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Kurzfassung

Immense Fortschritte in der Verarbeitung von Halbleiter-Materialien in den letzten
Jahrzehnten haben es ermöglicht, Transistoren immer weiter zu verkleinern und dadurch
immer größere und schnellere digitale Schaltungen zu produzieren. Der daraus resultieren-
de Anstieg der Komplexität hatte allerdings auch negative Auswirkungen, zum Beispiel
auf die Verifikation: Obwohl es heutzutage möglich ist, die physikalischen Prozesse, die
das Verhalten der Schaltung bestimmen, mittels hoch-präziser Modelle zu beschreiben,
macht gerade die Größe und Komplexität dieser Modelle eine Simulation/Berechnung in
vernünftiger Zeit undurchführbar. Eine mögliche Lösung besteht darin, Abstraktionen
einzuführen. Deren Aufgabe ist es, den Verifikationsaufwand durch das Ausblenden
gewisser Details zu verringern, ohne aber die Genauigkeit signifikant zu beeinträchtigen.
Selbstredend ist die Entwicklung solcher Abstraktionen eine sehr anspruchsvolle Aufgabe:
Zu wenig oder die falschen Informationen stellen ein unvollständiges Abbild der Realität
dar, wohingegen exzessive Modelle sehr langsam sind.

Aus diesem Grund untersuchen und entwickeln wir in dieser Arbeit passende Ab-
straktionen für digitale elektrische Schaltungen. Wir sind der Meinung, dass optimale
Resultate nur dann erzielt werden, wenn (i) das zugrundeliegende physikalische Verhalten
verstanden und (ii) basierend auf den gewonnenen Einsichten passende abstrakte Modelle
und Parameter ausgewählt werden. Dementsprechend wird die Entwicklung einer Ab-
straktion auf eine Beobachtung und eine nachfolgende Schlussfolgerung reduziert, sodass
weder Annahmen noch Mutmaßungen notwendig sind. Anzumerken ist, dass die in dieser
Arbeit präsentierten Modelle nicht dazu gedacht sind, existierende zu ersetzen, sondern
lediglich eine Alternative zu hoch entwickelten (z.B. Differentialgleichungssystemen in
analogen Simulationen) oder übermäßig vereinfachten Ansätzen (z.B. pure oder inertiale
Verzögerungsmodelle in digitalen Simulationen) darstellen. Insgesamt zielen wir darauf
ab, verlässliche Modelle, die einen großen Gültigkeitsbereich und eine hohe Genauigkeit
haben, zu entwickeln, wobei der Simulationsaufwand gering gehalten werden soll.

Die Erreichung dieser Ziele erforderte das Studium folgender Modellierungsebenen:

1) Analoge Abstraktionen: Um das analoge Verhalten verschiedenster logischer Gatter
in einer einfachen Art und Weise zu beschreiben, entwickeln wir neue Modelle basierend auf
physikalisch inspirierten Transistormodellen. Obwohl diese vernünftige Resultate liefern,
ist der zu investierende Aufwand zu hoch, um eine Evaluierung von großen Schaltungen
zu erlauben. Daher sind weiter Vereinfachungen notwendig. Unter Zuhilfenahme von
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analytischen Berechnungen und Fittings zielen wir auf mathematischen Funktionen ab, die
eine Approximation der realen analogen Signale erlauben. Wir zeigen, dass eine steigende
und eine fallende Trajektorie, die jeweils den gesamten erlaubten Spannungsbereich
durchläuft, dafür ausreichen, da durch eine sorgfältige Kombination dieser beiden (im
Detail die Addition von in der Zeit verschobenen Versionen) jede beobachtet Signalform
approximiert werden kann. Wir sind überzeugt, dass unser Ansatz die Entwicklung
eines analogen Simulationstools mit hoher Genauigkeit aber nur einem Bruchteil der
Verifikationszeit (verglichen mit etablierten Methoden) ermöglicht.

2) Digitale Abstraktionen: Wir führen eine sorgfältige Analyse des Involution Delay
Modells durch, das zur Zeit den einzigen Kandidaten für eine wirklichkeitsgetreue Ab-
schätzung von Signalverzögerungen in digitalen Schaltungen darstellt, und erweitern es
beträchtlich: Basierend auf physikalisch motivierten Überlegungen sind wir in der Lage,
(i) etliche Mängel zu identifizieren, (ii) vernünftige Erklärungen für diese zu liefern sowie
(iii) passende Erweiterungen zu entwickeln, die die aufgezeigten Probleme beheben. Im
Detail sind das eine analytische Berechnung der verwendeten Verzögerungsfunktion, die
Aufweichung verschiedenster Einschränkungen (führt zu einfacherer Anwendbarkeit), und
die Erweiterung in Richtung Indeterminismus (resultiert in größerem Einsatzbereich).
Mittels formaler Beweise und mathematischer Analysen zeigen wir, dass diese Ände-
rungen die wesentlichen Eigenschaften des Modells nicht beeinträchtigen. Simulationen
einfacher Schaltungen liefern erstmalig quantitative Resultate, die die höhere Genauigkeit
verglichen mit anderen Methoden belegen. Damit wird ein fairer Vergleich zwischen
etablierten Methoden und dem Involution Delay Modell möglich, der auch einen nicht zu
vernachlässigenden, aber trotzdem vernünftigen, Mehraufwand gezeigt hat.

3) Unsere Ausführungen über analoge und digitale Abstraktionen werden durch
eine detaillierte Analyse des Schmitt-Triggers vervollständigt, insbesondere in Hinblick
auf dessen Anfälligkeit für Metastabilität (Spannungswerte in der Mitte des mögli-
chen Spannungsbereiches bzw. verzögerte Transitionen). Wir stellen neue Methoden zur
Charakterisierung des metastabilen Verhaltens vor und wenden diese auf drei moder-
nen Implementierungen an. Die gewonnenen Erkenntnissen nutzen wir, um mit Hilfe
analoger Simulationen zu zeigen, dass nahezu beliebige Trajektorien am Ausgang des
Schmitt-Triggers durch eine präzise Steuerung des Einganges erzeugt werden können.
Eine Kaskadierung, wie das z.B. auch mit Flip-Flops in Synchronizern gemacht wird,
verbessert das Verhalten nur teilweise, da auch einige ungewollte Effekte hinzukommen.
Insgesamt zeigen unsere Resultate allerdings, dass eine äußerst präzise Steuerung des
Eingangssignals notwendig ist, um einen Schmitt-Trigger metastabil zu halten, was daher
dementsprechend unwahrscheinlich in praktischen Anwendungen ist.

Aus den Antworten, die wir durch die Beantwortung dieser äußerst interessanten For-
schungsfragen erhalten haben, können wir schlussfolgern, dass es keine “Zaubermethode”
im Hinblick auf die abstrakte Modellierung gibt. Jede einzelne Abstraktion ist in gewisser
Hinsicht einzigartig und bedarf einer sorgfältigen Analyse der dominanten physikalischen
Prozesse. Nur so kann eine optimale Leistung, eine hohe Genauigkeit und eine breiter
Anwendungsbereich erzielt werden.



Abstract

Over the last decades, major improvements in handling semiconductor materials led
to a massive shrinkage of transistor sizes that, in turn, enabled engineers to realize
larger and faster digital circuits. The resulting increase in complexity had, however,
negative effects on verification: Although nowadays highly accurate models of the main
physical processes, which govern the behavior of a circuit, are available, the size and
complexity of these models makes it impossible to finish simulations/computations in
reasonable time. One possible solution is to introduce abstractions, which have the
goal to reduce the verification effort by hiding certain details while preserving accuracy.
Naturally, developing proper abstractions is a very challenging task: Too little or the
wrong information provide an incomplete picture while excessive models tend to be slow.

In this thesis, we, thus, study proper abstractions for digital electronic circuits. In
our opinion, the best results are achieved by (i) understanding the underlying physical
behaviors and (ii) picking appropriate abstract models and parameters based on the
gained insights. This effectively reduces the task to observation and conclusion, so no
assumptions or even guessing is required. Whereas the abstractions and models presented
in this thesis are not meant to replace existing approaches, they provide an alternative
in between highly sophisticated methods (e.g., ordinary differential equations in analog
simulations) and overly simplified ones (e.g., digital models utilizing pure and inertial
delays). Overall, we aim at achieving reliable models, which provide high coverage and
accuracy at low verification efforts compared to existing approaches.

To achieve this goal, we thoroughly studied the following model domains:

1) Analog abstractions: To describe the analog behavior of various logic gates in a
simplified fashion, we develop new models based on physically inspired basic transistor
equations. Although these provide reasonably accurate results, the required effort is
still too high for large-scale verification. Consequently, we employ further abstractions.
Using analytic calculations and fittings, we aim at mathematical functions that allow an
approximation of the analog waveforms. We show that unique rising and falling full-range
switching waveforms provide a very good basis, since their proper combination (more
specifically, the addition of time-shifted versions) is able to closely approximate every
observed shape. We are convinced that our approach will enable the development of an
analog simulation suite with high accuracy, which only needs a fraction of the verification
time required for established analog simulation methods.
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2) Digital abstractions: We thoroughly analyze and extend the Involution Delay
Model, the only candidate for a faithful delay estimation method known so far. Based
on physically guided considerations, we (i) identify several shortcomings, (ii) provide a
proper explanation and (iii) develop improvements that remove the observed problems.
More specifically, we show how to calculate delay functions analytically, relax certain
restrictions that impaired easy applicability, and even introduce non-determinism to
improve the model coverage. Formal proofs and deductions are used to show the
correctness of our new abstractions. Simulations of simple circuits allow, for the first
time, a quantitative evaluation of the superior accuracy and the not insignificant, but
quite reasonable, overhead. This enables a fair comparison of the Involution Delay Model
and state-of-the-art digital delay models.

3) We complement our efforts on analog and digital abstractions by an in-depth
investigation of the Schmitt Trigger, in particular, its susceptibility to metastability
(intermediary output values, late transitions). By introducing and using various novel
methods, we are able to characterize the metastable behavior of this gate, i.e., when to
expect which effects. Exploiting this knowledge, we show, based on analog simulations,
how to generate an arbitrary output waveform in a common implementation by controlling
the input accordingly. We also argue that cascading Schmitt Triggers, as it is done with
Flip-Flops in a synchronizer, only improves the situation partially, as new undesired
effects are added. Overall, our results, however, show that a very fine-grained control of
the input is demanded to exploit metastable behavior in the Schmitt Trigger, making it
very unlikely in normal operation.

From the answers we obtained by investigating these interesting research questions,
we can conclude that there is no “silver bullet” w.r.t. modeling abstractions. Every
approach is unique in some respect and thus requires a careful analysis of the governing
physical behavior to achieve the optimal performance, accuracy and coverage.
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CHAPTER 1
Introduction

The most basic components in modern circuit designs are transistors, as by careful
arrangement any desired logic functionality can be realized [98]. To manufacture a
transistor, proper processing of semiconductor materials, most and foremost Silicon, is
indispensable. Over the last decades the respective methods were continuously refined
which enabled massive improvements, in particular, miniaturization [80]. In consequence
more functionality at higher speed and lower power consumption can be built on a single
chip. The downside of this overall very encouraging development is the tremendous
increase in complexity and hence in design and verification effort. This contradicts,
however, the demands from customers and industry, which expect product updates in
regular, if not decreasing, intervals. To close this ever increasing gap it is essential to
develop methods that hide non-relevant details and thus allow the designer to focus on
the problem at hand, i.e., to introduce abstractions.

Abstractions are able to improve both the design and/or the verification of a circuit.
For the former, highly sophisticated tools aim to support the engineer by simplifying
the design process. Some enable an abstract, high level description of the desired circuit
while taking care of the synthesis steps. Others provide graphical support for low level
tasks such as place & route or even run these autonomously. In the case of verification,
abstractions are supposed to enable a proper, but simplified, description of the underlying
hardware. These are essential for modern circuit designs, as measurements on fabricated
devices are hardly possible due to the very limited time-to-market [47]. Consequently
simulations have to predict the final behavior such that errors can be detected and
corrected as early as possible in the design process.

The most accurate methods for analyzing a circuit are currently simulations in the
analog domain, where the electric voltages and currents are described continuously both
in time and value. For this purpose, analytic device models derived from the underlying
physical processes are evaluated numerically in software. A very prominent example
for the latter is the tool HSPICE by Synopsys. Not surprisingly with improving, i.e.,
shrinking, technologies, the transistor models had to be extended multiple times, as
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1. Introduction

new physical effects surfaced. Supplementary new device layouts, such as Buried Oxide
(BOX) [141], Silicon-on-Insulator (SOI) [139] or Silicon-on-Sapphire (SOS) [148], just to
name a few, also triggered necessary adaptions. For this reason various transistor models
are available nowadays for HSPICE.

With feature sizes approaching the atomic lattice constant of Silicon (≈ 0.5431 nm) [15],
modeling a transistor at the physical level gets increasingly challenging. Nevertheless,
quantum physics enabled researchers to explain the underlying phenomenons, such that
the behavior, even on those small scales, is already very well understood and accurately
modeled. The (often very large number of) parameters for a particular technology are in
general provided by the manufacturer and therefore enable highly accurate simulations
prior to fabrication. Naturally this comes at a cost: Solving the often hundreds of
(ordinary differential) equations per transistor1 is expensive and thus quickly becomes
prohibitive with growing circuit size.

Larger digital circuits are hence predominantly described in the digital domain, which
is still continuous in time but only features two logic values, LO and HI. If the analog
waveform drops below the lower discretization voltage value VLO, the digital signal
becomes LO, if it exceeds the upper value VHI , it turns HI. This leads to the infamous
digital logic, with its zeros and ones, that everyone is familiar with.

Representing circuits in the digital domain not only simplifies their design, since
Boolean Logic can be used, but also enhances their verification. For example, to trace
the temporal evolution of a signal throughout a circuit, i.e., to run a timing analysis, it
is sufficient to propagate the occurrence times of the jumps in the value domain, the
transitions. In this fashion, the number of evaluation steps can be reduced significantly,
such that the resulting event-triggered simulations are finally able to cover large circuits
and long simulation times. The main challenge here is to provide reasonable propagation
delay values, which are commonly extracted from extensive analog simulations carried
out in advance. Prominent examples are the Extended Current Source Model (ECSM) by
Cadence [33] or the Complex Current Source Model (CCSM) by Synopsys [25].

Different kinds of timing analyses are possible. While static timing analysis [59]
solely considers the static delay of each gate to calculate path delays, timing simulations
apply inputs and are thus able to identify more advanced effects like signal degradation
or interference. Timing simulation hence needs to predict time and direction of a
gate’s output transitions based on the incoming ones. Multiple delay models have been
developed for this purpose, with pure and inertial delay [150] being the most basic
examples. Their rather simple mode of operation unfortunately leads to significant
mispredictions, especially for short pulses. An improvement can be achieved by utilizing
a delay function instead of a constant delay value, as is the case for, e.g., the Degradation
Delay Model (DDM) [82] and the Involution Delay Model (IDM) [17]. Note that the
authors of the IDM were able to show in [27], that all other existing delay models,
including DDM, are not able to faithfully model certain kinds of circuits. Thus, the
IDM represents currently the only candidate for a faithful delay model. Unfortunately, it
is still at a very early development stage, meaning that, at the moment, it is properly

1State-of-the-art chip use several billion of these in a single design
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1.1. Contributions

defined for minimalistic single input-single output gates (buffers and inverters) only.
Picking suitable values for the discretization threshold voltages VLO and VHI is by

no means trivial and actually has a big impact, since they determine if an analog trace
is visible in the digital domain or not. In the reverse direction, digital transitions are
often implicitly associated with steep rail-to-rail waveforms. Considering pulses that only
reach an intermediate level, this is obviously not the case. In rare situations it is actually
possible that arbitrary voltage values, even in between VLO and VHI , manifest themselves.
Although affected circuits strive heavily to escape this metastability [53], it still may take
an infinite amount of time to do so. This is even more severe, as metastable states are
intrinsically invisible in the digital domain. Solely upon metastability resolution, late
transitions may be detected.

One major cause for metastability is the violation of a memory element’s setup and
hold-time [53]. In these cases, the input changes at approximately the same time the
memory tries to capture it, which leads to undefined behavior. Metastable behavior of
the Flip-Flop has hence been well researched in the last decades. Nevertheless, also other,
less investigated and more complex, circuits show undesired behavior. One remarkable
example is the Schmitt Trigger, which is often believed to be immune to metastability,
and thus used as filter in multiple occasions.

Although the digital abstraction clearly provides big benefits, the examples presented
so far also show that they have to be deployed with great care, especially concerning
information propagation. Masking potentially important data may cause an incorrect or
incomplete signal description, such as the invisibility of metastability in the digital domain.
On the other hand only absolutely necessary information should be added, as otherwise
the abstraction looses its effectiveness. Thus identifying the crucial underlying properties
that need to be preserved is one of the most challenging tasks. Luckily there exists, in
our opinion, a simple and straightforward approach for deriving suitable abstractions:
thorough investigation of the physical processes. Properly understanding the mechanisms
that dominate the property that shall be modeled, i.e., which parts contribute in which
fashion, provides detailed insights and thus eases the identification of both crucial and
potentially neglectable parts.

1.1 Contributions
In this thesis, we will therefore utilize detailed physical knowledge to develop new
abstractions and enhance existing ones. In a first step, the physical behavior, especially
the interactions among components, is analyzed. The achieved results are then condensed
such that the abstraction represents all necessary information while it still retains low
complexity. Compared to approaches that solely use HSPICE data for fitting, methods
developed in this fashion have the advantage that all parameters can be retraced directly
to physics. In the best case, this allows generic adaptions in the case the underlying
hardware changes.

In detail we ask the following research questions:

3



1. Introduction

Q1) Is it possible to use simplified models to simulate and verify analog voltage values
throughout large digital circuits?

Q2) Can we use dedicated knowledge of the circuit structure to enhance reliable delay
estimation methods on a digital level regarding accuracy and applicability?

Q3) Can we reasonably capture metastable behavior of elaborate gates in simplified
models and can the latter be easily characterized?

In the course of this thesis we will show that every question can be answered with
Yes! The arguably most important theoretical result is the extension of the Involution
Delay Model that (i) allows to use arbitrary discretization thresholds and (ii) provides a
uniform digital representation for unique analog trajectories while faithfulness is fully
retained. The most relevant practical results are the methods we developed to characterize
the metastable behavior of a Schmitt Trigger. We not only determined the possible
metastable input-output values (in fact infinitely many) but also derive a measure for
resolution speed and time.

In order to guarantee simple reproducibility of the data gathered for this thesis,
which is, in our opinion, a very important property, we published all the developed
tools/frameworks under open source licenses. The links to the corresponding online
repositories can be found within the description of the single tools.

1.2 Outline
This thesis is organized in the following fashion: In Chapter 2, we provide basic information
about semiconductor materials, their physical properties and how they can be used to
build modern transistors. This quite in-depth knowledge is required in the succeeding
chapters to develop abstractions that match the behavior of real circuits. Be advised that
due to the broad scope of the thesis a detailed state-of-the-art analysis of each research
question will be presented separately in the respective chapter.

Chapter 3 focuses on research question Q1), i.e., modeling and describing the behavior
in the analog domain. In sharp contrast to modern approaches, we present methods with
reasonable accuracy but largely reduced complexity. In more detail, we use very simple
non-linear transistor models to gain analytic descriptions of logic gates.

We also investigate approaches to approximate the switching waveform either by
using analytic considerations or by fitting mathematical functions. For the latter, we try
to answer the question how the fittings have to be combined to also cover non-optimal
waveforms. The overall goal of this research is to predict the analog behavior based on
very few parameters, which can be propagated within a circuit.

Parts of this work have been published in

[1] Chuchu Fan, Yu Meng, Jürgen Maier, Ezio Bartocci, Sayan Mitra, and Ulrich
Schmid. „Verifying nonlinear analog and mixed-signal circuits with inputs“. In:
IFAC-PapersOnLine 51.16 (2018). 6th IFAC Conference on Analysis and Design of
Hybrid Systems ADHS 2018. issn: 2405-8963
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[2] Jürgen Maier. Modeling the CMOS Inverter using Hybrid Systems. Tech. rep.
TUW-259633. E182 - Institut für Technische Informatik; Technische Universität
Wien, 2017

Despite the difficulty for collaborative work to distinguish the individual contributions,
it is fair to say that I was responsible for the development of the analog gate models and
the integration in the simulation and verification tools. To support our simulations, we
even created our own tool called MACS, which is publicly available on GitHub2 under
the MIT -license and allows to design circuits and evaluate the corresponding analog
waveforms in MATLAB. An automatic export to multiple verification tools prevents
errors and assures that exactly the circuit, that was simulated, is verified. The tool is
based on simulations done in close cooperation with Amin Ben Sassi, albeit, I realized
the implementation.

In Chapter 4, we address research question Q2) by conducting a thorough analysis
and improvement of the IDM. Our research allows us to derive general statements about
the characterization and the shape of the delay functions, to predict the impact of changes
in the circuit and to come up with a first analytical description. Running simulations of
more elaborate circuits reveals its easy applicability. The possibilities to choose arbitrary
discretization thresholds and to add non-determinism further enhances the capabilities
of the approach, since variations, due to for example aging, can be easily covered. The
latter is in our opinion a very important ingredient for future circuit verifications as those
uncertainties allow to verify a unit for longer operation times.

To simplify the application of the IDM we developed the InvTool, which is capable to
simulate a circuit fully automatically in a popular digital simulation tool. The InvTool
is actually less a distinct program but more a general suite that allows to analyze a
given circuit: it reads user defined input specifications, performs simulations (analog
and digital), evaluates the results using different metrics, and exports the results in a
human-readable form.

This chapter is based mainly on the content published in

[3] J. Maier, M. Függer, T. Nowak, and U. Schmid. „Transistor-Level Analysis
of Dynamic Delay Models“. In: 2019 25th IEEE International Symposium on
Asynchronous Circuits and Systems (ASYNC). May 2019

[4] Jürgen Maier, Daniel Öhlinger, Ulrich Schmid, Matthias Függer, and Thomas
Nowak. „A Composable Glitch-Aware Delay Model“. In: Proceedings of the
2021 on Great Lakes Symposium on VLSI. GLSVLSI ’21. Virtual Event, USA:
Association for Computing Machinery, 2021. isbn: 9781450383936

[5] M. Függer, J. Maier, R. Najvirt, T. Nowak, and U. Schmid. „A faithful binary
circuit model with adversarial noise“. In: 2018 Design, Automation Test in Europe
Conference Exhibition (DATE). Mar. 2018

2https://github.com/jmaier0/macs
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[6] Jürgen Maier. „Gain and Pain of a Reliable Delay Model“. In: 2021 24th Euromicro
Conference on Digital System Design (DSD). 2021

[7] Daniel Öhlinger, Jürgen Maier, Matthias Függer, and Ulrich Schmid. „The Invo-
lution Tool for Accurate Digital Timing and Power Analysis“. In: Integration 76
(2021). issn: 0167-9260

[8] D. Öhlinger, J. Maier, M. Függer, and U. Schmid. „The Involution Tool for Accurate
Digital Timing and Power Analysis“. In: 2019 29th International Symposium on
Power and Timing Modeling, Optimization and Simulation (PATMOS). July 2019

For these publications, it is even harder to distribute the individual contributions.
In [3] I did the main parts of the analytic considerations and experimental evaluations
while in [4] I was mainly responsible to build the presented extensions. In [5] I developed,
jointly with Ulrich Schmid, the fundamental basic concept and all the proofs. In the case
of the InvTool I was mainly responsible for a first, primitive version, which was later
largely extended by our student Daniel Öhlinger in the course of his bachelor thesis [19].
The final suite is now publicly available on GitHub3 under GPL3 license. Besides being
the main supervisor of the thesis I supported the proper characterization of the InvTool
leading to the results published in [7] and [8].

The focus of Chapter 5 is to answer research question Q3), more specifically to
investigate metastability in Schmitt Trigger (S/T) circuits, which are often said to be
immune to metastability and thus used to clean signals. We are, however, able to show
that even this gate can be driven in such undesired states, although it takes considerable
more effort. Even worse; every possible analog intermediate value can be kept for an
infinite amount of time. To characterize an implementation, which is important to
(i) make comparisons and (ii) evaluate the resilience against metastability, we develop
multiple methods based on extensive analog simulations.

This chapter is mainly based on the publications

[9] J. Maier and A. Steininger. „Efficient Metastability Characterization for Schmitt-
Triggers“. In: 2019 25th IEEE International Symposium on Asynchronous Circuits
and Systems (ASYNC). May 2019

[10] J. Maier, C. Hartl-Nesic, and A. Steininger. Comprehensive Characterization of
Schmitt-Triggers. submitted to TCAS I June’21

[11] A. Steininger, J. Maier, and R. Najvirt. „The Metastable Behavior of a Schmitt-
Trigger“. In: 2016 22nd IEEE International Symposium on Asynchronous Circuits
and Systems (ASYNC). May 2016

[12] A. Steininger, R. Najvirt, and J. Maier. „Does Cascading Schmitt-Trigger Stages
Improve the Metastable Behavior?“ In: 2016 Euromicro Conference on Digital
System Design (DSD). Aug. 2016

3https://github.com/oehlinscher/InvolutionTool
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For [9] and [10] it is fair to say that I was the main designer of the different charac-
terization methods and responsible for the implementation and evaluation. To speed
up the characterization we created the fully automatic tool MEAT which executes the
different approaches. It is publicly available on GitHub4 under the MIT -license. For the
publications [11] and [12], I was primary involved in general considerations regarding the
behavior, experimental exploration and parts of the evaluation.

Chapter 6 shortly reviews some ideas we were not able to finish within this thesis,
which are, however, interesting avenues for further research. Finally, the thesis is
concluded in Chapter 7.

4https://github.com/jmaier0/meat
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CHAPTER 2
Background

The goal of this thesis is to develop respectively enhance circuit abstractions based
on physical considerations. For this task, a proper understanding of the underlying
physical processes is mandatory. In this chapter, we will thus very briefly introduce
semiconductors, their charge transport properties and the effects of introducing impurity
atoms. Afterwards we investigate the internal structure and the resulting characteristics
of different transistor implementations. These information will be later used to introduce
transistor models, which allow us in turn to describe arbitrary logic gates.

Please note that all the content presented in this chapter has been gathered from
various fantastic textbooks, e.g., by Kittel [86], Sze and Ng [73], Howe and Sodini [114],
Hodges, Jackson, and Saleh [89], Streetman and Banerjee [30] or Tsividis and McAndrew
[31]. Naturally our selection, regarding references and especially content, is very limited
and represents just a tiny fraction of the available material. Interested readers are thus
referred to the excellent literature for further information.

2.1 Semiconductors
In modern electronic circuits all devices are, in general, built on top of a single chunk
of semiconductor. In this case the circuit is denoted as Integrated Circuit (IC). The
main benefit, compared to separated components that are finally assembled, is the higher
integration density, which enables a reduced power consumption and increased operation
speed1. The bare semiconductor chunk the IC is built on is called die, whereat their
combination, i.e., after the circuit has been implemented, is called chip. A single die, in
turn, is cut out of a bigger piece, a round disc called wafer, which is structured at once
during manufacturing. Thus in a single of the many steps required to build an IC, e.g.,
photolitograhpy, etching and implantation, multiple dies are structured in parallel.

1In the last years, actually a trend in the opposite direction has developed, with the goal to make
circuits more flexible.
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Figure 2.1: Part of the periodic table highlighting the most important groups III, IV
and V for electronic circuits. Most common is Si, however also III-V compounds such as
GaAs or InSb are utilized.

For the wafer, also called bulk in circuit design, semiconductor materials are used,
for example the very popular Silicon (Si). It has several advantages, first and foremost
its broad availability, as it can be gathered from quartz sand. Actually, around 30 % of
the earths crust is made of Silicon, making it, behind Oxygen, the second most common
element [81]. The question we want to address in the sequel is: What are the unique
properties of a semiconductor material that are beneficial for ICs? Its name already
indicates some relationship to conductors, but what is the actual difference? To answer
these questions, we have to exploit the material properties regarding charge transport,
and, in order to achieve that, we have to investigate the internal organization of solids.

2.1.1 Lattice Structure

Despite being called atom, which is derived from the Greek word atomos meaning “not
cuttable” [55], it is possible to split the previously believed smallest particle into even
smaller components. The atomic core contains protons and neutrons, while the much
smaller electrons rotate in so-called shells around it. Protons and electrons carry an
electric charge of opposite sign such that their count has to be equal in a neutral atom.

To form solid matter lots of atoms, not necessarily of the same kind, assemble by
forming bonds among each other. The driving force behind this process is the reduction
of the atomic energy, since lower values are preferred. For this reason, atoms are thriving
to fill vacant spots in the outermost electron shell, e.g., by sharing electrons with the
neighboring atoms. This bonding, called covalent bonding [152], can be used to explain
the lattice structure of semiconductors: Assume that atom A has four out of eight spots
in its outermost shell filled by electrons. In the periodic table shown in Figure 2.1 such
elements are located in group IV. Atom A can share each of these four electrons with
another atom. In return each of these “bonded” atoms also shares an electron with atom
A such that it overall ends up with eight outer electrons, filling the shell completely.
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Fig. 1 Some important primitive cells (direct lattices) and their representative elements; a is 
the lattice constant. 
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Figure 2.2: Primitive cells of various lattice structures. a denotes the lattice constant.
For the Wurtzite structure the lattice constants differ between spatial directions. Taken
from [73, p. 9].

Covalent bonding can be observed for group IV elements, such as Silicon (Si) or
Germanium (Ge). It is, however, also encountered in materials consisting of elements
from group III and V in the periodic table (also called III-V semiconductors). Common
examples for electronic devices are GaAs, InSb, AlSb, or even more complicated ones,
like AlxGa1-xAs and InAsxSb1-x with x ∈ [0, 1] denoting the material ratio. Thus, for
electronic circuits, group III, IV and V elements (cp. Figure 2.1) are the most important
ones. Please note that in all cases each single atoms forms in total four bonds; for III-V
semiconductors group III atoms attach to four group V ones and vice versa. A very
important aspect, especially when analyzing the condensed matter, is the position of the
bond partners in space, as this influences its characteristics a lot. Different structures
can be observed in nature such as rock-salt, wurtzite and zincblende/diamond (see
Figure 2.2), whereat the latest are the ones that can be found in the semiconductors
we are considering. A common figure of merit, in this regard, is the lattice constant a,
which represents the size of a unit cell, i.e., a three dimensional unit that, if shifted by
multiples of a in all spatial directions, recreates the lattice. Just to give you an intuition:
aSi ≈ 0.5431 nm while aGaSb ≈ 0.609 593 nm [15].
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2.1.2 Charge Transport
The lattice structure has a big impact on the charge transport mechanisms in a solid,
which determine how well electrons can propagate through the material. This becomes
obvious when the crystal lattice is rotated in different spatial directions. For certain
constellations, one can see right through the whole material, while for others vision is
completely blocked. Similar to the light, also the electrons experience differing resistance,
with some directions being more favorable than others.

To derive analytic results, simple quantum electronic considerations are required.
Using this formalism, combined with the periodic nature of the lattice, it is possible
to determine the achievable electron energies as a function of the wave vector k, which
represents the wavelength and its direction. The achieved results differ significantly
among materials. Conductors impose no constraints, which enables electrons to change
their energy gradually. Semiconductors, on the contrary, define distinct energy bands (the
Conduction Band (CB) at higher energies and the Valence Band (VB) at lower energies),
which are separated by the band gap. Electrons can only achieve energy values inside the
distinct bands but not in between, whereat only those in the CB can contribute to charge
transport. This has severe impacts on the material’s electrical characteristics: A certain
amount of energy, either provided by light or by heating the material, is required to lift
electrons to the upper band. As a result, at very low temperatures no charge carrier
transport is possible. With increasing temperature, the conductivity increases, whereat
the degree of improvement depends on the size of the band gap Eg. The latter is actually
what distinguishes a semiconductor and an insulator, like SiO2. Figure 2.3 shows the
band diagram for two semiconductor materials whereat Table 2.1 lists some band gaps.

2.2 Doping
On a small scale, electric current is achieved by moving charge carriers, in detail electrons.
The macroscopic current can thus be defined as the charge transfer per time unit, i.e.,
I = Q

t , where t denotes the time frame, and Q the respective charge crossing a surface
(for example the cross section of a wire) during that time. By counting the number of
electrons, whereat each has a specific charge q, Q, and in consequence the current, can
be determined. Note that electrons, which are detached from an atom, can move with
much higher mobility through the material, which in turn also increases the conductivity.
In conductors, e.g., metals, this is easily done, since the initial bounding of electrons to
a core is very weak. In semiconductors, however, the electrons are required to literally
bond the atoms together (cp. Section 2.1). Thus considerable effort is required to detach
those electrons.

2.2.1 Electrons and Holes
When an electron is freed from its respective core it creates a vacancy that weakens the
bond. In consequence other electrons, for example ones bound at neighboring atoms, are
attracted to fill the vacancy. In this case the transferred electron leaves a vacancy at

12



2.2. Doping
14 CHAPTER 1. PHYSICS AND PROPERTIES OF SEMICONDUCTORS-A REVIEW 

6 

5 

4 

3 

2 
h 

?I v 

x l  F s 
W 

0 

-1 

-2 

-3 

4 

valley 

valley 

L [111] r [ioo] x L [1111 r [ ioo]  

Wave vector Wave vector 

(a) (b) 

Fig. 4 Energy-band structures of (a) Si and (b) GaAs, where Eg is the energy bandgap. Plus 
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duction bands. (After Ref. 20.) 

Figure 2.3: Band diagram for Silicon (left) and GaAs (right) showing the CB (top) and
VB (bottom). [100] and [111] correspond to two different directions of the wave vector k.
Taken from [73, p. 14]

its original position, which can again be filled by an electron. Overall, this results also
in a charge carrier movement, as electrons hop from one atom to the next. Describing
this movement is, however, hard, since multiple particles have to be traced. Actually, it
is much easier to model the moving vacancy, the so-called hole. Although being just a
vacancy, the hole can be interpreted as a moving particle, comparable to the electron.
The main differences are, that holes have lower mobility and propagate in an electric field
in the opposite direction, forming a separate way of charge carrying. Please note that in
general both methods are available, whereat in most cases one is the dominant one. Its
respective charge carriers are called the majority, while the other ones are denoted as the
minority charge carriers. Whether electrons or holes represent the majority depends on
the material and especially the doping, which we will consider in a minute.

In semiconductors, freeing an electron from its bonds is actually equivalent to raising
it from the Valence Band to the Conduction Band. Energy and impulse can be in-
/decreased but have to be preserved, e.g., by interaction with light particles (photons) or
lattice vibrations (phonons). Transferring an electron to the CB creates a hole in the
VB, thus this procedure is called electron-hole pair generation, while the reverse case is
called electron-hole pair recombination. In this regard, please keep in mind that electrons
always tend to reach the lowest possible energy while holes thrive for the highest one.

One of the mechanisms that we mentioned to increase the electron energy are
interactions with phonons, i.e., collisions with the vibrating atomic cores. An abstract
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Material band gap Eg [eV]

Silicon (Si) 1.12

Germanium (Ge) 0.661

Gallium Arsenide (GaAs) 1.424

Indium Antimonide (InSb) 0.17

Silicon dioxide (SiO2) 7.5 - 11.15 [140]

Table 2.1: Band gap of various materials at temperature T = 300 K. Semiconductors
have much lower band gaps compared to an insulator like SiO2. For the latter the internal
structure has a huge impact, explaining the large variations. If not stated otherwise, data
taken from [15].

description of these vibrations is actually the temperature T , whereat higher values
represent stronger vibrations and thus higher energy. Therefore, the temperature can be
used to determine the amount of electron/holes for a specific energy value E. For this
purpose, we first need a probability distribution, which states how probable it is to find
a particle at a specific energy. One possibility is the Fermi-Dirac statistic in the form

f(E) = e
E−EF
kB ·T + 1

−1
,

whereat EF denotes the Fermi Energy. Its physical meaning is that, at temperature
T = 0, causing f(E) to become a Heaviside jump at E = EF , all allowed energy levels up
to EF are filled, while those above are vacant. With increasing temperature f(E) gets
shallower such that probabilities of f(E)|E>EF

> 0 are achieved. Please note that the
higher the temperature the more probable higher energies can be reached. The overall
amount of electrons available for carrier transport is finally achieved by multiplying the
density of states d(E), denoting how many states per energy level are possible, with
f(E) and integrating over all energies. Holes are calculated in the same fashion with the
difference that 1 − f(E) is used as multiplicant. In an intrinsic material, which solely
contains atoms of the desired elements (e.g., Si in a Silicon bulk, Gallium and Arsenic
in GaAs)2, the amounts of electrons and holes have to be equal, since they are always
created in pairs. In the model this is achieved by properly adjusting EF . Finally note
that d(E) is not the same in the valence and conduction band, such that the Fermi
Energy EF actually depends on T .

2.2.2 Breaking the Symmetry
For useful electronic devices, we need to break the symmetry between electrons and holes
in a material. This has lots of useful implications that we will investigate in the remainder

2This perfect situation can never be achieved in reality. Therefore, also materials with a negligible
amount of foreign atoms are called intrinsic.

14



2.3. p-n Junction

of this chapter. For now, let us focus on the process used to create such an imbalance,
doping. In detail, a certain amount of impurity atoms, belonging to an element not part
of the material, are implanted on purpose. These then replace the original atoms in
the lattice and thus change the material properties substantially. For Silicon, member
of group IV in the periodic system and thus having four outer electrons, two forms of
doping are possible: replacing an Si atom by an element of group III (with one less outer
electron) or of group V (with one additional electron)3. The former is called positive
doping (p-type) and is often done using Boron (B), while the latter is called negative
doping (n-type) and often nitrogen (N) or phosphorus (P) is used for this purpose.

What impact does doping have? Obviously, the impurity atoms do not have the
correct number of electrons to form the original bonds. Either there is an electron missing,
leading effectively to a hole, or the bond got an excessive electron, which is only loosely
bound. In the band diagram this leads to additional energy levels, which are inside the
band gap, either very close to the VB (p-type) or CB (n-type), as shown in Figure 2.4.
Already at very low temperatures a lot of electrons in a p-type material transition from
the Valence Band to the intermediate energy level, creating holes that are in this case the
majority charge carriers. For n-type material the excessive electrons in the intermediate
energy levels quickly transition to the Conduction Band, while no holes in the VB are
created. In this case the holes are thus the minority charge carriers.

Since atoms are heavily displaced during doping, a lot of disturbances are created in
the crystal throughout the process. In general, the introduced atoms have a differing
lattice constant resulting in stressed, i.e., either compressed or stretched, atomic bonds.
Also the implantation itself is a very disruptive process. One possibility is to highly
accelerate the dopants and shoot them into the material, which partly destroys the lattice
structure. To heal at least some of the induced damage, the now doped material is heated
in a succeeding step.

2.3 p-n Junction
Directly connecting p- and n-type material, i.e., creating a p-n junction, results in one of
the most basic devices, the diode. It allows current flow only in one direction, whereat
the strength increases exponentially when a certain voltage value is exceeded. We are
going investigate the p-n junction in greater detail in the following, as we will encounter
it also when analyzing the transistor.

Let us first investigate the consequences of connecting n- and p-type material. As
we have seen, the former has lots of electrons in the CB and the latter lots of holes in
the VB. Upon contact, one might expect that electrons and holes recombine until an
intrinsic semiconductor is achieved. Despite sounding very reasonable at a first glance,
this happens only for a very limited amount of time. At closer observation, we see that
electrons, which propagate from the n- to the p-type material and then recombine, leave
a positively charged atom behind. Conversely, the atoms originally missing an electron,

3There are actually more possibilities, like replacing it with another group IV element. These are,
however, out of scope for this thesis.
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Figure 2.4: Band diagram for an (a) intrinsic, (b) n-type doped and (c) p-type doped
semiconductor. N(E) shows the density of states and F (E) the distribution function.
Please note that the product of electrons and holes is constant in all cases, i.e, n · p = n2

i .
Taken from [73, p. 24]
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i.e., which posses a hole, are finally negatively charged. If no outer potential is present
no fresh majority carriers are provided to compensate the loss. This way an electric field
builds up near the interface which prevents further charge transfer when the Fermi levels
of both materials are aligned, as is shown in Figure 2.5 (d).

The width of the region of positively and negatively charged atoms, called the Space
Charge Region (SCR) [cp. Figure 2.5 (a)], depends heavily on the doping concentration.
As stated before, electrons and holes combine until the Fermi levels are aligned, i.e.,
the potential difference is compensated. The latter can be calculated as the integral
over the electric field, which in turn is simply the integral over all charged atoms. If
there are many dopants, the electric field builds up quickly resulting in a short SCR, but
high electric fields. For low doping wider depletion regions and lower field strengths are
observed. Please note that the materials influence each other in this regard, as a poorly
doped material on one side also reduces the required field strength in the other. This
can be clearly observed in Figure 2.5 (b), where the majority of the potential difference
Ψbi is achieved in the n-type material [cp. Figure 2.5 (c)]. In this case, the SCR reaches
a long distance in the poorly doped material and only little into the strongly doped one.

Investigating the impact on the band diagrams shown in Figure 2.5 (d) provides
further insight. Recall, that electrons always tend towards the lowest energy, comparable
to stones in the water. By bending the energy band upwards, like seen by the electrons
in the n-type material, a barrier is formed that blocks them from reaching the p-type
material. Conversely, holes, which are like bubbles in a liquid, tend towards higher energy
levels. For them, the downwards bending from p- to n-type material forms a barrier as
well. Therefore no current flow is possible. By applying a voltage to the p-type material,
the energy bands are shifted against each other, such that the Fermi levels are no longer
aligned. If the voltage is applied in forward direction (positive value), the p-type end of
the diode is pushed towards lower energies, which reduces the barrier height for electrons
and holes, and thus leads to an exponential increase in current.

If the voltage is applied in the reverse direction, the barrier grows steadily. In this
state, only very little current is conducted, which actually results from stochastic electron
hole pair generation processes. With growing potential difference also the SCR extends,
until the terminals are hit. Naively one could suspect this behavior to continue infinitely.
However, above the breakthrough voltage a vast increase in current can be observed.
To understand this phenomena quantum mechanical considerations are necessary. In a
nutshell, the decreasing barrier thickness increases the chance of electrons tunneling right
through the barrier, something that is not possible in the macroscopic world.

2.4 Bipolar Transistor
Finally, we have everything at our disposal to describe the behavior of the transistor,
a device that can, in the simplest case, be considered as a voltage respectively current
controlled adjustable conductor. Over the past decades different implementations have
been developed, whereat we will start with the one that was historically used first in an
actual circuit, the bipolar transistor.
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Fig. 1 Abrupt p-n junction in thermal equilibrium. (a) Space-charge distribution. Dashed 
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Figure 2.5: (a) Charge distribution, (b) electric field, (c) potential distribution and (d)
band diagram of a p-n junction. Please note the asymmetries due to differing doping of
p- and n-material. In this case the former is higher doped. Taken from [73, p. 80]
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Fig. 3 An n-p-n transistor biased in the normal operating conditions. (a) Connection and 
biases in common-base configuration. (b) Doping profiles and critical dimensions with abrupt 
impurity distributions. (c) Energy-band diagram. Current components are shown in (a) and (c). 
Note that in (c), flow of electrons is negative current because of negative charge. 

emitter and collector junctions is given by the ideal diode equation? that is, the effects 
due to surface recombination-generation, series resistance, and high-level injection 
are neglected. Some of these effects will be considered later. We present the analysis 
in the two most-important modes-active and saturation, where the emitter-base 
junction is forward biased. 

As shown in Fig. 3b, all the potential drops occur across the junction depletion 
regions. In the neutral base region, from x = 0 to x = W, the injected minority-carriers 
distribution (electrons) is governed by the continuity equation: 

Figure 2.6: (a) Internal Structure, (b) doping profile and (c) band diagram of a bipolar
transistor. The base-collector diode used in reverse direction collects (most of) the charge
carriers injected by the emitter-base diode, which is driven in forward direction. Taken
from [73, p. 246]

Internally, the bipolar transistor consists of nothing more than two diodes in series,
as is shown in Figure 2.6. Both an NPN or a PNP stack, where N and P denote the doping
type of the single layers, are possible. Independent of the chosen stack structure, the
outer layers are called emitter (E) and collector (C), while the inner one is called base
(B). Depending on the potential differences between base and emitter, respectively base
and collector, the corresponding diodes are driven in forward or backward direction.

Only if the two diodes operate in differing directions charge transport between emitter
and collector is possible. Figure 2.6 shows an NPN implementation with the emitter-base
diode in forward and the collector-base diode in backward direction. In this setup,
electrons are inserted into the base by the emitter. Due to the strong electric field, which
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is created by the collector-base diode in backward direction, these are immediately sucked
to the collector.

The mode of operation of a bipolar transistor has several undesired side effects. Firstly,
some of the electrons injected by the emitter recombine before they reach the collector.
Secondly, holes are able to propagate from base to emitter since the emitter-base diode
is used in forward direction, resulting in a leakage current that increases the power
consumption. Considering this base current IB, it is actually possible to describe the
emitter-collector current as a multiple of IB , i.e., that the transistor is a current amplifier.
Note that various countermeasures have been developed to reduce these parasitic effects.
One of them includes the utilization of more sophisticated doping profiles, as is shown
in Figure 2.6 (b). Due to this unfavorable properties, bipolar transistors are currently
mainly used in analog circuits where a high speed of operation is desired.

2.5 Field Effect Transistor

The majority of transistors that are used in modern circuit designs are a Field Effect
Transistor (FET). Actually, such a device has already been proposed in the 1920s, however,
the technology to implement it was not yet available at that time. In contrast to the
bipolar transistor, where the base current is amplified, the FET uses an electric field to
change the conductivity of the device, and thus is more power efficient.

2.5.1 Mode of Operation

The internal structure of the FET, shown in Figure 2.7, is very similar to the bipolar
transistor. Again a PNP resp. NPN stack is used, with the difference that the outer
contacts are now denoted by source (S) and drain (D), and the middle layer is controlled
via the bulk (B) terminal. In addition, a fourth contact, the gate (G), is added, which
sits on top of the middle layer but is separated from the whole device by a thin insulator.

In contrast to the bipolar transistor, the bulk terminal is used to ensure that both
p-n junctions operate in reverse direction at all times. The question, which immediately
arises, is, how charge carrier exchange is possible in such a setup. In a nutshell, applying
a sufficiently large potential at the gate results in a very thin conducting channel right
below the insulator, which connects source and drain.

Let us investigate this channel in detail. Applying a gate voltage induces an electric
field across the insulator. This causes the energy bands near the surface to bend (cp.
Figure 2.8), such that decreasing majority charge carriers are available. For moderate
amounts this is called depletion. By further increasing the gate voltage, first weak, then
moderate and finally strong inversion is reached. Inversion indicates that the minority
charge carriers actually exceed the majority ones in number. In the end, a thin channel
between source and drain is created, which enables current flow through the device. The
NPN based device is called n-channel Metal Oxide Semiconductor Transistor (nMOS),
whereat the n denotes the n-type channel and MOS refers to the structure of the gate-
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Fig. 6 Schematic diagram of a MOSFET. 
Figure 2.7: Internal structure of a FET. On top of the inner layer of an NPN structure,
separated by a thin insulator, resides the gate, which controls the conductivity of the
underlying channel. From [73, p. 298]

bulk capacitance composition (Metal-Oxide-Semiconductor). In this context this type of
transistor is called Metal Oxide Semiconductor-Field Effect Transistor (MOS-FET).

In the following, we want to investigate the behavior of the nMOS more closely. The
PNP based p-channel Metal Oxide Semiconductor Transistor (pMOS) can be analyzed
analogously. For a start assume that gate, drain and source are connected to GND (please
note that the bulk is pinned to GND as well). The band diagram in three dimensions
for this case is shown in Figure 2.8 (b). By changing the potential difference across the
gate-bulk capacitance formed by the insulator, i.e., by applying a voltage VG to the gate
terminal, the conductivity inside the channel changes. There are actually two ways to
explain this behavior:

1. Gate and bulk form, together with the insulator in between, a capacitance. Applying
a positive voltage causes the majority carriers, i.e., the positively charged holes, to
be pushed away from the interface and electrons to be attracted. At a certain point,
the latter exceed the former, thus creating a connection consisting of electrons from
drain to source. If the voltage at the gate is removed, the holes return into the
channel and the conductivity decreases.

2. When observing the band diagram in Figure 2.8 (b) a downward bending at the
interface for a positive voltage at the gate can be identified, meaning that the CB
is pushed closer and closer to the Fermi Energy EF , while the distance to the VB
increases. Thus, according to the the Fermi distribution, the amount of electrons
increases while the amount of holes declines. Releasing the voltage bends the bands
back in their original position, also resetting the carrier distribution.

Even though a channel is created in inversion, no current is flowing when drain and
source are at the same potential. Therefore, we will, in the sequel, assume VD = VS .
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P 

Figure 2.8: Band diagrams of the FET for (b) no gate voltage, (c) considerable gate
voltage and (d) additional drain-source voltage. Taken from [73, p. 299]
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Please note that FETs, in the fashion we have presented them so far, are symmetric
devices regarding drain and source. To tackle various effects, real implementation are
optimized to make the current flow in one direction more favorable than in the other.
In this thesis, we define the current flow for nMOS from drain to source, i.e., VD > VS ,
while for the pMOS the reverse case (VS > VD) is assumed.

A potential difference between source and drain of an nMOS in the described fashion
causes electrons to propagate from source to drain4 through the channel. Initially the
current increases linearly with VD − VS as the electric field in the channel also grows
linearly. At the same time, however, a decreasing amount of minority carriers is available
at the drain end of the channel, since VG − VD decreases. This rather complex, three
dimensional problem is depicted in Figure 2.8 (d). As VG − VD declines, the difference
between Fermi level (EF n in the figure) and CB increases. Thus, the channel at that
location turns from strong to moderate inversion, weak inversion and finally depletion.
When more majority than minority charge carriers are available we say that the channel
is pinched off. This does not mean that the current flow is interrupted, since there is still
no energy barrier for the electrons. Instead, further increasing VD has diminishing effect
on the current strength.

In the beginning, we already mentioned that the bulk forces the internal diodes in
reverse direction. In this fashion, wasteful leakage currents between drain and bulk,
respectively source and bulk, are prevented. In an optimal FET the only charge carrier
transport is thus between source and drain. Since in pMOS devices the bulk is an n-type
semiconductor its voltage value VB should always be at least as high as those on drain
and source. We therefore attach it to the supply voltage VDD. Similarly, the potential
of the bulk in the nMOS must always be below every other, such that we connect it to
GND. Note that the bulk also has an impact on the onset of inversion, which depends on
the voltage drop across the insulator. Thus, the bulk terminal is sometimes used in real
circuits to adapt the transistor behavior.

2.5.2 Operation Regions

The transistor is an analog device, i.e., everything, in particular the current through the
device, is a continuous function of the gate (VG), source (VS) and drain (VD) voltages
(assuming that bulk is pinned to the appropriate value). Calculations of respective
analog waveforms are very challenging, especially for small scale devices. To simplify the
evaluation analog simulation suites, e.g., the very popular HSPICE, have been developed.
They are able to predict the behavior with very high accuracy, which makes it possible
to use the results as golden reference. This is also done in this thesis.

The rate of change of the drain current ID, forced by a constant change on one of
the terminals, is not constant but depends heavily on the operation point, i.e., the values
of VG, VS and VD at that time. Therefore, the input space is divided into operation
regions whereat in each region a different formalism is used to describe the behavior

4Note the difference to the technical current direction, which is directed from the higher to the lower
voltage.
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of the transistor. In this thesis we are going to distinguish the following cases: The
sub-threshold region (ST), where ID is very small, the ohmic region (OHM) where ID

is proportional to the input voltage and the saturation region (SAT) where the current
only changes moderately.

