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Abstract

With all the technological advances and research in sports tracking and human movement
analysis in climbing due to the increasing popularity of the sport, no evidence of the use
of an automated scoring system for climbing competitions is found in literature. The
lack thereof motivated the evaluation of state of the art technology regarding its fitness
for such task and its practical viability. Therefore, in this thesis a framework for an
automated scoring system for climbing competitions with a focus on lead climbing is built.
A novel one-camera approach is taken and a low-cost system is proposed where a single
perspective from behind the climber is used to provide video data. The system utilizes the
video data from the camera in conjunction with object tracking, color masking and image
processing techniques in Python to derive scores post-competition. With YOLOv3, state
of the art computer vision technology is used for climber detection and tracking, while the
climbing holds are manually marked and further delineated with HSV color masks in a
simple user interface. The declaration of holds as "reached" utilizes difference calculation
with the structural similarity (SSIM) index and thresholds it against empirically derived
values. Two video resolutions, 4k and 1080p, are used for building and testing the
system. The results from the testing are manually reviewed and provide insights for the
system integrity (the system not failing) with mean integrity values for the tested video
resolutions of 82.6% and 76.6% respectively. The lower performance values (correctly
declared holds) of 48.7% and 40.4% respectively show potential for improvement. The
workflow established in this thesis yields a usable scoring system for post-competition
reviews and serves as a proof of concept for possible future developments in regards of
automated scoring systems for climbing competitions.
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Kurzfassung

Trotz all des technologischen Fortschritts und der Forschung im Bereich des Sporttracking
und der Analyse menschlicher Bewegungsvorgänge beim Klettern, die mit der wachsenden
Beliebtheit des Sports einhergehen, wurden keine Beweise für die Nutzung eines auto-
matisierten Auswertungssystems bei Kletterwettbewerben in der Fachliteratur gefunden.
Das Fehlen eines solchen Systems motivierte die Evaluierung moderner Technologien, um
die Eigung und die Praktikabilität dieser für solch eine Aufgabe zu ermitteln. Daher wird
in dieser Thesis ein Framework für ein automatisiertes Auswertungssystem für Kletter-
wettbewerbe aufgebaut. Ein neuartiger ein-Kamera Ansatz wird gewählt und ein low-cost
System vorgeschlagen, bei welchem eine einzige Kameraperspektive, die den Kletterer
von hinten zeigt, als Datenquelle verwendet wird. Das System nutzt die Videodaten
in Verknüpfung mit Objektverfolgungs-, Farbmaskierungs- und Bildverarbeitungstech-
nologien in Python, um die Punktzahl nach dem Bewerb zu ermitteln. Mit YOLOv3
wird eine hochmoderne Computer-Vision Technologie verwendet, um den Kletterer zu
erkennen und zu verfolgen. Die Klettergriffe werden von Hand markiert und mit HSV
Farbmaskierung in einem simplen User-Interface weiter von der Wand abgegrenzt. Die
Deklarierung der Griffe als „erreicht“ erfolgt anhand von Differenzenberechnung mit dem
Structural Similarity (SSIM) Index, durch das Vergleichen von diesem mit empirisch
bestimmten Grenzwerten. 1080p und 4k Videos werden verwendet um das Auswertungs-
system aufzubauen und zu testen. Die Ergebnisse werden manuell überprüft und geben
Aufschluss über die Integrity (ein nicht Versagen des Systems) mit mittleren Integrity
Werten von jeweils 82.6% und 76.6% für die beiden getesten Auflösungen. Die geringere
Performance (korrekt als „erreicht“ erkannte Klettergriffe) von jeweils 48.7% und 40.4%
zeigt Potential für Verbesserungen. Der Workflow, der in dieser Thesis etabliert wurde,
liefert ein Auswertungssystem, welches für Überprüfungen nach einem Wettbewerb her-
angezogen werden kann und als Proof-of-Concept für mögliche zukünfitge Entwicklungen
im Bezug auf automatisierte Auswertungssysteme bei Kletterwettbewerben dient.
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Chapter 1

Introduction

1.1 Motivation

As sports climbing in general has become increasingly popular over the last decade
(commercial climbing industry growth rates of 6.9% in 2016, 10% in 2017, and 11.8% in
2018; Olhorst, 2019), the scientific interest in this activity is also thriving. Subjects such
as human motion measurement and analysis, performance and motivation enhancement,
psychological aspects of climbing or activity tracking are being researched intensively
(e.g., Aladdin and Kry, 2012; Dovgalecs et al., 2014; Kosmalla et al., 2016; Ebert et al.,
2018 Torino et al., 2020; Reveret et al., 2020; Iguma et al., 2020; Efstratiou, 2021). While
few of the researchers focus solely on the tracking and competition scoring aspects, most
of the publications implement methods of detection or tracking of the climber and/or
the holds.

The whole outcome of a climbing competition is primarily dependent on the score the
athlete gains while climbing. While trained personnel is tasked with the judging whether
a hold is reached or not, an automated scoring system could assist them. The current
process of scoring in climbing competitions is described by the International Federation
of Sports Climbing (IFSC; IFSC, 2021). At least 2 people, a national judge and a time
keeper, record the climbing time and the achieved score for each competitor. While
the criteria for counting holds as reached or gripped are described in depth, it is not
mentioned, whether the scores are applied manually, or if the IFSC is already using an
automated system. This leads to the assumption, that the introduction of an automated
scoring system would benefit climbing competitions greatly.

1.2 Aim

This thesis aims to investigate the viability of a one-camera low-cost system for automatic
scoring in climbing competitions with a focus on lead climbing. Throughout the process
of building the such a system, detection technologies are evaluated if they fit the task
and if they are mature enough to work with only a single camera perspective to produce
useful results. Furthermore, processing times and system performance are investigated,
to check if a near real-time scoring system is viable. The final goal is to build a system,
that takes a video facing the back-view of the climber and enables a potential user to
track the progress of the climber built on the following points:

• train and use automatic computer vision detection methods
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1.3. STATE OF THE ART

• build a rudimentary graphical user interface (GUI) to increase the control over the
processes

• automatically detect whether a hold is reached/gripped or not using primarily the
overlap between the climber’s hand and the hold

• low-cost system with only one camera

• establish ground truth for system performance and integrity evaluation

This makes it possible to investigate the proposed research questions. Additionally, an
important goal is to evaluate existing technologies and projects in the scientific vicinity
to realize a proof of concept, that can serve as a basis for possible future developments.

1.3 State of the art

With Strickler et al. (1994), the only system listing scoring as one of its main purposes
was found in a United States patent document, dating as far back as 1994. The proposed
system uses buttons mounted underneath the holds to register the climbers progress.
Since this is only a patent document, no statements about the usability, performance or
applicability can be made.

Some systems use wearable sensors or devices, such as inertial measurement units (IMU)
(e.g. Dovgalecs et al., 2014) and electromyography (EMG) sensors (Kalyanaraman et al.,
2015) to track the climber’s movement directly. Others measure the forces inflicted onto
the holds with e.g force torque (Aladdin and Kry, 2012) or capacitive sensors (Parsons
et al., 2013) to derive climber motion data. Another way of detecting and tracking a
climber are optical systems. Most prominently used are RGB-D cameras such as the
microsoft kinect system (e.g., Wiehr et al., 2016; Pandurevic et al., 2019). Intel LiDAR
depth cameras (time of flight system) (Efstratiou, 2021) or drones (Reveret et al., 2020)
are used in some cases.

Additionally, some papers propose combined solutions using wall- or climber-mounted
sensors in conjunction with optical systems (e.g., IROZHLAS, 2019; Cordier et al., 1994;
Tiator et al., 2018). One other system uses simple RGB cameras such as the proposed
solution in this thesis, but uses seven cameras with additional markers on the participants
and a climbing hold force measurement system (Iguma et al., 2020). In Richter et al.
(2020), an overview of different technologies used for climbing motion analysis or tracking
was found. All these different methods could potentially be used to track a climber’s
progress along a predefined route, but none of these systems uses only a single RGB
camera as this thesis proposes.

The limited capabilities of a single RGB camera leave only a few methods for tracking
and detecting the climber. The proposed solution is utilizing YOLOv3 for the detection
task in this thesis. With the real time detection capabilities (Redmon et al., 2016b), the
algorithm lends itself for the task of detection in sports applications.

