masses m1 = 13kg, m2 = 8kg, m3 = 10kg, m4 = 1kg and the mass moments of inertia

J1 = 0.196 kg m2, J2 = 0.468 kg m2, J3 = 0.536 kg m2. Finally, the results are obtained by the

update parameter ε = 0.08 and the conditioning parameter α = 10.

So far, we have used constant update values for κ in all our examples, on the one hand to emphasize

the robustness of the algorithm, and on the other hand for convenience to avoid the implementation

111



CHAPTER 7. THE ADJOINT METHOD IN MULTIBODY DYNAMICS

0
0

0

100

100

200

200

300

300

400

400

500

500

600

600

700

700

800

800

0.5

1

1

1.5

1.5

2

2

Iteration

Iteration

Fi
na

lT
im

e
t f

E
rr

or
φ
f

Figure 7.9: Convergence of the industrial robot model

of sophisticated step-size procedures. However, some of the results so far show slow convergence

and initial start-up attempts of the present problem show that convergence suffers with increas-

ing complexity. Hence, we now introduce a simple step size control using a merit function as a

trade-off between convergence rate and implementation effort. Merit functions are employed in

some cases for constrained optimization problems. A simple suggestion for a merit function with

equality constraints, such as described in [44, Sec. 15.5], can also be used in the context of our

problem and is formulated by

J :=
tf

t0

1 + Π(u1, u2, u3) dt+ η
6

i=1

φi(x4, y4, z4, vx4
, vy4 , vz4) , (7.83)

in which we introduced the weighting factor η = 10 controlling the violation of the final constraint

conditions and φi denoting the i-th element of φ(x4, y4, z4, vx4
, vy4 , vz4). The function J can then

be used to apply classical update step size controls for κ in Eq. (7.61) and Eq. (7.62) as presented

in Sec. 3.1.2. Finally, Fig. 7.9 shows the reduction of the cost functional over iterations. After

approximately 500 iterations we stop the optimization, while the final time can be reduced from

2 s to 1.8335 s. We observe that using a step size control based on a merit function exhibits a

much better convergence rate than previous results using a constant update step size. Figure 7.10

visualizes the time-optimal trajectory while showing the initial and final robot configuration. In

Fig. 7.11 the computed control signals and the corresponding switching functions from Eq. (7.29)

are plotted, where the switching functions perfectly match the zero crossings of the controls.
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Initial Config. Final Config.

Figure 7.10: Configuration of the point-to-point operation of the industrial robot model

Note that all three controls converge to pure bang-bang controls with a total number of five switch-

ing points, while the control limits are well maintained by the penalty functions.
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Chapter 8

Conclusion

In this thesis, a gradient-based solution method is presented for determining the time-optimal con-

trol of dynamical systems subject to two classes of terminal constraints. Compared to conventional

solution strategies related to the underlying boundary value problem, the proposed method con-

verges even when choosing initial controls that are far away from the optimal solution. Many

examples demonstrate the efficiency and accuracy of the proposed method and its applicability to

time-optimal control problems from modern engineering.

8.1 Summary

While Chapter 2, 3 and 4 mainly discuss state of the art methods, novel methodological approaches

have been elaborated in Chapter 5, 6 and 7.

In Chapter 5 and Chapter 6 we have introduced the adjoint gradient computation for systems de-

scribed by a minimal set of independent coordinates, which presents a modern point of view on

the solution of the two-point boundary value problem in optimal control. In Chapter 5, two ap-

proaches are presented, involving a hybrid formulation and a complete elimination of the time

coordinate. The difference between both approaches can be summarized as a trade-off between

robustness and implementation effort in standard software. However, both methods are open to

use one of many standard numerical methods for minimizing a function, as all kind of Newton-

like methods. In contrast, a more general approach is described in Chapter 6, which, however, is
limited to gradient methods and thus has a lower convergence rate. Nevertheless, the nonlinear

conjugate gradient method can be conceived, incorporating information from a prior update step

to improve the algorithm convergence.