We already stated, that the behavior of the transistor depends on the voltage values
at its terminals. However, it is more accurate to say that not the absolute values are
of interest but solely the difference among them. For this purpose, recall the analyses
we conducted earlier on the nMOS. A positive gate voltage caused a bending of the
energy bands underneath the gate, such that electrons can enter the channel from source
and propagate to drain. Assume for a start that VS = 0 and VG > 0 large enough that
current flow is possible. By increasing VS , the energy bands in the source contact are
pushed downwards, enabling declining number of electrons to enter the channel. One can
picture this scenario as a water level that drops and thus exceeds a barrier less, leading
to less water (current) flow over the barrier. To reach the same conductivity as before,
the barrier has to be declined as well, which is achieved in the nMOS by increasing
VG. This shows, that the conductance at the source side is effectively controlled by the
voltage difference between gate and source VGS = VG − VS for nMOS respectively source
and gate VSG = VS − VG for the pMOS. Reverting the measurement direction has the
advantage that we can use the same formalism for n- and pMOS. The differing directions
of ID, which is a result of our earlier stated demand that VD > VS (nMOS) and VS > VD

(pMOS), also imply a dependence on VDS = VD − VS for the earlier while the latter is
governed by VSD = VS − VD. To ease explanations VGy will be used throughout this
thesis to denote both VGS and VSG while VDy is used simultaneously for VDS and VSD.
In the following the behavior in the different operation regions is further evaluated.

Region (ST)

We start our analysis with VGy = 0, meaning that almost no minority charge carriers are
in the channel beneath the gate, and therefore no current can be conducted. As VGy is
increased, the amount of minority charge carriers and thus the conductivity gradually
increases too, as can be seen in Figure 2.9. In circuit design this an undesired property, as
we would like to divide the input space into single distinct regions. For this purpose the
threshold voltage Vth is defined, which marks the value that has to be exceeded to achieve
considerable levels of conduction. Note that this value experiences fluctuations in real
circuits, e.g., by random dopant placement (see [110]), transistor scaling for achieving
optimal tradeoffs (see [58]) or simply varying VB.

Extracting the threshold voltage from analog simulations is not an easy task, as
can be retraced in Figure 2.9. Several approaches have been proposed, whereat we will
use the ESR method presented by Ortiz-Conde et al. [95] in this thesis. The authors
propose to determine Vth by setting the bulk (VB) and source voltage (VS) to GND/VDD

(nMOS/pMOS) while VD = VG is sweeped between GND and VDD. After the simulation,
the squared root of the drain current

√
ID is linearly fitted in the point with the highest

derivative. The value of VGS where the linear fit crosses the x-axis then determines the
threshold voltage (see Figure 2.9).
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Figure 2.9: Square root of the drain current
√

ID through a 65 nm nMOS over VGS

(VDS = VGS). The threshold voltage Vth,n was determined by a linear extension in the
point with the highest derivative.

Region (OHM)

As soon as charge transport is possible current can be conducted, whereat the value of
ID depends naturally on VDy, the potential difference between source and drain. The
induced electric field along the channel accelerates the charge carriers and thus movement.
Naturally, the higher the field strength the bigger the current5. The increase of ID is
here in linear dependence to the increase in voltage, i.e., ΔID · R = ΔVDS , which is the
reason why this is called the ohmic region (OHM). Simulations on modern devices (see
Figure 2.10) show very good agreement.

Region (SAT)

The ever increasing potential at the drain has the additional effect that the energy bands
are pushed to lower levels. Thus, the bending, induced by the gate voltage, diminishes.
If VDy reaches a certain point, in the following called the saturation voltage VDsat, the
inversion at the drain end of the channel starts to fade, which reduces conductivity
drastically. This is actually the opposite case of our discussion regarding the threshold
voltage when increasing VGS . As a result, the channel is said to be pinched off and the
effective length of the channel decreases. Since there is still an electric field, the transport
mode in this area changes from drift to ballistic, meaning that the electrons can be
imagined to pass right through. This works well for distances below the mean free path
length, which indicates how far an electron can travel in average before being scattered.
From here onwards the current only increases moderately, as can be seen in Figure 2.10.
This is the reason why this operation region is called saturation region (SAT). Table 2.2
summarizes the single operation regions and their boundary conditions.

5At least for low field strength. This topic is covered in greater detail in Section 2.5.3
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Figure 2.10: HSPICE simulations of the drain current ID through a 65 nm nMOS over
VDS for different values of VGS. The deviating behavior in (OHM) and (SAT) is clearly
visible, however, a unique separation is not easily possible.

2.5.3 Short Channel Effects

The analyses conducted so far actually assumed a rather ideal transistor and neglected a
lot of phenomena that became dominant with decreasing feature size. While early imple-
mentations delivered nearly constant current in (SAT), modern devices show significant
variations (cp. Figure 2.10). One of the main causes is the decreasing channel length,
i.e., the distance between source and drain. Newly discovered mechanisms that can be
retraced to the declining length of the channel are thus summarized as Short Channel
Effect (SCE). The most prominent ones are:

Drain Induced Barrier Lowering (DIBL)

The energy bands in the bulk can only change gradually, meaning that the CB in an
nMOS along the channel has to first rise and then again drop towards the end. If
the latter is very steep and the channel is very short the maximum is not reached any
more, as the energy band has to start bending down early. This, however, effectively
reduces the barrier height, which is the only thing that prevents electrons from entering
the channel. While this has the maybe beneficial effect that the threshold voltage
decreases it has the definitely negative effect, that more charge carriers can pass the
barrier when the transistor is shut off. Thus the leakage current, i.e., the charge carriers
that are transmitted but do not contribute to the calculation and in consequence the
power consumption, increases. Actually, nowadays such static leakage currents, which
appear when the terminal voltages are not changing, exceed the dynamic currents during
switching, resulting in lots of wasted energy, which is one of the key challenges for the
future.
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2.5. Field Effect Transistor

region condition
(ST) VG < Vth

(OHM) VGy > Vth and VDy < VDsat

(SAT) VGy > Vth and VDy > VDsat

Table 2.2: Operation regions of n- and pMOS

Velocity Saturation

With decreasing channel length, the electric field in the channel increases. This leads to
an improved acceleration of the charge carriers and thus a higher drain current. However,
at some point saturation can be observed, meaning that the charge carriers can only
move with a maximum velocity. This results from the fact that scattering, e.g., collisions
with atomic cores, becomes dominant. Note that saturation is only achieved for very
high field strengths in the range of tens of kV/cm. This value is, however, easily reached
in modern devices, since VDS = 0.8 V along a channel of 10 nm length already results in
800 kV/cm.

Hot Carrier Degradation

Since the kinetic energy of the electron depends quadratically on its speed, stronger
electric fields also increase the energy of the charge carriers. For field strength as computed
in the previous paragraph, some of them can turn into hot carriers. This means that they
accumulate so much energy to be able to tunnel through, or even worse into, the insulator.
The latter are called traps and have the effect, that the overall device characteristics is
altered significantly, especially for very low device geometries. Examples are varying
channel conductivity or threshold voltage as well as increased leakage through the gate.

2.5.4 Small Signal Analysis
So far, we have investigated the behavior of the transistor for every possible input
constellation, which is called big signal analysis. Sometimes it is, however, only important
to determine the behavior in a small region around the operation point. In this small
signal analysis the behavior of complex devices is linearly interpolated by ideal components
such as resistors, capacitances and current sources. This enables an analytic description
and analysis of also more elaborate gates. Small signal models for the transistor, as we
will present them in the following, have been provided for example by Howe and Sodini
[114] and Tietze, Schenk, and Gamm [16]. To better distinguish small signal analyzes,
small letters are used to denote currents and voltages, for example vDS instead of VDS .

Static Small Signal Circuit

In the following we will develop the static small signal circuit for an nMOS shown in
Figure 2.11 step by step. Based on the operation point (VGS , VBS , VDS) = (A, B, C) we
investigate each input separately. Let us begin with the gate. In Figure 2.9 we have
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Figure 2.11: Static small signal circuit for an nMOS. The contributions of vGS and vBS

are modeled by controlled current sources. Heavily inspired by [114] and [16].

already shown that increasing VGS leads to more current for constant VDS . To estimate
the variations around the operation point we linearize ID and model the current by a
voltage controlled current source with a value of gm · vGS , whereat

gm = ∂ID

∂VGS VGS=A

.

Similarly the influence of the bulk can be represented. At VBS = 0 the band diagram
is the one we observed for a diode. For values of VBS > 0 the bands are shifted against
each other, making it easier to pass the barrier. In return, this means that the threshold
voltages decreases or in other words that the current for a constant gate-source and
drain-source voltage increases. Thus, this influence is again modeled using a controlled
current source of the magnitude gmb · vBS with

gmb = ∂ID

∂VBS VBS=B

Please note that it is often possible to neglect the influence of the bulk, as source and
bulk are shorted wherever possible, resulting in vBS = 0.

Finally varying VDS leads to a corresponding increase or decrease of ID (cf. Fig-
ure 2.10). This can simply be depicted by adding a resistor rDS whose value is the linear
approximation in the operation point, i.e.,

rDS = ∂ID

∂VDS VDS=C

Dynamic Small Signal Circuit

In the static small signal circuit all changes have an immediate effect. In reality, however,
everything happens with limited speed. The main causes are capacitances. Adding them
to the model results in the dynamic small signal circuit shown in Figure 2.126. The

6Please note that this is still a rather simplistic model, neglecting, for example, the resistors in the
terminals.
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Figure 2.12: Simplified dynamic small signal circuit for an nMOS. Compared to the
static circuit capacitative couplings between the terminals is added. Heavily inspired
by [114] and [16].

gate is coupled to the other terminals by three separate capacitances. CGS and CGD are
caused by spatial overlaps between gate and source respectively gate and drain. CGB

denotes the coupling via the oxide with the channel, thus representing the time it takes
to attract minority charge carriers and push away the majority ones. In addition, drain
and source are coupled to the bulk, which essentially represents the SCR of the diodes.

2.6 Junction Field Effect Transistor
For sake of completeness, we want to briefly discuss the Junction Field Effect Transistor
(JFET), which is situated somewhere between FET and bipolar transistor both regarding
its internal structure and overall functionality. Starting from a bipolar transistor structure
(NPN respectively PNP), a fourth gate terminal is added once again, however, this time
not separated by a an insulator but directly implanted into the base material. Important
is, that (i) the gate has to be differently doped than the base and that (ii) it surrounds
the channel that shall be controlled. The first condition leads to a Space Charge Region
that is basically used to control the current flow. In detail, please recall that the SCR
increases when a diode is driven in reverse direction. By surrounding the channel, as
required in the second condition, the SCRs of opposite gate contacts at some point will
touch and grow together. Since there are no free charge carriers available in the channel
in this case, current flow is effectively prevented.

Please note that a JFET is a normally on device, i.e., it conducts when no voltage is
applied to its gate and blocks current if it is. In contrast, the earlier presented FET is a
normally off device, behaving just opposite.

2.7 CMOS Technology
In the previous section we have shown different implementations of a transistor. Similarly,
logic gates can also be realized in multiple fashions, varying in the used transistor
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Figure 2.13: Transistor symbols used in circuit schematics for nMOS (a) and pMOS (b).
Combining both results in an Inverter (c).

types, their location and connections and the accompanying components. Such an
implementation style is called logic family. Historically there have been various approaches
such as Resistor-Transistor Logic (RTL), Transistor-Transistor Logic (TTL), Emitter-
Coupled Logic (ECL), pMOS, nMOS or BiCMOS [22]. The most prominent for electronic
devices is, however, Complementary Metal Oxide Semiconductor Technology (CMOS) [98]
which we will therefore also use in this thesis. It utilizes both types of MOS-FETs (n-
and pMOS), whereat for the logic family pMOS and nMOS only one of them is used
(the other is replaced by a resistor). Using both has the advantage that, neglecting static
leakage current, current only flows during switching, which reduces the overall power
consumption. The respective symbols in circuit schematics are shown in Figure 2.13.

Recall that the phrase Metal Oxid Semiconductor (MOS) actually refers to the used
materials, in detail to the metal gate, the oxid (which serves as insulator) and the
semiconductor bulk. One oxide often used in this regard is SiO2, which can easily be
grown and is very stable. This was originally one of the main arguments for using Silicon.
For modern technologies the Silicon oxide, however, reaches its limits, which made it
necessary to switch to high-k materials. These have a higher dielectric constant and are
thus able to reduce the electric field in the insulator, allowing thicker layers and thus
higher resilience against tunneling. For that reason nowadays also the more general term
Metal Insulator Semiconductor-Field Effect Transistor (MIS-FET) is used.

We mentioned shortly, that, at least in theory, current is only flowing during circuit
switching. In detail a CMOS logic consists of (dual) p- and n-stacks which connect the
output to VDD (p) or GND (n). In the static case only one of them is conducting, such
that the output is either charged or discharged. During switching, however, both are
conducting at the same time for a short period, leading to direct current from VDD to
GND and thus leakage. A very simple example is the inverter shown in Figure 2.13c. It
consists of two transistors, one n- and one pMOS. More elaborate gates can be realized
by placing transistors in parallel (equivalent to a disjunction) or in series (equivalent to
conjunction). In Chapter 3 some of these will be explained in more details.
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2.8 State-of-the-Art
In this chapter, we were only able to introduce the most basic concepts regarding
semiconductors in general and transistors in detail. However, state-of-the-art devices
nowadays are already advanced version of what was presented here. Therefore, we shortly
highlight the main differences and what to expect for future devices.

Reducing the feature size of electronic circuits has yielded tremendous improvements
in circuit design: Latencies decline with parasitic capacitances, resulting in less time
for (dis-)charge processes. Thinner insulators and shorter channels allow lower supply
voltages, leading to a reduced current strength and thus power consumption.

Currently technologies with a feature size in the low nm range are available. Although
we can expect even smaller technologies in the future, physical limitations will soon
make any further improvements impossible. This becomes evident when comparing
the dimensions of a transistor to the lattice constant of silicon, which is approximately
5.431 Å 0.5431 nm [15]. This means, that already today only a handful of atoms
are used to build a transistor. As one can imagine this makes uniform doping a very
challenging task, whereat the actual position of the dopants in such devices also has a
big impact (cf. the discussion of traps in the insulator or the threshold voltage).

Since scaling is not a viable option, new layouts using novel materials are investigated.
In the MOS-FETs presented so far the gate is only on top of the channel, which is due
to the planar technology build up. It is, however, more beneficial to apply a gate on
multiple sides, similar to the JFET, leading to more minority charge carriers and thus
higher conductivity. This is already achieved in Fin-FETs where the PNP respectively
NPN structure (drain-bulk-source) is manufactured as an upstanding fin, and the gate
is wrapped around three sides of the inner layer. Scientists are currently searching
for ways to also apply the gate to the fourth side utilizing nanowires, thus achieving
gate-all-around FETs. Furthermore, completely new structures for charge transportation,
such as carbon nano tubes formed from graphene, are investigated but not yet ready for
productive systems. Overall very interesting times with a lot of novel ideas lie ahead.
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CHAPTER 3
Analog Circuit Modeling

A proper understanding of the physical processes governing the behavior of semiconductors
in general, and Field Effect Transistors in particular, enables the development of accurate
analytic models, like the BSIM family1. Such models are mandatory to realistically
predict voltages and currents prior to fabrication, and thus to verify the correctness of a
design at an early stage. Numerical evaluations in simulation suites, like HSPICE, then
lead to very precise results, which involve, however, a computationally very expensive
task. In consequence, such fine-grained analyses can only be executed in reasonable time
for circuits of rather limited size.

In this chapter we will therefore investigate, if and how an analog waveform can be
approximated with considerable less effort. We want to emphasize at this point, that
our goal is not to compete with highly accurate analog simulation suites, like HSPICE.
Instead, we see our approaches, which can be situated in between digital and fully fledged
analog simulations, as an enrichment to available simulation methods. The main area of
applications, in our opinion, is to provide a rough and quick approximation to identify
nodes, showing a potentially malicious behavior, within a circuit. In a succeeding step,
analog simulations can be used to either confirm or reject the predictions.

For a start we introduce three simplified transistor models, which will then be used
to describe various logic gates. A detailed behavioral analysis is executed for each of
them, which is important for predicting delay and metastability in Chapter 4 respectively
Chapter 5. Due to the simplicity of these transistor models, general purpose computation
and even formal verification tools can be utilized, which increases the range of possible
applications significantly. Nevertheless, the achieved improvements turn out to insufficient
for determining analog traces for larger circuits. Thus we finally investigate possible
approaches to approximate analog waveforms by mathematical functions which will,
hopefully, result in an event-driven analog simulation suite.

1http://bsim.berkeley.edu/models/
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3.1 Experimental Setup
For the research conducted within this thesis, measurements on fabricated devices is not
feasible (too expensive, too slow, desired resolution of results not possible). Instead, we
resorted to HSPICE as golden reference, which is reasonable due to its high accuracy.
Note that in some rare cases, which will be explicitly noted in the text, numerical issues
forced us to switch to the tool Spectre by Cadence.

For our analysis we further utilized multiple technology libraries, to get an intuition of
changes across technology borders. The details are stated below, whereat we determined
the threshold voltage as described in Section 2.5.2. If not stated otherwise technology (T65)
was used. Despite being rather old, it is the sole one that contains also layout information,
which leads to even more accurate simulation results.

(T65) 65 nm UMC library (VDD = 1.2 V, Vth,n ≈ 0.4 V, Vth,p ≈ 0.47 V) using a Synopsys
LEVEL 54 BSIM4 MOSFET model

(T28) 28 nm UMC high-performance-computing technology (VDD = 0.9 V, Vth,n ≈ 0.47 V,
Vth,p ≈ 0.44 V) using a Synopsys LEVEL 54 BSIM4 MOSFET model

(T15) 15 nm Nangate Open Cell Library with FreePDK15TM FinFET models [37] (VDD =
0.8 V, Vth,n ≈ 0.17 V, Vth,p ≈ 0.17 V) using a Synopsys LEVEL 72 BSIM-CMG
MOSFET model

3.2 Transistor Models
Changing technologies and layouts2 demand regular updates of the transistor model
to cover new physical phenomena or structural changes. Over the last decades, a lot
of behavioral descriptions have thus been accumulated. The manual of HSPICE alone
lists 38 supported transistor models, which include, among others, EPFL-EKV [118]
(Synopsys LEVEL 55), Advanced Compact MOSFET (ACM) [70] based on the Unified
Charged Control Model [106], PSP [76] (Synopsys LEVEL 69) and the Hiroshima Starc
IGFET Model (HiSIM) [35, 78] (Synopsys LEVEL 64). Very popular is also the BSIM
model family by UC Berkeley3, e.g., BSIM (Synopsys LEVEL 13), BSIM 2 (Synopsys
LEVEL 39), BSIM3 [124] (Synopsys LEVEL 49 and 53), BSIM4 (Synopsys LEVEL 54),
BSIM5 [71], BSIM-BULK (Synopsys LEVEL 77) and BSIM-CMG [32] (Synopsys LEVEL
72).

As all models are freely available, one can easily investigate how the analog waveforms
are calculated. For this thesis we searched for approaches whose parameters can be
directly mapped to physical parameters, to enable a simple characterization. In the
best case, following this philosophy allows a straightforward transfer of results to future
technologies, as was pointed out by Miura-Mattausch et al. [97]. Appropriate models
have been proposed by Klös and Kostka [103], Hauser [83] and Khakifirooz, Nayfeh, and

2There are actually a lot more possibilities than the ones we discussed in Chapter 2.
3http://bsim.berkeley.edu/models/
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Antoniadis [63]. In [75, 90, 127] these results have been extended by further investigating
quantum mechanical effects. A very popular model is the Alpha Power Law by Sakurai
and Newton [128], whose mapping to physical quantities was shown by Bowman et al.
[104]. Due to increasing inaccuracies it was later improved to the Extended Alpha Power
Law by Chandra, Kumar Yati, and Bhattacharyya [60].

Although having these models at our disposal, we decided, after careful considerations,
to utilize three simplified approaches that will be introduced in the sequel: The Basic
Model, which was one of the earliest transistor descriptions and is accordingly simple,
the Elaborate Model which already partly covers short channel effects and the Uniform
Model, which manages to describe the behavior in all operation regions by a single
expression. Although these approaches have a rather limited accuracy they still show
reasonable results even for modern technologies. Their trump card, however, is simplicity,
which enables the usage of general purpose simulation and verification tools.

Since the descriptions for n- and pMOS differ only minorly, in detail only in the
direction the voltage values are measured (compare Section 2.5.2), we will use in the
following a unified notation that addresses both transistors at the same time. Consistently
with Section 2.5.2, VGy will be used to simultaneously denote VGS for the nMOS and
VSG for the pMOS. Accordingly VDy has to be replaced by VDS/VSD for nMOS/pMOS.
Please keep in mind that also the parameters, e.g., the threshold voltage Vth, in the
equations differ between n- and pMOS, and have to be replaced accordingly..

3.2.1 Basic Model
The Shichman-Hodges transistor model [151] (Synopsys LEVEL 1) was developed in
1968 and provides, from a modern viewpoint, only a rudimentary description. For this
thesis, we even apply further simplifications (proposed by Sze and Ng [73]), which lead
to a system of equations that can be handled in analytic considerations.

Sub-threshold (ST)

For VGy < Vth this model completely neglects the current through the transistor, i.e.,
IST

D = 0 .

For VGy > Vth the transistor either operates in the ohmic or saturation region, whereat
the saturation voltage

VDsat = VGy − Vth

is used. More specifically (SAT) is entered when the voltage difference between gate and
drain drops below Vth. Compared to simulations (see Figure 3.1b) the model seems to
overestimate VDsat for modern technologies.

Saturation (SAT)

In saturation the current solely depends on the gate voltage and is described by

ISAT
D (VGy, VDy) = S

2 · (VGy − Vth)2
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Figure 3.1: Basic Model approximations of the drain current ID through an nMOS in
technology (T65) (a) for VGS = VDS and (b) over VDS for VGS ∈ {1.2, 1, 0.8, 0.6}V. This
simple model shows quite some deviations, especially for large gate-source voltages.

with S = 2 · k2. It can be easily retraced that k represents the slope of the linear fitting
in Figure 3.1a that was also used to determine the threshold voltage. In a physical
interpretation it corresponds to the driving strength of the transistor and is, in general,
directly proportional to the transistor width.

Note that this definition of ISAT
D neglects VDy completely, leading to constant values

with varying drain-source voltage (see Figure 3.1b). This clearly contradicts the behavior
of modern devices.

Ohmic region (OHM)

In the ohmic region (VDy < VDsat, VGy > Vth) the drain current is modeled by

IOHM
D (VGy, VDy) = S · VDy · (VGy − Vth − VDy/2)

The parabolic shape has its maximum at the transition point to (SAT). The fitting
to HSPICE simulations (see Figure 3.1b) shows substantial inaccuracies. The model
especially falsely predicts the quite fast transition from the linear shape (ID ≈ A · VDy)
to the near constant current in (SAT), which might be caused by a poor estimation of
VDsat.

3.2.2 Elaborate Model

The second approach, which is comparable to the Alpha Power Law by Sakurai and
Newton [128], is based on the analysis from Arora [123] and includes more elaborate
short channel effects.

36



3.2. Transistor Models

0 0.4 0.8 1.2

0

4

8

gate-source voltage VGS [V]

dr
ai

n
cu

rr
en

t√ I D
[√

µ
A
]

HSPICE
Elaborate Model

(a) ID(VGS , VGS)

0 0.3 0.6 0.9 1.2

0

40

80

120 (OHM) (SAT)

drain-source voltage VDS [V]
dr

ai
n

cu
rr

en
tI

D
[µ

A
]

HSPICE
Elaborate Model

(b) ID(VGS , VDS)

Figure 3.2: Elaborate Model approximations of the drain current ID through an nMOS in
technology (T65) (a) for VGS = VDS and (b) over VDS for VGS ∈ {1.2, 1, 0.8, 0.6}V. The
current increase in (SAT) is still underestimated.

Sub-threshold (ST)

As before the current in the sub-threshold case is not considered at all, i.e.,

IST
D = 0 .

The saturation voltage, however, is extended significantly, leading to

VDsat = L vsat

µs
1 + 2 µs

α L vsat
(VGy − Vth)

1/2
− 1 (3.1)

which is based on various physical and fitting parameters. Beside the channel length L
(distance between source and drain contact) the gate oxide capacitance per unit area Cox,
the saturation velocity vsat and the low field mobility

µs = µ0
1 + θ(VGy − Vth)

are used. α and θ are empirical parameters.

Ohmic region (OHM)

For VDy < VDsat the current is approximated by

IOHM
D (VGy, VDy) = 1 + µs

L vsat
VDy

−1
· S · VDy · (VGy − Vth − αVDy/2) (3.2)

with
S ≈ µs Cox W

L

37



3. Analog Circuit Modeling

µ0 [cm2/Vs] Cox [F/cm2] W [cm] L [cm] Nb [cm−3]

nMOS 349.85 1.26 × 10−6 4.5 × 10−5 6 × 10−6 1.68 × 1017

pMOS 104.45 1.33 × 10−6 6.3 × 10−5 6 × 10−6 3.99 × 1017

Table 3.1: Elaborate Model values directly determined from HSPICE parameters.

and W being the channel width. In comparison to the Basic Model, solely the first
term was added4, which causes the current to decrease stronger with increasing VDy.
Comparisons to HSPICE simulation results, shown in Figure 3.2b, reveal a very good
agreement in the ohmic region. Please note, that the values presented in the figure have
already been scaled by a factor of 10, meaning that the approach in its original form
overestimates the current significantly.

Saturation (SAT)

The single process that is modeled in the saturation region is the shortening of the
channel, which leads to a slight but steady increase in ID. This is realized by multiplying
the value at the boundary between ohmic and saturation region with a length based
scaling factor, i.e.,

ISAT
D (VGy, VDy) = IOHM

D (VGy, VDsat)
L

L − ld
. (3.3)

Unfortunately, calculating ld by

ld = VDy − VDsat

a
and a = qNb

2 0 si
,

as proposed in the original publication, using the electron charge q = 1.602 × 10−19 J,
the bulk doping Nb (see Table 3.1) as well as the permittivity values si = 11.68 and
0 = 8.854 × 10−14 F/cm leads to unreasonable results. In particular, a short steep

increase in ID at the border of (OHM) and (SAT) was observed. Sometimes ld even
exceeded L, leading to ISAT

D < 0. For this reason we utilized

ld = L · ln 1 + VDy − VDsat

VP
(3.4)

instead (proposed by Arora [123]), whereat VP represents a fitting parameter.

Parameters

Several physical and fitting parameters are used in the definition of the Elaborate Model.
Please note, that it is not within the scope of this thesis to find the best possible fitting,
resulting in maybe non-ideal values. To derive reasonable results for technology (T65)
we use different sources:

4Since α = 1 its addition to the last term has no impact.
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vsat [cm/s] α θ a [V/cm2] VP [V] Vth [V]

nMOS 8 × 106 1 0.6 1 × 1011 1 0.4

pMOS 6 × 106 1 0.8 1 × 1011 1 0.47

Table 3.2: Parameters for Elaborate Model determined from literature and simple fitting.

1. Literature: the saturation velocity vsat, the electron charge q and the permittivity
values si and 0

2. Synopsys LEVEL 54 BSIM 4 model parameters: In detail the channel width W and
length L (HSPICE: W and L), the low field mobility µ0 (HSPICE: u0), the bulk
doping Nb (HSPICE: ndep) and the gate capacitance per unit area Cox = ox 0/tox

(HSPICE: epsrox · 0/toxm)

3. Simple fitting and estimation: Some of the remaining parameters, such as the
threshold voltages, were easily obtained using simulations. Others, for example α
and θ (range of 0.03 V−1 to 0.1 V−1), had to be estimated.

The achieved values for n- and pMOS can be found in Table 3.1 and Table 3.2.

3.2.3 Uniform Model
The transistor models, introduced so far, utilize a distinct expressions for ID in each
operation region. This is, actually, one of the major challenges during evaluation, since it
is mandatory to continuously check whether the operation region has switched. Much
easier to handle is a single equation that remains valid over the whole input and output
range. The Uniform Model, introduced by Arora [123], thus merges the distinct equations
from the Elaborate Model into a single expression by introducing smooth transitions
among the operation regions. Overall the familiar looking expression

ID(VGy, VDy) = 1 + VDy µs

(L − ld)vsat

−1
· W µs Cox

(L − ld) · VDU · (VGU − Vth − α VDU /2)

is achieved, which is very similar to (3.2). The main difference is, that in this case
VGU = VGU (VGy) and VDU = VDU (VDy) denote functions that take care of the smooth
transitioning and are defined as

VGU (VGy) = η Vt · ln 1 + exp VGy − Vth

η Vt
+ Vth (3.5)

VDU (VDy) = VDsat · 1 − 1
B

· ln 1 + eA(1−VDy/VDsat) . (3.6)

Many new parameters have been introduced here: In (3.5), η = 1 + Cd
Cox

(typical range 1
to 3) is used with Cd being the depletion region capacitance. Vt represents the thermal
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Figure 3.3: Uniform Model approximations of the drain current ID through an nMOS in
technology (T65) (a) for VGS = VDS and (b) over VDS for VGS ∈ {1.2, 1, 0.8, 0.6}V. The
achieved results are very much comparable to the Elaborate Model.

Vt [V] A B VP [V] η

n- and pMOS 26 × 10−3 10 ln(1 + eA) 1 1.5

Table 3.3: Additional parameters for the Uniform Model.

voltage kB T
q (kB = 1.380 J/K the Boltzmann constant, and T the temperature in Kelvin),

which results to approximately 26 mV at room temperature (300 K). In (3.6) the constant
A and B = ln(1 + eA) are utilized. Note that VDsat is computed according to (3.1) with
VGy replaced by VGU (VGy), while for ld (3.4) is reused.

Table 3.3 provides an overview of all parameters used in the Uniform Model. The
fitting to HSPICE simulations can be observed in Figure 3.3, whereat, once again, already
the scaled values are presented (scaling factor ≈ 3).

In the sequel, we will investigate the smoothing functions VDU and VGU more closely.
For VDy = 0, (3.6) evaluates to

VDU (0) = VDsat · 1 − 1
B

· ln 1 + eA = VDsat · 1 − 1 = 0

due to the definition of B. Since VDU is used as a multiplicative factor, the overall result
ID = 0, as expected, is achieved. For VDy 0 the logarithmic term approaches zero
leading to

lim
VDy→∞

VDU = VDsat ,

which corresponds to ID(VGy, VDsat). Due to (3.4) this implies ld = 0, which finally
results in (3.2), i.e., the current expression of the Elaborate Model. Note that the rate
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Figure 3.4: CMOS Inverter implementation on the transistor level, consisting of a pMOS
(top transistor) and nMOS (bottom transistor). Their respective drain currents ID,n and
ID,p are used to determine Iout, which (dis)charges the load capacitance CL and thus
determines Vout.

of change between the limits observed above is controlled by the factor A, with higher
values leading to quicker changes.

Similar analyses can be carried out for VGU and (3.5). For VGy = 0 the exponent
becomes negative and the logarithmic term tends towards zero, leading to VGU = Vth.
This does not seem very accurate at a first glance, as this would lead to ISAT

D ∝ −V 2
Dy.

However, when plugging VGy = Vth into (3.1), VDsat becomes zero and, in consequence,
also VDU . Again, this is in accordance with the behavior of an actual transistor. For
VGy 0 the exponential term becomes dominant. So we can approximate

η Vt · ln 1 + exp VGy − Vth

η Vt
≈ η Vt · VGy − Vth

η Vt
= VGy − Vth

and in consequence
VGU (VGy) = VGy − Vth + Vth = VGy ,

which again leads to the expression observed in the Elaborate Model. Comparable to A
in (3.6), η determines the transition period whereat here, in contrast, lower values lead
to higher speed.

3.3 Inverter Models

Based on the transistor models defined in the previous section, we are finally able to
describe logic gates. We will start our analysis with the simplest CMOS circuit, the
Inverter, which is shown in Figure 3.4.
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Figure 3.5: Transfer characteristic fs(Vin) = Vout for a CMOS Inverter in technol-
ogy (T65). Operation regions are determined using the Basic Model. In between the lines
Vout − Vth,p, Vout + Vth,n and Vth,n < Vin < VDD − Vth,p both transistors are operating in
(SAT) such that the Inverter operates as a linear amplifier.

3.3.1 Behavioral Analysis

Despite the simple internal structure of the Inverter, the task to model the analog
output behavior must not be underestimated. Responsible are primarily the coupling
capacitances between input and output, in detail between the gate and source/drain
contacts of the transistors (not shown in the figure; cf. Section 2.5.4).

For a start, we will thus focus on deriving the static transfer characteristic fs(Vin) =
Vout shown in Figure 3.5. Assume that initially Vin = GND. In this case the pMOS
is conducting (VSG = VS − VG = VDD − GND > Vth,p) while the nMOS is not (VGS =
VG − VS = GND − GND < Vth,n), i.e., (ID,n = 0). Consequently the load capacitance will
be fully charged, leading to fs(GND) = VDD. The same result is actually obtained for
all input values smaller than the nMOS threshold value Vth,n. Please note, that a real
Inverter already starts to change slightly before, which is a consequence of the utilized
method to determine the threshold value (cf. Section 2.5.2).

Analogously fs(Vin > VDD − Vth,p) = GND can be determined. In between, i.e., for
Vth,n < Vin < VDD −Vth,p, both transistors are conducting and thus form a simple voltage
divider. In this case a direct connection between GND and VDD is established, which
results in high power consumption. The concrete output voltage is thereby determined
by the conductivity ratio of the transistors. If both are in (SAT), fs(Vin) is almost linear,
i.e, the Inverter can be interpreted as an amplifier.
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Figure 3.6: Dynamic HSPICE switching behavior of a CMOS Inverter in technology (T65).
For this simulation an Inverter chain with capacitive load was used to properly shape
the pulses. The figure shows input and output of the fifth Inverter. Please note the
over/undershoot before the actual transition.

More interesting for our research is the transient behavior. A corresponding HSPICE
simulation is shown in Figure 3.6. The significant delay between Vin and Vout has two
major causes: (1) The output value is only able to change after Vin crossed the threshold
of the nMOS. (2) The output capacitance has to be discharged, which is limited by the
current conducted by the nMOS.

The simulation also reveals a voltage over- respectively undershoot on both signals
right at the beginning of the transition. This behavior can be explained by a capacitive
coupling between in- and output, also called feedthrough (Hodges, Jackson, and Saleh
[89]) or feed forward (Shoji [134]), which has been analyzed, among others, by Huang
et al. [72] and Kabbani, AlKhalili, and Al-Khalili [84]. To cover this effect, the transistor
level Inverter model has to be extended by a coupling capacitance CM (see Figure 3.7).
Its value in our considerations is approximately the sum of the gate-drain capacitances of
n- and pMOS, i.e., CM = CGD,n + CGD,p. The current through CM can be described by

CM
d
dt

(Vin − Vout) = Iin

A changing input value consequently induces a current, which has to be matched at the
output node (see Figure 3.8). In our simulation only the paths to the output capacitance
and towards the supply voltage are conducting. For the latter a negative current ID,p < 0
is achieved and thus a falling potential from Vout to VDD, i.e., Vout > VDD (the overshoot
on the output). Only after the nMOS starts to conduct, an additional path towards GND
is opened, which allows Vout to drop. Please note that this does not cause Iin to vanish.
Actually there is an input current as long as either Vin or Vout change. However, due to
the much larger currents through the transistors, it has only minor impact at this point.
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Figure 3.7: Transistor level Inverter implementation extended by coupling capacitance
CM between in- and output, which is responsible for the observed over-/undershoot effects.
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Figure 3.8: Currents inside a CMOS Inverter in technology (T65) during an in-/output
transition (thin lines). The input transition induces a current Iin leading to ID,p < 0.
This behavior stops approximately when Iin and ID,n cross.
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From this analysis it should already be clear, that the input slope has a large impact
on the overshoot. Steeper transitions lead to a higher input current and thus cause
a larger over-/undershoot, while for smoother transitions it can hardly be recognized.
Nevertheless, it is important to keep in mind that this effect exists, especially when
analyzing more complex gates later on.

3.3.2 Hybrid Inverter Model (InvHy)

Now that we are aware of the physical behavior of an Inverter, we will investigate, how
the Basic Model and Elaborate Model have to be used to achieve a reasonable description.
Recall, that these models use a separate expression for each operation region, which
makes it necessary to keep track of the operation conditions at all times. One possible
way is to define distinct states with a specific system of equations, guards which indicate
if a state has to be left and a set of transitions to other states. Such a description is
called a hybrid model, which we will develop in the sequel.

States, Guard and Invariants

The first task is to identify all possible states of the CMOS Inverter in the hybrid model.
A similar analysis has already been carried out by Hodges, Jackson, and Saleh [89], who
ended up with five different states (for a single full range input transition only). Shoji
[134] used different operation regions, which renders the results hardly comparable.

Please recall, that each transistor can be in one of three operation regions (cf. 2.5),
so at most 3 × 3 = 9 different states are possible. Luckily two of them are physically
unreasonable for general implementations, so only 7 different states are required. Each
of them will be explained in detail on the next pages, while a summary is presented at
the end of this section.

We already mentioned the crucial task of guards issuing necessary state transitions,
however neglected so far, that these transition have to be carried out instantaneously.
Otherwise, it might be possible to activate several guards simultaneously, causing the
scheduler to decide indeterministically on the succeeding state and the switching time.
Since this behavior does not represent a valid physical behavior, it has to be prevented.
For this purpose we implement each guard also as an invariant, i.e., the guard X > Y
is complemented by the invariant X Y and X < Y by X Y . This has the effect,
that the simulation is immediately interrupted as soon as an invariant is violated and
the corresponding guard gets activated. For better readability, the invariants will not be
explicitly shown in the sequel, as they can be easily derived anyway.

The graphical representation in the Vin − Vout plane (see Figure 3.9) helps to retrace
the executed evaluation steps. We develop the hybrid model state by state by following a
rising input transition (start in the top left corner and move to the right). The achieved
states are named by the scheme

“State” <name> <operation region pMOS>, <operation region nMOS> .

45



3. Analog Circuit Modeling

0 Vth,n VDD −Vth,p VDD
0

Vth,p

VDD

Vin =Vout +Vth,n

Vin =Vout −Vth,p

C

A

B

D

E

G

F

Vin [V]

V o
ut
[V
]

Figure 3.9: States of InvHy in the Vin − Vout plane. The green line denotes a typical
rising input transition. The Basic Model was used to calculate the region boundaries. Red
arrows indicate physically unreasonable transitions.

Note that the output voltage derivative is determined according to the simple Inverter
structure shown in Figure 3.4 as

CL
d
dt

Vout = Iout = ID,p − ID,n.

State A (OHM), (ST)

Initially the input is at GND and the output thus at VDD, implying that the conditions
VDD − VDsat,p < Vout < VDD and 0 < Vin < Vth,n are satisfied. More specifically the
pMOS is in its (OHM) and the nMOS in its (ST) operation region leading to the overall
output current

Iout = IOHM
D,p (VDD − Vin, VDD − Vout)

The first condition — stating that Vout stays above VDD − VDsat,p while Vin < Vth,n —
cannot be violated in physical circuits. Due to the fact that, according to our simplifica-
tions, the nMOS is not conducting in this case, only a charging current to the output
capacitance is possible. Consequently the single way to leave this state is by violating
the second condition, i.e., by increasing Vin above Vth,n. The single guard5 for this state
can hence be written as

5The notation for the guards is the region name followed by an increasing number starting with 1.
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name condition goal state

A1 Vin > Vth,n B

Please note that a state with Vout < VDD − VDsat,p and 0 < Vin < Vth,n — as will be
defined later as state C — does indeed exist. It is just not reachable from this state.

State B (OHM), (SAT)

As Vin exceeds Vth,n the nMOS starts to conduct. Note that it immediately operates in
its (SAT) region, since VDS = VDD > VDsat,n = Vin − Vth,n. Due to the fact that the
pMOS stays in its (OHM) region the output current Iout results to

Iout = IOHM
D,p (VDD − Vin, VDD − Vout) − ISAT

D,n (Vin, Vout) .

This state can be left in two different directions: If (i) Vin drops again below Vth,n,
causing the nMOS to switch back to (ST), or (ii) if VDD − VDsat,p > Vout. In the latter
case the output voltage drops to the point where the pMOS enters (SAT) (move vertically
in Figure 3.9). Note that for our circuits VDD − VDsat,p > VDsat,n, which implies that
the nMOS can only reach its (OHM) region after the pMOS has entered its (SAT) (cf.
Figure 3.5). Therefore the state where both transistors are in (OHM) is unreasonable
and is one of the two that can be removed. Overall, the guards for leaving this state are

name condition goal state

B1 Vin < Vth,n A
B2 VDD − VDsat,p > Vout D

Please recall that VDsat,p depends on VGy and thus on Vin, meaning that for guard B2 in-
and output have to be considered.

State D (SAT), (SAT)

Finally, both transistors operate in their (SAT) region, i.e., the Inverter behaves as a
linear amplifier (cf. Section 3.3.1). This leads to an output current of

Iout = ISAT
D,p (VDD − Vin, VDD − Vout) − ISAT

D,n (Vin, Vout)

Depending on the input signal different successor states are possible (cf. Figure 3.9;
move left/right or up/down): For slow trajectories, the output sticks close to the static
characteristic fs(Vin), which eventually causes one of the transistors to switch to (OHM).
Fast input transitions, however, give the output no time to react and cross VDD − Vth,p

resp. Vth,n before the condition mentioned before is met, i.e., one transistor is then
operating in (ST). Overall the guards for leaving state D are therefore
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name condition goal state

D1 VDD − VDsat,p < Vout B
D2 Vin < Vth,n C
D3 Vout < VDsat,n E
D4 Vin > VDD − Vth,p F

State C (SAT), (ST)

This state can only reached from state D by a steep falling input transition such that Vin

drops below Vth,n, while retaining VDD − VDsat,p > Vout. In particular, the nMOS enters
(ST) while the pMOS stays in (SAT). Consequently, the output current results to

Iout = ISAT
D,p (VDD − Vin, VDD − Vout) .

If Vin stays below Vth,n then Vout will eventually reach the point where the pMOS
enters its (OHM) region (i.e., VDD − VDsat,p < Vout). If Vin starts rising fast enough,
however, it is possible that the nMOS enters its (SAT) operation region. Thus the guards
result to

name condition goal state

C1 VDD − VDsat,p < Vout A
C2 Vin > Vth,n D

State E (SAT), (OHM)

Increasing Vin slowly in state D causes the output to drop rapidly. Eventually Vout <
VDsat,n is satisfied and the nMOS enters its (OHM) region, while the pMOS stays in
(SAT). The current then results to

Iout = ISAT
D,p (VDD − Vin, VDD − Vout) − IOHM

D,n (Vin, Vout) .

Further increasing Vin, more specifically when VDD − Vth,p is crossed, causes the
pMOS to stop conducting (enter its (ST) operation region) while decreasing Vin returns
nMOS to (SAT). The guards for this state are thus

name condition goal state

E1 Vout > VDsat,n D
E2 Vin > VDD − VDsat,p G
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State F (ST), (SAT)

Comparable to C this state is solely reachable from D by a steep rising input transition,
which causes the pMOS to stop conducting. The current in this case results to

Iout = −ISAT
D,n (Vin, Vout) .

Eventually, the output voltage drops below VDsat,n causing the nMOS to enter its
(OHM) region, even for constant Vin. If the latter drops, however, faster and becomes
smaller than VDD − Vth,p, this causes the pMOS to enter (SAT) again. Therefore the
guards for leaving state F are

name condition goal state

F1 Vin < VDD − Vth,p D
F2 Vout < VDsat,n G

State G (ST), (OHM)

Finally, when the transition is nearly finished, this state is entered where the nMOS
operates in its (OHM) and the pMOS in its (ST) region. The current then results to

Iout = −IOHM
D,n (Vin, Vout) .

The only way to leave this state is to drive Vin below VDD − Vth,p, such that the
pMOS starts conducting again. It is not possible to drive the nMOS back into its (SAT)
operation region, since this is equivalent to increasing Vout for Vin > VDD − Vth,p. For
this input voltage, however, solely the nMOS is conducting, making it only possible to
discharge the capacitance at the output. Considering this, the single guard is

name condition goal state

G1 Vin < VDD − VDsat,p E

This concludes the hybrid Inverter model shown in Figure 3.10. Guards, invariants
and drain current for each state are summarized in Tables 3.4, 3.5 and 3.6 respectively.
Please note that the same set of states could be achieved by investigating a falling input
transition, with the difference, that the states are encountered in the reverse order.

The above described set of states (A-G) is complete, meaning that only seven of the
possible 32 = 9 states are valid. We already discussed why the state with both n- and
pMOS in (OHM) is unreasonable. In addition the state where both are in (ST) is only
reachable if Vth,n > VDD − Vth,p which is for example the case in technology (T28). We
will not discuss the appropriate model in detail but just show a graphical representation
in Figure 3.11. The number of possible states reduces to five as it is now mandatory
that at least one transistor is in (ST). This is in accordance to previous, far more
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A
pMOS: (OHM)

nMOS: (ST)

B
pMOS: (OHM)
nMOS: (SAT)

C
pMOS: (SAT)
nMOS: (ST)

D
pMOS: (SAT)
nMOS: (SAT)

E
pMOS: (SAT)

nMOS: (OHM)

F
pMOS: (ST)

nMOS: (SAT)

G
pMOS: (ST)

nMOS: (OHM)

A1

B1

B2

C1

C2D1

D2

D3

D4E1

E2

F1

F2G1

Figure 3.10: Graphical representation of the hybrid Inverter model. Each node represents
a single state which is identified by the operation regions of the n- and pMOS.

elaborate Inverter models, which have been developed by Consoli, Giustolisi, and Palumbo
[50] (distinguish between constant and varying output), Chaourani and Nikolaidis [40]
(considers sub-threshold voltage) and Chaourani et al. [39] (far more states used).
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from state guard name condition to state

A A1 Vin > Vth,n B

B
B1 Vin < Vth,n A

B2 VDD − VDsat,p > Vout D

C
C1 VDD − VDsat,p < Vout A

C2 Vin > Vth,n D

D

D1 VDD − VDsat,p < Vout B

D2 Vin < Vth,n C

D3 Vout < VDsat,n E

D4 Vin > VDD − Vth,p F

E
E1 Vout > VDsat,n D

E2 Vin > VDD − Vth,p G

F
F1 Vin < VDD − Vth,p D

F2 Vout < VDsat,n G

G G1 Vin < VDD − Vth,p E

Table 3.4: Guards of the single states in the InvHy model. If
the condition is fulfilled the guard is triggered and the system
changes from the state in the first column to the state in the
last column.

state invariant name invariant

A AI1 Vin Vth,n

B
BI1 Vin Vth,n

BI2 VDD − VDsat,p Vout

C
CI1 VDD − VDsat,p Vout

CI2 Vin Vth,n

D

DI1 VDD − VDsat,p Vout

DI2 Vin Vth,n

DI3 Vout VDsat,n

DI4 Vin VDD − Vth,p

E
EI1 Vout VDsat,n

EI2 Vin VDD − Vth,p

F
FI1 Vin VDD − Vth,p

FI2 Vout VDsat,n

G GI1 Vin VDD − Vth,p

Table 3.5: Invariants of single states in the InvHy model.
These are the negation of the guards shown in Table 3.4.
If the invariant gets invalid a transition is triggered.
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state Iout

A IOHM
D,p (VDD − Vin, VDD − Vout)

B IOHM
D,p (VDD − Vin, VDD − Vout) − ISAT

D,n (Vin, Vout)

C ISAT
D,p (VDD − Vin, VDD − Vout)

D ISAT
D,p (VDD − Vin, VDD − Vout) − ISAT

D,n (Vin, Vout)

E ISAT
D,p (VDD − Vin, VDD − Vout) − IOHM

D,n (Vin, Vout)

F −ISAT
D,n (Vin, Vout)

G −IOHM
D,n (Vin, Vout)

Table 3.6: Expression for the output current Iout in each state of the hybrid Inverter
model.

A
pMOS: (OHM)

nMOS: (ST)

B
pMOS: (SAT)
nMOS: (ST)

C
pMOS: (ST)
nMOS: (ST)

D
pMOS: (ST)

nMOS: (SAT)

E
pMOS: (ST)

nMOS: (OHM)

Figure 3.11: Graphical representation of the hybrid Inverter model for the case that
Vth,n > VDD − Vth,p. In each state, represented by a node showing the operation regions
of the transistors, one of them has to be in (ST). Thus the number of possible states is
reduced.
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Figure 3.12: Memory element (D-latch) modeled using the Uniform Model. The internal
capacitance C1

int is required to evaluate the voltage value at this point, whereat we used
CL/C1

int = 2.

3.3.3 Uniform Inverter Model (InvUni)
The hybrid model introduced in the previous section is already quite complicated,
although it describes the simplest of all gates. This is a direct consequence of the
differing expressions for ID among the transistor operation regions, which quickly increase
the number of states. Recall that the Uniform Model, in contrast, utilizes a single
equation, which will be exploited in the sequel to derive circuit models in a simple and
straightforward fashion. More specifically the transistor currents are summed up at
crossing points according to Ohm’s laws, leading to a set of n Ordinary Differential
Equations (ODE), where n is the number of (internal) nodes. To evaluate these equations,
we developed the MACS tool, which will be described in detail in Section 3.6.2.

For the Inverter the complete description collapses to

CL · d
dt

Vout = ID,p(VDD − Vin, VDD − Vout) − ID,n(Vin, Vout) = Iinv(Vin, Vout) .

Consider the huge improvement compared to the hybrid model. This single equation can
be easily evaluated in general purpose tools and thus leads quickly to results.

Reusing the Inverter model enables immediately the description of more complicated
circuits, like the D-latch shown in Figure 3.12a. A simple system of two ODEs, in detail

CL · d
dt

Vout = Iinv(V 1
int, Vout)

C1 · d
dt

V 1
int = Iinv(Vout, V 1

int)/A + Iinv(Vin, V 1
int)

(3.7)

is sufficient. Please note that the feedback Inverter in the memory loop has to be weaker
than the one connected to Vin, to assure reliable (re)set of the value in the loop. For this
purpose the respective current is divided by a factor A > 1. Figure 3.12b shows MACS
simulations for A = 5.
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Figure 3.13: The CMOS NOR gate. Compared to the Inverter one n- and pMOS were
added, whereat the former are in parallel and the latter in sequence. Simulations for Two
values of Δ show a much steeper output transition for the smaller one. Please note also
the over-/undershoot, which we already analyzed for the Inverter.

3.4 NOR-Gate Model
The fact, that the Inverter model, based upon then Uniform Model, could be developed
and evaluated very easily, raises the question how well the approach performs for more
complex gates. We start with the NOR gate, which realizes the boolean equation

O = ¬(A ∨ B)

We picked this gate as it consists of four transistors only (compared to the six for the
OR) and is thus the most natural extension of the Inverter. Nevertheless, as we will
see in the sequel, this minor change has a significant impact on the overall behavior, as
nearly-simultaneous input transitions can interfere with each other. This will become
important for the delay estimations in Chapter 4.

3.4.1 Behavioral Analysis
The transistor level implementation of the NOR gate is shown in Figure 3.13a. The
structural differences to the Inverter are quite significant: While the Inverter has unique,
comparable paths connecting the output to VDD/GND, the NOR gate has two transistors
in parallel (n-stack) and two transistors in sequence (p-stack). In addition, the relative
arrival time difference Δ between the two inputs has a big impact.