In Thulasya Naik et al. (2021) YOLOv3 is used to detect soccer players and balls
successfully with high precision with the same Microsoft COCO (Common objects in
Context) dataset pre-trained weights for person detection (Lin et al., 2014) proposed
in this thesis (section [2.2.2.2]). Even the previous version of the algorithm, YOLOv2,
has seen successful use in scientific studies regarding detection and tracking in sports
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(S. Zhang et al., 2019) to build an intelligent tracking system for curling. Additionally,
YOLOv4, the newest version of the algorithm, has also already been utilized use as a basis
for tracking and detecting athletes (Y. Zhang et al., 2020) with DeepSort (Wojke et al.,
2018). YOLOv4 shows very good performance and is described as the technical-grade
object detection algorithm taking over as "[...]Best object detection algorithm[...]"[Y.
Zhang et al., 2020] after YOLOv3.

3



Chapter 2

Data and Software

2.1 Data Acquisition

2.1.1 Acquisition Site

The photos and videos that were used throughout this thesis were taken at the Naturfre-
unde Wien Kletterhallen GmbH climbing facility at Erzherzog Karl Straße 108, 1220
Wien. It is an indoor climbing facility with 2300m2 of rope climbing area with wall heights
up to 16m. The best suited climbing routes, in terms of good lighting, reasonable contrast
between hold and wall colors and enough space to capture the ascent, were selected for
filming climbing processes (Figure 2.1). Aside from the aforementioned factors the walls
and routes were chosen according to the volunteers preferences. The resulting photos
and videos were then used for training detection algorithms and testing the automatic
scoring system.

(a) Routes for the Videos 1 to 6, 9 and 10.
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2.1. DATA ACQUISITION

(b) Routes for the Videos 9, 8 and 11 to 14.

Figure 2.1 The climbing walls and routes from the Kletterhalle Wien recorded in the
last data acquisition session and used during testing of the automated scoring system.

2.1.2 Equipment

All videos were captured with the camera set up on a tripod to minimize movement
during the recordings (Figure2.2). The setup was leveled with a circular level before the
the vertical camera angle was adjusted for the desired view.

For the data acquisition two different cameras were used during three sessions at the
Kletterhalle Wien. The Olympus OM-D E-M5 Mark II (Table 2.1) was used with a
12-100mm lens (Figure 2.3) during the first and second data acquisition sessions at the
climbing facility. This E-M5 Mark II camera features a 4/3 Live MOS Sensor with 16.1
mega pixels and a Supersonic Wave Filter, which is an image sensor dust reduction
system, that removes dust from a protective glass plate in front of the sensor with
supersonic vibrations (Olympus, 2021a). This could prove advantageous in a chalk dust
rich area such as a climbing facility.

The used ED 12-100mm F4 IS PRO lens (Table 2.1) features a focal length from 12-
100mm, which is equivalent to 24-200mm with a 35mm movie film gauge (Olympus,
2021c). The whole zoom range was used to accommodate the different wall-to-camera
distances and take close-up pictures of the climbers and holds. The aperture was set to
f/5.6. The photos were taken in the highest possible resolution of 4608x3456 pixels. The
videos were taken in the highest possible resolution setting, 1920x1080 pixels (1080p),
and 60 frames per second. The resulting videos and photos, were used for the initial
testing of detection training and data processing.

5
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For the third data acquisition session the OM-D E-M1 Mark III (Table 2.1) was used in
conjunction with a 12-40mm lens (Figure2.4). The E-M1 Mark III is equipped with a
4/3 Live MOS Sensor with an effective resolution of 20.4 mega pixels. It also features
the fore-mentioned Supersonic Wave Filter. One major improvement and the reason why
this camera was chosen over the previously used E-M5 Mark II is the ability to record 4k
videos (Olympus, 2021b).

Figure 2.2 The tripod mounted camera setup that was used for the data acquisition.

The ED 12-40mm F2.8 PRO lens (Table 2.1) has a smaller focal length range, but a
better possible light incidence with a minimum aperture of f/2.8 (Olympus, 2021d). This
lens was chosen for the third data acquisition, as the previous recording sessions showed,
that a higher focal length was not needed for the video recordings and the bigger aperture
range was expected to be of higher utility. More importantly, the lower weight of the
lens (382g), and higher weight of the OM-D E-M1 Mark III (580g), helped to provide a
more stable platform for the video recordings, as the comparatively higher weight of the
ED 12-100mm F4 IS PRO lens (561g) and the lower weight of the E-M5 Mark II (469g)
resulted in occurrences of camera drift.

Figure 2.3 OM-D E-M5 Mark II with the
M.ZUIKO DIGITAL ED 12-100mm F4 IS
PRO lens

Figure 2.4 OM-D E-M1 Mark III with the
M.ZUIKO DIGITAL ED 12-40mm F2.8
PRO lens

6



2.1. DATA ACQUISITION

In the third data acquisition session only videos were captured. Based on previous
experience they were better for testing and improving the automated scoring system, as
the videos were able to capture a climber’s ascent similar to the intended usage scenario
of the system, namely the live-feed of a climbing competition. Both 3840x2160 pixel (4k)
and 1080p videos were recorded to explore the impact of the resolution on the processing.
The 4k and 1080p videos were recorded with the highest possible frame rates of 30 fps
and 60 fps, respectively. The aperture was set to f/5 for all videos, as this value provided
a good depth-of-field to keep the object’s of interest, the climber and the holds, in the
range of acceptable sharpness.

Table 2.1 Important specifications of the used cameras and lenses.

Olympus cameras OM-D E-M5 Mark II Olympus OM-D E-M1 Mark III

Sensor type 4/3 Live MOS Sensor 4/3 Live MOS Sensor
Number of pixels 16.1 million pixels 20.4 million pixels
Dust reduction Supersonic Wave Filter Supersonic Wave Filter
Max. photo resolution 4608 x 3456 pixels 5184 x 3888 pixels
Max. video resolution/framerate 1080p at 60fps 4k at 30fps
Weight 469g 580g

M.Zuiko lenses ED 12-100mm F4 IS PRO ED 12-40mm F2.8 PRO

Focal length 12-100mm 12-40mm
Min. aperture f/4 f/2.8
Weight 561g 382g

2.1.3 Data

The resulting data includes 2227 images of holds and climbers, as well as 19 videos of
climbing processes (Table 2.2). Four volunteers and myself were recorded for the climber
pictures and videos, namely four males of varying physique and one female person.

Table 2.2 The Data acquired during the three recording sessions at the Kletterhalle Wien

Data acquisition
Session Nr. Session 1 Session 2 Session 3

Recording date 16.10.2020 26.05.2021 15.09.2021
Resulting Data 1385 picture 842 pictures; 5 videos in 1080p 7 videos in 4k; 7 videos in 1080p

Data usage HAAR-Cascade and
YOLO training

HAAR-Cascade and YOLO training;
initial system testing Final scoring system testing

The images were used for experimenting with the training of specialised detection
algorithms (section [3.3]) for either climbers and holds, where they were used as positive
and negative image examples for HAAR-Cascades (section [2.2.2.1]) and with labeled
contents as image set for YoloV3 (section [2.2.2.2]). The videos were split into their
frames and used for building, refining and testing the scoring script (section [3.5]). The
data from the first two acquisition sessions was mostly used for experimenting with
different detection methods and building the processing framework. Experience from
these sessions and experiments helped to determine the requirements the recordings
had to meet for further development of the automated scoring system. Therefore, the
14 videos recorded in the last acquisition were the most useful for many important
development steps (sections [3.4], [3.5]). Of theses videos seven are in 4k resolution and
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seven in 1080p. Additionally, half the videos show the female volunteer resulting in a
good variety in both resolution and content.

2.2 Software

2.2.1 Python

For the purposes of data processing a Python 3.7 interpreter was used in a Pycharm IDE.
The most important packages that were used are described in this section.

2.2.1.1 OpenCV2

The Open Computer Vision Library v3.4.2 (OpenCV) is an open source software library,
that provides tools for computer vision and machine learning applications (OpenCV,
2021). OpenCV is written natively in C++. Python is used as an interface to integrate
the library into the data processing to utilize it on a wide variety of image processing
tasks. OpenCV was implemented in various instances of image processing throughout
this thesis such as the reading and writing of images and videos, switching between colour
models, edge detection, training the HAAR-Cascade detection (section [2.2.2.1]) and
comparing images.

2.2.1.2 Scikit-image

Scikit-image v0.18.1 is an open source image processing library (Van der Walt et al.,
2014). Throughout this thesis, it’s structural similarity (SSIM) function is used for
comparing images.

2.2.2 Detection algorithms

For the detection of the climber and holds, different detection algorithms were assessed.
The idea was to detect the holds before the ascent of the climber and the climber themself
during said ascent. The bounding boxes, that were derived with these algorithms, served
as a cornerstone for the scoring process.