Finally, in Chapter 7 we presented a new way to solve time-optimal control problems in multi-

body dynamics. The novelty lies in the adaptation of the adjoint method to time-optimal control

problems to differential-algebraic equations. With this method, one obtains an analytical formula

for the gradient for which two additional systems of adjoint equations must be solved. For nu-

merical evaluation, the gradient formula can be discretized arbitrarily fine without increasing the

computational cost.
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Further advantages of the adjoint approach in multibody dynamics can be summarized as follows:

• A desirable feature of the proposed method is that the initial controls do not have to satisfy

the final constraints a priori.

• By using an efficient gradient-based approach, the solution of a two-point boundary value

problem, which often requires the use of sophisticated homotopy strategies, can be avoided.

• After each successful control update, an improved control is obtained, which reduces the

functional costs. The method can also be applied to more complex systems to find time-

optimal controls. When using standard simulation software, e. g., multibody simulation
programs, the gradient calculation could be automated if a module for the adjoint equations,

as described in Section 7.3, is implemented.

• Singular time intervals in which the optimal control cannot be determined directly from

Pontryagin’s minimum principle can also be identified directly without further modification

of the method.

8.2 Outlook

Although this thesis presents a self-contained theory, some questions remain open for further sci-

entific research. In a future work considering even more complex problems, the convergence

can be further accelerated by improving the step size of the time/control update in Eqs. (6.12)

and (7.18). A suitable choice of step size values is suggested by Halkin [33] and Gottlieb [29]

already in the sixties of the past century. In the latter mentioned work, the variation of the con-

trols is transformed into a variation of the optimality condition. Instead of minimizing the cost

functional, the Hamiltonian is considered. Unfortunately, both methods presented are restricted

to fixed end-time problems, and moreover, the choice of the step size is very example-specific, so

that a generally applicable algorithm is difficult to abstract.

To cite a further example for ongoing scientific research, a discrete scheme of the adjoint method

in [41] have to be mentioned. The ideas presented, are easy to implement and can be applied to

the theory in this thesis with reasonable effort.
In many examples in this work the whole time history is identified considering each time step

as parameter, which is a scientifically handsome approach and show also the robustness of the

method. However, the convergence rate suffers from a high number of optimization variables.

One approach for parameterization is the presented switching time optimization, which reduces

the dimension of the optimization problem to a small number. However, this method only works

for pure bang-bang controls and it is necessary to know the number of switching cycles. Alterna-

tively, a more general way to reduce the dimension space of the optimization task is to introduce

spline functions and identify the grid points instead.

In conclusion, the presented method is well suited for the computation of time-optimal controls of
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multibody systems. This thesis presents different methods for this purpose, and describes advan-

tages and disadvantages, as well as the implementation of the adjoint, adjoint-influence equations

and the update formulas for the gradient-based optimization of multibody systems.
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Appendix A

Single Track Vehicle Model

In vehicle dynamics, an unambiguous assignment of the vehicle to the race track by means of

Cartesian coordinates is not always possible, e. g., in the case of closely spaced road sections.

Hence, in this case a transformation to curvilinear coordinates is advisable. Even in robotics

a transformation to curvilinear coordinates can be advantageous if the final time is considered

free and a penalty approach is used to consider obstacles. The relation between the curvilinear

coordinates s and r and the Cartesian coordinates x and y is depicted in Fig. A.1 and given by

x(s, r) = xc(s) + y′c(s) r

y(s, r) = yc(s)− x′c(s) r,
(A.1)

where xc(s) and yc(s) are the coordinates of the center line in arc length description and primes

denote derivatives with respect to s. Using a Newton scheme, for example, s and r can be ex-

pressed by x and y from Eq. (A.1). In the case of Cartesian coordinates, the position of the vehicle

in Fig. 5.4 can be described by the absolute coordinates x and y and the orientation angle ϕ. Since,

for the road to wheel contact the tire forces T1, N1, T2 and N2 must be described in the body-fixed

x

y

x(t)

y(t)

xc(s)

yc(s)
s(t)

r(t)

Figure A.1: Transformation from Cartesian- to curvilinear coordinates
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frame of the chassis, it is convenient to formulate the equations of motion with respect to body-

fixed coordinates, as proposed in [53, 55]. If v(t) and w(t) denote the components of the absolute

velocity of the chassis with respect to the body fixed frame, the equations of motion read