In general, Single Input Switching (SIS) (|Δ| 0) and Multi Input Switching (MIS)
(|Δ| small) are distinguished, whereat the latter can cause input-to-output delay variations.
This behavior was described, among others, by Shoji [134] or Chandramouli and Sakallah
[116]. Melcher, Röthig, and Dana [125] further observed that, depending on the output
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Figure 3.14: Delay to cross VDD/2 at the NOR output in technology (T65) in relation
to the relative input arrival times. Remarkable are the differing final values for large
deviations and the local maxima for intermediate deviations (explanation in the text).

direction, slow down and speed up collisions have to be distinguished. In the sequel we
are going to provide a detailed physical explanation for the phenomenons.

Falling Output Transition

We first investigate rising input transitions, starting from VA(0) = VB(0) = GND. In
response to each transition, one of the parallel nMOS transistors, connecting Vout to GND,
starts to conduct, while one of the two pMOS transistors in series stops conducting. In
consequence, the load capacitance (not shown in the figure) is drained, and Vout starts to
drop. Clearly this process can be accelerated when both nMOS are conducting, which
can also be seen in HSPICE simulation results shown in Figure 3.13b. The closer the
input transitions the steeper the output trajectory.

To quantify the decrease in the overall delay, let tA, tB and tO denote the points
in time when VA, VB respectively Vout cross VDD/2. As the first rising input starts the
output transition, Figure 3.14 shows tO − min(tA, tB) in relation to tB − tA. If both
input transitions are far apart, the delay for the SIS case can be observed. Interestingly
the values differ between the two inputs. This can be easily explained by the fact,
that switching only input A keeps the output connected to V 1

int, which thus has to be
discharged as well. Consequently, the specific delay actually depends on the value of V 1

int,
which has to be considered when conducting simulations. We considered the worst case
and set V 1

int = VDD. In contrast, for a switch on input B only the load capacitance has
to be discharged, which explains the lower delay.

With decreasing |tB − tA| = |Δ| the output delay decreases. Although, theoretically,
an improvement of 50 % should be possible, we obtain only 32 % respectively 37 % from
our simulations. This is, however, well in accordance with previous observations, e.g., by
Shin et al. [64], Sridharan and Chen [79] and Fukuoka, Tsuchiya, and Onodera [68].

At last we focus on the local maxima around tB − tA = −40 ps respectively 50 ps,
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Figure 3.15: HSPICE simulations for a rising output transition of a NOR gate in
technology (T65). Two values of Δ are used. The shape of the output waveform stays
constant, it solely shifts in time.

which seem very counter-intuitive. This effect looks just like the overshoot in temporal
simulations (cf. Section 3.3.1) and can actually be explained in a very similar fashion,
i.e., by considering a capacitative input-output coupling. Crucial for this is to recall that
for the first part of an input transition the transistors do not react, since the respective
threshold voltages have not yet been crossed. In this time frame, the transition thus
induces a parasitic current that slows down the output but does not contribute to its
compensation. Consequently the delay increases, which can be seen in the figure. Moving
the transitions closer together yields longer phases of parallel current conductance and
thus finally a decrease in delay.

Rising Output Transition

The behavior for rising output transitions differs significantly compared to falling ones,
since the corresponding pMOS transistors are aligned in series. This way, an internal node,
which may store arbitrary values, is created and has to potentially be charged during
switching, which naturally increases the delay of the output signal. An in-depth analysis
of this circumstance, which becomes especially interesting for multiple transistors in a row,
has been presented, e.g., by Kabbani, AlKhalili, and Al-Khalili [84] and Chatzigeorgiou,
Nikolaidis, and Tsoukalas [105].

Obviously both transistors have to conduct to initiate an output transition. A single
falling input thus only cuts the connection to GND through one of the nMOS while
simultaneously one of the pMOS starts conducting. Only after the second input switch
the output starts to change (see Figure 3.15). Remarkably, the shape of the output
transition stays approximately the same, solely its point in time changes. This is in stark
contrast to the falling output case.

The thoughtful reader might have already inferred from the previous explanations,

56



3.4. NOR-Gate Model

−100 −50 0 50 100

37.2

44.9

49

+9.13 %

+31.72 %

input transition deviation tB − tA [ps]

t O
−

m
ax
(t

A
,t

B
)
[p

s]

Figure 3.16: Time for the NOR output to reach VDD/2 in technology (T65) after the
second input reached that value, in relation to Δ. Remarkable are the differing final values
for large deviations, which depend on the initial value of V 1

int (GND in these simulations).

that the order of the input transitions matters. For VA = GND and VB = VDD, V 1
int will

be charged to VDD, which will later speed up the rising output transition. For VA = VDD

and VB = GND, it gets, however, discharged to GND. In this case, an additional delay,
resulting from charging V 1

int to VDD is introduced. This explains the severely differing
delays for |tA − tB| 0 in Figure 3.16. In general, the delay increases with the distance
of the last switching transistor to the output node (see also Shoji [134]).

Interestingly, for rising output transitions the delay increases for |tA − tB| → 0. An
explanation for this behavior can again be found in a capacitive coupling between the
inputs and the node V 1

int. When both inputs switch at the same time, there is a current
induced over the coupling capacitances into the internal node. However, since none of the
adjacent transistors is yet conducting, the charge carriers accumulate at V 1

int. Only after
conductance is established, which is initially a very slow procedure, they can be removed.
For input transitions further apart, this charge was already, at least partly, removed and
thus the delay decreases. In our simulations, we see an increase of 9 respectively 31 %
which is in accordance to previous results by Shin et al. [64], Sridharan and Chen [79]
and Fukuoka, Tsuchiya, and Onodera [68].

Please note that, similar to falling output transitions, the initial value of the internal
node impacts the absolute delay. In our simulations we assumed the worst case, i.e.,
V 1

int = GND.

3.4.2 Hybrid NOR Model

The development of a hybrid Inverter model (cf. Section 3.3.2) was already a very big
challenge. Considering the four transistors of the NOR gate, and thus 34 = 81 potential
states, the complexity explodes. For that reason we skipped the hybrid NOR model (also
for all subsequent circuits) and immediately turned to the Uniform Model.
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Figure 3.17: Implementation of a NOR gate in the Uniform Model and MACS simulation
results for an SIS on input A. For the simulations a ratio of CL/C1

int = 4 was used. V 1
int

shows some artifacts which are not visible in HSPICE simulations.

3.4.3 Uniform NOR Model

The uniform model for the NOR gate is very much comparable to previous examples (cf.
Section 3.3.3). Similarly to the Inverter, we have to add a capacitance at the internal
node, as shown in Figure 3.17a, to keep track of the respective voltage value. For the
NOR gate, the overall system of equations is

C1
int · d

dt
V 1

int = ID,p(VDD − VA, VDD − V 1
int) − ID,p(V 1

int − VB, V 1
int − Vout)

CL · d
dt

Vout = ID,p(V 1
int − VB, V 1

int − Vout) − ID,n(VA, Vout) − ID,n(VB, Vout) .

Note that the second input signal increases the complexity only marginally. Corresponding
SIS simulation results in MACS are shown in Figure 3.17b, whereat we used CL/C1

int =
4. Although the trajectories, overall, match HSPICE results very well, some signals
(especially the internal voltage V 1

int) show artifacts, which we suspect to be caused by
numerical inaccuracies.

To conclude this section, we want to note that we also investigated other standard
2-input gates, e.g., OR and Muller-C. Since the application of the Uniform Model is
according to the circuits already presented in the previous sections, we do not explicitly
show the result here. In summary, writing down the respective equation is very simple,
even with growing circuit sizes. Nevertheless, solving them becomes increasingly com-
plicated, leading to improved simulation times. The achieved trajectories, nonetheless,
show a physically reasonable behavior.
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Figure 3.18: The six transistor S/T implementation.

3.5 Schmitt Trigger Model
The third and last circuit we analyze in detail is the single-input S/T. This gate has an
inherent state, meaning that its behavior depends not only on the current input value
but also on the complete input history. We will exploit this property in Chapter 5, where
we investigate metastability.

3.5.1 Introduction

The key property of an S/T is the fact, that the output depends on Vin via some hysteresis,
as is shown in Figure 3.18a. More specifically, the value of Vout stays constant until a
certain upper (VHI) respectively lower (VLO) threshold has been crossed.

The basic idea behind the S/T is to propagate an input transition only after it reaches
a value that is reasonable close to VDD respectively GND and thus filter smaller pulses
automatically. This is in most cases desired, as such short pulses tend to drive digital
circuits into undesired metastable states, which may not be resolved in bounded time.
More on this topic follows in Chapter 5.

3.5.2 Behavioral Analysis

Many different implementations of an S/T are available in literature. A nice overview
and review of some of these is presented by Dokic [51]. Basically two categories can
be distinguished: inverting (Vout = VDD for low input values, cf. Figure 3.18a) and
non-inverting (Vout = GND for low input values). In the following, we will shortly discuss
an inverting six transistor design shown in Figure 3.18b. A more thorough analytical
investigation is provided by Filanovsky and Baltes [120].
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Figure 3.19: HSPICE simulation results of the S/T.

Assume the initial state Vin = GND and Vout = VDD where the transistors M1,
M2 and M6 are not conducting, M4 and M5 are fully conducting and M3 is almost
conducting. Note that the latter charges V 12

int until VGS drops below Vth,n and prevents
any further charge carrier flow. In the sequel we investigate the effect of a rising input
transition. HSPICE simulation results (voltages and currents) for this situation are
shown in Figure 3.19a resp. Figure 3.19b.

After Vin exceeds Vth,n transistor M1 slowly starts to conduct and thus creates a
direct connection over M3 between GND and VDD, i.e., the voltage drop is split across
these two transistors. The higher Vin, the more current M1 is able to conduct for the
same VDS and thus the lower V 12

int gets. The exact values actually depend on the relative
sizing of M1 and M3, so an appropriate layout is key in this implementation.

Eventually Vin − V 12
int > Vth,n is satisfied, which causes also transistor M2 to conduct.

Although often interpreted as the upper threshold voltage VHI , the corresponding value
of Vin only marks the onset of direct current flow (see also Filanovsky and Baltes [120]).
In Chapter 5 we will see that the difference to VHI is actually quite significant.

In this situation all transistors are either in (OHM) or (SAT) such that the whole
circuit serves as voltage divider. Consequently, Vout starts to drop slightly. To retain
current equilibrium the voltage drop across the p-stack, whose conductivity decreases,
has to be increased, which causes Vout and in consequence also V 45

int to decrease. At the
tipping point, i.e., the threshold voltage VHI , the falling V 45

int pushes VSG of transistor
M5 below the threshold, dramatically reducing the conductivity and thus forcing Vout to
drop even lower. This causes M3 to conduct less such that M1 can handle more current
from M2 and thus discharge Vout even faster. These processes amplify each other until
the p-stack is completely cut off and Vout is pulled to GND.

When everything has settled, Vin is at VDD, transistors M1, M2 are fully conducting,
M6 is almost conducting, while M3, M4 and M5 are blocking. The analysis for the falling
input transition can be carried out analogously and will thus not be shown explicitly.

Earlier we stated that the behavior of the S/T depends on the history of the input
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Figure 3.20: Uniform Model representation of the S/T with CL/C12
int = CL/C45

int = 4. The
results are in very good agreement to HSPICE simulations. V 45

int shows some simulation
numerical artifacts.

value and thus the circuit has a state. In this implementation the state is visible on the
values V 12

int and V 45
int, which are enforced by Vout over transistors M3 and M6. Recall that

Vin has to exceed these values to initiate a transition.

3.5.3 Uniform Schmitt Trigger Model

For the Uniform Model of the S/T two capacitance at the two internal nodes (between
M1 and M2 as well as M4 and M5) have to be added (see Figure 3.20a). To describe the
respective voltage values V 45

int, V 12
int and Vout a system of three equations is sufficient:

C45
int · d

dt
V 45

int = ID,p(VDD − Vin, VDD − V 45
int) − ID,p(V 45

int − Vin, V 45
int − Vout) −

ID,p(V 1
int − Vout, V 1

int)

C12
int · d

dt
V 12

int = ID,n(Vin − V 12
int, Vout − V 12

int) − ID,n(Vin, V 12
int) +

ID,n(Vout − V 12
int, VDD − V 12

int)

CL · d
dt

Vout = ID,p(V 45
int − Vin, V 45

int − Vout) − ID,n(Vin − V 12
int, Vout − V 12

int)

Once again C45
int and C12

int only describe internal capacitances and can be chosen much
smaller than CL. MACS results shown in Figure 3.20b utilize CL/C12

int = CL/C45
int = 4

and fit qualitatively very well to the HSPICE simulations presented earlier.
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3.6 Simulation and Verification
A major advantage of the simple transistor models we presented at the beginning of
this chapter is their relatively simple evaluation. Although the various states introduce
significant challenges, simulations can be carried out using general purpose computation
tools. Complementary, even verification is enabled, which can be utilized to prove that
certain boundaries are not violated by the analog waveform. In this section we will
present the different solutions we employed for this purpose.

3.6.1 MATLAB/Simulink
In MATLAB/Simulink it is possible to implement our hybrid models, either based upon
the Basic Model or Elaborate Model (cf. Section 3.3.2), using state automata. The nice
graphical editor allows to design the state graph just as it was presented earlier, while
guards and invariants are automatically monitored and executed. The tool is even able
to handle the complexity of the Elaborate Model such that rather accurate results close
to HSPICE simulations can be achieved.

3.6.2 MAtlab Circuit Simulations (MACS)
Throughout this chapter multiple simulation results from our tool MACS, which is
publicly available6, have been presented. It is, as indicated by its name, a simulation
framework based on MATLAB and is currently able to simulate simple circuits, output
the results and create input files for a verification tool. The latter is especially important
for the Compare Execute Check Engine (C2E2) [26] (that will be presented in the next
section), which demands that the state specifications are written (i) in one line and
(ii) without the possibility to define abbreviations. Recalling the Uniform Model, this
means that the expressions for VGU and VDU have to be expanded and inserted at every
single location. This may seem trivial, leads, however, to hundreds of exponential and
logarithmic terms.

Creating the input files automatically ensures, that exactly the same circuit that is
simulated in MATLAB is later verified, as possible errors during the implementation of
the verification model are prohibited. At the moment, only C2E2 is supported but we
are aiming to also include Flow* [45], dReach [36] or CORA [23]. Although MACS is
still under construction it already contains:

• the Uniform Model current equations
• suitable parameters for technology (T65)
• reference implementations of basic gates
• scripts for running an evaluation

The gate library contains an Uniform Model description for various logic operations.
Missing gates can be easily added, as they are built according to their transistor level

6https://github.com/jmaier0/macs
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1 function [ I_m, I_out ] = NOR(V_a, V_b, V_m, V_out)
2
3 parameters ;
4
5 I_N1 = uniform_model (V_a, V_out , ’N’ ) ;
6 I_N2 = uniform_model (V_b, V_out , ’N’ ) ;
7
8 I_P1 = uniform_model (V_DD − V_a, V_DD − V_m, ’P ’ ) ;
9 I_P2 = uniform_model (V_m − V_b, V_m − V_out , ’P ’ ) ;

10
11 I_m = vpa( I_P1 − I_P2 ) ;
12 I_out = vpa( I_P2 − I_N1 − I_N2 ) ;
13
14 end

Listing 3.1: NOR gate implementation in MACS. Note the strong connection between
description and transistor level implementation, which simplifies the design.

implementation. Listing 3.1 shows exemplarily the NOR gate. The currents through
every transistor are determined by the function uniform_model(VGy, VDy, tType) (lines
5-9). The parameter tType specifies, whether an nMOS (’N’) or pMOS (’P’) shall be
implemented. At last the currents are appropriately connected at each node (Im and
Iout), using the function vpa (lines 11-12), which does a symbolic evaluation.

In a separate script (shown in Listing 3.2) the gate is instantiated (line 9) and
augmented by capacitances (lines 10-11). Together with the currents determined earlier
a system of ODEs is specified (lines 16-22) and then numerically evaluated (line 23). In
the shown code snippet a pulse on input A, which is created by adding shifted sigmoids
(more on this follows in Section 3.7.4), and a constant value on input B is simulated.

For the future we are planning to merge MACS with already existing tools and further
extend its capabilities by built-in mechanisms of MATLAB.

3.6.3 Compare Execute Check Engine (C2E2)
For additional simulation and potential verification, we resorted to the C2E2. This tool
was designed by Fan et al. [26] to verify hybrid automata using so-called discrepancy
functions. For this thesis, we ran a hybrid Inverter model utilizing the Elaborate Model
and models of elaborate gates based on the Uniform Model in C2E2.

Input Generation

C2E2 solely operates on hybrid automata using behavioral descriptions by differential
equations. This also includes input signals, forcing us to develop suitable descriptions
for the desired shapes: a linear input slope (Ramp) and a sigmoidal shape (Sig) have
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1 % V_m V_out
2 V_init = [V_DD V_DD] ;
3 vars =[V_m V_out ] ;
4 C = [C_m C_L ] ;
5
6 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 % MODEL SECTION
8
9 [ I_m, I_out ] = NOR(V_a, V_b, V_m, V_out ) ;

10 I_m = I_m / C_m;
11 I_out = I_out / C_L;
12
13 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 % SIMULATION SECTION
15
16 baseODE = odeFunction ( [ I_m; I_out ] , vars , [V_a( t ) V_b( t ) ] ) ;
17
18 V_a = @( t ) ( V_DD./(1+ exp(−(a ( 1 ) ∗ ( t−c ( 1 ) ) ) ) ) ) + . . .
19 ( V_DD./(1+ exp(−(a ( 2 ) ∗ ( t−c ( 2 ) ) ) ) ) ) − V_DD;
20 V_b = @( t ) min (1∗ t , 0 ) ; % constant va lue
21
22 F = @( t , vars ) baseODE( t , vars , [ V_a( t ) ,V_b( t ) ] ) ;
23 [ t ,V] = ode113 (F , tspan , V_init ) ;
24
25 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing 3.2: NOR gate simulation in MACS.

been realized. To generate the former, a 4-state implementation is required, which is
shown in Figure 3.21a. Starting in state Up the input derivative is set to 1, resulting in a
linear increase with time. The guard Vin ≥ VDD assures, that a transition to state High
is triggered as soon as VDD is reached. In this state the input is kept constant for 2 time
units before dropping down again, and staying low for the same amount of time.

The automata for the Sig input (shown in Figure 3.21b) has a more elaborate descrip-
tion. Due to the fact that sigmoids never reach their final value (see also Section 3.7.3),
it is possible to reduce the state count to 2. Beneficial for our purposes is, that the time
derivative of a sigmoidal function

u(t) = VDD · (e−k·t+d + 1)−1

can be written as
d
dt

u(t) = k · u(t) · [VDD − u(t)] ,

which is implemented in the figure for k = ±5. Note that an additive term ±0.005 was
used to (i) ensure ˙Vin = 0 for Vin = 0 and thus leave the initial state at all, and (ii) to
reach the final value faster. Figure 3.22 shows the resulting analog waveforms for both
inputs.
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Up
V̇in = 1
ṫ = 1

High
V̇in = 0
ṫ = 1

Down
V̇in =−1

ṫ = 1

Low
V̇in = 0
ṫ = 1

Vin ≥VDD
t := 0

t ≥ 2
t := 0

Vin ≤ GND

t := 0

t ≥ 2
t := 0

(a) Ramp

Up
V̇in = 5Vin(VDD −Vin)+0.005

Down
V̇in =−5Vin(VDD −Vin)−0.005

t ≥ 3.2
t := 0

t ≥ 3.2
t := 0

(b) Sigmoid

Figure 3.21: Input generation automata for C2E2.

(a) Ramp (b) Sigmoid

Figure 3.22: C2E2 input traces. The colors mark the different states of the automata.
Note that for Sig only symmetric pulses are possible, i.e., where up and down transition
have the same slope.

Verification

We utilized C2E2 to successfully verify InvHy using the Elaborate Model as well as
Inverter (InvUni), NOR-gate and OR-gate models based on the Uniform Model. In
all cases the unsafe set was defined as Vout > 1.32 V, the time horizon as 6.4 s and an
uncertainty in the initial value of Vin was introduced. Unfortunately, only very limited
values were possible for the latter, as the tool quickly experienced numerical issues
otherwise. Actually, the uncertainty rapidly declines at the beginning of the simulation,
leading to almost deterministic simulations comparable to MACS.

Figure 3.23 shows the simulation results for the hybrid Inverter model InvHy. Overall
we end up, considering the 7 states of the Inverter model and the 4 respectively 2 states
of the Ramp respectively Sig automata, with 7 × 4 = 28 modes in the Ramp case and
7 × 2 = 14 in the Sig case. For the circuits based on the Uniform Model the number of
states is determined solely by the input automata alone. This is clearly visible in the
Inverter simulation results shown in Figure 3.24.

To investigate the scaling capabilities of C2E2, NOR- and OR-gate have been imple-
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×10−3

×10−3

Figure 3.23: InvHy output voltage over-approximation set for Vin = Ramp (top) and
Vin = Sig (bottom). Clearly visible are the states in Vout encoded by different colors.

×10−3

×10−3

Figure 3.24: InvUni output voltage over-approximation set for Vin = Ramp (top) and
Vin = Sig (bottom). Due to the fact that Uniform Model describes the behavior with a
single equation the amount of states is significantly less.
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Model Verification parameters Timing split [s] time [s]
Steps Initial Set Sim. Discr. I/O

InvHy 128k Vout ∈ [1.15, 1.2] 111 33 79 223
InvUni 64k Vout ∈ [1.15, 1.2] 58 124 29 211

NOR 320k Vout ∈ [1.15, 1.2] 396 1750 179 2325

OR 320k Vnor ∈ [1.199, 1.201]
Vout ∈ [0, 0.002] 943 1722 148 2813

InvHy 128k Vout ∈ [1.15, 1.2] 118 39 78 235
InvUni 64k Vout ∈ [1.15, 1.2] 30 127 20 177

NOR 320k Vout ∈ [1.15, 1.2] 168 1698 101 1967

OR 320k Vnor ∈ [1.199, 1.201]
Vout ∈ [0, 0.002] 443 1778 89 2310

InvLoop 64k V1 ∈ [1.0, 1.2]
V2 ∈ [0.5, 0.6] 27 224 5 256

Table 3.7: Verification time of InvHy, InvUni, NOR-gate and OR-gate with Ramp
(top) and Sig (bottom) input and InvLoop without input on a laptop with standard
configuration (8G RAM, Intel Core i5 CPU). All verification results are safe.

mented as well, whereat the latter is simply obtained by appending an Inverter to the
former. Thus, both circuits can be evaluated at the same time. The simulation results
for Vnor (after the NOR gate) and Vout (after the Inverter) are shown in Figure 3.25.

We also investigated an Inverter loop (InvLoop; similar to Figure 3.12a without the
driving Inverter). In contrast to the other evaluated circuits, this one does not have an
external input. Consequently, we just set the initial voltage values at the nodes and
started the simulation. The results are as expected and thus not explicitly shown.

In general, all the simulation results are qualitatively comparable to HSPICE and
show smooth output transitions even when being activated by a ramp. Verification shows
that, despite initial state uncertainty, the traces quickly converge to a deterministic
signal trace. The total verification time, split between simulation (Sim.) and discrepancy
computation (Discr.), is shown in Table 3.7.

3.6.4 Evaluation

At this point, we recall our initial goal, i.e., to model the analog waveform in an abstract
fashion, in order to handle larger circuits as well. Is this possible with the approaches
presented so far? Unfortunately the answer is No! Although the complexity of the analog
models compared to modern HSPICE models, for example, was significantly decreased,
the evaluation effort is still too high to be extended to thousands of gates. Thus we have
to conclude, that way more drastic abstractions are required, in order to possibly achieve
our goal.
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Figure 3.25: OR/NOR gate Vnor and Vout over-approximation set for Vin = Ramp (top
half) and Vin = Sig (bottom half). Shown are the trajectories for Vnor (after the NOR
gate) and Vout (after the Inverter).
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Nevertheless, our analyses are not in vain. The insights gained upon the physical
processes governing the behavior of logic gates will be used in Chapter 4 and Chapter 5
to optimize delay and metastability estimations. In addition, in the remainder of this
chapter, the simulation results of these simple models provide the basis for further analog
abstractions.

3.7 Analog Trace Abstraction
The conclusion of the previous chapter is devastating: MATLAB, and thus most probably
also tools with comparable performance, are by far not able to execute fully-fledged
analog simulations in reasonable time, even for very simplistic models. The question that
naturally arises is thus, whether it is possible to introduce higher level abstraction that
enable high accuracy descriptions with far less effort. In the sequel several approaches
towards that goal are introduced and evaluated.

Although there are infinitely many ways for a signal to bridge the gap between GND
and VDD, detailed analog simulations reveal only a very small number of waveforms at
any specific node in the circuit. This has several reasons: (i) The shape of the input signal
has no impact on gates deep inside the circuit since each gate slightly alters the analog
waveform until an equilibrium is reached. (ii) The waveforms are largely influenced by
the preceding and succeeding logic, as these determine, for example, the input slope and
the output capacitance. The combination of these values is unique within a circuit and,
consequently, so are the analog traces.

Our approach for describing the small set of possible waveforms at a specific circuit
node is to utilize the unique rising (f↑) and falling (f↓) Full-Range Switching Waveform
(FRSW), i.e., a transition that starts at one extreme value (VDD or GND) and ends at the
other. Obviously, regular rail-to-rail switchings can be modeled very accurately, however,
pulses are much harder to handle. Nevertheless, we developed good approximations even
for these challenging cases by carefully combining f↑ and f↓.

3.7.1 Full-Range Switching Waveform from Simulation
The first task is naturally to characterize the FRSWs. The straightforward approach, i.e,
running analog simulations and extracting the waveforms is very cumbersome as:

1. we only thrive to investigate a single gate, which may be hidden deep inside the
circuit. Thus identifying a proper input constellation that leads to a single transition
at the input of that gate (in both directions) is potentially a very hard task.

2. the computational effort may be very high for the simulation of the whole circuit.

These problems can be circumvented by utilizing the logic in close proximity to the
gate of interest. Simulations revealed, that extracting a rather limited area around the
gate is sufficient to achieve the same results as if the whole circuit was evaluated.
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Δ
V1 V2

Figure 3.26: Simulation setup for determining f↑ and f↓ of the Inverter. The pure
delay component Δ is required to achieve a reasonable time distance between succeeding
transitions, such that interference (pulse creation) can be avoided.

In regular structures, like Inverter chains, characterization becomes even easier. In
detail one can feed the output of a single Inverter back to its input until unique f↑ and
f↓ are repeatedly observed. It is guaranteed that such waveforms exist, since slow input
transitions lead to a faster output signal while fast inputs are slowed down at the output.
The setup of an according experiment is shown in Figure 3.26.

3.7.2 Eigenfunctions
Complementary to extraction from simulations, we are also looking for an analytic
approach to calculate f↑ and f↓. For this purpose imagine an infinite chain of the same
Inverter: A single transition at the input of the first Inverter leads, eventually, to an
output transition at each single Inverter. From a certain position onwards, one can
expect to observe the same f↑ and f↓ down the chain, i.e., they recreate each other. In
the sequel we will hence focus on such Eigenfunctions.

Eigenfunction from Static Characteristics

To reduce complexity, we first aim at determining the Eigenfunction solely based on
static considerations. Obviously, this does not deliver the most accurate results, but
hopefully provides a good intuition of a proper abstraction. For an Inverter, for example,
the main challenge is to determine Vin, such that Vout(Vin), based on the static transfer
characteristics (cf. Figure 3.5), is equal to VDD − Vin.

The relationship Vout = VDD − Vin implies that each voltage range [V, V + ΔV ] at
the input has to be passed at the same rate as [VDD − V, VDD − (V + ΔV )] at the
output. Recall for this purpose, that the Inverter can be seen as an amplifier when both
transistors are in (SAT). Assuming an amplification factor k > 1, an input change of
ΔV thus leads to an output change of k · ΔV . The fact, that this statement must be
also valid for the equilibrium point Vout(Vm) = Vm, shows the different rates of change at
in- and output. Consequently, static considerations are, unfortunately, not sufficient to
derive Eigenfunctions.

Eigenfunction with Zero Delay

The static considerations have shown that, it is mandatory to consider the dynamics
of the gate. The simplest approach is to utilize the InvHy model and start with the
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assumption of a zero-delayed output signal, i.e., Vout(t) = VDD − Vin(t). Unfortunately
this quickly leads to severe problems:

(i) In this model the output has to follow the input immediately. In a real circuit,
however, there is always some time shift between in- and output as the threshold
voltage has to be crossed before the transistors start to conduct (cf. Section 3.3).

(ii) Recall the two-dimensional representation of the states shown in Figure 3.9. The
condition Vout = VDD − Vin results in a straight line between the top left and lower
right corner and thus forces the state evolution A → C → D → F → G. This
path contains, however, the state transition from A to C which was shown to be
physically unreasonable and thus inappropriate.

(iii) Calculating the Eigenfunction for a particular state leads to unreasonable results
for certain value ranges. For example, using the Basic Model in state G the
time derivative of Vout for Vout > 2

3(VDD − Vth,n) is positive and increases with
increasing Vout. This is not physically reasonable despite input values larger than
2
3(VDD − Vth,n) are well possible in state G.

(iv) There exists a value VM ∈ [GND, VDD] such that for each initial condition Vin < VM ,
and consequently Vout > VDD − VM , the stable point (Vin, Vout) = (GND, VDD) is
approached. For initial conditions Vin > VM the final value results to (Vin, Vout) =
(VDD,GND) 7. For this reason a full range switching waveform is impossible to
achieve. More information on this topic will be provided in Section 3.7.4.

Due to these problems it is not possible to derive the Eigenfunctions of an Inverter
in this fashion. Actually, full range switching waveforms in InvHy are only possible
when the model is crucially reduced, in detail by completely removing either the n-
or pMOS. This results in two separate descriptions for the Inverter, one for a rising
output transition and one for a falling one, whereat both have to be expected to be
very inaccurate. Although we were actually able to fully specify the model and simulate
pulses, we did not pursue this approach any further due to its very bad characteristics
(e.g., the trace below/above VM for rising/falling transition has to be approximated).

Eigenfunction with Limited Delay

In the preceding analysis, the assumption Vout(t) = VDD − Vin(t) caused severe problems.
Thus we conclude, that a certain delay between in- and output, as it is also observed in
physical systems, is a necessary prerequisite. Let

d
dt

Vout(t) = F [Vout(t), Vin(t)] (3.8)

7In Chapter 5 we will identify VM as the metastable voltage.
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be the ODE describing the behavior of a buffer. To obtain the ODE for the Eigenfunction
we have to set Vin(t) = Vout(t + Δ) with Δ > 0 being the time shift between in- and
output. Replacement in (3.8) leads to

d
dt

Vout(t) = F [Vout(t), Vout(t + Δ)]. (3.9)

Since the future value at time t + Δ is required to calculate the derivative at present
time t, we end up with a retarded ODE, which is, unfortunately, at the moment only
solvable for linear equations. Nevertheless, we are cautiously optimistic that it is possible
to derive solutions also for non-linear ODEs, have, however, not yet succeeded in solving
this hard problem. Other approaches, like rearranging the equation to achieve an explicit
form for Vout(t), failed as well.

One possibility to avoid retarded ODEs is to calculate the Eigenfunction in the reverse
direction, i.e., by defining the final values and going back in time. In this case (3.8)
transforms to

d
dt

Vout(t) = −F [Vout(t), Vout(t − Δ)]

which is solvable. The result has to be interpreted again time-reversed to achieve the
correct Eigenfunction. For example, for the rising Eigenfunction a falling transition is
derived which must not be confused with the falling Eigenfunction.

The main problem with this approach is the accurate definition of the Eigenfunction
in the start interval [t0 − Δ, t0] (actually the tailing in the natural time direction) as it,
and the trace resulting from it, have to fulfill several properties and conditions:

• The derivative at time t depends on the value of Vout at time t and t − Δ. This
is already a very stringent property, which renders a lot of imaginable traces
impossible, as all three values have to match at each point in time. Please note
that Δ is constant along the whole trace, which implies that the newly defined
value at time t is used to determine the slope at time t + Δ, which again has to fit.

• The extension of the start interval for t → +∞ has to approach the correct value,
i.e., either VDD or GND. This is actually a very challenging task since the signal
shape can only be controlled by the values chosen in the initial interval.

Consequently, whereas it is in theory possible to determine the Eigenfunction using
this time-reversed approach, for practical applications, a suitable initial interval is way
too hard to find.

3.7.3 Approximation Functions
Since the exact calculation of f↑ and f↓ turned out to be very challenging, we are focusing
in the sequel on approximations using specific families of analytic functions. The main
advantage is, that it is not necessary to store the whole waveform but instead single
parameters are sufficient to calculate the required values on demand.
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Observing typical HSPICE simulations for a FRSW (cf. Figure 3.6) reveals a contin-
uous function, whose derivative gradually in-/decreases until an intermediate value is
reached. From there onward the behavior is inverse, i.e., the derivative de-/increases to
slowly approached the final value. In the course of our research we investigated some
promising candidates which, more or less, match this overall description.

Exponential Function

At a first sight an exponential does not fit our demands well, since it experiences the
highest derivative already at the start. Nevertheless, functions of the form

f↓(t) = VDD − f↑(t) = VDD · e−k·t

are very well suited to approximate later parts of the waveform, which determine how
the final value is approached.

Sigmoid Function

A sigmoid, whose switching behavior can be described by

f↑(t) = VDD − f↓(t) = VDD · (e−k·t+d + 1)−1 ,

is primarily interesting due to its smooth shape, which is very close to actual FRSWs
from start to end. This was already noticed in the past, as Plahte, Mestl, and Omholt
[112] showed how a complete logic can be built on top of sigmoids.

Unfortunately, even the sigmoid is not ideal: (1) Start- and endvalue are only
approached but never reached, which makes it hard to properly define a start point of
the transition. This problem can be circumvented by using the VDD/2 crossing time
(t = d/k). (2) The function is symmetric, which implies that it takes the same amount of
time to bridge the gap between an arbitrary voltage Vx and VDD/2 in both directions.

To depict the severe consequences of the latter consider this (exaggerated) example:
Assume a rising transition that occurred one hundred years ago. Since the waveform has
an exponential shape it has not reached VDD yet. Switching to f↓ right now would thus
take another one hundred years to hit VDD/2, which is simply not reasonable.

Hill Function

Due to the shortcomings of the sigmoid we searched for a waveform that is still close to
an actual FRSW but in addition also asymmetric. As one possible candidate we identified
the Hill Function [153], which can be described by

f↑(t) = VDD − f↓(t) = VDD · tn

kn + tn

It has several advantages:

1. f↑(0) = GND and f↓(0) = VDD
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Figure 3.27: Comparison of our approximation functions. The beginning of the Expo-
nential function is very steep and not according to reality. The other two continuously
change their derivative whereat the asymmetry of the Hill function can be seen clearly.
The final value is approached by all in the same fashion. Please note that the Sigmoid
has a value > 0 at time zero.

2. The time to reach VDD/2 is adjustable by the parameter k as f↑(k) = f↓(k) = VDD/2.
The exponent n solely determines the curvature, whereat a high value results in a
very steep curve.

3. The function is asymmetric, i.e, the initial value is quickly left whereat the final
value is slowly approached. This is actually very close to physical reality.

Figure 3.27 shows examples for all the approximation functions introduced so far.

Generating Arbitrary Waveforms in HSPICE

In order to incorporate arbitrary waveforms, like our approximation functions, in HSPICE
simulations, one can use a voltage controlled voltage source (Exxx), which allows to
determine any function using the vol argument. For example, a sigmoid is realized
between Terminals 1 and 0 by

1 E1 1 0 vol=’VDD/( 1+exp ( a∗(−TIME+c ) ) ) ’

3.7.4 Pulse Modeling
While having an accurate description of the FRSWs is already a big success, it is not
sufficient to depict the complete behavior of real circuits. Analog waveforms may reverse
their direction before the opposite value (GND resp. VDD) was reached, forming a pulse.
For accurate results we thus need the possibility to model such pulses. In the sequel we
will analyze how this can be achieved.
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V1 V2

Figure 3.28: Layout of an Inverter loop used to simulate pulses using InvUni.

General Considerations

To generate pulses from FRSWs we initially investigated the possibility to manipulate
the second derivative, e.g., by multiplying it with −1. The achieved results are, not
surprisingly, unreasonable. Just imagine a rising FRSW at the output, whose first
derivative has the shape of a positive pulse and the second shows the first period of a sine
wave. Flipping the latter in the second half would result in Vout > 0 and consequently an
increasing Vout resulting in an ever increasing Vout.

Simulations using the Uniform Model

Deriving pulses automatically from our simplified transistor models would make it possible
to either (i) record proper pulse shapes or (ii) calculate them on demand. We thus
investigated this possibility by properly initializing an Inverter loop (see Figure 3.28) and
running a simulation based on the Uniform Model.

By recalling the static transfer function of an Inverter (cf. Figure 3.5) it should
become clear, that for V1 = V2 = VM , with Vout(VM ) = VM , the voltage values will
not change over time8. For V1 < VM < V2 the stable state (V1, V2) = (GND, VDD) is
approached, while V1 > VM > V2 resolves to (V1, V2) = (GND, VDD). In these cases V1
and V2 support each other, such that quick resolution is guaranteed. Nevertheless, pulses
are not achievable as VM is never crossed (see Figure 3.29a for simulation results).

If both V1 and V2 are on the same side of VM the behavior changes significantly (cf.
Figure 3.29b). In this case both move initially in the same direction and thus compete
against each other. Eventually one signal conquers. It keeps on moving in the initial
direction, while the other signal is pushed in the opposite one. Please note that the node
“winning” the competition is the one that started closer to VM . If both start at exactly
the same value, the point (V1, V2) = (VM , VM ) is approached. Figure 3.30 shows this
resolution behavior graphically. Although pulse shapes are finally achieved they still do
not cross VM (see Figure 3.29), rendering it an incomplete description.

Adding Full-Range Switching Waveforms

Since all our efforts so far failed to model pulses accurately, we present, at last, a method
that is heavily based on fitting without providing any insights on the physical processes.
As this clearly contradicts the main goal of this thesis, we only roughly sketch the general
idea, also because the actual implementation is still a topic of ongoing research.

8This is actually the metastable state that we will discuss in Chapter 5.
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Figure 3.29: MACS simulations of the Inverter loop. Depending on the initial conditions
either direct resolution (left) or pulse creation (right) can be observed.
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Figure 3.30: Convergence Plane for starting values V1 and V2 of the Inverter loop. For
all points in the blue area the stable point (V1, V2) = (VDD,GND) is approached, while
for the ones in the green area (V1, V2) = (GND, VDD) is achieved. A special case are the
points on the red line V1 = V2, which end up in (V1, V2) = (VM , VM ).

Considering the unique FRSWs, large pulses can be quite accurately described by
following the respective waveform and, at some point, switching to the other one. Applying
this approach to shorter pulses as well, i.e., by reducing the temporal distance between
the FRSWs, reveals, that a pulse can be interpreted as a continuous transition from f↑
to f↓ and vice versa.

Consequently, the waveform at the beginning and the end of the pulse approaches the
FRSWs, which raised the question whether the region in between can also be approximated
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Figure 3.31: Creating pulses by properly adding shifted versions of the FRSWs. In this
figure sigmoids were used. For td − tu > 0 an up pulse is created, otherwise a down one.
For asymmetric FRSWs, values below GND/above VDD due to incorrect time shifts might
appear, which have to be handled with care.

by (a suitable combination of) f↑ and f↓. The solution we derived is a simple addition

Vout(t) = f↑(t − tu) + f↓(t − td) [−VDD] ,

where tu and td represent reasonable time shifts. The bigger |tu − td| the bigger the pulse.
Note that the subtraction of VDD is only required for pulses starting and ending at GND.
These can be achieved by td > tu, while for ones starting and ending at VDD, td < tu is
required9. An example trace is shown in Figure 3.31.

We verified this approach via HSPICE simulations of an Inverter, whereat the FRSWs
were extracted from analog simulations (note that in this case f↑ = VDD −f↓). The pulses
were then fitted by moving f↑ and f↓ against each other, adding them up and calculating
the difference to the HSPICE simulation. The optimal fitting, i.e., the configuration with
the minimal error, was finally stored. This procedure was repeated for each single pulse.

It turns out that the achievable approximations fit qualitatively very well to HSPICE
(see Figure 3.32), whereat the largest errors are observed for small pulses. This can be
explained by the low signal slopes, which can not be properly modeled here. Consequently
the maximum/minimum value of the pulse is over-/underestimated and thus might result
in digital transitions although the analog trajectory actually stays below/above the
threshold value. Note that a similar effect can also be observed for large pulses, however,
much less pronounced.

The achieved results indeed suggest, that it is possible to model the analog waveform
solely by knowing the FRSWs and their respective time shifts. To predict the propagation
of analog traces throughout the circuit it is, however, additionally required to predict the
parameters of the output waveform based on those on the input. Figure 3.33 shows the
relationship between them for the investigated Inverter.

9Note that this is strictly only valid for symmetric waveforms, i.e, f↑ = VDD − f↓.
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Figure 3.32: Fitting of pulses achieved by adding FRSW to HSPICE simulations. For
larger pulses the fitting is much better compared to smaller ones.
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Figure 3.33: Relationship between td − tu at output and input. The green line shows the
first median and indicates the steep decrease of the output parameters. Most changes are
caused by a shift of the second transition while the first one only slightly deviates.

Although a mapping is clearly possible, we were not yet able to work out the details.
Currently, there is a master thesis in progress with the goal of developing a fully automatic
characterization tool. It determines, based on HSPICE simulations, proper fittings and a
mathematical function to translate from input to output parameters. The main difficulty
that is encountered here is the very large search space of possible fitting functions and
their corresponding parameter values as well as the fair evaluation of the fitting error.
Based on this tool, we are very optimistic that the development of a simplified analog
simulation suite is possible. By propagating very few waveform parameters, it is, ideally,
possible to approximate the analog behavior throughout the circuit. Due to the low
complexity, the results are expected to be reasonable accurate, while only demanding a
fraction of the run time compared to HSPICE. For this reason, we consider this a very
promising path towards executing analog waveform analysis for larger circuits.
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CHAPTER 4
Delay Modeling

The results of our various attempts to reduce the complexity of analog models in the
previous chapter indicate, that there is not much hope to scale them up to large circuits.
Discrete-state continuous-time models, based on delay estimations, have the potential for
a viable alternative. In fact, digital delay estimation is a crucial task in modern circuit
development. Representing analog signals by zero time transitions happening when some
threshold value Vth is crossed1 by the analog waveform, enables on one hand the analysis
of large circuits in a short amount of time but on the other hand results in a significant
loss of information. Thus accurate delay models are instrumental for any attempt to
faithfully cover a circuit’s behavior in the digital domain.

In this chapter we will thus focus on the question how digital delay prediction methods
can be enhanced using physical considerations. At first, we provide a short introduction
of state-of-the-art delay estimation methods, whereat the IDM will be explained in detail.
We then thoroughly analyze whether/how the IDM matches the behavior of real circuits,
which reveals several interesting and important facts. The gathered information enables us
to enhance the approach by (i) calculating the utilized delay functions, (ii) automatizing
the simulation of a circuit in our InvTool using the IDM, (iii) evaluating more complex
logic gates and comparing the predictions to analog results, (iv) adding non-determinism,
which is especially interesting for formal verification, and (v) relaxing some very stringent
constraints, which enlarges applicability and simplifies the overall model characterization
effort.

We want to emphasize, that the Involution Delay Model is not supposed to be a
replacement for existing delay estimation methods, but rather an enhanced alternative.
Although it provides, in general, a behavioral description that is very close to physical
reality, and thus enables the identification of a wide range of malicious behaviors, it is
also computationally expensive. Overall, simplistic approaches might be sufficient for
early rough estimations, whereat, the IDM might be more suitable to evaluate all the

1Note that this corresponds to VLO = VHI = Vth from Chapter 1.
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4. Delay Modeling

possible behaviors of single critical components. In any case, digital approaches are only
able to indicate a possible upset. If it actually manifests for the given application has to
be verified with precise analog simulations or measurements.

4.1 Introduction
The term delay describes, in the digital domain, the time difference δ between an input
transition and the resulting output transition. The task of a delay estimation model is
to predict δ, which obviously depends on the signal propagation and possible variations
throughout a circuit. To reduce the simulation time, reasonable delay values are, in
general, not calculated on the fly but picked during a preceding characterization phase.

Delay estimation has made huge progress since very early macro modeling approaches,
for example by Brocco, McCormick, and Allen [133] in the year 1988, or simulation tools,
e.g., by Bryant et al. [135] in 1987. More and more effects such as the overshooting at the
beginning of a transition [46, 56, 72], input-to-output coupling and transistor gain [121],
input slope effects [99, 129], short channel effects [101], crosstalk at the output [88] and
proper modeling of the parasitic RC load network [131] have been considered. While
some approaches purely rely on analog simulations and fittings [25, 33], others resort to
analytic calculations of simplified transistor models (cf. Section 3.2) such as the α-power
law [111, 117, 130] or charge based models [87, 119]. To reduce complexity, which results
from considering every single operation region [43] of a transistor (cf. Section 2.5.2),
crude simplifications, like using an average current during switching [93], are applied.

The approaches also differ in the way the input slope is handled: Either slow and
fast slopes are considered separately [67] or are extrapolated based on the step input
behavior [44]. Some approach even sacrifice a certain degree of accuracy to end up with
simpler models such as done by Wang and Zwolinski [66]. Lately also neural networks [21]
have been trained to generate predictions. Note that primarily the Inverter has been
investigated in such studies, since complexity quickly rises for more advanced gates due
to additional phenomena such as multi input switching (cf. Section 3.4),

A lot of effort is nowadays invested into determining the constant static delay value that
can be used in digital timing analysis. The most prominent examples are current source
models (CSM) like the Effective CSM (ECSM) by Cadence [33] or the Composite CSM
(CCSM, also called CCS) by Synopsys [25]. Based on extensive analog simulations, the
input and its corresponding output voltage (ECSM) / current (CCSM) are extracted for
different input slopes, and load capacitance and stored in massive tables. Before starting
the digital simulation of a given circuit, the surrounding of each gate is analyzed, input
slope and load capacitances are extracted, and a suitable delay value is derived. Static
timing analysis (STA) [59] considers this delay to determine important characteristics,
like the maximum clock frequency.

To catch more evolved effects, e.g., signal degradation or interference, that lead to
very short pulses, timing simulations, which simulate the propagation of an input trace
through the circuit, are indispensable. To evaluate the most common methods, we assume
a single pulse (two transitions in opposite directions) of width Δi at a gate’s input. The
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Figure 4.1: Output (Δo) over input (Δi) pulse-width of a single in- and output gate for
the pure and inertial delay model compared to HSPICE simulations of a real circuit. The
continuous degradation can not be modeled using those simple approaches.

possible output pulse-width is denoted by Δo. Note that we call the pulse an up-pulse of
width Δ↑ if the input was initially LO followed by a rising and falling transition and a
down-pulse of width Δ↓ in the reverse case.

In the pure delay model [150], each input transition is simply delayed by a constant
amount of time, leading to Δo = Δi (see Figure 4.1a). Please note that the delay for
rising and falling transitions might differ, which results in a constant alternation ±D
of the pulse-width in one direction and ∓D in the other, for example Δo

↑ = Δi + D

respectively Δo
↓ = Δi − D. The standard inertial delay model [150] is very similar, with

the only difference that input pulses with a width smaller than some threshold A are
dropped, i.e., not propagated to the output at all. In Figure 4.1b one can clearly see the
respective discontinuity at Δi = A.

Although pulse suppression effects can also be observed in HSPICE simulations (see
Figure 4.1c), Δo shows a gradual increase in this case, which cannot be modeled by pure
and inertial delays. This is a direct consequence of using a static delay value, i.e., one
that stays constant throughout the whole timing analysis. Despite these shortcomings,
state-of-the-art industry-grade timing analysis tools still heavily utilize pure and inertial
delays. The main reasons are their simplicity and thus, speed, and the fact that “normal”
digital circuits are not supposed to operate in the regime of pulse-width degradation.
Nevertheless, due to internal gate connections, short pulses and glitches can never be
completely ruled out, even for very low input frequencies.

4.2 Single History Delay Models

To model propagation in circuits more realistically, non-constant delay values are manda-
tory. Below some threshold pulse-width, input pulses should get removed (canceled).
After exceeding this threshold the output pulse-width Δo has to gradually increase with
growing Δi. Consequently a delay function is required, which provides a delay depending
on some parameters related to the input pulse-width. Naturally, many possibilities to
pick a suitable parameter exist. The single history approach, which will be used in this
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in(t)

t
out(t)
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Figure 4.2: Delay estimation in a single history model. The delay δ is determined based
on the parameter T , which is defined as the time difference between the current input
transition and the previous output one.

thesis, derives the delay δ for the current input transition based on its temporal distance
to the previous output transition, i.e., the previous-output-to-input delay T , as is shown
in Figure 4.2. The fact that the input is only referred to the last output transition gave
raise to the term single history. Clearly this approach could be extended to consider the
last n output transitions, which will be the topic of Section 6.4.

With decreasing Δi the values for T and also δ(T ) can become negative. While
T < 0 can be easily retraced for very short input pulses, δ(T ) < 0 seems at a first glance
counter-intuitive. Reality is causal, meaning that an event can only cause a reaction
later in time, so how can this be reasonable? Well, from Figure 4.1, we know that
Δi = A leads to T + δ(T ) = 0, i.e., a zero-time pulse at the output. For Δi < A analog
simulations show trajectories, which do not cross Vth any more and thus are not visible
in the digital domain, however, still can have large impact on the delay of the succeeding
input transition. Thus it is mandatory to somehow represent these sub-threshold pulses
also in the digital delay model.

This is realized in single history models by decreasing the delay, which leads to
T + δ(T ) < 0, i.e., cancelation. The further the transition is pushed into the past the
smaller the output pulse gets (this will become clearer in Section 4.3). Note that this has
to be done with extreme care, since the models we are considering in the sequel calculate
T always in reference to the latest output transition, even if it got canceled.

4.2.1 Degradation Delay Model

A concrete implementation of a single history model is the DDM, which has been
introduced by Juan-Chico et al. [115] and was later extended several times, e.g., in [102].
A comprehensive overview of the model and all of its features is given by Bellido, Juan,
and Valencia [82].

To determine the shape of the delay function2, the authors used extensive HSPICE
simulations with input ramps. The values for T resp. δ are extracted as shown in
Figure 4.3. For varying input pulse-widths, different values are obtained and hence the
delay function δ(T ) can be determined numerically. Using ramps seems, at a first glance,

2In the original publications the delay function is called tp(T ). For the sake of uniformity, however,
we will use δ(T ) throughout this thesis.
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Figure 4.3: Characterization procedure of the DDM, showing the input slopes (Vin)
and output trajectory (Vout) of an Inverter gathered from HSPICE simulations using
technology (T15). T and δ are extracted as shown to determine δ(T ) numerically.

not very realistic, however, as the simulation algorithm later propagates not only the
switching time but also the slope, reasonable results are achieved.

Careful analysis of the gathered numerical values allowed Bellido-Díaz et al. [100] to
fit their delay function to a decaying exponential, i.e.,

δ(T ) = tp0 1 − e− T −T0
τ , (4.1)

where tp0 denotes the maximum delay, T0 the crossing point of the x-axis and τ the rate
of change. Moreover, the authors also provided qualitative physical explanations as well
as characterization methods for the parameters T0 and τ [100]. Note carefully, however,
that extensive HSPICE simulations are still mandatory to obtain accurate parameters
for the delay function.