The use of HAAR-Cascades (named after the HAAR-like features it uses, which are
in turn named after the structural similar HAAR-wavelets which are based on the
HAAR-sequence proposed by Alfréd Haar in Haar, 1910) was proposed, as it represents
a detection algorithm where the detection features are less of a blackbox than with most
state of the art algorithms. Only the weights of the features are trained with machine
learning algorithms on test data, while the HAAR-like features are determined beforehand
(Viola and Jones, 2001a).

The YOLO (You Only Look Once) algorithm is a very fast detection algorithm and
therefore well suited for detection tasks needed for the automated scoring system. It’s
real time detection capabilities, provided sufficiently strong hardware is used, and good
performance (Redmon et al., 2016b) lend itself for the task at hand. Most other state of
the art algorithms are fully convolutional neural network (CNN) based such as YOLO,
but outperformed by it due to its unified detection approach (section 2.2.2.2).

8
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2.2.2.1 HAAR-Cascades

HAAR-Cascades are a family of detection algorithms that "[...] use a Cascaded Reduced
Set Vector [RSV; author’s note] expansion of a Support Vector Machine (SVM)"[Rätsch
et al., 2004]. These RSVs have a HAAR-like structure and HAAR-like features (Rätsch
et al., 2004). These HAAR-like features are geometric features which are similar to HAAR
basis functions (Viola and Jones, 2001a). In Figure 2.5 some HAAR basis functions are
shown. These enable a very fast SVM kernel evaluation by utilization of the Integral
image, an image representation proposed by Viola and Jones (2001b) and therefore
provide a means for reduction of the computational complexity of a SVM classifier with
negligible loss of accuracy (Rätsch et al., 2004). In Figure 2.6 one can see a usage example
of HAAR-like features in face detection as proposed in Rätsch et al. (2004).

Figure 2.5 Examples of HAAR
basis functions; they take 1, 0,
and -1 in white, gray, and black
regions. Figure from Okabe et al.
(2004)

Figure 2.6 Left to right: a) Example of the Haar-
like approximation of a face and an anti-face such
as RSV; b) discretized vectors by four gray levels; c)
smoothed vector by morphological filters; d) H-RSVs
with computed rectangles. Figure from Rätsch et al.
(2004)

The cascade part refers to the cascaded evaluation that is used to classify an image
patch. First, the hyperplane is approximated by a single HAAR-RSV (H-RSV). If
the classification function for the patch is negative, it is classified as non-face and the
evaluation stops. This process is repeated incorporating more H-RSVs, to make the
classifier more complex, and rejecting as early as possible, until a positive evaluation
using the last H-RSV is reached. Then, the full SVM is used to classify the image patch
(Rätsch et al., 2004).

The training of the HAAR-Cascade classifiers for testing purposes was done with a simple
GUI tool called "Cascade Trainer GUI" (Ahmadi, 2017), following the instructions from
Tejas R. Phase (2020). HAAR-Cascade detection is implemented with the OpenCV2
package for Python.

2.2.2.2 YOLOv3

YOLO is a real-time detection algorithm where a single CNN simultaneously predicts
multiple bounding boxes. These bounding boxes are predicted by resizing the image,
running said CNN and thresholding the resulting detections by the YOLO model’s
confidence. For each box class probabilities are calculated. In YOLO the object detection
is reframed as a single regression problem, straight from image pixels to bounding boxes

9
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and class probabilities, hence You Only Look Once (YOLO) at an image to predict what
objects are present and where they are. Since the detection is framed as a regression
problem, no complex pipeline is needed, making YOLO very fast in comparison to other
detection systems, such as deformable parts models, DPM (Felzenszwalb et al., 2010) or
R-CNN, Regions with CNN features (Girshick et al., 2014). The algorithm is trained on
full images, meaning YOLO reasons globally about the image when making predictions,
so it implicitly encodes contextual information about classes as well as their appearance
(Redmon et al., 2016b).

The input image is divided into an S x S grid (S being the width and height in number of
grid cells as seen in Figure 2.7), where the responsibility for objects is assigned to grid cells
by checking whether the object’s center falls into one of those grid cells. Bounding boxes
and confidence scores for those boxes are predicted cell-wise. These scores reflect how
confident the model is, that the box contains an object and how accurate the predicted
box is. A confidence score of zero indicates the lack of an object in that cell. Conditional
class probabilities are also predicted grid cell-wise. These probabilities are conditioned
on the grid cell containing an object. Only one set of class probabilities per grid cell is
predicted. The class probabilities multiplied with the box confidence score results in a
class specific confidence score for each box (Redmon et al., 2016b). In Figure 2.7 the
YOLO process is displayed in a simple visual representation.

Figure 2.7 A visual representation of YOLO’s detection model. Figure from Redmon
et al. (2016b).

YOLOv3 is an improved further developed Version of YOLO (Redmon and Farhadi, 2018).
A TensorFlow 2 (version 2.1) Python implementation of YOLOv3 was used throughout
data processing and script development with TensorFlow being an end-to-end open source
platform for machine learning (TensorFlow 2021).

For training a set of weights with YOLO, the LabelImg graphical image annotation
tool was used, which is a Python software that uses Qt (Qt | Cross-platform software
development for embedded desktop 2022) for the graphical interface. With this tool
the desired object can be marked, labeled and saved in the appropriate format needed
for YOLO training. It is possible to either train using the pre-trained darknet feature
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2.2. SOFTWARE

extractor weights as a base, also called transfer learning (Tensorflow, 2022b), or from
random weights, called training from scratch.

Ultimately, YOLO’s COCO pretrained set of weights was used to detect persons which
were then labeled as climbers. This set represents weights that are already trained by
Redmon and Farhadi (2018) on the Microsoft COCO dataset. It is an open source
database of photos of 91 object types with a total of 2.5 million labeled instances in 328k
images, that was made for detecting and segmenting objects found in everyday life in
their natural environments (Lin et al., 2014).
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Chapter 3

Methods

Figure 3.1 Main steps required for the automated scoring.

As discussed in Section [1.2] the most important components of an automated scoring
system for climbing (Figure 3.1) are the delineation of holds, the detection of the climber,
the comparison of the hold and climber position, the decision whether a hold is reached
and the application of the score. According to this scheme, an overall concept was
developed that tackles the implementation of the components using state of the art
detection algorithms and image comparison tools to get the final score of the climber
based on a video input. In this chapter, the main processing steps are discussed with
focus on their practical implementation. The sections first describe the requirements for
each step, followed by the proposed solution and the methods, that were used to achieve
it. Afterwards, an overview of the data- and workflow is given.

3.1 General methodic remarks

As the aim was to create a relatively low-cost system, only one camera perspective is used,
namely the camera pointing straight at the climbing wall from behind the climber. The
positioning aimed to create an approximately perpendicular recording in the horizontal
plane. Vertically, the camera was tilted between 0◦ - 45◦ in a way, that the whole climbing
wall was covered. The distance to the climbing wall was chosen individually for each video
to accommodate to the specific height of each route. As the camera was mounted on a
tripod and not moved while recording, a stable platform and therefore a fixed position
was assumed.

In respect to processing, two PCs from the GIS-Lab at TU Wien and a personal office
PC were used. The PCs a TU Wien are equipped with an AMD Ryzen 7 2700x eight-
core processor, 32GB of RAM and a NVIDIA GeForce GTX 1060 6GB graphics card
respectively. The office PC features an AMD Ryzen 5 3600 six-core processor, 16GB
of RAM and an AMD Radeon RX 5700 8GB graphics card. For YOLO training, the
GIS-Lab computers were set up for parallel processing with the TensorFlow 2 framework.
For all other tasks, only one GIS-Lab computer or the personal office device were used.
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OpenCV uses a coordinate system that has its origin in the top left pixel of each image.
All coordinate based computations refer to this system (Figure 3.2).

Figure 3.2 A visualisation of the picture coordinate system used in OpenCV (Figure
from Rosebrock (2021))

Due to the restrictions of the used setup, other means of automatically detecting and
marking holds, such as the use of photogrammetric targets on every hold, were not
further investigated. Methods such as reflectors (e.g. IROZHLAS, 2019) or markers
(e.g. Cordier et al., 1994) attached to the climber were considered, but not pursued, to
avoid interfering with the climber and keep the system’s complexity down. Systems with
multiple cameras (e.g. Iguma et al., 2020) or drones (e.g. Tiator et al., 2018), as well
as RGB-D (e.g. Pandurevic et al., 2019; Pandurevic et al., 2020; Wiehr et al., 2016;
Kajastila and Hämäläinen, 2014; Kajastila et al., 2016 and Kosmalla et al., 2017) or
LiDAR depth cameras (Efstratiou, 2021) were avoided, to keep the cost of the system
low.