ẋ(t) = v(t) cos(ϕ(t))− w(t) sin(ϕ(t))

ẏ(t) = v(t) sin(ϕ(t)) + w(t) cos(ϕ(t))

ϕ̇(t) = Ω(t)

v̇(t) =
1

m
mw(t)Ω(t) + T1 cos(u1(t)) + T2 −N1 sin(u1(t))

ẇ(t) =
1

m
−mv(t)Ω(t) +N1 cos(u1(t)) +N2 + T1 sin(u1(t))

ω̇ϕ(t) =
1

J
N1a cos(u1(t))−N2b+ T1a sin(u1(t))

ω̇1(t) = −
1

J1
T1 R

ω̇2(t) =
1

J2
u2(t)− T2R ,

(A.2)

where Ω is the angular velocity ϕ̇ of the chassis about the vertical and ω1 and ω2 denote the angular

velocities of the wheels. Moreover, m is the total mass of the vehicle and J denotes its moment of

inertia. Both wheels have the radius R and the moments of inertia J1 and J2 about their rotation

axis. The lengths a and b are the distances measured from the center of gravity to the rear axle and

to the front axle. The steering angle is given by u1(t) and the driving/braking torque is denoted
with u2(t). The arc length s is given by Eq. (A.1) from which it can be expressed by the Cartesian

coordinates x, y. The transformation of the time derivative of the state vector is given by

dx

dt
=

dx

ds

ds

dt
= x′(s)

1

g
, (A.3)

in which g = 1/ṡ. The velocity ṡ is obtained from differentiating Eq. (A.1) with respect to time:

ẋ = x′c(s) ṡ+ y′′c (s) ṡ r + y′c(s) ṙ

ẏ = y′c(s) ṡ− x′′c (s) ṡ r − x′c(s) ṙ.
(A.4)

Solving for ṡ and ṙ and using x′c
2 + y′c

2 = 1 yields

ṡ = −
1

r k(s)− 1
x′c(s)ẋ+ y′c(s)ẏ

ṙ = −
1

r k(s)− 1
rx′′c (s)− y′c(s) ẋ+ x′c(s) + ry′′c (s) ẏ ,

(A.5)

where k(s) = x′′c (s)y
′
c(s)− x′c(s)y

′′
c (s) denotes the signed curvature of the mean trajectory. After

inserting the first two state equations from Eq. (A.2) for ẋ and ẏ in (A.5)1, we obtain

ṡ =
1

g
=

1

1− r k(s)
x′c(s) (v cos(ϕ)− w sin(ϕ)) + y′c(s) (v sin(ϕ) +w cos(ϕ)) . (A.6)
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Now we replace the description of the vehicle position by (x, y) and use the curvilinear coordinates

(s, r) instead. Since s is our independent variable now, we only need one state equation for r which

is provided by Eq. (A.5)2 after substituting again for ẋ and ẏ from the original state equations.

Finally, after applying Eq. (A.3) to Eq. (A.2) and replacing the first two equations by Eq. (A.5)2,

we end up with the following transformed state equations:

r′(s) =
g

r(s) k(s)− 1
v(s) cos(ϕ(s))− w(s) sin(ϕ(s)) x′′c (s)r(s)− y′c(s)

+ v(s) sin(ϕ(s)) + w(s) cos(ϕ(s)) x′c(s) + y′′c (s)r(s)

ϕ′(s) = gΩ(s)

v′(s) =
g

m
mw(s)Ω(s) + T1 cos(u1(s)) + T2 −N1 sin(u1(s))

w′(s) =
g

m
−mv(s)Ω(s) +N1 cos(u1(s)) +N2 + T1 sin(u1(s))

Ω′(s) =
g

J
N1a cos(u1(s))−N2b+ T1a sin(u1(s))

ω′
1(s) = −

R g

J1
T1

ω′
2(s) =

g

J2
u2(s)− T2R ,

(A.7)

where primes denote derivatives with respect to s.
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