Figure 4.4 shows an example delay function, where different operation regions, as
defined by Bellido, Juan, and Valencia [82], are shown: In the Normal propagation
region, the delay is nearly constant and very close to tp0 such that Δo ≈ Δi. In the
Degradation effect region, a significant reduction of the delay can be observed, leading
to continuously decreasing Δo. Finally in the Pulse filtering region, an input pulse is
suppressed completely, resulting in no output transition at all. Note that we do not agree
with Bellido, Juan, and Valencia regarding the onset of pulse filtering, which was defined
by them at δ(T ) = 0. In this case the output pulse-width, according to Figure 4.2, results
in Δo = T + δ(T ) = T > 0. Thus there is no cancelation. In our opinion, pulse filtering
starts when the second median is crossed, i.e., at T = −δ(T ).

Although DDM looks promising and powerful, Függer, Nowak, and Schmid [27] were
able to show that all bounded delay models, including DDM, are not faithful, meaning
that some behavior observed in real circuits can not be reproduced in the model and vice
versa. Bounded in this regard refers to the fact that δ(T ) = −∞ can not be achieved.
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Figure 4.4: Exponential approximation for the DDM delay function δ(T ). Different
regions (dashed lines) are distinguished by the authors. We disagree with the onset of
pulse filtering at δ = 0, which should be T = −δ(T ) marked by the dashed-dotted line.
Heavily inspired by [82].

Providing for unbounded negative delays again seems not very reasonable, however, will
turn out to be a crucial property.

The main issue with DDM is the non-proper cancelation of pulses. In more detail, an
ε-pulse (glitch) at the input, i.e., whose width approaches zero, should have no impact
whatsoever on the output. In the digital model this is equal to restoring the last output
transition before the glitch, as is shown in Figure 4.5. Since the previous output transition
can be arbitrarily far back in the past, an unbounded negative delay is required.

One might argue that the inaccuracies are negligible since the exponential, which
approximates the delay function in DDM, drops very quickly. Although this is true for
“normal” circuits, there may be others where improper glitch propagation may severely
affect the correctness or power consumption of a circuit. In addition, incorrect predictions
are very hard, and sometimes even impossible, to detect in the digital domain, as will be
shown in Section 4.6. Thus a more reliable model like the IDM, which will be introduced
in the succeeding sections, certainly makes sense.

4.3 The Involution Delay Model
After showing the unfaithfulness of existing approaches, Függer et al. proposed in [34]
the unbounded single-history Involution Delay Model (IDM) and proved its faithfulness
regarding the Short-Pulse Filtration problem:

Definition 1 (Short-Pulse Filtration). A circuit with a single input and a single output
port solves Short-Pulse Filtration (SPF), if it fulfills the following conditions:

1. The circuit has exactly one input and one output port. (Well-formedness)

84



4.3. The Involution Delay Model
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T1 δ↑(T1)

δ↓(T2) T2

Figure 4.5: Proper cancelation of an input glitch (Δi → 0) for a delay model. Since the
glitch is supposed to have no impact on the output, the scheduled output transition (dotted
line) has to be canceled, such that the previous output transition (solid line) is restored.

2. A zero input signal produces a zero output signal. (No generation)

3. There exists an input pulse such that the output signal is not the zero signal.
(Nontriviality)

4. There exists an ε > 0 such that for every input pulse the output signal never
contains a pulse of length less than ε. (No short pulses)

It can be shown that this problem can be solved in a real circuit only in unbounded
time. While IDM successfully predicts this behavior, any other model fails.

The distinguishing property of IDM can be derived directly from Figure 4.5, where we
already used different delay functions for rising (δ↑) and falling (δ↓) input transitions. To
restore the output transition in the case of an input glitch, T1 = −δ↓(T2) and T2 = −δ↑(T1)
have to be satisfied. Combining both leads to

T1 = −δ↓(−δ↑(T1)). (4.2)

Since this has to be true for all values T1 the single delay functions have to form a
mathematical involution, hence the name. The major difference between DDM and
IDM is the way how values at and below the 2nd median, i.e., δ(T ) = −T , are handled.
Using the definition δ↑(−δmin) = δmin as the onset of cancelation for a rising transition
in combination with (4.2) leads to

δ↓(−δ↑(−δmin)) = δ↓(−δmin) = δmin

and consequently to the necessary condition

δ↑(−δmin) = δmin = δ↓(−δmin) . (4.3)

Consequently, δ↑ and δ↓ have to meet at the 2nd median. Recall at this point that
δ(T ) < T is used to model sub-threshold output pulses and thus cannot be extracted
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Figure 4.6: IDM delay function of an Inverter in technology (T15), numerically derived
by extensive analog simulations in HSPICE.

from analog simulations. Instead the delay function during cancellation is extrapolated
from the involution property, i.e., by mirroring the other delay function around the 2nd

median such that δ↓(T )|T <−δmin = −δ−1
↑ (−T ). In this case δ−1

↑ (.) represents the inverse
delay function, such that δ−1

↑ (δ↑(T )) = T .
A comparison with (4.2) finally reveals, that an involution delay function (see Fig-

ure 4.6) is characterized by two strictly increasing delay functions δ↑ : (−δ↓∞, ∞) →
(−∞, δ↑∞) and δ↓ : (−δ↑∞, ∞) → (−∞, δ↓∞) such that both δ↑∞ = limT →∞ δ↑(T ) and
δ↓∞ = limT →∞ δ↓(T ) are finite and

− δ↑ − δ↓(T ) = T and − δ↓ − δ↑(T ) = T (4.4)

The extraction from analog simulations is comparable to DDM. To mask the fact
that IDM does not consider input slopes, properly shaped signals are used in the
characterization process. In a chain of equal gates, DDM focuses on the first unit with
linear input. IDM, on the other hand, investigates a gate further down the chain, where
natural analog waveforms are reached. Therefore the δ(T ) contains all crucial parameters
such as output load and input driving strength. Consequently every single gate in a
circuit has a unique delay function, which makes it crucial to find fast and easy ways for
characterization. This will be further investigated in Section 4.5 and Section 6.2.

Comparing the extracted delay functions from DDM and IDM reveals deviations
mainly close to the 2nd median. The reason is that in the case of settled waveforms
shorter input pulses also have a decreased slope which leads to a less steep output.
Consequently the first output transition is pushed further into the future (see Figure 4.7),
which accelerates the decrease of T and thus increases δmin (cf. Figure 4.4 and Figure 4.6).
While this seems, intuitively, to also provide an explanation for δ(0) > 0 in the case of
IDM and δ(0) < 0 for DDM, this property primarily depends on the respective choice of
the digitization thresholds, which will be analyzed in detail in Section 4.4.2.
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Figure 4.7: Changes of the analog in- and output waveforms for varying pulse-widths of
an Inverter. For shorter input pulses, less pronounced (“shallower”) output pulses are
observed leading to deviations in the relative timings (T and δ).

Unlike for DDM, we did not find an analytic fitting function for δ↑ resp. δ↓ yet. Note
that even the exponential approximation for the DDM shows some deviations near the
2nd median, for example in the results published in [115]. In this thesis we will thus rely
more on calculations than on fittings.

In the IDM a circuit is modeled by Boolean, zero-time gates that are connected by
single input-single output involution channels. These have the task to properly delay
incoming signals. In the next section we will shortly review these channels. For further
information the interested reader is referred to the original publication [17].

4.3.1 Analog Channel Model

When introducing the IDM in [34], Függer et al. have shown that its self-inverse delay
functions arise naturally in a (generalized) standard analog model. It consists of a pure
delay component, a slew-rate limiter with generalized switching waveforms, and an ideal
comparator, as shown in Figure 4.8. First, the incoming, binary-valued input ui is delayed
by a pure delay δmin > 0, which is necessary to assure causal channels, i.e., δ↑/↓(0) > 0.
For every transition on ud, the generalized slew rate limiter immediately switches to the
corresponding waveform (f↓ for a falling and f↑ for a rising transition) such that the value
at ur, representing the analog output voltage, does not jump. Finally, the comparator
generates the output uo by discretizing the value of this waveform w.r.t. the threshold
voltage Vth. Note that f↑ and f↓ need not have to be, and in general are not, equal to
the FRSWs, i.e., rail-to-rail transitions observable in analog simulations.

To calculate the delay function δ↓(T ), as detailed in [34], the value of ur at the arrival
of the falling transition on ud has to be determined as well as the time it takes ur to
return to Vth. For this purpose, we compute the delay of a perfectly idle channel (T = ∞)
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Figure 4.8: Simple analog channel model (upper part) with a sample execution (bottom
part). The switching from f↑ to f↓ is done instantly when a transition on ud arrives,
leading to continuity in ur but a jump in its derivatives. Heavily inspired by [34].

from a transition on ui to reaching Vth on ur as

δ↑
∞ = δmin + f−1

↑ (Vth) and δ↓
∞ = δmin + f−1

↓ (Vth). (4.5)

The main difference for T < ∞ is that ur holds an intermediate value Vs = f↑/↓(ts) at
the switching time, which reduces the time to return to Vth by exactly ts (see Figure 4.9).
Consequently the general delay functions can be defined as

δ↑(T ) = δ↑
∞ − ts(T ) and δ↓(T ) = δ↓

∞ − ts(T ). (4.6)

For the case shown in Figure 4.9 we get Vs = f↑(tth +T + δmin) = f↑(f−1
↑ (Vth)+ δmin +T ),

which can be transformed using (4.5) to

Vs = f↑(δ↑
∞ + T ).

Mapping this value back to the time domain, i.e., ts = f−1
↓ (Vs), and plugging it into (4.6),

and executing the same for the reverse direction finally yields the general delay functions

δ↓(T ) = δ↓
∞ − f−1

↓ f↑(T + δ↑
∞) and

δ↑(T ) = δ↑
∞ − f−1

↑ f↓(T + δ↓
∞) .

(4.7)

Clearly the switching waveforms have a huge impact on the delay functions. Let
us investigate this for the trajectories used for analog fitting in Section 3.7.3. For an
Exp-channel, i.e., f↓ (t) = VDD − f↑(t) = VDD · e−t/τ , we derive

f−1
↑ (V ) = −τ · ln 1 − V

VDD
and f−1

↓ (V ) = −τ · ln V

VDD
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Figure 4.9: Graphical derivation of the IDM delay function. For finite values of T the
downward switching waveform f↓ does start at an intermediate voltage Vs = f↓(ts) causing
the time to reach Vth (tth) to be reduced by ts.

Plugging these into (4.5) and (4.7), and using Vth = Vth/VDD leads to

δ↑(T ) = δ↑
∞ + τ · ln 1 − e−(T +δ↓

∞)/τ

= δmin − τ · ln 1 − Vth + τ · ln 1 − e−(T +δmin−τ ln(Vth))/τ

δ↓(T ) = δ↓
∞ + τ · ln 1 − e−(T +δ↑

∞)/τ

= δmin − τ · ln Vth + τ · ln 1 − e−(T +δmin−τ ln(1−Vth))/τ .

For Hill-channels the waveforms satisfy f↑(t) = VDD − f↓(t) = VDD · tn

kn+tn . Recall
that parameter k determines the time when VDD/2 is reached and thus primarily depends
on δ↑∞ resp. δ↓∞, δmin and Vth. For Vth = VDD/2, the parameter n (the Hill coefficient)
can be chosen almost freely and solely adjusts the waveform steepness. In all other cases
it also has a certain impact on the threshold crossing time. By using

f−1
↑ (V ) = k↑

n↑ V/VDD

1 − V/VDD
and f−1

↓ (V ) = k↓
n↓ 1 − V/VDD

V/VDD
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and inserting these once more into (4.7) and (4.5) we obtain

δ↑(T ) = δ↑
∞ − k↑

k↓
T + δ↓∞

n↓
n↑

= δmin + k↑
n↑ Vth

1 − Vth
− k↑

 k↓

T + δmin + k↓
n↓ (1 − Vth)/Vth


n↓
n↑

δ↓(T ) = δ↓
∞ − k↓

k↑
T + δ↑∞

n↑
n↓

= δmin + k↓
n↓ 1 − Vth

Vth
− k↓

 k↑

T + δmin + k↑
n↑ Vth/(1 − Vth)


n↑
n↓

.

Finally note that the symmetric sigmoids result in the delay function δ(T ) = T + δmin,
which is unreasonable. Therefore, these waveforms are not suitable choices for f↑ and f↓.

4.4 Analyzing the Involution Delay Function
The main ingredient of the IDM are clearly the delay functions. So far we have only
considered the extraction from HSPICE simulations, which are executed in the following
fashion: Let tI

0 < tI
1 be the points in time the input pulse crosses Vth respectively tO

0 < tO
1

for the output. Then we can determine the desired parameters as

T = tI
1 − tO

0 and δ(T ) = tO
1 − tI

1.

By varying the input pulse-width, the threshold crossing times and thus T and δ(T ) change,
such that sufficient data for a successful characterization can be gathered. Especially for
low values of T , i.e., near the crossing of the 2nd median, small changes have high impact,
which requires an intelligent simulation algorithm that reduces the step size there.

This kind of characterization is quite cumbersome as lots of simulations are required.
Although it is possible to fully automate this procedure it still consumes a lot of time,
especially because it has, at least in theory, to be done for each gate of a circuit individually.
For that reason we are searching for ways to find δ(T ) in a more direct fashion, e.g., by
calculation, which demands, however, more detailed information on the delay function.
In this section we will therefore analyze and explore the impact of its parameters.

4.4.1 Prediction Inaccuracy
In Section 4.3 the characterization process for IDM was already shortly described. Recall
that for both, IDM and DDM, the delay prediction of the first transition in a pulse
is constant (tp0 respectively δ∞). In contrast, HSPICE simulations show significantly
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Figure 4.10: Variations in the delay of the first transition. The bound δ∞ + Δi must not
be exceeded, as this would result, in the case of an input glitch, in a value T < −δ∞.

different results (see Figure 4.10). The fact that smaller input pulses lead to less steep
output waveform causes the delay of the first transition to actually increase with declining
input pulse-width. As shown in Figure 4.7 this effect can already be observed for rather
large pulses that almost reach all the way to VDD resp. GND. Thus the IDM schedules the
output transition too early in theses cases. The chances to encounter such a misbehavior
thereby scales with the amount of degrading pulses that are analyzed and is thus, in
general, non-negligible. Furthermore we want to stress that for balanced in- and output
signals such delay variations can not be prevented: Only slowing down the output
significantly would reduce the magnitude of the delay changes and the regions in which
they appear. This can be easily be retraced by the fact that the gate in this case is in
transition only for a very short period compared to the overall output switching time.

While this seems at a first glance just like a mere inaccuracy, it results in major
drawbacks: The misplaced output transition influences the value of T for the succeeding
input transition, which, in turn, results in a deviating delay value. We want to stress the
significance of this result: Even the digital predictions for pulses, which have been used
for characterization, are off by a certain amount during simulation, not to mention all
remaining ones. In detail the first transition is predicted too early while the total output
pulse width is overestimated.

For more realistic results it would be necessary to adapt δ∞ depending on the input
pulse-width. Since the latter is only available after the second transition has arrived this
includes to alter the time of already scheduled transitions, which neither DDM nor IDM
supports. This is actually a feature of higher order channels, which will be sketched in
Section 6.4. An important question, which is also still unanswered, is how to estimate
the delay of the first transition when entering cancelation (cf. Figure 4.10). Dropping
to δ∞ discontinuously does not seem physically reasonable. In any case it has to be
assured that δ∞ + Δi is not crossed as this would result in T < −δ∞ and thus violate
the definition of the delay function.

To this end the only thing that would be realistically possible is to model Δo accurately.
This could be realized by adapting the characterization procedure in the sense, that
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Figure 4.11: Correction of IDM delay functions to account for the non-constant delay of
the first transition. In more detail, applying the altered delays results in more accurate
output pulse-widths which are however still shifted in time. Please note the similarity of
the altered δ↑ and δ↓ to DDM.

t0
i + δ∞ is used as the reference for computing T instead of the actual first output Vth

crossing. Figure 4.11 shows a comparison between the delay function extracted using the
actual threshold crossings (original) and T = t1

i − (t0
i + δ∞) = Δi − δ∞ (altered). Note

that the latter results in an acausal channel, i.e., δ(0) < 0, which can not be handled by
the IDM3. Therefore this does not yield a practical solution.

4.4.2 Threshold Voltages

In delay modeling, the underlying circuit is necessarily heavily abstracted. This becomes
evident when statements such as “when the threshold is crossed the output starts to
switch” [84] are considered. As we know already from the analyses in Chapter 2 and
Chapter 3, a transistor is a continuous device. So what does this ominous gate threshold
voltage represent? How can it be determined and which values are reasonable? In this
section, we will thus empirically explore the relation of gate delays and discretization
threshold voltages by means of simulation results in technology (T15).

To obtain more general results, we will distinguish input (V in
th ) and output (V out

th )
threshold voltages in the sequel. DDM utilizes V in

th = V out
th = VDD/2, which leads to

acausal channels, i.e., δ(0) < 0. This implies that simultaneous transitions on in- and
output cause the latter to not reach V out

th at all. Although this seems counter-intuitive, it
can be well explained at the transistor level.

Be aware that several threshold voltages have to be distinguished in our context:
(1) V in

th and V out
th denote the values used to digitize the analog in- and output trajectories,

while (2) Vth,n and Vth,p refer to the thresholds of n- and pMOS transistors (cf. Section 2.5).
In the sequel we will only investigate (1). These thresholds have, in contrast to (2), no

3An extension relaxing this condition will be presented in Section 4.8.
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direct physical justification and can thus be chosen arbitrarily. Smaller values result in
earlier transitions for rising waveforms and deferred transitions for falling trajectories.

Definition 2. The input and output discretization voltages V in
th and V out

th are called
matching for a gate, if the induced delay functions δ↑(T ), δ↓(T ) fulfill the condition
δ↑(−δmin) = δmin = δ↓(−δmin). To stress that a pair of input and output discretization
threshold voltages is matching, they will be denoted as V in∗

th and V out∗
th .

We will now characterize properties of matching discretization threshold voltages.
They depend on many factors, including transistor threshold voltages [110] and the
symmetry of the pMOS vs. nMOS stack. Since varying these physical parameters is
commonly used in advanced circuit design to trade delay for power consumption [42, 58]
and reliability [61], as well as for implementing special gates (e.g., logic-level conversion
[113]), the range of suitable discretization threshold voltages could differ significantly
among gates.

The following observation shows that there is an unlimited number of matching
discretization threshold pairs for IDM:

Observation 3. For every choice of V in
th , there is exactly one matching V out

th . Fixing
either of them uniquely determines the other and, in addition, also the pure delay δmin.

Justification. Let us fix V out
th and investigate how V in

th and δmin can be determined. For
this purpose, we consider an analog voltage pulse at Vout that barely touches V out

th ,
i.e., results in a zero-time glitch in the digital domain. There is a unique positive and
a unique negative analog output pulse with this shape, which is both confirmed by
simulation results and analytic results on the underlying systems of differential equations
(see Section 3.3). Now shift the positive and negative pulses in time such that their
output voltages touch V out

th , one from below and the other from above, at time to (see
Figure 4.12). Due to the condition δ↓(−δmin) = δmin = δ↑(−δmin), this implies that the
falling transition of the positive pulse and the rising transition of the negative pulse
at the input must both cross V in

th at time ti = to − δmin. Thus, fixing V out∗
th uniquely

determines both the matching V in∗
th and δmin = to − ti.

Actually determining the matching V out∗
th for a given V in∗

th and vice versa is a challeng-
ing task. For a start, let us investigate the static case, with fs being the static transfer
function of a gate. In this setup, an output derivative Vout = 0 is achieved for all values
fulfilling the condition Vout = fs(Vin) since fs represents the stable states of the gate.
To obtain high accuracy when discretizing the analog signal, one typically chooses the
output threshold such that the respective output waveform for a full-range input pulse
has a steep slope at this point. While V out∗

th = VDD/2 is in general a good choice, the
corresponding V in∗

th will differ significantly between balanced and high-threshold inverters,
for example.

Besides these static considerations, for a dynamic input coupling capacitances cause
a current at the output, which must be compensated via the gate-source voltages of the
transistors as well. Obviously, the required overshoot w.r.t. V in

th , and hence the time
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Figure 4.12: The unique relationship among V in∗
th , δmin and V out∗

th for a Buffer based on
simulations in technology (T15).

until this value is reached, depends on many parameters like the size of the coupling
capacitances and the slope of the input signal. A detailed analysis of δmin based on
physical considerations will be presented in Section 4.4.3.

Observation 3 has a severe consequence for the simulation of circuits in any model,
like IDM, where (4.3) has to be satisfied:

Observation 4. Fixing either V in
th or V out

th for a single gate G fixes the threshold voltages
of all gates in the circuit simulated in a model where Observation 3 holds.

Since the detailed relation of V in∗
th and V out∗

th according to Observation 3 depends on
the individual gate, this means that the discretization threshold voltages across a circuit
may vary in a priori arbitrary ways, depending on the interconnect topology and the
gate properties. In any case, it may take a large effort to properly characterize every
gate such that the dependencies among discretization thresholds are fulfilled.

When starting at the back, forks (that is, joins) are problematic, since the input
characterization thresholds of two distinct gates, which are driven by the same output,
most certainly do not coincide. Reversing the direction of characterization, i.e., starting
at the front and propagating towards the end, would solve this problem but adds a
similar difficulty at the inputs of multi-input gates. Needless to say, feedback loops most
probably make any such attempt impossible.

By contrast, an ideally composable delay model uses a uniform discretization threshold
such as V out

th = V in
th = VDD/2. To investigate if IDM allows such a uniform choice, we

proceed with Observation 5:

Observation 5. Characterizing a gate with non-matching discretization thresholds V in
th

and V out∗
th , in the case where matching V in∗

th and V out∗
th lead to an IDM channel with pure

delay δmin, results in delay functions δ↑(T ), δ↓(T ), which satisfy δ↑(−δ↑
min) = δ↑

min and
δ↓(−δ↓

min) = δ↓
min for δ↑

min = δmin + Δ+ = δ↓
min = δmin + Δ−. Δ+ and Δ− have opposite

sign, with Δ+ > 0 for V in
th < V in∗

th .
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Figure 4.13: Characterizing a gate with V in
th = V out

th = VDD/2. Clearly visible are the
differing pure delay components δ↑

min = δ↓
min.

Justification. The observation follows from refining the argument used for confirming
Observation 3, where it was shown how matching V in∗

th and V out∗
th are achieved. For the

non-matching case, we increase resp. decrease V in
th , starting from V in∗

th , while keeping
everything else, i.e., electronic characteristics, waveforms and V out

th the same. As illustrated
in Figure 4.12 for V in

th < V in∗
th , it still takes δmin from hitting V in∗

th (at time to − δmin) to
seeing a zero time glitch (at time to) at the output. W.r.t. V in

th , the falling transition has
already crossed V in∗

th when it hits on V in
th , whereas the rising transition still has some way

to go: Denoting the switching waveforms of the preceding gate (driving the input) by f↑
and f↓, the pure delay for the rising resp. falling transition evaluates to δ↑

min = δmin + Δ+

and δ↓
min = δmin + Δ− with

Δ+ = f−1
↑ (V in∗

th ) − f−1
↑ (V in

th ) and Δ− = f−1
↓ (V in∗

th ) − f−1
↓ (V in

th ). (4.8)

Consequently, δ↑(−δ↑
min) = δ↑

min and δ↓(−δ↓
min) = δ↓

min indeed holds. Finally, since f↑
must obviously rise and f↓ must fall, it follows that if Δ+ > 0 (the case in Figure 4.12)
then Δ− < 0.

Figure 4.13 shows the derived delay function for non-matching discretization thresholds.
Clearly visible are the different pure delays δ↑

min = δ↓
min. Please note that in our

justification of Observation 5, we focused on δmin and how it changes with varying
discretization threshold voltages. If the rising and falling switching waveforms were
always the same, as is assumed in the analog channel model for IDM (cf. Figure 4.8),
this would result in delay functions that are fixed in shape and are simply shifted along
the 2nd median. The actual delay functions of gates, obtained by analog simulations, for
example, exhibit additional deviations (for T = δ

↑/↓
min), however, since the shape of the

input switching waveforms also vary. Consequently, the difference between V in∗
th and V in

th

will not always be passed in constant time.
Finally, the dependency of the IDM on the particular choice of the discretization

threshold voltages also reveals another problem:

Observation 6. Different choices of V out
th can significantly change the digital model

prediction of the IDM.
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CGD,n +CGD,p
iin

vin

Figure 4.14: Simplified small signal representation of an Inverter using a current
source (controlled by VGy) and a resistor to model each transistor. vin denotes the small
displacement around the operating point Vin.

Justification. Since sub-threshold pulses are automatically removed by the comparator in
Figure 4.8, i.e., are completely invisible at the digital output of a gate that is fed to the
successor gate, this can lead to the complete suppression of high-frequency oscillations
at intermediate voltage levels: Assume an oscillatory behavior of a gate output with
minimal voltage V0 and maximal V1. These oscillations would only be reflected in the
digital discretization if V out

th ∈ (V0, V1).

4.4.3 Pure Delay
In the previous section we have shown (i) how the pure delay component can be extracted
from analog simulation results and (ii) that it depends on the choice of the threshold
voltages. The question we left unanswered, however, is, if the pure delay is unavoidable
and, if yes, what the physical causes are. This is not only important for the development
of a proper model but also to predict deviations caused by parameter variations.

For this purpose we once again fix V out
th and search, using the dynamic small signal

representation of the Inverter (based on the ones of the transistor presented in Sec-
tion 2.5.4) shown in Figure 4.14, for values of Vin that result in Vout = 0. This implies
that for these input values an output glitch can be observed, which makes it possible
to calculate δmin for arbitrary choices of V in

th . For the small signal analysis we start our
considerations in (V s

in, V out
th ) on the static transfer characteristic, i.e., V out

th = fs(V s
in),

such that
d
dt

Vout
Vin=V s

in,Vout=V out
th

= 0.

For very slow inputs, V s
in is already the desired value. For bigger input derivatives a

significant current iin is induced over the input-output coupling capacitances, whereat

iin = d vin

dt
· (CGD,n + CGD,p) = const .
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Since we are investigating very small deviations we approximated in the last step the
input by a ramp, leading to a constant first derivative.

Conducting iin via the resistors towards GND would induce a voltage Δv across the
resistors and thus an increase of vout. Since we fixed V out

th , which demands vout = 0, the
current sources have to be adapted to compensate the additional charge carriers instead.
In detail we are searching for a vin such that

iin = gm,n · vin − gm,p · (−vin)

is satisfied. Simple arithmetic quickly leads to

vin = iin

gm,n + gm,p
= d vin

dt

CGD,n + CGD,p

gm,n + gm,p
.

Note that the fraction of capacitance and conductance is constant in close proximity
to the operation point, i.e., vin ∝ vin. This implies that the dynamic stable points
(V s

in ± vin, V out
th ) are reached from (V s

in, V out
th ) in a time that is independent of the input

iin’s slope and direction. Consequently every pair (V s
in, V s

out) on the static transfer
function is a valid choice for V in∗

th and V out∗
th . The pure delay, i.e., the time difference

between reaching the threshold at the input and the threshold at the output is finally
the time it takes to build up vin. Using a linear approximation, as usual in small signal
analysis, we obtain

δmin = vin · d vin

dt

−1
= CGD,n + CGD,p

gm,n + gm,p
.

Note that this is only valid in close proximity around the static transfer characteristic.
Thus for real circuits, minor deviations have to be expected.

4.4.4 Switching Waveforms
For given switching waveforms f↑ and f↓ the corresponding delay functions δ↑ and δ↓ can
be uniquely calculated using (4.7). The reverse case, however, is fundamentally different:
For a given set of delay functions infinitely many suitable switching waveforms, which
only have to satisfy some simple condition, are imaginable. In this section we will thus
show (i) how to achieve suitable f↑ and f↓ for given delay functions and (ii) further
exploit the conditions that have to be satisfied.

From Delay Functions to Switching Waveforms

Recall that for a general expression of δ(T ) in Section 4.3.1 we followed one waveform
until Vs was reached and then switched to the other one (cf. Figure 4.9). The combination
of both switching waveforms thus determines the time difference between reaching Vs and
crossing V in∗

th = V out∗
th = V out

th (cf. Section 4.3.1), and consequently the delay. Note that
the actual shape is thereby of no concern, which is good and bad news at the same time.
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Clearly always both f↑ and f↓ are involved in switching, whereat f↑(t)|
t>t↑

th
and

f↓(t)|
t<t↓

th
are used to derive δ↓(.) (Vs in [V out

th , VDD]), while f↑(t)|
t<t↑

th
and f↓(t)|

t>t↓
th

lead to δ↑(.) (Vs in [GND, V out
th ]). Hereby t↑

th and t↓
th denote the point in time when

the respective waveform reaches V out
th . Picking some continuous shape for (parts of) a

switching waveform thus also affects (the corresponding parts of) the other waveform.
Consequently, only either f↑ or f↓ can be predefined in a specific voltage range [V1, V2]
with GND ≤ V1 < V2 ≤ VDD.

For the analysis presented in the sequel, we define both switching waveforms for
t > tth, i.e., f↓ in the range [V out

th ,GND] and f↑ in [V out
th , VDD]. Since the gates investigated

in Chapter 2 showed an exponential behavior at the end of an output transition, we use

f↑(t)|
t>t↑

th
= 1 − exp − t

τ
and f↓(t)|

t>t↓
th

= exp − t

τ

for some fixed τ . The task at hand is to determine the shape of f↑(t)|
t<t↑

th
and f↓(t)|

t<t↓
th

.
For a fixed T1 let δ1 = δ↓(T1). In the analog domain this corresponds to following f↑ for
time T1 + δmin + t↑

th before switching to f↓, which reaches V out
th exactly after δ1 − δmin.

Since we defined f↑(t)|
t>t↑

th
, Vs is known such that for f↓ the startvalue (Vs) and endvalue

(V out
th ) as well as the time (δ1 −δmin) to bridge the gap are known. Starting at T1 = −δmin

and increasing T1 continuously allows one to generate f↓(t)|
t<t↓

th
that matches f↑(t)|

t>t↑
th

step by step. Note that f↑(t)|
t<t↑

th
can be calculated analogously.

Provided that we have only numerical data of the delay functions, given in the form of
two discrete arrays T and δ, we calculate the switching waveforms from start to reaching
V out

th as discrete arrays v (value) and t (time). To determine f↓ the following algorithm
has to be executed (f↑ can be handled analogously):

1. Define f↑(t) for t > t↑
th.

2. ∀i ∈ [1, length(T )] determine Vs[i] as f↑(T [i] + δmin + t↑
th).

3. Set t[F ] = t↓
th and v[F ] = V out

th with F = length(T ) to assure a continuous transition
to the analytic definition for t > t↓

th.

4. By iterating i ∈ [1, length(T )] time and value are calculated as

t[F − i] = t[F − i + 1] − (δ[i + 1] − δ[i])
v[F − i] = v[F − i + 1] + (Vs[i + 1] − Vs[i]) .

Note that the index is decreased as we are trying to determine the shape before the
threshold is crossed, starting at the latter. The next value is chosen such that the
difference in Vs is compensated during a time interval equal to the delay difference.

In our simulation we varied the parameter τ ∈ {20, 60, 120} ps (see Figure 4.15). For
the slowest trace we see a steep drop at the beginning, which indicates that the final
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Figure 4.15: Different switching waveforms matching the same delay functions. The
pieces after crossing Vth are initially fixed for varying time constant. Less steep ends lead
to steeper beginnings.

value is approached too slow. For the fastest one, the start value is kept constant at the
beginning to guarantee the demanded delay. Only for the intermediate value a “natural”
shape is achieved.

Necessary Condition

Equation (4.7) introduces a very tight coupling between switching waveforms and delay
functions. In fact, it induces a stringent relationship among the first derivatives, which we
will explore in the sequel. For this purpose we enlarge the waveforms massively around
V out

th , which allows us to utilize a linear approximation, as shown in Figure 4.16. Two
values of T are shown to investigate the changes based on the deviation ΔT : For ΔT > 0
the rising trajectory is followed for a longer time such that the change to f↓ occurs at a
higher voltage V 1

s > V 0
s . The voltage difference ΔVs has to be compensated by f↓, which

increases the delay by Δδ. For the linear approximation we get

ΔVs = ΔT · f↑ and − ΔVs = Δδ · f↓ .

Equating both expression leads to
Δδ

ΔT
= −f↑

f↓
.

This is very much in accordance to the results we got in the previous section, where also
only the combination of f↑ and f↓ was of importance. For ΔT → 0 the differential term
turns into the derivative, in detail

dδ↓
dT

= −f↑(Vs)
f↓(Vs) ,

dδ↑
dT

= −f↓(Vs)
f↑(Vs) (4.9)
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Figure 4.16: A linearized pulse barely exceeding Vth showing the difference in the delay
based on the change of parameter T .

Clearly infinitely many combinations of f↑ and f↓ fulfill these conditions, whereat the
exact value of Vs depends on the chosen waveforms. Note that the same results are
derived by directly calculating the derivative of (4.7), which is, however, less intuitive.

We exemplarily evaluate (4.9) in the sequel for an Exp-channel and a Hill-channel.
Recall that in Section 4.3.1 we already calculated δ(T ), and thus easily get the derivative.
Since we know Vs(T ) it is possible to calculate f↑(T ) respectively f↓(T ) whose ratio
should then deliver the same results.

For the Exp-channel we shortly reiterate the waveforms

f↑ = 1 − e− t
τ f↑ = 1

τ
· e− t

τ

f↓ = e− t
τ f↓ = −1

τ
· e− t

τ

and the resulting delay functions (for more details refer to Section 4.3.1)

δ↑(T ) = δmin − τ ln 1 − Vth + τ · ln 1 − e−(T +δmin−τ ln(Vth))/τ

δ↓(T ) = δmin − τ ln Vth + τ · ln 1 − e−(T +δmin−τ ln(1−Vth))/τ .

In the sequel we will calculate δ↓(T ) whereat δ↑(T ) can be achieved analogously. Using
δ↑∞ = δmin − τ · ln(1 − Vth) the derivative evaluates to

δ↓(T ) = τ · 1 − e−(T +δ↑
∞)/τ

−1 · −e−(T +δ↑
∞)/τ · −1

τ

= 1
e(T +δ↑

∞)/τ − 1

(4.10)

According to our previous assumption this result must be equal to the ratio of the
derivatives of the rising and falling switching waveform. Without loss of generality we
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assume T = t0 − δmin. At the switching point the upward switching waveform has a value
of f↑(t0 + t↑

th) = f↑(t0 + δ↑∞ − δmin) = f↑(T + δ↑∞). This value is reached by f↓ at time
ts = −τ · ln(f↑(T + δ↑∞)), thus the respective derivatives evaluate to

f↑(T + δ↑
∞) = 1

τ
· e− T +δ

↑
∞

τ

f↓(ts) = −1
τ

· e− −τ ·ln(f↑(T +δ
↑
∞))

τ

= −1
τ

· f↑(T + δ↑
∞)

= −1
τ

· 1 − e− T +δ
↑
∞

τ

The ratio of both finally leads to

−
f↑ T + δ↑∞

f↓(ts) = 1
e(T +δ↑

∞)/τ − 1

which perfectly matches (4.10).
Using n↑ = n↓ = n for the Hill-channel simplifies the calculation and leads to

f↑ = VDD · tn

kn
↑ + tn

f↑ = −VDD · kn
↑ · n · tn−1

(kn
↑ + tn)2

f↓ = VDD · kn
↑

kn
↑ + tn

f↓ =
VDD · kn

↓ · n · tn−1

(kn
↓ + tn)2

The derivative results to

δ↓(T ) = −f↑(T + δ↑∞)
f↓(ts)

with ts = k↓k↑
T +δ↑

∞
, which was extracted from the definition of δ↓(T ) in Section 4.3.1. After

a short numeric calculation both methods deliver

δ↓(T ) = 1
k↑ · k↓

T + δ↑
∞

−2

This shows that our approach is indeed valid, i.e., that the derivative of the delay function
merely depends on the derivative of the switching waveforms and vice versa.

4.5 Calculating the Involution Delay Function
A closed form description of the delay function δ(T ) offers several advantages over
tabulated numerical values, such as (i) less storage requirements, (ii) higher accuracy
since interpolating is not required any more, (iii) analytic circuit/delay composition and
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maybe even (iv) additional insights into physical/electrical processes governing circuit
delays. Especially the last is important when arguing about the applicability to future
technologies.

In this section, we will therefore investigate if and how an analytic description of the
delay functions can be obtained. To the best of our knowledge, the authors of the DDM
did not provide an explanation why an exponential fitting is appropriate in their case
and whether it can be expected to apply also for future technologies. Based on physical
considerations we (i) explain why and where an exponential approximation is accurate
and (ii) develop appropriate abstractions that eventually lead to closed form analytic
expressions4. Finally, (iii) we discuss how these expressions can be applied to the IDM.

For our analysis we used the simplistic Basic Model since it (i) facilitates analytic
calculations and (ii) is actually capable of providing reasonably accurate predictions
for the quantities we are aiming at. Let us recall at this point that our major goal is
to explain the general shape of the delay functions. Whereas more accurate equations
would lead to more fine-grained results, we conjecture that the differences are minor. In
fact, considering that digital timing simulations are inherently inaccurate, we deem the
deviations negligible.

To verify our modeling assumptions, we resort to HSPICE simulations as a golden
reference; ten-stage Inverter chains are synthesized and parasitics extracted with Innovus
using technologies (T15) and (T65). These different technologies allow us to verify
whether our results have a chance to be technology independent, which indeed turns out
to be the case. The 65 nm Inverter chain is further modified to include large 72 fF load
capacitances instead of the relatively small parasitics. This allows us to pronounce effects
that are otherwise too small and too fast to be observed, and to demonstrate that our
approach works also in the presence of high fan-out. All our calibrations use the input
and output signals of (i) the first Inverter in the chain, if trapezoidal input signals are
required, and (ii) the seventh Inverter for shaped input signals.

4.5.1 General Remarks

For a start, we take a closer look at the linear input shape modeling originally used for
DDM in [100], which simplifies calculations and analysis considerably. For IDM, we will
later extend our results to the more general case of realistically shaped inputs. To get
comparable results for DDM channels, we used the same settings as described in [82]:
linear ramps as input signals, and Vin and Vout digitized at V in

th = V out
th = Vth = VDD/2.

The linear input slope at the first Inverter stage is chosen to have about the same rise/fall
time as the shaped output signal (cf. Figure 4.3). Note that we investigate an optimal
Inverter (single n- and pMOS with a load capacitance and no parasitics).

Figure 4.17 shows the HSPICE results of an up-pulse at the output. Recall that
each transistor of the Inverter can operate in one of three operation regions, whereat
we showed in Section 3.3.2 that only seven of the possible nine states are reachable

4Wherever this is not possible we will give at least an intuition for possible closed form expressions
(IDM) or justifications for fittings (DDM, IDM).
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Figure 4.17: Overview of the Inverter operation regions in technology (T15) during
switching. Vth,n respectively Vth,p represent the threshold voltages for n- and pMOS.

(the important subset for the evaluation of the up-pulse is shown in Figure 4.18). We
distinguish three regions in the switching process:

Region 1) We start our considerations in state 1 of Figure 4.18, i.e., when Vin drops
below Vth,n (the threshold of the nMOS) and thus opens the nMOS (non-conducting)
while the pMOS is still in (SAT). As Vout increases, eventually the pMOS enters (OHM) 2
, which reduces the current and thus the speed by which Vout increases. Only after Vin

has exceeded the threshold Vth,n of the nMOS in its rising transition, the latter starts
to conduct again, causing a transition to 3 . Note that quick input changes make it
possible to transition from 1 directly to 4 .

Region 2) In the time period between Vin crossing Vth,n and Vth,p (the threshold of
the pMOS), both transistors are conducting ( 3 and 4 ), thus both have to be considered.
This is also the period where the trace of the output starts to deviate from the full range
rising switching waveform and the maximum of the pulse is reached.

Region 3) Finally, the input reaches a value where the pMOS is opened and just the
nMOS is conducting. At first, the latter is in (SAT) 5 , i.e., the current stays nearly
constant. Later, it enters (OHM) 6 to slowly approach the stable value.

In the sequel, we will derive an analytical solution for δ(T ) for all T > 0. We start
with a small output pulse, resulting in a small value of T , which just barely exceeds the
threshold voltage Vth and thus operates in Region 2), i.e., 3 and 4 , only. Later we
increase the pulse-width to reach bigger values of T .
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Figure 4.18: Transition graph of the transistor operation regions in an Inverter. The
first line in a node shows the pMOS, the second one the nMOS. The colors correspond to
Region 1) [red], 2) [purple] and 3) [orange].

4.5.2 Region 2), state (SAT) – (SAT)

Around the maximum of a small output pulse (barely exceeding the threshold voltage
Vth used for digitization, corresponding to very low T ), both transistors are in (SAT),
thus their currents, according to the formalism we use, only depend on Vin. Furthermore,
since we are trying to reason about DDM and are investigating an up-pulse, we pick a
linear input with slope k > 0. Choosing a linear input has the advantage that coupling
capacitances do not have to be considered as they always observe the same slope (hence
draw a constant current). The input hits the threshold at t = 0, which we also assume to
be the time when the output pulse reaches its maximum. This is a reasonable assumption,
as it can be controlled by the choice of Vth. Note that this is only possible for DDM as
an involution could not be derived in this fashion (cf. Section 4.4.2).

According to the transistor-level implementation of the Inverter (see Section 3.3), the
derivative of the output is proportional to the difference between the current flowing
through n- and pMOS, i.e.,

dVout

dt
= CL · Iout = CL · (ID,p − ID,n).

Without loss of generality, we can choose CL = 1, since we are only interested in the
general shape of the result. In the Basic Model the current through a transistor in its
saturation region is approximated by a quadratic function, i.e., ID,n = Sn · (Vin − Vth,n)2

and ID,p = Sp ·(VDD −Vth,p−Vin)2 with Vin = k ·t+Vth. After subtraction and integration
we end up with a polynomial of order three. Due to the fact that we demanded the
output peak to be at t = 0, the linear term has to vanish, which results in the following
general form:

Vout = C3 · t3 + C2 · t2 − 3
k2 (C0 − I) (4.11)

104



4.5. Calculating the Involution Delay Function

−4 −2 0 2 4

Vth

time [a.u.]

vo
lta

ge
[a

.u
.]

Vin Vout

Figure 4.19: Cubic approximation of Vout. An arbitrary slope was chosen for Vin as k is
hard to derive from the cubic function used for drawing the output curve.

with some integration constant C0 and

C3 = Sp − Sn, C2 = −3
k

(A · Sp + B · Sn)

A = VDD − Vth,p − Vth, B = Vth − Vth,n

I = A3 · Sp

3 · k
+ B3 · Sn

3 · k
.

Please note two important properties: (1) The peak value at t = 0 is primarily determined
by the integration constant C0 and (2) for an up-pulse a negative quadratic coefficient
C2 is achieved, while for down-pulses it is positive. Figure 4.19 shows an example trace
which clearly reveals the cubic nature of Vout.

To calculate δ(T ), we could vary C0, i.e., the peak value, and observe the appropriate
Vth crossing times. This tedious process can, however, be simplified significantly by
analytically determining at which points in time the function given in (4.11) has the
same value. Out of the three solutions, we are only interested in the ones closest to 0
on the negative (−T ) and positive (δ) side. To get an explicit form, i.e., an expression
for δ(T ), we then have to derive δ as a function of T . Note that the specific values are
actually of no concern for this analysis; just knowing the shape is sufficient.

In the easiest case Sn = Sp, which represents the situation that both transistors
are driving with equal strength, the cubic part is zero and we end up with a quadratic
function. As these functions are symmetric around zero, we get

δ(T ) = T,

i.e., the delay function is a ramp with slope 1. Since it is, however, almost impossible
that both transistors are absolutely identical, we are more interested in the cases where
Sn = Sp. Recall that we are looking for an explicit formula, so we need to find an
expression that determines δ based on the knowledge of T > 0. As already mentioned,
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Figure 4.20: DDM delay function of the first Inverter in the 65 nm Inverter chain (solid
lines) vs. predictions based on our simplifications (dashed lines). Clearly visible is the
super-linear growth of δ↑ for T < 0.2 ns.

we need a positive value δ with Vout(δ) = Vout(−T ) for this purpose, i.e., by using (4.11),
we need to solve

−C3 · T 3 + C2 · T 2 = C3 · δ3 + C2 · δ2.

Besides the obvious solution δ = −T , which is irrelevant, we get two other ones, namely,

δ(T ) =
−C2 + C3 · T ± C2

2 + 2C3C2T − 3C2
3T 2

2 · C3
.

One of those solutions is the desired result, provided that the constants C2, C3 and T
do not cause the argument of the square root to become negative: Depending on the
sign of C2, the negative branch (C2 < 0) or the positive branch (C2 ≥ 0) must be used.
Comparing this estimation to delay functions simulated in HSPICE (see Figure 4.20) we
observe good agreement for small values of T .5 Note carefully that both delay functions
initially have a slope of 1 (cf. the gray lines). Whereas the derivative of δ↓ continuously
decreases from there onward, the one of δ↑ rises initially. This is in stark contrast to
DDM, which demands sub-linear growth at all times. The 15 nm technology shown in
Figure 4.21 appears better balanced, as no super-linear growth can be observed, implying
a small cubic part.

5Note that the start position on the 2nd median was picked from the simulation results, as it depends
on the choice of Vth and other parameters and cannot be determined analytically yet.
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Figure 4.21: DDM delay function of the first Inverter in the 15 nm Inverter chain (solid
lines) vs. predictions based on our simplifications (dashed lines).

4.5.3 Region 2), state (SAT) – (OHM)

The fitting developed for the (SAT) – (SAT) state of Region 2 in the previous section is
only accurate up to a certain point. While the estimation keeps increasing, the simulated
delay starts to decline. This is a consequence of the fact that, for slightly larger output
pulses (that exceed Vth a little more), the Inverter is also in state 3 , where the pMOS
delivers significantly less current than in 4 . Therefore, we need to investigate this case
separately. Using the same approach as before would cause Iout and hence Vout to depend
on Vout. Albeit the resulting ODE is solvable, its solution is far too complicated for being
used here. Consequently, we will rely on appropriate abstraction instead.

As the pMOS operates in (OHM) it delivers less current than before. This implies that
the peak of the output pulse shifts to a lower value of Vin since the nMOS has to close less
to reach the current equilibrium ID,n = ID,p, and thus the peak value (Iout = Vout = 0).
With respect to our cubic fitting of Vout, this means that the peak is now at some time
t < 0 instead of t = 0. We can approximate this behavior by artificially shifting the whole
pulse. As a consequence, the time T between the first output Vth crossing to the input Vth

crossing increases, while δ decreases by the same amount, see Figure 4.22. Note that this
decreases the derivative of the resulting δ(T ), and also guarantees a continuous transition
between the low T situation of Section 4.5.2 and the higher T situation analyzed later.

However, we still need to answer the question how much the peak shall be shifted:
Since ID changes in (OHM) only linearly with Vin but quadratically with Vout, we carry
out a time shift that depends quadratically on the peak value Vp. The resulting changes
to determining a closed-form expression for δ(T ) seems straightforward: just reduce T
by k · V 2

p and increase δ by the same amount. In a real simulation several steps (shown

107



4. Delay Modeling

−4 −2 0 2 4

Vth

T

δ (T )

T + t0

δ (T )− t0

time [a.u.]

vo
lta

ge
[a

.u
.]

Vin Vout Vout(t + t0)

Figure 4.22: Shifting the cubic approximation of Vout by t0 causes an increase in T and
a decrease in δ. The slope of the input signal Vin is approximated.

in Figure 4.23) have to be executed to achieve the desired behavior. In step 1 the peak
value is computed according to (4.11) as Vp = Vout(0) − Vout(−T ) = −C3 · T 3 + C2 · T 2.
In the next step we shrink the output pulse by defining T̂ = T − k · V 2

P and calculating
the corresponding output waveform and delay. This is required to end up with a pulse
that can be shifted in step 3 in time such that the previous-output-to-input delay T is
achieved once again. The final delay can thus be determined by δ̂(T ) = δ(T̂ ) − k · V 2

P .
Indeed, the predictions obtained with this approximation fits actual delay simulations, see
Figure 4.20 and Figure 4.21. Qualitatively, the results look similar for both technologies,
whereat a strong curvature in the approximation for δ↑ can be observed. This forces us
to investigate the region for big T separately.

4.5.4 Regions 1) & 3)

If the output pulse, and hence T , grows further, Vout is well above Vth when the rising
input exceeds Vth,n of the (open) nMOS, i.e., the Inverter is in Region 1) here. When
the rising input eventually also exceeds Vth,p, the Inverter is in Region 3). This actually
allows us to make radical reductions and thus simplifications. First of all, we assume that
the part of the trajectory that lies in Region 2) is fixed, meaning that its shape and thus
the contribution to T (T2) and δ (δ2) is constant (cf. Figure 4.17). This is reasonable, as
we assume a linear input signal, which will therefore be the same for all pulses.6 This
also implies that the voltage gained in Region 1) has to be completely compensated in
Region 3), which simplifies our calculations even further.

6Actually, the input slope has a big impact on the output through coupling capacitances. By keeping
it constant, however, we effectively eliminate this influence completely.

108



4.5. Calculating the Involution Delay Function

−4 −2 0 2 4

Vth

1

VP

T δ (T )

time [a.u.]

vo
lta

ge
[a

.u
.]

(a) step 1

−4 −2 0 2 4

1

2

T − k ·V 2
P

δ (T − k ·V 2
P )

time [a.u.]

(b) step 2

−4 −2 0 2 4

1

2

3

T δ̂ (T̂ )

time [a.u.]

(c) step 3

Figure 4.23: Single simulation steps in shifting the cubic approximation.
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Figure 4.25: Inverter in Region 3).

After the Vth crossing of the rising output transition, the pMOS operates in (OHM).
We can hence represent it as a simple resistor, leaving the overall Inverter in Region 1)
as shown in Figure 4.24. Consequently, the capacitance CL will be charged according to
an exponential function, with a time constant τ = R · CL. During most of the falling
output transition, the nMOS is in (SAT), which causes the current in Region 3) to only
change moderately with Vout (see Section 3.2.1). We repeat our assumptions of constant
current in (SAT) here and replace the transistor by a constant current source, as shown in
Figure 4.25. Figure 4.26 depicts these simplifications as fittings to a simulated HSPICE
trace. In Region 1) & 3) (outside dashed lines) very good agreement can be observed.

Deriving an explicit formula for δ(T ) is easy now. All the voltage ΔV gained by the
exponential, which is followed for the time T − T2, has to be compensated by the linear
discharging current, which is in effect for the time δ − δ2. We thus get

ΔV = (VDD − Vth) · 1 − e−(T −T2)/τ↑ .

The time δ↓(T ) it takes the output downward ramp with slope k↓ to compensate this
voltage ΔV evaluates to

δ↓(T ) = ΔV

−k↓
+ δ2 = VDD − Vth

−k↓
· 1 − e−(T −T2)/τ↑ + δ2
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Figure 4.26: Simplification of Vout for Region 1) & 3) for 15 nm technology. The
exponential increase is followed by a linear drop.

Similarly, the delay function for the rising output transition reads

δ↑(T ) = Vth

k↑
· 1 − e−(T −T2)/τ↓ + δ2

From these expressions, we can already deduct important parameters of the delay
functions. In particular, their limiting values δ↑(∞) and δ↓(∞) solely depend on the
choice of the output threshold voltage Vth and the current Ip resp. In (represented by
k↑ resp. k↓) delivered by the active pMOS resp. nMOS transistor (plus some constant).
Note carefully that k↑ (and analogously k↓) depends on the load capacitance via

dV ↑
out

dt
= k↑ = CL · Ip.

We do not expect that accurately estimating these limiting values, which effectively
correspond to the static delays and are hence usually well-characterized anyway, becomes
urgent in the near future. They are interesting, though, for estimating the consequences
of changing transistors and/or output load.