As mentioned in section [2.1.3], pre-recorded videos split into their individual frames
were used to develop the scoring system. This procedure was chosen to reduce the
computational expense during data import, as the videos would have to be split into
frames anyways for image processing. Additionally, by splitting the videos into frames
beforehand, parameter testing procedures could be conducted in less time. This limits
the implementation in a way, that the system was built around these pre-recorded videos
and not an actual live competition situation. The system accepts videos as input and
was therefore theoretically set up to work with live-video feeds.

For the declaration of holds as "reached" and the scoring process, systems that use sensors
in holds (e.g. Pandurevic et al., 2019; Pandurevic et al., 2020; Strickler et al., 1994;
Quaine et al., 1997b; Quaine et al., 1997a; Quaine and Martin, 1999; Torino et al., 2020;
Parsons et al., 2013 and Aladdin and Kry, 2012) are disregarded to keep the proposed
system simple and cheap.

The scores itself were chosen in a way, that they could help with the evaluation, the first
hold got a score of 1, the second 2 and so forth.
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3.2. HOLD DELINEATION AND DETERMINATION

3.1.1 IFSC climbing and scoring process

The climbing process that is subject of this thesis follows very specific guidelines according
to IFSC (2021). Lead competitions take place on artificial climbing wall with a minimum
height of 12m, while the routes should be at least 15m long and 3m wide. For the sake of
simplicity it is assumed, that the investigated climbing route does not contain overhangs
in an extent that the climber would move towards the camera.

In climbing competitions the hold scores are determined by the chief routesetter in a
"Topo", a graphical representation of the climbing route, with arbitrary values he sees fit.
The scoring is executed by at least 2 people, a national judge and a time keeper who
record the competitors score. This score represents the climber’s progress on the route,
each hold the climber reaches gains them a point. The further the climber climbs, the
higher is their score. The final score determines the winner of a competition. In case of a
tie, the elapsed climbing time is used as a tie-breaker (IFSC, 2021).

3.2 Hold delineation and determination

To check whether a hold is reached, its position must be known. Ideally the hold would
be delineated by its pixel coordinates. A direct delineation from video-frames to exact
pixel coordinates was unrealistic with the limitations of resolution and the aim for fastest
possible processing times. Therefore a method for creating bounding boxes (BB) to get
approximate hold positions was pursued. Once these bounding boxes were created they
were used to further delineate the holds for more precise results.

3.2.1 Detection and bounding box determination

An automated detection of the holds was tested with HAAR-Cascades and YOLOv3. For
the HAAR-Cascade detection the pictures from the first two data acquisition sessions
[2.1] were used to train a detector with the "Cascade Trainer GUI" (Ahmadi, 2017).
The pictures showing the holds were used as positive sample images and pictures of
non hold objects (e.g.: quickdraws, rock climbers, rope segments etc.) were used as
negatives. These pictures had to be prepared in a way, that they only show the positive
or negative object and fit an aspect ratio of 1.33:1. This aspect ratio represents not
only the size of the input images, but also dictates the size of the resulting bounding
boxes. Using different picture sets, different HAAR-Cascade classifiers were trained. The
default settings recommended by Ahmadi (2017) were used for training, with only the
buffer-sizes adjusted to the computer specifications, the positive image usage set to 90%
and the aspect ratio to 1.33:1, by setting the sample width parameter to 32.
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3.2. HOLD DELINEATION AND DETERMINATION

(a) HAAR-Cascade detector results

(b) Exemplary positive image

(c) Exemplary negative image

Figure 3.3 a) Results of the HAAR-Cascade detector; b) positive image for HAAR-
Cascade training; c) negative image for training.

The resulting detector worked reasonably well in regards of precision, but was very slow
as it took several minutes to classify the wall seen in Figure 3.3a. Additionally, multiple
instances of false positives and false negatives (FP and FN ) can be observed (cf. Figure
3.3a).

Considering these obstacles and an already existing infrastructure for YOLO training,
an approach with a YOLOv3 detector was tested next, even though YOLO isn’t well
suited for detecting multiple objects close to each other (Redmon et al., 2016b). In scope
of Figure 3.3a this may seem to be a dealbreaker, but climbing walls usually have less
holds than the one pictured, especially during competitions. As YOLO training works
differently than training HAAR-Cascades, not only pictures containing solely holds can be
used as positive examples. To train a YOLO detector, a set of images and corresponding
XML files must be created. These XML files contain bounding boxes and class labels
for each object of interest in an image. After creating a training dataset, following the
instructions from Z. Zhang (2019), transfer learing (Tensorflow, 2022b) was attempted
using the pre-trained Darknet (Redmon, 2016a) feature extractor weights. Furthermore,
training from scratch (Z. Zhang, 2019), also called training from random weights, was
attempted. Unfortunately, none of the resulting detectors was able to handle the task of
hold detection properly.

15



3.2. HOLD DELINEATION AND DETERMINATION

(a) Example of Marked holds

(b) BB and Score UI

(c) Score and BB closeup

Figure 3.4 a) An example of a route with the marked holds and corresponding scores
displayed; b) The user interface for creating bounding boxes and setting the scores, after
the boxes lower right corner is defined, the window automatically pops up; c) A closeup
of a bounding box and the corresponding score.

After failing to create an automated hold detection, a manual approach was pursued.
For manually creating bounding boxes, first a user interface (UI) was created. It takes a
picture previously defined as baseline, generally the first frame of the video, and displays
it scaled to the size of the used monitor. On this picture, rectangles can be drawn
by clicking the top-left corner and dragging to the bottom right corner of the desired
bounding box. Additionally, during this step the score of each hold can be defined. A
window (Figure 3.4b) to enter said value appears, after marking a rectangle (Figure 3.4c).

The bounding boxes and the corresponding scores are then saved in a file for later
processing steps. After all holds of the desired route are marked, an image containing all
bounding boxes and corresponding scores (Figure 3.4a) is created and saved for easier
evaluation of the results later on.

3.2.2 Further delineation

Since the bounding boxes created in the previous step are only a rough representation
of the hold’s extent, a more precise delineation was desired. At first, a simple contour
extraction was performed using the OpenCV2 library (OpenCV, 2018b) to find the
contour with the largest surface area, which should represent the hold. The contour in
this context is an outline of an object in the image, derived with the OpenCV2 structured
edge detecion function (OpenCV, 2018a). Even though this extraction could be tuned
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3.2. HOLD DELINEATION AND DETERMINATION

quite well for single images, shadows, wall texture (Figure 3.5a) and variances in contrast
between holds and walls pose serious problems for using this method on bigger scales.

(a) Examplary problematic contour (b) Examplary good contour

Figure 3.5 a) Extracted contour; the problematic shadow and abrasion on the wall can
be seen clearly; b) Example of a well extracted contour.

Considering these obstacles, image segmentation using a colormask with the hue, sat-
uration, value (HSV) color model to extract the holds from the bounding boxes was
implemented. The HSV color model is more robust towards external light changes than
RGB/BGR (red green blue/blue green red) systems and is therefore better suited for
the color delineation tasks. The colormasking was achieved by building a UI where the
baseline image (section [3.2.1]) is displayed and six sliders are provided, as seen in Figure
3.6a, with a single hold. These six sliders represent the maximal and minimal values
of the three HSV parameters, which can be moved to adjust to the colour of the holds
of the desired route. OpenCV usually stores images in a Blue/Green/Red (BGR) color
model, therefore they have to be transformed to HSV first. While Figure 3.6a only shows
a single hold, the color picking process incorporates the whole baseline image of the route
(Figure 3.6b), to compensate potential differences within the HSV values between the
holds. The resulting HSV ranges are saved to a file for later purposes (section [3.4]).

(a) Color picker UI with an examplary hold (b) Color mask applied to the entire wall

Figure 3.6 a) Color picker UI with exemplary color segmentation; b) Color mask with
the values picked in 3.6a applied to the entire wall.
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3.3 Climber detection

The detection of the climber is a crucial part of the system, as their position has to be
known to derive the climber’s route progress. The climber has to be located in many
video-frames, ideally in real time, making a manual approach unrealistic. The detection
algorithm YOLOv3 (section [2.2.2.2]) was predestined for this task, as it is a very capable
state of the art algorithm for live detection and the algorithm’s native outputs are
bounding boxes with confidence scores. The positions of the climber as bounding box
coordinates were desirable, as they are easy to work with and the holds were already
stored in the same format (section [3.2]). In contrast to this, the bounding boxes are
not the best solution, as they are sub-optimal to detect the movement of the climber’s
hand accurately. Regardless of this, the bounding boxes from the climber detection are
an easy solution at hand to create an approximate area to restrict the overlap search to
(section [3.4]).