It can be seen clearly that the overall shape of the delay function for large T is
determined by the RC constant of the transistor active in the first part, i.e., τ = R · CL

from Figure 4.24. To determine R, one has to investigate the slope of ID shown in
Section 3.2.1 for VGS = VDD and low values of VDS . As there are different fittings
possible, finding an appropriate value might be a challenging task.

Figure 4.27a shows the resulting delay functions in logarithmic scale, e.g., log 1 −
δ↑(T )/δ↑(∞) . For large values of T , we get a linear dependency, i.e., an exponential
behavior. In this region, the DDM delay function given by Bellido, Juan, and Valencia
[82] is indeed correct. Unlike the cubic fitting established in the previous subsections,
it can, however, not explain the significant curvature for T towards 0. Simulations on
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Figure 4.27: DDM delay function of the first Inverter for different technologies in
logarithmic space with linear fitting.

the 15 nm technology show a quite different picture (see Figure 4.27b), as no curvature
is observable there. Instead the complete delay function may be fitted using a single
exponential more or less accurately.

4.5.5 Extension to IDM

As pointed out earlier, the main difference when switching to IDM are the shaped
input signals used for characterization, instead of the linear ones used by DDM. We
simulated this by picking the seventh Inverter in our ten inverter chain. This “minor”
change increases not only the overall complexity, as the changing input derivative induces
varying currents via coupling capacitances, but also has an impact on the shape of the
delay function. In general, an increased bending of the delay function can be observed.
Nevertheless, our assumptions still seem valid as the projected trace is very close to the
simulated one (see Figure 4.28). Solely in the transition region, where we have to switch
between the different approximations, the accuracy slightly decreases.

4.5.6 Summary

Overall, the description of the delay function can be divided into up to three regions,
where each requires a different model. While it is sufficient for low values of T to ignore
the output voltage, we quickly run into troubles with this approach, as the delay for one
direction would continuously increase. In our simulations, we see a significant reduction of
the derivative shortly after the start, which we model, due to computational complexity,
by shifting the output waveform in time depending on the maximum deviation to the
threshold voltage. This way, the actual delay function can be approximated closely.
For large values of T we are able to employ coarse abstractions, which resulted in
the exponential function that was derived by the authors of DDM. Unfortunately, the
transition to IDM turned out to be more challenging than expected. Albeit we observe
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Figure 4.28: Fitting of the involution delay function for the seventh Inverter in the
15 nm chain.

quite good agreement also here, the inaccuracies while transitioning from low to high
values of T is bigger.

Despite using the very simple models described in Section 3.2.1, which neglect a lot
of phenomena present in modern technology, the fitting to accurate HSPICE simulations
is generally very good. A comparison between the predictions of our models and the real
delays observed in different technologies (cf. Figure 4.27 and Figure 4.28) allow us to
conjecture, that we have identified a set of equations that is sufficiently parametrizable to
properly model the delay functions both for DDM and IDM. Our research also revealed
that the exponential fitting of DDM can be justified based on physical consideration,
albeit only for large values of T ; for smaller values it does not describe the real behavior
well.

4.6 Simulating the Involution Delay Model
Although it is important that a delay model provides reliable results, it also has to be
easily applicable to be of practical relevance. As this was not the case for the IDM, we
developed the Involution Tool (InvTool)7, which was first presented by Öhlinger [19]. In
a nutshell, it is a complete framework for the systematic and automatic evaluation of
several power and timing metrics, evaluated on different delay prediction methods and
models. Switching between default and IDM simulation is thereby simply achieved by
loading a different library, such that existing infrastructure, like test scripts and input
vectors, can be reused without modification. Thanks to its ability to process the output
of multiple simulation tools it even allows a comparison among various delay models.

In this section, we will shortly introduce the basic idea behind the InvTool. For a
complete description the interested reader is referred to the original publication [7]. We

7The InvTool can be found on GitHub: https://github.com/oehlinscher/InvolutionTool
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then utilize the tool to compare the predictions for more elaborate circuits, namely, an
OR Loop with variable feedback, an SR Latch and an Adder, to analog and other
digital delay simulations. Our results show a high correlation between IDM and analog
simulations leading to highly reliable results, and reveal how commonly used approaches
fail to describe a wide range of possible behaviors. Although its sometimes significant
overhead in simulation time compared to inertial delay (up to 250 %), we consider the
IDM a viable upgrade that allows to reliably identify potentially harmful locations resp.
input trajectories in critical circuits.

4.6.1 Incorporating IDM in ModelSim
One of the main goals for the development of the InvTool was our desire, to perform
circuit simulations using the IDM without the need to install and utilize additional
software. For that reason, we used VHDL Vital as prototype for the development of the
InvTool. Consequently, our solution not only has the same structure as VHDL Vital, but
also responds to the same variables and is written in VHDL. Simulations in the InvTool
are completely controlled by ModelSim, which makes it possible to use all its features
without restrictions: Based on the next input transition time at the channel input, the
algorithm determines T and the resulting δ(T ), and adds the transition to the channel’s
output. This is done separately for each channel, as their parameters can differ.

For simulations using the InvTool, one hence needs exactly the same input files
as for any standard post-layout simulation: the circuit, a testbench, and the timing
characteristics stored in .sdf files. The latter contain the static delay of each gate (δ∞)
in the circuit and the interconnects in between. While VHDL Vital uses essentially
pure/inertial delays with a priori given fixed delay values, the IDM calculates the
parameters for the delay functions δ↑ and δ↓ as introduced in Section 4.3.1, using a
user-defined value for the pure delay parameter δmin. Currently Exp-channels, the sum of
Exp-channels and Hill-channels are supported, whereat the user has to set for the latter
the values of n↑ and n↓. Note that neither δmin nor n↑ and n↓ are easy to guess, so their
impact has been extensively evaluated experimentally in [7].

A crucial task for using the InvTool in practice is to extend the set of available basic
gates, which of course has to be done only once for a new gate. It essentially consists of
modeling the Boolean functionality in VHDL and connecting in- and outputs via suitable
IDM channels. Please note that in contrast to single input-single output channels, which
are quite easy to handle, things get more complicated for multi-input gates, as there are
different possible locations for placing the IDM channels.

4.6.2 Experimental setup
Starting from a Verilog netlist circuit description8. we utilize Genus and Innovus to place
& route the design using technology (T15). Based on the final layout we are able to
automatically extract the parasitics (.spef format) and static delay values (.sdf format),

8The simulation data is available on GitHub: https://github.com/jmaier0/idm_evaluation
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Figure 4.29: OR Loop gate level implementation.

two important ingredients for the succeeding analog and digital simulations. In the analog
case, we back-annotate the extracted parasitics to a transistor level model, which is then
processed using Spectre. Transient simulations deliver analog traces, which are dumped
and finally plotted. Note that the analog results primarily serve as golden reference for
the digital predictions, enabling a quick and easy evaluation regarding the correctness
and behavioral coverage.

The digital simulations are run with ModelSim, which reads the .sdf file to parameterize
the circuit netlist generated by Innovus. Two digital simulation approaches were executed:
The default one provided by the tool (INE), essentially an inertial delay method in Verilog
shipped with the technology library, and the Involution Delay Model. For the latter we
utilized only the Exp-channel model. Since only δ

↑/↓
∞ are provided by the .sdf files, we set,

for the sake of simplicity, the pure delay to a constant value of δmin = 1 ps. The results
of the simulations were, at last, dumped into a .vcd file and then plotted.

We want to emphasize at this point, that these simulations confirmed in an impressive
fashion the simplicity of integrating the IDM into an existing design flow. Starting from
the finished test setup for INE one only has to compile and link the gate descriptions
and channel model for the IDM. However, due to the fact that the library delay model
INE and the IDM are implemented in different hardware description languages (Verilog
vs. VHDL) we were not able to use the same testbench in both cases. The reason is,
that some commands, such as forcing signals, do not properly work across language
boundaries. This made it necessary to implement the testbench twice, once in Verilog
and once in VHDL, with, of course, the exact same behavior.

4.6.3 Circuits
In the sequel we describe the circuits used in our simulations in greater detail. Note that
additional Buffers, which we add at the in- and output to emulate the settings far away
from the chip boundaries, are not shown.

OR Loop

The circuit shown in Figure 4.29 has been used in the past for proving the faithfulness
of IDM regarding the SPF problem [17]. It solely utilizes simple, single input-single
output, Buffers to create a combinational loop, whereat up-pulses are inserted utilizing a
single OR-gate. Based on the pulse-width ΔI on signal I different behaviors are possible:
For small ΔI the gates in the loop lead to degradation, causing the pulse to vanish
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Figure 4.30: SR Latch gate level implementation.

eventually. A similar behavior can be observed for rather large ΔI , however, in this case
the remaining LO time in the loop decreases, leading to a constant HI at the output.

In between these cases there is a nonempty range of ΔI causing the pulse train
inside the loop to recreate itself infinitely. Depending on the length of the feedback
path either a train of distinguished pulses is observable or just a constant, intermediate
voltage value. While the former corresponds to a simple ring oscillator, the latter depicts
metastability [53], an undesired state in digital circuits that causes combinational loops
to settle at an intermediate voltage value for a possibly unlimited amount of time9. Since
such intermediate values may be interpreted differently by succeeding gates, it is crucial
to model metastable upsets in a suitable fashion in the digital domain. In our descriptions
of oscillations and metastability we are going to use ΔHI

n and ΔLO
n to denote the high

respectively low time of the nth oscillation (= high + low pulse) at node A.
To stimulate different behaviors, we run simulations with a varying number of Buffers

in the feedback path. The primary effect is an increased loop delay, which, as we already
mentioned, has a big impact on the behavior. We are aware that longer delays could
also be achieved by adding large capacitances. In our setup this would, however, lead
to significantly different results since a capacitance serves as a low pass filter and thus
suppresses short, i.e., high frequency, pulses very effectively. Using multiple Buffers
in succession, on the contrary, increases the delay but keeps the signal shape intact,
such that oscillating signals can be generated. Nonetheless we artificially add a large
capacitance at node B, as this allows us to study the internal behavior in greater detail
and to reveal possible shortcomings of the delay models more clearly.

SR Latch

So far, the IDM has almost exclusively been applied to single input-single output gates.
Therefore, it is of major interest whether more elaborate circuits, still only utilizing
Boolean gates and single-input single-output delay channels, can be properly described
as well. For this purpose we investigate the SR Latch, a well-known circuit with the
possibility for metastability, as shown in Figure 4.30. Note that we added a single Buffer
on the coupling paths between the NOR-gates, to pronounce the observable effects and
thus ease their detection.

9A detailed consideration of metastability follows in Chapter 5
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Figure 4.31: Adder gate level implementation.

The Set Reset Latch operates as follows: If the set (S) input turns HI; Q switches
to HI, for a HI on the reset (R) input, Q changes to LO. Q represents the inverse of
Q and thus transitions exactly in the opposite direction. Both inputs set to HI leads
to an intermediate voltage value at nodes U & T and thus has to be prevented. Note
the similarities between SR Latch and OR Loop: If one input is LO, the SR Latch
behaves, w.r.t. the other one, just like the OR Loop. Very short pulses are blocked, very
long ones immediately set the loop, while ones in between may lead to metastability.
Significantly different behavior is possible, however, if both inputs are allowed to change.
While one steers the loop into a metastable state the other one can either support or
impair its resolution, a behavior that we will stimulate in our simulations.

Adder

To investigate the scaling of the IDM and its predictions on loop-free circuits we also
simulated a simple ripple carry adder as shown in Figure 4.31, whereat we used n = 4.
Each full adder block FA is defined at the gate level and implements the equations

Si = Ci ⊕ Ai ⊕ Bi

Ci+1 = (Ci ∧ (Ai ⊕ Bi)) ∨ (Ai ∧ Bi) .

Regarding input stimuli, those leading to a maximum number of transitions are the
most interesting for us, as they allow the investigation of the whole circuit in a single
simulation run. Considering the fact that signals traverse from left to right we choose
B0B1B2B3 = 1111, A0A1A2A3 = 0000 and introduce an up-pulse on signal A0. If the
pulse is wide enough this leads to a pulse on all internal carry signals Ci and all output
signals Si. For a down-pulse on signal A0 we used a very similar setup, with the only
difference that we set A0A1A2A3 = 1000 initially.

In the following sections, we will present and compare the analog resp. digital
simulation results for all our the circuits. We start by studying oscillatory behavior and
its digital counterpart for the OR Loop with long feedback delay. Subsequently we will
remove the Buffers from the feedback path and investigate the effects on the (significantly
changing) analog and (only slightly differing) digital simulation results. Afterwards
we use the SR Latch to demonstrate the superior modeling power of IDM, which, in
contrast to inertial delay, predicts metastable behavior quite well. Simulations of the
Adder confirm the superior modeling power of the IDM but also reveal inaccuracies.
Finally we compare the overhead and thus the price for the more reliable results.
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Figure 4.32: Analog and digital simulation results for the OR Loop with long feedback.

4.6.4 OR Loop with Long Feedback
For our first experiments we insert thirty Buffers into the feedback path of the OR Loop
in Figure 4.29. In this setup it is, for δ↑∞ = δ↓∞, possible to generate several periodic
signals in the loop, since the signal rise/fall time, i.e., the time it takes to switch from GND
to VDD or reverse, is significantly smaller than the overall delay of the loop. However,
the static delay values extracted after place & route did not match: Rising transitions
are delayed less than falling ones, leaving only one ΔI that perfectly compensates the
increase in ΔHI

n by pulse degradation effects and thus creates infinite oscillation.

HSPICE

Figure 4.32 (top) shows the analog simulation results for an initially very short pulse that
grows and eventually settles the loop at VDD. Clearly visible is also the impact of the
high capacitive load: Since the transitions at node A are very fast compared to node B it
actually seems as if charging and discharging curves are switched immediately when an
input transition occurs. Recall that this perfectly matches the analog domain model of
the IDM (cf. Section 4.3.1). Consequently the threshold (dashed line) is crossed multiple
times, whereat the time difference between rising and falling crossing strictly increases.

Noteworthy is the high sensitivity of the feedback loop in this state and thus the
very low probability to reach it. We had to vary ΔI in steps of 1 as (10−18 s) in order to
eventually generate an oscillation trace inside the loop that lasted up to 4 ns.

INE

At a first glance the inertial delay results shown in Figure 4.32 (middle) look very similar
to the analog results. The short pulse in the beginning increases until, finally, the loop
is constant HI and thus also node B gets HI. However, on closer examination severe
shortcomings become apparent. First of all the shown pulse is the shortest ΔHI

0 that can
be inserted into the loop. Smaller ones are removed by a high-delay Buffer upstream,
since inertial delay blocks all pulse-widths smaller than the delay of the corresponding
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Figure 4.33: Analog waveform ur of the IDM for various combinations of f↑ and f↓.

gate. This indicates a general problem: A gate with long delay close to the input of
the circuit removes a large share of all possible input pulses. This may include relevant
ones, as it is the case in this example, thereby making it impossible to detect any infinite
oscillations or ones that eventually return to LO.

Regarding the output transition another important property can be observed. The
signal at node B only switches to HI after the loop has fully settled, i.e., the oscillations
have ceased. This can again be explained by the succeeding gate, whose delay is bigger
than the feedback delay. Overall it thus serves as a metastability filter, which does
not correspond well to the analog simulations, where the threshold is already crossed
way before the loop is fully locked. We can conclude that INE is not well suited to
properly describe the exact behavior of the circuit in such circumstances. In particular,
it is impossible to achieve pulses at node B for the inertial delay model: only a single
transition is observed or none at all.

IDM

Compared to INE the Involution Delay Model achieves a much more fine grained de-
scription of the analog behavior. First of all, any value of ΔHI

0 can be studied, also ones
that quickly decay. Figure 4.32 (bottom) shows a simulation with increasing ΔHI

n for
ascending n: Internally f↑ is utilized more and more, increasing also the mean value of ur

steadily (cf. Figure 4.8), eventually crossing V out
th and resulting in the digital oscillations

on node B(cf. Figure 4.8). This is very much in accordance with our HSPICE simulations.
By properly tuning ΔI it is even possible to achieve the infinite pulse train, i.e., the

one that actually recreates itself. Note that this trace did not produce even a single
transition on B, which reveals an unfavorable property of the IDM: The exact voltage
range, where the internal, analog waveform stabilizes in an oscillatory manner, depends
on f↑ & f↓ and might not include the threshold voltage. Based on the chosen V out

th , the
IDM possibly fails to reveal the internal unstable behavior at all, which was already
mentioned in Observation 6. Figure 4.33 illustrates this situation by showing the analog
trace ur of the IDM for a given digital input and varying f↑ and f↓. Note that only for
equally fast switching waveforms a pulse train is observed at the output in this case.
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Figure 4.34: Increase of the pulse train high time compared to its initial value.

Comparison

A major difference between IDM and INE can also be identified by investigating the
evolution of ΔHI

n , as shown in Figure 4.34. The rate of growth is determined by the
difference between the delay variation of falling and rising transition. For INE this
variation is constant, leading to a constant rate and thus a linear shape. HSPICE
and IDM show, however, a quite different behavior. For small n, ΔHI

n increases only
marginally, as we are running the circuit initially near the metastable point, i.e., where
pulses recreate themselves. For bigger pulses the rate quickly increases.

Very interesting is the nonlinear increase of IDM. Intuitively, ΔHI
n is expected to

settle at a constant rate since for large values of T , the IDM and inertial delay are equal.
While this is true, one has to consider that the increase in ΔHI

n causes a drop of ΔLO
n ,

which then experiences pulse-width degradation and thus further enhances the increase
rate of ΔHI

n . Note that the increasing differences to HSPICE are a result of inaccurate
delay values extracted from the design tools, which we describe in detail in [7].

4.6.5 OR Loop with Direct Feedback
Reducing the Buffer count in the feedback path, and thus its delay, causes rising and
falling transitions to be moved closer together, while leaving the rise and fall time
untouched. Eventually they get so close that GND/VDD are not reached any more. The
effects of these changes on the infinite oscillatory behavior are as follows: As long as
there is at least one gate in the loop still performing full range switching, which is
possible due to differing parasitics, oscillations with a reduced amplitude, i.e., within
the range [VL, VH ] with VL > GND and VH < VDD, are possible. In Section 4.6.6, we
will investigate such a setup. Note that, due to the lower amplitude, the time between
succeeding threshold crossings declines. Reducing the delay further eventually leads to a
damped oscillation, which approaches a constant value, the metastable voltage. The time
it takes to reach the final value decreases by reducing the number of gates in the path.
When there is only a plain wire left, no more oscillations occur and the constant value
is approached immediately. We chose exactly this setup for our simulations to evaluate
how digital predictions represent such a behavior.
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Figure 4.35: Analog and digital results of the OR Loop with direct feedback (node A).

HSPICE

Analog simulations confirm the intuitive explanation for the metastable case presented
above. Figure 4.35 shows two traces on node A, which stay at a constant value near V out

th

for some time. Eventually they resolve to LO in one case and to HI in the other one.
The fact that the corresponding ΔI differ by merely 1 as (10−18 s) and, nonetheless, it is
only possible to stay in the metastable state for a few picoseconds (10−12 s), indicates
the very high sensitivity of the circuit.

INE

As described in Section 4.6.4 the shaping gates at the input already filter all small pulses.
In fact, only pulses longer than the delay of the storage loop are able to pass, causing
an immediate switch to HI. Thus, for INE, the simulation either delivers a single rising
transition on all wires or none at all. While this coincides with HSPICE at a first glance
very well, the metastable state, and thus the increase in delay, are not revealed, suggesting
falsely a settled and well defined behavior.

IDM

Although the analog simulations did not show any V out
th crossing during metastability,

IDM again delivers an oscillatory behavior, which seems to be awfully wrong. Recalling,
however, the analog representation of IDM, i.e., the switching between f↑ and f↓, it
becomes apparent, that the closest ur can get to a constant intermediate value is to
oscillate with high frequency around it. Therefore, in IDM a pulse train happens to
indicate metastability.

Overall a pulse train can thus either describe real oscillations, as shown in the previous
example, or a metastable state. How can these scenarios be distinguished? Based alone
on the digital predictions this is unfortunately impossible. The only major difference
between different oscillatory traces is the sequence ΔHI

n respectively ΔLO
n , which does not

yield much information on their own. Only in combination with the switching waveforms
f↑ & f↓ or the static delays δ

↑/↓
∞ it is possible to estimate the voltage gain of ur during

the high and low period. However, as a rule of thumb, one can say that if ΔHI
n (ΔLO

n )
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is approximately or lower than δ↑∞ (δ↓∞), damping and hence metastability has to be
expected. In our setup we extracted δ↑∞ = 4.6 ps and δ↓∞ = 5.8 ps for the OR-gate, which
is clearly more than ΔHI

n respectively ΔLO
n in Figure 4.35. While this looks, at first sight,

as a disadvantage compared to INE, be reminded that also for the latter comparisons
with the delay values are necessary to determine, if a pulse is close to suppression. Since
knowing the peak values in the analog domain is so important, we expanded the InvTool,
which now enables the designer to investigate the underlying analog waveform ur for
desired areas and time spans. This is, however, only suited for rough estimations and is
not intended to replace analog simulations at all.

Overall it has to be stated that an oscillating simulation trace does not automatically
indicate undesired behavior. Only when the period gets too small, which depends on the
actual circuit at hand, ill shaped pulses or even metastability have to be expected.

4.6.6 SR Latch

After studying the general behavior of digital simulation approaches on the rather artificial
OR Loop, we turn to the SR Latch in Figure 4.30. Interestingly, INE again fails to cover
very important parts of the real behavior and thus delivers overly optimistic results, while
IDM stays close to the analog trace. The latter even enables us to explore unfavorable
input conditions, which we will use to artificially prolong metastability.

Set or Reset Input Pulse

For constant LO on either S or R, the SR Latch degrades to the OR Loop for the other
input. Simulations thus lead to very similar results, which are shown in Figure 4.36 for
a single up-pulse on S. Once again, the shortest pulse for INE that is able to pass the
input Buffers immediately sets the loop, leading to a single transition. This strongly
contradicts the analog simulation results, which show an oscillation in a range between
GND and VDD. As discussed earlier, such a behavior is possible if one of the gates in the
path, in this case the Buffers, still issue full range waveforms at their output.

In contrast, the IDM describes the behavior during, and also the resolution out of,
metastability so faithfully, that the digital predictions enabled us to search for “malicious”
input conditions that prolong the metastable state. As shown in Figure 4.36, a very long
HI phase ΔHI

5 on node T appears right before Q switches to constant HI. To prevent the
oscillation from resolving, it would be necessary to reduce ΔHI

5 , which simultaneously
increases ΔLO

5 . This can be achieved by setting the reset input R to HI, driving the
NOR gate and thus T to LO. Issuing a pulse on R at an appropriate point in time should
be able to restore the continuous trace, i.e, push the resolving memory loop back into
metastability. Essential for success is the time of the rising transition, as it determines
the width of ΔHI

5 . On the other hand, the falling transition can be issued at any point in
time during the HI period of the other NOR-gate input, since in this case the reset input is
masked anyway. Reiher et al. [20] described a similar effect when “kicking” synchronizers,
i.e., abruptly changing an internal voltage value, which also led to a potential extension
of the metastable state.
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Figure 4.36: Analog and digital simulation showing metastability in the SR Latch.

Set and Reset Input Pulse

To verify the above considerations, we simply added a pulse on input R to the previous
simulations. Results for INE, shown in Figure 4.37, reveal just one additional output
transition delayed, as if the circuit was completely stable: Based on these predictions, one
would assume the circuit is completely settled, i.e., operating under normal conditions.
The instabilities the circuit is actually experiencing are invisible to INE.

HSPICE simulations shown in Figure 4.37 reveal the correctness of the IDM predictions.
Not only is metastability extended but also a resolution to HI is forced. Please note
that finding a proper spot for the reset pulse in HSPICE is a rather challenging task, as
pulses already have an impact via coupling capacitances before they show up on the wire.
This becomes obvious when observing, that the pulse on R that extends metastability
appears way after the circuit had fully resolved in Figure 4.36. Separate simulations even
reveal, that the signal on R is too short to have any impact on a fully settled memory
loop. Only in combination with this particular circuit state a change in value becomes
possible. Consequently, it is very important to investigate trains of very short pulses in
combination with metastable states closely.

The theoretical predictions also fit very well to an actual execution of the IDM.
Cutting ΔHI

5 indeed sets the loop back into metastability, resulting in a very realistic
representation of the underlying analog behavior. Scheduling the reset pulse is, compared
to HSPICE simulations, much easier, since only the NOR gate delay has to be considered.
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Figure 4.37: Analog and digital simulation of keeping the SR Latch in metastability.

4.6.7 Adder

At last we turn to our four Bit wide Adder shown in Figure 4.31. Analog HSPICE
simulation results (see Figure 4.38) clearly show the propagation of the input pulse
through the Adder and the corresponding degradation. Whether a pulse is observed
on output Si depends on (i) the initial input pulse-width on signal A0 and (ii) the path
length from Si to A0. The longer the path the bigger the input signal has to be to still
have an impact. Interestingly the carry signals Ci+1 seem to be generated faster than
the sum value Si. This can be seen very clearly by comparing S3 and S4 (the latter is
actually the carry signal of the last full adder): While S3 still barely crosses the threshold,
S4 already reaches all the way to GND/VDD.

Overall, these results show the threat caused by glitches: Due to differing path
lengths through the circuit, the input signal generates a varying number of output
pulses with decreasing pulse-widths. This makes it more probable to steer a succeeding
memory element into metastability: As on signals Si many deviating transition times
are generated, the chance to violate the setup and hold time of a succeeding Flip-Flop
is elevated. Furthermore we want to emphasize that a metastable input value has the
chance in this circuit to spread to five output signals and thus multiplies the effect of a
single upset. This shows, once more, the importance of faithfully predicting glitches and
metastability in the first place.

For INE, a very inconsistent buildup of transitions can be observed: Increasing the
pulse-width of an input that only induces a pulse on S1, by 1 fs, for example, causes a
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Figure 4.38: Analog and digital simulation of the Adder with a glitch on its input.

propagation all the way up to S4. This is a direct consequence of the fact, that INE
suppresses pulse-widths below a certain threshold, as was shown in Figure 4.1. For down-
pulses on A0, INE even delivers nonphysical results, as pulses on signal S0 only appear
after every other signal had been triggered. We retraced this to an unfortunate series of
delays causing the signal closest to the input switch last, which is the actual opposite
of what is seen in analog simulations. Finally note the constant shifts in pulse-widths,
i.e., once a pulse appears on a signal it differs from the input pulse solely by a constant
additive value. Since the respective values are very similar for each output comparable
shapes are achieved.

A smooth increase of pulse-widths is naturally much better modeled by the IDM.
In our simulations we even observe a strict causality among S0 to S4, i.e, Si show
a transition only after all Sj , j < i have switched. Compared to INE this is a big
improvement. Compared to HSPICE, however, some inaccuracies are still observable.
For example, the quick increase on S4 compared to S3 is not well depicted. Possible
causes are inaccurate delay values extracted from the design or the non optimal modeling
of multi-input gates. Nonetheless, due to its accurate pulse-width degradation coverage,
the IDM is able to provide overall very realistic results.

Be aware that in more complex circuits, e.g., the multiplier investigated in [96],
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INE IDM
# x [s] σ [s] y [s] σ [s] overhead [%]
1 4.80 0.92 8.65 0.90 80.23
2 5.95 2.03 12.00 0.41 101.58
4 6.78 0.90 18.80 0.86 177.16
10 11.74 0.24 37.75 1.15 221.43
20 20.02 0.42 69.24 2.09 245.93
40 37.30 1.15 132.53 1.31 255.27
100 91.13 2.19 419.47 105.57 360.33
200 216.17 59.28 1492.03 317.88 590.20
400 1098.69 242.03 3674.48 584.66 234.44

Table 4.1: Mean simulation time and variance σ for both simulation methods and varying
instances of the Adder.

glitches might also be triggered internally, leading to possible further signal degradations.
This shows, once more, the importance of using the IDM also for obviously “harmless”
input trajectories, since from an outside viewpoint internal race conditions can never be
ruled out. The more reliable and trustworthy results, however, also come at a price in the
form of a computational overhead, which will be thoroughly investigated in the sequel.

4.6.8 Overhead

Naturally, calculating the delay functions of the IDM, which includes exponential and
logarithmic operations, is computationally more expensive than applying constant values
paired with some minor removal checks for INE. To evaluate the overhead we thus ran
extensive simulations and measured the execution time on our machine (Intel Xeon
X5650, 1600 MHz, 32 GB RAM, CentOS 6.10). As test circuits we chose to use the
Adder and the Clock Tree of an open source MIPS processor [13] that comprises of
227 inverters which drive 123 Flip-Flops. To also generate results for larger circuits we
simply instantiated each unit multiple times, which had the expected impact on the
overall simulation time.

For comparable results we have to ensure that INE and IDM process the same amount
of transitions. Since their behavior mainly differs for high input frequencies, we use
rather long pulses to assure no internal cancellations. Overall, 2 × 105 input transitions
are applied per simulation run. The results are shown in Table 4.1 for the Adder and in
Table 4.2 for the Clock Tree, whereat the first column denotes how often the circuit
is instantiated. Most and foremost, we stress that, due to the high variance σ of the
achieved execution times, we ran each simulation 30 times and calculated the average
x respectively y. Furthermore, the presented values only provide a lower bound, since
real input signals may lead to very short internal pulses, which increases the workload of
IDM compared to INE.

In essence the results show that the improved coverage of the IDM definitely comes
at a cost. For the Adder the overhead increases with increasing circuit size. For 40
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INE IDM
# x [s] σ [s] y [s] σ [s] overhead [%]
1 26.07 2.18 41.46 1.12 59.06
2 41.17 0.46 69.58 1.56 69.01
4 71.32 1.27 122.09 1.25 71.17
10 188.27 49.26 368.30 127.09 95.62
20 1016.23 265.44 1294.92 451.77 27.42
40 2430.30 406.60 3554.59 576.95 46.26

Table 4.2: Mean simulation time and variance σ for both simulation methods and varying
instances of the Clock Tree.

instances it is almost 260 %. Please note that we consider the values for 100 and 200 not
representative, since the disproportional increase in simulation time indicates a bottleneck
of the computational platform that is not experienced by both methods in the same
fashion. For the Clock Tree the overhead is lower and more constant, ranging from 27
to almost 100 %. We explain this result by the fact that only simple inverters are utilized,
again showing that there is still a lot to be done in the IDM regarding multi-input gates.

4.6.9 Summary

In summary, our simulation results show that INE fails to model wide ranges of the analog
behavior, especially high frequency oscillations and metastable intermediate voltages.
The causes are single gates with larger delays, which have to be expected in almost every
real world circuit. Relying exclusively on these predictions thus leads to a false sense
of correctness. In these cases the IDM can significantly enhance the results, as it is
able to stick much closer to the analog circuit behavior. This enables a more reliable
identification of a wider range of malicious behavior in the digital domain and thus a
better guidance of succeeding analog simulations. The latter are still mandatory to either
confirm or dismiss the problems discovered in the digital domain.

Overall, state-of-the-art simulation suites tend to miss potentially malicious circuit
behaviors like infinite oscillations or metastability and thus fail to deliver faithful predic-
tions. Although an evaluation of the overhead showed a significant increase in simulation
time, we think that the IDM poses a viable alternative to identifying malicious behavior,
especially if confined to the most critical parts, and thus a significant enhancement of
digital simulations.

One point deliberately neglected in this analysis is modeling accuracy. It is still
computationally hard to characterize each single delay channel, relying heavily on analog
simulations or crude approximations. Approaches that yield reasonable results based
on available, or easily achievable, data are instrumental for making the IDM a truly
competitive alternative to existing delay models.
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Figure 4.39: The η-involution channel: Non-deterministic choice of the tentative output
transition after applying δ↑(T ).

4.7 Adding Non-Determinism
In the previous section, we have shown that simulating random traces using the IDM
delivers good but not perfect approximations, primarily due to the applied simplifications.
Since only pulses are used for characterization, and even those are not recreated perfectly
as shown in Section 4.4.1, traces consisting of three or more transitions inevitably
experience larger deviations. Furthermore, there are minor variations in the behavior of
different instances of the same gate in a single chip or several chips. Therefore it would
be convenient to cover such variations by allowing a small amount of non-determinism,
which we will introduce in this section.

4.7.1 Introducing Adversarial Choice
In this section we generalize the circuit model from Section 4.3 to allow a non-deterministic
perturbation of the output transition times after the application of the delay functions δ↑
and δ↓. The resulting output shifts of an η-involution channel need not be the same for
all applications of the delay functions; they can vary arbitrarily from one transition to
the next. However, each perturbation needs to be within some pre-determined interval
η = [−η−, η+]. These non-deterministic choices can be used to model various effects in
digital circuits that cannot be captured by single-history delay functions, ranging from
arbitrary types of noise [24] to unknown variations of process parameters and operating
conditions. Figure 4.39 shows the possible changes of the output transition time caused
by the non-deterministic choices.

Formally, we change the notion of the channel function to accept an additional
parameter: A channel has a channel function, which maps each pair (s, H) to an output
signal, where s is the channel’s input signal and H is a parameter taken from some
suitable set of admissible parameters, i.e., any sequence of choices ηn ∈ η for η-involution
channels. The output transition generation is thus altered to δ↑(T ) + ηn for a rising and
δ↓(T ) + ηn for a falling input transition.

Figure 4.40 depicts three example signal traces based on the same input. In the first
case no shifts have been used while for the other two varying values were employed. One
can observe that the adversary has the freedom to “de-cancel” pulses that would have
canceled according to the delay function (second pulse in out2), extend pulses (first pulse
in out1), and shift pulses (first pulse in out2).
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Figure 4.40: Multiple possible output behaviors for the same input trace, caused by
different adversarial choices (η1, η2, . . . ). The output transitions that would have been
caused for ηn = 0 are dotted. Note that different adversarial choices usually change the
history and, hence, T and thus δ(T ).

4.7.2 Faithfulness of Involution Channels with Adversarial Choice

In this section, we will prove that η-involution channels are faithful with respect to
Short-Pulse Filtration (SPF) (cf. Definition 1). We start with the trivial direction: we
prove that no circuit with η-involution channels can solve the bounded-time variant of
SPF (where the output must stabilize to constant 0 or 1 within bounded time). Note
that this matches the well-known impossibility [146] of building such a circuit in reality.
Indeed, the result immediately follows from the fact that the adversary is free to always
choose ηn = 0, i.e., make the η-involution channels behave like involution channels.
In [17], it has been shown that no circuit with involution channels can solve bounded-time
SPF, which completes the proof.

What hence remains to be shown is the existence of a circuit that solves SPF (with
unbounded stabilization time) with η-involution channels. We can prove that the circuit
shown in Figure 4.41, which consists of a fed-back OR-gate forming the storage loop
and a subsequent Buffer with a suitably chosen (high) threshold voltage (modeled as an
Exp-channel), does the job. As a consequence, a circuit model based on η-involution
channels enjoys the same faithfulness as the involution channels of [34], even though its
set of allowed behaviors is considerably larger.

Informally, we consider an input up-pulse of width Δ0 at time 0 and reason about the
behavior of the feed-back loop, i.e., the output of the OR gate. There are 3 cases: If Δ0
is small, then the pulse is filtered by the channel in the feed-back loop. If it is large, the
pulse is captured by the storage loop, leading to a stable output 1. For a certain range of
Δ0, the storage loop oscillates, possibly forever. In any case, however, it turns out that a
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OR

c

i HT o

Figure 4.41: A circuit solving unbounded SPF, consisting of an OR-gate, with initial
value 0, fed back by channel c, and a high-threshold Buffer HT.

properly chosen Exp-channel can translate this behavior to a legitimate SPF output.

Lemma 7. If the input pulse’s width Δ0 satisfies Δ0 ≥ δ↑∞ + η+, then the output of the
OR in Figure 4.41 has a unique rising transition at time 0, and no falling transition.

Proof. Clearly, the output of the OR, hence the η-involution channel’s input, will have a
rising transition at time 0. The corresponding rising transition occurs at the channel
output at the latest at η+ + δ↑∞ ≤ Δ0. This guarantees the storage loop to lock, causing
the output of the OR output to stick to 1.

Lemma 8. If the input pulse’s width Δ0 satisfies Δ0 ≤ δ↑∞ − δmin − η+ − η−, then the
OR output in Figure 4.41 contains only the input pulse.

Proof. The input signal contains only two transitions: one at time t1 = 0 and one at
time t2 = Δ0. The earliest time when the output transition corresponding to the rising
input transition can occur is t1 = δ↑∞ − η−. For the falling input transition, we thus get
T = Δ0 − δ↑∞ + η−, and observe that the corresponding falling output transition cannot
occur later than t2 = Δ0 + η+ + δ↓(T ). The two output transitions cancel iff t2 ≤ t1,
which is equivalent to X = Δ0 + η+ + δ↓(T ) − δ↑∞ + η− ≤ 0. Replacing Δ0 with the upper
bound from the lemma reveals T ≤ −δmin − η+ and X ≤ −δmin + δ↓(−δmin − η+) ≤
−δmin + δ↓(−δmin) = 0 by monotonicity of δ↓ and (4.3), which concludes the proof.

For an input pulse-width that satisfies δ↑∞ − δmin − η+ − η− < Δ0 < δ↑∞ + η+, the
OR output signal may contain a series of pulses of widths Δ0, Δ1, Δ2, . . . . In sharp
contrast to standard involution channels [34], it is not the case that there is a unique
value Δ0 = Δ̃0 that leads to an infinite series of (identical) pulses Δ1 = Δ2 = . . . Rather,
due to the adversarial choices, there is a range of values for Δ0 that may lead to a whole
range of infinite pulse trains, with varying pulse-widths, which are difficult to bound.

An informal, high-level explanation of the approach that was eventually found to be
successful is the following: we identified a self-repeating infinite “worst-case pulse train”,
which ensures that any adversarial choice that deviates from it at some point causes
the subsequent pulses to die out, i.e., to resolve to a stable 1. In more detail, let Δ0 be
such that an infinite self-repeating pulse train Δ = Δ1 = Δ2 = . . . exists, subject to the
constraint that the adversary deterministically takes all rising transitions maximally (η+)
late and all falling transitions maximally (η−) early. Note that this adversarial choice
actually minimizes Δn for any given Δn−1. Therefore, given a pulse Δn−1 = Δ, any
other adversarial choice (as well as any larger Δn−1 > Δ) leads to a subsequent pulse
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with Δn > Δ. As a consequence, Δ is an upper bound for the width of every pulse Δn,
n ≥ 1, occurring in an arbitrary infinite pulse train: if some Δn−1 > Δ ever happens,
then Δn+ > Δ for every ≥ 0 as well; in fact, Lemma 11 will reveal that the pulse train
will only be finite in these cases.

Similarly, since the adversarial choice that minimizes the up-time Δn simultaneously
maximizes the down-time Δn of a pulse, we also get a a lower bound Δn ≥ P − Δ
for all pulses in an arbitrary infinite pulse train, where P is the period of our infinite
self-repeating pulse train.

For these arguments to work, we need to restrict the adversarial choice for the
feed-back channel in Figure 4.41:

η+ + η− < δ↓(−η+) − δmin (C)

Formally, we have the following Lemma 9:

Lemma 9. Consider the circuit in Figure 4.41 subject to constraint (C). Assume that
the input pulse-width Δ0 is such that it results in an infinite pulse train Δ0, Δ1, . . .
occurring at the output of the OR. Then, for every n ≥ 1, the up-time Δn satisfies
Δn ≤ Δ, the down-time Δn (preceding the pulse with up-time Δn) satisfies Δn ≥ P − Δ,
and Pn = Δn + Δn+1 ≥ P . Herein, Δ = δ↓(η+ − τ) with Δ < δmin is the up-time of an
infinite self-repeating pulse train with period P = τ and duty cycle γ = Δ/P , with τ > 0
denoting the smallest positive fixed point of the equation δ↓(η+ − τ) + δ↑(−η− − τ) = τ ,
which is guaranteed to exist and satisfies η+ + δmin < τ < min(−η− + δ↓∞, η+ + δ↑∞).

Proof. In the circuit of Figure 4.41, the nth input pulse of the η-involution channel c
is just its (n − 1)th output pulse. Therefore, for all n > 1, the output pulse-width Δn

under the worst-case adversarial choice of η+-late rising and η−-early falling transitions
evaluates to

Δn = f(Δn−1) = δ↓ Δn−1 − η+ − δ↑(−Δn−1) (4.12)
+ Δn−1 − η− − η+ − δ↑(−Δn−1) .

The sought fixed point Δ of (4.12) resulting in a infinite pulse train is obtained by solving
Δ = f(Δ), which yields

δ↓ Δ − η+ − δ↑(−Δ) = η− + η+ + δ↑(−Δ) . (4.13)

Applying the involution property to (4.13) results in Δ − η+ − δ↑(−Δ) = −δ↑(−η− −
η+ − δ↑(−Δ)) and further in

Δ + δ↑ − η− − η+ − δ↑(−Δ) = η+ + δ↑(−Δ) . (4.14)

Defining τ = η+ + δ↑(−Δ), rewriting it to −δ↑(−Δ) = η+ − τ and applying the
involution property, we observe

Δ = δ↓(η+ − τ) . (4.15)
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Using (4.15) and (4.4) in (4.14) yields the fixed point equation stated in our lemma:

δ↓(η+ − τ) + δ↑(−η− − τ) = τ . (4.16)

Now assume that the smallest fixed point τ > 0 of (4.16), and hence Δ of (4.12),
exists. Then, in any infinite pulse train, any pulse Δn−1 > Δ, n > 1, and/or any
non-worst-case adversarial choice (also in the case Δn−1 = Δ) leads to a subsequent
pulse with Δn > Δ. As a consequence, Δ is indeed an upper bound for the width of
every such pulse.

We will proceed in our proof with establishing constraints on η−, η+ that guarantee
the existence of a solution τ > 0 of (4.16). For this purpose, we introduce the function

h(τ) = δ↓(η+ − τ) + δ↑(−η− − τ) − τ . (4.17)

and show that there are values τ0 < τ1 where h(τ0) > 0 but h(τ1) < 0. Since h(.) is
continuous, this ensures the existence of τ0 < τ < τ1 with h(τ) = 0.

If we plug in τ0 = η+ + δmin in (4.17), we find, by recalling (4.3), that h(η+ + δmin) =
δ↑(−η+ − η− − δmin) − η+. In order to guarantee that h(η+ + δmin) > 0 we need
δ↑(−η+ − η− − δmin) > η+. Rewriting this using the involution property requires
−δ↑(−η+ − η− − δmin) < −δ↑(−δ↓(−η+)) and hence η+ + η− < δ↓(−η+) − δmin as stated
in constraint (C). Note that this implies η+ < δmin, since η+ + η− ≥ 0.

For h(τ) < 0, we simply obtain −∞ from δ↓(η+ − τ) or δ↑(−η− − τ) by plugging in
τ1 = min(−η− + δ↓∞, η+ + δ↑∞) in (4.17), noting that the involution property guarantees
−∞ = δ↑(−δ↓∞) = δ↓(−δ↑∞). Since all other terms of h(.) are finite, the result is definitely
< 0.

We still need to assure that the boundary interval for τ is not empty, i.e., that
τ0 = η+ + δmin < τ1 = min(−η− + δ↓∞, η+ + δ↑∞). This is trivially the case if τ1 = η+ + δ↑∞.
If τ1 = δ↓∞ − η−, we need η+ + η− < δ↓∞ − δmin, which is implied by constraint (C).
Putting everything together, we can indeed guarantee a solution τ of h(τ) = 0, which
satisfies

0 < η+ + δmin < τ < min(−η− + δ↓
∞, η+ + δ↑

∞) (4.18)

as stated in our lemma.
We can now determine the upper bound for Δ: Recalling the definition τ = η+ +

δ↑(−Δ), the lower bound on τ implies δmin < τ − η+ = δ↑(−Δ). Using the involution
property, we can translate this to −δmin = −δ↓(−δmin) < −Δ. Applying (4.3), we end
up with

Δ < δmin (4.19)

as asserted in this lemma.
Regarding the periods of our pulses, we recall that our adversary takes all rising

transitions maximally late and all falling transitions maximally early to minimize the
high-times of the generated pulse train. The period Pn = Δn + Δn+1 of the high-
pulse Δn, measured from the rising transition of Δn to the rising transition of Δn+1,
is Pn = δ↑(−Δn) + η+

n , which is not difficult to see from the considerations leading to
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(4.12). Hence, Pn only depends on the up-time Δn and the adversarial choice η+
n ≤ η+.

It follows that the adversarial choices used for generating our minimal up-time pulse
train simultaneously maximize both the period (P = δ↑(−Δ) + η+) and the down-time
(P − Δ). As the adversary cannot further shrink the up-times of the pulses, it cannot
further extend the down-times, without running into cancellations.

Formally, by the same argument as used for Δ, we find that no infinite pulse train can
contain a pulse with a downtime strictly smaller than P − Δ, where P = P is the period
of our infinite Δ pulse train: analogously to Pn above, we find that the down-period
Pn = Δn + Δn, measured between the falling transitions of Δn and Δn+1, evaluates to
Pn = δ↓(−Δn) − η−

n , which decreases with both Δn and η−
n ≤ η−. If Δn < P − Δ ever

occurred, this would lead to Pn > P = δ↓(−P + Δ) − η−. Since obviously P = P , this
implies Δn = Pn − Δn > Δ, which contradicts the previously established upper bound
Δn ≤ Δ, however.

It hence only remains to evaluate P = δ↑(−Δ) + η+ = τ , which completes the
proof.

Lemma 10. Consider the circuit in Figure 4.41 subject to constraint (C). The duty
cycle γn of any pulse Δn, n ≥ 1, in an infinite pulse train at the output of the OR-gate
satisfies γn ≤ γ < 1.

Proof. According to Lemma 9, we have γn = Δn
Pn

≤ Δ
P = γ = Δ

δ↑(−Δ)+η+ < δmin
δmin+η+ ≤ 1

for every n ≥ 1 as asserted.

We remark that η+ > 0 allows strengthening constraint (C), which allows sharpening
some inequalities in Lemma 9, namely, η+ + η− ≤ δ↓(−η+) − δmin, Δ ≤ δmin, and
η+ + δmin ≤ τ , without violating γ < 1 established in Lemma 10.

The following lemma implies that if Δ1 > Δ for Δ according to Lemma 9, then the
sequence of generated output pulses Δn, n ≥ 1, will be strongly monotonically increasing.
Consequently, we will only get a bounded number of pulses at the output of the OR gate,
with a stabilization time in the order of loga(1/(Δ1 − Δ)) with a = 1 + δ↑(0) > 1.

Lemma 11. For f(.) given in (4.12) with fixed point Δ, we have f(Δ1) − Δ ≥ (1 +
δ↑(0)) · (Δ1 − Δ) if Δ1 > Δ.

Proof. Differentiation of (4.12) provides

f (Δ1) = 1 + δ↑(−Δ1) 1 + δ↓ Δ1 − η+ − δ↑(−Δ1)

≥ 1 + δ↑(0) (4.20)

because δ↑(−Δ1) ≥ δ↑(0) as Δ1 > Δ > 0 and δ (T ) > 0 is decreasing for all T as δ(.)
is concave and increasing [17]. The mean value theorem of calculus now implies the
lemma.

The following lemma allows to extend the validity of the statement of Lemma 11
from the first output pulse Δ1 to the initial input pulse Δ0.
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Lemma 12. There is a unique Δ̃0 such that every input pulse-width Δ0 ≥ Δ̃0 guarantees
Δ1 ≥ Δ as given in Lemma 9. Moreover, Δ1 − Δ ≥ 1 + δ↑(0) · (Δ0 − Δ̃0) for Δ0 > Δ̃0,
provided Δ0 < δ↑∞ + η+.

Proof. For the first pulse under the same worst-case adversarial choice as in Lemma 9,
the analogous considerations as in the proof of Lemma 8 reveal

Δ1 = δ↓(Δ0 − η+ − δ↑
∞) + Δ0 − η− − η+ − δ↑

∞ .

Defining the auxiliary function g(Δ0) = δ↓(Δ0 − η+ − δ↑∞) + Δ0 − η− − η+ − δ↑∞, it
is apparent that Δ1 = g(Δ0). Now, as limΔ0→η++δ↑

∞−δmin
g(Δ0) ≤ 0 due to (4.3) and

limΔ0→η−+η++δ↑
∞

g(Δ0) = δ↓(η−), which is certainly (much) larger than Δ, cf. Lemma 9,
there is indeed a unique Δ̃0 with g(Δ̃0) = Δ with the desired properties. The Lipschitz
property is obtained exactly as in the proof of Lemma 11, by differentiating g(Δ0) and
using Δ0 < δ↑∞ + η+.

We summarize the consequences of the previous lemmas in the following theorem,
which extends [41, Thm. 12] to the η-involution model:

Theorem 13. Consider the circuit in Figure 4.41 subject to constraint (C). The fed-back
OR gate with a strictly causal η-involution channel has the following output when the
input pulse has width Δ0:

• If Δ0 ≥ δ↑∞ + η+, then the output has a single rising transition at time 0.

• If Δ0 ≤ δ↑∞ − δmin − η+ − η−, then the output only contains the input pulse.

• If δ↑∞ − δmin − η+ − η− < Δ0 < δ↑∞ + η+, then the output may resolve to constant 0
or 1, or may be an (infinite) pulse train, with Δn ≤ Δ and duty cycle γn ≤ γ =

Δ
δ↑(−Δ)+η+ < 1 for n ≥ 1.

If Δ0 > Δ̃0, the output resolves to 1 within a stabilization time in the order of
loga(1/(Δ0 − Δ̃0)) with a = 1 + δ↑(0) > 1.

Proof. The statements of our theorem follow immediately from Lemmas 7, 8 and 9.
Lemma 11 in conjunction with Lemma 12 reveals that the number of generated pulses is
in the order of loga(1/(Δ0 − Δ̃)) with a = 1 + δ (0).

For dimensioning the high-threshold Buffer, we can re-use Lemmas 13 and 14 from [41]:

Lemma 14 ([41, Lem. 13]). Let C be an Exp-channel with threshold Vth and initial
value 0, and let 0 ≤ Γ < Vth. Then there exists some Θ > 0 such that every finite or
infinite pulse train with pulse-widths Θn ≤ Θ, n ≥ 0, and duty cycles Γn ≤ Γ, n ≥ 1, is
mapped to the zero signal by C.

Lemma 15 ([41, Lem. 14]). Let Θ > 0 and 0 ≤ Γ < 1. Then, there exists an Exp-
channel C such that every finite or infinite pulse train with pulse-widths Θn ≤ Θ, n ≥ 0,
and duty cycles Γn ≤ Γ, n ≥ 1, is mapped to the zero signal by C.
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By choosing Γ = γ(1 + ε) < 1 for some ε > 0 sufficiently small and Θ so large that the
feed-back loop in Figure 4.41 has already locked to constant 1 at time T + Θ, where T is
the time when some pulse Δn, n ≥ 1, of the feed-back loop with duty cycle γ(1 + ε) has
started, we get the following: If SPF input pulse-widths Δ0 and adversarial choices are
such that no Δn reaches duty cycle γ(1 + ε), the output of the Exp-channel is constant
zero; otherwise, there is a single up-transition (occurring only after T + Θ) at the output.
Therefore:

Theorem 16. There is a circuit that solves unbounded SPF.

Proof. If Δ0 < δ↑∞ − δmin − η+ − η−, Theorem 13 ensures that the input of the high-
threshold Buffer is constant 0, and so is the output. If Δ0 > δ↑∞ + η+, then the input of
the high-threshold Buffer experiences a single up-transition (at time 0), and so does the
output (eventually).

For Δ0 in between, we distinguish two cases: (i) Suppose Δ0 and the adversarial
choices are such that no Δn ever reaches duty cycle γ(1 + ε). Then, the minimality of
the period P of the worst-case pulse train guaranteed by Lemma 9 implies that the input
of the high-threshold Buffer sees pulses with duration at most Θ and duty cycle at most
Γ. Hence, Lemma 15 guarantees a zero-output in this case.

For the other case (ii), which is guaranteed to happen when Δ0 > Δ̃0 (but may also
occur for smaller values of Δ0 in the case of certain adversarial choices), there is some
time T where a 1-pulse Θn starts at the input of the Exp-channel that will (along with
its subsequent 0) have a duty cycle Γn ≥ Γ > γ. Moreover, by time T + Θ, the last input
transition (to 1) has already occurred. Lemma 15 not only guarantees that all pulses
occurring before T cancel, but also the ones that occur before time T + Θ: after all, even
a single, long pulse Θn = Θ would still be canceled. Therefore, since the input of the
Exp-channel is already stable at 1 at time T + Θ, only this final rising transition will
eventually appear at the output.

4.7.3 Simulations
In this section, we complement the proof of faithfulness provided in the previous section
with simulation experiments and measurement results, which confirm that our η-involution
model indeed captures reality better than the original involution model [38]. Whereas
more experiments, with different technologies and more complex circuits (including
multi-input gates), would be needed to actually claim improved model coverage, our
results are nevertheless encouraging.

We employ the same experimental setup as in [38], which uses UMC-90 nm and tech-
nology (T65) CMOS 7-stage Inverter chains as the primary targets. For technology (T65),
we resorted to HSPICE simulations of a standard cell library implementation, for UMC-90,
we relied on a custom ASIC [52]. The latter provides a 7-stage Inverter chain built from
700 nm x 80 nm (W x L) pMOS and 360 nm x 80 nm nMOS transistors, with threshold
voltages 0.29 V and 0.26 V, respectively, and a nominal supply voltage of VDD = 1 V.
As all Inverter outputs are connected to on-chip low-intrusive high-speed analog sense
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Figure 4.42: Schematics of the ASIC used for validation measurements. It combines an
Inverter chain with analog high-speed sense amplifiers.

amplifiers (gain 0.15, −3 dB cutoff frequency 8.5 GHz, input load equivalent to 3 Inverter
inputs), see Figure 4.42, which can directly drive the 50 Ω input of a high-speed real-time
oscilloscope, the ASIC facilitates the faithful analog recording of all signal waveforms.
Independent power supplies and grounds for Inverters and amplifiers also facilitate mea-
surements with different digital supply voltages VDD. For convenience, we provide the
delay functions determined in [38] in Figure 4.43 (δ↓ for UMC-90, measurements).

In order to validate the η-involution model, we use the following general approach:
Given simulated/measured output waveforms of a single Inverter excited by input pulses of
different width, we compare (i) the digital output obtained from the simulated/measured
waveforms with (ii) the predictions for some given delay function. The differences of the
transition times of predicted and real digital output is a measure of modeling inaccuracy
of the original involution model. If these differences can be compensated by suitable
output shifts within [η−, η+], however, we can claim that the η-involution model matches
the real behavior of the circuit for the given waveforms. Since faithfulness puts the severe
constraint η+ + η− < δ↓(−η+) − δmin on η+, η−, recall Lemma 9, it is not clear under
which conditions this claim indeed holds. In our evaluation, η+ was first set to a suitable
value (η+ > 0) and afterwards η− was calculated according to η− = δ↓(−η+) − δmin − η+.
Clearly, this results in different η bounds in each of the following figures.

The particular questions addressed in our experiments are, if the allowed range for η+

and η− is sufficient for the η-involution model to capture the following:

(a) The circuit behavior under varying operation conditions: After all, circuit delays
change with varying supply voltage and temperature, so the question remains to
what extent the resulting fluctuations are covered by the η-involution model.

(b) The circuit behavior under process variations: In general, circuit delays vary among
manufactured chips and even across a single chip, so the question arises whether the
η-involution model based on a “typical” delay function covers typical variations.

(c) The real behavior of our Inverter chain with a (suitably parametrized) standard
involution function, in particular, for Exp-channels. This would simplify model
calibration, as it is typically easier to determine the Exp-channel model parameters
for a given circuit [100], rather than its entire delay function.
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Figure 4.43: Measured δ↓ for UMC-90 Inverter chain for VDD ∈ {0.3, 0.4, 0.6, 0.7, 0.8, 1} V
and simulated (dashed brown) δ↓ for VDD = 0.6 V, taken from [38, Fig. 7].

To investigate question (a), i.e., the robustness against voltage variations, we added a
sine wave to the voltage supply source (nominally 1.2 V = VDD) with a period similar
to the full range switching time of the Inverter and a magnitude of 0.012 V (1 % of
VDD). We apply pulses with different widths to the input of the Inverter and record
the output, whereat the phase of the sine wave is set for each pulse randomly between
0 and 360 degrees. In Figure 4.44, the deviation D between the prediction and the
actual crossing over the previous-output-to-input delay T is shown. Despite the stringent
bounds on η, it is possible to fully cover the resulting delay variations for low T . For
higher values, however, the η-involution model does no longer apply. Please note that
the huge difference between δ↓ and δ↑ can be easily explained by the fact that δ↑ results
in a falling transition at the output of the Inverter. In this case, the transistor connecting
the output to the power supply gets closed more and more, reducing also the impact of
the voltage variations. (When varying the ground level, the reverse can be observed.)

To answer question (b), we chose to vary the transistor width, which increases/de-
creases the maximum current and allows us to model variations of resistance and ca-
pacitance as well. The simulations themselves were carried out in the same fashion as
described in the last paragraph, except that VDD = 1.2 V was constant. Figure 4.44 (b)
shows the results for 10 % wider transistors, where the η-bound is even bigger than
required. In contrast, the deviations for 10 % narrower ones [Figure 4.44(c)] exceed the
η-bound with increasing values of T . Unlike VDD variations, varying transistor sizes, as
expected, either increases or decreases the delay. This can be seen very clearly in the
figures, as one trace is well below and one well above D = 0.

For question (c), we tried to fit an Exp-channel to the measurement data published
in [38] and evaluated the deviations D between the resulting model predictions and the
real digital output. Whereas the deviations over the whole range of T exceed the feasible
η-bounds, one can observe in Figure 4.45 that even the very simple Exp-channel only
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Figure 4.44: Deviation between predicted and actual Vth crossings for different variations.
The η-bounds reveal good coverage for the η-involution model.

results in minor mispredictions near T = 0.
We hence conclude that the η-involution model indeed improves the modeling accuracy

of the original involution model, despite the fact that the allowed non-determinism, i.e.,
η, is quite restricted. Moreover, our simulation experiments indicate that the absolute
deviations |D| between model predictions and real traces is increasing with increasing
previous-output-to-input delay T , making it possible to fully compensate D via η near
T = 0. This is crucial, as our η-bounds result from proving faithfulness, which involves
the range T ∈ [−δmin, 0] only. For larger T , D grows bigger, but in this region, it might be
feasible to also increase the allowed non-determinism as these values are almost irrelevant
w.r.t. faithfulness.

4.7.4 Summary

We proved the surprising fact that adding non-determinism to the delays of involution
channels, the only delay model known so far that is faithful for the SPF problem, does
not invalidate faithfulness. Since this enables a wide ranges of changes to the signal,
i.e., de-cancellation of removed pulses or pulse-width adaptions, we had to introduce an
upper and lower bound for the possible shift values. As confirmed by some simulation
experiments and even measurements, noise, varying operating conditions and process
parameter variations hence do not a priori rule out faithful continuous-time, binary
valued models.

The η-involution model provides also a possible solution for the issues for varying
threshold voltages we experienced in Section 4.4.2. Using it makes it possible to apply a
constant time shift on each transition which essentially represents a translation between
different threshold voltages. Although this approach sounds promising and even prelimi-
nary simulations on random HSPICE traces showed good results we decided to address
the case of non-matching thresholds differently, as elaborated in the following section.
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Figure 4.45: Fitting an Exp-channel involution to measured data. For small values of T
the η-bounds are sufficient to cover the deviations.

4.8 The Composable Involution Delay Model
In Section 4.4.2 we discussed several issues connected to the necessity of matching in-
and output thresholds. From a physical point of view this makes little sense, as a unique
analog waveform is of course consistent with any choice of threshold voltages. The step to
arbitrary V in

th and V out
th in our digital abstraction is the goal of the Composable Involution

Delay Model (CIDM), which will be defined in this section. It enables the composition of
successive gates, simplifies their characterization, and exposes canceled transitions at the
gate interconnect. While CIDM is not strictly equivalent to IDM, we are able to show
that every CIDM circuit has an equivalent IDM description. This allows a transfer of
properties known to be true for IDM to CIDM; in particular, faithful propagation of
glitches. Simulations finally reveal a significantly improved accuracy compared to IDM.

4.8.1 Model Definition
According to Observation 5, using non-matching thresholds introduces a pure delay shift.
The major building blocks of our CIDM are hence PI channels, which consist of a pure
delay shifter with different shifts Δ+ and Δ− for rising and falling transitions10 followed by
an IDM channel. In order to also alleviate the problem of invisible oscillations identified
in Observation 6, we re-shuffle the internal architecture of the original involution channels
shown in Figure 4.8 to expose trains of canceled transitions on the interconnecting wires.

Theorem 17 (PI channel properties). Consider a channel PI formed by the concatenation
of a pure delay shifter (Δ+, Δ−) with Δ+ ∈ R for rising and Δ− ∈ R for falling transitions
followed by an involution channel c, given via δ↑(.) and δ↓(.) with minimum delay δmin.
Then PI is not an involution channel, but rather characterized by delay functions

δ↑(T ) = Δ+ + δ↑(T + Δ+) δ↓(T ) = Δ− + δ↓(T + Δ−). (4.21)
10A pure delay shifter with Δ+ = Δ− causes a constant extension/compression of up/down input

pulses by ±(Δ+ − Δ−).
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These functions satisfy

δ↑ −δ↓(T ) − (Δ+ − Δ−) = −T + (Δ+ − Δ−) (4.22)
δ↓ −δ↑(T ) + (Δ+ − Δ−) = −T − (Δ+ − Δ−) (4.23)

δ↑(−δ
↑
min) = δ

↑
min (4.24)

δ↓(−δ
↓
min) = δ

↓
min (4.25)

for δ
↑
min = δmin + Δ+ and δ

↓
min = δmin + Δ−.

Proof. Consider an input signal consisting of a single up-pulse. Let ti resp. ti be the
time of the rising resp. falling input transition, tp resp. tp the time of the rising resp.
falling transition at the output of the pure delay shifter, and to resp. to the time of
the rising resp. falling transition after the involution channel. With T = tp − to, we get
δ↓(T ) = to − tp as well as tp = ti + Δ+ and tp = ti + Δ−.

For the delay function δ↓(T ) of the PI channel, if we set T = ti −to = ti −tp +tp −to =
−Δ− + T , we find

δ↓(T ) = to − ti = to − tp + tp − ti = δ↓(T ) + Δ−

= Δ− + δ↓(T + Δ−) (4.26)

as asserted. By setting T = −δmin − Δ− and using δ↓(−δmin) = δmin the equality
δ↓(−δmin − Δ−) = Δ− + δmin is achieved, which confirms (4.25).

By analogous reasoning for a down-pulse at the input, which results in the same
equations as above with Δ− exchanged with Δ+ and δ↓(T ) with δ↑(T ), we also get

δ↑(T ) = to − ti = to − tp + tp − ti = Δ+ + δ↑(T )
= Δ+ + δ↑(T + Δ+) (4.27)

as asserted. Setting T = −δmin − Δ+ and using δ↑(−δmin) = δmin confirms (4.24) as well.
Using a simple parameter substitution equations transforms (4.26) and (4.27) to

δ↓(T ) = δ↓(T − Δ−) − Δ− (4.28)
δ↑(T ) = δ↑(T − Δ+) − Δ+. (4.29)

Utilizing these in the involution property of δ↑ and δ↓ provides

T = −δ↑ −δ↓(T )
= −δ↑ −δ↓(T ) − Δ+ + Δ+

= −δ↑ − δ↓(T − Δ−) − Δ− − Δ+ + Δ+

= −δ↑ −δ↓(T − Δ−) + Δ− − Δ+ + Δ+.

If we substitute T = T − Δ− in the last line, we arrive at

T − (Δ+ − Δ−) = −δ↑ −δ↓(T ) − (Δ+ − Δ−) , (4.30)
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Figure 4.46: Candidate channel models for the CIDM.

which confirms (4.22).
Doing the same for the reversed involution property, provides

T = −δ↓ −δ↑(T )
= −δ↓ −δ↑(T ) − Δ− + Δ−

= −δ↓ − δ↑(T − Δ+) − Δ+ − Δ− + Δ−

= −δ↓ −δ↑(T − Δ+) + Δ+ − Δ− + Δ−.

If we substitute T = T − Δ+ in the last line, we arrive at

T + (Δ+ − Δ−) = −δ↓ −δ↑(T ) + (Δ+ − Δ−) , (4.31)

which confirms (4.23).

Equation (4.21) implies that δ↑(.) resp. δ↓(.) are the result of shifting δ↑(.) resp. δ↓(.)
along the 2nd median by Δ+ resp. Δ−. It is apparent from Figure 4.13, though, that the
choice of Δ+, Δ− cannot be arbitrary, as it restricts the range of feasible values for T
via the domain of δ↑(.) resp. δ↓(.) (see Definition 20 for further details).

This becomes even more apparent in the analog channel model. Figure 4.46 (a) shows
an extended block diagram of an IDM channel, where we applied two changes: First,
we added a (one-input, one-output) zero-time Boolean gate G. Second, we split the
comparator at the end into a thresholder Th and a cancellation unit C. The thresholder
unit Th outputs, for each transition on ud, a corresponding Vth-crossing time of ur,
independently of whether it will actually be reached or not. For sub-threshold pulses, the
transition might even be scheduled in the past. The cancellation unit C only propagates
transitions that are in the correct temporal order. Obviously Th and C together are
equivalent to a comparator.

At the beginning of the channel, the Boolean gate G (we assume a single-input gate
for now) evaluates the input signal ui in zero time and outputs ug, which is subsequently
delayed by the pure delay shifter Δ+/−. Here lies the cause of the problem: Since either
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Figure 4.47: Channel model for CIDM.

Δ+ < 0 or Δ− < 0 it is possible that transitions on up are in reversed temporal order
which, after being delayed by the constant pure delay δmin, have to be processed in this
fashion by the slope delimiter. The latter is, however, only defined on traces encoded via
the alternating Boolean signal transitions’ Waveform Switching Times (WST), which
occur in a strictly increasing temporal order and mark the points in time when the
switching waveforms shall be changed. Moving the cancellation unit further to the front
of the channel [see Figure 4.46 (b)] solves the problem, however, introduces another one
at the gate G, which also expects transitions in the correct temporal order (note that
this is not equal to WST since the pure delay is still missing).

One possible solution is to place the gate inside the channel, i.e., after the cancellation
unit, as shown in Figure 4.46 (c). This solves our present problems but has the conse-
quence, that transitions are interchanged among gates using the Threshold Crossing Times
(TCT) encoding: The TCT encoding gives, in sequential order, the points in time when
the analog switching waveform would have crossed V out

th (it is not required that it actually
does). Consequently, a signal given in TCT also exposes canceled transitions. Actually
this is very convenient, since it allows us implicitly to detect oscillations independent of
the chosen output threshold and thus solves the issue described in Observation 6.

Not all signals in Figure 4.46 can actually be mapped to TCT or WST; by suitably
recombining the components in our CIDM channel, however, these encodings will be
sufficient for our purposes. More specifically, TCT will be created by the thresholder Th,
subsequently modified by the delay shifter, altered by the cancellation unit C, evaluated
by the Boolean gate and finally transformed to WST by δmin.

Now we are finally ready to formally define a CIDM channel (see Figure 4.47 for a
general illustration). Note that, although a PI channel differs by its internal structure
significantly from the CIDM channel, they are equivalent with respect to Theorem 17.

Definition 18. A CIDM channel comprises in succession of a pure delay shifter, a
cancellation unit, a Boolean gate, a pure-delay unit, a shaping unit and a thresholding
unit [see Figure 4.46(c)].

One may wonder whether CIDM channels could be partitioned also in a different
fashion. The answer is yes, several other partitions are possible. For example, one could
transmit signal ug and move the slew-rate limiter and the thresholder to the succeeding
channel. This would, however, mean that properties of single CIDM channels depend
on the properties of both predecessor and successor gate, which complicates channel
characterization and parametrization.
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The main practical advantage of a CIDM channel, which is a generalization of an
IDM channel (just set Δ− = Δ+ = 0), is the additional degree of freedom for gate
characterization in conjunction with the encapsulation of a single gate in a channel.

4.8.2 Glitch Propagation in the CIDM
Since CIDM channels do not satisfy the involution property, the question about faithful
glitch propagation arises. After all, the proof of faithfulness of IDM [17] rests on the
continuity of IDM channels, which has been shown only for involution delay functions. In
this section, we will show that, for every modeling of a circuit with our CIDM channels,
there is an equivalent modeling with IDM channels. Consequently, faithfulness of the
IDM carries over to the CIDM.

For this purpose, we consider two successive CIDM channels and investigate the logical
channel, i.e., the interconnection between two gates A and B as shown in Figure 4.48.
For conciseness, we integrated the δmin pure delay, the slew-rate limiter and the threshold
unit Th in a new block DST , and Δ+/− followed by the cancellation unit C in the new
block PC. Using this notation, the logical channel consists of the DST block of the
predecessor gate G1 and the PC block of the successor gate G2. Overall this is just an
IDM channel followed by an arbitrary pure delay shifter, which will be denoted in the
sequel as IP channel. The following Theorem 19 proves the somewhat surprising fact
that every IP channel satisfies the properties of an involution channel:

Theorem 19 (IP channel properties). Consider an IP channel formed by an involution
channel given via δ↑(.), δ↓(.), followed by a pure delay shifter (Δ+, Δ−) with Δ+, Δ− ∈ R.
Then, it is an involution channel, characterized by some delay functions δ↑(.), δ↓(.).

Proof. Consider an input signal consisting of a single up-pulse. Let ti resp. ti be the
time of the rising resp. falling input transition, tc resp. tc the time of the rising resp.
falling transition at the output of the involution channel, and to resp. to the time of
the rising resp. falling transition after the pure delay shifter. With T = ti − tc, we get
δ↓(T ) = tc − ti as well as to = tc + Δ+ and to = tc + Δ−.

For the delay function δ↓(T ) of the IP channel, if we set T = ti − to = ti − tc + tc − to =
T − Δ+, we find

δ↓(T ) = to − ti = to − tc + tc − ti = Δ− + δ↓(T )
= Δ− + δ↓(T + Δ+). (4.32)
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By analogous reasoning for a a down-pulse at the input, which results in the same
expressions with Δ− exchanged with Δ+ and δ↑(T ) with δ↓(T ), we also get

δ↑(T ) = to − ti = to − tc + tc − ti = Δ+ + δ↑(T )
= Δ+ + δ↑(T + Δ−). (4.33)

Equations (4.32) and (4.33) are equivalent to

δ↓(T ) = δ↓(T − Δ+) − Δ− (4.34)
δ↑(T ) = δ↑(T − Δ−) − Δ+ (4.35)

which can be used in the involution property of δ↑ and δ↓ to achieve

T = −δ↑ −δ↓(T )
= −δ↑ −δ↓(T ) − Δ− + Δ+

= −δ↑ − δ↓(T − Δ+) − Δ− − Δ− + Δ+

= −δ↑ −δ↓(T − Δ+) + Δ+ (4.36)

which confirms that the IP channel is indeed an involution channel.

Note two very important properties: (1) δmin of the IP channel is in general different
from δmin of the constituent IDM channel. (2) The IP channel is strictly causal only if
Δ+ and Δ− assure that the required condition δ↑(0) > 0 ⇔ δ↓(0) > 0 is satisfied, which
is transformed, using (4.32) and (4.33), to

δ↑(0) = Δ+ + δ↑(Δ−) > 0 ⇔ δ↓(0) = Δ− + δ↓(Δ+) > 0. (4.37)

At this point, the question arises whether it can be ensured that the logical channels in
Figure 4.48 are always strictly causal. The answer is yes, provided that the interconnected
gates are compatible, in the sense that the joined PC block of G2 and the DST block of
G1 are compatible w.r.t. Observation 5. More specifically, the pure delays Δ+ resp. Δ−

have to denote the time the rising resp. falling output transition of the DST block in G1
needs to bridge the gap between V out∗

th of gate A and V in∗
th of gate B.

Defining Δ+ and Δ− in this fashion has one strong implication: Evaluating (4.32)
and (4.33) with these values results in δmin = δmin. To show the latter recall our analysis
from Section 4.3.1 (especially the output trajectory in Figure 4.9) whereat V out∗

th of gate A
corresponds to Vth and V in∗

th of gate B to Vs. For V in∗
th > V out∗

th , which corresponds to the
case shown in the figure, it is possible to pick T1 ∈ [−δmin, ∞] such that Δ+ = T1 + δmin
and consequently we get Δ− = −(δ↓(T1) − δmin). Note that these values represent the
relative distance of the point (T1, δ↓(T1)) and (−δ↓(T1), −T1) on the delay function to
(−δmin, δmin) as is shown in Figure 4.49. Plugging Δ+ and Δ− into (4.32) and (4.33) leads
to mirrored movements that exactly compensate each others. More specifically, we get
δ↓(T ) = −(δ↓(T1)−δmin)+δ↓(T +T1+δmin) and δ↑(T ) = T1+δmin+δ↑(T −(δ↓(T1)−δmin)),
which lead, for T = −δmin and by using the involution property δ↑(−δ↓(T1)) = −T1, to

δ↓(−δmin) = δmin − δ↓(T1) + δ↓(−δmin + T1 + δmin) = δmin and
δ↑(−δmin) = T1 + δmin + δ↑(−δmin − δ↓(T1) + δmin) = δmin.

(4.38)
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along the 2nd median the values once refer to δ↓ and once to δ↑.

This shows that for proper choices of Δ+ and Δ−, the equality of the pure delays
δmin = δmin is fulfilled. Note that after the shift the outer dots in Figure 4.49, i.e., at
δ↓(T1) and δ↑(−δ↓(T1)) are located at (−δmin, δmin). The case V in∗

th < V out∗
th and hence

Δ− > 0, Δ+ < 0 can be handled analogously.

Definition 20 (Compatibility of CIDM channels). Two interconnected CIDM channels
are called compatible, if the logical channel between them is strictly causal.

Consequently, a logical channel connecting G1 and G2 is strictly causal if Δ+ and
Δ− have been determined in accordance with Observation 5. If this is not the case,
non-causal effects, like an output pulse crossing V out

th without the corresponding input
pulse crossing V in

th , could appear.
Every chain of gates properly modeled in the CIDM can be represented by a chain

of Boolean gates interconnected by causal IDM channels, with a “dangling” PC block
at the very beginning and a DST block at the very end. Whereas the latter is just an
IDM channel, this is not the case for the former. Fortunately, this does not endanger
the applicability of the existing IDM results: As stated in property C2) for a circuit in
[17, Sec. III], the original IDM assumes 0-delay channels for connecting an output port
of a predecessor circuit C1 with an input port of a successor circuit C2. In the case of
using CIDM for modeling C1 and C2, this amounts to combining the DST block of the
gate that drives the output port of C1 with the PC block of the input of the gate in C2
that is attached to the input port. Note that the analogous reasoning also applies to any
feedback loop in a circuit.

In addition, for an “outermost” input port of a circuit, we can demand that the
connected gate must have a threshold voltage matching the external input signal, such
that Δ+ = Δ− = 0 for the dangling PC component. Finally, in hierarchical simulations,
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where the output ports of some circuit are connected to the input ports of some other
circuits, the situation explained in the previous paragraph reappears.

As a consequence, all the results and all the machinery developed for the original
IDM [17] could, in principle, be applied also to circuits modeled with CIDM channels.
Both impossibility and possibility results, and hence faithfulness, hold, and even the
IDM digital timing simulation algorithm, as well as the InvTool, could be used without
any change. Using the CIDM for circuit modeling is nevertheless superior, because its
additional degree of freedom facilitates a more accurate characterization of the involved
channels w.r.t. real circuits.

4.8.3 Experiments
In this section, we validate our theoretical results by means of simulation experiments.
This requires two different setups: (i) To validate the CIDM, we incorporated a suitable
simulation algorithm in the InvTool and compared the predictions for CIDM to other
models. (ii) To establish the mandatory prerequisite for these experiments, namely,
an accurate characterization of the delay functions of the gates, we employed a fairly
elaborate analog simulation environment.

Comparable to our experiments in Section 4.6.2, we again relied on simulations
using technology (T15). At first we developed a Verilog description of our circuits and
used Genus & Innovus for optimization, placement and routing. We then extracted the
parasitic networks between gates from the final layout, which resulted in accurate Spectre
models. These results were used both for gate characterization and as a golden reference
for our digital simulations.

Like in [17], our main target circuit is a custom Inverter chain. In order to highlight
the improved modeling accuracy of CIDM, it consists of seven alternating high- and
low-threshold Inverters. These are implemented by increasing the channel length of p-
respectively nMOS transistors, which varies the transistor threshold voltages [110, Fig. 2],
recall Section 2.5.3. For comparison, we also conducted experiments with a standard
Inverter chain.

Regarding gate characterization for IDM, we used two different approaches. Recall
from Observation 4 that fixing a single discretization threshold pins the value of all
consistent δmin, V in

th and V out
th throughout the circuit. In the variant of IDM called

IDM*, we chose V out∗
th = VDD/2 for the last Inverter in the chain, and determined the

actual value of its matching V in∗
th by means of analog simulations. To obtain consistent

discretization thresholds for the whole circuit, we repeated this characterization, starting
from V out∗

th = V in∗
th for the next Inverter up the chain. We thereby obtained values in the

range [0.301, 0.461] V, with V in∗
th = 0.455 V for the first gate. Obviously, characterizing

a circuit in this fashion is very time-consuming, as only a single gate in a path can be
processed at a time.

Alternatively, we characterized every gate separately for V out∗
th = VDD/2 and deter-

mined the matching V in∗
th , which we will refer to as IDM+. Note carefully that the

discretization thresholds of connected gate out- and inputs differ for IDM+, such that
an error is introduced at every interconnecting edge. Since the signals are very steep
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Figure 4.50: Accuracy, expressed as the normalized total deviation area of the digital
predictions, relative to Spectre for the standard Inverter chain (top) and high/low threshold
Inverter chain (bottom). Lower bars indicate better results.

near VDD/2, we consider the deviation in general rather small. This circumstance is even
more pronounced by the natural amplification of CMOS gates, causing the deviation of
the input thresholds to be, in general, smaller than for V out

th . Note that this was verified
by our simulations of the standard Inverter chain.

However, although the misprediction is small, it is introduced for each transition
at every gate. While this might be negligible for small circuits like our chain, the
error quickly accumulates for larger devices leading to deviations even for very broad
pulses. Thus, the IDM+ can be expected to deliver worse results than pure/inertial delay
while being a computationally much more expensive approach. Indeed, for the gates
used in our standard inverter chain, we recognized a clear bias towards V in∗

th < VDD/2
for V out∗

th = VDD/2. Finally, characterizing gates for CIDM was simply executed for
V out

th = V in
th = VDD/2.

The results for stimulating the standard Inverter chain, with 2500 normally distributed
pulses of average duration µ and standard deviation σ, obtained by the InvTool for IDM*,
IDM+, CIDM and the default inertial delay model, are shown in Figure 4.50 (top).
The accuracy of the model predictions are presented relative to the digital predictions
extracted from our golden Spectre simulations. For short pulses, IDM*, IDM+ and
CIDM perform similarly. For broader pulses, we observe a reduced accuracy of IDM*
and IDM+, which is primarily an artifact of the imperfect delay function approximation
by the InvTool. We even observed settings, where CIDM does not even beat the inertial
delay model, which can also be traced to this cause.

For our custom Inverter chain [Figure 4.50 (bottom)], CIDM outperforms, as expected,
the other models considerably, whereas the IDM+ predictions are poor, even compared
to inertial delays. This is a direct consequence of the non-matching threshold values and
the accumulating error. IDM* achieves much better results, but still falls short compared
to CIDM. For broader pulses, the latter performs comparable to inertial delay, since both
use the same maximum delay δ↑∞ and δ↓∞. The degradation of IDM* is once again a
result of the imperfect delay function approximations above.

146



4.8. The Composable Involution Delay Model

0 30 60 90

time [ps]

S1 S2 S4 VDD/2

0 35 70 105

time [ps]

Figure 4.51: Analog and digital prediction of recovering sub-threshold waveform.

Finally, analog simulations in Figure 4.51 revealed that an oscillation slightly below
VDD/2 at the input of a low-threshold Inverter can still result in full range switches
at the end of the chain. For IDM+ such traces get removed, whereat for IDM* this
particular trajectory is actually visible. Nevertheless there are still infinitely many other
possibilities that can not be detected by the latter. Please note that even if such traces
do not propagate further it is important to know if the circuit has stabilized or not, e.g.,
for power estimations. The digital simulation results for the CIDM, shown on the right
hand side of the figure, correctly predicts the regeneration of the pulses.

To summarize the results of our experiments, we highlight that the characterization
procedure for IDM either requires high effort (IDM*) or may lead to modeling inaccuracies
(IDM+). The CIDM clearly outperforms all other models w.r.t. modeling accuracy for
our custom Inverter chain, and is also the only model that can faithfully predict the
“de-cancellation” of sub-threshold pulses.

4.8.4 Summary
In this chapter we presented the Composable Involution Delay Model (CIDM), a general-
ization of the Involution Delay Model (IDM) that retains its faithful glitch-propagation
properties. Its distinguishing properties are wider applicability, composability, easier
characterization of the delay functions, and exposure of canceled pulse trains at intercon-
necting wires. The CIDM and our novel digital timing simulation algorithm have been
developed on sound theoretical foundations, which allowed us to rigorously prove their
properties. Analog and digital simulations for Inverter chains were used to confirm our
theoretical predictions.
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CHAPTER 5
Metastability Modeling

Zero time transitions in the digital domain solely indicate the point in time when the
underlying analog waveform crosses the values VLO resp. VHI . The exact trajectory
is not visible and thus a steep slope is implicitly assumed. Unfortunately, real signal
do not necessarily behave in this fashion. For example, gradual transitions and even
stalling at intermediate values for an arbitrary amount of time is well possible. While
such metastable events are invisible in the digital domain they have an actual impact on
the circuit, such as massively increased power consumption or inconsistent interpretation
among succeeding gates. The latter is even more severe than a Byzantine fault in a
communication network described by Lamport, Shostak, and Pease [142]. In this setup
a faulty sender may transmit different information to its single receivers, but it is still
assumed that the information is some legitimate digital value. By contrast, a metastable
output is outside the digital model and, hence, impossible to contain/mask by classic
digital fault-tolerance techniques, see [18]. Consequently separate metastability analyses
are required that (i) identify problematic locations inside the circuit, (ii) determine
possible erroneous behaviors and (iii) estimate their probabilities.

In this chapter we will investigate how physical considerations can be used to improve
metastability analysis. After a short introduction we use the transistor models from
Chapter 3 to study intermediate voltages in some simple circuits. Of interest for us is
the S/T, which will be investigated in greater detail: After recalling previous research
that revealed the potential of metastable behavior of some circuits, we introduce several
approaches that allow to characterize an S/T both in a static and dynamic fashion. We
then use these methods to evaluate modern implementations, i.e., we compare the achieved
behavior to calculations on an optimal device and explore possible input trajectories to
drive an S/T into metastability. After shortly reviewing the effects of cascading multiple
units we finally present a novel approach towards finding a single representative number
that quantifies the risk of metastability.
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LO

M
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1 3

2

Figure 5.1: Graphical explanation of the metastable state. When moving a ball between
the stable states LO and HI the metastable position M has to be crossed. In M the ball
may stay for an infinite amount of time.

5.1 Metastability Analysis
Since the seminal work by Kinniment and Edwards [149], Chaney [145], Veendrick [144]
and Marino [143, 146] it has been known that the source of long-time intermediate
voltages inside a circuit are state-holding devices. The concrete values depend on various
parameters such as the internal structure and transistor sizings. Depending on the
discretization threshold voltages VLO and VHI , multiple representations in the digital
domain, such as (i) a (late) transition, (ii) two transitions or (iii) no transition at all, are
possible. Note carefully that also logic gates can provide an intermediate output voltage.
In contrast to state-holding devices, however, they require an intermediate input voltage
to do so. That is, they only propagate metastability but do not generate it.

In fact Marino [143] showed that metastability can be observed in any bistable unit.
For this purpose he associated stable states to energy minima. This representation is
in accordance to our analyses in Chapter 2, where we saw that electrons always try to
achieve the lowest possible energy. Recall that the energy bands in a semiconductor had
to be continuous, which infers that between two minima a maximum, which is called in
this case the metastable state, has to be encountered.

This circumstance is shown in Figure 5.1. Depending on how much energy one applies
to the ball at LO it either goes all the way to HI (full range switch), rises a little bit
and drops back down to LO (sub-threshold pulse) or stays near the top for some time
before dropping either towards LO or HI. This representation already shows three very
important properties of metastability: 1) The barrier at M is perfectly flat, enabling the
ball to stay at this point for an unbounded amount of time. Consequently metastability
could be, in principle, maintained forever. 2) Every transition between LO and HI passes
M, meaning that metastability cannot be avoided. It can only be made less probable.
Note that in this delicate position tiny disturbances already have huge impact. 3) If the
ball leans towards one side it will quickly picks up pace and thus resolves the metastable
upset to either side within the resolution time.

Within a single clock domain, metastable upsets can be well controlled by careful
design. However, at clock domain crossing boundaries the risk due to asynchronous
inputs cannot be avoided altogether. As the countermeasure of choice synchronizers [53]
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Vin
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Vout

Latch #1

Latch #2

Figure 5.2: Internal structure of a Flip-Flop, consisting of two Latches in succession.
Please note that the switches are controlled by the same signal such that one Latch stores
a value while the other one propagates its input.

are utilized, which align the incoming transitions to the clock signal and, consequently,
reduce the chances for metastability by several orders of magnitude. Since a synchronizer
is essentially a chain of Flip-Flops, the latter has been the main target of metastability
research in the past, which was performed either analytically (e.g. by Chaney [145])
or based on measurements and simulations (e.g. by Kacprzak and Albicki [136], Jones,
Yang, and Greenstreet [62] or Beer et al. [54]).

In a Flip-Flop two Latches, which either are transparent (propagate the inverted input
value) or opaque (cut off the input and store the value), are installed in succession (see
Figure 5.2). The shown switches are controlled in an inverting fashion by the clock signal
such that one Latch is opaque while the other is transparent and vice versa. Overall the
Flip-Flop thus stores the input only at a transition on the clock signal, which is in general
very short. Let us consider the case that Latch #1 is transparent and consequently Latch
#2 opaque (the situation shown in the figure) for a LO clock value. Switching the clock
to HI causes Latch #1 to cut off the input and store the current value, while Latch #2
simply forwards the value. In this setup the input thus gets sampled at a rising clock
edge. Note that a falling edge triggered Flip-Flop is achieved by assigning the shown
circuit setup to the HI clock phase.

The question to answer is: How can such a device become metastable? Problematic
are situations where input and clock change in close proximity, such that Vin has an
intermediate value as Latch #1 becomes opaque. Using the static transfer function
fs of an Inverter shown in Section 3.3 it is possible to determine voltage values at
node A (VA) and B (VB) that perfectly recreate each other in a loop, as is shown
in Figure 5.3. Besides the obvious stable configurations (VA, VB) = (VDD,GND) and
(VA, VB) = (GND, VDD), a third option (VA, VB) = (V A

M , V B
M ), i.e., the metastable state,

which satisfies fA
s (V A

M ) = V B
M and fB

s (V B
M ) = V A

M , is visible.
Figure 5.3 can also be used to estimate the temporal behavior of the Latch. Considering

the fact that VB = fA
s (VA) = fA

s (fB
s (VB)) and assuming a time delay between each

“iteration”, it is possible to observe a continuous increase/decrease of VA respectively
decrease/increase on VB. The circuit thrives to move away from the metastable point
whereat the speed of this process depends on the deviation to (V A

M , V B
M ). Consequently

the resolution time tres increases with VA → V A
M , whereat for VA = V A

M ultimately
tres = ∞ (metastability cannot be resolved in limited time). Clearly a high amplification
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Figure 5.3: Static transfer characteristic fs of the forward and backward Inverter in
Latch #2 of Figure 5.2. The black dots mark the two stable configurations at the outskirts
and the metastable one in the middle.

is beneficial for small tres since the voltage gained by each “iteration” is increased.
Note carefully that V A

M = fB
s (fA

s (V A
M )) and thus metastability is always possible,

although in general fA
s (V A

M ) = V A
M . To somehow quantify the risk of a unit getting

metastable Veendrick [144] developed a metric called Mean Time Between Upsets (MTBU)
which states how much time in average passes until a metastable upset is observed. Note
that this is a statistical mean value, implying that the chance of observing an upset way
before the estimated point in time is not zero! The MTBU can be calculated as

MTBU = Tclk

λdat · T0
· e

tres
τ

with Tclk the time between two consecutive rising clock edges, λdat the input data rate
and tres the available resolution time. The parameters T0 and τ are technology-dependent
and have to be determined for each implementation separately. One key assumption in
these calculations are uniformly distributed data transitions times, which is in general
not the case. Thus MTBU results require proper interpretation and analysis.

5.2 Analog Metastability Simulations

After having seen how memory elements can become metastable, we investigate in the
sequel if the simplified models presented in Section 3.2 are able to predict such a behavior.
Note that actually driving a circuit into metastability is very challenging as the circuit
shows a highly nonlinear and sensitive behavior in this operation region. For our analyses
we will investigate two specific circuits: a Latch and an OR Loop.
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Figure 5.4: Uniform Model implementation of a Latch using Transmission gates.
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Figure 5.5: Internal structure of the Transmission gate. For Vc = GND both transistors
prevent charge transport while for Vc = VDD both fully conduct. The Transmission gate
is thus the equivalent to a common switch, which propagates current in both directions.

5.2.1 Latch

Recall that we already investigated the basic component of the Latch, i.e., an Inverter
loop, in Section 3.7.4. In the corresponding analysis we showed that the metastable
value VM is approached if the internal nodal voltages are initially equal, however, we
neglected back then the resolution time completely. For more realistic results we extend
the Inverter loop by an input Inverter and Transmission gates as shown in Figure 5.4.
The latter are used to realize the clock-controlled switches in Figure 5.2 and consist
of two transistors in parallel, as depicted in Figure 5.5. Note that the Transmission
gate is required to enable charge transport equally in both directions. For asymmetric
transistors it is thus beneficial that source and drain of n- and pMOS are on the same
side such that at least one is fully conducting.

Unfortunately our MACS tool is not yet capable to properly model the transmission
gate. The main reason is that the uniform model behaves strangely when VDy is smaller
than zero, causing the model to fail. Although we are confident that the problem can be
resolved, a suitable solution seems to be a non-trivial task. Therefore we used a quick,
yet accurate, workaround: In a nutshell the Transmission gates serve the purpose of
limiting the conductivity and thus the amount of current that can be delivered from
the input and feedback Inverter to the capacitance C1

int. We model this by applying a
non-constant, sigmoidal shaped multiplicative factor m(t) ∈ [0, 1] to the current through
one inverter and the inverse, i.e., 1 − m(t), to the other one. More specifically, recalling
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Figure 5.6: Simulation of the Latch in metastability using MACS. By varying the
transition time of m(t), which models the Transmission gates, longer metastable states
(flat part of Vout) can be achieved.

Eq. (3.7) in Section 3.3.3 the following set of equations has to be evaluated:

CL · d
dt

Vout = Iinv(V 1
int, Vout)

C1
int · d

dt
V 1

int = m(t) · Iinv(Vin, V 1
int) + [1 − m(t)] · Iinv(Vout, V 1

int)/A

The capacitance C1
int is, thereby, a lot smaller compared to CL and only serves the

purpose of being able to calculate the voltage V1 properly. For our simulations we choose
a ratio of CL/C1

int = 200 and a scaling factor A = 2.
Finally we ran simulations of this model with the goal to reach metastability: We

applied a sigmoidal shaped pulse to the input and simultaneously switched the Latch to
opaque (rising transition on m(t)), whereat the start point of the latter was varied in
time. Using a systematic approach enabled us to derive the behavior shown in Figure 5.6.
Note that very precise control was required here: changing the onset of m by 10−4 % of
the full range output switching time already determined if the waveform resolved towards
HI or LO. This confirms the high sensitivity of circuits in this regime.

5.2.2 OR Loop

The second circuit we are investigating is the OR Loop which was already evaluated
using analog and digital simulations in Section 4.6. In contrast to the Latch, where
the relative timing of the input transitions influenced the output behavior, this circuit
is completely determined by the input pulse width. This circumstance simplifies the
analysis and even enables verification. In consequence we evaluated the circuit shown in
Figure 5.7 not in MACS but immediately utilized C2E2.

Figure 5.8 shows the achieved results. For a constant trapezoidal input (top) we
slightly varied the initial value of Vout, leading to significantly different output traces
(middle): While some quickly resolve to GND and VDD others stay at an intermediate
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Vout

CL

Vin

Figure 5.7: Uniform Model of an OR Loop. To reuse available models the OR-gate was
split up into a NOR-gate and an Inverter.

Figure 5.8: Metastability analysis of an OR Loop in C2E2 using technology (T65).
For a single input pulse (top) significantly different simulation traces (middle) have
been achieved by changing the initial value of Vout minorly. The reachtube (bottom),
corresponding to the trace sticking longest in metastability, reaches unreasonable high
values, which indicates a very high sensitivity.

value for a very long period, i.e., in a metastable state. This verifies that metastable
behavior is covered by simplified transistors models.

Very interesting is the reachtube for the trace staying longest in metastability (shown
at the bottom of the figure), which is used internally for verification purposes and depicts
all possible values the output may achieve. While the blow up to several thousand Volts
is physically unreasonable, it does indicate the very high sensitivity of the underlying
system of ODEs in this region: Even the slightest disturbances of the initial state result
in grossly deviating trajectories, in particular, in very different metastability resolution
times. This is not only in accordance to common knowledge about metastability, but
also, to the best of our knowledge, the first reachability analysis of circuits demonstrating
metastable behavior.
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Figure 5.9: Dynamic model of the S/T studied by Marino [146].

5.3 The Metastable Schmitt Trigger
Since metastability cannot be prevented on the transistor level, it has to be handled
at the gate level, e.g., by introducing additional components like the earlier presented
synchronizer. A different approach is to filter intermediate voltage values by introducing
gates that incorporate different thresholds for rising (VH) and falling (VL) transitions.
For VH > VL we end up with a Schmitt Trigger (S/T), which we already introduced in
Section 3.5. Note that such a unit has been used, e.g. by Greenstreet [108] and Nyström
and Martin [94], to confine a possible metastable upset to a bounded region in the circuit.
Nevertheless, it is important that late transitions still cannot be prevented.

In early days the S/T was assumed to be free of metastability, which led to a discussion,
e.g. by Wormald [147] or Chaney [145], whether it can be used to develop a synchronizer
Flip-Flop that is immune to metastability. Early investigations by Marino [146] revealed
that also the S/T itself is prone to metastability. This follows immediately from our
analysis presented in Section 5.1, since inside the hysteresis two stable states for a unique
input value are possible, which implies the existence of a metastable state.

Despite these early revelations little is still known about the behavior of modern S/T
implementations. For this reason, we will present a thorough analysis of the Schmitt
Trigger in the succeeding chapters. We start with a revision of the model provided by
Marino and then turn to novel methods to characterize an implementation efficiently.
Based on the gathered information we evaluate specific circuits statically and dynamically.
Finally we investigate the possibility to derive an MTBU estimation also for the S/T.

5.3.1 Metastability Model for the Schmitt Trigger
Marino investigated a simplified and optimal dynamic model for the S/T circuit as shown
in Figure 5.9. Based on this representation he derived a phase plane description (Vout

in the Vin-Vout plane) shown in Figure 5.10, with A denoting the gain of the differential
amplifier and M being the output saturation voltage (possible output values in [−M, M ]).
The functions γ1 and γ3 represent the stable states while γ2, which connects the former,
the metastable ones. Note that all points on γ1, γ2 and γ3 share the property Vout = 0,
since, at least theoretically, all of them could be preserved for an unlimited amount of
time. These results have fundamental implications: In contrast to the Latch, which had
a single metastable and two stable states, there are now infinitely many (meta-)stable
values ranging from the lower (GND) continuously to the upper (VDD) supply voltage.
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Figure 5.10: Phase plane representation (Vout in Vin-Vout plane) of the S/T as derived
by Marino [146]. The bold black lines (γ1, γ2 and γ3) denote Vout = 0.

Additionally the input cannot be disconnected and has to be at an intermediate value to
enable metastability, which we actually attributed to combinatorial gates earlier. The
S/T, however, differs from the latter by enabling the resolution of metastability for
constant Vin and can thus be seen as an intermediate step from the Latch to a purely
combinatorial gate.

Consequently, varying the input has a big impact on the overall metastable behavior
of an S/T. To express this by an analogy, envision the Latch as a long stick that is
placed on a table. While the upright position represents the metastable state, lying flat
indicates the stable ones. In the case of an S/T we are balancing the stick on our palm,
comparable to an inverted pendulum. By proper movement one can actively enhance or
even counteract metastability resolution and thus alter the probability for metastability,
but also the resolution speed.

Marino was able to divide the output behavior in the phase plane in three different
regions: the upper and lower saturation (Regions 1 and 3; approach the final value) and
the “linear region” 2 (escape metastability) in between. For these he provided an analytic
description of the output derivative, a very important figure of merit as we will see in
the sequel, resulting in the following equations (for their detailed derivation please refer
to the original publication):

Region 1: dVout

dt
= Vout = − 1

τ1
(Vout − γ1) (5.1)

Region 2: dVout

dt
= Vout = + 1

τ2
(Vout − γ2) (5.2)

Region 3: dVout

dt
= Vout = − 1

τ3
(Vout − γ3) (5.3)
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The region boundaries (dashed lines in Figure 5.10) mark the zero crossing point of Vout,
i.e., where the absolutely growing slope of the waveform Vout leaving the metastable state
γ2, starts to decline again. For each point (Vin, Vout) = (V1, V2) to the left of γ2 we achieve
Vout > 0, meaning that the stable state γ1 is approached. This follows immediately from
(5.1) to (5.3), where we derive for Region 1 and Vout < γ1 an output derivative Vout > 0.
For the parts of Region 2 to the left of γ2 we get Vout > γ2 and thus also a positive
output derivative. A similar analysis can be carried out for points to the right of γ2, with
the difference, that in these cases γ3 is approached.

One might wonder why Vout is interesting for our analysis. First of all it indicates how
quickly metastability is left and thus directly impacts the resolution time. It, furthermore,
provides a measure how hard it is to drive the S/T into metastability: Only when the
input is able to change faster than the output, intermediate values can be hold for longer
time periods, meaning that a larger Vout makes metastability overall less likely. Therefore
Vout is an intuitive quantity for the susceptibility of an S/T towards metastability. In
addition, as we will explore later, (meta-)stable states share the property of having
Vout = 0, which gives us a simple measure to determine truly metastable points. This
will be extensively used during characterization in Section 5.4.

The above insights might suggest that limiting the dynamics of the input signal can
prevent the S/T from getting metastable (see also [14]). Unfortunately this is not the
case, as has already been shown by Marino. In (5.2) one can see that it is always possible
to find a small enough corridor around γ2 to allow an appropriately controlled Vin to
reach a metastable point, no matter how restricted its dynamics (Vin) may be. However,
it takes an extremely precise control of Vin to remain in a sufficiently narrow corridor. So
while limiting Vin cannot safely rule out metastability of the S/T, it does aid in making
metastability less probable.

In the sequel we will investigate how an S/T can be efficiently and accurately
characterized. Besides identifying the (meta-)stable states, we present methods that are
able to highlight properties in the whole Vin-Vout plane, such as time constants, resolution
time or output derivative.

5.4 Characterizing the Schmitt Trigger
The phase diagram, as proposed by Marino, can be understood as a finger print of a
Schmitt Trigger implementation, which helps the designer to understand and optimize
the circuit. While the stable states on γ1 and γ3 are easily determined, the task to
identify γ2 is much harder. Obviously, efficient methods are required if various circuits
shall be analyzed in a systematic fashion. In the sequel we are, thus, proposing multiple
approaches to determine the phase diagram in a fast, simple and accurate fashion. First,
we relate our results to the simple model of Marino, which enables an analytic evaluation,
and later turn to state-of-the-art implementations.

Although calculations, e.g., based on the Uniform Model, are in theory possible, they
experience major shortcomings: Primarily the achieved results are rather inaccurate, as
can be seen in Figure 5.11 for a modern implementation. Moreover, the determination
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Figure 5.11: Calculation of γ2 using the Uniform Model. The calculation not only has
limited accuracy but also rather long run time (≈ 3.3 s per metastable point).

of just a single metastable point takes several seconds, which is prohibitive, especially
when considering the overall accuracy. For this reason we decided to base our analysis
on HSPICE simulations using technology (T28). Note that comparable results have been
achieved for technology (T65) which shows the general applicability of our approach.

5.4.1 General Characteristics

For the selection of a Schmitt Trigger circuit that is suitable for a given purpose, as
well as for potential optimizations, its characteristics must be precisely understood,
particularly with respect to metastable behavior. In this section, we present a number of
approaches to characterize the overall properties of an S/T implementation, whereas in
the subsequent Sections 5.4.2 and 5.4.3 we are going to investigate the metastable states
γ2 and the resolution behavior.

In order to explain and evaluate our approaches, they are first applied to the circuit
opamp shown in Figure 5.12, which is a slightly modified version of Marino’s idealized
model implementation (cf. Figure 5.9). This allows a simple accuracy assessment of all
methods, as an analytical ground truth can be obtained from theory. Since Marino’s
parametrization, leading to a close to ideal behavior with a narrow Region 2, is not
comparable to real-world circuits, we chose A = 50 and CL = 10 pF to obtain a more
realistic behavior. Furthermore, the parameters RA = 10 MΩ, RB = 4 MΩ, and R0 = 5 Ω
keep the voltage drop across R0 at a low level. Albeit these changes, the model calculations
still apply. For comparison we verified some of our results also for A = 10k, which required
higher numeric accuracy (and hence computational effort) but overall still delivers valid
numbers. Finally, note that we added an offset of VDD/2 at the output of the OpAmp
and chose VR = VDD/2 since our tool was designed for the voltage range [0, VDD].
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Figure 5.12: Circuit level implementation of opamp.

Hysteresis (hyst)

The stable states on γ1 and γ3 can be easily obtained by starting two DC analyses, one
sweeping Vin from GND to VDD and one in the opposite direction. From the results,
the threshold voltages VL and VH can be identified right away: Exceeding the relevant
threshold value on Vin leads to a major jump on the corresponding stable value Vout (cf.
Section 3.5). For the circuit opamp we get VH = 570 mV and VL = 330 mV, which is in
agreement with analytic evaluations.