It was decided, that a custom YOLOv3 detector should be trained for this task. This
custom climber detector was trained according to Z. Zhang (2019) with pictures provided
beforehand in addition to data from the first two acquisition sessions. Five sets of training
data were created and trained for 200-1000 epochs in nine instances. The batch size,
steps per epoch and validation steps were adjusted to the size of the training dataset to
accommodate parallel computing (Tensorflow, 2022a), while the training rate and other
parameters were left on their default values as suggested by Z. Zhang (2019) . After
multiple attempts of creating a reliable detection, the custom detector only ever worked
on the same pictures it was trained on (Figure 3.7).

Figure 3.7 Custom detector working on
training images; the bounding box around
the climber is much closer to the climber
compared to the pre-trained YOLO; the
method of comparing hold and climber
bounding boxes used in this thesis (section
3.4) would not work with this custom de-
tector

(a) pretrained YOLO (b) YOLO failing

Figure 3.8 a) the pretrained YOLO is work-
ing even with uncommon poses; b) an in-
stance of the pre-trained YOLO failing

As already stated in section [2.2.2.2] the COCO pre-trained set of weights by Redmon
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and Farhadi (2018) was ultimately used to detect persons. These detected persons were
then relabeled as climbers, drawn on the video-frame they were detected on (Figure 3.8a)
and saved to a list. Despite YOLOs good performance, it still failed sometimes, as seen
in Figure 3.8b. If no climber is detected in a frame, a faux climber with very small x- and
y-coordinates [0, 0; 1e − 12, 1e − 12] is saved instead, as one climber per frame is needed to
ensure smooth processing. If multiple climbers are detected in a frame, only the bounding
box with the smallest coordinates, the assumed climber, is saved. This measure is taken
to have only one bounding box per image and to make it therefore possible to refer to
the bounding box and image with the same index number. These bounding boxes were
then used to compare the climber and hold positions. To increase utility of the bounding
boxes, a further delineation with an additional YOLO hand detection was considered,
but no sufficiently accurate pre-trained hand detection was found. A self-trained hand
detection wasn’t an option, due to the lack of training data, as at least 2000 images are
recommended (Bochkovskiy et al., 2020).

3.4 Declare holds reached

Following the delineation of bounding boxes for climbers and holds, the next step was to
implement a way to declare a hold "reached" or "gripped". It has to be stated, that with
image differences and only one camera angle the resulting algorithm won’t be able to
differentiate between a simple overlap of a hand and a hold or if a hold is really gripped.
Therefore, from here on the terms "reached" and "gripped" are used interchangeably,
because the system is not set up to differentiate between the two states. Considering
the system’s restriction of only one camera angle showing the climber from behind, the
possibilities for a reliable and accurate system are limited. It was chosen to focus on
image differences for this part of the scoring system. Therefore, a hand in front of a hold
counts as gripping it, assuming that gripping the hold is easier, than just keeping one’s
hand in front of the hold. Furthermore, the possibilities for distinguishing, if either a
hand or another body part is the one in front of the hold are limited.

Figure 3.9 graphical representation of the logic behind the comparison-baseline delay
with an exemplary delay of 120 frames; N is either the index of the frame where the hold
is considered "reached" or the last frame of the video.

For every hold a check is conducted, if its bounding box is inside of the bounding box of
the climber during any frame of the video. To achieve this, the overlap of both bounding
boxes is computed and its area is compared to the area of the hold bounding box. If
the two compared areas are, computational inaccuracies considered, the same, the hold
bounding box is inside the climber bounding box. Furthermore the index of each frame
is checked, if the modulo operation of said index with the frame-reduction parameter is 0.
The frame-reduction parameter is defined as a value n that enables the system to check
only every n-th frame (Table 3.1). It is introduced to reduce computational expense,
as checking every frame didn’t benefit the performance of the system during testing
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noteworthy. Only if both conditions are met, the image comparison is executed. The
next step is to compare the corresponding frame, where the hold bounding box is inside
the climber bounding box, to a comparison-baseline image. This comparison-baseline
image is set to be a number of frames before the currently investigated frame. It was
experimented with a comparison-baseline delay of 30 to 120 frames for 4k, and 60 to
240 frames for 1080p videos equalling 1 to 4 seconds, to ensure that the climber in
the comparison-baseline image is not near the currently investigated hold’s bounding
box. Longer delays were not investigated, as higher delays meant bigger discrepancies
in lighting and shadows, which caused problems with the image comparison in previous
testing. As long as the index of the current frame is lower than the comparison-baseline
delay, the first frame of the video is used as the comparison-baseline (Figure 3.9).

This image comparison has several stages. If the colormask boolean is set to true, the
images are masked to only contain values from the desired HSV range derived in the
color picking process (section [3.2]). Otherwise no colormask is applied. Assuming this
colormask is accurately enough determined, it leaves mostly pixels containing only the
hold. Then, the frames are handed to the comparison method, alongside the bounding
box of the currently investigated hold. The two pictures are converted to greyscale
to speed up the computation, as commonly done in image computation tasks. The
mean structural similarity index (SSIM index; Z. Wang et al., 2004a) is computed, as
it represents a robust and fast measure for the differences between two images. The
SSIM takes luminance, contrast and structure into account to create a measure called
the SSIM index. These three values are derived from the respective means and variances
and the covariance of two compared signals (image patches). They are then corrected
with constants that take the dynamic range of pixel values into account and combined to
create the SSIM index as a measure that considers various types of distortions (Z. Wang
et al., 2004a).

For the calculation of the SSIM index, the structural similarity method from scikit-
image package is used, resulting in a similarity score (ranging from 0 to 1), the mean
SSIM index, and an image containing the differences (e.g Figure 3.11). Thresholding
and contour extraction methods are applied to this difference image, to gain a better
visual representation, as seen in Figure 3.11. The difference images are written to .jpg
files, categorized by their frame number and the number of the corresponding hold.
Additionally, the similarity score is converted to pixels by multiplying it with the area
of the investigated bounding box, for later thresholding. In summary, the comparison
method returns a difference image, a similarity score in percentage and the similarity
score times the corresponding bounding box area. The similarity score in relation to
the bounding box is subtracted from the bounding box area to gain another value used
for thresholding methods. This value will be referred to as dissimilarity. Although the
similarity score is not an areal metric, empirical testing with the score converted to
pixels revealed that using this converted score improves the determination whether a
hold is "reached". This is additionally validated when looking at Figure 3.10, as a linear
dependency between the second and third thresholding values and SSIM in pixels is
observed.

Three threshold values are used to compare the outputs of the structural similarity
method and the dissimilarity to:

1. The first value represents the mean structural similarity (Z. Wang et al., 2004a)
below which the hold is considered "reached".
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2. A value representing the minimal occlusion of the hold in percent, over which we
assume the hold was "gripped". It is compared to the dissimilarity divided by the
approximate hold size (Figure 3.10a).

3. The last value represents an empirically derived approximation of the number of
pixels of the climber’s hand in the video, the hand area. A pixel value was chosen
instead of a percentage threshold, because the size of the climber bounding box
from the YOLOv3 detection (section [3.3]) varies strongly even within one video.
If the dissimilarity is bigger than this pixel value, the hold is considered "gripped"
(Figure 3.10b).

(a) Correlative validation of the occlusion
threshold

(b) Correlative validation of the hand area
threshold

Figure 3.10 Correlation plots of the threshold values on the y-axis and the respective
metric they are compared to on the x-axis; each dot represents one analysed hold.

For the validation process 46 holds from four videos, two 4k and two 1080p, were manually
investigated. For each of the holds the metrics used for thresholding were calculated and
the linear regression (Weisberg, 2005) and linear RANSAC (Fischler and Bolles, 1981)
r2 scores were computed to validate their use. The good linear correlation (r2 > 0.8)
supports the choice of these values for thresholding.

In Figure 3.11, the process of a hold getting gripped is seen. If either one of the three
thresholds is exceeded the hold is "reached". The differences in Figure 3.11a could be
considered optical noise, while in Figure 3.11b an occlusion is obvious. Figure 3.11c
represents the first instance of this particular hold in which it is considered "gripped".

If none of these thresholds is reached, the next frame, which meets the condition of the
hold being inside the climbers bounding box, is checked. It was tested to check every 0.33
seconds or, twice as often, every 0.167 seconds. These durations represent a significant
reduction of handled frames( by 95% or 90% for 1080p videos and 90% or 80% for 4k
videos respectively) but are still short enough to not miss important events. The values
were handed to the script as frame values, adapted to the videos respective frame-rate.
Longer pauses in-between checks were deemed as pointless, considering early tests and
the fast paced situations that can arise in a climbing competition, while more frequent
checks would not reduce the computational expense significantly. If the thresholds are
not reached in any of these frames, the hold is considered not "reached" or "gripped". As
soon as a hold is considered "gripped" or "not gripped", the next hold is dealt with until
all marked holds (cf. [3.2]) are handled.
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(a) Frames 3035/3095;
small visible image differ-
ences; clearly optical noise as
there is no overlap apparent.