Exponential Voltage Trajectories

Marino already showed that Vout, and thus in consequence also Vout, evolves exponentially
over time in all regions, albeit with different time constants: In Regions 1 and 3 the values
of τ1 and τ3, respectively, are constituted1 by R0CL, while in Region 2 the activity of the
non-saturated operational amplifier reduces τ2 by a factor of 1

kA−1 with k = RB
RA+RB+R0

.
This exponential trend can be verified by depicting Vout and Vout in a semi-logarithmic

plot over time – which, within one region, yields a perfectly straight line for the opamp
case. The resolution trajectories of Vout, which start within Region 2 and are described
in (5.2), are of specific interest in this work. The solution of the differential equation is
an exponentially growing function of the shape

Vout = VM ± Vx exp t − t

τ
(5.4)

Vout = ±1
τ

Vx exp t − t

τ
, (5.5)

where t denotes the unknown time shift, Vx > 0 the unknown scaling factor of the
exponential function and τ a general time constant. Note that although Vx and t could
be easily combined into a single parameter, since multiplying an exponential with a
constant is equivalent to a time shift, i.e.,

Vx exp t − t

τ
= exp t

τ
exp t − t

τ
= exp t − t + t

τ

1In detail, the effective R is the parallel resistance of R0 and RA + RB .
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holds, we kept them separate to better support an intuition. In consequence, the signal
shape and especially the derivative remain unchanged in any arbitrary point V1 on the
function. In other words, the trajectory is independent of whether the voltage value V1
represents the (static) starting point or is (dynamically) “passed by”. This is a specific
property of a first-order system that becomes invalid for higher order ones.

For limt→−∞, the time evolution expressed in (5.4) asymptotically approaches the
metastable voltage VM , i.e., the value of interest. More precisely, VM (Vin) is a function
of the input voltage and essentially corresponds to Marino’s γ2. To remain consistent, we
will use γ2 to refer to the whole function, while VM denotes the one metastable voltage
for a specific Vin.

The resolution behavior in the form of exponentially growing trajectories has major
implications. Firstly, it suggests a behavior comparable to the Flip-Flop, with the main
difference that the metastable voltage VM is not unique but varies with Vin. Secondly,
it gives us the possibility to infer the metastable voltage VM by recording just a short
piece of the resolution trajectory and matching the parameters, as will be leveraged
in Sections 5.4.2 and 5.4.2. Thirdly, it is possible to observe a common time constant
τ within Region 2. While this is perfectly valid for opamp, it will become apparent
in real-world circuits (see Section 5.5) that also τ varies with Vin – which makes the
exponential description less ideal as well.

Voltage Derivative and Current

(Meta)stable states can be uniquely identified by checking for Vout = 0; all points on
γ1, γ2 and γ3 share this property, cf. (5.1)–(5.3). This trivially follows from the fact
that (meta)stability implies a constant Vout, i.e., no changes over time. In the circuit
opamp, Vout denotes the voltage drop across the parasitic load capacitance CL at the
output. Using the well known relation between voltage and current at a capacitor,
namely IC = C VC , we can further conclude that the current flowing into CL, i.e., Iout in
Figure 5.12, also has to vanish in the (meta)stable state. Overall, we thus obtain a direct
proportionality between Iout and Vout in the form

Iout = CL Vout . (5.6)

For real circuits (cf. Section 5.5) the relationship is more complicated, since these
represent higher-order dynamic systems. In the sequel we will, thus, investigate the
implication of an active feedback path, with its own dynamic behavior, by means of a
simplified model (as shown in Figure 5.13). Note that the circuit is not actively driven
from the outside in our analysis but instead we define an initial condition for u1 and u2
and observe the temporal evolution.

The signal u2 is amplified with factor −A1 resulting in signal u1, which in turn is
connected to u2 via an amplifier with gain −A2 2. With a choice of A1 > 1, we can
express active feedback. The parasitics at the amplifier outputs are modeled by a single

2Note that we used negative gain here, since we derived this model from an inverter loop.
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Figure 5.13: Simplified feedback loop model with active feedback path.

RC component, which means we obtain a first-order lowpass. The circuit analysis yields
the equations

u1 = − A1u2 − R1C1
du1
dt

u2 = − A2u1 − R2C2
du2
dt

Transformation to the Laplace domain, followed by some reordering leads to

U2(s) = τ2u0
2(1 + τ1s) − A2τ1u0

1
(1 + τ2s)(1 + τ1s) − A1A2

with the time constants τi = RiCi and the initial deviations u0
i , i = 1, 2, from the

metastable point (u1 = u2 = 0). The inverse Laplace transformation, using the simplifi-
cation τ1 = τ2 = τ , then leads to

u2(t) = u0
2 − u0

1
√

k

2 exp t

√
A1A2 − 1

τ
+ u0

2 + u0
1
√

k

2 exp −t

√
A1A2 + 1

τ
(5.7)

with k = A2/A1. Since the product A1A2 is in general rather large, the second term
decays quickly and can be neglected. The remaining dominant term indicates that u2
grows exponentially over time. Note that u1 shows a similar behavior, but resolves in
the opposite direction.

In a static analysis of the circuit, all transient processes have decayed. This is equiva-
lent to neglecting the dynamics of the feedback path, or by demanding an instantaneous
reaction on u1. This behavior is achieved by assuming R1 = 0 and C1 = 0 which leads to
the simplified set of equations

u1 = − A1u2 (5.8a)

u2 = − A2u1 − R2C2
du2
dt

, (5.8b)
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Figure 5.14: Comparison of the output current for transient and static simulations.

and finally the solution
u2(t) = u0

2 exp t
A1A2 − 1

τ2
. (5.9)

In this case we again obtain an exponential resolution trace, however, now with a much
higher multiplicative factor in the exponent. For this circuit, the effective resolution
time constant can be computed as the RC constant divided by the loop gain (A1A2)
minus one. A similar relationship has been derived for opamp, where the resolution time
constant is τ = RC

kA . Recall that kA denotes the loop gain, with A being the gain of the
forward path and k (< 1) that of the (passive) backward path. This similarity to the
system (5.8) is no surprise, as setting R1 and C1 to zero has turned our second order
system into a first order one.

For τ2 = τ the ratio P of the resolution time constants for the static and dynamic
case from (5.7) and (5.9), respectively, evaluates to

P = (A1A2 − 1)/τ

(
√

A1A2 − 1)/τ
= (

√
A1A2 − 1)(

√
A1A2 + 1)√

A1A2 − 1
= A1A2 + 1 .

This shows that static analyses are indeed able to predict the transient resolution dynamics,
if the feedback based coefficient P is carefully considered. Although determining P is
a simple task in our small example, for real circuits this can be quite challenging, also
because the value P depends on the operating point.

To provide evidence for the validity of the ratio P , we performed a comparison between
static and transient simulations (see Figure 5.14). Therein, whenever the transient output
trajectory reaches a grid point of map(see next section), the corresponding static current is
indicated by a green dot. It can be seen clearly that (i) Iout, and thus Vout, is proportional
to exp(t/τ) and that (ii) the static analysis overestimates the current by a constant
multiplicative factor P , which appears as an additive shift on the logarithmic axis in
Figure 5.14. To obtain correct results for Vout, this discrepancy has to be compensated
by introducing the modified load capacitance

C∗
L = CL P . (5.10)

This correction has been used throughout Section 5.5.
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Phase Diagram (map)

Without prior knowledge, a very pragmatic approach for obtaining the phase diagram is
to cover the Vin-Vout plane with a regular grid and determine Vout for each grid point.
Albeit this initially appears quite unfocused and laborious, the resulting phase diagram,
also denoted as map, not only allows to interpolate γ2, but also provides a good intuition
of the overall behavior, especially while resolving metastability.

Instead of extracting Vout from transient simulations we opted to use Iout and the
proportionality (5.6) between Iout and Vout. To derive values for the current, an additional
constant voltage source is attached in parallel to the output capacitance CL in Figure 5.12
and its value Vout is chosen according to the investigated grid point. In the steady state,
this forces the current to/from the capacitance to vanish since Vout = 0. Iout is flowing
through the voltage source, where it can easily be recorded. The respective values can
then be used to indicate how fast CL would be (dis)charged (resulting in a corresponding
Vout), once the voltage source is disconnected.

This approach is considerably faster and much simpler to execute, while providing
the same level of accuracy for the metastable voltage3. The required simulations are run
using built-in commands from HSPICE, as detailed in Listing 5.1: Vin is swept from GND
(0) to VDD (supp) in steps (width) corresponding to the grid spacing. For each value
Vin of the input voltage, Vout is varied in the same fashion where the number of steps
(count) can be different. The current through the voltage source Vout is determined in
the second code line. For all the analysis presented in this thesis we used width = 900
(ΔVin = 1 mV) and count = 9000 (ΔVout = 100 µV).

1 .DC vIn 0 supp width SWEEP vOut LIN count 0 supp $$ run DC a n a l y s i s
2 .PROBE DC I ( vOut ) $$ record current at output

Listing 5.1: Deriving Iout in the Vin-Vout plane in HSPICE

Most certainly we won’t be fortunate enough to exactly hit Iout = 0 (or equivalently
Vout = 0) this way. Nevertheless, γ2 can already be confined between two adjacent
grid points with changing sign. In a first step, contour plots can be used to show
(interpolated) lines for constant output current, especially Iout = 0 corresponding to the
line of (meta)stable states. The resulting map provides the possibility to quickly identify
the most important parameters of an S/T implementation (e.g. threshold voltages,
(meta)stable values, gradients of Vout) and thus to coarsely predict the overall behavior.

The obtained results for the circuit opamp are shown in Figure 5.15 and illustrate
the very good agreement with the analytic considerations. In particular, horizontal
interpolated contour lines (with linear spacing) in Regions 1 and 3, as implied by (5.1)
and (5.3), are visible. Within a corridor of width 2M

A = 2·450 mV
50 = 18 mV around γ2,

whereat we used the definitions of A from Section 5.4.1 and M = VDD/2, the contour
lines run parallel to γ2, in accordance with (5.2).

3Recall that Vout = 0 directly translates to Iout = 0. Thus considering CL, including the uncertainties
and non-linearities possibly associated with it, is not required.
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Figure 5.15: map results for opamp with a grid size of ΔVin = 1 mV and ΔVout = 100 µV.
Clearly visible are the horizontal contour lines.

5.4.2 Precisely Identifying the Metastable States
The approaches presented so far allow a rough overview of a given S/T implementation,
whereat the metastable points constituting γ2 are obtained by interpolation. In the
following, we thus present methods that allow a more precise description and apply them
to opamp for illustration and validation.

Transient Estimation (expTran)

In Section 5.4.1 we expressed the metastable voltage in (5.4). In fact by combining (5.4)
and (5.5), VM can be determined from a pair of corresponding values Vout and Vout as

VM = Vout − τ Vout . (5.11)

Note that the unknown Vx and t are eliminated. Consequently, τ is the only remaining
parameter, which can be determined by applying the natural logarithm to (5.5), yielding

ln(|Vout|) = ln 1
τ

Vx exp − t

τ
+ t

τ
= K + t

τ
. (5.12)

The linear correspondence between t and ln(|Vout|) expressed in (5.12) allows to extract
τ as the inverse of the slope between any two values of Vout in a semi-logarithmic plot.

Overall we thus obtain the following strategy: From a transient simulation starting
in an arbitrary point (V ∗

in, V ∗
out), we use the time and value differences among simulated

values of Vout to determine τ according to (5.12), while a single consistent pair of
(Vout, Vout) suffices to finally obtain VM from (5.11). As outlined in Section 5.4.1, the
time constant of the exponential function changes as soon as the operational amplifier
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Figure 5.16: Absolute deviation between VM predictions for resolution towards VDD (V ↑
M )

and GND (V ↓
M ).

saturates, i.e., when the trajectory leaves Region 2 and enters Region 1 or 3. Since we
are interested in the former, we must take care to only use values from within Region 2
for fitting the parameters.

Note that expTran can be run twice for each input voltage, since resolution traces
to GND and VDD are possible. Ideally both would render the same results. In reality,
however, we get slightly different values V ↓

M and V ↑
M . These can be retraced to numerical

issues due to the limited accuracy of the simulations. Figure 5.16 shows the difference.
To improve accuracy, we thus determine the intersection point of both linear functions
resulting from (5.11), i.e., one for each direction.

We experienced that the resolution time constant τ can be comparably accurate
(relative error ≈ 10−7) determined from HSPICE simulations, however, results for Vout

show a relative error of up to 1 %. Fortunately, this mismatch can be largely mitigated
by a careful choice of the consistent pair (Vout, Vout): Equation (5.11) can be interpreted
as correcting an inaccurate initial value Vout by the term τ Vout. With a choice of Vout

close to VM (in our case |Vout − VM | ≈ 10−5 V) that correction term becomes small.
Considering the 1 % relative error of Vout, a deviation less than 10−7 V can be achieved,
which is still quite big compared to other methods (see Figure 5.17). Increasing the
simulator accuracy improves the results, but also leads to a prolonged computation time.

Static Estimation (expDC)

Equation (5.2) relates the output voltage Vout and its derivative Vout to the metastable
voltage γ2. Since Vout and Iout are directly related by (5.6), also the latter can be used
for a good estimate of VM . In fact, we can rewrite (5.2) as

Vout = Iout

CL
= 1

τ
(Vout − VM ) . (5.13)
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Figure 5.17: Absolute deviation between VM predicted by various approaches compared
to analytic calculations for opamp.

Note that this is a linear function of the form Iout = kVout + d, where the desired
metastable value VM can be expressed as

VM = − τ d

CL
= −d

k
. (5.14)

The values of k and d can be easily obtained by extracting several values of Iout(Vout) (e.g.
by running map) and fitting a linear function. In this fashion, the metastable voltage
VM is derived extremely fast. Although this process has to be repeated for numerous
choices of Vin to obtain γ2, its execution time is still one of the lowest.

Similar to expTran, the method expDC can be run with traces towards GND as well
as towards VDD. As can be seen in Figure 5.16, the difference between the values V ↑

M

and V ↓
M is much lower than for expTran. This improved accuracy seems to originate

from avoiding the use of Vout. For better results we again determine the intersection of
the linear functions resulting from (5.14) for both directions.

Binary Search (binary)

A more pragmatic approach called binary sweeps Vin from VL to VH (cf. Section 3.5),
and for each value Vin a binary search is performed to find a value of Vout such that Iout

becomes zero. This bisection principle is also applied in [74].
To our advantage HSPICE has a built-in mechanism called Bisection to run a binary

search. The corresponding code is shown in Listing 5.2. The first line states that we want
to bisect, and at most 40 steps shall be carried out. Note that this narrows down the
initial interval by a factor of 240. Most of the time, the algorithm finishes earlier, as the
demanded accuracy, which is specified by the parameter RELIN, is reached first. In our
case we demand that the difference between two consecutive values must be smaller than
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Figure 5.18: Flipping (meta-)stable states by current overcompensation.

0.01%. As can be verified in Figure 5.17, the residual error in VM w.r.t. the analytical
results (5.2) is indeed extremely small.

1 .MODEL optMod1 OPT METHOD=BISECTION RELIN=1e−4 ITROPT=40 $$ s top c o n d i t i o n s
2 .PARAM outVal=optFunc1 ( vdd /2 , vout_VL , vout_VH) $$ search i n t e r v a l
3 .DC vIn inVal inVal 1 SWEEP OPTIMIZE=optFunc1 $$ run the Bi sec t i on
4 + RESULTS=optMeasure MODEL=optMod1

Listing 5.2: Bisection in HSPICE

The second line sets the parameter outVal, which determines the initial value of the
output voltage Vout (VDD/2) and its sweep range. To ensure that the stable states are
not contained in the latter, we set its boundaries to the last stable output values on γ1
and γ3. In the case of opamp, this corresponds to γ3(VL) and γ1(VH), respectively. The
third line finally launches the DC analysis for the input voltage Vin = inVal which means
that this analysis has to be executed for each value of Vin separately.

Closed-loop Control (control)

The fact that all trajectories strive to leave the unstable states makes it so hard to
achieve accurate values for VM . In the sequel we will, thus, investigate a method that
uses a simple proportional controller to overcompensate the current flowing into the load
capacitance. This effectively converts the unstable equilibria into stable ones while the
previously stable ones are now metastable (see Figure 5.18). In this fashion entering and
observing metastability becomes a trivial task since (almost) independent of the initial
condition the circuit on its own navigates towards Vout = VM .

By overcompensating the current into the load capacitance, a situation that would
cause Vout to increase leads actually to a reduction and vice versa. The setup for opamp
is shown in Figure 5.19. Due to the fact that our goal is Iout = 0 and thus also IL = 0 a
proportional controller IL = K · Iout is sufficient. This has also been verified by extensive
control theory considerations.

One major challenge is to properly determine K, since picking excessive values cause
oscillations and lead to unreasonable results. Clearly choosing K = 1 + ε, with ε > 0
arbitrarily small, is valid and will eventually lead to the correct results, but also increases
the simulation time unnecessarily. Thus we were searching for ways to derive close to
optimal results. Finally the poles and zeros of the transfer function turned out to be
a good starting point. The respective information is gathered in HSPICE by the code
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Figure 5.19: Circuit setup to characterize the linearized system dynamics and to over-
compensate the current flow into the load capacitance.

shown in Listing 5.3. Over the optimal voltage source Vmeas, which is used to extract
Iout, the capacitance CL (line 2) is connected to the circuit. At the same node the AC
current source IL (line 3) introduces the current, which is used as reference in line 5 to
calculate gain and phase of Iout. Finally in line 6, the poles and zeros are evaluated and
exported.

1 vMeas out outC DC 0 AC 0 0 $$ v o l t a g e source to measure current
2 cL outC 0 C_L $$ output capac i tance
3 iL outC 0 DC 0 AC 1 0 $$ in t roduce r e f e r e n c e current
4 .AC DEC 10 1 10000G $$ run AC a n a l y s i s from 1 Hz to 10 THz
5 .PROBE AC IDB( vMeas ) IP ( vMeas ) $$ record gain and phase
6 .PZ I ( vMeas ) iL $$ expor t pole−zero s t a t i s t i c

Listing 5.3: control analysis in HSPICE

To finally achieve VM transient simulations (see Listing 5.4) are utilized. The controller
is implemented as a current control current source (CCCS) (line 3) that multiplies the
current through Vmeas (line 1), i.e., the one into the artificial capacitance COUT (line
2), by the conservative value K = 2. VM if finally extracted as the value of Vout after
1 µs (line 4). Unlike for opamp, we will use K(Vin) for real world implementations, i.e., a
separate amplification for each input value.

1 vMeas 5 out DC 0 $$ v o l t a g e source to measure current
2 cOut out 0 10p $$ output capac i tance
3 fP out 0 vMeas K $$ current source f o r overcompensation
4 .MEAS TRAN f i n a l V a l FIND V( out ) AT=1us $$ determine f i n a l va lue o f Vout

5 .TRAN 1 ns 1 us $$ run t r a n s i e n t a n a l y s i s

Listing 5.4: Deriving VM for control in HSPICE

The achieved results for opamp are shown in Figure 5.17 (control). We observe an
absolute error of ≈ 1 pV compared to the analytic calculations, which is among the best.
Note that increasing the simulator time steps allowed us to increase the simulation time
while maintaining a constant computation time, which in turn leads to more accurate
results.
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Figure 5.20: Application of the Newton-Raphson algorithm to find a statically stable Vout

for fixed Vin (black dots).

DC Analysis (static)

In the course of our research we discovered that plain DC simulations on the unmod-
ified implementation are already sufficient to determine the metastable values γ2. We
backtracked this feature to the operation principle of the Newton-Raphson algorithm
that HSPICE utilizes to determine DC operating points in general [28]. To arrive at a
stable operating point, the algorithm thrives to achieve Iout = 0 which is, as presented, a
property of metastable states as well.

Figure 5.20 depicts a showcase execution of the algorithm, where we assume a constant
Vin and try to find a suitable Vout. Before the search starts, HSPICE sweeps Vout and
records the current through the n- (ID,n) and p-stack (ID,p) of the gate driving the
output. As expected the traces cross three times, i.e., for three values of Vout the currents
exactly compensate, resulting in Iout = 0. While the outermost intersections mark the
stable states of the S/T, the inner one represents the metastable state. The algorithm is
started by an initial guess Vout = V1 that can be provided by the user. The subsequent
steps are (i) to determine the derivative of ID,p(V1), (ii) find the crossing point of the
first-order approximation of ID,p(V1) with ID,n at Vout = V2 and finally (iii) restart the
procedure with Vout = V2, i.e., the value at the crossing point. The iteration stops when
the voltage difference ΔV between two succeeding steps drops below a user-defined value.

Naturally, the initial guess determines which of the three crossings is approached.
Thus, by starting close to VM we can assure to determine the metastable state. Since
a deviation of up to VDD/4, i.e., several tens of millivolts, could be tolerated in our
simulations, connecting γ1 and γ3 by a straight line already provides suitable values.

The respective HSPICE code is shown in Listing 5.5. After setting the initial output
value in line 2, the DC analysis is started in line 3 in the range between lowV al and
highV al with a step width of stepWidth. Since γ2 is continuous, using the value found
for the previous Vin as an initial guess (as it is done in HSPICE) is already very close,
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leading to a fast convergence and therefore low computing time. For the circuit opamp
(see Figure 5.17) the achieved accuracy is roughly 10−8 V. This rather high value can be
retraced to the limited number of decimal places in the output data format. If all other
approaches are equally limited, their results are comparable.

1 .PROBE DC V( out ) $$ record output v o l t a g e
2 .NODESET out=outVal $$ i n i t i a l i z e output node
3 .DC vIn lowVal highVal stepWidth $$ run DC a n a l y s i s

Listing 5.5: Executing static in HSPICE

5.4.3 Dynamic Metastability Behavior
Complementary to determining the static metastability values, we also want to efficiently
and accurately determine dynamic properties of an S/T implementation. Specifically, we
are interested in the resolution time tres and the corresponding time constant τ .

Resolution Time Constant

The resolution time constant τ characterizes the exponential growth of a waveform
resolving metastability and is thus a very important parameter. Implicitly, we have
already utilized it in some of the methods presented in Section 5.4.2. The questions we
address in the sequel are (i) whether the derived results are suitable to predict τ and (ii)
if there exist other, overall simpler, methods to achieve this goal.

Method expTran The straightforward approach, i.e., starting a transient simulation
near the predicted metastable value VM and fitting the resulting analog waveform, was
implemented with expTran. There, the resolution time constant τ was only calculated
as a by-product since it was required in (5.11) to calculate the metastable voltage VM .

For opamp, all points within one region share the same τ . It thus suffices to pick any
segment of the resolution trajectory that does not cross region boundaries. Hence, any
starting point close enough to γ2 is suitable to compute the resolution time constant. In
fact, the grid points obtained by map are already sufficient for this purpose. Figure 5.21a
reveals the perfect matches of τ compared to the analytic computation.

Unfortunately, state-of-the-art circuits, which will be discussed in Section 5.5, show
slightly non-exponential resolution waveforms and thus variations in the resolution
time constant within one Region. For comparison, we thus determined τ also in deep
metastability by starting transient simulations in the metastable points delivered by
binary. For opamp the differences are negligible, as can be seen in Figure 5.21a
(binary vs. expTran).

Method expDC τ is also computed as a by-product in expDC. In (5.13), the slope k
of Iout(Vout) is

k = CL

τ
. (5.15)
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Figure 5.21: Results for opamp showing (a) the resolution time constant τ along γ2 and
(b) the output behavior in the whole Vin-Vout plane.

This relation allows a simple and accurate determination of τ , given that the output
capacitance CL is precisely known. Unfortunately, this is not the case for state-of-the-art
circuits: In advanced CMOS technologies, CL is constituted by gate capacitances, which
change with bias and are subject to significant tolerances and noise. This makes it
necessary to determine appropriate values of CL through transient simulations, giving
rise for minor numerical inaccuracies. Thus, for opamp our results for the resolution
time constant were already slightly off the theoretical values (see Figure 5.21a; 1/262.2
vs. 1/265.7). Furthermore, recall that the direct correspondence between Iout and Vout

was derived for a capacitor in Section 5.4.1, so the relationship must be re-evaluated for
systems with a dynamic order higher than 1.

Method PZ An alternative approach, referred to as PZ (Pole-Zero), determines τ
directly in the frequency domain, without resorting to DC or transient simulations. It is
rooted in the frequency domain and utilizes the transfer function G(s) which collapses
for opamp to

G(s) = 1
τs − 1 .

It can be seen clearly that the time constant is fully specified by the pole [91], whose
value τ = 3.763 ps for the circuit opamp is in perfect agreement with theory. In HSPICE
we used the command .PZ to automatically derive a list of all poles and zeros.

As we will show in Section 5.5, state-of-the-art circuits in general have multiple poles.
Basically this makes their characterization using a (single) resolution time constant, as
it is usually done in the context of metastability, questionable – since that implies a
first-order dynamic behavior. Nevertheless, only considering the pole with the smallest

172



5.4. Characterizing the Schmitt Trigger

positive real part, thus approximating the higher-order system with a first-order one, still
delivers remarkably accurate results.

Application to Circuit opamp

To obtain a general understanding of the resolution behavior, we defined a regular grid
in the plane, started a transient simulation with Vout close to the metastable value γ2
and then determined for each grid point the respective slope of Vout on a logarithmic
scale, i.e., x = ln (Vout) = Vout/Vout. Note that for exponential trajectories this results in
x = 1/τ . For realistic implementations we observe, however, variations of x, whereat very
large positive and negative values in the Vin-Vout plane are encountered. In order to (i)
scale all values by a factor A4 and (ii) to remove non-interesting regions around the value
0 while preserving 0 itself we show the function f(x) = sgn(x) log10(|x/A| + 1). Property
(ii) is of specific interest as the value zero marks the boundary between resolving out of
metastability and towards the final value, i.e., between Region 2 and 1 respectively 3.
The results for opamp shown in Figure 5.21b are in perfect agreement to the analytic
calculations.

Resolution time

The reasons to investigate the resolution time tres are manifold: When analyzing metasta-
bility, especially in synchronous designs, the time to reach uniquely identifiable states is
crucial. In a flip-flop, tres merely depends on how deep the circuit is in the metastable
state, i.e., how close to the real metastable point the resolution starts. In contrast, the
situation is much more intricate for the S/T, since further parameters become relevant
(even if we assume constant Vin). Firstly, the resolution in an S/T can start in any point
on (or close to) γ2. Depending on the actual choice, the circuit needs to overcome a
specific voltage difference to reach the closest digitization threshold value V HI

dig or V LO
dig

beyond which a clear logic HI or LO level, respectively, is detected5. Secondly, as we will
see later in Section 5.5, the resolution time constant τ varies over the phase plane and,
thus, the dynamics of the resolution process change depending on where the resolution
starts. Combining these aspects, it may happen that a given resolution trajectory that
overcomes only a small voltage difference but with a large time constant exhibits a longer
resolution time than another trajectory that crosses a larger voltage difference with a
small τ . This potentially counter-intuitive behavior is further investigated by computing
the resolution time tres.

In detail, tres expresses the time it takes the output voltage Vout to reach the
digitization threshold. It consists of tS

res, which denotes the time spent in Region 1 and 3
before reaching V HI

dig or V LO
dig , respectively, potentially extended by tM

res, describing the
time for moving away from the metastable state inside Region 2. Using (5.3), we can
formulate the output trajectory towards GND starting from an arbitrary value Vs within

4For our analyses we chose A = xmax/200 with xmax being the maximum value in the plane.
5Please note that V HI

dig or V LO
dig are thresholds at the output, while VL and VH refer to the input.
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Figure 5.22: Resolution time log10(tres/t0), t0 = 1 ps for opamp in the Vin − Vout plane.

Region 3 as Vout = Vs exp (−t/τ3). Reordering leads to a resolution time tS
res for reaching

V LO
dig of

tS
res = −τ3 ln

V LO
dig

Vs
.

Analogously, for resolution towards VDD (Region 1)

tS
res = −τ1 ln

VDD − V HI
dig

VDD − Vs

is obtained. For Vs within Region 2, tS
res is constant and denotes the time span from

reaching the boundary value between Region 2 and either 1 or 3, described by Vw, and
the associated digitization threshold V HI

dig or V LO
dig respectively. The additional time it

takes the circuit to move from Vs to Vw is denoted by tM
res and can be derived by solving

(5.2) as
tM
res = τ2 ln Vw − VM

Vs − VM
.

Based on the simulation results from Section 5.4.3, we computed for each grid point
the time until the corresponding digitization threshold V HI

dig = 0.9 VDD or V LO
dig = 0.1 VDD

is reached. For the example of opamp, the combined resolution time tres = tM
res + tS

res

over the whole Vin-Vout plane is depicted in Figure 5.22. Although the used grid definitely
hits the rather narrow Region 2, no significant increase in tres can be observed there.
The simple explanation is that close to the border, the contribution of tM

res to tres is small.
Starting halfway between γ2 and the border to Region 1 or 3 results in tM

res = τ2 ln(2)
which evaluates in our case to ≈ 2.608 ps – much less than tS

res. To pronounce the
discontinuity at VM (since tM

res → ∞ for Vs → VM ), we plotted the metastable values γ2
in white.
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5.5. Evaluating Schmitt Trigger Implementations

5.5 Evaluating Schmitt Trigger Implementations
Provided that an appropriate HSPICE description of the circuit is available, the complete
characterization process can be carried out without human interaction. For this reason
we implemented all the approaches presented so far in the tool MEAT which is publicly
available6. In this section, we present the results of simulations that we performed with
this tool using technology (T28) with the following aims:

• We evaluate and compare the presented methods in a practical application. To
this end, we apply all characterization methods for characterizing to three different
implementations of S/Ts, as other circuits in literature are heavily based on these:
a) the standard 6T implementation (std) b) an inverter loop (loop) [138] and c)
an adjustable hysteresis type (adjust) [126]. For each circuit we determined the
(meta-)stable states for 900 equally spaced values of Vin.

• We investigate how much the behaviors differ among them and also from theoretical
results [146]. Our circuits are analyzed as pre-layout circuits, i.e., without parasitics,
since we investigate integrated components here and thus (i) expect them to be very
small (compared to the gate capacitances) and (ii) either way would get heavily
layout-dependent results otherwise.

As we do not have a precise theoretical model available that would provide a ground
truth for these implementations (like we had it for opamp), we need a different approach to
verify the accuracy of the computed metastable values V c

M . To this end, we start a transient
simulation in each of them and then calculate the output deviation M = |Vout(t0)−Vout(0)|
at a fixed time t0 > 0. Due to the strictly monotonic nature of the resolving trajectories, a
higher M corresponds directly to a larger initial inaccuracy , i.e., |V c

M −VM |. Considering
the exponential nature of the resolving waveform as shown in Section 5.4.2 and using the
resolution time constant τ (cf. Section 5.4.3) allows us to compute as

= M

exp t0
τ

. (5.16)

Due to the fact that the feedback paths in real circuits exhibit their own dynamics,
turns them into a second-order dynamic system (in good approximation). This stands in
contrast to opamp with its passive feedback path. As a consequence, the relation between
Iout and Vout becomes more complicated, as shown in Section 5.4.1. Consequently the
results presented in the following were achieved using the modified load capacitance C∗

L.

5.5.1 Standard Implementation (std)
The transistor level circuit is shown in Figure 5.23a, and the obtained (meta-)stable line
in Figure 5.23b (γ1 and γ3 in solid red, γ2 in solid orange). In contrast to the analysis of

6https://github.com/jmaier0/meat
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Figure 5.23: Simulation results for std.
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Marino, γ1 and γ3 are neither constants nor linear functions. Instead, the stable values
start to deviate from GND or VDD when the respective threshold voltage is approached.

The heat map of the output current (see Figure 5.23b), which utilizes linear spacing
between the contour lines, reveals only moderate changes in Iout close to the metastable
line, as expected from the exponential resolution trajectories predicted by theory. However,
in contrast to the calculations of Marino [146], where Vout only depends on the distance
to the final, stable state (with horizontal contour lines, recall Figure 5.15), our results
for the circuit std show mostly vertical contour lines, along with the maximum and
minimum of Iout both located near VDD/2. A resolution trajectory following a vertical
(portion of the) contour line (which happens for constant Vin) exhibits a constant Vout

and hence a linear slope of Vout rather than an exponential curve.
Figure 5.23c shows an accuracy comparison for the metastable voltage VM : binary,

with a deviation of M ≈ ±0.5 nV after 200 ps, performs clearly the best. expDC, static
and control are comparable and moderately precise, while expTran performs worst.

Finally Figure 5.23d shows the resolution time constant τ determined using the
methods expTran, expDC, binary and PZ. Their results match remarkably well. Note
that this plot shows τ over Vin under the assumption that all initial condition pairs
(Vin, Vout) lie on γ2 and consequently τ represents resolution from (almost) perfect
metastability. It can be seen clearly that, even within Region 2, the resolution time
constant varies significantly over Vin, with the smallest values in the middle, around
Vin = 0.45V . At the outskirts significantly worse values are observed meaning that these
states are resolved slower.

A more general view is given in Figure 5.23e, which depicts Vout/Vout as a heat map
in the whole Vin-Vout plane. The z-scaling is the same as for Figure 5.21b, whereat in
contrast to opamp significant variations are visible. In particular, grid points far away
from the respective stable state tend to have positive values (red regions), while closer
ones have negative ones (blue regions). Considering the usual switching behavior of real-
world circuits, this makes perfect sense: The output trajectory for an arbitrary constant
Vin < VL (vertical cut in the figure) shows in the first part an exponentially growing
behavior that turns into an exponential decaying one and asymptotically approaches
VDD. In both Regions 1 and 3, we observe relatively large absolute values while they
decrease when approaching γ2 (and, not surprisingly, at the transition from increasing
to decaying exponential behavior). This is in contrast to Marino’s results that predict
a significantly larger τ for Regions 1 and 3 compared to Region 2 (cf. Figure 5.21b).
Obviously, the opamp model does not sufficiently match std in this respect.

Finally, the map of the resolution time tres is shown in Figure 5.23f. We observe,
in comparison to opamp (cf. Figure 5.22), a further reaching and flatter dependence
on the “horizontal” distance to the metastable value γ2, but a similar clear dependence
on the “vertical” distance from the corresponding stable state. This indicates a weaker
impact of the input on the overall S/T behavior. Remarkable is the fact that metastable
values near VDD/2 (assuming the same distance to VM ) resolve faster than values on the
outskirts of γ2, although the distance to the stable state might be shorter.
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5.5.2 Inverter Loop (loop)

The second circuit we investigate is a latch-like storage element (see Figure 5.24a for
the transistor level implementation). It consists of a pair of cross-coupled inverters, of
which the input stays permanently connected via an input inverter. The hysteresis of
the input/output behavior is defined by the relation between the driving strength of the
input inverter (transistors Mp1 and Mn1) and that of the (weak) feedback inverter from
the storage loop (Mp2 and Mn2). For the latter we thus reduced the width to one tenth
of their input counterparts.

The Iout map, see Figure 5.24b, significantly differs from the one of std . Much like
for opamp (Figure 5.15), the contour lines are horizontal at the border. Near γ2, the
current changes much more rapidly than for std, which also leads to lower values of the
resolution time constant τ (one order of magnitude, see Figure 5.24d), i.e., metastability
is resolved much quicker. Interestingly, an increase in τ can be identified near VDD/2.
This may be due to the fact that in this region all transistors are saturated, meaning
that voltage changes along the channel have little impact on the amount of conducted
current. The methods binary and PZ once again deliver comparable results for τ . While
expTran is only slightly off, expDC fails to deliver accurate values for this circuit. The
main reasons are difficulties for the estimation of C∗

L.
For this circuit, the metastable voltage VM is computed most accurately by the method

binary (see Figure 5.24c), with static being very close and expTran performing
significantly worse. Of special interest is control which occasionally outperforms
binary in terms of accuracy.

The global view shown in Figure 5.24e differs significantly from what we observed for
std, cf. Figure 5.23e. Outside the metastable region (Vin < VL and Vin > VH) almost
exclusively negative values are visible indicating the near-exponential behavior of Vout

(highest derivative at start). Inside the hysteresis, lower values that further decrease
near Vin = 0.45 V, can be observed (cf. Figure 5.24d). Note that the region boundary
in Figure 5.24e changes swiftly w.r.t. Vin near VL and VH . While inside the metastable
region a slow and steady increase is visible, rapid changes are observable outside of it.

The resolution time plot in Figure 5.24f finally matches very well the already obtained
results. The increased resolution time constant τ around Vin = 0.45 V results in a
significant increase in the combined resolution time tres.

5.5.3 Adjustable Hysteresis (adjust)

In some applications it is important to adjust the hysteresis of the S/T during operation.
One circuit that can be used for this purpose is called adjust and is shown in Figure 5.25a.
The additional input VB alters the position and width of the hysteresis. In our simulations
we used VB = VDD as in this case the hysteresis is the widest and thus has the largest
amount of stable states.

The first remarkable aspect to be observed in Figure 5.25b is the vertical section of γ3
with its relatively large peak value of Vout. It reaches up to about 0.3 V which is one third
of the supply voltage and almost certainly in the forbidden region, i.e., above V LO

dig . Recall
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Figure 5.24: Simulation results for loop.
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from Section 5.4.1 that those states can be easily reached by a Vin-ramp stopping at a
defined value, which implies low resilience against metastability for the circuit adjust.
The map in Figure 5.25b shows similarities to that of std (cf. Figure 5.23b), especially
in the right half. In the left half, the vertical contour lines are even more pronounced.

Due to the high similarity to std on the transistor level the achieved accuracy
levels (shown in Figure 5.25c) and the (initial) resolution time constant τ (shown in
Figure 5.25d) very much related. In absolute terms, the circuit adjust exhibits the
largest peak value for the resolution time constant τ . This also becomes apparent in the
global map shown in Figure 5.25e, where the large green area indicates slow changes.
Nevertheless, the resolution time characteristics depicted in Figure 5.25f are comparable
to that of std, cf. Figure 5.23f.

5.5.4 Comparison

In this section, the experiences gained throughout the characterization of three real-world
S/T implementations are utilized for comparing and evaluating the methods that have
been introduced in Sections 5.4.1, 5.4.2 and 5.4.3. Naturally, our main criteria for this
evaluation are accuracy, resolution, ease of use, computing time and scalability.

The difficulty in doing an objective comparison is that trade-offs between these
parameters can be made. For example, the accuracy can often be increased by investing
more computing time. Similarly, the grid resolution of all presented methods can be
made arbitrarily high. In practice, however, limitations apply such as the finite simulator
precision (internal number format), the required computing time and the available output
file formats. The latter raised significant issues for expDC as we only managed to export
results with 7 positions after the decimal point from HSPICE, while for all other methods
10 positions were possible. Due to the above reasons, we restrict ourselves to qualitative
analyses in this work. Nevertheless, to allow for a quantitative classification of the
evaluated methods, Table 5.1 lists the computing times required to obtain the results
that were presented in this paper on our machine (Intel Xeon X5650, 1600 MHz, 32 GB
RAM, CentOS 6.10). Note that the hysteresis and therefore the number of metastable
grid points between VL and VH differ among the S/T implementations.

hyst Using the method hyst the hysteresis curve is determined by two DC analyses
starting at Vin = GND and Vin = VDD, respectively. Due to the fact that γ1 and γ3
are almost constant, their exact characterization is simple and fast. The accuracy is
directly dependent on the simulation tool and the circuit element model, and is therefore
excellent, since no assumptions (e.g. on signal shapes) apply.

For obtaining VL and VH with high resolution, as well as exploring the non-ideal
shape of γ1 and γ3 in the proximity of these threshold voltages, a small step size is
desirable. Fortunately, the computation time scales only linearly with the number of
samples. Consequently, state-of-the-art designs can be processed with excellent resolution
within several seconds.
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Figure 5.25: Simulation results for adjust.
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computing time [s]
circuit std loop adjust
metastable grid points 282 378 125
hyst 1.817 2.297 1.842
binary 238.834 370.135 115.272
map 661.302 676.525 797.702
expTran 841.718 1089.741 334.582
expDC 791.997 890.129 340.751
control 3581.520 2340.700 3258.726
static 2.572 2.818 2.627
τ(binary) 1194.648 552.158 537.934
PZ 730.889 1064.792 241.888
tres/τ map 14 102.607 3939.382 11 228.703

Table 5.1: Computing times of S/T characterization methods.

map Similar statements as for the method hyst can be made for the phase diagram
map with the significant difference, however, that the grid is now two-dimensional (Vin

and Vout), and therefore an increase of the resolution has a quadratic impact on the
computing time. In this paper we used a regular grid in the whole Vin-Vout plane, but
much smarter choices are conceivable. The effort could, for example, be massively reduced
if the grid is continuously refined with decreasing distance to γ2.

Using Iout as an indirect measure for Vout, reduces on the one hand the computing
time significantly. On the other hand, however, the accuracy suffers due to uncertainties
associated with C∗

L, as outlined in Section 5.5.1. Consequently the contour lines obtained
using the method map should be considered as a qualitative result only – which is,
nevertheless, often sufficient. If accurate quantitative results are required, the overhead
of directly determining Vout must be accepted.

expTran While other approaches purely rely on the data points derived from analog
simulations, expTran incorporates analytic considerations as well. In fact, a few values
extracted from the simulation are used to parameterize a known (exponential) function.
The latter then allows to quickly derive τ and VM with a maybe significantly improved
resolution compared to the simulation tool. This property makes expTran appealing.

However, our results show that it achieves the worst accuracy for the metastable
values γ2, and quite some deviations for the resolution time constant τ . The reasons
for these imperfections are (i) the relatively poor accuracy of HSPICE for determining
Vout, and (ii) the fact that in real-world circuits the resolution trajectories are not perfect
exponential functions, even in Region 2. In detail, we have observed that Vout changes
more rapidly than an exponential function in the vicinity of the region boundaries. At the
same time, care must be taken that the data points are extracted from within Region 2
(recall, it may be very small), as the trajectory definitely follows a different function
outside. Therefore, the method expTran is more challenging to apply.

For each value of Vin within the hysteresis, two transient simulations are run. Since
the initial values are taken from map, a finer grid for this map also improves the accuracy
of expTran. However, the computation time scales quadratically for this method.
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expDC This method is very similar to expTran, as also the grid points of map closest
to γ2 are utilized. In contrast, however, no separate simulations are required to predict
the metastable voltage, which enables a rather quick execution of typically a few seconds.
Unfortunately, it is necessary to determine the implicit load capacitance C∗

L in advance
(cf. Section 5.4.1), whereat its value varies among operating points and thus requires
transient simulations and proper averaging.

Similar to expTran, the method expDC also has the potential to speed up the
simulation by leveraging the knowledge of the resolution trajectories being exponential,
but then suffers in accuracy when this assumption is not perfectly met by the circuit.
Still, for trajectories originating from γ2, the results prove to be very accurate.

The resolution time constant τ is extracted from (5.14) and (5.10), which is fitted
to the slope of Vout(Vout). Although this is easily possible, the challenges regarding C∗

L

described above and fitting to numerically noisy simulation data, sometimes lead to poor
results. Consequently, for predicting τ , expDC is, on its own, only of limited use.

binary For each value of Vin within the hysteresis a binary search has to be executed.
While the overall amount of simulations thus scales with the grid granularity of Vin, the
amount of binary steps has hardly any impact on the computation time. We experienced
a reduction by only 10 % when lowering the number of iterations from 40 to 20 whereas
the accuracy was degraded by four orders of magnitude. The results achieved for VM are
among the most accurate ones, however, τ cannot be directly computed.

control The approach control essentially relies on a controller that stabilizes the
dynamic system, i.e., the S/T, in a metastable state. Naturally, the parametrization of
that controller significantly influences how fast and accurate VM will be approached: With
a slow controller, convergence will be unproblematic and robust, while a fast controller
introduces overshoot, ringing and eventually even instabilities. That is why the choice
of the controller gain K is critical. Although, theoretically, the metastable voltage VM

can be approached perfectly accurate, it would take an infinite amount of time to do
so. For this reason, and also due to the limited accuracy of HSPICE, we settled for a
simulation time in which the controlled circuit approximately reaches a steady state.
In this fashion, very accurate results could be achieved. Fortunately it is possible to
decrease the accuracy of the simulation to enlarge the simulation time horizon that can
be processed with the same computational effort, while in turn improving the accuracy
of the obtained metastable value VM .

Overall, this approach, while being elegant in exposing the metastable value VM for
direct extraction, turns out to be rather time consuming. We primarily see its application
in cases where little to no information about the metastable behavior or the circuit itself
is available.

static The fact that the DC analysis in HSPICE reuses a preceding stable configura-
tion as starting point for the succeeding iteration, makes this type of simulation very
fast and accurate. In general, results can be obtained within a couple of seconds. The
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Figure 5.26: Latch circuit used for DC metastability analysis. The correct values are
automatically achieved for setting both nodes to VDD/2.

biggest problem we faced is the limited output data format, which reduced the achievable
(exportable) accuracy significantly.

Essentially, the approach static heavily relies on the Newton-Raphson algorithm
that HSPICE uses internally for static analyses. This means that any future changes in
the internals of HSPICE may invalidate the method, although we are optimistic that this
will not be the case. Furthermore the resolution time constant τ cannot be estimated.

PZ Determining the resolution time constant τ based on the smallest positive pole of
the circuit works remarkably well, even in the presence of multiple poles. Clearly, one
has to run an AC analysis in advance to extract the respective data. This has to be done
for each value of Vin with the initial condition Vout = VM , so the computational effort
increases linearly for finer granularity.

Resolution Time Constant τ and Resolution Time tres The heat maps for τ and
tres are the result of two transient simulations per value of Vin. Although the simulation
time is kept short using a simple heuristic, starting in deep metastability with low driving
strength leads to a significant computational effort and consequently long run time. In
this case not only the computation time of HSPICE has to be considered; the extraction
of τ and tres from the simulation traces also creates non-negligible computational efforts.

General Observations While using both transient and DC analyses, overall we
experienced that the former are much harder to handle. The reason is that more
parameters have to be defined, most notably the time period of the simulation. In
addition further complications, such as extracting a specific part of the simulation in
expTran or finding an appropriate controller gain K for control, have to be overcome.
In total, DC analyses achieve better results with less computation time and simpler
methods. In this regard AC analyses are comparable to DC.

Finally we want to emphasize that the proposed methods are not restricted to S/Ts.
We verified this by exemplarily running static and control on a latch formed by a
loop of asymmetric inverters (width ratio 1/10) with a transmission gate (see Figure 5.26).
In both cases the metastable configuration was quickly achieved, which indicates a
potential general applicability of our analyses and thus a large application area.
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Figure 5.27: Analog HSPICE simulations of late transitions caused by a linear input
traces that stop at varying values VH + ε. The smaller ε the longer it takes until the
stable output state Vout = GND is achieved.

5.5.5 Driving into Metastability

For the std implementation we further investigated in technology (T65) how intermediate
values can be forced by proper adjustment of the input. As we will show with simple
ramps, that stop at a certain value, it is possible to generate late transitions, while more
fine grained control of Vin even enables arbitrary waveforms at the output.

Monotonic Inputs

In this section we investigate the behavior of the S/T when provided with a monotonic
input, which may stall at an arbitrary value VS . This corresponds to a gate, e.g. a
Flip-Flop, that starts a transition and then enters metastability. To simplify our analysis
we focus on the case of an increasing input, starting at (Vin, Vout) = (GND, VDD). The
reverse case can be analyzed analogously.

As we have already discussed earlier, exceeding the threshold VH causes a negative
output derivative, which can only be reverted by reducing Vin. Since we consider a
monotonic input, this is not possible, which implies that Vout has to change from VDD to
GND. Problematic are, however, cases where the input transition stalls near the threshold,
i.e., when ε = VS − VH is very small. In our previous analyses we have shown that the
output derivative declines as the (meta-)stable lines are approached, since Vout is zero
there. For this reason we expect increasingly delayed output transitions for decreasing ε.

The corresponding simulation results for various values of ε are shown in Figure 5.27.
As predicted, monotonic inputs lead to steep monotonic output transitions, but their
delay varies significantly. Note that the output trajectories differ close to VDD which
shows impressively the continuously decreasing output derivative towards γ2. While
the relative deviations among 205 mV, 65 mV and 21 mV are rather low, switching from
9 mV to 0.5 mV massively increases the delay. This effect can be observed in Figure 5.28,
where the delay based on ε for falling and rising input transitions is shown. For ε → 0
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Figure 5.28: Late transition delay for rising and falling Vin stopping in distance ε above
VH / below VL. The closer to zero the longer the delay with a pole at ε = 0.

the delay is actually unbounded; a behavior that is comparable to proximate clock and
input transitions at a Latch [29], with the difference, that the S/T does not drive an
intermediate value.

Driving Intermediate Output Voltages

To actually achieve arbitrary intermediate voltages at the S/T output, more sophisticated
input trajectories are required. Assume that we start on γ1: Once Vin exceeds VH the
output is pulled towards GND. In order to reach a metastable state on γ2 we need to
reduce Vin sufficiently before Vout = GND is reached. Recall that our simulations revealed
an increase of Vout with increasing distance to γ2, which, in turn, demands higher input
dynamics. Despite this insight it is not possible to provide a lower bound for Vin that
is required to achieve metastability since there exists always a corridor surrounding γ2
where metastability can be maintained (cf. Section 5.3), even for max(Vin) → 0.

As γ2 connects γ1 and γ3, every output value in between the latter can be approached.
Even worse, one can switch among different metastable values. On the bright side we
have to note that a very, very precise control of the input voltage is required, which also
has to stay near VDD/2 the whole time (input resolution implies S/T resolution). In real
circuits such series of events can be assumed to be very unlikely.

Creating Arbitrary Output Trajectories

In principle, by appropriately navigating in the phase plane, one can achieve (almost)
arbitrary output trajectories: For every value of Vout an appropriate Vin can be applied to
obtain the desired gradient Vout (by crossing γ2 even the sign can be changed). However,
within a limited range of Vin only a limited range of Vout can be covered; in other words,
the dynamics of Vout is naturally confined by the system dynamics. The second restriction
is, as already described previously, the dynamics of Vin. To stay in metastability the
differences induced by the changing Vout have to be compensated. If this is not possible
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Figure 5.29: Creating an arbitrary waveform at the output of the S/T. After an initial
phase a sine with a frequency of 100 MHz is created. Note that, albeit looking that way,
Vout does not follow Vin in this phase. Instead Vin is used to slow the output down. In
the end the S/T is allowed to resolve starting from minorly differing values.

there is no way of preventing the trajectory from approaching the saturation of Vout in a
monotonic trace.

To show this we aim to create an arbitrary waveform at the output, more specifically
a sine wave with frequency 100 MHz and a voltage swing of 0.5 V, in a simulation. Our
results (see Figure 5.29) reveal that such a behavior can be achieved by means of non-
monotonic inputs. In the first part regular operation is presented to demonstrate the
dynamics of the S/T as well as its thresholds. At 20 ns the sine output is started. Albeit
looking as if Vout follows strictly Vin, actually the reverse is the case: While the output
tries to escape metastability, e.g. towards VDD, we increase Vin such that we get closer
to γ2 and thus reduce the output derivative. As the peak of the sine wave is reached
we exactly hit the metastable state. Finally, the simulated S/T is driven into deep
metastability with the input being constant starting at 58 ns. From there onwards the
results of two simulation runs, whose final value differ by ≈ 30 nV, are presented. While
one (dashed line) resolves to VDD the second one (dashed-dotted line) resolves to GND
after about 10 ns. This again shows how accurate one has to hit the metastable value. In
the phase plane, depicted in Figure 5.30, it can be seen that the generation of the slow
(w.r.t. its regular switching speed) sine demanded to stick close to γ2. The metastable
resolution at the end is depicted by the vertical line segments at Vin ≈ VDD/2.

Overall our simulations showed that arbitrary output behaviors with little constraints
can be realized. Nevertheless, we also experienced that it takes an extremely precise
control of the voltage (in the range of nV) in order to (i) steer into metastability and
(ii) to stay there. One major conclusion is that a monotonic trajectory will not lead to
metastability inside the S/T, which implies that the latter can safely recover Flip-Flop
metastability without glitching. This, however, only holds in a value-safe environment,
since late transition cannot be prevented.

Although metastability cannot be ruled out completely, we conclude that the chances
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Figure 5.30: Phase space representation for the output waveform presented in Figure 5.29.
During the sine wave behavior the trace sticks closely to γ2 (orange line).

that an S/T enters a metastable state in a real application are very low. Albeit having
said that, we will investigate in the succeeding section if and how the situation may be
improved by cascading multiple S/Ts.

5.6 Cascading Schmitt Triggers
From the previous analysis we can conclude that a single S/T stage improves the signal
quality as (i) almost all analog values in the forbidden region are mapped to either HI or
LO and (ii) slowly creeping, yet monotonic, signals result in a clean steep transition. So,
in principle, a subsequent S/T stage should obtain a similar improvement and thus reduce
the susceptibility for entering metastability further compared to a single stage. Although
a comparable approach on synchronizers, where an additional Flip-Flop increases the
MTBU significantly, has already been shown to be successful [53], it is not yet clear
whether this property also holds for the S/T. In order to come to a conclusive answer,
the following questions will be addressed in the sequel:

(Q1) In which cases does the second S/T stage improve the behavior?

(Q2) Can the behavior get worse? Are there new types of (likely) behavior?

(Q3) Is the second stage equally likely to become metastable as the first one?

(Q4) Can metastability of the last stage be completely avoided, possibly by forming a
longer cascade?

(Q5) How are the static properties of the cascade determined (is it still an S/T, and if
so, which hysteresis does it have)?
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Figure 5.31: Two stage S/T cascade used in this thesis. We chose to use two inverting
S/Ts, however, any combination of (non-)inverting ones are possible.

(Q6) How are the dynamic properties determined (regular delay, output slope, is there a
performance penalty in using a cascade)?

(Q7) Are there any rules for optimal dimensioning of the cascade (combination of fast
and slow stage, different hystereses,...)?

To answer these questions comprehensively we will, in the following, elaborate on the
behavior of a (2-stage) S/T cascade. For our analyses we consider two equal inverting
S/Ts in the cascade, whereat for more general statements, e.g. the combined phase plane
representation, we also investigate arbitrary combinations.

5.6.1 Behavior of a Schmitt Trigger Cascade
For a start we consider a two stage S/T cascade as shown in Figure 5.31. In Section 5.5.5
we argued that an S/T can exhibit almost any output behavior. This means that the first
stage qualitatively does not restrict the second one’s input space, and, as a consequence,
stage 2 has unrestricted output behavior as well. At this point we can already answer
question (Q4) about complete avoidance of metastability through a S/T cascade: This is
simply not possible.

In continuation of the physical analogy given in Section 5.3 we can view the second
stage as an additional vertical stick balancing on top of the first one. This analogy nicely
illustrates that it becomes much more unlikely to see metastability in the second stage
(i.e. actually find a balance for the second stick) – thus giving an intuitive answer to (Q3)
– , while still being physically possible.

To get closer to a quantitative answer, we will analyze in the sequel how the different
output behaviors of the first stage, which we described in the previous section, are handled
by the second one. Note that we use in this context V 1

int to denote the voltage level on
the internal wire connecting the S/Ts (cf. Figure 5.31).

Regular Behavior

Let us start with the regular behavior: Assume a starting point Vin < VL,1 (the case of
Vin > VH,1 can be handled analogously), whereat the subindex 1 indicates that these
are the threshold voltages of stage 1. Due to the inverting behavior of each of our S/T
stages, we end up with V 1

int being HI and Vout LO. As Vin increases, V 1
int and Vout stay

constant until Vin reaches VH,1. Beyond that point V 1
int will switch to LO. With a strictly
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monotonic Vin, this transition of V 1
int will be rapid, causing in consequence also the second

stage to switch, namely when crossing the corresponding threshold VL,2. Overall, we
experience a clean rising transition at the output. Note that the threshold of the overall
cascade in this case is VL,1, while VL,2 is irrelevant. Obviously, when using different
implementations, the order in the cascade has a big impact. In general one prefers a
wider hysteresis making it necessary to place a corresponding device at the beginning of
the cascade. This is one option that can be considered when answering question (Q7),
whereat we will present some more in the sequel.

Generally, in this mode of operation strong signal regeneration effects can be expected
as the first S/T tends to switch very quickly when its threshold is reached, causing a
similar behavior in the second one. Noteworthy is, however, the increased propagation
delay, whose impact on metastability properties has already been investigated by Chaney
[145] and Kleeman and Cantoni [137] for a synchronizer. They correctly state that the
use of S/Ts is not beneficial for avoiding metastability there due to the additional delay,
which even degrades the performance.

Late Transitions of Stage 1

According to our analysis in Section 5.3, a monotonic input stalling at a constant value
near the threshold will cause a late but clean transition at the output of stage 1 (V 1

int).
In that case the second stage perceives a clean input, which it simply conveys (adding its
nominal propagation delay). Consequently late transitions are essentially not modified
by the second stage.

For evaluation purposes ramps stopping at differing values are applied to the input.
As shown in Figure 5.32, the first stage responds with late but clean transitions, while
the second stage increases the slope. Note that again mainly the properties of the first
stage are important, as the second stage does not yield further improvements. Thus,
considering question (Q7), the ordering of the S/Ts has again an impact.

Pulse Propagation

A single S/T stage may or may not propagate a glitch or runt depending on the input
pulse height and width. As the second stage shows the same behavior, glitches and runts
are able to propagate through the whole cascade, but experience in the process significant
degradation. This results from the fact that the thresholds have to be crossed before the
output starts to move. On the other hand spurious pulses are transformed into stable
transitions due to high amplification of both devices.

Simulation results shown in Figure 5.33 clearly reveal an increasing separation among
the trajectories, which is a direct result of pulse-width degradation (cf. also Chapter 4).
Comparing the longest pulse on V 1

int and Vout, i.e., the period of time they stick near
GND/VDD, might create the impression that the second S/T prolongs pulses. This is,
however, just an optical illusion due to an improved transition slope. Checking the
respective VDD/2 crossing times confirms the constant width.
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Figure 5.32: Analog simulations of Vin, V 1
int and Vout for input slopes stalling at a constant

value near VL,1. Clearly stage 2 only increase the slope but leaves the transition time
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Figure 5.33: Analog simulations of the S/T cascade for input pulses. Traces initially very
close show significant different output behavior due to pulse-width degradation effects,
introduced by each single device.
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Figure 5.34: Theoretical analysis of the (meta-)stable states for the first S/T (green)
and the cascade of two (blue). While the threshold points of the cascade are equal to the
values of the first S/T (purple lines) with reversed direction, the metastable line γ2 got
much steeper since metastability is only possible when V 1

int is driven between VH,2 and
VL,2. The orange lines, which indicate a resolution of stage 2, must not be crossed to
keep the cascade in metastability.

5.6.2 Phase Plane

In our analysis of a single S/T, we derived that metastable behavior is only possible if
VL ≤ Vin ≤ VH is fulfilled, i.e., inside the hysteresis. Applied to our cascade this means
that we need VL,2 ≤ V 1

int ≤ VH,2 to drive the second stage into metastability. This leads
to the general observation, that it is mandatory to drive the first n − 1 S/Ts of a cascade
into metastability to achieve a metastable value at the nth Schmitt Trigger.

In the following we will show how to derive the (meta-)stable states for the cascade
(blue line in Figure 5.34) and thus answer question (Q5). For simplicity reasons we start
with the static case, meaning that the output value can be determined directly from
the phase plane representation. For Vin = GND the intermediate voltage V 1

int results
in VDD, which leads, in turn, to Vout = GND. Overall we get (Vin, Vout) = (GND,GND),
i.e., an non-inverting behavior. Increasing Vin does not have any effect (straight line at
Vout = GND) until VH,1 is surpassed. At this point it becomes possible to steer the first
S/T into metastability by reducing Vin and consequently decreasing V 1

int. Continuing
until Vin = V1 causes the internal voltage to drop to VL,2 which in turn makes it possible
to drive the second S/T into metastability. Note that until this point the output did
not change. Reverting the direction of Vin causes both, V 1

int and Vout, to rise as well,
due to the positive slope of γ2. This setup is maintained until V 1

int reaches VH,2 causing
the output to reach VDD. Note that increasing Vin beyond this point would cause Vout

to drop to GND as indicated by the downward orange arrow in the figure. To actually
continue the blue line at (Vout = VDD) it is necessary to resolve metastability in stage 1

192



5.6. Cascading Schmitt Triggers

0 0.3 0.6 0.9 1.2 0
0.3

0.6
0.9

1.20

0.3

0.6

0.9

1.2

Vin [V]
Vout [V]

V
1 in

t
[V
]

Figure 5.35: Phase plane representation of the cascade in three dimensions. The single
faces show the characteristic for each single stage and the combined one.

first. This is done by decreasing Vin until VL,1 is reached and then raise it to VDD.
While the combined characteristic still inhibits properties of the single S/Ts it also

shows significant differences. For example, the threshold voltages of stage 1 are preserved
(purple lines in Figure 5.34) while the ones of stage 2 are encoded in the values V1 and V2.
Since V2 − V1 < VH,1 − VL,1 the slope of γ2 increases, which emphasizes once more the
importance of the order in the cascade. Overall, the shown characteristics suggests that
the cascade has a substantially lower probability for metastability than a single S/T.

A three dimensional representation of the behavior is shown in Figure 5.35. It depicts
the simulated (meta-)stable points in the (Vin, V 1

int, Vout)-space. The blue line at the back
represents V 1

int over Vin and thus the (meta-)stable states of the first stage, while the
projection to the left plane (V 1

int over Vout) shows (a rotated image of) the second stage.
The most interesting one is the projection of the curve to the ground plane, i.e., Vout over
Vin, which indicates the (meta-)stable states of the cascade. This curve exactly matches
our prediction from Figure 5.34.

Evaluation

To verify our predictions we run HSPICE simulations using technology (T65), where
we not only drive the cascade into metastability but even force the output to arbitrary
waveforms (in this example a sine wave). The achieved results are shown in Figure 5.36. At
the beginning (first 15 ns) regular operation is shown which clearly reveals the hysteresis.
Note that the first S/T dominates the behavior as a full range transition on V 1

int also
causes Vout to flip.

Afterwards we drive the first (≈ 15 ns) and finally the second S/T (≈ 28 ns) into
metastability by carefully controlling Vin. It then is possible to create a sine wave at the
output. In this phase the non-inverting behavior of the single stages and the amplification
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Figure 5.36: “Arbitrary” waveform derived by operating both S/Ts in metastability. After
the initial normal operation a sine wave is enforced at the output. Note the amplification
in this region, causing a rather small swing on Vin having large effects on Vout. In the
end separate resolution of the single stages can be observed for a linear input.

of Vin to V 1
int and then Vout can be observed very clearly. Once again note that V 1

int and
Vout do not follow Vin but are actually slowed down by the latter, effectively preventing
resolution of metastability. Finally a constant input value is applied which causes the
S/T in stage 2 to resolve to VDD at first. Since stage 1 afterwards also resolves to VDD

the output switches back to GND. This is a very disadvantageous property of the cascade,
which will be discussed in Section 5.6.3. Finally (≈ 73 ns) the input is continuously
increased which eventually forces an additional transition on V 1

int and Vout.

Discussion

So far we only considered equal S/T implementations. In the sequel we thus investigate
how the behavior changes if (1) two non-inverting S/Ts or (2) a mixture of various kinds
is used. For the first case actually the same result is achieved. While this is rather
obvious for the initial values, it seems counter-intuitive for γ2. Nevertheless, in that case
an increasing Vin would cause a decrease in V 1

int which in turn again leads to an increase
of Vout. Of course this statement is only valid for a cascade of even length. For an odd
number the slope of γ2 is negative, which differs from using solely inverting ones.

We already mentioned on various occasions that the order of varying Schmitt Trigger
implementations is important. For example, the threshold voltages VH and VL of the
cascaded system are determined by the first S/T alone, while V1 and V2 are influenced by
both of them. Let VNj denote (VH,j + VL,j)/2, i.e., the mean of the threshold voltages
at stage j. If VN1 = VN2 = VDD/2 the order in the cascade has no impact. In all other
cases V1 and V2 might vary, however, with constant deviation, which evaluates to

V2 − V1 = 1
VDD

(VH,1 − VL,1) (VH,2 − VL,2) .

The value V2 − V1 has ambivalent features: If it is small γ2 is steep and thus hard
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to achieve, however, once in metastability it is easier to create oscillatory behavior
with a lower voltage swing (cycling the orange lines in Figure 5.34), answering partly
questions (Q2) and (Q5).

5.6.3 Resolving Metastability
We have shown previously, that, in order to achieve metastability at the last S/T in the
cascade, all previous ones also have to be metastable. This means that for n stages n
input transitions, in the sense that the trace had to revert its direction, were necessary.
Such a cascade is thus able to store transitions. It has, however, even greater capabilities
than that, being it intended or not. Assume that the S/Ts in the cascade resolve from
end to start. In this case n transitions on the output are only visible if every single S/T
resolves to the value contradicting the state of the succeeding one. In all cases, especially
if the first stage resolves the earliest, only a single transition may be visible.

The cascade thus has multiple (un-)desired properties:

1. Transitions can be consumed, which is especially concerning for asynchronous
circuits and systems.

2. Looking at the output of the cascade makes it impossible to determine if all S/Ts
have resolved.

3. The resolution speed is amplified stage by stage due to a gain > 1. The further the
stage that resolves is to the front, the quicker the resolution out of metastability.

An interesting behavior can be observed when, with both stages in metastability, Vin

is increased to a value between V2 and VH,1, which causes the second stage to flip to
LO (cf. Figure 5.34). A further (monotonic!) increase of Vin (beyond VH,1) will then
cause the first stage, i.e., V 1

int, to switch to LO, which, in turn, causes the second stage
to flip back to HI. In this case we have observed a glitch at Vout that was caused by a
monotonic transition of Vin (however, a non-monotonic Vin was initially required to bring
both S/Ts into the metastable state in the first place).

Figure 5.37 shows further analog simulations of various possible resolution scenarios
for a metastable cascade. In (a) stage 1 and 2 try to resolve to the same value (HI). At
some point V 1

int increased enough to force Vout to change direction and drop rapidly. The
situation can be fundamentally different when the first S/T resolves at a later point in
time, introducing a glitch at the output, which can be observed in (b). Recall that we
already saw this behavior when creating the sine wave shown in Figure 5.36. While a
proper investigation of the static plane can explain these effects it fails for the traces
shown in (c). There stage 2 influences the behavior upstream, most probably due to
coupling capacitances. In the figure one can see that initially the first Schmitt Trigger
resolves towards VDD until VH,2 is reached, causing stage 2 to resolve to GND. This
transition, however, leads to a dip on V 1

int such that stage 1 reverts its direction and
resolves towards GND itself, which, in turn, induces another output transition. In the stick
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Figure 5.37: Analog simulation results for resolving from metastability in the cascade.
We observed an upstream coupling in (c) where the resolution of stage 2 causes stage 1 to
switch from approaching VDD to GND.

analogy introduced earlier, this corresponds to the case where the upper stick falls to one
side and pushes the lower stick thereby to the side, which seems intuitively reasonable.

While these cases definitely represent new types of (often undesired) behavior not
seen with a single stage – thus answering (Q2) positively – one should keep in mind that
it takes an extremely precise control of Vin to navigate into this setup.

5.7 The Mean Time Between Upsets of Schmitt Triggers

In this chapter we already showed that the S/T can become metastable and even
managed to characterize multiple implementations. Nevertheless, we did not succeed to
answer the question how probable it actually is to achieve metastability during normal
operation. In the sequel we are thus presenting first intermediate results towards deriving
a characteristic number, just like the MTBU of a Flip-Flop, also for the Schmitt Trigger.

In Section 5.3 we argued that the S/T is situated in between the Flip-Flop and a
purely combinatorial logic. In contrast to the former, the input cannot be decoupled
and thus always has to be considered (recall the analogy of the stick once placed on a
table and once on the palm). Consequently the S/Ts may experience at arbitrary times
behavioral changes due to input variations, which makes the metastability analysis a lot
harder. In consequence, simple timing information are not sufficient any more, meaning
that the whole input trajectory has to be processed.

To simplify our analysis, we split the task into two questions and try to answer them
separately: (1) How can metastability be entered and (2) how quickly is it resolved?
Unfortunately we were not able to answer these in a quantitative fashion yet, i.e., to
condense them into a single characteristic number. Nevertheless, we already achieved an
accurate description of the single processes, which makes us optimistic that achieving a
representative quantity is possible.
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Figure 5.38: Brockett annulus specifying waveforms in the phase space, in this example
for the input voltage Vin. For each value a region of allowed derivatives (blue area) is
specified, which ensures some minimum dynamics but also limits it from above.

5.7.1 Entering Metastability
To gain a proper estimate of the MTBU it is crucial to determine how often the Schmitt
Trigger actually experiences metastability. We already argued that only very specific
input traces are capable to do that, however, there are still infinitely many possibilities.
To better handle their vast amount we decided to use the Brockett annulus proposed
by Brockett [132] (see Figure 5.38), which represents traces in the phase space. The
advantage using this representation is that important boundary conditions, which have to
be met at all costs, can be easily specified. Examples are the minimum output dynamics,
i.e., to demand a certain slope (prevent stalls) at intermediate values, respectively the
maximum input dynamics. The latter limits the rate the phase plane of the S/T can be
traversed and thus increases the difficulty to reach γ2.

Preventing Metastability

Often an S/T is introduced to convert the possible intermediate voltage VM of a preceding,
metastable binary storage element into a clean HI or LO, as done, for example, by Polzer
and Steininger [48]. We have already shown that for certain waveforms, e.g. ramps, the
S/T is able to filter metastability. Thus limiting the input behavior using a Brockett
annulus can actually be used to prevent metastability altogether.

Recall from our simulations of ramps that monotonicity was only important near
the threshold voltages. In a typical setting this can be easily assured since the (single!)
intermediate output voltage VM of the previous stage is in general near VDD/2. With
thresholds VL < VM < VH sufficiently separated from VM it can be assured, that they
are only crossed when metastability is already resolving, i.e., with a steep trajectory (for
details see [137, 144]). However, care must be taken that it is indeed the S/T that decides
upon the classification of VM . As soon as any other stage (e.g. a decoupling buffer) is in
between the metastability-producing element and the S/T, that element’s (single!) input
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threshold will typically classify VM in an undesired way. More specifically, glitches can
be produced [48], with the S/T having no chance to mitigate these.

Chances of Metastability

In Section 3.7 we argued that at a specific location in a circuit, only a small subset of
all possible analog trajectories can be observed, which makes it possible to model the
expected behavior by a rather limited Brockett annulus. This annulus can, in turn, be
used to check if metastability is possible at all or not. Just consider the one shown in
Figure 5.38. The input is not allowed to stall at intermediate values, i.e., only transitions
among values well outside the hysteresis are possible.

Since γ2 cannot be approached near the threshold, the only possibility left to reach
metastability is to revert Vin before Vout has reached a reasonable value, leading to
oscillations around γ2. This behavior cannot be excluded based on the input annulus
alone, since no information about the maximum output derivative is available. For that
reason we started a proof-of-concept implementation, that, provided with (i) a phase
plane representation of the implementation at hand, (ii) a Brockett annulus describing
the maximum input derivative and (iii) a Brockett annulus that specifies the minimum
output derivative, is able to determine the allowed range of input signals that satisfy the
specified output constraints and, in addition, all achievable output traces.

We will explain the behavior of the algorithm on an example specified by the input
annulus shown in Figure 5.39a and the output annulus in Figure 5.39b. Note that initially
only the outer boundaries of the input- respectively the inner boundaries of the output
annulus are available. While the outer limits of the output annulus are simply derived by
determining the maximum resp. minimal Vout for each output value in the phase plane,
the restrictions for the inner limits of the input annulus are more evolved. Starting in
(Vin, Vout) = (GND, VDD) (top left corner in Figure 5.39c) we are aiming to derive in the
sequel the input restrictions around VH . The reverse case, leading to the area around VL,
can be achieved analogously.

The behavior for Vin < VH is unproblematic since Vout = VDD. Once the threshold is
crossed we demand that the input derivative stays positive to prevent crossing γ2. The
lower bounds are determined by ensuring the minimum rate of change defined by the
output annulus (recall that the output derivative rises in general with distance to γ2).
The worst case switching trajectories achieved in this fashion are shown in Figure 5.39c.
Due to the low demands on Vout at Vout ≈ VDD a steep initial drop can be observed.
With decreasing Vout the lower bound for Vout increases and thus the minimum input
derivative has to be increased. Actually the values we chose in our output annulus turned
out to be rather large, requiring quite some distance of the worst case trajectory from γ2.
At last, i.e, after the peak in the boundary of Vout has been passed, we allow an input
derivative of zero and discontinue the worst case trajectory.

Although these are already very promising results, we are still lacking a description
of how probable it is to derive metastability. For this purpose it would be mandatory to
calculate (i) which share of possible trajectories violate the derived boundary conditions
and (ii) how probable these are. For reasonable results, the user thus has to precisely
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Figure 5.39: Results of our approach that determines the possible input behavior to prevent
metastability in an S/T while fulfilling specific output requirements. Note that the tool is
still under construction and not published yet.

specify the input annulus combined with a statistical expression for (malicious) input
trajectories. Otherwise educated assumptions could help to achieve suitable values.
Nevertheless, we expect the probability for metastability to be heavily overestimated
in this fashion, since violating the boundary condition does not automatically lead to a
metastable state.

5.7.2 Resolving Metastability
The other, very important, part when talking about the rate of metastable upsets, is the
behavior after metastability has been achieved, i.e., how quickly non-perfect metastable
points are resolved (remember that it takes an infinite amount of time to resolve perfect
metastability). Naturally the faster this happens the less likely effects are observed in the
remaining circuitry. In our analysis we already showed that an S/T leaves metastability
following an exponential trace and determined the corresponding time constant τ and the
resolution time tres based on analog simulations. Unfortunately following this trajectory
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Figure 5.40: Resolving metastability of std for Vin = 0.64 V using technology (T65).
The slopes can be very accurately modeled by an exponential approach.

until the digitization threshold is reached is not reasonable, since real waveforms slow
down as they approach their final value (recall the figures of 1/τ in the Vin − Vout plane
presented earlier). We thus asked ourselves how a more physical modeling of this process
can be achieved and what impact this has on the resolution time.

HSPICE simulations (see Figure 5.40) show, as expected, initially an exponential
increase of Vout followed by a plateau and an exponential drop. Note that the latter is in
good agreement with our analyses in Section 4.5. We denote the rising time constant by
τB and the falling one as τE . Note that some metastable states, especially in the middle
of the metastable range, show an over-exponential growth of Vout near the plateau, which
renders a description using two exponentials less accurate. This adds to the already crude
approximation near the plateau, which causes the resolution time to be underestimated.

5.7.3 Determining region boundaries
Although using two exponential waveforms already improves the situation, since in
general only the trajectory out of metastability is considered, the absolute deviations in
the resolution time are expected to be negligible. This becomes especially pronounced
when comparing it to the possible infinite amount of time it takes to leave metastability.
Therefore we will use the exponential fittings in the sequel for determining the value of
Vout when Vout stops increasing. Note that this is equivalent to the Region boundaries
in the phase plane representation of Marino. His calculations lead to straight lines that
encapsulate γ2, while we observed for real world implementations severe variations. In
the following we compare this prediction to data gathered from simulations, whereat we
utilize two approaches:

1. We run analog HSPICE simulations and determine the value of Vout when |Vout| is
maximal.

2. We use τB and τE to determine the voltage value where the single exponentials
have to connect while assuring that the first derivative is continuous.
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Figure 5.41: Resolution region crossing points (Vout = 0) once derived directly from
HSPICE simulations and once predicted based on the fitted τB and τE. Obviously the
latter is not yet a viable alternative.

Let us quickly analyze the second approach in greater detail, whereat we will assume
a resolution towards VDD (the reverse case can be analyzed analogously). The task is
to find Vs ∈ [VM , VDD] where the waveform leaving metastability VB(t) = VM + exp( t

τB
)

and the one approaching VDD, i.e., VE(t) = VDD − exp(− t
τE

), have (a) the same value Vs

and (b) the same derivative. This point has to exist as the slope of the former increases
with time whereat the one of the latter decreases.

We express the properties stated above in mathematical terms by specifying VB(tB) =
VE(tE) = Vs which results in

e
tB
τB + e

− tE
τE = VDD − VM (5.17)

1
τB

· e
tB
τB = 1

τE
· e

− tE
τE (5.18)

Replacing the second term on the left hand side in (5.17) by (5.18) leads to

e
tB
τB = (VDD − VM ) τE

τB
+ 1

−1
= Vs − VM

where we used in the last step the definition of tB. Rewriting this finally yields

Vs = VM + τB

τE + τB
· (VDD − VM ) .

With increasing τB the value of Vs also increases, which sounds reasonable, as it takes
more time to build up a derivative that is matched by VE(.).

Figure 5.41 shows results derived from HSPICE and our calculations. The achieved
accuracy is close to γ2 quite good, however, quickly derails. We suspect that the main
issue is the insufficient approximation near the plateau. A more accurate description of
the observed behavior demands, however, further investigations.

201





CHAPTER 6
Open Problems

Although many results have been presented in this thesis, there are still quite a number of
topics available, where some of our efforts primarily revealed promising paths for future
research. In this chapter we will introduce some of these shortly.

6.1 Analog Circuit Modeling
We have shown in Section 3.7.4, that (i) input and output trajectories can be fitted by
adding-up arbitrary waveforms and that (ii) functions can be found that map input to
output waveform parameters. A tool that automatizes this procedure is currently under
development. Future research will be mainly devoted to evaluate this approach, i.e.,
compare performance and accuracy to HSPICE.

Unfortunately, lots of thrilling questions regarding circuit verification remained
unanswered due to missing functionality of the C2E2 tool. More specifically, we would be
interested in evaluations that determine the trajectories leading to an undesired behavior,
such as:

• What are the possible initial input ranges that cause some (forbidden) output
voltage range at time t?

• Which input slopes/shapes do not lead to a clean output transition before time t?

Consequently one additional research avenue is the improvement of C2E2. One
major enhancement would be to define larger initial uncertainties without experiencing
numerical inaccuracies in the future, which would enable more extensive verifications.

6.2 Predicting the Delay Function
The question how the delay function of the Involution Delay Model (IDM) can be
determined and/or parameterized quickly and accurately has not been answered in a
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Figure 6.1: Multiple approaches to fit the DDM delay function of an optimal Inverter on
a linear (upper) and logarithmic (lower) scale.

satisfying fashion yet. While we primarily focused on calculating the delay function
in Chapter 4, it is also possible to approximate the latter by 1) fitting mathematical
functions or 2) extrapolating existing numerical results. For both possibilities early
results have been derived, which will be shortly presented in the sequel.

6.2.1 Fitting the Delay Function
A straightforward approach is to fit the numerical data to a mathematical function. In
this section we thus investigate how well δ(T ) can be approximated using (i) the delay
functions of Exp- and Hill-channel introduced in Section 4.3.1 and (ii) arbitrary functions
based on educated guessing.

For a systematic analysis we start with an optimal Inverter without real world
parasitics, i.e., n- and pMOS with a big load capacitance of 72 fF. Our initial plan is to
first investigate DDM, which can be fitted according to Bellido, Juan, and Valencia [82]
to an exponential, and then transfer the insights to the IDM. Our simulations, which
are depicted in Figure 6.1, are not able to confirm the exponential approximation for
DDM in the first place, which is in agreement with the results presented in Section 4.5.
While δ(T ) ≈ δ∞ fits very well, increasing deviations for T → 0 can be observed. Using
a polynomial of degree two in the exponent improves the results significantly.

Exp- and Hill-channels lead to even worse results. This is a consequence of the
fact that all parameters are shared between δ↑ and δ↓. Approximating one leads to an
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Figure 6.2: Multiple approaches to fit the IDM delay function of a place & routed Inverter
using technology (T15) on a linear (upper) and logarithmic (lower) scale. The exponentials
on the left side are only fit to one delay function since δ↑ and δ↓ differ solely marginally.

increasing deviation for the other and vice versa, as is shown in Figure 6.1. By qualitative
observation we, furthermore, recognized a similarity of the delay function to the urrent
ID(VGS , VDS) (cf. Section 2.5). Thus we also investigate if the delay can be approximated
by the expression which governs the behavior in (OHM) in the Basic Model. In detail
δ = k · (A − T/B) · T was used, which led to good agreement.

Switching to an IDM characterization on more realistic circuit structures, which
contain also extracted parasitics, altered the results dramatically (see Figure 6.2): The
delay functions in this case behave more like exponentials, which simplifies the fitting.
We suspect that this is (partly) a consequence of the large capacitance used earlier.
Again the Exp- and Hill-channel can only be optimized for one delay function, rendering
the approximation for the other quite inaccurate. The ID fitting shows initially good
agreement but quickly falls off for larger T .

Although these simulations reveal that exponentials, with a polynomial of degree one
or two in the exponent, are quite accurate descriptions, we quickly realized that this
characterization is not governed by the underlying physical behavior. Consequently we
are not able to predict if other or future circuits are going to behave in the same manner.
As there is currently no better alternative, Exp- and Hill-channels are still used in the
InvTool to approximate the delay functions, despite their rather weak fittings.
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Figure 6.3: T and δ of an Inverter using technology (T65) as functions of the input
pulse-width Δi. The combined delay function δ(T ) looks similar to the blue curve whereat
the lower part is stretched along the x-axis.

6.2.2 Formal Definition
Since simple fitting of δ(T ) leads to quite untargeted and inaccurate results, we conjecture
that it might be beneficial to analyze and describe single parameters in the characterization
process and then combine their descriptions. One possibility (out of many) is to determine
the output pulse-width (Δo) and the delay of the first output transition (δ0) based on
the input pulse-width Δi, i.e., to use the functions

f1 : Δi → Δo and f2 : Δi → δ0

In this case, T and δ are given by

T = Δi − f2(Δi) , δ = f2(Δi) + f1(Δi) − Δi = f1(Δi) − T.

Unfortunately the same problems remain: How can f1 and f2 be determined? Fig-
ure 6.3 shows simulation results for T (Δi) and δ(Δi). While the former is changing
linearly and the latter is constant for Δi 0, both experience severe bendings and a
steep decrease during cancellation. Consequently, the combined function δ(T ) is equal to
δ(Δi) for Δi 0 while for Δi → Δi

1 it is stretched along the x-axis. This is in accordance
to the results presented in Chapter 4.

For an analytic expression we tried to fit T and δ in the most simplistic fashion, i.e.,
using exponentials, leading to

T (Δi) = k(Δi − Δi
0) · 1 − e−(Δi−Δi

1)/τ

δ(Δi) = δ∞ 1 − e−(Δi−Δi
1)/τ

Unfortunately, it is not possible to combine these easily, only sophisticated computer
programs are able to calculate δ(T ). The corresponding solution is, however, far too
complicated to be printed here and thus also unsuitable for actual computations.
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Recall that in Section 4.4 we identified inaccuracies between characterization and
actual simulation and proposed a modification that, at least, predicts the output pulse-
width correctly. To achieve this we argued that T has to be calculated in reference to a
fixed value δ0 = δ∞, i.e., T = Δi − δ∞. Note that in this case there is an implicit solution,
namely,

δ(Δi) =δ∞ · 1 − e−(T +δ∞−Δi
1)/τ ,

which is comparable to the results achieved for the Exp-channel.

6.2.3 Extrapolating the Delay Function
During our research we noticed, that all IDM delay functions look quite similar. After a
steep increase for T near −δmin the delay starts to settle to the final value δ∞. Therefore,
the question arose, if it is possible to estimate the delay function of an arbitrary gate
based on a single, well characterized, numerical set of δ↑ and δ↓. If done in a simple yet
accurate fashion, this would yield a big improvement in characterization speed.

Unfortunately, simply scaling in the value domain combined with an appropriate time
shift does not suffice. Our current approach, thus, utilizes three points that the new
delay function has to cross: δmin, δ∞ and some value in between. For the latter we are
currently utilizing δ(0) which might, however, turn out to be a bad choice, since δmin is
in general very small. This implies that δ(0) − δmin ≈ 0 and thus being heavily affected
by numerical inaccuracies.

The task currently at hand is to properly determine δmin, δ(0) and δ∞. The easiest
one to get is probably δ∞, as it is also required in other delay estimation approaches
(cf. Section 4.1), and can thus be assumed to be available. The others are, however,
much harder to determine. For reasonable results it is mandatory to know the changes
introduced by variations of some give parameter, such as input slope, output load or
inner structure, which we will shortly investigate in the sequel.

Parameter Influence

Every single parameter has an impact on the resulting involution delay function: (i) Shift-
ing V in∗

th causes a deviation of V out∗
th and δmin and thus most surely also of δ∞ and

δ(0). (ii) δmin is heavily influenced by the input slope and the coupling capacitances (cf.
Section 4.4.3). (iii) δ∞ naturally depends on the thresholds and the output slope. A
crucial ingredient is also the internal structure of a gate, more specifically the relative
driving strengths of the transistors. For technology (T65) multiple Inverter implemen-
tations with a varying number of transistors in parallel1 are available, which all have
slightly different delay functions. We even were able to verify a significant dependence of
V in∗

th = V out∗
th = Vth on the transistor width, as is shown in Figure 6.4. Unfortunately, a

detailed analysis of all parameters and effects is still lacking.
1This leads to higher currents and an increased switching speed.
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Prediction using Logical Effort

Predicting the relative variations between single gates is one of the key targets of Logical
Effort (LE) developed by Sutherland, Sproull, and Harris [109]. In a nutshell LE provides
a simple and fast method to quickly develop circuits by proper fragmentation and
transistor scaling. It has, for example, led to the insight that amplifiers work best if they
are built in a multi-stage approach, where the amplification increases exponentially.

Over the years LE has been extended, e.g. by Lasbouygues et al. [77], who were
able to capture couplings among wires, and Kabbani, Al-Khalili, and Al-Khalili [85],
who considered in-series connected transistors, internodal capacitances and the effect of
the input slope to derive more accurate results. Rahman, Tennakoon, and Sechen [49]
added a distinction between rising and falling transition while Morgenshtein et al. [57]
considered the RC interconnects to evaluate the optimal delay and minimize the design.
LE has even been used in various delay estimations for example by Wang and Markovic
[65] who implemented a slope correction, or by Consoli, Giustolisi, and Palumbo [50]
who predicted δ∞ for arbitrary gates.

For its estimations LE analyzes the load and the internal structure of a gate to predict
its behavior compared to an Inverter. The overall delay is estimated as d · τ , where τ
is the delay unit and represents the delay of an Inverter driving another Inverter of the
same size. The factor d is calculated as

d = gh + p

where g represents the logical effort, h the electrical effort and p the parasitic delay.
The logical effort g represents a relation of input transistor sizes that are required to

achieve the same current strength as the Inverter. Assuming that (i) nMOS transistors
conduct twice the amount of pMOS and (ii) transistors in series only conduct half the
amount of a single transistor, the sizings shown in Figure 6.5 are achieved. For the NOR
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Figure 6.5: Transistor sizing of various gates to have the same conductivity as the Inverter.
Taken from [109].

gate a logical effort of g = 4
3 can be calculated while the NAND gate is slightly worse,

with g = 5
3 .

The parasitic delay p results from the internal structure of the gate itself. For n-input
NOR respectively NAND gates it is not calculated but, instead, a value of n · pinv is
assumed [109]. The electrical effort, finally, relates the load capacitance at the output to
the input one as

h = Cout

Cin

To compare this theoretical predictions to our circuits we run simulations for multiple
values of h and determine g and p for a NOR gate using technology (T65). While the
delay indeed increased linearly, as predicted, g and p deviate (see Table 6.1). Please note
that in our simulations the delay units slightly differed, i.e., τ↑ = 4.35 ps and τ↓ = 4.95 ps,
which is a result of the not perfectly matched n- and pMOS.

For future research, it remains to investigate whether the delay function parameters
scale according to the predictions of LE. For this purpose extensive analog simulations
are required to assure accuracy for all possible variations.

6.3 Multi-Input Delay Channels
The IDM represents circuits internally as zero time boolean gates connected by delay
channels. Although it is possible to depict any desired circuit in this fashion, elaborate
phenomena like the Charlie Effect (cf. Section 3.4) cannot be covered. The reason is
simple: Since delay channels only have a single in- and output no interactions among
multiple inputs can be modeled. To also depict these phenomena multi-input delay
channels are necessary.

It is a well known fact that gates with multiple transistors in series / in parallel show
a more elaborate behavior. Nevertheless, previous research mainly focused on collapsing
complex gates to an equivalent Inverter [46, 92, 107, 122]. Although such approaches are
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gate input g p

Inverter up 1 2.78

down 1 2.28

NOR A, up 1.39 2.04 pinv

A, down 2.38 2.57 pinv

B, up 3.25 1.15 pinv

B, down 3.60 1.71 pinv

Table 6.1: Extracted LE parameters base on analog simulations using technology (T65).
The values differ from the predictions stated in [109].

capable to estimate the static delay δ∞, they are not well suited to investigate interference
among inputs, simply because the gate is, again, reduced to a single in- and output.
Thus, we have to follow a different route for future research. The results derived for the
CIDM are, in this regard, very encouraging, as we managed to include the gate into the
CIDM channel.

A big challenge with multi-input gates are the internal nodes, which can become
floating, i.e., neither connected directly to GND nor VDD. Thus their value at the
beginning of a transition is unknown and may vary considerably, which has a big impact
on the delay (as was also mentioned by Shoji [134]). This is especially important during
characterization, where it becomes necessary to pin the initial voltage of these internal
nodes to an appropriate value.

Preliminary results revealed already significant differences. In contrast to δ↑ and δ↓ of
an Inverter, a two input gate is characterized by eight delay functions, which all represent
one specific input state transition (single input switch only; see Figure 6.6). For a faithful
model these have to be carefully interconnected such that proper cancellation is assured.
In addition the gathered delay functions have (partially) an extraordinary shape, e.g.,
δ(T ) < 0 for T 0. This makes the task even more challenging.
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Figure 6.6: Interconnections of delay functions of Multi Input gates.
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Figure 6.7: Phase space representation of pulses applied to a Buffer using technol-
ogy (T65). Shown are up-pulse (blue), down-pulses (green) and a single trace consisting
of four transitions (red), which was used to evaluate the approach. By picking reasonable
switching points the latter can be approximated closely.

6.4 Second Order Extension

A possible extension of single history delay models is to increase the order of the approach.
This can be achieved in various fashions, e.g., by considering the last two output transitions
instead of just the last one. In the analog channel model of the IDM f↑ and f↑ are
switched instantaneously, which is far from physical reality. By considering the last two
output transitions it would be possible to continue Vout and Vout smoothly, which would
solve, besides others, the inaccuracy issues discussed in Section 4.4.1. In the sequel we
shortly sketch how such a model could be realized.

6.4.1 Data Representation

To develop an approach that assures a continuation of Vout and Vout, it is beneficial to
represent analog trajectories in the phase space, since switching between rising and falling
waveforms in this plane satisfies both demanded properties. HSPICE simulation results
for single pulses applied to a Buffer are shown in Figure 6.7. Note that all possible traces
lie within a region that is limited by the Full-Range Switching Waveforms (FRSWs) as
those experience the highest respectively lowest slopes. Despite this rather constrained
space, infinitely many pulses are possible: In fact every coordinate is hit by a unique up-
and down-pulse, which implies, that switching from a rising to a falling transition and
reverse is possible at every location in the phase space respectively point in time.

Obviously the future trajectory depends on when resp. where the present trajectory
is left. This is a fundamental difference to the first order model, which just utilizes the
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outermost full-range trajectories and switches between these instantaneously. As already
explained this preserves the output voltage but leads to a jump in the first derivative.

The main challenge for deriving suitable analog waveforms from the phase space is
the determination of proper switchover points, i.e., when the present trajectory is left
and the one in the opposite direction is followed. Utilizing V in

th crossing times delivered
unsatisfying results. To improve the estimations we even considered the slope of the
input, however, with negligible success. Careful observation of Figure 6.7 finally revealed,
that the output starts to deviate from the FRSW very early, which suggest to utilize a
two threshold model, i.e., VLO = VHI . We are currently investigating this possibility.

To evaluate the achievable accuracy of an approach based on single pulses, we simulate
a random trace consisting of multiple transitions and plot it in the phase space (see red
curve in Figure 6.7). It turns out, that picking appropriate switching points, which we
determined in this case by hand, the analog waveform can be approximated very closely.
Larger deviations are only observed for traces that oscillate around intermediate values.
An example is the small loop shown in Figure 6.7. For a good fit in the phase space, we
actually have to follow the down-pulse further before switching to the respective up-pulse,
although the desired analog value already deviates significantly. This, however, results in
an overestimation of the slope and thus a shift in the time domain, which reveals one
major shortcoming of this representation: time is used implicitly, which makes it hard to
properly predict the effect of inaccuracies.

6.4.2 Analytic Calculation
While first order involution models are associated to an RC network (equivalent to an
Exp-channel) the second order one corresponds to an RCRC network, which can also be
evaluated analytically. In particular the general second order differential equation

f (t) = A · f (t) + B · f(t) + C (6.1)

can be used to describe the behavior of the system. Solving for f(t) leads to

f(t) = α1 · e
− t

τ1 + α2 · e
− t

τ2 + α3 . (6.2)

Note that such a representation is versatile, as we have already shown in Section 3.7.4,
where rising and falling switching waveforms where utilized to model output pulses.

For the second order model we are searching for a method to continue the analog
output waveform from a given initial condition (Vout, Vout) = (v, k). Using f(0) = v and
f (0) = k in (6.2) leads to

f(t) = −τ1(v + τ2k − α3)
τ2 − τ1

· e
− t

τ1 + τ2(v + τ1k − α3)
τ2 − τ1

· e
− t

τ2 + α3.

Note that α3 determines the final value of the waveform and thus the shape, as is shown
in Figure 6.8.

The results we achieved so far are very promising, however, not yet fully satisfactory.
One open challenge is to determine τ1 respectively τ2 such that the analog waveform
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Figure 6.8: Continuation from an initial point (v, k) with v ≈ 0.4 and k > 0 (orange
line) depending on the final value α3. In one case the trajectory keeps its current direction,
while in the other a significant turning can be observed.

is closely approximated. Without loss of generality we assume τ1 > τ2 in the following.
With decreasing τ2 on the one hand steeper transitions are derived, but on the other hand
also less voltage gain when reverting the direction. With further dropping τ2 eventually
a first order Exp-channel is achieved.

Having fixed the values τ1 and τ2, and thus the time until Vout = 0 is achieved, it
is still not clear how to pick an appropriate switching time. For future research we are
therefore planning to check possible approximations or add additional parameters that
allow a proper parametrization and reasonable estimations for all parameters.

6.4.3 Condensing

The analog output value v of a gate at time t0 depends on the complete input trajectory
for t < t0. Since it is neither possible nor feasible to store and consider all of it during
delay estimation it is mandatory to apply some form of condensing. In the first order
model this was achieved by deriving, based on the previous output and the current input
transition time, the succeeding V out

th crossing, which represents the state of the channel.
For the second order model various approaches are possible. Based on HSPICE

simulations we investigate m-to-n input condensing, i.e., to represent the current and
future output behavior by the response to n input transition, based on the arrival times
of the last m input transitions. All examined variation, i.e., 2-to-1, 3-to-1 and 3-to-2,
delivered reasonable results. We did, however, not yet succeed in deriving suitable
mapping functions.
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6. Open Problems

6.5 Non-determinism
Future work will also be devoted to increase the level of sustainable non-determinism by
relaxing the introduced bounds. Recall that the stringent conditions we achieved in our
considerations are required to assure faithfulness at all costs. Nevertheless, those bounds
are derived for T ∈ [−δmin, 0] so it might be possible to relax them in all other regions.

Finally we are aiming to include the η-involution model in a state-of-the-art formal
verification tool. Optimally, this allows to verify the proper operation for the projected
circuit lifetime in one simulation run.

6.6 Metastability Modeling
In Section 5.7 we described first steps towards calculating a Mean Time Between Upsets
for a Schmitt Trigger. The main challenge remaining is a concrete implementation in
a state of the art verification framework, comparably to [69], where the behavior of an
Arbiter was verified in almost the same fashion. Our primary goal is to transform an
input annulus into a suitable output one, and vice versa, using verified methods that
guarantee correctness. Hopefully, this even allows us to derive statements about the
probabilities for respectively the absence of metastability.

A very interesting question we were not able to address yet is how a Schmitt Trigger
(S/T) can be made more resilient against metastable upsets. To identify the crucial
circuit components we are planning to perform small signal analysis (cf. Section 2.5.4).
The corresponding model for the std implementation is shown in Figure 6.9. Identifying
the bottlenecks would allow us to increase the electric current and, in consequence, to
improve the resolution speed. Since we argued that higher Vout also results in less traces
to reach γ2, this would decrease simultaneously the chances for metastability altogether.

In addition the small signal representation might be used to calculate characteristic
values that we currently extract from extensive analog simulations (cf. Section 5.4). For
vin = 0, which significantly simplified the model, we are optimistic to derive results for
Iout and consequently for the resolution time constant τ in deep metastability.
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6.6. Metastability Modeling
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Figure 6.9: Small signal representation of the std S/T implementation. Such a model
may become useful for future research such as calculating the resolution constant or
optimizing an implementation.
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CHAPTER 7
Conclusion

In this thesis, we showed that finding efficient and accurate abstractions for digital
circuits, which is a mandatory task in modern circuit design, can be properly guided by
investigating the physical processes governing the behavior in the analog domain. Since
the latter is already very well understood, the main challenge nowadays is to identify
the crucial model parameters that are required to faithfully capture the desired circuit
properties. As our research revealed, no “silver bullet” that would fit all tasks can be
provided. Instead, each case has to be evaluated separately.

In our analyses, we first focused on describing trajectories in the analog domain.
Based on simplified transistor models, the behavior of standard gates was approximated
and verified by simulations. Although the gathered results were quite accurate, the
achieved evaluation time improvements were not significant enough to enable an analysis
of large circuits in reasonable time. We, therefore, further abstracted the real trajectories
by properly combining unique rising and falling full-range switching waveforms, whereat a
simple addition turned out to be sufficient to model pulses. To speed up characterization,
we investigated alternative approaches for finding suitable switching waveforms: Since
calculations turned out to be infeasible, we resorted to fitting mathematical functions to
HSPICE simulations. Although our results are very promising, an implementation and
evaluation of a corresponding analog simulation tool (based on few distinct parameters
that are propagated through a circuit), still needs to be done.

Regarding digital abstractions, we investigated the Involution Delay Model (IDM),
whose purpose is to predict the retardations of a signal as it propagates through a circuit.
A thorough analysis of the characterization process allowed us to reveal and/or explain
specific (un)favorable properties of the existing model, e.g., the stringent conditions on
the discretization threshold voltages, used to digitize analog waveforms, or the causes
for pure delay. Based on these insight, we then proposed extensions and generalizations
that improve the power and applicability of the IDM. More specifically, we succeeded to
calculate the delay functions based on our simplified transistor models, which is a first
step towards a quick and easy characterization. Furthermore, the development of the
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7. Conclusion

InvTool, which runs delay simulations by utilizing existing tool infrastructure, alleviated
the evaluation of an actual circuit. We used this tool to show the capabilities of the IDM
in comparison to state-of-the-art delay estimation methods, whereat our simulations
confirmed faithful and accurate predictions also for more elaborate gates. In addition,
we were able to prove that non-deterministic delays and even acausal delay channels
can be added without damaging the faithfulness property. While the former is, in our
opinion, interesting for formal verification, the latter allows to relax the limitations on
the threshold voltages, such that circuit analyses are considerably simplified.

Finally we turned our attention towards evaluation the metastable behavior of the
Schmitt Trigger in detail. We provided various novel, simple and accurate characterization
methods based on HSPICE simulations and collected them in a tool called MEAT. It
allows a completely automatic evaluation and is thus a big step towards analyzing and
comparing Schmitt Trigger circuits. The application to three modern implementations
revealed surprising differences among each other and to theoretical predictions. We
further showed, by simulation, how a Schmitt Trigger can be driven into metastability.
Although essentially arbitrary trajectories are possible at the output, very precise analog
input control is required for this purpose. Consequently, the chances of observing a
metastable Schmitt Trigger in a real application are rather low. Following the example of
synchronizers, we also investigated the effects of cascading two Schmitt Triggers, which
decreased the chances for metastability but also revealed several unfavorable properties.
Finally we introduced, for the first time, a promising path to deriving a characteristic
number that quantifies the susceptibility of a Schmitt Trigger towards metastability. As
it requires to also take the input waveform into account, this is a much more challenging
task compared to, for example, the Latch.

Although many different aspects have been discussed in this thesis, there is still a
lot to be done in the future. One of the most pressing issues is the development of a
proper digital delay model extension for multi-input gates, which are currently covered
only insufficiently. The main reason is input interference, which is impossible to describe
using the single input-single output channels employed in the Involution Delay Model at
the moment. Even a further increase in modeling accuracy, e.g., by basing the output
predictions on multiple preceding transitions, is imaginable. For the Schmitt Trigger, we
conjecture that some of the characteristic values could be derived analytically, which
would render expensive analog simulations unnecessary.
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Glossary

(OHM)
Operation region of the transistor where the output current depends linearly on
the applied voltage.

(SAT)
Operation region of the transistor where the output current changes only mildly
(may differ significantly for newer technologies).

(ST)
Operation region of the transistor where hardly any current is conducted, i.e., the
sub-threshold regime.

Basic Model
Transistor model based on very basic equations designed for the earliest transistors.

C2E2
Compare Execute Check Engine. A simulation and verification suite using discrep-
ancy functions. For details see https://publish.illinois.edu/c2e2-tool.

Elaborate Model
More elaborate transistor model considering several short channel effects.

Genus
Synthesis tool developed by Cadence. For this thesis version 19.11 has been used.

HSPICE
Analog simulation suite for electronic circuits and systems developed by Synopsys.
For this thesis various versions have been used over time.

Innovus
Place & route tool developed by Cadence. For this thesis various versions have
been used over time.
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Glossary

InvTool
A tool written to simulate a circuit in the analog and digital domain (using the
IDM approach) and to evaluate the achieved results. Available open source at
https://github.com/oehlinscher/InvolutionTool.

MACS
MAtlab Circuit Simulations: A tool written in Matlab that allows circuit simulations
and export to verfication tools. Available open source under https://github.
com/jmaier0/macs.

MATLAB
Mathematical framework program developed by MathWorks that we used for various
calculations and simulations in version R2016b.

MEAT
MEtastability Analysis Tool: A tool written to characterize the metastable region
of an S/T. Available open source at https://github.com/jmaier0/meat.

ModelSim
Industrial digital simulation suite for Hardware Description Languages by Mentor.
For this thesis version 10.5c has been used.

Spectre
Analog simulation suite for electronic circuits and systems developed by Cadence.
For this thesis version 15.1.0.627.isr12 has been used.

Uniform Model
Uniform transistor model that describes the transistor behavior with a single
equation.

VHDL
Very High Speed Integrated Circuit Hardware Description Language: A program-
ming language used to develop hardware.
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Acronyms

nMOS
n-channel Metal Oxide Semiconductor Transistor

pMOS
p-channel Metal Oxide Semiconductor Transistor

CB
Conduction Band

CIDM
Composable Involution Delay Model

CMOS
Complementary Metal Oxide Semiconductor Technology

DDM
Degradation Delay Model

FET
Field Effect Transistor

FRSW
Full-Range Switching Waveform

IC
Integrated Circuit

IDM
Involution Delay Model

LE
Logical Effort
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Acronyms

MIS
Multi Input Switching

MIS-FET
Metal Insulator Semiconductor-Field Effect Transistor

MOS-FET
Metal Oxide Semiconductor-Field Effect Transistor

MTBU
Mean Time Between Upsets

ODE
Ordinary Differential Equation

S/T
Schmitt Trigger

SCE
Short Channel Effect

SCR
Space Charge Region

SIS
Single Input Switching

TCT
Threshold Crossing Times

VB
Valence Band

WST
Waveform Switching Times
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