(b) Frames 3040/3100; big-
ger visible difference; defini-
tive overlap, from hand mov-
ing over the hold.

(c) Frames 3045/3105; dif-
ference where the thresholds
are reached and this particu-
lar hold is declared "gripped".

Figure 3.11 Different images showing the results from the image structural similarity
comparison; first a) and second row b): The images are taken from a 4k video with a 60
frame/2 second comparison-baseline delay; third row c): the raw difference images range
from white to black, where white represents no difference; last row: the differences are
highlighted in a bright green color as an overlay over the masked images

3.5 Score application

The score for a hold is determined simultaneously with the delineation of its bounding
box. These scores have to be known beforehand. As stated in IFSC (2021) the scores for
a competition are to be prepared in a "Topo" by the chief routesetter. The process of
applying the score itself is trivial. As soon as a hold is declared "gripped", the climber’s
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score is set to the hold’s corresponding score. This final score is shown as soon as the
processing of the video is finished.

A method for life-video-feed use of automatic scoring system would be, to subject the
score to a manual review. This could be done in the form of a dialog window, that
appears when a hold is recognized as "gripped" by the system.

3.6 System validation

Each hold was manually inspected whether the system worked properly. During this
inspection the holds were assigned to one of three categories:

1. holds that were declared "reached" or "not reached" correctly in the first possible
instance: ncorr

2. holds where the system failed entirely

3. holds that were declared "reached" due to the lack of differentiation of hands and
other body parts or late due to failing climber detection: nint

The holds in these categories were then attributed to the performance (P) or the integrity
(I ) of the system in the particular video. The performance represents the real world
performance where one can rely on the system to agree with the ground truth. Each
hold assigned to the first category was correctly declared as "reached" or "not reached"
and therefore attributed to the performance. This number of holds, where the system
was performing well, was divided by the number of holds in the respective climbing
route (equation 3.1) to make them comparable between videos and routes. The resulting
percentage value is referred to as performance (P).

P = ncorr

nroute
∗ 100 (3.1)

The integrity value represents the percentage where the system works as intended but
does not necessarily produce results that could be used in a real world application. For
the integrity the holds contributing to the performance were expanded by adding holds
from the third category. This includes holds where a body part other than the hand was
responsible for the declaration as "reached" and delayed "reached" declaration caused by
failing YOLOv3 detection. In this context, a YOLOv3 detection error was only counted
as system failure, if a hold was entirely skipped. The sum of holds from category one
and three represents the script working properly within its limitations. This value was
divided by the number of holds in the respective climbing route (equation 3.2 to get the
desired percentage value, which is referred to as integrity (I ).

I = ncorr + nint

nroute
∗ 100 (3.2)

If neither was the case and a false positives or false negatives (FP and FN ) was observed,
the system was also failing. A manual differentiation between performance and integrity
is made, because of the system’s inability to differentiate between the two automatically.
For the purpose of comparing the videos, the performance and integrity originating from
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the best performing parameter set for each video were taken. These parameter sets can
be observed in table 4.1, where the videos are listed with their resolution, the set of
delay and frame reduction values that worked best in their case, and their respective
performance and integrity values. The percentage threshold values that were chosen for
the videos can be found in table 3.1. The similarity threshold of 0.6 was the same for
all videos and the overlap threshold was 0.9 for all videos except video 11 were 0.8 was
chosen after reviewing the results and finding an unusual amount of fales negatives. The
hand size in pixels was chosen for each video individually.

3.7 Process summary

Figure 3.12 Illustration of the processing steps and decisions of the automated scoring
system; decisions are depicted with green rhomboid shapes, processes with orange rectangles
and data with lavender colored parallelograms.

This section describes the data- and workflow of the automated scoring system (Figure
3.12). As some of the data processing was already broached in the previous sections, the
focus will be only on important steps, the interactions between the different parts and
the workflow as a whole.

At first, some input data is needed, which is, in the case of this thesis, a prerecorded
video split into single frames (section [2.1.3]). Alternatively, some sort of camera system
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could be connected to the PC the Python script is run on to provide live-video data.
The YOLO detection input parameters are left on their default settings for the most
part, while the other parameters are set according to the resolution and frame-rate of
the input video, as well as to the object distance. In Table 3.1 the input parameters are
described in respect of their function, data type and/or value range.

Table 3.1 Examplary input parameters of the automated scoring system.

Input Parameters Functions of parameters Data Type/Content/Value ranges

YOLO detection parameters

Parameters for the YOLO detection, are set Path strings
once and used for all videos;Includes paths Booleans
to classes and weights, values for image resizing Integers
and number of classes

Directory paths The paths to the input and output directories OS friendly path variables as string

CSV paths Path to the hold and colour range CSV files or
where they should be saved OS friendly path variables as string

Worklfow control booleans
Declare whether you want to use the automatic
detection methods, colormasking or a source different
than an image directory

Booleans

Comparison-baseline delay
Number of frames that the baseline image is delayed
in comparison to the current investigated frame;
Has to be adjusted to the video framerate

Frame values equalling [1, ... ,4] seconds

Frame-reduction Reduction of used frames by the set factor;
Has to be adjusted to the video framerate

Frame values equalling
[0.167, ... ,0.33] seconds

Hand Size Pixels
Approximate hand size in pixel; derived from
empirical testing; Has to be adjusted to video
resolution and object climbing wall distance

[500, ..., 4000] pixels

Similarity threshold Similarity percent under which a hold is declared
"gripped"; an empirical derived value between 0 and 1 (0.6) equalling to 60%

Overlap threshold

Percentage over which a hold is declared "gripped";
Compared to value representing the differences
of current frame to the comparison-baseline image in
the not colormasked area; also derived from
experiments; expressed in a value between 0 and 1

(0.8, 0.9); equalling to 80% or 90%

After the input parameters are defined, the process is started:

1. At the start of the process, some preparatory checks are conducted, mainly com-
prised of seeing if the decisive booleans are either set to true or false.

2. The need for an automatic holds detection and the existence of a holds.csv file is
checked, leading to either said detection, a manual delineation of holds or a read
out of the file as described in section [3.2]. This step provides the bounding box
coordinates in pixels and scores for each hold, stored as a list and a CSV file. If
the holds were already handed over as a CSV file, they are just read and written to
a list.

3. Next, a check if a color mask should be applied, is conducted. If the corresponding
input parameter is true, the existence of a color.csv file is verified, otherwise the
color picker is used (see section [3.2.2]). This step yields said color ranges in a CSV
file and stored as a list.

4. The climber detection is executed. The pre-trained weights are used to detect all
objects, that are present in the set by Redmon and Farhadi (2018). The detection
infrastructure provided by TensorFlow (2021) is modified in a way, that only
instances of detected persons are displayed and labeled as climbers. This detection
is applied to the video frames in the input directory. Only one of the detected
climbers is saved for each picture, namely the one closest to the upper left corner of
their bounding box. These are stored in a list, while each of the frames is renamed
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and saved in a new folder, to match the index of its respective climber bounding
box inside this list.

5. The next step is to check whether the holds are "reached". Two loops are used for
this task, the outer iterates through the hold list in the same sequence they were
marked in by the routesetter and the inner through the list of detected climbers.
To avoid checking every hold for an overlap in all videos frames, the bounding
boxes are compared. The difference calculation is executed by computing the mean
structural similarity between the comparison-baseline and the current frame using
OpenCV2 and Scikit-image.

6. The similarity score values, both percent and pixels, are compared to the similarity
threshold, the overlap threshold and the hand size pixel input parameters. This
comparison is executed as described in section [3.4], resulting in a declaration,
whether a hold is "reached" at the moment of the given frame or not.

7. Once a hold is deemed "reached" or all video frames processed, the next hold is
investigated. As a hold is "reached", its score value is set as the climbers current
score and the difference image is written to a .jpg file with a "gripped_" prefix for
a manual review.

8. As the end of the hold list is reached, the score is shown.

To asses the performance of the automated scoring system, a manual review is conducted,
comparing the difference images, where the hold is deemed "reached", with the unedited
video-frames (Figure 3.11). The user’s interpretation of the video is presumed as ground-
truth for this purpose.
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Chapter 4

Results and Dicussion

In this chapter the results of the thesis are presented. Afterwards, the results and the
obstacles that came up during development are discussed. The ways the obstacles were
overcome will be referred to, otherwise their origin will be investigated and possible
solutions will be discussed.

4.1 Results

The results from the data processing consist of the manually reviewed outputs of the
automated scoring system tested with the 14 videos (seven in 4k and seven in 1080p
resolution) from the third data acquisition session. Different input parameter sets were
tested and compared in regards of their performance and integrity. The results from the
respectively best parameter sets for each video (Table 3.1) are shown in Figures 4.1 and
4.2. In Figure 4.1 it can be observed, that the performance of correctly declaring holds
"reached" for 4k videos is overall better. The mean performance of 4k is around 48%
while the mean performance of the 1080p videos is around 40%.

When looking at Figure 4.2, it illustrates that the integrity is generally much higher
than the performance. Additionally, the difference between the means is smaller by
about 2 percentage points (Table 4.1) in comparison to the performance. The integrity
for 4k videos is again higher than for 1080p videos. Furthermore, a smaller integrity
variation between the 4k videos can be observed. The video pairs that show the same
route respectively, videos 1/2, 3/4 and 13/14, generally favor 4k for both integrity and
performance.

As seen in figures 4.1 and 4.2, the performance and integrity do not necessarily relate to
each other. Video 10 is both the best performing video with a correct hold declaration
of approximately 73% overall and has an integrity of 100%. In contrast, Video 2 is
performing rather poorly with only 24% but has the same integrity of 100% (table 4.1).
For the other videos, higher integrity generally yields higher performance.

Nonetheless, the generally high integrity indicates potential for improvement by adding
methods to differentiate between the climber’s hands and other body parts. As these
additions would have been beyond the scope of this thesis, the proposed improvements
will be discussed in section [5].
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Figure 4.1 System performance for the 14 different videos; the mean values for each
resolution are displayed as a dashed line in the respective color

Figure 4.2 System integrity for the 14 different videos; the mean values for each resolution
are displayed as a dashed line in the respective color
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In Figure 4.3 the distribution of comparison-baseline delay and frame-reduction parameters
is visualized by how often they were the best parameter set for the two resolutions and for
all videos. If a video performed equally well or was of equal integrity for two parameter
sets, the video is counted for both sets. The set of a 2 second baseline delay and 0.167
second ( frame-reduction) is clearly the best for system performance and integrity. In
contrast, the set with a 4 second baseline delay and 0.167 second ( frame-reduction) was
in no case the best. For system integrity, a 2 second baseline delay and 0.33 second
( frame-reduction) also yielded good results. Between the two resolutions the parameter
sets were very similarly distributed in both integrity and performance, although the 4k
resolution seemed to handle a longer comparison-baseline delay better.

Figure 4.3 Distribution of the parameters for the best integrity and performance respec-
tively; how often was each parameter set the best set for the different video types; the sum
of best parameters exceeds 7/14 as in some cases two parameter sets performed equally
well; while more parameter sets were tested, these were not included as they were never
close in regards of performance and integrity to the four depicted sets.

The whole system runs 1h30m to 18h18m for 1080p 60fps videos and 1h30m to 22h17m
for 4k 30fps videos, depending on the length of the video and the used ( frame-reduction).
The processing time differences between parameter sets were marginal, therefore for
illustration purposes the mean was computed for each video (Figure 4.4). The current
computational bottleneck can be attributed to the GPUs VRAM for the entire process.
Approximately 25% of the processing times consisted of the YOLOv3 climber detection
and the other 75% of the process of declaring the holds "reached".
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Figure 4.4 Length of the videos and their respective mean processing times; It can be
observed that the processing times for 4k videos are always higher for similar video lengths.

Table 4.1 Overview of the best parameter sets for either performance or the integrity;
equally performing sets are connected with an "and".

Video
Nr. Resolution Delay/Reduction [s] Performance [%] System integrity [%]

1 4k 2/0.167 and 2/0.33 31.25 68.75
2 1080p 2/0.167 and 2/0.33 24.00 100
3 4k 4/0.33 38.89 86.1
4 1080p 2/0.33 22.50 67.5
5 1080p 2/0.167 38.10 52.4
6 4k 2/0.167 51.61 83.9

7 4k 4/0.33 50.00 -
4/0.33 and 2/0.167 - 71

8 1080p 2/0.167 45.83 -
4/0.33 and 2/0.167 - 62.5

9 1080p 2/0.167 46.88 -
4/0.33 - 75

10 4k 2/0.167 73.08 100

11 4k 2/0.167 44.74 -
2/0,33 - 71

12 1080p 2/0.167 52.00 -
2/0.167 and 2/0.33 - 88

13 1080p 2/0.167 53.13 -
2/0.167 and 2/0.33 - 90.6

14 4k 2/0.167 51.43 -
2/0.167 and 2/0.33 - 97.1

mean 4k - 48.71 82.6
mean 1080p - 40.35 76.6
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4.2 Discussion

The higher resolution yielding better results could be attributed to a number of reasons:

1. more accurate color masks (Figure 4.5a)

2. easier recognition of holds and bounding box drawing as seen in Figure 4.5b

3. less influence of optical noise; fewer pixels affected in reference to the entire hold

4. more accurate SSIM computation, as differences can be determined more precisely
with better color masks

For the climber detection the pictures are resized to the same size for the YOLOv3
detection for both resolutions, as the used PCs could not handle a higher sample size.
The frame rate is also unlikely to have a large impact on the performance, as the baseline
delay and ( frame-reduction) parameters were scaled in order to result in the same time
values for both resolutions.

(a) (b)

Figure 4.5 a) the same colormask applied to a 4k (top) and 1080p (bottom) bounding
box showing the same hold; the results for this purely demonstrative colormask are better
for the 4k image; b) images showing two examplary holds in 4k (top) and 1080p (bottom);
while the 4k holds are similar colored, their extent is easily distinguishable from the
background; in the 1080p images the holds almost blend into the background and their
extent cannot be easily determined.

One could assume that an even higher resolution could further improve the results since
4k performed better in average than 1080p. On the one hand this might improve the
performance and integrity and solve some problems such as low pixel counts in small hold
bounding boxes. Additionally, a higher resolution could reduce the system’s sensitivity
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to optical noise. On the other hand higher resolutions would drastically increase the
already long processing times (Figure 4.4) and high PC system requirements. A way
to introduce higher resolution would be in conjunction with an image pyramid system,
which would help to reduce the computational effort of the high resolution, but preserve
the detail for the image difference calculation. As the initial idea for the automated
scoring system included real time capabilities, it could be considered to either introduce
said image pyramid system, drastically increase the computational capabilities of the
used PC, namely more or better GPUs, or lower the resolution of the videos. With the
current system, a lower resolution is not a viable option, as the performance for the
1080p videos is not satisfying.

Besides the resolution, there are some other limitations in the current version of the
system that have an impact on both performance and integrity. These limitations and
the problems with the resolution can lead to the system failing for some holds entirely
due to the following causes:

1. low pixel count in 1080p hold bounding boxes leading to higher susceptibility for
errors (Figure 4.5)

2. optical noise causing one of the thresholds to be exceeded

3. changing ambient light between comparison-baseline and investigated frame

4. changing object distance throughout one video

5. holds gripped in a way, that the thresholds are not exceeded (Figure 4.6)

6. similar hold and background color causing problems in the colormasking process
(Figures 4.7 and 4.8)

7. YOLOv3 detection failing entirely causing the frames where the hold is "reached"
to be skipped

The most common error is a false positive that can be contributed to optical noise or
low resolution (about 84% of all errors). The origin of the optical noise could not be
determined clearly, but the most likely cause are small changes in lighting that are not
visible to the naked eye. This problem cannot be solved easily, but could be mitigated
by reducing the system’s sensitivity by raising the thresholds for a hold to be considered
"gripped". The problem hereby is, that this would cause more false negatives.

While the final thresholds for each video (Table 3.1) try to balance these two error
sources, the pure empirical nature of these parameters leads to the assumption that more
empirical testing or even the introduction of more and different threshold values could
improve the system e.g. the incorporation of the bounding box size under the assumption
of an equally large padding between the hold and the bounding box borders for all holds
or the introduction of an additional difference measure to use in conjunction with the
SSIM.
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Figure 4.6 From left to right: The "not gripped" hold; the "gripped" hold; the "gripped"
hold colormasked; the raw SSIM image; the masked image with the differences highlighted;
this hold is gripped in a way, that the thresholds are not exceeded and the hold is therefore
not registered as "reached".

Another potential problem that emerges with the experimental setup and the methods
(section [3.1]) is the changing ambient light. Ideally, a completely controlled setting in
the regards of light would have been desirable. With the recordings conducted in an
climbing facility during normal opening hours, there was no way to influence the lighting.
Additionally the facility has built-in skylights which also contribute to changing, not
controllable lighting conditions. Although the lighting could not be influenced, some
precautions were taken. The comparison-baseline delay for example was chosen to be
relatively short to minimize the influence of changing lighting conditions on the SSIM
computation. Unfortunately, its impact on the results could not be differentiated from
the optical noise’s.

Figure 4.7 The hold color similar to climber’s skin color causing problems with the
colormasking; left: a well defined colormask; right: the climber’s hand is not masked due
to its color

The changing object distance between the camera and the climber should also be taken into
consideration. The system handles this in a very simple way by using an approximate of
the average hand size throughout the video. More refined solutions such as changing hand
sizes could be taken into consideration for increased system performance. Additionally
the hand size should be adapted to each climber and climbing situation individually. One
way to tackle this problem could be the integration of a hand detection which would
enable an on the fly adaption of the hand size. This hand detection would also help to
solve many other problems. For example, other body parts occluding the hold would not
pose as large of a problem if the position of the climber’s hands could be determined.
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This could also help with holds that are gripped in ways, that the defined thresholds are
not reached (e.g. with just a finger or two, or just on the edge of the hold as seen in
Figure 4.6).

Figure 4.8 A poorly determined colormask due to similar Saturation and Value values
between background and hold color; the left and right image are only a few frames apart
but show noticeably different colormasking

The color-masking (section [3.2.2]) is also a crucial part of the system that has some
downsides. While it helps immensely with the thresholding process, it can cause severe
problems if not tuned and applied appropriately. Furthermore, if the wall and the
holds have a very similar SV (Saturation and Value) range for example, not using a
color mask at all can be beneficial (Figure 4.8). Similarly colored holds and walls can
cause the colormasking to mask different areas between the comparison-baseline and
the investigated hold (Figure 4.5b) leading to a decrease of the SSIM, inducing a false
positives as thresholds are exceeded. Another problem with the colour mask can occur if
the holds have similar HSV values as the climber’s skin. This will lead to areas inside
the bounding box not being masked properly, as soon as an exposed part of the climber
enters said bounding box (Figure 4.7). Similar problems occur if the holds have a color
similar to the shadows that they cast on the climbing wall (e.g. black and dark grey
holds).

As stated in section [3.2] an automatic hold detection was originally planned. It quickly
became obvious that, with the given resources, a manual approach would be the appropri-
ate solution. The automatic detection of climbing holds is a very hard task given the large
variety of shapes and sizes. This makes it very difficult to create e.g. HAAR-Cascades,
that detect the different holds sufficiently without creating false positives. In addition,
sometimes common shapes such as faces, cars or even small mammoths are used as
templates for climbing holds. These factors ultimately led to the decision to take a
manual approach for delineating holds. Additionally, the referee has to assign scores to
the holds anyways, so a manual hold delineation could be integrated into the workflow
easily. In this specific case, the lack of data and computational capabilities supported
the decision to switch strategies. These factors resulted in a HAAR-Cascade that worked
reasonably well for detecting holds, but had such a low efficiency that it rendered the
used PC unresponsive. As also already mentioned in section [3.2] an approach with
YOLOv3 was tested, even though YOLO generally struggles with detecting many small
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objects close to each other (Redmon et al., 2016b), a situation that occurs regularly on
climbing walls. The results from this tests were not usable as expected.

The use of a pre-trained YOLOv3 detector for the climber detection (section 3.3) was
another decision that arose in the course of initial tests. Multiple attempts to create
a custom detector were made, but none was performing sufficiently. This failure can
be attributed to the lack of training data and the lack of computing capabilities for
sensible neural network training. Separate training attempts took up to 12 days even
though two relatively capable PCs (section [3.1]) were used in parallel. Additionally,
the approximately 1400 images proved to be insufficient as at least 2000 images are
recommended for this kind of training (Bochkovskiy et al., 2020). Fortunately, the
YOLOv3 on COCO pre-trained set of weights by Redmon and Farhadi (2018) was able
to detect the climbers on the wall as persons relatively reliably.

Another point that has to be discussed is the choice of metric to asses the image differences
between the comparison-baseline and the image that is currently investigated by the
system. For this task, the structured simililarity (SSIM) index was chosen due to its
wide use and its claim to represent perceived differences very well. While this index was
initially developed to assess the quality of image compression (Z. Wang et al., 2004a), it
can be utilized to calculate differences between any two images. Some sources claim, that
the SSIM is in fact not a mathematical metric and cannot determine image similarities
correctly and the Pearson correlation coefficient is proposed instead(Starovoitov et al.,
2020), but even there it is stated, that the SSIM works very well for images that are
visually very close to each other, which is certainly the case in this thesis. Nonetheless,
this method is used widely (e.g. Sara et al., 2019; Rehman and Z. Wang, 2011; Rehman
and Z. Wang, 2012; S. Wang et al., 2012; Z. Wang et al., 2004b; Ou et al., 2011; Liu
et al., 2022; Setiadi, 2021). Furthermore, the SSIM worked well for determining image
differences during tests (cf. Figure 3.10).

A general point for discussion is if the videos of the two resolutions would even be
comparable for assessing the performance and integrity of the system as they cover
different routes with different climbers. While a direct comparison of individual videos
would not make much sense in this context, a general similarity in the experimental setups
was taken into consideration. Based on this, it is assumed that a statistical comparison
of the two resolutions as a whole makes sense (Figures 4.1 and 4.2) and was conducted
as such in this thesis.
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Chapter 5

Conclusion and Outlook

Following the concept presented in this thesis, a system was built that uses pre-recorded
videos showing the climber and the wall from behind the climber. After initial testing
with HAAR-Cascade for automatic hold detection failed, it was opted to mark the holds
manually by defining bounding boxes and further delineating them by HSV color masking
in a simple UI. For the climber detection and tracking, a pretrained YOLOv3 detector
proved to be the best available option. Declaring a hold as "reached" was done by
comparing the hold bounding box area of the current frame to the same area a number
of frames before it and calculating the SSIM between the areas (Figure 3.11). From the
SSIM, two values are calculated (Figures 3.10a and 3.10b) and checked as to whether
the values and the SSIM itself surpass three empirically derived thresholds. If any of
those thresholds are surpassed, the hold is declared as "reached". The system was tested
on seven videos in 4k and seven videos in 1080p resolution. As ground truth for the
evaluation of the results, a manual review of every hold was conducted to check whether
the hold is declared correctly.

The overall mean integrity of the results is 82.6% for 4k and 76.6% for 1080p (Figure
4.2) showing great potential for improvement of the performance, which is at 48.7%
and 40.4% correctly declared holds, respectively (Figure 4.1). A simple way to increase
the performance could be using higher resolutions, which would in return increase
computational complexity. This increased complexity would arise the need for more
capable processing resources which would as a consequence raise the system’s cost. As a
low cost system is the aim of this thesis, this would contradict the intended purpose. Other
potential improvements include further experiments with different thresholds, comparison-
baseline delays and ( frame-reduction) parameters. Additionally, as mentioned in section
[4.2], the system would greatly benefit from an automated hand detection to improve
the robustness of the "reached" declaration process and to improve the handling of the
different climber hand sizes throughout a video. This could also increase the system’s
speed, as the search area in both spatial and time domain for potential "reached" holds
could be further narrowed down in comparison to the simple climber detection. Other
than that, the code that underlies the system, is not optimized for computational speed
and leaves room for improvement.

The total estimated cost of the equipment used for the final testing and processing
is about 3280€. This could be greatly reduced as the processing equipment’s cost is
estimated at 1080€ and 4k cameras available at as low prices as 200€ or less. The used
filming equipment adds up to about 2200€ and was utilized because it was easily available
for this thesis. In comparison to other systems that use more sophisticated capturing
equipment (section [1.3]) the proposed system can be considered relatively low-cost.
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All in all the, intended goal of the thesis was reached as all parts of the original concept
were implemented and assembled into a working system. While many new developments
and publications are made in the wake of the increasing popularity of climbing sports in
general (Olhorst, 2019), a surprisingly low amount of research was made on the topic of
automated scoring systems. This is were the proposed ideas and the ultimately developed
system serves as a proof of concept for building low cost automated scoring systems for
lead climbing competitions and to show that it is possible to create a working scoring
system with only one camera perspective and state of the art technology. Even though
the performance doesn’t seem great on paper, the envisioned system was implemented
in a way, that it is sufficient for follow-up analysis of lead climbing competitions and to
serve as a basis for future developments in this field of research.
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